
UC Irvine
UC Irvine Electronic Theses and Dissertations

Title
Code Clone Detection using Code2Vec

Permalink
https://escholarship.org/uc/item/5qx4b1xh

Author
Prasad, Anupriya

Publication Date
2020

Peer reviewed|Thesis/dissertation

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/5qx4b1xh
https://escholarship.org
http://www.cdlib.org/

UNIVERSITY OF CALIFORNIA,

IRVINE

Code Clone Detection using Code2Vec

THESIS

submitted in partial satisfaction of the requirements
for the degree of

MASTER OF SCIENCE

in Software Engineering

by

Anupriya Prasad

Thesis Committee:
Professor Cristina V. Lopes, Chair

Associate Professor James A. Jones
Professor David Redmiles

2020

© 2020 Anupriya Prasad

ii

TABLE OF CONTENTS

LIST OF FIGURES ... IV

LIST OF TABLES .. V

ACKNOWLEDGEMENTS .. VI

ABSTRACT OF THE THESIS .. VII

CHAPTER 1 INTRODUCTION .. 1

1.1 MOTIVATION ... 1

1.2 CODE CLONE TYPES ... 2

1.3 APPROACHES FOR CLONE DETECTION .. 2

1.4 RESEARCH QUESTIONS ... 4

1.5 CONTRIBUTION AND CHAPTERS OVERVIEW.. 5

CHAPTER 2 BACKGROUND AND RELATED WORK .. 6

2.1 CODE CLONE DETECTION LITERATURE .. 6

2.2 DEEP LEARNING FOR SOURCECODE LITERATURE .. 8

CHAPTER 3 CODE2VEC ...11

3.1 ABSTRACT SYNTAX TREES.. 12

3.2 CODE2VEC MODEL ... 14

3.2.1 MODEL OVERVIEW .. 14

3.2.2 FEATURE EXTRACTION .. 14

3.3 ATTENTION MODEL .. 16

3.3.1 DISTRIBUTED REPRESENTATION OF CONTEXT .. 16

3.3.2 PATH-ATTENTION NETWORK ... 16

CHAPTER 4 EXPERIMENTAL DESIGN ..18

4.1 DATASET ... 18

4.2 EXPERIMENTAL DESIGN.. 19

4.2.1 NORMALIZATION .. 19

iii

4.2.3 NORMALIZATION IMPLEMENTATION ... 21

4.3 HYPERPARAMETERS .. 23

CHAPTER 5 OBSERVATIONS AND RESULTS ..24

5.1 PRECISION .. 24

5.2 RECALL ... 25

5.3 EXPERIMENTAL RESULTS ... 25

5.3.1 BASELINE CODE2VEC CLONES ... 25

5.3.2 NORMALIZED CODE2VEC CLONES ... 28

5.3.3 NORMALIZATION VALIDATION.. 33

5.3.2 EFFECT OF ‘K’ ON PRECISION .. 35

5.3.3 RECALL .. 35

5.3.4 CLONE THRESHOLD COMPUTATION ... 36

5.4 EVALUATION AND ANALYSIS .. 40

CHAPTER 6 FUTURE WORK AND CONCLUSION ...42

6.1 SUMMARY ... 42

6.2 FUTURE WORK .. 43

6.2.1 PROGRAMMING LANGUAGES ... 43

6.2.2 DATASET EXPERIMENTATION .. 43

6.2.3 ANALYSIS OF FALSE POSITIVES .. 44

6.2.4 APPLICATION DESIGN .. 44

REFERENCES ..46

iv

LIST OF FIGURES

 Page

FIGURE 3.1: PIPELINE PROCESS FOR CLONE DETECTION ... 11

FIGURE 3.2: CODE SNIPPET FOR MULTIPLY BY X PROGRAM .. 15

FIGURE 3.3: ABSTRACT SYNTAX TREE REPRESENTATION OF CODE SNIPPET IN FIGURE 3.2 15

FIGURE 3.4: PATH ATTENTION NETWORK THAT GIVES WEIGHTAGE TO SOME AST PATHS 17

FIGURE 4.1: PREDICTIONS OF SIMILAR METHODS TO GIVEN SORT METHOD WITH A) ORIGINAL BOOL NAME

'SWAPPED' B) CHANGED 'SWAPPED' BOOL NAME TO 'RANDOM' ... 20

FIGURE 4.2: PREDICTIONS FOR SORT METHOD WITH BOOL VARIABLE NAME 'VAR1' 21

FIGURE 4.3: PSEUDOCODE FOR ABSTRACT SYNTAX TREE UPDATE FROM CODE2VEC MODEL 22

FIGURE 5.1: TRUE POSITIVE CLONE DETECTED BY CODE2VEC AND VERIFIED MANUALLY 29

FIGURE 5.2: FALSE POSITIVE CLONE DETECTED FOR REVERSE METHOD ... 30

FIGURE 5.3: PSEUDOCODE TO FILTER CLONES BASED ON THRESHOLD VALUE .. 38

FIGURE 5.4: RESULT OF PRECISION VALUES FOR 3 FUNCTIONS WITH DIFFERENT THRESHOLDS 39

FIGURE 5.5: AVERAGED FALSE POSITIVE FOR 10 MANUALLY SELECTED METHODS (GIVEN IN TABLE 5.2)

INSPECTED WITH DIFFERENT THRESHOLD VALUES .. 39

file://///Users/anupriyaprasad/Documents/thesis/final%20thesis/v4.docx%23_Toc57717499
file://///Users/anupriyaprasad/Documents/thesis/final%20thesis/v4.docx%23_Toc57717500
file://///Users/anupriyaprasad/Documents/thesis/final%20thesis/v4.docx%23_Toc57717501
file://///Users/anupriyaprasad/Documents/thesis/final%20thesis/v4.docx%23_Toc57717502
file://///Users/anupriyaprasad/Documents/thesis/final%20thesis/v4.docx%23_Toc57717503
file://///Users/anupriyaprasad/Documents/thesis/final%20thesis/v4.docx%23_Toc57717503
file://///Users/anupriyaprasad/Documents/thesis/final%20thesis/v4.docx%23_Toc57717504
file://///Users/anupriyaprasad/Documents/thesis/final%20thesis/v4.docx%23_Toc57717505
file://///Users/anupriyaprasad/Documents/thesis/final%20thesis/v4.docx%23_Toc57717506
file://///Users/anupriyaprasad/Documents/thesis/final%20thesis/v4.docx%23_Toc57717507
file://///Users/anupriyaprasad/Documents/thesis/final%20thesis/v4.docx%23_Toc57717508

v

LIST OF TABLES

 Page

TABLE 5-1: RESULTS OF BASELINE CODE2VEC DESIGN 10 JAVA METHODS (SELECTED FROM

HTTPS://CODE2VEC.ORG) AND THEIR TOP10 PREDICTED CLONES WITH INSPECTORCLONE AND

MEASUREPRECISION VALUES OF TP (TRUE POSITIVE) AND FP (FALSE POSITIVES) 26

TABLE 5-2: RESULTS OF NORMALIZED CODE2VEC FOR 10 JAVA METHODS (SELECTED FROM

HTTPS://CODE2VEC.ORG) AND THEIR TOP10 PREDICTED CLONES WITH BOTH MANUAL EXAMINATION

AND INSPECTORCLONE AND MEASUREPRECISION VALUES OF TP (TRUE POSITIVE) AND FP (FALSE

POSITIVES)... 30

TABLE 5-3: COMPARISON OF CLONE DETECTION RESULTS FOR BASELINE AND NORMALIZED CODE2VEC FOR

TOP10 PREDICTED CLONES ... 34

TABLE 5-4: RELATION OF K VALUE AND PRECISION VALUE OVER 100 EXAMPLES.. 35

TABLE 5-5: RESULT OF CODE2VEC AND BIGCLONEBENCH CLONE PAIR VERIFICATION. C: TRUE OR FALSE IF

TOP1 PREDICTED CLONE IS THE SECOND METHOD IN BIGCLONEBENCH TAGGED CLONE PAIR 36

TABLE 5-6: PRECISION VALUE FOR DIFFERENT CLONE SIMILARITY THRESHOLDS OF DIFFERENT FUNCTIONS

 .. 38

vi

ACKNOWLEDGEMENTS

I would like to express the deepest appreciation to my committee chair and thesis advisor,

Professor Cristina V. Lopes, for her invaluable guidance, immense knowledge, and persistent

support.

