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ABSTRACT

The definition of the number of people that occupy a particular space and for what duration is
difficult to characterize because human behavior is considered stochastic in nature. Occupants’ locations
within a  building vary throughout  the  day and this  distribution can be valuable information  when
evaluating demand control strategies. Occupancy diversity factors have not been studied as extensively
as for example lighting and plug loads diversity factors. Some reasons for fewer studies of occupancy is
limitations accessing existing occupancy datasets  and challenges interpreting the data.  In a research
building at  UC Berkeley, we were able to  add sets of passive infrared (PIR) or  motion sensing for
occupancy and carbon dioxide sensors in 67 private offices and 2 conference rooms,  as well as in
multiple open offices. In this work we study deterministic and stochastic building occupancy models
based on data from the deployed sets of sensors. 

Data is analyzed to show major variations of occupancy diversity factors in private offices and
conference rooms for time of day, day of the week, holidays, and month of the year. The impact on the
building electrical  load  is highlighted:  people  usually operate  electric  lights,  computers,  and other
common office devices when in a space, and this equipment is often turned off or in sleep mode when
the space is not occupied. The diversity factors presented in this study can differ as much as 40% from
those published in the literature or in the latest ASHRAE energy cost method guidelines, a document
commonly used by energy modelers for building simulations. This may result in misleading simulation
results and may introduce inefficiencies in the systems design and control.  Therefore we argue that
building occupancy is a basic and key factor in energy simulations. Occupancy sensors can certainly help
in calculating better diversity factors, but what is the optimum number and distribution of sensors to
improve performance and justify the cost?

Keywords:  diversity  factor,  building  occupancy,  demand  control  strategy,  building  energy
consumption
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Introduction 

Background

Due  to  rising  energy demand  and  diminishing energy resources,  sustainability and  energy
conservation is becoming an increasingly important topic. In the U.S., buildings account for 38% of
total  energy  consumption  (EIA  2013),  and  46%  of  the  primary  energy  use  is  associated  with
commercial buildings (DOE 2011).  Energy in buildings is mostly used to  maintain comfortable and
healthy indoor  environment,  and  provide  building-based  services.  In  commercial  buildings,  HVAC
(Heating,  Ventilation,  and Air Conditioning) systems represent  the largest  share of building energy
consumption, sometimes more than 40% (IEA 2007). Moreover, given the fact that in the U.S., new
construction represents only less than three percent of the existing building stock in any given year and
that buildings are generally in operation for 30 to 50 years, there is great potential of energy savings
through improving the operations of HVAC systems in existing buildings (IEA 2007). This has attracted
considerable attention in academia and the construction industry.

Occupancy is a key factor in controlling an indoor environment and deciding the load for HVAC
systems (Tabak 2010), especially for central HVAC systems with local variable-air volume controls.
Buildings  are  zoned  into  particular  areas  where  temperature  and  ventilation  can  be  individually
controlled. When a zone is occupied, the temperature has to be maintained at an acceptable range while
the occupants of that zone continuously generate heat and interact with building systems and appliances,
impacting the indoor thermal environment (Rea 1984, Fritsch 1990). When a zone is unoccupied and
static HVAC control strategies are used, an excess of energy may be consumed in order to maintain the
designed set-points and provide disproportionate amounts of ventilation air. As much as 90% of HVAC
building control systems are operated  inefficiently (Carbon 2012) and up to  30% of HVAC-related
energy can be potentially saved by implementing occupancy-driven control  strategies (ABB 2010).
Consequently, extensive research has been carried out  to  explore various ways for driving building
control strategies based on actual or representative occupancy patterns.

Occupancy diversity factors

The definition of the number of people that occupy a particular space and for what duration is
difficult  to  characterize  because  human behavior  is considered  stochastic  in nature  (Virote  2012).
Occupants in buildings arrive and leave every day at  different times and constantly move within the
facilities. 

