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Abstract

Bayesian Networks for Real-Time Multi-Robot Task Allocation in a Generic

Agent-Based Framework with Uncertainty

Nowadays, robots have engaged in our daily lives no matter whether in transportation,

manufacturing, military, family, education, or entertainment. Because a variety of robots

have been invented in distinct environments to help human beings increase working effi-

ciency, avoid injury in dangerous surroundings, or explore unreachable areas, more and

more robots have been employed as a robot team to achieve the same goal instead of

using a single robot. The use of multiple heterogeneous robots may enhance efficiency,

robustness, flexibility, tolerance, and economic benefits now that each skillful robot may

complete individual tasks or accomplish cooperative tasks simultaneously in a mission

even though failure happens on certain robots or equipment. Multi-robot control has be-

come much more significant than in the past decades. Although numerous structures to

build centralized, decentralized, and distributed multi-robot systems (MRSs) and various

approaches to coordination or multi-robot task allocation (MRTA) have been proposed,

most of them may be unique in specified applications under assumed conditions. Inte-

grating these techniques into different research areas is usually challenging. Even though

certain structures and traditional or modern strategies could be combined to apply to ad-

ditional applications, several challenges are still NP-hard, for example, dynamic environ-

ments, optimal solutions, parameter formalization, and parameterizing of robot abilities.

An artificial intelligence (AI) method might solve these problems. With the increasing
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speed of computer processing, machine-learning approaches have been commonly utilized

in robotics while few of them were implemented in MRTA. In this dissertation, a novel

approach to MRTA with Bayesian Networks (BNs) and a generic agent-based framework

for MRSs are proposed to overcome the aforementioned difficulties. The BN of a task

could be easily built, and the conditional probability table (CPT) of a BN could be log-

ically established. The success rate of a task could be calculated by following Bayes’

theorem, and tasks could be suitably allocated depending on the collected success rate.

Agents in the generic agent-based framework are categorized into agencies. With this

framework, a diversity of MRSs could be constructed, and advanced methodology could

be implemented. Low-cost, educational hardware robots are exploited to demonstrate

our approaches to MRS construction and MRTA in search-and-rescue missions under dy-

namic environments. The result of MRTA is acceptable with a reasonable setup before

training, and the result of MRTA becomes near-optimal after training with a large data

set. In the future, we may apply this new MRTA approach to a static environment, a

homogeneous robot team, a large-scale robot team, and other types of MRTA problems

to analyze extensibility. Researchers may include their state-of-the-art methods in the

generic framework and combine our MRTA approach in miscellaneous applications, such

as patrolling, surveillance, cleaning, warehouse systems, manufacturing, and exploration

to examine flexibility.
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Chapter 1

Introduction

It is an instinct that human beings keep inventing new tools or modern technologies to

improve our living quality. Since hundreds of years ago, humans have invented vehicles,

boats, aircraft, and trains for transportation [1, 2, 3], drill presses, lathes, mills, CNC

machines, 3D printing machines, and robotic arms for manufacturing [4, 5], and rovers,

drones, underwater vehicles, rockets, and spacecraft for exploration [6, 7, 8, 9]. The exam-

ples of state-of-the-art technologies are shown in Fig. 1.1. In this modern world, besides

improving existing technologies, we are still designing other robots to mimic animals for

therapy or in ethology, such as robotic dogs, cats, birds, frogs, and lizards [10, 11, 12],

and for services like humanoid robots [13, 14, 15], cleaning robots [16, 17], and family

robots [18, 19] as shown in Fig. 1.2. Sometimes, several robots must be used at one time,

for example, robotic soccer games and product lines [20, 21], and numerous rovers and

drones are utilized to explore an area instead of a single robot to save time [22, 23, 24, 25].

Robots in a soccer game and a fleet of drones for exploration are shown in Fig. 1.3 There-

fore, it is obvious that using many robots for one goal is inevitable no matter whether

it is necessary or efficient. As a result, in addition to the mechanism design and control

1



system of an individual robot, effectively controlling multiple robots is another crucial

research area in robotics.

Figure 1.1. The Examples of Flying Cars, Industrial Robots, and Hybrid Aerial Un-
derwater Vehicles [2, 5, 8]

Figure 1.2. The Examples of Cleaning Robots, Social Robots, Robotic Birds, and
Humanoid Robots [10, 15, 16, 19]

2



Figure 1.3. The Examples of Groups of Robots Playing Soccer and A Fleet of Drones
[20, 25]

Besides the situations in which a few robots must be used, we may utilize massive

robots to increase efficiency and robustness in many other applications, for instance,

search and rescue, security patrolling, surveillance, material cleanup, warehouse systems,

assembly systems, and exploration [26, 27]. In a small area, using one robot might be

enough to achieve our purposes to search for a target or move one object from one place

to another place. It is, however, very inefficient to use a single robot in a large area

or to handle many jobs. Deploying various robots may save a lot of time to achieve the

same goal. Additionally, increasing the number of robots may enhance robustness because

robots might fail during a mission for any reason under dynamic environments. Certain

functioning robots may take the jobs over from the malfunctioning robots. Moreover, the

cost of each robot might decrease. When complex tasks consist of simple jobs in a mission,

the requirement of a robot for each job could be lesser. The cost of a robot team would

be lower because the design of each robot could be simplified [28, 29]. Consequently, with

more and more applications of multiple robots, several research areas have emerged, such

as system architectures, communication, information exchange and fusion, localization,

coordination, resource conflict, and motion planning [30, 31, 32, 33]. Although researchers
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have developed diverse approaches to coordinate robots [34], fuse information [35], localize

objects [36], avoid obstacles [37], and build frameworks for a multi-robot system (MRS)

[38], most of them are characteristic in specific applications. It might be uneasy to

integrate these techniques into one MRS for different operations. Therefore, the main

focus of this dissertation is a general design of MRS architectures and multi-robot task

allocation (MRTA) which is included in coordination.

With the speed of computer calculation raising, applying machine-learning approaches

to robotics becomes extremely prominent now. It might be easy to control the motion

of a robot under static environments where no accidents happen and all robots follow

the original schedule. Nevertheless, it might be very difficult to control a robot to react

to uncertain events under dynamic environments. Take a self-driving car as an example

shown in Fig. 1.4 [39]. Automatically controlling a vehicle from one place to another place

in a small village with few people might be simpler than controlling a vehicle in a big

city with many residents. Several situations need to be considered, such as pedestrians,

traffic lights, traffic jams, and emergent accidents apart from the shortest route. With a

large amount of collected data on roads every day, we might be able to properly control a

vehicle after training with machine-learning approaches to design a decent self-driving car.

With a similar concept, the machine-learning methodology might be able to be applied

to coordination when multiple robots and dynamic factors are taken into consideration.

Hence, a machine-learning approach to MRTA is proposed in this dissertation.

The structure of this dissertation is listed below. In Chapter 2, Chapter 3, and Chap-

ter 4, multi-robot systems (MRSs), multi-robot task allocation (MRTA), and machine-
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Figure 1.4. A Self-Driving Car [39]

learning approaches are reviewed separately. Motivation and research objectives are de-

scribed in Chapter 5. A novel approach to MRTA with Bayesian Networks (BNs) and

a generic agent-based framework are accordingly elaborated in Chapter 6 and Chapter

7. From Chapter 8 to Chapter 10, experiments with hardware robots are demonstrated

in search-and-rescue missions before and after training. Conclusion and future work are

discussed in Chapter 11 and Chapter 12 respectively.
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Chapter 2

A Review of Multi-Robot Systems

(MRSs)

A multi-robot system (MRS) consists of a group of robots that can communicate and

be controlled in an area. A control system in an MRS is used to coordinate and control

the motions of robots. Usually, designers develop the structure of an MRS written with

certain computer languages and install it on robots to control and communicate with them.

Accordingly, different types of MRSs were designed based on the structure of MRSs, the

capability of robots, and the use of software frameworks in diverse applications. In this

chapter, the classification of MRSs and the major software framework are introduced.

The existing structures of MRSs and their advantages and disadvantages are discussed.

2.1 The Classification of Multi-Robot Systems

(MRSs)

According to the capabilities robots have, MRSs can be easily divided into two types:

homogeneous and heterogeneous MRSs [40]. If each robot in a group owns the same skill,

we call it a homogeneous MRS; on the other hand, if robots possess different skills in a
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group, we name it a heterogeneous MRS. In a dynamic environment, even though robots

in a team have the same capability, the capability conditions on each robot might be

different like broken sensors or failing actuators, so we may categorize this robot team

into a heterogeneous MRS.

Based on coordination methods, MRSs can be classified as centralized, decentralized,

and distributed MRSs [26, 41] as shown in Fig. 2.1. A centralized MRS is a system where

only one fixed central controller exists. This controller can control all robots including

itself when the controller is one of the robots. The central controller collects information

from robots, analyzes current conditions, coordinates robots, and controls robots. Other

robots only follow commands from the central controller to complete what needs to be

done. The strength of this system is that it is simple for the central controller to make

decisions and provide proper commands to robots by analyzing current situations with

certain algorithms because all information is collected by the central controller. However,

the weakness is that the system may not work when the central controller fails. Without

the central controller, robots do not know what to do and stop moving, which is so-called

a single-point failure [31, 42]. Moreover, the cost of the central controller is typically

Figure 2.1. The Classification of MRSs: (a) Centralized (b) Decentralized (c) Dis-
tributed
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expensive since it has to handle heavy calculations and analyses, especially in a large-

scale robot team, so a high-performance computing processor might be necessary. To

overcome single-point failures, decentralized and distributed MRSs were developed.

Many settled or transient controllers are in a decentralized MRS. Certain assigned

robots may be controllers to gather and fuse information or coordinate and control robots

including themselves. Heavier duties can be done on high-efficiency robots, and lighter

work can be done on low-efficiency robots. A decentralized MRS may still work although

the robots responsible for coordination fail, and the cost of a robot might decrease due

to the nonessential use of high-performance computing processors, which solves the prob-

lems in a centralized MRS. Nevertheless, the requirement for communication between

robots is very critical [43]. A robot might wrongly analyze current situations with out-of-

date or incorrect information because of delay and send erroneous commands to robots,

which might cause robots to conduct improper behaviors. Thus, a distributed MRS was

proposed.

Each robot in a distributed MRS can exchange information with other robots, make

decisions depending on local and gathered information, and control itself. Even though a

robot loses communication, it can still try to collect information by sensing its surround-

ings and to analyze current situations. Consequently, a group of robots may complete

what operators require to do although certain robots fail. Nonetheless, information fusion

is relatively challenging compared to the other two MRSs for the reason that information

is collected at different locations or at different points in time. Various complex algorithms

or approaches to information fusion are required under distinctive conditions [44, 45, 46].
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Structures Heterogeneity Environments

Search and Rescue

[47, 48, 49, 50]

centralized/

decentralized/

distributed

heterogeneous dynamic

Security Patrolling

[51, 52, 53, 54, 55]

centralized/

distributed

homogeneous/

heterogeneous
static

Surveillance

[56, 57, 58]

centralized/

decentralized
homogeneous static

Material Cleanup

[59, 60, 61]

centralized/

distributed
heterogeneous dynamic

Warehouse Systems

[62, 63]

centralized/

decentralized
homogeneous static

Assembly Systems

[64, 65]
centralized heterogeneous dynamic

Exploration

[66, 67, 68]

centralized/

distributed

homogeneous/

heterogeneous
dynamic

Table 2.1. The Complexity in Different Applications

Because there are pros and cons in centralized, decentralized, and distributed MRSs,

we should think thoroughly before choosing a suitable MRS for an application. The typical

applications of MRSs are organized in Table 2.1. Centralized MRSs are commonly used in

most applications if the size of a robot team is small or the environment is relatively static

because the central controller can easily analyze collected information and control robots,

for example in security patrolling, surveillance, warehouse systems, and assembly systems.