I would also like to express my sincere appreciation to Farima for her support and insights

along the way.

I would like to thank my committee members, Associate Professor James A. Jones and

Professor David Redmiles, for their valuable feedback, insights, and time.

vii

ABSTRACT OF THE THESIS

Code Clone Detection using Code2Vec

by

Anupriya Prasad

Master of Science in Software Engineering

University of California, Irvine, 2020

Professor Cristina V. Lopes, Irvine, Chair

Code Clone detection is important in software engineering as it aims at solving

various problems like code maintenance, identification, code reuse, scalability, and

plagiarism. Software development revolves around implementing logic using tools and

technologies where every developer has a different coding style and logical approach to

reach required goals. However, the end result of many implementations can be the same.

This is where the need for code maintainability, reusability, and optimization arises. Code

clone detection can help to leverage the immensely large source codes available on the web

to attenuate code writing time by reusing sources available online. Clone detection in source

code is based on the similarity of the program content or similarity in the program

functionality. There are many techniques that have been tried and tested in the literature.

However, these naïve approaches do not perform adequately for higher level clones. In this

thesis I am exploring deep learning based technique Code2Vec.

viii

In order to identify, compare, and reuse an existing piece of code, deep learning

techniques can help to predict if a similar implementation source code exists in a code base

or a dataset of codes. In this thesis, the approach of representing code in the form of vectors

and applying Natural Language Processing for code clone detection has been discussed. The

scope of the thesis is to devise an approach for the detection of similar functional methods

in Java GitHub code repositories, expanding on the Code2Vec model [1]. I demonstrate the

capabilities of applying Code2Vec model to Java source code in order to determine the path

vectors for method similarity detection. Furthermore, I discuss the design, architecture, and

usage of the model. An in-depth analysis of preprocessing mechanisms, data collection, data

preprocessing is also highlighted. In this thesis, I apply a normalization technique to update

the variable names in Code2Vec approach and compare the baseline Code2Vec model with

the normalized model. The comparison shows improved precision results in normalized

code clone detection approach. Finally, the benefits of my approach and a detailed analysis

of results on dataset with Java methods is presented. The results are evaluated on the basis

of Recall and Precision. I evaluate the recall with the help of BigCloneBench and precision

using InspectorClone and MeasurePrecision open-source tools.

1

Chapter 1

Introduction

1.1 Motivation

In larger code bases with multiple developers implementing different tasks, code

duplication can be difficult to detect. This affects code maintainability as the complexity of

code base increases with time. With the advent of IDEs, the call for code clone detection in

working repositories is the need of the hour. Code recommendation capability will help

developers write efficient code, promote code abstraction on either class or method level,

and improve the code development process in programming in the large environments [23].

Traditionally, general purpose similarity detection in source codes was an adopted approach

with the benefit of ensuring code semantic standardization for easier code reviews. Similarly,

applications with support to identify the requirements of a developer based on the logical

flow of code to detect the same logical functionality in the codebase can be helpful. This will

promote the reuse of local code and open the possibility to search for code on open-source

platforms. There are various other applications as well where code clone detection offers to

2

better the software development and software engineering practices and offers as the

motivation in this Thesis.

1.2 Code Clone Types

 Code clones are segregated into four types [17] ranging from Type-1 to Type-4 types

of clones based on complexity and level of similarity. Type-1 clones can be easily detected

because they are based on textual similarity, where identical pieces of code with very little

difference especially in white-spaces, comments, and layouts. These can be refined with

some effort in preprocessing/cleaning and preparing of the dataset. Typically, Type-2 clones

are code pieces that have a token-based or lexical similarity. These are a little difficult to

detect in comparison to Type-1 as the complexity increases. Type-3 clones are clones that

are syntactically similar i.e., source code that is different at the statement level. The sections

of code have statements modified, appended, or removed with respect to their clones, in

addition to Type-1 and Type-2 differences. Finally, Type-4 code clones are clones based on

syntactic similarity, where dissimilar fragments of code with the same logical functionality

are considered clones.

1.3 Approaches for clone detection

 I have described the different types of code clones that exist, there are several

approaches to deal with different clone categories. One approach to detect clones in a dataset

3

is based on surface text duplication detection. In this approach, the code is considered as a

stream of tokens and it involves matching code text/words. This is a naïve approach as it

deals with direct matching and can miss out on clones easily, hampering the precision of

code clone detection. To improve the clone detection in code, approaches exist which are

based on control flow consideration. This requires expertise in the programming language

for which the tool needs to detect clones. Another approach to solve this problem is the

approach of Abstract Syntax Trees. ASTs are a common way of representing a program. AST

paths from node to node in a code, capture some of the semantics using code syntax. This

approach focuses on Type-1 to Type-4 clones.

 In this thesis, the approach taken involves the application of deep learning model-

Code2Vec [1] to Java GitHub code repositories in order to predict code clones. Deep Learning

has been applied to various text/code based natural language problems in the past and has

produced great results. Researchers have found it effective to learn the semantic meaning of

the text using deep learning. Similarly, code fragments can be considered to have syntactic

properties, which can be treated well with previous approaches. This approach is motivated

by Mikolov et. al. work on Word2Vec [28], a natural language model that treats natural

language as a continuous bag of words or tokens. The approach in the thesis is based on code

path embeddings, which are abstract syntax trees-based paths of methods in the source code.

This path-based representation is useful in semantic as well as flow based on ASTs. This is

explained further in the background literature review section of the thesis.

4

1.4 Research questions

RQ1: Is Code2Vec capable of finding the code clones in a repository?

 Code2Vec [1] is based on path embeddings in a code snippet. It captures the

syntactical essence of a java method as a vector. There has been existing research where

clones have been computed based on their Abstract Syntax Trees, and subtrees. Ira D Baxter

et al. [16] have presented their approach for Code clone detection using AST and the

challenges along with applications. Yes, Code2Vec can capture the syntactic nature of the

code and can be used to find clones.

Q2: How does performance of code2vec change based on normalization?

The baseline Code2Vec model is based on top rated (five star rated) projects on

GitHub. I have performed experiments to observe that when the variable names are changed

in the code to randomly chosen names, the predictions for method names become poor. This

observation is presented in Chapter 4-Normalization, where I discuss the motivation to add

normalization to baseline Code2Vec. Normalization means renaming variables in the codes

to standard variable names in order to reduce the impact of variable names in code clone

detection. In Chapter 5-Observations and Results, it is shown that the performance

computed in terms of precision is better for the normalized Code2Vec in comparison to

baseline Code2Vec. Therefore, yes, the performance of Code2Vec changed after

normalization.

5

1.5 Contribution and Chapters Overview

 The first contribution of this thesis is developing upon the Code2Vec model [1] in

order to find code clones in an existing dataset. The second contribution is to evaluate the

effectiveness of removing the bias of variable names in Abstract Syntax Tree creation, used

as a preprocessing step in the neural network. This is presented as comparisons between

baseline Code2Vec and normalized Code2Vec.

The thesis presents the approach for computing the code clones for several Java

methods using the Code2Vec model. The thesis is divided into the following chapters. In

chapter 2, the information regarding relevant literature with proper background survey on

Code2Vec, deep learning for source code, precision and recall measurements, code clone

detection research is discussed in depth based on previous papers and research.

Additionally, this section provides information on resources referenced in order to make

progress in this thesis with a focus on research questions that have motivated me in my

thesis. In chapter 3, the Code2Vec model is described in great detail. I have discussed about

the initial study. Moreover, I have presented an established understanding of datasets used,

data preprocessing techniques and approaches in chapter 4. The experimental design,

hardware and hyperparameter specifications are also mentioned in chapter 4. In chapter 5,

results and implications are discussed. Finally, results are evaluated, and the thesis is

concluded in chapter 6 with analysis and future work.