The occupancy distribution can be valuable information when testing and designing demand
control strategies in a building (Yang 2011). For occupied facilities, researchers can obtain estimated
occupancy schedules from tenants and make adjustments in the energy control strategies. However, the
most common method for considering occupancy – especially in simulation and design tools - is to use
fixed design profiles (Davis 2010) that are defined by organizations such as ASHRAE and based on
analyses of large-scale occupant surveys (ASHRAE 2004). Researchers and designers commonly refer
back to  ASHRAE 90.1-2004,  which includes standardized occupancy diversity factors  in tables for
different building types and zones by hour of day. Occupancy diversity factors are hourly fractions for a
24-h day, the profiles having a range from zero to one. The diversity factors for each workweek are
often treated identically with weekend days having a different profile. Alternatively each day of the
week, but also each zone type, can be differentiated.  In the case of HVAC systems, the occupancy
diversity factor  is used to  multiply the design heating/cooling load in an energy simulation because
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occupancy will not always be at  the maximum design level. This provides a way to  account for the
variable heat gains throughout the day. 

Figure 1 illustrates the diversity factors recommended by ASHRAE Standard 90.1-2004 for use
with office occupancy. The published diversity factor does not differentiate for private offices or open
floor plan offices. The graph shows the factor for weekday hours reaches a value close to 100%, with
an approximate drop of 50% during the noon hour. Due to the stochastic nature of human behavior, this
type of deterministic schedule is broadly used, where standard workday and weekend profiles are set
with  no  change  in occupancy schedules  throughout  the  year.  In  more  complex and  sophisticated
stochastic occupancy models, schedules for one week are not the same as the next. Occupancy diversity
factors have not been studied as extensively as, for instance, lighting and plug loads diversity factors
(Acker 2013). The main reasons are limitations accessing existing occupancy datasets and challenges
interpreting the data. 

Purpose and Methodology 

Purpose of the study 

Studies of building energy control strategies based on original design regularly report  to have
substantial errors when compared to potential building performance (Scofield 2009). While errors in the
energy control  strategies  can  be  attributed  to  several  factors,  reducing error  by using reasonable
occupancy profiles is desirable. This work aims to  contribute to  the research on occupancy diversity
factors for research buildings by providing detailed statistical analysis of private offices and conference
rooms. 

This  paper  introduces  personalized  deterministic  diversity  factors  for  common  university
building space types using motion sensor data from a large research building at UC Berkeley. The next
subsection “Methodology” describes the research building and sensors used to  obtain the occupancy
data,  how the data  were preprocessed and analyzed,  as well as the  methods chosen to  obtain the
diversity factor graphs, inspired by (Duarte 2013). The section “Results and Discussions” summarizes
key findings and suggests directions for further research. 

Methodology

Occupancy sensor data were collected from a 141,000 ft2, 7-story research building in Berkeley,
California.  The  living laboratory  Sutardja  Dai  Hall  at  UC  Berkeley has  its  own  nanofabrication
laboratory, many private and open plan offices as well as a café, an auditorium, classrooms, and light
laboratories. The tenants of the private and open plan offices are mostly researchers, students and UC
Berkeley staff, and the total office portion is about 81,000 assignable square feet (ASF).

A  total  of  519  sensors  were  deployed  throughout  Sutardja  Dai  Hall,  in  three  packages:
temperature  (C),  light  (lux),  relative humidity (%),  Passive InfraRed (PIR)  or  motion sensor  (1-3
meters) and carbon dioxide. The majority of occupancy sensors are located in private offices, followed
by open plan offices.  In  this work  we focused on 67 private  offices and 2  conference rooms,  all
equipped with a set of sensors, throughout the fourth, fifth, sixth, and seventh floors of the building.
Figure 2 and Figure 3 show two representative floors of the building color-coded by space type. The
floor plans are equal in square footage but the 4th floor, with a larger number of private offices, has
substantially more occupancy sensors. Data collection spanned approximately 18 months (June 2013-
November 2014).
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In this study,  we focus on the data  collected from the 69 installed Passive InfraRed (PIR)
sensors in the private and conference rooms. It is more complex and involves more uncertainty to use
occupancy sensors in open office areas to derive diversity factors.  The motion sensors report change of
state at a sampling rate of 10 seconds. It  is important to  note that occupancy sensors do not count
people; rather they report  time-stamped changes of state. An occupied state is recorded as soon as a
PIR sensor detects the presence of a single occupant and records an unoccupied state as soon as it does
not detect presence. The overall state of the space was aggregated to a time series with a 5-min time
step, with each 5-min time slot being assigned a value of zero for unoccupied and one for occupied. The
dominant state was assigned to the entire time step, i.e. the state was set as occupied when the sensors
detected presence for longer than 2.5 min of each time step. 