When a robot team is large or the environment is dynamic, decentralized or distributed

MRSs are utilized to quickly gather surrounding information and react to accidents, such

as in search and rescue, material cleanup, and exploration. Regarding heterogeneity,

9



robots with the same skills are frequently used in security patrolling, surveillance, and

warehouse systems, whereas robots with different capabilities are generally utilized in

search and rescue and material cleanup. As can be seen, types of MRSs and robot styles

vary in diverse applications, so our proposed approach should be applicable to most

applications.

2.2 The Existing Software Framework of Multi-

Robot Systems (MRSs)

In order to create centralized, decentralized, or distributed MRSs, several existing MRS

software frameworks were developed. The software frameworks of MRSs are the platforms

with which researchers may build personalized MRSs with certain computer languages

depending on their applications to monitor and control robots. The existing MRS software

frameworks are OpenRTM, OROCOS, YARP, ROS, JADE, and Mobile-C [69]. They

all have their characteristics compared to each other in several areas; notwithstanding,

various factors should be taken into consideration when choosing a software framework

to create an MRS. For instance, most software frameworks are compatible with C/C++,

whereas Java is used in JADE. Using C/C++ to control devices, such as sensors, motors,

and cameras, is very common because C/C++ is a compiled language, the processing

speed of which is faster than the speed of interpreted languages. For another example,

robots may need to keep perceiving surroundings from sensors or cameras in dynamic

environments, so real-time control is crucial. OROCOS, YARP, and Mobile-C can achieve

this purpose. Last, JADE and Mobile-C are mobile agent-based software frameworks, so

certain agents are able to move to other devices to run certain programs and bring the
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required data back. Considering that our proposed approach should be handily utilized

in diverse applications, Mobile-C is chosen as our software framework in this dissertation

to build MRSs on hardware robots.

Mobile-C is written in C/C++ and follows the standard of the Foundation for In-

telligent Physical Agents (FIPA), so it is easy to control hardware and send messages

with XML files [70, 71]. The basic structure of Mobile-C is shown in Fig. 2.2. Each

robot may have several agencies as servers or clients to send and receive messages. In

each agency, we may create numerous stationary agents (SA) or mobile agents (MA) to

execute diverse tasks. The difference between stationary agents and mobile agents is

that stationary agents can only execute tasks locally and mobile agents are able to go to

other agencies to execute tasks on different robots via the network. Through the agent

communication channel (ACC), agents are allowed to send and receive messages or data

from each other by using an agent communication language (ACL). Additionally, agents

Figure 2.2. The Structure of Mobile-C [70]
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may communicate with each other asynchronously because they are able to re-transmit

information if a receiver temporarily fails. Users may also create mobile agents in one

local agency and send them to other agencies on different robots to obtain the necessary

information or to manually control robots. As a result, Mobile-C has several advantages,

such as flexibility, mobility, communication, and robustness.

2.3 The Existent Structure of Multi-Robot Systems

(MRSs)

Due to various types of MRSs and applications, numerous MRSs have been developed,

whereas an agent-based architecture has been seen as a feasible solution to build an MRS

because of its flexibility, scalability, distribution, extensibility, modularity, robust fault

tolerance, and real-time control [72]. In [73], although researchers introduced a funda-

mental agent-based framework for an MRS, implementation and the details about agents’

names and their work were not provided. In [74, 75], scholars listed sensor agents, ac-

tuator agents, communication agents, planner agents, mapping agents, and localization

agents and showed the dataflow between agents. Certain agents could save data in the

knowledge base (KB) or the blackboard. However, they did not consider any agents

handling coordination between robots. In [72], researchers classified agents from another

angle. Master agents are responsible for high-level coordination, server agents deal with

low-level planning, and worker agents handle hardware control. Communication agents

and task scheduling agents are involved in these classified agents. Nevertheless, they

did not take information fusion and diverse task-allocation approaches into account al-

though considering additional tasks and robots during a mission. In [76], research workers
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Figure 2.3. The Examples of The Present MRS Structures [76, 79, 84]

mainly focused on coordination; hence, apart from sensor agents, actuator agents, map-

ping agents, localization agents, and communication agents, they included several agents

to manage task allocation and coalition formation in the coordination module. Due to

this reason, they did not mention agents to handle multi-sensor fusion or object recog-

nition. Up to now, several researchers have proposed various frameworks or architec-

tures with different types of MRSs and approaches in numerous software and applications

[77, 78, 79, 80, 81, 82, 83, 84]. Multiple examples are shown in Fig. 2.3. Although we are

able to point out certain crucial agents and features in agent-based frameworks, most of

them are unique in specific algorithms, software, or applications. As a result, proposing

a generic agent-based framework is crucial to apply to most applications without massive

changes.
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Chapter 3

A Review of Multi-Robot Task

Allocation (MRTA)

In autonomous MRSs, one primary research area is coordination including task decompo-

sition, coalition formation, task allocation, and motion coordination [85]. When a mission

is assigned to an autonomous robot team, task decomposition is the first step to separate

the mission into several simple tasks for robots. Nonetheless, utilizing certain algorithms

or approaches to automatically decompose a mission is a tough problem. The task cat-

egory varies case by case, so the task list of a mission is manually created and given by

researchers in advance [86, 87, 88]. Thereafter, certain approaches are applied to effec-

tively assign tasks to robots, which is called task allocation, and small groups of robots

may be formed in collaborative tasks, which is named coalition formation. In the end,

robots may coordinate among them to complete assigned tasks with customized methods.

In this dissertation, one focus is task allocation including coalition formation because the

result of task allocation may directly influence the execution outcome. The classification

of MRTA, current approaches to MRTA, and challenges are concluded in this chapter.
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3.1 The Classification of Multi-Robot Task Alloca-

tion (MRTA)

MRTA is one of the research areas in coordination to appropriately allocate tasks to

robots in a mission in order to properly complete the mission within limited resources.

In accordance with research papers related to MRTA, the problems of MRTA could be

classified into eight types based on the type of robot, the requirement of tasks, and

assignment methods as shown in Fig. 3.1 [89, 90]. Robots in a team could be categorized

into single-task (ST) robots and multi-task (MT) robots. An ST robot can only execute

one task at a time. It must complete or give up its current task before taking another

task. Contrarily, an MT robot can simultaneously execute many tasks. It may not need

to complete or abandon certain current tasks before taking others. With respect to the

requirement of tasks, tasks could be divided into single-robot (SR) tasks and multi-robot

(MR) tasks. Only one robot is required in an SR task, whereas multiple robots are needed

in an MR task. The number of robots and the required ability of robots may vary in each

Figure 3.1. The Classification of MRTA Problems [89]
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task. According to the information between tasks, we classify assignment methods into

instantaneous assignments (IA) and time-extended assignments (TA). IA means there is

no sequential information between tasks, and tasks are executed immediately when being

taken by robots. TA denotes tasks are assigned by considering the sequential information

of tasks, and some tasks may be executed later although being chosen by robots. Hence,

eight combinations are in MRTA problems: ST-SR-IA, ST-SR-TA, ST-MR-IA, ST-MR-

TA, MT-SR-IA, MT-SR-TA, MT-MR-IA, and MT-MR-TA.

3.2 The Current Approach to Multi-Robot Task Al-

location (MRTA)

Up to now, several researchers have proposed numerous approaches to solve different types

of MRTA problems under miscellaneous conditions [90, 91, 92, 93]. The three fundamental

approaches are behavior-based approaches, optimization-based approaches, and auction-

based approaches. Other strategies which are categorized as hybrid approaches may

combine distinctive methods with them.

In behavior-based approaches, designers build a structure to store several behaviors,

roles, or tasks on each robot. Each robot may choose one of them based on local infor-

mation collected through sensors and external information assembled from other robots.

This method is usually used in a heterogeneous, distributed MRS because the structure

installed in a robot could be the same or slightly different based on applications and each

robot may make its own decisions according to gathered information. Additionally, this

method may adapt to dynamic environments now that robots may easily choose or switch

to different behaviors, roles, or tasks depending on combined information. The classic
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examples are ALLIANCE [94] and L-ALLIANCE, which is a machine-learning version of

ALLIANCE [95]. However, it is rigorous to design the structures of behavior-based ap-

proaches [73, 90]. Researchers need to build different structures when diverse behaviors,

roles, or tasks are required in various applications. Moreover, there is no general algo-

rithm to determine how a robot chooses suitable behaviors, roles, or tasks in a mission

due to distinct situations. Thus, other approaches were proposed.

In optimization-based approaches, a central controller or a robot collects all informa-

tion from other robots and utilizes an optimizer to minimize the cost based on objec-

tive functions with constraints in order to obtain the global, optimal solution in MRTA.

The common optimizers used in MRTA are Ant Colony Optimization (AC) [96], Particle

Swarm Optimization (PSO) [97], Genetic Algorithm (GA) [98], and Simulated Annealing

(SA) [99]. This method is basically utilized in a homogeneous, centralized MRS because

all robots are assumed to be the same and a central controller should collect and analyze

information and then send commands to robots. Furthermore, the global, optimal solu-

tion, with this method, can be easily obtained after collecting enough information about

the surroundings. Nevertheless, due to a centralized MRS, weaknesses are accompanied,

such as a single-point failure and high-cost hardware. In addition, many objective func-

tions or different algorithms may be needed or re-designed for complicated applications, so

objective functions vary in diverse situations. Hence, auction-based approaches emerged.

In auction-based approaches, three main stages in sequence are in an auction pro-

cess: Announcement Stage, Submission Stage, and Selection Stage [100]. First, in the

Announcement Stage, a robot selected by a designer or a group of robots as an auctioneer
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announces a task to all robots. Next, in the Submission Stage, after a robot receives the

task, it calculates a utility as a bid with certain mathematical algorithms based on its

current conditions, such as the cost and the reward to complete the task. Then, it will

send the bid back to the auctioneer. Finally, in the Selection Stage, after the auctioneer

collects all the bids from the robots, it will select the winner with the highest bid and send

the task to the robot. After the auction process completes, an auctioneer starts another

auction process and repeats all the stages continually until all tasks are allocated. The

overall process is shown in Fig. 3.2. Based on the information about the auction process,

this method is usually utilized in a heterogeneous, decentralized/distributed MRS and

overcomes certain challenges, for example, the single-point failure, the structure design,

and dynamic environments [101]. A simple example is shown in [60] where researchers

utilized an auction-based approach to allocate cleaning tasks to robots with different abil-

ities after the robots observed their surroundings. Researchers in [102, 103] also stated the

efficiency, robustness, and scalability of auction-based approaches. Nonetheless, apply-

ing auction-based approaches may receive a sub-optimal solution instead of the optimal

solution [104]. In order to obtain better results, certain researchers proposed modified

Figure 3.2. An Auction-Based Approach: (a) Announcement Stage. (b) Submission
Stage. (c) Selection Stage.
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auction-based approaches, such as the greedy auction algorithm [105] and the market-

based approach [106]. Moreover, in order to decrease the occasions of auction processes,

researchers utilized the combinatorial exchange to bundle tasks or robots as a group or a

party in auction processes [107]. Other cutting-edge strategies were illustrated and com-

pared in [108]. As can be seen, simple auction-based approaches might not be applicable

to receive the optimal result, whereas modified auction-based approaches might heavily

increase the difficulty of auction processes. Hybrid approaches were developed.