6

Chapter 2

Background and Related Work

This thesis is based upon research work on Code2Vec [1], SourcererCC [14],

InspectorClone [17], which have been discussed in detail. I have evaluated the Code2Vec

model on Java source code downloaded from code2vec website. Code Clone detection has

been a vital problem and engineers have investigated and performed case studies on how

developers search code fragments for years. Google Researchers have a study on the topic

that indicates that developers look for logical code and do not use already existing similar

code in working repositories more often during software development. Various literature

was explored during this thesis on clone detection, NLP, recall, and precision.

2.1 Code Clone detection literature

Cristina V Lopes et al. have developed SourcererCC [17], the most scalable tool so far

for detecting Type-3 clones. Type-3 clones are the ones that differ at the statement level. The

tool focuses on the evaluation of precision, recall, scalability, and execution time for inputs

7

of various domains and sizes, including the large inter-project software repository IJaDataset

2.0 [4] which includes 25K projects with 250 million lines of code and 3 million examples.

The tool showcased results with good execution time without any scalability issues, even on

a normal hardware i.e., machine with 3.5GHz quad-core i7 CPU with 12GB RAM. SourcererCC

[17] compared code fragments through the bag-of-tokens technique. Since it is a token-based

accurate near-miss clone detection tool, that uses an optimized partial index and altering

parameters to achieve largescale clone detection on a machine with simple average

hardware. The authors measure the recall of this tool using two state-of-the-art clone

detection benchmarks, the Mutation Framework and BigCloneBench [5]. SourcererCC [17]

produces great results and is highly competitive with even the best of the state-of-the-art

Type-3 clone detectors. A lot of motivation has been taken from this tool in this thesis for

results evaluation.

In the research paper on Oreo [6] by Cristina V. Lopes et al., a source code clone

detection technique and tool have been proposed that identifies clones in the twilight zone.

Oreo is a combination of information retrieval, machine learning, and metric-based

approaches. The technique includes an Action filter and a two-level input partitioning

strategy, which reduces the number of candidates. Despite this, it maintains good value for

recall in the results. A neural network with Siamese architecture was introduced in this

research. Oreo is a scalable, accurate, and performs significantly better than other four state-

of-the-art tools that Oreo was compared with. It performs great clone detection and

outshines in harder-to-detect clones in the twilight zone.

8

CCLearner [11] is another approach that leverages deep learning to identify clone and

non-clone methods in source code fragments. The authors have leveraged the usage of terms

in source code such as identifiers and reserved words to create a feature vector for each

source code method. The results are verified using BigCloneBench [5] for training a classifier

and the rest for testing the model. The tool is scalable to a dataset of 3.6 MLOC.

InspectorClone [17] is used in this thesis for clone results verification. This tool uses

an approach designed to facilitate precision studies for code clone detectors. InspectorClone

helps in evaluating precision of clone detectors and automatically resolves clone pairs as

true positive or false positive, removing the need of manual inspection.

2.2 Deep learning for sourcecode literature

Alon et al.[1] have proposed Code2Vec, an approach based on learning the distributed

representation of source code [2] similar to Word2Vec [28]. In their work, they have created

a natural language processing based neural network model which represents fragments of

code in the form of continuous distributed vectors known as source code embeddings. These

embeddings are used to predict the semantic representation of a code fragment. The authors

have performed this representation by decomposing the source code into a bag of paths in

the code fragment’s abstract syntax tree. The neural network is trained by learning the

atomic representation of each path embedding. They make use of the embedding similarity

of similar code fragments to predict method names based on trained examples. Furthermore,

9

this approach has been validated by training a model on a dataset of 14M Java methods. It

was observed from the results that the neural net model can predict correct method names

for examples that were unobserved. This model has a great prediction rate and is 100 times

faster than other competitive approaches. While the authors used the Code2Vec model for

method name prediction, they mentioned that this model can be extended and used for

various other programming language processing tasks such as semantic clone detection,

semantic search, etc. Before Code2Vec, the authors had devised an approach to predict code

properties using a path-based code representation, which further leads to Code2Vec.

PathMiner was created by Kovalenko et al. [3] to extract these path-based representations

for several programming languages.

White Martin White et al. [7] presented an unsupervised deep learning approach to

detect clones at the method and file levels. They explored the technique by automatically

learning different features of source code fragments. Their approach had 93% precision.

Similarly, in Wei and Li’s approach [8], a Long-Short-Term-Memory network is applied to

learn representations of code fragments and code parameters. A hash function is used that

computes the hamming distance between hash code of code clone pairs. It is ensured that

this hamming distance is kept as minimum as possible. They have also verified their results

on BigCloneBench [5] and OJClone.

Sheaneamer and Kalita [9] use Abstract Syntax Trees and Program Dependence

Graph based techniques for semantic and syntactic features to train their neural network

model. They use semantic features and simple ensemble methods to train their model.

10

CODEnn is a similar study presented by Gu et al. based on a deep neural network for

searching code in which they demonstrate an application of a neural net model. The results

are evaluated against traditional information retrieval systems like Apache Lucene. The

results are a great improvement over IR based tools.

Hu et al. [12] performed a study to create comments and code documentation for

source code and named the tool DeepCom. DeepCom works with Java methods and applies

natural language processing techniques to learn from huge code corpus. The authors

disintegrate the code in a neural net to analyze structural information of Java methods for

generating comments. They used 9714 GitHub open-source projects and verified the results

on machine translation metric.

There has been research on the usage of Code2Vec [1] for different applications. One

such application is built by Briem et al. [13]. They have used Code2Vec for bug detection in

code and detect one-by-one errors in Java code snippets. It is the form of a binary

classification problem. In order to create bugs in the correct code, they have manually

prepared the dataset by introducing problems in the correct code and creating false positive

examples. These examples are used while training and validating their results.

11

Chapter 3

Code2Vec

In this section, I discuss the design of the code clone system. In order to understand

the system, I explain the foundational techniques used like Abstract Syntax Trees, Code2Vec

[1] model, dataset specifications, hyperparameters. An overview of the process is described

in Figure.

Clone

Detection
Vector

Indexes

Bag of Path

Vector

Generator

AST

Generator

Path vector Context vectors

Code

Snippets

Figure 3.1: Pipeline process for clone detection

12

3.1 Abstract Syntax Trees

Abstract Syntax Tree used in this thesis is a basic tree representation of the abstract

syntactic structure of the Java program. The formal definition is referenced from the

Code2Vec model [1].

Abstract Syntax Tree for a source code snippet can be represented in the form of a

tuple expression i.e., <N,T,X,s,δ,ϕ>, where N is a set of non-terminal nodes, T is a set of

terminal nodes, X is a set of values, s ∈ N is the root node, δ : N -> (N ∪ T) is a function that

links a non-terminal node to all of its children, and ϕ : T -> X is a function that links a terminal

node to a particular associated value.

Abstract Syntax Tree Path is a representation of a path in a tree i.e., way to join two

nodes in a tree. It is used to represent the path embedding in Code2Vec model [1] and is

defined as a path between two nodes starting from one terminal node ending in another

terminal node, with an intermediate node called non-terminal node in the path which is the

common ancestor of both terminal nodes.

 AST path is represented as n1d1…..nkdk nk+1dk+1, where

n1 and nk+1 ∈ T i.e. the terminal nodes, for i ∈ [2..k],

ni ∈ N i.e. the nonterminal nodes for i ∈ [1..k],

di ∈ {{↑, ↓} are movement directions i.e., up and down depending on the traversal in the tree

to create the path. If di =↑, then: ni ∈ δ (ni+1); if di =↓, then: ni+1 ∈ δ (ni). For an AST-path p, we

13

use start (p) to denote n1 - the starting terminal of p; and end (p) to denote nk+1 - its final

terminal. Example paths in Figure 3.3:

1. (MultByX, Method Declaration ↓ BlockStmt ↓ ReturnStmt ↓Binary Expr:times , x) denoted

by the color green in Figure 3.3.

2. (x, parameter ↑ Method Declaration ↓ BlockStmt ↓ ReturnStmt ↓ Binary Expr:times , x)

denoted by the color red in Figure 3.3.