Data were filtered to remove US federal holidays. Any part of a single PIR sensor’s data that
registered  as  continuously occupied  for  12  hours  or  more  was  replaced  with  the  corresponding
ASHRAE values from the standards. This was done to reduce the likelihood of including faulty sensors’
data or data from periods of sensor malfunction. The opposite failure (sensors fault-off rather than fault-
on) is more complex to detect. Indeed, it is reasonable for a space to correctly register long unoccupied
periods (e.g. weekends, vacations, or research/business trips). We used the full set of sensors in each
room to limit this eventuality. For any part of a single PIR sensor’s data that registered as continuously
unoccupied for 1 week or more, the PIR sensor’s data were compared to the full set of sensors’ data
(including CO2, light, temperature) and processed according to three options: (i) other sensors’ signals
were flat, then the full set of sensors might have been disconnected and the corresponding part of the
PIR sensor’s data  were replaced by ASHRAE standard values; (ii) other  sensors’ data  revealed no
notable evolution (constant average value for CO2 levels, flat signal for light detection), therefore it was
considered that the room was indeed unoccupied and the data were left unchanged; (iii) CO2, light and
temperature  sensors’  data  revealed  some  occupancy,  the  PIR  sensor  only malfunctioned  and  the
corresponding  part  of  the  PIR  sensor’s  data  were  replaced  by  ASHRAE  standard  values.  A
representative set  of sensors’ data (PIR, CO2,  light) in a private office of the 4th floor on Monday,
October 20, 2014 are shown in Figure 4. It reveals how the combination of various ambient sensors can
be used to detect occupancy patterns. There were a total of 38,847 days of sensor-data for private and
conference rooms. The equivalent of 4,150 sensor-days (10.6%) was replaced by ASHRAE standard
values due to filtering out the fault-on sensor data. 

The occupancy diversity factor  was obtained by adding all the private office and conference
room sensors in an occupied state  for a given 5-min time slot  and dividing by the total number of
sensors taken into account (n=69). For example, if 21 sensors registered an occupied state between 9:00
am and 9:05 am, then the diversity factor was this time slot is 21/69 or 0.3. The occupancy diversity
factor is essentially the percentage of sensors that registered an occupied state for a particular space
type at a particular time. In our work the occupancy diversity factor profile accumulates 5 min-by-5 min
data for longer time periods.

We then used on the data set t-test statistic methods (95% confidence interval) to determine if
there were statistically significant differences between each month of the year, day of the week and hour
of  the  day.  Monthly and day type  profiles are  reported  including individual weekdays.  Within the
weekday profiles, the critical features examined were the start and end of a workday, lunch and break
periods as well as peaks. These features were compared with other occupancy patterns including the
ASHRAE standards to show how findings compare with each other.
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Results and Discussion

Results

Figures 5 to  8 show weekdays data  only,  excluding Saturdays,  Sundays,  and US holidays.
Figure 5 shows the average diversity factor  by hour for each month.  The months cluster  at  three
different diversity factor profile levels. A calculation of t-tests and their resulting p-values suggests that
the  months  of  February-June  and  September-October  cluster  together  to  form  the  high  profile.
December, January and July cluster to form the medium profile level, and November and August form
the low profile level. Figure 6 shows the mean for each of these three clusters along with the mean for
all the months combined.