Hybrid approaches may include adding distinctive algorithms to the fundamental ap-

proaches (behavior-based, optimization-based, and auction-based approaches) or combin-

ing two of the fundamental approaches. For instance, a consensus algorithm was added

in an auction-based approach to create a consensus-based approach in [109, 110] to re-

ceive better results in a heterogeneous MRS than the result with simple auction-based

approaches. For another example, an optimization-based approach was combined with

an auction-based approach, which is called the stochastic clustering auction, to obtain

the optimal solution [111]. Today, certain challenges are still unsolved although several

techniques have been proposed.

3.3 Challenges and Difficulties in Multi-Robot Task

Allocation (MRTA)

We may notice that certain difficulties and challenges still exist based on the descrip-

tions in the previous section even though miscellaneous approaches have been proposed.

Most structures, parameters, and algorithms are empirically customized according to dis-

tinctive applications. The structure design to store and choose tasks would be different
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and troublesome with behavior-based approaches. Objective functions and constraints

would be various with optimization-based approaches. Costs, rewards, and the calcula-

tion of utilities would be diverse with auction-based approaches. Extra algorithms may

be added in auction-based approaches to receive near-optimal solutions, which increases

the calculation complexity. Additionally, parameters used in most methodologies may be

created by trial and error. Algorithms may become extremely complicated to obtain the

optimal solution or overcome dynamic environments including adjustable task lists. For

example, sophisticated hybrid approaches were proposed to handle dynamic conditions

in [112, 113, 114]. The robot cost might augment due to the hardware requirement for

heavy calculation. Most importantly, it is rare to formalize the capability of a robot in an

algorithm although the ability condition was considered in the specific case in [115]. Last,

most approaches are not learnable to adapt to dynamic environments or new missions.

The original setup might not work when the information about robots and tasks changes.

As a result of the above challenges and difficulties, a novel approach to MRTA with a

machine-learning method is proposed in this dissertation.
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Chapter 4

Introduction to Machine-Learning

Approaches in Robotics

With the computing speed of computer boosting, machine-learning approaches become

prominent to be utilized in education, human resource, cybersecurity, health care, military,

manufacturing, and robotics [116]. Because of the complexity of mechanisms increasing,

more and more machine-learning approaches are implemented in robotic research areas

because deriving a deliberative method might be too complicated and problematic due to

many inputs and outputs, dynamic factors, and uncertainties. After training with a large,

collected data set, a trained machine-learning algorithm may provide a feasible solution

to allow robots to analyze surroundings, make decisions, and choose behaviors. In this

chapter, a summary of current machine-learning approaches in robotics is introduced. The

reason that Bayesian Networks (BNs) might be a decent option for MRTA is elaborated.

In the end, a brief introduction to BNs is given.
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4.1 The Category of Machine-Learning Approaches

and Applications in Robotics

By now, several machine-learning approaches in Artificial Intelligence (AI) have been

developed to allow machines to learn from data. Most methods can be categorized as su-

pervised learning, unsupervised learning, semi-supervised learning, reinforcement learning

(RL), and ensemble learning as shown in Fig. 4.1 [117, 118, 119, 120]. Supervised learning

means the collected data for training are labeled while unlabeled data are used in unsu-

pervised learning. RL is a learning process when only goals are given in Markov Decision

Process (MDP) or Partially Observable Markov Decision Process (POMDP). Ensemble

learning is a learning process where multiple learning models are utilized to solve one

common problem. Approaches in supervised learning are Decision Tree, Naive Bayes and

Bayesian Networks (BNs) or Belief Networks, Support Vector Machines (SVM), K-nearest

Neighbors (K-NN), and linear regression. Unsupervised-learning approaches are K-Means

and Principal Component Analysis. Classical methods in ensemble learning are Random

Figure 4.1. The Categorization of Machine-Learning Approaches [117]
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Forest and Boosting. The well-known approach, Neural Networks (NN), can be utilized

in supervised learning, unsupervised learning, and reinforcement learning. Another re-

markable approach is deep learning (DL) where multifold layers are used in NN, so it can

be combined with NN, BNs, and RL to solve much more complex problems [121].

During the past decades, numerous machine-learning approaches have been applied

to robotics in many research areas, such as object recognition, data fusion, localization,

coordination, path planning, collision avoidance, grasping, and fault detection. Each clas-

sification or clustering approach like SVM and BNs may be utilized to detect and recognize

objects, whereas it is very powerful to identify targets in a messy environment with NN or

DL [122, 123, 124]. Data fusion may be required to extract and integrate crucial features

from one source or multiple sources like multi-sensor fusion to estimate the current state

or analyze surroundings for further decision making. Boosting, SVM, BNs, K-Means, NN,

and DL are general approaches in data fusion [125, 126, 127, 128]. Localization problems

may include indoor and outdoor self-localization and target localization. Because these

problems are usually related to images and sensors, certain approaches utilized in object

recognition and data fusion may be needed. Additionally, current pose estimation may

be also required, so POMDP, BNs, linear regression, SVM, K-NN, and NN have been ap-

plied to localization [129, 130, 131, 132]. Coordination is essential in an MRS to allocate

tasks, share limited spaces, make robots travel as a group, or collaboratively complete a

task. Due to dynamic environments, different communication methods, and uncertain-

ties, RL and DL are widely utilized to handle sophisticated problems [133, 134, 135, 136].

In MRTA, however, the simulation results in particular cases are under specific assump-
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tions and without robot failures during execution although learning-based strategies were

summarized in [137]. The trained model might be unable to handle authentic situations

when task information and robot capabilities change with time. Re-training might be

required. Path planning and collision avoidance occur when a robot executes a task and

tries to avoid any static or dynamic obstacles on a road. Because of many uncertain

situations on a path, BNs, NN, RL, and DL are implemented to handle any possible

circumstances [138, 139, 140, 141]. Grasping and relocating an object can be a task in

a mission. Object recognition sometimes accompanies grasping tasks; hence, BNs, NN,

RL, and DL are adopted to control robotic arms or grippers to capture rigid or soft items

[142, 143, 144, 145, 146]. Fault detection is the process of data analysis to determine the

status of hardware; therefore, certain approaches to data fusion may be included. Boost-

ing, linear regression, SVM, K-NN, and NN are typical methods used in fault detection

[147, 148, 149]. According to these applications and characteristics of machine-learning

approaches, as a result, we may choose one of them to solve a diversity of MRTA problems

and consider as many possibilities as possible when designing a generic MRS framework.

4.2 Promising Machine-learning Approaches in

Multi-Robot Task Allocation (MRTA)

Although machine-learning approaches are very popular in robotics, it is rare to apply

a machine-learning method to MRTA while considering several applications. In conse-

quence, our goal is to choose one of them to overcome the challenges described in Chapter

3. Based on the characteristics of MRTA problems, not all of them can be fulfilled. For

example, many dynamic factors need to be considered, such as the state of a robot, the
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number of tasks, the information of a task, the type of robot, the skill condition, and un-

certainties from devices. Decision Tree, Naive Bayes, BNs, NN, and RL including MDP

and POMDPmight be appropriate approaches to handle dynamic environments [150, 151].

Nonetheless, considering the difficulty of building a structure to solve MRTA problems,

Decision Tree might not be a proper approach because the structure might be totally dif-

ferent when the number of tasks, the number of robots, or the information of tasks varies

in diverse applications. Furthermore, although MDP or POMDP is powerful to obtain the

optimal sequence of actions to complete a task, an MRTA problem, especially for an IA

problem, is similar to a classification problem under dynamic environments. Finding an

optimal sequence of task execution is trivial since it is almost impossible to estimate what

will happen to robots, sensors, or tasks. MDP or POMDP might not be a satisfactory

approach in classification [85, 152]. Lastly, the difficulty of learning should be taken into

account. In real applications, tasks, robots, and surroundings are miscellaneous. Training

the model of a machine-learning approach might require a huge data set, whereas it is

difficult to collect a large amount of data from real experiments. Meanwhile, the modi-

fication of a structure or re-training might be needed in various applications. NN or RL

might not be applicable with limited data for learning [151, 153, 154]. Consequently, BNs

or Naive Bayes, which is a branch of BNs, might be adequate for MRTA.

4.3 Introduction to Bayesian Networks (BNs)

A Bayesian Network (BN) is a model-based approach in machine learning [155] and is

useful in reasoning and inference with uncertainties [150]. The structure of a BN is

a directed acyclic graph (DAG), which means there is no closed chain in a framework
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compared to a Markov chain in MDP [118]. There are three fundamental steps in BNs:

constructing the structure of a BN, creating conditional probability tables (CPTs) for

each node, and applying Bayes’ theorem to calculate a posterior probability [156]. A very

simple example of a BN is shown in Fig. 4.2. There are two nodes in this BN: Node A

and Node B. The arrow means a direct causal influence. In this example, Node A directly

influences Node B, so Node A is a parent of Node B, or Node B is a descendant of Node

A. Thereafter, the CPTs of Node A and Node B can be created. Examples are shown

in Table 4.1 and Table 4.2. Node A has two values, Yes and No, and Node B also has

two values, Yes and No. The conditional probabilities in the tables are generated based

on facts or a massive amount of data. In the end, Bayes’ theorem is used to calculate

a posterior probability. The definition of Bayes’ theorem is in Eq. (4.1). With this

equation, we may calculate the posterior probability we are interested in. For example,

the posterior probability P(A|B) can be calculated when A is Yes and B is Yes, and the

result is in Eq. (4.2). More details will be given in Chapter 6 when elaborating on our

approach to MRTA.