A path-context is defined as a tuple of an AST path and the values associated with its

terminals. The Code2Vec [1] model uses this as a definition and mentions that given an AST

Path p, its path-context is a triplet ⟨xs, p, xt⟩ where xs =ϕ (start (p)) and xt =ϕ (end (p)) are

the values associated with the start and end terminals of p. That is, a path-context describes

two actual tokens with the syntactic path between them. This path is used to form the path

embedding that is used in training the neural network model. The embedding is chosen to

limit the size of training data and reduce the sparsity of the tree that is generated. If the AST

is deeper, it will impact the results as the tree will be less sparse. Different applications can

deal with different ways to represent a tree into path embedding for the neural net. There is

some work where the paths are limited to a maximum length depending on child nodes and

their index and if they are used in any other path. These are experimental approaches based

on applications.

14

3.2 Code2Vec Model

3.2.1 Model Overview

This thesis is based on a bag-of-paths neural model Code2Vec [1]. The Code2Vec

model uses pure TensorFlow and TensFlow’s Keras and is trained on 14 M source code

examples. It is a model that represents code as continuous distributed vectors known as code

embeddings. The model used in this thesis can be trained further on Java code snippets. In

this approach, a code snippet is composed of a bag of contexts, and each context is

represented by a vector. The values of this vector capture two pieces of information. First,

the semantic meaning of this context. Second, the amount of attention this context should

receive. These vectors are further used in the learning part of the process as the model

decomposes the code snippets into a collection of path embeddings using Abstract Syntax

Trees and learns the atomic representations of aggregated paths. Therefore, code is

represented as a Bag of Path-Contexts.

3.2.2 Feature Extraction

The script for feature extraction is developed by Code2Vec authors Alon et al. [1],

based on an open-source AST miner called PathMiner from JetBrains research. For example,

a line of code “x=7” can be represented as a path through AST as <x, NameExpr ↑ AssignExpr

↓ IntegerLiteralExpr), 7⟩. I will explain how the path is extracted from source code through

ASTs using the below example in Figure 3.2.

15

For a small program to compute the x times of any input number, the code is as

follows:

The above code computes x times any number that is provided to the function. This code

snippet is parsed to create an Abstract Syntax Tree which is shown as below in Figure 3.3.

AST is traverse to find the path between terminal nodes i.e., leaves in the tree and this is

shown in the form of a string representation with links shown as up and down arrows.

int MultByX(int x) {

 return x*x;

}

Binary

Expr:times

x

ReturnStmt

BlockStmt Parameter

Method

Declaration

x

x int

MultByX int

Figure 3.3: Abstract Syntax Tree representation of code snippet in Figure 3.2

Figure 3.2: Code snippet for Multiply by x program

16

Example paths from AST in Figure 3.3 can be:

1. (MultByX, Method Declaration ↓ BlockStmt ↓ ReturnStmt ↓Binary Expr:times , x) denoted

by the color green in Figure 3.3.

2. (x, parameter ↑ Method Declaration ↓ BlockStmt ↓ ReturnStmt ↓ Binary Expr:times , x)

denoted by the color red in Figure 3.3.

3.3 Attention Model

3.3.1 Distributed Representation of Context

Once the code snippets are formulated into Abstract Syntax Tree form and the paths

are developed, a range of distributed representation of context is formed. Each of the path

and leaf values of path-context is mapped to its corresponding real-valued vector

representation called path embedding.

3.3.2 Path-Attention network

 The Path-Attention network aggregates multiple path-context embeddings into a

single vector that represents the entire essence of the method body. Attention is the

mechanism that is used to learn to score each AST path-context, so that the most important

path gets the maximum weightage while assigning importance. Multiple context vectors are

aggregated using the attention scores that are allotted to every vector during learning into a

17

single code. Attention helps with two goals. First, it explains which path should get how

much attention. Secondly, it captures the semantic meaning of path-context. Most

importantly, the dot product of learned attention vector with path contexts after

normalization gives learned path-vector weighted average, which is used to predict results.

In this thesis, the AST paths for Java methods are given attention weightage which is used to

capture the essence of the methods, further used to predict clones.

Context Vector

Fully connected

layer

Combined context vectors

Attention weights

Code vector

Predictions

Figure 3.4: Path Attention network that gives weightage to some AST paths

18

Chapter 4

Experimental Design

4.1 Dataset

In this thesis, I have used two datasets for code clone detection task and

experimentations. These datasets are as follows:

1. BigCloneBench IJaDataset

2. Code2Vec dataset of 10,072 Java Github projects

The model and approach were used and verified on the dataset provided by Code2Vec

authors, a dataset of 10,072 Java GitHub repositories, originally introduced by Alon et al [1].

The results of this dataset are presented in Chapter 5 in detail.

Secondly, I used the standard BigCloneBench IJaDataset [5] dataset, which is a

benchmark of known clones in the IJaDataset. The BigCloneBench IJaDataset is a large

repository of over 25000 open-source Java projects, with over 3 million source files. It is

divided into 3 sections i.e., default, sample, and selected. In BigCloneBench dataset, a code

19

fragment is a single method and there are over 8 million validated code clones in the dataset.

In this thesis, the experiments use only a subset of code snippet pairs in the BigCloneBench

IJaDataset for clone detection and validation. This is explained in greater detail in Chapter 5

– observations and results. The BigCloneBench benchmark helps to claim and compute only

the recall value of a clone detection tool and not the precision figure for the tool.

4.2 Experimental Design

One key strategy to scaling super liner analysis of large datasets is to preprocess the

data for a machine learning model as much as possible. Preprocessing is a step that is vital

for proper results. It is one linear scan of the input dataset with filtering and mutation

operations performed with the goal of extracting features from it. These extracted features

further help in better organization, optimization, and actual data processing.

4.2.1 Normalization

One important experimental design decision taken in this thesis is to update the AST

path generator to ensure that the variable names are replaced with standard variable names

to compute the paths. This decision is taken with an assumption that the code snippet

representation as a path embedding in Code2Vec will provide more weightage to the factors

other than variables in the code. We know that Type2 clones are easier to detect than Type3

and Type4 clones. The assumption is that in order to detect Type3 and Type4 clones, the

focus has to be put on the logical flow of the code snippet which is captured in AST than the

parameter value. Also, Code2Vec uses variable names as it is for node considerations with

20

an assumption that the top five stars rated GitHub repositories will have good variable

naming conventions in the code. To understand the relation between variable name in

Code2Vec results, I have presented the results of sort function in Figure 4.1 from code2vec

website where it is shown that when the variable name is changed for the same method, the

predictions are impacted. The sort function in Figure 4.1 (a) used the bool name as ‘swapped’

and shows predictions as sort (98.54% similarity), bubbleSort (0.35%), reverse (0.25%) and

so on. When I changed the bool name ‘swapped’ to ‘random’ as shown in Figure 4.1 (b), the

predictions changed to populate (56.95%), shuffle (20.59%), randomize (15.54%), and sort

(3.54%). Both the methods still implement the sort functionality, but the similarity

percentage in Figure 4.1 (a) shows 98.54% similarity with sort and Figure 4.1 (b) shows

3.54% similarity with sort. Therefore, it is noted that parameter names can result in poor

predictions despite the method functionality being very similar.

b) sort method with updated bool name ‘random’

Figure 4.1: Predictions of similar methods to given sort method with a) original bool name 'swapped'

b) changed 'swapped' bool name to 'random'

a) Sort method with bool name ‘swapped’

21

Furthermore, I changed the variable ‘swapped’ to constant variable name as ‘var1’ in

Figure 4.2, to understand how constant names impact the prediction. The similarity of sort

to constant variable name is 72.92% and is a better prediction than sort code snippet with

poor naming convention.

4.2.3 Normalization implementation

In this thesis, the approach is taken for renaming the variables in the path

representation by standard variable naming convention. The variable encountered first is

renamed as var1 and the next variable encountered is renamed as var2, so on so forth. The

AST path in this case will have a starting node Node1 and a terminal node Node2 with a path

between 2 nodes. This approach is referenced from opensource AST miner called PathMiner

[3] from JetBrains research. This is done using a script with pseudocode described in Figure

4.3. Each code repository is filtered, and methods are extracted. Furthermore, the variables

Figure 4.2: Predictions for sort method with bool variable name 'var1'

22

from Java methods are renamed as “vari”, where ‘i’ ∈ [1..n], n is the number of variables in

the method. This approach ensures that there is no bias on the basis of poor or good naming

conventions adopted by developers of GitHub repositories that are used as a dataset in the

model.