Mondays have the highest-level of occupancy of all weekdays, Fridays have the lowest, with
Tuesday, Wednesday and Thursday profiles being very close to  each other. The diversity factors for
weekday types are shown in Figure 7. The graph illustrates that occupancy returns to approximately the
same level after  lunch as before lunch in private  offices, with the exception of Fridays,  where the
afternoon occupancy level drops by a mean of about 15%. The weekdays average peak is between 0.59
and 0.8 for the studied private and conference rooms. The averaged data  are smooth; however the
month-to-month variability for each weekday is important. The variability of the diversity factor peaks
for weekdays is between 0.46 and 0.82.  

Measured data shows as much as 40% reduction in average day profile peaks for private office
occupancy compared to the ASHRAE model (refer for example to Figure 8, which represents the total
weekday average versus the AHSRAE model for weekdays).  

Discussion

By comparing ASHRAE standard curves for private  offices to  the data  collected in the 69
studied  office  and  conference  rooms,  one  can  see  that  both  profiles  have  the  same  important
characteristics in occupancy diversity factors (Figure 8). That is, the diversity factor starts to increase
around 7:00 AM, decreases after noon, rises again at the beginning of the afternoon and drops near the
end of the workday. However, there are important differences between the two profiles. According to
ASHRAE standards,  the  diversity factor  decreases  at  about  5:00  PM,  whereas  the  measured  data
reaches a peak value at  3:00 PM and then drops quickly. Most  importantly, the measured diversity
factors almost never reached the 95% occupancy level as recommended in the standards; rather they
peak between 60% and 80%. 

It was hypothesized that summertime occupancy diversity factors may shift and start to increase
and decrease earlier in the day. This does not seem to be the case as shown in Figure 5. These data
suggest that people generally have an average work schedule independent of season.  Figure 7 shows
that weekday profiles show more significant differences with the middle of the week having a similar
pattern but statistically higher occupancy on Mondays and early departure on Fridays.  It is interesting
to note that October has the highest diversity factor profile of all months, with November and August
having the lowest.  These results match our  expectations, with these months being popular vacation
times in summer or near Thanksgiving.  

Results show that measured occupancy data have a significantly lower diversity factor than the
ASHRAE standards. Looking at the mean weekday profile compared to ASHRAE standards (refer to
Figure 8), we estimated that real occupancy data at the building scale can save in average 22% of daily
energy consumption. Taking into account the cost of the sensors, their installation as well as the cost of
running the whole system, the return on investment for the building manager is inferior to 2.5 months. 
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Conclusion

This paper provides occupancy diversity factors for 69 private offices and conference rooms
based upon an 18-month dataset from a research building in Berkeley, California. It shows that there are
statistically significant differences to  suggest  three families of diversity factors  for day of the week
(Monday,  Tuesday-Thursday,  Friday) and three  families of diversity factors  for  month of the year.
Results also show that  measured occupancy data have a significantly lower diversity factor  than the
ASHRAE standards. Measured data shows as much as 40% reduction in average day profile peaks for
private office occupancy compared to the ASHRAE 90.1 2004 model. 

Given these  findings,  future  research examining a  data  set  large  enough to  support  a  new
ASHRAE  recommended  practice  seems  warranted.  The  results  of  this  study  should  also  guide
expectations of stochastic models with regard to weekdays, holidays, and time of day diversity factors.
In any case,  more research is necessary in order  to  develop a  larger sample of buildings spanning
geographic regions, office types, and other critical factors. It would be interesting to investigate other
types of buildings to determine how occupant diversity factors differ.

Figures

Figure 1.  ASHRAE 90.1-2004 recommended occupancy diversity factor by day type
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Figure 2.  4th floor representative Sutardja Dai Hall research building

Figure 3.  5th floor representative Sutardja Dai Hall research building

Figure 4.  CO2, light and PIR sensors’ data in a private office on Monday, October 20, 2014
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Figure 5.  Average occupancy diversity factor for each month

Figure 6.  Diversity factors obtained for the average over all months and for the average over high-,
medium-, and low-level months
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Figure 7.  Average occupancy diversity factor profile for weekdays

Figure 8.  Comparing diversity factors from ASHRAE 90.1 2004 references to current study
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