Figure 4.2. An Example of a Bayesian Network
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A P(A)

Yes 0.5

No 0.5

Table 4.1. The CPT of Node A

A B P(B|A)

Yes Yes 0.7

Yes No 0.3

No Yes 0.2

No No 0.8

Table 4.2. The CPT of Node B

P (A|B) =
P (A,B)

P (B)
=

P (B|A)P (A)

P (B)
, where P (B) =

∑
∀a∈A

P (B|a)P (a) (4.1)

P (A|B) =
P (A,B)

P (B)
=

P (B|A)P (A)

P (B)
=

0.7× 0.5

0.7× 0.5 + 0.2× 0.5
= 0.7778 (4.2)
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Chapter 5

Motivation and Research Objectives

After reviewing the current MRSs, they could be classified as centralized, decentralized,

and distributed regarding the communication type or homogeneous and heterogeneous

depending on the robot style in numerous applications. Each structure in MRS research

papers might be one of a kind based on their proposed approaches to specific problems,

so other researchers might need to re-design totally different structures in order to ap-

ply their algorithms to MRSs. Besides diverse MRS frameworks, approaches to MRTA

are various according to eight types of MRTA problems and static or dynamic environ-

ments, which might also cause different MRS structures to be needed. Even though three

main approaches (behavior-based, optimization-based, and auction-based approaches) to

MRTA were proposed, certain challenges or difficulties are still unsolved, for example,

design complexity, numerical parameterization of skills or abilities, formalization of pa-

rameters, calculation complexity, dynamic environments including changeable task lists,

the optimal solution, and learning. According to the information in Chapter 3, the struc-

tures of behavior-based approaches are hard to design although this method is learnable.

The calculation could be very complicated to obtain the optimal solution with many
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objective functions and constraints in optimization-based approaches. Auction-based ap-

proaches are widely utilized to overcome dynamic environments while the result may be

sub-optimal and costs and rewards are set by trial and error. Notwithstanding, in recent

literature about MRTA, the condition of robot capabilities was rarely discussed, and the

parameterization of robot skills has not been analyzed. As a result, we are encouraged

to propose a novel approach to MRTA to overcome these challenges and a generic MRS

framework that could be applied to miscellaneous applications without massive re-design.

The research objectives are listed below.

• Only instantaneous-assignment (IA) problems in MRTA are considered due to dy-

namic environments.

• A novel approach with BNs is proposed to solve existing problems in MRTA.

• The BN of a task should be easily built and should combine crucial dynamic factors

including robot states, skill conditions, and task requirements.

• The CPTs of a BN could be reasonably and logically designed.

• The success rate of a task is considered when a robot executes the task.

• The calculation to obtain the optimal solution should be simple in the MRTA pro-

cess.

• The proposed approach to MRTA is learnable and can be used in various MRSs.

• The generic framework to build MRSs is proposed for diverse applications.
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• The generic agent-based framework could be applied with new techniques without

substantial re-design.

• The proposed approach would be demonstrated with low-cost hardware robots to

solve different types of MRTA problems in a variety of MRSs.

• The proposed approach is applied to a realistic search-and-rescue mission to illus-

trate how this methodology deals with dynamic environments.

• The MRTA result in the mission would be acceptable with untrained CPTs and

near-optimal with trained CPTs.
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Chapter 6

The Novel Approach with Bayesian

Networks in Multi-Robot Task

Allocation (MRTA)

In this chapter, detailed information about the novel approach to MRTA with Bayesian

Networks (BNs) is elaborated. The general structure of the Bayesian Network of a task

is introduced in the beginning, and the initial conditional probability tables (CPTs) in

each task are reasonably constructed based on experts’ knowledge [157]. Besides building

initial CPTs with rational assumptions, the CPTs can be trained or updated with a large

amount of data to obtain the near-optimal result. The crucial concept of this MRTA

approach is to allocate tasks according to the values of success rates calculated from BNs.

Algorithms and rules are established to accommodate most MRTA applications. In the

end, the comparison of MRTA approaches is analyzed.

6.1 The General Bayesian Network of a Task

Before introducing the general Bayesian Network of a task, we should understand what

information tasks contain in a mission. A mission is usually composed of many small tasks.
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For instance, in a search-and-rescue mission, a task requires a robot to search for a target

in an area, and another task asks robots to move a target to a safe place. In a surveillance

mission, a task needs a robot to survey at a point, and another task requests a robot to

monitor surroundings at another point. In a warehouse, a robot needs to transport goods

from place to place, which can represent many tasks in a transportation mission. As can

be seen, most missions can be separated into several independent, small tasks. Generally,

a designer or a researcher creates the task list of a mission before directly assigning the

mission to a robot team because it is very difficult to automatically decompose a mission

into many applicable tasks with certain algorithms for a robot team. An independent

task designed by an operator in a mission, therefore, may include the number of required

robots, the demanded capability robots should have, target locations, and the job to be

completed.

According to the current challenges in MRTA in Chapter 3, many dynamic factors

need to be considered, such as the information of a task, the information of a robot, the

information of ability, and the cost to complete a task. However, a formalized approach

to combining these factors is rare. A Bayesian Network, hence, is utilized to calculate

the success rate of a task in the proposed approach in order to invent a generic MRTA

method. The nodes and causal relationships in the general Bayesian Network of a task

are listed below, and the general Bayesian Network of a task is shown in Fig. 6.1.

Nodes:

• The Condition of a Robot (Node A and Node E): There are two nodes to represent

the current conditions of a robot: the energy condition and the conditions of current,
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taken tasks. The conditions of current, taken tasks may influence whether a robot

is suitable to take another task. The energy condition may affect whether a robot

could successfully complete the task.

• The Type of Robot (Node B): This is a node to set up whether a robot is a single-

task (ST) or multi-task (MT) robot.

• Task (Node C): This node represents if a robot takes the task or not and is used to

calculate the posterior probability (the success rate).

• Cost (Node D): This node shows the estimated value of the cost to complete the

task. It can be represented in energy, time, or distance [158].

Figure 6.1. The General Bayesian Network of a Task
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• Skill (Node J): This is a node to determine whether a robot has a skill, such as

driving, flying, sensors, cameras, and arms. Each skill node represents one skill, so

it is possible to have many skill nodes in one BN of a task.

• Skill Condition (Node K): This node is used to represent the skill condition because

the condition (the quality or the accuracy) varies with time and diverse hardware.

The number of this node is the same as the number of the skill.

• Cost Satisfaction (Node F): It is a node to conclude whether the energy condition

on a robot is good enough to complete the task.

• Ability Satisfaction (Node G): It is a node to determine whether the robot skills are

satisfied with the task requirements.

• Success (Node H): This node is used to decide whether a robot successfully completes

the task and to calculate the posterior probability (the success rate).

Causal Relationships Between Nodes:

• The conditions of current, taken tasks (Node A) and the type of robot (Node B)

may affect the probability that a robot takes the task (Node C).

• A task (Node C) must contain certain requirements (required skills) and a cost

(Node D) which can be calculated by referring to the information of the task and a

robot.

• One Skill Node (Node J) must be accompanied by the Skill Condition Node (Node

K).
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• The cost (Node D) and the energy condition (Node E) may influence the result of

the Cost Satisfaction Node (Node F).

• The requirement of the task (Node C) and the skill condition (Node K) may affect

the result of the Ability Satisfaction Node (Node G).

• The results of the Cost Satisfaction Node (Node F) and the Ability Satisfaction

Node (Node G) may conclude whether a robot can successfully complete the task

(Node H).

6.2 The Creation of Conditional Probability Tables

(CPTs)

After building the BN of a task, the probabilities of Nodes A, B, E, and J can be calculated,

and the CPTs of Nodes C, D, F, G, H, and K can be created. In order to receive a

result that is near to real situations, we are supposed to collect data from experiments

or real missions and then generate CPTs in the BN because a BN is one of the model-

based approaches in artificial intelligence (AI). Nonetheless, we may also design CPTs

first based on reasonable assumptions with experts’ knowledge and then update them,

which is a so-called learning process in machine learning [159]. Consequently, the initial

probabilities and the initial CPTs are assumed and schemed in this dissertation as follows

for experiments and case studies.

• Node A (Table 6.1): This node is assumed to represent the number of current, taken

tasks in other missions. It has four values: 0, 1, 2, and more than 2. The probability

distribution is uniform because the number of tasks a robot currently takes varies
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with situations and time.

• Node B (Table 6.2): There are two values in this node: ST and MT. The probability

can be calculated according to the number of ST and MT robots in a team. One

important note is that the value of a probability cannot be zero or one but with the

decimal value which is very close to zero or one instead [156]. More information can

be found in comprehensive experiments.

• Node C (Table 6.3): The values in this node are Yes and No to decide whether a

robot takes the task. If an ST robot has already had a task in other missions, the

conditional probability to take the task in the mission should be very small (close

to zero). On the other hand, the conditional probability to take the task in the

mission should be smaller when an MT robot takes more tasks in other missions in

order to distribute the task to other robots.

A P(A)

0 0.250

1 0.250

2 0.250

Larger than 2 0.250

Table 6.1. The Probability Table of Node A

B P(B)

ST 0.999

MT 0.001

Table 6.2. The Probability Table of Node B (All Robots Are ST)
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B
P(C=Yes|AB)

ST MT

0 0.900 0.900

1 0.100 0.700

2 0.010 0.500
A

More than 2 0.001 0.300

Table 6.3. The CPT of Node C

D P(D|C=Yes) P(D|C=No)

0∼3 sec 0.066667 0.066667

3∼6 sec 0.066667 0.066667

6∼9 sec 0.066667 0.066667

9∼12 sec 0.066667 0.066667

12∼15 sec 0.066667 0.066667

15∼18 sec 0.066667 0.066667

18∼21 sec 0.066667 0.066667

21∼24 sec 0.066667 0.066667

24∼27 sec 0.066667 0.066667

27∼30 sec 0.066667 0.066667

30∼33 sec 0.066667 0.066667

33∼36 sec 0.066667 0.066667

36∼39 sec 0.066667 0.066667

39∼42 sec 0.066667 0.066667

Larger than 42 sec 0.066667 0.066667

Table 6.4. The CPT of Node D

• Node D (Table 6.4): The cost can be calculated in distance, energy, or time based on

the task information and the current state of a robot, so it is a continuous variable.

Nevertheless, we may transform a continuous variable into a discrete variable by
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creating several intervals in order to simplify the difficulty of calculation. We, thus,

assume there is a value for every three seconds for a total of fifteen values in this

node. Because the information of a robot varies by case and with time no matter

whether a robot takes the task, the conditional probability distribution is uniform.

• Node E (Table 6.5): This node represents the battery level of a robot in voltage,

so it is a continuous variable from the minimum working voltage (two volts) to the

maximum voltage (five volts). With the same concept in Node D, it can be changed

into a discrete variable. The probability distribution is uniform because the battery

level varies with time. Hence, we assume there is a value for every one volt for a

total of three values in this node.

• Node F (Table 6.6): This node has two values: Yes and No. We may reasonably

assume that the probability of Yes would be smaller when the cost increases or the

battery level lowers. In the training process, we may collect data and update this

CPT to gain more accurate conditional probabilities.