An experiment is performed that compares the baseline Code2Vec results for clone

detection and the results with updated variable names AST to compare the accuracy. This

experiment is done on Java methods selected from code2vec website. The true positives and

false positive are computed for baseline Code2Vec without variable name change and with

variable name change. These results are presented in Chapter 5-Observations and Results in

detail.

AST Update Algorithm Pseudocode:

for code in corpus:

 extract methods and store all the methods

 for method in methods:

 parse method and store integer ‘i’

 if current component is a variable:

 rename the variable as “var”+i

 increment i

Figure 4.3: Pseudocode for Abstract Syntax tree update from Code2Vec model

23

4.3 Hyperparameters

In this thesis, the computations and training are done on a normal desktop machine

engine with i7, 8GB memory. The hyperparameters to train the models are mentioned in this

section. The max number of epochs to train the model is 20. The training batch size is 1024.

The top K words considered during prediction is updated continually to check the results for

precision and recall, with the initial value of 10. The path embedding size is considered

similar to the Code2Vec model [1] that is the embedding size of the token. The dropout rate

used during training is 0.75 and the learning rate as 0.01.

24

Chapter 5

Observations and Results

 This chapter will showcase results obtained from the application of Code2Vec [1] to

Java repositories of GitHub projects and BigCloneBench IJaDataset [5] dataset.

5.1 Precision

To measure the precision, I developed a script that runs on ten methods and predicts

the top10 clones. The ten methods are selected from Code2Vec [1] interactive demo site

http://code2vec.org. To predict the clones, I use the Gensim Python Package. Gensim

package is a python library for topic modeling, document indexing, and similarity retrieval

with large corpora. It is widely used in Natural Language Processing and Information

Retrieval related work. The ‘most_similar’ function of the Gensim package inspects and

retrieves the clones for Java methods with a value of prediction rate or similarity percentage.

These clones are listed in the Table 5.2.

25

5.2 Recall

To measure the recall, I developed scripts that transformed the BigCloneBench

IJaDataset [5] data in a directory structure that was accepted by Code2Vec to train and

predict clone. BigCloneBench IJaDataset [5] dataset has tagged pairs for clones. I wrote logic

in scripts that parses all the code and finds the method name from the first tagged clone in

the tagged pair. Then Code2Vec model is run on the methods extracted from tagged clone

pairs, Furthermore, the top1 prediction of the model is stored in a map format of the form

Clone1 -> Clone Predicted. The script then finds the predicted clone in the BigCloneBench

dataset and matches if the starting line and ending line of the predicted clone is the same as

that of the second code in the tagged clone pair. This computes the recall value of the tool

and the clone predictions.

5.3 Experimental Results

5.3.1 Baseline Code2Vec Clones

Table 5.1 shows the results for code clone detection using baseline Code2Vec, without

any kind of changes. These results are presented in order to be compared further with results

of application of design decision in section 5.3.2 and 5.3.3, where the variable names are

updated as constant variable names. The table shows the similarity of top 10 predicted

clones for 10 Java methods that are selected from code2vec website. The results are marked

as True Positive or False Positive based on InspectorClone or MeasurePrecision jar file.

Finally, these results are used in section 5.3.3 where the precision is computed.

26

Table 5-1: Results of Baseline Code2Vec design 10 Java methods (selected from

https://code2vec.org) and their Top10 predicted clones with InspectorClone and

MeasurePrecision values of TP (true positive) and FP (false positives)

 InspectorClone
 Function Top10 Clones Similarity % TP FP
1 sort sortdefinition 61.11 8 2

currentsorts 57.27
nativenumbersort 55.76
sortx 54.44
numperslot 54.51
sorted 53.09
sorttrianglesinternal 50.75
dissolveproperties 49.99
mpackagenametoactivity
map

49.42

2 contains containskey 65.5 2 8
screentoclient 52.4
isinaabb 48.07
leafarray 48.04
wrongvaluepi 44.24
xlogicoperator 44.01
flatteningpathiterator 43.96
containscachedcontact 42.15
ibmthai 40.21
normalizedspan 40.17

3 getindex indexof 59.31 7 3
findex 51.63
indexeclass 51.27
getindexforname 49.4
index 48.23
searchindexwithindexing
progress

47.53

prefetchcrls 47.51
gettypeparameterindex 47.20
accessibletablecelllistene
r

42.11

carty 42.09
4 add myadd 64.73 8 2

addelement 62.99
addcontentchangelistene
r

56.83

adding 55.17
getoffsettoadd 52.51

27

personw 51.63
put 49.73
addchild 49.34
addbefore 49.30
supercs 47.32

5 reverse reversed 53.01 7 3
endlow 51.33
fronthigh 50.21
routeleg 49.34
reversedreaction 49.33
generatereverse 49.32
generalizedlemmatransfo
rmation

49.30

revline 49.21
dbdatanode 49.15
currentplaytime 49.02

6 factorial factorial 63.69 4 6
factarray 62.19
longmath 61.33
factorials 61.31
productbits 55.57
xmlview 47.77
topchosen 46.32
isclientonlyservice 46.17
osfamilyversionbit 41.07
islookright 40.04

7 download isdownloadauthorized 62.02 8 2
subscriptiondownloadlist
ener

67.29

githubdownload 60.10
handlecommandexitstatu
s

56.008

isdownload 52.58
downloadlocationfile 48.49
downloadfile 47.78
readthefile 47.34
authelem 47.04
ftpproxyset 43.03

8 postrequest post 75.59 3 7
senddate 65.65
gettotalrevenue 41.97
updatecheckincomment 41.67
directaction 41.53
spotifyapiexception 41.22

28

createwriternotcalledtim
e

40.71

mcthreadlock 40.19
maxaltitudefeet 39.67
disabledbankaccountexce
ption

38.11

9 equals equalsignorecase 79.11 5 5
equal 73.23
setdailysubtotal 59.72
dateresattr 56.43
rioret 51.74
equalsm 49.74
aclmemberentity 45.11
fieldlayouts 41.01
gradientpainttransformty
pe

39.00

repaymentty 39.98
10 getCount supercount 72.69 7 3

count 71.35
parentconfigurationnotap
plicableexception

58.65

size 58.37
istoolargetobeconvertedt
oanint

48.36

uniqueresult 44.77
modifiedfids 41.55
msectioncache 41.19
tertiary 42.71
gettotalcount 42.73

5.3.2 Normalized Code2Vec clones

The result of the normalized Code2Vec code clone detection is presented in this

section, which has been verified from InspectorClone [17]. Figure 5.1 represents the true

positive clone and Figure 5.2 shows the false positive case detected using Code2Vec model

from BigCloneBeanch dataset.

29

public static int getIndex(int arr[], int t)
 {

 // if array is Null
 if (arr == null) {
 return -1;
 }

 // find length of array
 int len = arr.length;
 int i = 0;

 // traverse in the array
 while (i < len) {

 // if the i-th element is t
 // then return the index
 if (arr[i] == t) {
 return i;
 }
 else {
 i = i + 1;
 }
 }
 return -1;
 }

public static int indexOf(int arr[], int t)
 {
 int len = arr.length;
 return IntStream.range(0, len)
 .filter(i -> t == arr[i])
 .findFirst() // first occurrence
 .orElse(-1); // No element found
 }

Figure 5.1: True Positive Clone detected by Code2Vec and verified manually

30

Table 5-2: Results of normalized Code2Vec for 10 Java methods (selected from

https://code2vec.org) and their Top10 predicted clones with both manual examination and

InspectorClone and MeasurePrecision values of TP (true positive) and FP (false positives).