• Node J: This node has two values: Yes and No, which shows whether a robot has

the skill. The probability can be calculated depending on the number of robots with

and without the skill in a team. Similar to Node B, the value of the probability

E P(E)

2∼3 V 0.333333

3∼4 V 0.333333

4∼5 V 0.333333

Table 6.5. The Probability Table of Node E
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E
P(F=Yes|DE)

2∼3 V 3∼4 V 4∼5 V

0∼3 sec 0.900 0.950 0.999

3∼6 sec 0.850 0.900 0.950

6∼9 sec 0.800 0.850 0.900

9∼12 sec 0.750 0.800 0.850

12∼15 sec 0.700 0.750 0.800

15∼18 sec 0.650 0.700 0.750

18∼21 sec 0.600 0.650 0.700

21∼24 sec 0.550 0.600 0.650

24∼27 sec 0.500 0.550 0.600

27∼30 sec 0.450 0.500 0.550

30∼33 sec 0.400 0.450 0.500

33∼36 sec 0.350 0.400 0.450

36∼39 sec 0.300 0.350 0.400

39∼42 sec 0.250 0.300 0.350

D

Larger than 42 sec 0.200 0.250 0.300

Table 6.6. The CPT of Node F

J P(J)

Yes 0.999

No 0.001

Table 6.7. The Probability Table of Node J (Driving Skill)

cannot be zero or one. Table 6.7 shows the probability of the driving skill when all

robots have this skill. The probability of Yes is very close to one because all robots

are ground vehicles in our experiments.

• Node K: This node has two values: Good and Bad, which represents the current

39



skill condition. Because it fluctuates with time, we should keep monitoring and up-

dating the CPT. Nevertheless, the initial conditional probability may be established

according to the accuracy of localization, the precision of a sensor, or the quality

of a camera. On the contrary, the conditional probability of Good should be very

small (close to zero) if a robot does not have the skill. Table 6.8 shows the initial

conditional probability of the driving skill, and Table 6.9 represents the conditional

probability of the driving skill when a robot cannot drive anymore due to accidents.

• Node G (Table 6.10): This node has two values: Yes and No. When a robot takes

the task, the conditional probability of Yes could be small only when one or more

than one of the skill conditions is Bad in that the robot might not have enough

skills to complete the task. Contrarily, when a robot does not take the task, the

probability distribution could be assumed as uniform because we are not able to

determine whether the robot has enough skills. This CPT can be trained after

collecting data to receive more realistic results.

J P(K=Good|J)

Yes 0.800

No 0.001

Table 6.8. The CPT of Node K (Condition of Driving)

J P(K=Good|J)

Yes 0.001

No 0.001

Table 6.9. The CPT of Node K (Condition of Driving) When a Robot Cannot Drive
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C K P(G=Yes|CK)

Yes Good 0.900

Yes Bad 0.001

No Good 0.500

No Bad 0.500

Table 6.10. The CPT of Node G (One Required Skill)

C F G P(H=Yes|CFG)

Yes Yes Yes 0.900

Yes Yes No 0.010

Yes No Yes 0.010

Yes No No 0.001

No Yes Yes 0.001

No Yes No 0.001

No No Yes 0.001

No No No 0.001

Table 6.11. The CPT of Node H

• Node H (Table 6.11): This node has two values: Yes and No. If a robot takes the

task, the conditional probability of Yes is large only when both values of Node F

and Node G are Yes. Otherwise, the conditional probability of Yes is small. This

CPT can also be trained with a large amount of data to get more practical results.

6.3 The Calculation of a Success Rate

With the BN of a task and the initial CPTs, we are able to calculate the success rate

of a task. According to Bayes’ theorem, we can calculate the posterior probability based

on the information of a BN, CPTs, and evidence (the known values of nodes). In this

dissertation, the posterior probability is meaningful. The success rate of a task denotes
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the posterior probability when a robot takes the task and completes it successfully. With

the BN and CPTs of a task, the success rate of a task can be calculated after gathering

certain evidence. In the BN, the type of robot (Node B), the current conditions of a robot

(Node A and Node E), the skills of a robot (Node J and other Skill nodes), and the cost

to complete the task (Node D) are known. Subsequently, in order to calculate the success

rate of a task based on this evidence, we can compute the posterior probability when the

values of Node C and Node H are Yes. By following Bayes’ theorem, the general equation

is listed in Eq. (6.1).

P (CH|ABDEJ) =
P (A,B,C,D,E,H, J)

P (ABDEJ)

=

∑
F,G,K

P (H|CFG)P (G|CK)P (K|J)P (F |DE)P (D|C)P (C|AB)P (A)P (B)P (E)P (J)∑
C,F,G,H,K

P (H|CFG)P (G|CK)P (K|J)P (F |DE)P (D|C)P (C|AB)P (A)P (B)P (E)P (J)

=

∑
F,G,K

P (H|CFG)P (G|CK)P (K|J)P (F |DE)P (D|C)P (C|AB)∑
C,F,G,H,K

P (H|CFG)P (G|CK)P (K|J)P (F |DE)P (D|C)P (C|AB)

(6.1)

6.4 The Application of the General Bayesian Net-

work of a Task

After comprehending the fundamental knowledge about the general Bayesian Network of

a task, the CPTs, and the calculation of a success rate, we may apply them to other tasks

in a mission. When a task requires one or multiple robots with one skill, the BN of the

task is the same as the general Bayesian Network (Fig. 6.1). When a task demands one or
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Figure 6.2. The Bayesian Network of a Task with Two Required Skills

Figure 6.3. The Bayesian Network of a Task with Three Required Skills
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several robots with two skills, we may increase the number of nodes related to skills (Skill

and Skill Condition nodes) from the general Bayesian Network and build the BN of the

task in Fig. 6.2. When a task needs one or many robots with three skills, with a similar

concept, we may simply increase the number of the nodes related to skills and build the

BN of the task in Fig. 6.3. As can be seen, it is very simple to create the BN of a task

from the general Bayesian Network by adding a few additional nodes corresponding to

the number of required skills.

After building the BNs of tasks, probabilities and initial CPTs of the BNs can be

calculated and created based on the descriptions in Sec. 6.2. Nodes A, B, and E are the

same in each task because they are related to robots instead of tasks. Nodes J, K, L, M,

N, and O (or more nodes related to required skills) are the same in each task due to the

hardware on each robot. The initial CPTs are shown in Tables 6.7, 6.8, 6.9, 6.12, 6.13,

6.15, and 6.16 where the probabilities of Node L and Node N can be calculated based

on the number of robots with the skill (camera, arm, or sensor). However, the CPTs of

Nodes K, M, and O (or more nodes related to skill conditions) would be different from

each robot because of distinctive hardware (Tables 6.8, 6.9, 6.13, and 6.16). The CPTs

of Nodes C and H could be the same in each task because they are dependent on the

information of a robot. As for Node G in each task, the CPTs would be different because

the number of required skills is not always the same. Nevertheless, the CPT of Node G

could be identical in each task if the number of required skills is the same due to the

causal relationship with skill conditions. The initial CPT of Node G with one skill is

the same in Table 6.10. The initial CPT of Node G with two skills is assumed in Table
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L P(L)

Yes 0.500

No 0.500

Table 6.12. The Probability Table of Node L (Camera or Arm Skill)

L P(M=Good|L)

Yes 0.900

No 0.001

Table 6.13. The CPT of Node M (Condition of Camera or Arm)

C K M P(G=Yes|CKM)

Yes Good Good 0.900000

Yes Good Bad 0.001000

Yes Bad Good 0.001000

Yes Bad Bad 0.000100

No Good Good 0.500000

No Good Bad 0.500000

No Bad Good 0.500000

No Bad Bad 0.500000

Table 6.14. The CPT of Node G (Two Required Skills)

6.14. The initial CPT of Node G with three skills is set in Table 6.17. With respect to

Node D and Node F, they are related to the difficulty of a task and the robot condition,

so the CPTs of Node D and Node F in each task are individual. We, nonetheless, may

create the initial CPTs based on alike concepts or with the same probabilities (Table 6.4

and Table 6.6) for each task and then individually update them after collecting data from

experiments and missions.

With the BNs and CPTs of tasks, we are able to calculate the success rates of the
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N P(N)

Yes 0.999

No 0.001

Table 6.15. The Probability Table of Node N (Sensor Skill)

N P(O=Good|N)

Yes 0.900

No 0.001

Table 6.16. The CPT of Node O (Condition of Sensor)

C K M O P(G=Yes|CKMO)

Yes Good Good Good 0.900000

Yes Good Good Bad 0.001000

Yes Good Bad Good 0.001000

Yes Good Bad Bad 0.000100

Yes Bad Good Good 0.001000

Yes Bad Good Bad 0.000100

Yes Bad Bad Good 0.000100

Yes Bad Bad Bad 0.000010

No Good Good Good 0.500000

No Good Good Bad 0.500000

No Good Bad Good 0.500000

No Good Bad Bad 0.500000

No Bad Good Good 0.500000

No Bad Good Bad 0.500000

No Bad Bad Good 0.500000

No Bad Bad Bad 0.500000

Table 6.17. The CPT of Node G (Three Required Skills)
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tasks according to Bayes’ theorem. The general equation (6.2) is used to calculate the

success rate of a task with two required skills, and the general equation (6.3) is for the

calculation of the success rate of a task with three required skills.

P (CH|ABDEJL) =
P (A,B,C,D,E,H, J, L)

P (ABDEJL)

=

∑
F,G,K,M

P (H|CFG)P (G|CKM)P (K|J)P (M |L)P (F |DE)
P (D|C)P (C|AB)P (A)P (B)P (E)P (J)P (L)∑

C,F,G,H,K,M

P (H|CFG)P (G|CKM)P (K|J)P (M |L)P (F |DE)
P (D|C)P (C|AB)P (A)P (B)P (E)P (J)P (L)

=

∑
F,G,K,M

P (H|CFG)P (G|CKM)P (K|J)P (M |L)P (F |DE)P (D|C)P (C|AB)∑
C,F,G,H,K,M

P (H|CFG)P (G|CKM)P (K|J)P (M |L)P (F |DE)P (D|C)P (C|AB)

(6.2)

P (CH|ABDEJLN) =
P (A,B,C,D,E,H, J, L,N)

P (ABDEJLN)

=

∑
F,G,K,M,O

P (H|CFG)P (G|CKMO)P (K|J)P (M |L)P (O|N)P (F |DE)
P (D|C)P (C|AB)P (A)P (B)P (E)P (J)P (L)P (N)∑

C,F,G,H,K,M,O

P (H|CFG)P (G|CKMO)P (K|J)P (M |L)P (O|N)P (F |DE)
P (D|C)P (C|AB)P (A)P (B)P (E)P (J)P (L)P (N)

=

∑
F,G,K,M,O

P (H|CFG)P (G|CKMO)P (K|J)P (M |L)P (O|N)P (F |DE)P (D|C)P (C|AB)∑
C,F,G,H,K,M,O

P (H|CFG)P (G|CKMO)P (K|J)P (M |L)P (O|N)P (F |DE)P (D|C)P (C|AB)

(6.3)

By following the same steps, we can build BNs and CPTs and calculate the success

rates of tasks with more than three required skills although they are not described in this

dissertation.

6.5 The Training Process of Bayesian

Networks (BNs)

As we know, a BN is a machine-learning approach, so the BNs of tasks can be trained

after collecting a vast amount of data from real experiments or missions. Learning the
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structure of a BN is negligible in this dissertation since the general Bayesian Network of

a task and the BNs of tasks are built based on obvious, meaningful causal relationships

between factors (nodes). We should not easily modify the structures of the BNs according

to the collected data. On the contrary, even though initial CPTs are reasonably designed,

the success rate of a task would be unrealistic. In order to receive near-optimal, more

accurate results, updating CPTs in a BN, hence, is crucial in the training process.

The first step of the training process is to collect data from hardware experiments.

The values of Nodes A, B, C, D, E, H, J, L, and N (and other Skill nodes) can be known

as we may assign one task to a robot and the robot may or may not complete the task in

experiments. The values of Nodes F, G, K, M, and O (and other Skill Condition nodes)

could not be determined when a robot executes the task because skill conditions keep

changing with time and there is no algorithm to check if required skills or remaining

energy is satisfied. As a result, collected data would be incomplete data (missing some

values).

The second step is to update the CPTs in a BN with collected data. The most

common, efficient approach to learning from a large data set is the maximum likelihood

(ML) approach or the maximum likelihood (ML) parameter estimate. However, in our

situation, the collected data is incomplete. To learn from the incomplete data, we need

to utilize expectation maximization (EM) first to calculate the conditional probability of

the missing component in each case and then apply the ML approach [156].
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6.5.1 Expectation Maximization (EM)

The general concept of EM is to obtain the expected empirical distribution of the incom-

plete data (D) based on the initial CPTs in a BN. With EM, we are able to calculate the

conditional probability of the missing component with original CPTs in each case. The

general equation is listed in Eq. (6.4). With this equation, the conditional probability

of the missing component in each case can be found and then can be used in the ML

approach. Examples are shown in the case study in Chapter 10.

Pr(ci|di) =
Pr(ci,di)

Pr(di)
(6.4)

where di is a case in the incomplete data (D) and ci means the factors with missing values

in the case

6.5.2 The Maximum Likelihood (ML) Approach

The broad notion of the ML approach is to estimate and update the CPTs of a BN

according to collected data. The general equation to update CPTs is in Eq. (6.5).

With this equation, each updated conditional probability in a CPT can be found with

the collected data set. In addition, to avoid the problem that the updated conditional

probability is zero or one, a certain value that is very close to zero or one could be defined

as the updated conditional probability.

P k+1(x|u) ≡ PrD,Pk(x|u) =
PrD,Pk(x, u)

PrD,Pk(u)
=

N∑
i=1

PrPk(x, u|di)

N∑
i=1

PrPk(u|di)

(6.5)
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where x and u are the values of the factors in a BN, P k means the original conditional

probabilities in CPTs, P k+1 means the updated conditional probability in a CPT, and N

is the number of the cases in the incomplete data (D).

After receiving the updated CPTs with Eq. (6.5), the learning process is not done

yet. According to the theory of the maximum likelihood, the updated likelihood is always

greater than or equal to the original likelihood in Eq. (6.6), which is also true for the log-

likelihood in Eq. (6.7). As a result, the CPTs must be updated through many iterations

with the same collected data until the result converges, so we may set up a threshold (a

value) to stop the training process. Examples are shown in the case study in Chapter 10.

Lk+1(D) =
N∏
i=1

Prk+1(di) ≥ Lk(D) =
N∏
i=1

Prk(di) (6.6)

where Lk is the original likelihood, Lk+1 is the updated likelihood, and N is the number

of the cases in the data (D).

LLk+1(D) =
N∑
i=1

log [Prk+1(di)] ≥ LLk(D) =
N∑
i=1

log [Prk(di)] (6.7)

where LLk is the original log-likelihood, LLk+1 is the updated log-likelihood, and N is

the number of the cases in the data (D).

6.6 The Optimal Combination of MRTA

After calculating the success rates of tasks no matter whether using the initial CPTs or

the trained CPTs, we are able to allocate the tasks based on the values of the success

rates. In order to obtain the near-optimal solution of MRTA, the proposed method
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in this dissertation is a hybrid approach combining an auction-based approach and an

optimization-based approach. According to the literature review in Chapter 3, there are

pros and cons to optimization-based approaches and auction-based approaches, whereas

a better result could be achieved by combining them. It is simple to receive the optimal

solution after collecting data from robots with an optimization-based approach although

a single-point failure may happen in a centralized MRS. On the other hand, an auctioneer

is not fixed in a decentralized or distributed MRS with an auction-based approach while

the result of MRTA might be sub-optimal. Accordingly, an auction-based approach is

used to collect success rates from robots, and an optimization-based approach is utilized

to obtain the near-optimal solution based on the gathered success rates no matter whether

in a centralized, decentralized, or distributed MRS in our approach.

In a centralized MRS, an auctioneer is fixed on the central controller (or one robot)

assigned by a designer. In a decentralized or distributed MRS, an auctioneer is dynam-

ically assigned to one of the robots in a team. During the Announcement Stage, the

auctioneer announces all tasks in a mission to all robots. Then, each robot calculates the

success rate of each task and sends all the bids (the success rates) to the auctioneer in

the Submission Stage. After the auctioneer collects the success rates from all robots, in

the Selection Stage, an optimizer (like GA or AC) is used to gain the near-optimal result

according to the objective function and rules (constraints). The objective function is in

Eq. (6.8). The goal is to find the maximum sum of the average success rate of each task

in order to benefit most robots and the whole team. Additionally, five rules (Rules I to

V) should be followed during the process.
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P ∗ = argmax
P∈Pij

(
n∑

j=1

P̄j

)
, P̄j =

∑
Pij

m
(6.8)

where Pij is the success rate (the posterior probability) when the robot i takes the task

j, m is the number of chosen robots in the task j, and n is the number of tasks.

I. One ST or MT robot can only choose one task or none of them in a mission.

II. Depending on the different types of tasks (SR or MR), the number of robots that

choose the same task is limited.

III. Each chosen success rate (posterior probability) must be larger than a certain value

(a threshold) to consider as a robot may successfully complete a task.

IV. Without the violation of Rule III, all tasks must be allocated as long as the total

number of robots is larger than or equal to the total number of robots the tasks

require.

V. Without the violation of Rule III, all robots must be assigned as long as the total

number of robots the tasks require is less than or equal to the total number of robots.

In order to implement our approach in most applications, one more rule (Rule VI) is

added in this process when considering the priorities of tasks.

VI. Tasks with higher priorities must be allocated without the violation of Rule III.

As can be seen, only one objective function related to success rates is considered in

this approach for the reason that dynamic factors have already been included in the BNs

of tasks, such as robot conditions, skill conditions, and costs to complete the tasks.
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6.7 The Comparison of MRTA Approaches

After comprehending the novel approach with BNs, we may compare our technique and

current MRTA methodology with many aspects. Different approaches have advantages

and disadvantages and may be utilized in different applications, so it is difficult to distin-

guish which strategy is better. Thus, we organize the characteristics of each approach in

Table 6.18 according to research papers [90, 95, 97, 106] and allow readers to choose the

one which is preferred in their applications.

According to the information in Chapter 3, behavior-based approaches are usually used

in a heterogeneous, distributed MRS, whereas structures are hard to design; optimization-

L-ALLIANCE [95]

(behavior-based)

PSO [97]

(optimization-based)

Trader Bots [106]

(auction-based)

Proposed

Approach

MRS distributed centralized
decentralized/

distributed

centralized/

decentralized/

distributed

Heterogeneity Good Bad Normal Good

Environment dynamic static dynamic dynamic

Computation O(mn) O(mn)/controller
O(1)/bidders

O(n)/auctioneer

O(m)/bidders

O(mn)/auctioneer

Communication O(m)
O(n)/controller

O(1)/robots
O(n)

centralized:

O(n)/controller

O(1)/robots

decentralized:

O(n)/coordinators

O(1)/robots

distributed:

O(n)

Formalization No Yes No Yes

Solution Quality sub-optimal optimal sub-optimal near-optimal

Scalability Bad Good Normal Normal ∼ Good

Learning Yes No No Yes

n is the number of robots, and m is the number of tasks.

The complexity of computation and communication is calculated per iteration.

Table 6.18. The Comparison of the MRTA Approaches
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based approaches are ordinarily utilized in a homogeneous, centralized MRS while cost

functions vary by cases; auction-based approaches are typically exploited in a decentral-

ized or distributed MRS although costs and rewards are customized. On the contrary, our

approach could be implemented in three types of MRSs. Skills (capabilities) and dynamic

conditions in BNs and the success rates of tasks are considered, so our approach could be

applied to most MRSs. With respect to the difficulty of computation, the complexity of

communication, and the solution quality, our method is the combination of an auction-

based approach and an optimization-based approach, so the result would be similar to

theirs. The complexity of communication would be the same as optimization-based ap-

proaches in a centralized MRS or identical to auction-based approaches in a distributed

MRS. In a decentralized MRS, the complexity of communication is in between depending

on the number of coordination robots. Thus, the complexity of communication, basi-

cally, is O(n) in our approach. The difficulty of computation for bidders is O(m) because

each robot should calculate the success rate of each task. The difficulty of computation

for an auctioneer is O(mn) now that the auctioneer utilizes an optimizer to obtain the

near-optimal solution. Although our approach seems to be more complicated, the result is

better. Unlike the structure design in behavior-based approaches and the cost and reward

in auction-based approaches, BNs, CPTs, and the objective function are systematically

established instead of trial and error. Moreover, the solution is near-optimal rather than

sub-optimal. Only one iteration is required in the MRTA process like an optimization-

based approach instead of several iterations in an auction-based approach. Different from

optimization-based approaches, our method can be applied to a heterogeneous robot team

54



under dynamic environments, and only one objective function including certain rules (con-

straints) is involved. Regarding scalability, we may estimate that the scalability of our

method is between optimization-based approaches and auction-based approaches because

of a hybrid approach. Last but not least, our approach is learnable. A better or optimal

result might be obtained after collecting data from experience.
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Chapter 7

The Generic Agent-based Framework

in Multi-Robot Systems (MRSs)

In this chapter, the structure of the generic agent-based framework of MRSs is going to

be introduced. Our goal is to design a framework that can be broadly applied to different

types of MRSs and applications. Researchers are able to utilize various algorithms to

control hardware, exchange and fuse information, sense surroundings, coordinate robots,

and make adequate decisions. Consequently, we state crucial commons from diverse MRSs

in numerous applications and design agents divided with agencies in the generic agent-

based framework.

7.1 Database (DB) or Knowledge Base (KB)

A database (DB) or knowledge base (KB) is used to store data or information for agents

to access. Even though agents may directly exchange data or information among them,

they may also read, store, and exchange data or information through a DB or KB, such

as map information, task information, robot information, planning information, rough

data received from robots or hardware, and other information related to decision making.
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CPTs are also saved in the DB or KB in our approach. The type of file to store data

or information can be TXT, DAT, CSV, XML, JPEG, MP3, or MP4 depending on the

design.

7.2 Decision-making Agency

This is a huge agency where agents are utilized to coordinate robots, allocate tasks, and

control robot motions. Basically, we may divide these agents into two groups based on

the main purpose: coordination and planning.