 Manual Test InspectorClone
 Function Top10 Clones Similarity % TP FP TP FP
1 sort sortdefinition 61.11 10 0 10 0

currentsorts 57.27
nativenumbersort 55.76
sortx 54.44
numperslot 54.51
sorted 53.09
blockcomparator 52.89
introsort 51.64
msort 50.96

2 contains containskey 65.5 4 6 4 6
screentoclient 52.4
isinaabb 48.07
leafarray 48.04
containsgroup 46.33
stackobject 45.59
flatteningpathiterato
r

45.59

rectcrossings 45.50
mpartialpolyline 45.11
janesmithcontains 45.02

3 getindex indexof 59.31 10 0 10 0

static void reverse(int a[], int n) {
 int[] b = new int[n];
 int j = n;
 for (int i = 0; i < n; i++) {
 b[j - 1] = a[i];
 j = j - 1;

}

}

static void reversedreaction (int origReaction[], int k) {
 double[] b = new double[k];
 for (int i = 0; i < k; i++) {
 b[i] = 1/origReaction[i];
 }

}

Figure 5.2: False positive Clone detected for reverse method

31

findex 51.63
indexeclass 51.27
getindexforname 49.4
index 48.23
searchindexwithinde
xingprogress

47.53

getindextree 47.24
gettypeparameterind
ex

47.20

binarysearch 47.04
indexlarq 46.44

4 add myadd 64.73 8 2 9 1
addelement 62.99
addcontentchangelist
ener

56.83

localadd 55.26
adding 55.17
getoffsettoadd 52.51
personw 51.63
put 49.73
addchild 49.34
addbefore 49.30

5 reverse reversed 53.01 7 3 7 3
endlow 51.33
fronthigh 50.21
routeleg 49.34
reversedreaction 49.33
generatereverse 49.32
generalizedlemmatra
nsformation

49.30

revline 49.21
dbdatanode 49.15
currentplaytime 49.02

6 factorial factorial 63.69 6 4 6 4
factarray 62.19
longmath 61.33
factorials 61.31
productbits 59.57
plainbest 58.77
topchosen 56.32
isclientonlyservice 46.17
packageide 43.1
lgamma 43.0

32

7 download isdownloadauthorize
d

52.02 10 0 10 0

subscriptiondownloa
dlistener

50.29

githubdownload 50.10
handlecommandexits
tatus

49.008

isdownload 48.58
downloadlocationfile 48.49
downloadfile 47.78
readthefile 47.34
deviceofflinedownloa
d

47.04

downloadableartifact
s

47.03

8 postrequest post 65.59 1 9 3 7
senddate 65.65
gettotalrevenue 42.97
updatecheckincomm
ent

42.67

directaction 42.03
spotifyapiexception 41.22
createwriternotcalle
dtime

40.71

mcthreadlock 40.19
setpagedlistinfo 39.76
disabledbankaccount
exception

39.55

9 equals equalsignorecase 79.72 6 4 6 4
equal 78.23
setdailysubtotal 59.72
dateresattr 53.01
rioret 52.76
eq 52.74
equalfilters 52.11
fieldlayouts 52.01
gradientpainttransfo
rmtype

52

repaymentty 51.98
10 getCount supercount 57.09 7 3 8 2

count 51.35
parentconfigurationn
otapplicableexceptio
n

48.65

33

size 48.37
istoolargetobeconver
tedtoanint

48.36

mshowfooterview 47.77
mhistorycount 47.56
msectioncache 47.16
maxcasts 46.669
gettotalcount 46.665

In Table 5.2 the results are shown for manually inspected clone results of the

normalized Code2Vec model [1]. The results are verified using Measure precision. Measure

precision is a java package that computes if two code snippets are clones or not. It shows the

results in the format of a true positive or a false positive.

5.3.3 Normalization validation

 In this section, I compare baseline Code2Vec i.e., without variable name change code

clone results with the results obtained from normalized Code2Vec with variable name

change implementation. This work is done to validate the design decision made in Chapter

4-Experimental Design based on example and observation on ‘sort’ Java method on code2vec

website. Table 5.1 presents the results obtained on baseline Code2Vec for 10 Java methods

selected from code2vec website. The same methods have been used to obtain results of Table

5.2, where the top 10 clones are shown for normalized Code2Vec model. The clones are then

marked as true positive and false positive using MeasurePrecision jar file.

34

Table 5-3: Comparison of clone detection results for Baseline and Normalized Code2Vec for

top10 predicted clones

Method Baseline Code2Vec Normalized Code2Vec

TP FP Precision TP FP Precision

sort 8 2 80% 10 0 100%

contains 2 8 20% 4 6 40%

getIndex 7 3 70% 10 0 100%

add 8 2 80% 9 1 90%

reverse 7 3 70% 7 3 70%

factorial 4 6 40% 6 4 60%

download 8 2 80% 10 0 100%

postRequest 3 7 30% 3 7 30%

equals 5 5 50% 6 4 60%

getCount 7 3 70% 8 2 80%

Table 5.3 shows the comparison of precision for baseline Code2Vec and normalized

Code2Vec for 10 Java methods previously examined. It is observed that the false positive

rate is lower for normalized Code2Vec approach.

35

5.3.2 Effect of ‘k’ on precision

As we see that the value of ‘K’ in topk predictions, affects the precision and recall. I

developed a script that does predictions for 100 methods with different values of ‘K’ to find

the balance between precision and recall. Table 5.4 shows the results of this experiment.

Table 5-4: Relation of K value and Precision value over 100 examples

Value of K in topk prediction Precision Value average over 100 examples

1 100%

5 80%

7 63%

10 57%

5.3.3 Recall

To measure recall, BigCloneBench dataset [5] is used. This dataset has manually

tagged pairs. The IJaDataset is used with Code2Vec to find clones. If the Code2Vec top1

prediction is the same as BigCloneBench tagged method in clone pair, then it is considered

successful clone detection and is marked as ‘T’ i.e., true, otherwise it is marked as ‘F’ i.e., false.

Some examples from this experimentation are displayed in Table 5.5. This approach is still

rudimentary and therefore needs more work, which will be focused on in the future work

section. This will provide more information on the number of types of clones that were

identified in the already manually tagged clone pairs. The future work will include running

36

Code2Vec for the first method in BigCloneBench tagged clone pair and checking if the top

prediction matched the second method of tagged clone pair.

Table 5-5: Result of Code2Vec and BigCloneBench clone pair verification. C: True or False if top1

predicted clone is the second method in BigCloneBench tagged clone pair

BigCloneBench Tagged Pair Clone1 BigCloneBench Tagged Pair Clone2 C

method1_
file

method1_star
tline

method1_en
dline

method2_
file

method2_star
tline

method2_en
dline

355856.ja
va

598 615 355856.ja
va

617 634 F

137408.ja
va

346 377 118496.ja
va

362 393 T

67675.jav
a

606 619 44208.jav
a

604 617 T

5593.java 208 227 97228.jav
a

208 227 T

1090867.j
ava

670 680 1321892.j
ava

625 635 F

69184.jav
a

184 198 85894.jav
a

197 213 F

1484507.j
ava

255 270 1484507.j
ava

531 548 T

5.3.4 Clone threshold computation

Clone threshold is defined as the cutoff value of similarity between original function

and predicted clone. The code clone above this threshold value is further checked if it is a

true positive or a false positive. The threshold value is taken in a range of 0.4 to 0.9 to find

the accuracy or precision of clone prediction. The pseudocode to compute the results is

mentioned in Figure 5.3. Using Gensim python package, the most_similar code vectors are

37

fetched with the method name information and the similarity percentage value. Then the

resultant code vectors are considered clones if the similarity percentage value is greater than

or equal to the threshold value. These clones are further verified using MeasurePrecision jar

file and the result is logged as true positive or false positive. This result is used to compute

the Precision value. It is observed that as the threshold is increased, the true positive rate

increases and false positive rate decreases, but the number of clones found is also reduced.