The first group of agents, coordination agents, is responsible for high-level decision-

making. Robots may allocate tasks and coordinate robots to complete received tasks

individually or cooperatively. In order to illustrate our MRTA approach in this agent-

based framework, the task allocation agent is intentionally specified although it is one

of the coordination agents. According to current MRTA techniques, one agent, the task

allocation agent, executes one program to deal with task allocation. In optimization-based

approaches, the agent runs one optimizer (like GA or AC) to allocate tasks to robots

after collecting essential data. In auction-based approaches, one auctioneer (one agent)

selects winners after receiving bids from robots and assigns tasks to them. Nevertheless,

one task allocation agent might not be enough in complicated methods. For instance,

one auctioneer, in auction-based approaches, must be selected at the beginning of task

allocation, and costs or rewards in algorithms need to be calculated before or during

the MRTA process. Consequently, task allocation assistant agents are designed. In our

approach, these agents are used to calculate success rates and to update CPTs after

collecting data from hardware (skills) besides selecting an auctioneer or resuming an
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MRTA process. They can also be utilized to update CPTs during an onboard learning

process. Therefore, assistant agents including task allocation assistant agents are required

to help coordination agents including task allocation agents calculate and store parameters

used in sophisticated algorithms. As a result, coordination agents and assistant agents are

essential in the decision-making agency although a state-of-the-art coordination method

is not proposed in this dissertation except for the novel MRTA approach.

The other group of agents, planning agents, is responsible for low-level decision-

making. After a robot receives a task, a planning agent should start planning how to

complete this task individually or cooperatively. The robot may use deliberative meth-

ods, such as A-star (A*), Artificial Potential Field (APF), rapidly exploring random trees

(RRT), GA, PSO, and AC, or reactive methods to avoid obstacles [73, 83, 160]. More-

over, it may avoid collisions with other robots or dynamic barriers with fuzzy logic [161]

or machine-learning methods to cope with uncertainty. With a similar concept of coordi-

nation agents, other assistant agents, accordingly, are needed to help planning agents for

motion planning when complex algorithms are applied like machine-learning methodology.

A modern motion-planning approach, however, is not implemented in this dissertation.

To sum up, coordination agents, planning agents, and assistant agents are crucial in the

decision-making agency.

7.3 Information Agency

In this agency, agents are utilized to process information. No matter what type of MRS

is or what abilities robots have, information must be analyzed, exchanged between each

robot, fused, and saved in the DB or KB. All agents in this agency can be named infor-
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mation processing agents. To provide more details, perception agents, information fusion

agents, and information exchange agents are classified from information processing agents.

Robots with sensors or cameras may perceive environments and save data or images in

the DB or KB. Then, the perception agents are used to analyze certain features from the

data and detect objects with machine-learning approaches or Bayesian Inference [162]. In

addition, robots need to exchange their information to recognize surroundings, allocate

tasks, coordinate robots, and generate proper behaviors or reactions, so the information

exchange agents are utilized to send and receive important information among robots.

Numerous examples are robot lists, task lists, assigned tasks, maps, the poses or locations

of robots, and success rates in our approach. After collecting information from other

robots and the DB or KB, the information fusion agents may fuse former and present

or internal and external information to accurately estimate current states and to obtain

up-to-date data with various approaches, such as Kalman Filter [163], Split Covariance

Intersection Filter [164, 165], and machine-learning methods. Due to advanced methodol-

ogy, assistant agents are added because they might be required to help perception agents

and information fusion agents to calculate or update parameters. Accordingly, all the in-

formation processing agents can execute a diversity of programs depending on researchers’

requirements and techniques, which means various approaches can be applied to process

received information, save significant results in the DB or KB, and exchange information

between agents.
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7.4 Execution Agency

In this agency, agents are utilized to control and inspect hardware or devices. Every

robot may have diverse hardware equipped, such as motors with wheels or propellers,

sensors, cameras, or arms, so a number of agents in this agency are included to control

them. Each agent should handle each device with a low-level controller. For instance, one

agent executes one program to control the wheels on a robot to drive the robot to the

specified position after receiving a command from a high-level controller. Another agent

runs another program to take pictures with a camera when necessary. Therefore, several

agents, which are called hardware control agents, handling distinctive programs are used

to control numerous devices in the Execution Agency. Furthermore, some devices may

deteriorate with time in dynamic environments, so condition detection agents are needed

to run other programs or algorithms to detect or determine whether the equipment works

well like Kullback-Leibler Divergence [166] apart from machine-learning approaches. With

the same viewpoint, assistant agents might be required to help condition detection agents

with sophisticated approaches. During the executions of programs, all agents may save

data or information in the DB or KB for other agents’ use or directly send required data

to other agents.

7.5 The Generic Framework Structure

The overall structure of the proposed generic agent-based framework is shown in Fig. 7.1.

Backup agents are additionally added in each agency to increase the robustness of the

framework to take over essential jobs when crucial agents fail temporarily [82]. Based

on this generic agent-based framework, we are able to build centralized, decentralized,
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Figure 7.1. The Generic Agent-based Framework

and distributed MRSs with various approaches or algorithms to deal with distinctive

situations in diverse applications. For example, a central controller in a centralized MRS

or coordinators in a decentralized MRS may require coordinate agents to make high-level

decisions. Coordination agents for other robots may be trivial. On the other hand, each

robot in a distributed MRS requires coordination agents because each robot should have

the ability to make decisions and complete tasks with or without communication. More

information is going to be depicted in the next section. Lastly, dataflow is flexible in the

generic agent-based framework now that data or information can be freely transferred

between agents or stored in the DB or KB.
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7.6 The Application of the Generic Agent-based

Framework

In this section, the examples of centralized, decentralized, and distributed MRSs imple-

mented in our experiments and case studies are depicted based on the proposed generic

agent-based framework. These structures are merely examples, not unique frameworks.

Agents, first, are introduced in each agency, and then frameworks are shown for central-

ized, decentralized, and distributed MRSs.

Execution Agency

• run camera agent: It is used to control a camera on a robot, take a picture, and

save the photo as a JPG file in the DB.

• run linkbot agent: It is used to control the motion of a hardware robot and store

current robot states in the DB with TXT files.

• run sensor agent: It is used to control a sensor (an IR range sensor) on a robot and

save a TXT file with measurement data in the DB.

• driving condition detection agent: It is used to check the condition of driving and

store the result in the DB with a TXT file.

Information Agency

• map update agent: It is used to create and save an updated map as a TXT file in

the DB when the current map is different from the stored map.

• target detection agent: It is used to detect the target from a picture and store the

result in a TXT file in the DB.
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• map fusion agent: It is used to fuse the map when receiving different maps and

update the original map in the DB.

• task list fusion agent: It is used to fuse the task list when receiving different task

lists and update the original task list in the DB.

• receive coop robot list agent: It is used to receive a robot list where robots take the

same task and save the list as a TXT file in the DB.

• receive execute task agent: It is used to receive a signal to execute the current task

and send the signal to the planning agent.

• receive map agent: It is used to receive a map and save the received map in the DB

with a TXT file.

• receive need task allocation agent: It is used to receive a signal to begin the MRTA

process and send the signal to the task allocation agent.

• receive task agent: It is used to receive a task and save the task in a TXT file in

the DB.

• receive task list agent: It is used to receive a task list and store the received task

list as a TXT file in the DB.

• send auctioneer selection agent: It is used to send a signal to join the auctioneer-

selection process.

• send pose agent: It is used to send the current pose to other robots.
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• send success rate agent: It is used to send success rates to other robots.

Decision-making Agency

• planning agent: It is used to generate the proper motion of a robot based on current

information.

• coordination agent: It is used to coordinate robots to execute a cooperative task.

• task allocation agent: It is used to collect success rates and allocate tasks to robots

based on our approach.

• auctioneer selection agent: It is used to select the auctioneer at the beginning of

the MRTA process.

• CPT driving update agent: It is used to update and save the CPT of the driving

skill as a TXT file in the DB.

• re task allocation agent: It is used to determine whether the MRTA process should

start according to current conditions; for example, the success rate of the current,

taken task is lower than the threshold.

• success rate calculation agent: It is used to calculate the success rates of tasks and

store the result in the DB with TXT files.

With the agents’ names and their purposes, frameworks can be drawn according to

the generic agent-based framework. The centralized agent-based framework is shown in

Fig. 7.2 and Fig. 7.3. Compared with these two figures, the framework installed on the

central controller includes agents related to coordination, whereas the framework on other
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robots excludes these agents. The decentralized agent-based framework is shown in Fig.

7.4 and Fig. 7.5. With a similar notion, the framework for coordinators (team leaders)

contains agents related to coordination while the framework for other robots does not.

The distributed agent-based framework is shown in Fig. 7.6, Fig. 7.7, and Fig. 7.8. The

framework is the same for robots with the same skills. Certain agents related to hardware

and maps are added depending on the requirements of different applications. As can be

seen, numerous agent-based frameworks can be easily built from the generic agent-based

framework for various applications based on diverse situations. Notwithstanding, it is

emphasized that these agent-based frameworks are not singular but mere examples.

Figure 7.2. The Centralized Agent-based Framework (the Central Controller)
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Figure 7.3. The Centralized Agent-based Framework (Other Robots)

Figure 7.4. The Decentralized Agent-based Framework (Coordinators)
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Figure 7.5. The Decentralized Agent-based Framework (Other Robots)

Figure 7.6. The Distributed Agent-based Framework (Comprehensive Experiments)
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Figure 7.7. The Distributed Agent-based Framework (Robots with Cameras in Case
Study)

Figure 7.8. The Distributed Agent-based Framework (Robots with Arms in Case
Study)
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7.7 The Comparison of MRS Structures

After comprehending the generic agent-based framework, we may compare the current

structures of MRSs with our framework. A group of researchers proposed a centralized

MRS in [81]. They designed hardware server modules, control modules, executive mod-

ules, and interface modules in the system. Hardware server modules were utilized to con-

trol actuators and sensors, which means hardware control agents in our framework work

identically. Control modules were responsible for information fusion and motion plan-

ning, so information fusion agents and planning agents may do the same jobs. Executive

modules were used to make high-level decisions, which is similar to coordination agents

including task allocation agents in our framework. Interface modules were graphical user

interfaces (GUIs) to interact robots with users. Although we are not able to replace this

module with our framework because not all software frameworks have a human-machine

interface like Mobile-C, we may utilize information exchange agents to collect data on

a central computer to mimic interface modules. Thus, a compatible framework may be

built with our framework.

A decentralized MRS was presented in [167]. Although a complete framework was

not provided, crucial features were introduced. An approach, decentralized data fusion

(DDF), was proposed to fuse information from sensors; accordingly, we may use hard-

ware control agents, information fusion agents, and information exchange agents to meet

this purpose. An MRTA approach, auctioned POMDP, was designed to solve role-based

MRTA problems. Information exchange agents, coordination agents, and planning agents

including assistant agents may be used to choose an appropriate role and schedule proper
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motions. Thereafter, we may control a robot with hardware control agents to actuate

as we required. Hence, an agent-based framework for this MRS is created based on our

framework.

In [80], it is a distributed MRS. Three layers and one middleware were presented

in this system: hardware, intra-robot processing, distributed processing, and ARCADE

middleware. The hardware layer is used to control actuators and sensors, which means

hardware control agents may replace it. Because the intra-robot processing layer is re-

sponsible for task execution and information fusion, using information fusion agents and

planning agents may work as well. The distributed processing layer is developed for high-

level decision-making, so utilizing coordination agents including task allocation agents

may achieve the same goal. The ARCADE middleware is in charge of communication,

which is identical to information exchange agents. In consequence, with our generic agent-

based framework, we are able to rebuild this distributed MRS.