This impacts the recall value of the system because not all clones are found due to higher

similarity threshold cap. As the threshold value is reduced to 0.45, in some cases, false

positive clones show up. Therefore, precision reduces at a very low threshold value. The bar

graph comparing the manually inspected threshold value for three manually selected

functions is shown in Figure 5.4. In order to scale the results to a greater number of examples,

the graph shown in Figure 5.5 is drawn for 10 examples. The threshold value and precision

results are inspected for all methods using similar computation as given in Table 5.6 for 3

example methods. Overall, the 10 methods extracted are from the dataset as mentioned in

Table 5.2 previously. These are the methods mentioned on http://code2vec.org website. For

different threshold values, the true and false positives for these method clones are checked

and precision value is computed. Now, we have the false positives percentage at different

threshold values for each of the 10 methods. To aggregate the results over the 10 methods, I

take an average of false positive rate for each threshold value. These results are shown in the

Figure 5.5.

The experiment on 10 functions with threshold value ranging from 0.4 to 0.9 show

that clones detected with 0.7 threshold similarity value are true positives. The precision

38

value is 100% for this threshold. Computation of recall based on threshold values is a future

work.

Table 5-6: Precision value for different clone similarity thresholds of different functions

Function Threshold Total Clones TP FP Precision

1. sort 0.4 17 13 4 76.4%

 0.5 13 13 0 100%

2. contains 0.45 10 4 6 40%

 0.48 4 4 0 100%

 0.5 2 2 0 100%

3. reverse 0.49 10 7 3 70%

 0.493 7 6 1 85.71%

 0.5 3 3 0 100%

def find_clones(model, code_vectors, threshold):

 res = [item for item in model.most_similar(code_vector, topn=len(model.vectors)) if

 item[1] > threshold]

 return res

Figure 5.3: Pseudocode to filter clones based on threshold value

39

Figure 5.4: Result of Precision values for 3 functions with different thresholds

Figure 5.5: Averaged false positive for 10 manually selected methods (given in Table 5.2)

inspected with different threshold values

40

5.4 Evaluation and Analysis

 This chapter focuses on the evaluation of results showcased in the previous sections

of this chapter. The effectiveness of clone detection tools is usually evaluated in terms of

precision and recall. Precision is the percentage of true positives (clone pairs) within a set of

code pieces identified by the tool as clones. The recall is the percentage of true positives that

are retrieved by the tool within the complete set of known clones.

The measurement of precision and recall, in general, relies on the existence of labeled

datasets. A well labeled dataset provides realistic data and authentic labels on all the

constituents that should be detected by the analysis tool – in the case of clone detection, all

clone pairs are labeled as such. The results were matched for manually tested methods and

predicted clones. The evaluation was done using the Measure Precision jar file available

open source. I searched for top10 clones using Measure Precision jar which takes clones and

produces if the clones are a true positive result or a false positive result. The Measure

Precision was used to verify results of InspectorClone [17] at inspectorclone.org, where the

clones detected by InspectorClone were verified through MeasurePrecision as a true positive

or a false positive.

I also did experiments on the threshold or cutoff value of similarity percentage

beyond which a high precision is achieved, and all true positive clones are detected. It is

observed with a set of preliminary results that at 0.7 threshold similarity value all true

positive clones are detected. Therefore, the precision is 100% for 0.7 threshold.

41

It is also observed on the sample methods that the precision for normalized Code2Vec

is higher than baseline Code2Vec. This is due to importance of variable names when a code

snippet is represented as AST path to form a path embedding. If names used are not proper,

then a wrong method gets predicted in baseline Code2Vec. This is analyzed using results

presented in the section above.

Further Analysis of why false positives were detected by baseline Code2Vec is

ongoing and will be a part of future work. This will require manual study of false positive

examples and experiments on variable name. Also, this analysis will be concrete once it is

extended to a larger dataset where consistency of the results is observed.

42

Chapter 6

Future Work and Conclusion

6.1 Summary

In this thesis, I have normalized the code2vec neural network model that learns

semantics from code snippets to predict clones. I have demonstrated that normalized neural

model Code2Vec can improve the performance in searching for clones in code snippets in

comparison to baseline Code2Vec. I also evaluated the results based on previous benchmark

models like InspectorClone [17] and BigCloneBench [5]. I have also showcased how

precision and recall can be computed for Code2Vec results. The study was heavily influenced

and inspired by Code2Vec [1], SourcererCC [14], InspectorClone [17]. I aim to improve my

solution in the future through the iterative development of the designed model, and refining

techniques.

43

6.2 Future Work

6.2.1 Programming Languages

In this thesis, the experiments are performed on system code GitHub repositories in

Java Programming language. In the future, this has the scope of extending to other

programming languages with modification in the model and the script. This would include

extracting a bag of paths by constructing Abstract Syntax Trees for additional languages.

Thus, language extension is one goal. PathMiner [3] has provided reusable artifacts to mine

path-based code representation for different programming languages, which will be useful

when extending on other languages.

6.2.2 Dataset Experimentation

Another future work includes computing the recall value of the complete IJaDataset.

This will highlight what clone types are missing or not properly detected with Code2Vec bag

of paths and AST based approach. This will help in learning how to improve the current

representation of code or mutate the representation in a more effective way. Representing

source code in the form of directed acyclic graphs instead of paths could also lead to a neural

model and improve knowledge in the semantic extraction of code.

Experiments like replicating the model implementation to work with different

datasets will offer more learning as it will increase the training data for existing models.

Neural models improve the ability to predict when fed with more training data.

44

6.2.3 Analysis of False Positives

 The accuracy of the results is impacted by false positives that are seen when the

threshold is reduced to a lower range. In this section, I discuss what could be the plausible

reasons for the occurrence of false positive clones above certain thresholds.

First reason is that the Code2Vec model [1] used for clone detection represents AST

based path embeddings in a certain manner. There can be more efficient ways to create path

embeddings which will be explored in future work. A detailed analysis of path vector

representation can be a factor that will help understand the occurrence of false positive.

Secondly, the cosine similarity is a measure of similarity between two path vectors in

a vector space. Alternative approaches to compare vectors will be explored in the future. This

will provide some insight in scope of reducing false positive rate.

Thirdly, data preprocessing is a major factor to improve the accuracy of results. The

code snippets for false positives will be manually tested and AST drawn to understand the

reason behind prediction of such methods.

6.2.4 Application Design

As there is existing research on generating comments for code using the Code2Vec

model [1], some engineering on this aspect can help create code from pseudocode. This will

help advance the future of software development and programming in general. The

45

challenge here is the lack of training examples in the form of pseudocode and real code.

Application of techniques of extracting features from code is a growing area of research and

has ample of other opportunities to explore.

46

References

[1] Uri Alon, Meital Zilberstein, Omer Levy, and Eran Yahav. code2vec: Learning distributed
representations of code. Proceedings of the ACM on Programming Languages, POPL. Oct
2019.
[2] Uri Alon, Meital Zilberstein, Omer Levy, and Eran Yahav. A General Path-Based
Representation for Predicting Program Properties. Proceedings of the ACM on Programming
Languages, POPL. April 2018.
[3] Vladimir Kovalenko, Egor Bogomolov, Timofey Bryksin, and Alberto Bacchelli.
Pathminer: a library for mining of path-based representations of code. IEEE/ACM 16th
International Conference on Mining Software Repositories (MSR).2019.
[4] Jeffrey Svajlenko and Chanchal Kumar Roy. Evaluating Clone Detection Tools with
BigCloneBench. In Proceedings of the 2015 IEEE International Conference on Software
Maintenance and Evolution (ICSME). 2015.
[5] Jeffrey Svajlenko and Chanchal K Roy. BigCloneEval: A clone detection tool evaluation
framework with bigclonebench. In Proceedings of 2016 IEEE International Conference on
Software Maintenance and Evolution (ICSME). IEEE 2016.
[6] Vaibhav Saini, Farima F., Cristina V. Lopes, Oreo: Detection of Clones in the Twilight Zone.
Proceedings of 2018 ACM on European Software Engineering Symposium on Foundation of
Software Engineering. Sept 2018.
[7] White Martin, Michele Tufano, Christopher Vendome, and Denys Poshyvanyk. Deep
Learning Code Fragments for Code Clone Detection. Proceedings of ASE’16 Singapore. Sept
2016
[8] Wenhan Wang, Ge Li, Bo Ma, Xin Xia,and Zhi Jin. Detecting Code Clones with Graph Neural
Network and Flow-Augmented Abstract Syntax Tree. Feb 2020.
[9] A. Sheneamer and J. Kalita. 2016. Semantic Clone Detection Using Machine Learning. In
Proceedings of the 15th IEEE International Conference on Machine Learning and
Applications (ICMLA). 2016.
[10] Abdullah Sheneamer and Jugal Kalita. 2016. A Survey of Software Clone Detection
Techniques. International Journal of Computer Applications. 2016.
[11] Liquing Li, He Fend, Wenjie Zhuang, Na Meng. CCLearner: A Deep Learning-Based Clone
Detection Approach. 2017 IEEE International Conference on Software Maintenance and
Evolution (ICSME). Sept 2017.
[12] Xing Hu, Ge Li, Xin Xia, David Lo, and Zhi Jin. Deep code comment generation. In
Proceedings of the 26th Conference on Program Comprehension. 2018.
[13] Jon Arnar Briem, Jordi Smit, Hendrig Sellik, and Pavel Rapoport. Using distributed
representation of code for bug detection. arXiv preprint arXiv:1911.12863, 2019.
[14] Hitesh Sajnaniy Vaibhav Sainiy Jeffrey Svajlenkoz Chanchal K. Royz Cristina V. Lopes.
SourcererCC: Scaling Code Clone Detection to Big-Code. 2016 IEEE/ACM 38th IEEE
International Conference on Software Engineering. 2016.
[15] http://mondego.ics.uci.edu/projects/jbf/
[16] Ira Baxter, Andrew Yahin, Leonardo de Moura, and Marcelo Sant’Anna. Clone Detection
Using Abstract Syntax Trees. 10.1109/ICSM.1998.738528. Jan 1998.

47

[17] Vaibhav Saini, Farima Farmahinifarahani, Yadong Lu Di Yang, Pedro Martins, Hitesh
Sajnani, Pierre Baldi, Cristina V. Lopes. InspectorClone: Towards Automating Precision
Studies of Clone Detectors. arXiv:1812.05195v2 [cs.SE] 14 Dec 2018.
[18] T. Yamashina, H. Uwano, K. Fushida, Y. Kamei, M. Nagura, S. Kawaguchi, and H. Iida,
“Shinobi: A real-time code clone detection tool for software maintenance,” Nara Institute of
Science and Technology, p. 26, 2008.
[19] Tomas Mikolov, Kai Chen, Greg Corrado, Jeffrey Deanet. Efficient estimation of word
representations in vector space. arXiv preprint arXiv:1301.3781. 2013.
[20] Imran Sheikh, Irina Illina, Dominique Fohr, and Georges Linares. Learning word
importance with the neural bag-of-words model. In Proceedings of the 1st Workshop on
Representation Learning for NLP, pages 222{229, 2016.
[21] Xin Rong. word2vec parameter learning explained. arXiv preprint arXiv:1411.2738.
2014.
[22] Caitlin Sadowski, Kathryn T Stolee, and Sebastian Elbaum. How developers search for
code: a case study. In Proceedings of the 2015 10th Joint Meeting on Foundations of Software
Engineering, pages 191{201, 2015.
[23] Susan A. Dart, Robert J. Ellison, Peter H. Feiler, and A. Nico Habermann. Overview of
Software Development Environments.
[24] Zhangyin Feng, Daya Guo, Duyu Tang, Nan Duan, Xiaocheng Feng, Ming Gong, Linjun
Shou, Bing Qin, Ting Liu, Daxin Jiang, et al. Codebert: A pre-trained model for programming
and natural languages. arXiv preprint arXiv:2002.08155. 2020.
[25] Miltiadis Allamanis, Marc Brockschmidt, and Mahmoud Khademi. Learning to represent
programs with graphs. arXiv preprint arXiv:1711.00740, 2017.
[26] A.L. Maas, R.E. Daly, P.T. Pham, D. Huang, A.Y. Ng, and C. Potts. Learning word vectors
for sentiment analysis. In Proceedings of ACL, 2011.
[27] Eric H. Huang, R. Socher, C. D. Manning and Andrew Y. Ng. Improving Word
Representations via Global Context and Multiple Word Prototypes. In: Proc. Association for
Computational Linguistics, 2012.
[28] Tomas Mikolov, Kai Chen, Greg Corrado, Jeffrey Deanet, Ilya Sutskever. Distributed
Representations of Words and Phrases and their Compositionality. arXiv preprint
arXiv:1301.3781. 2013.
[29] Pedro Martins Rohan Achar Cristina V. Lopes. SourcererJBF: The Java Build Framework:
Large Scale Compilation. UCI-ISR-18-3. April 2018.
[30] Alberto Goffi, Alessandra Gorla, Andrea Mattavelli, Mauro Pezz., and Paolo Tonella.
Search-based synthesis of equivalent method sequences. In Proceedings of the 22nd ACM
SIGSOFT International Symposium on Foundations of Software Engineering. 2014.
[31] Toshihiro Kamiya, Shinji Kusumoto, and Katsuro Inoue. CCFinder: a multilinguistic
token-based code clone detection system for large scale source code. IEEE Transactions on
Software Engineering. 2002.
[32] Rainer Koschke, Raimar Falke, and Pierre Frenzel. Clone detection using abstract syntax
suffix trees. In Proceedings of 13th Working Conference on Reverse Engineering. 2006.
[33] Y. Zhang, R. Jin, and Z.-H. Zhou. Understanding bag-of-words model: a statistical
framework. International Journal of Machine Learning and Cybernetics. 2010.
[34] A. Walenstein, N. Jyoti, J. Li, Y. Yang, and A. Lakhotia. Problems creating task-relevant
clone detection reference data. In Proceedings of WCRE. 2003.

https://arxiv.org/search/cs?searchtype=author&query=Chen%2C+K
https://arxiv.org/search/cs?searchtype=author&query=Corrado%2C+G
https://arxiv.org/search/cs?searchtype=author&query=Dean%2C+J
https://arxiv.org/search/cs?searchtype=author&query=Chen%2C+K
https://arxiv.org/search/cs?searchtype=author&query=Corrado%2C+G
https://arxiv.org/search/cs?searchtype=author&query=Dean%2C+J

48

[35] R. Collobert and J. Weston. A Unified Architecture for Natural Language Processing:
Deep Neural Networks with Multitask Learning. In International Conference on Machine
Learning, ICML. 2008.
[36] Seulbae Kim, Seunghoon Woo, Heejo Lee, Hakjoo Oh. VUDDY: A Scalable Approach for
Vulnerable Code Clone Discovery. In proceedings of IEEE Symposium on Security and
Privacy (SP). May 2017.

	LIST OF FIGURES
	LIST OF TABLES
	ACKNOWLEDGEMENTS
	ABSTRACT OF THE THESIS
	Chapter 1 Introduction
	1.1 Motivation
	1.2 Code Clone Types
	1.3 Approaches for clone detection
	1.4 Research questions
	1.5 Contribution and Chapters Overview

	Chapter 2 Background and Related Work
	2.1 Code Clone detection literature
	2.2 Deep learning for sourcecode literature

	Chapter 3 Code2Vec
	3.1 Abstract Syntax Trees
	3.2 Code2Vec Model
	3.2.1 Model Overview
	3.2.2 Feature Extraction
	3.3 Attention Model
	3.3.1 Distributed Representation of Context
	3.3.2 Path-Attention network

	Chapter 4 Experimental Design
	4.1 Dataset
	4.2 Experimental Design
	4.2.1 Normalization
	4.2.3 Normalization implementation
	4.3 Hyperparameters

	Chapter 5 Observations and Results
	5.1 Precision
	5.2 Recall
	5.3 Experimental Results
	5.3.1 Baseline Code2Vec Clones
	5.3.2 Normalized Code2Vec clones
	5.3.3 Normalization validation
	5.3.2 Effect of ‘k’ on precision
	5.3.3 Recall
	5.3.4 Clone threshold computation
	5.4 Evaluation and Analysis

	Chapter 6 Future Work and Conclusion
	6.1 Summary
	6.2 Future Work
	6.2.1 Programming Languages
	6.2.2 Dataset Experimentation
	6.2.3 Analysis of False Positives
	6.2.4 Application Design

	References