Based on the current structure information, the implementation of our novel MRTA

approach is almost impracticable in that no modules, agents, or layers were designed

to check hardware conditions and update parameters for decision-making. Nonetheless,

with the generic agent-based framework, we may efficiently apply the innovative MRTA

algorithm and construct architectures to control hardware robots in diverse MRSs. As

can be seen, with the proposed generic agent-based framework, centralized, decentralized,

and distributed MRSs in most research papers could be regenerated, and adequate MRS

structures for cutting-edge methodology could be devised.
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Chapter 8

Comprehensive Experiments

In this chapter, we demonstrate our novel MRTA approach and the generic agent-based

framework under various situations after learning the in-depth method to solve MRTA

problems and build diverse MRSs. A task list and a robot list are designed to validate

the proposed MRTA approach, and centralized, decentralized, and distributed MRSs are

constructed from the proposed generic agent-based framework. Four essential experiments

are done with hardware, low-cost robots under dynamic circumstances in three types of

MRSs [168]. The videos of the comprehensive experiments can be found in [169].

8.1 Problem Statements

In order to verify whether our approach could handle different types of MRTA problems

(ST/MT-SR/MR-IA) under dynamic conditions and establish numerous MRSs (central-

ized, decentralized, and distributed), a fabricated task list is generated in Table 8.1, and

robots with different skills are designed in Table 8.2 to simulate a simple search-and-rescue

mission. According to the information about the tasks (Table 8.1), Task 1, Task 2, Task

3, and Task 6 are SR tasks, and Task 4 and Task 5 are MR tasks requiring two robots
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Task

Type

Required

Robots

Required

Skills

Target

Point
Priority

Released

Time

Task 1 SR 1 Driving, Camera (20, 20) High First

Task 2 SR 1 Driving, Camera (0, -20) Medium Second

Task 3 SR 1 Driving, Arm (20, 0) High First

Task 4 MR 2 Driving, Arm (-20, 0) Medium Second

Task 5 MR 2 Driving (20, -20) Low Last

Task 6 SR 1 Driving (0, 20) Low Last

Table 8.1. The Task List of the Comprehensive Experiments

Robot

Type
Skills

Battery

Level

Initial

Position

Driving

Speed

Robot 1 ST/MT Driving, Camera 3.3 V (0, -10) 2 in/s

Robot 2 ST Driving, Camera 3.1 V (10, -10) 2 in/s

Robot 3 ST Driving, Camera 3.2 V (10, 10) 2 in/s

Robot 4 ST/MT Driving, Arm 3.3 V (-10, -10) 2 in/s

Robot 5 ST Driving, Arm 3.1 V (-10, 10) 2 in/s

Robot 6 ST Driving, Arm 3.2 V (0, 10) 2 in/s

Table 8.2. The Robot List of the Comprehensive Experiments

per task. Thus, this MRTA problem is an SR/MR problem. Task 1 and Task 3 with

high priority are released at the beginning, Task 2 and Task 4 with medium priority are

announced later, and Task 5 and Task 6 with low priority are released at the end. Hence,

the task list is changeable. According to the robot list (Table 8.2), robots have different

skills, so this is a heterogeneous robot team. Furthermore, the map is a known open area

but dynamic, which means mobile robots may fail due to any reasons like malfunctioning

hardware or obstacles. Last, three types of MRSs should be utilized to solve this MRTA

problem to show how our approach could be applied to several applications.

72



8.2 Experiment Setup

8.2.1 Hardware and Software

Each low-cost hardware robot is composed of a Raspberry Pi and a Linkbot. A Linkbot 1

is an educational robot that can drive to a target point. A Raspberry Pi 2 is a single-board

computer controlling each robot and communicating between robots. Regarding software,

Mobile-C 3 is used to build agent-based frameworks for three types of MRSs. These robots

may send and receive messages through the Internet via Mobile-C. Programs are written

in Ch, which is a C/C++ interpreter 4. An A* algorithm is utilized to find the shortest

path to a target point.

8.2.2 The Bayesian Networks of the Tasks

With the task list of the mission, the BNs of the tasks can be built based on our approach.

Task 1 requires two skills (driving and camera), so the BN of Task 1 can be created as

Fig. 8.1. The BN of Task 2 is very similar to the BN of Task 1 except for the task name.

The BN of Task 3 which needs two skills (driving and arm) can be generated as Fig. 8.2.

The BN of Task 4 is almost the same as the BN of Task 3 except for the name of the

task. Task 5 requires only one skill (driving), and its BN is shown in Fig. 8.3. With the

same notion, the BN of Task 6 can be created as Fig. 8.3 except for the task name. The

initial CPTs of the nodes in these BNs are identical to the CPTs described in Chapter 6

excluding the probability of Node B because the number of ST and MT robots is different

in centralized, decentralized, and distributed MRSs. Details will be given later. The cost

1Barobo Official Website: https://www.barobo.com/
2Raspberry Pi Official Website: https://www.raspberrypi.com/
3Mobile-C Official Website: http://www.mobilec.org/
4Softintegration Official Website: https://www.softintegration.com/
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Figure 8.1. The BN of Task 1 in the Comprehensive Experiments

Figure 8.2. The BN of Task 3 in the Comprehensive Experiments

of a task is calculated in the seconds a robot spends from the current position to the

target point. Lastly, the value of the threshold of the success rate is 0.05 to assume a

robot might successfully complete a task.
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Figure 8.3. The BN of Task 5 in the Comprehensive Experiments

B P(B)

ST 0.833333

MT 0.166667

Table 8.3. The Probability Table of Node B (in the Centralized MRS)

8.2.3 The Design of a Centralized Multi-Robot System

In the centralized MRS, Robot 1 is assigned as a central controller to deal with coordi-

nation, whereas it can still take a task in the mission. Hence, Robot 1 is an MT robot,

which may coordinate robots (as one extra mission) and take a task simultaneously. The

other robots are ST robots, which can only take one task concurrently. According to the

number of ST and MT robots, in this case, the probability of Node B is shown in Table

8.3. The frameworks installed on the robots are illustrated in Chapter 7 as shown in Fig.

7.2 and Fig. 7.3.
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B P(B)

ST 0.666667

MT 0.333333

Table 8.4. The Probability Table of Node B (in the Decentralized MRS)

8.2.4 The Design of a Decentralized Multi-Robot System

In the decentralized MRS, Robot 1, Robot 2, and Robot 3 are in one team, and Robot

4, Robot 5, and Robot 6 are in the other team. Robot 1 and Robot 4 are assigned as

team leaders to coordinate robots in a team and between teams (as one extra mission),

whereas they still have a chance to take a task in the mission. Accordingly, Robot 1 and

Robot 4 are MT robots, and the other robots are ST robots. Based on the number of ST

and MT robots, in this situation, the probability of Node B is shown in Table 8.4. The

frameworks for the robots are presented in Chapter 7 (Fig. 7.4 and Fig. 7.5).

8.2.5 The Design of a Distributed Multi-Robot System

In the distributed MRS, all robots are assumed to be ST robots in that all robots can

make their own decisions to complete tasks in the mission. Thus, the probability of Node

B is identical to Table 6.2 in Chapter 6. The framework for each robot is the same as

Fig. 7.6 in Chapter 7.

8.3 The Experiment Result in a Centralized Multi-

Robot System

In the centralized MRS, when the tasks were released, Robot 1 (the central controller)

began the MRTA process with our approach. After Task 1 and Task 3 were released,

Robot 3 took Task 1 and Robot 6 took Task 3 according to the collected success rates in
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Figure 8.4. The Experiment Result in the Centralized MRS

Table 8.5. After Task 2 and Task 4 were released later, Robot 2 took Task 2 and Robot 4

and Robot 5 took Task 4, and Robot 3 and Robot 6 kept executing their current, taken

tasks depending on Table 8.6. After Task 1, Task 2, Task 3, and Task 4 were completed

and Task 5 and Task 6 were released, Robot 2 and Robot 6 took Task 5 and Robot 3

took Task 6 as shown in Table 8.7. In the end, all tasks were done successfully as shown

in Fig. 8.4.
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Task 1 Task 3

Robot 1 0.376900 0.011642

Robot 2 0.577923 0.028283

Robot 3 0.662591 0.028283

Robot 4 0.012649 0.577923

Robot 5 0.017155 0.577923

Robot 6 0.020103 0.607180

Table 8.5. The Collected Success Rates in the First MRTA Process in the Centralized
MRS

Task 1 Task 2 Task 3 Task 4

Robot 1 0.376900 0.487360 0.011642 0.011642

Robot 2 0.577923 0.662591 0.028283 0.017155

Robot 3 0.688851 0.547552 0.028283 0.014710

Robot 4 0.012649 0.028283 0.577923 0.662591

Robot 5 0.017155 0.017155 0.577923 0.662591

Robot 6 0.023725 0.020103 0.635384 0.607180

Table 8.6. The Collected Success Rates in the Second MRTA Process in the Centralized
MRS

Task 5 Task 6

Robot 1 0.454785 0.432889

Robot 2 0.644703 0.618503

Robot 3 0.590862 0.669572

Robot 4 0.530752 0.644703

Robot 5 0.530752 0.644703

Robot 6 0.669572 0.644703

Table 8.7. The Collected Success Rates in the Third MRTA Process in the Centralized
MRS
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8.4 The Experiment Result in a Decentralized Multi-

Robot System

In the decentralized MRS, Robot 1 and Robot 4 are coordinators, so they may start

MRTA processes. The result of this experiment is shown in Fig. 8.5, and the tables of

collected success rates in each MRTA process are presented in Table 8.8, Table 8.9, and

Table 8.10. Although the general result is similar to the result in the centralized MRS, we

may notice that the collected success rates from Robot 4 are smaller than before because

Robot 4 is an MT robot and has one task (a coordination task) already in this case.

Task 1 Task 3

Robot 1 0.376900 0.011642

Robot 2 0.577923 0.028283

Robot 3 0.662591 0.028283

Robot 4 0.008131 0.400135

Robot 5 0.017155 0.577923

Robot 6 0.020103 0.607180

Table 8.8. The Collected Success Rates in the First MRTA Process in the Decentralized
MRS

Task 1 Task 2 Task 3 Task 4

Robot 1 0.376900 0.487360 0.011642 0.011642

Robot 2 0.577923 0.662591 0.028283 0.017155

Robot 3 0.688851 0.547552 0.028283 0.014710

Robot 4 0.008131 0.014772 0.400135 0.466368

Robot 5 0.017155 0.017155 0.577923 0.662591

Robot 6 0.023725 0.020103 0.635384 0.607180

Table 8.9. The Collected Success Rates in the Second MRTA Process in the Decen-
tralized MRS
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Task 5 Task 6

Robot 1 0.454785 0.432889

Robot 2 0.644703 0.618503

Robot 3 0.590862 0.669572

Robot 4 0.361988 0.454785

Robot 5 0.530752 0.644703

Robot 6 0.669572 0.644703

Table 8.10. The Collected Success Rates in the Third MRTA Process in the Decen-
tralized MRS

Figure 8.5. The Experiment Result in the Decentralized MRS
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Robot 4 was still able to take Task 4 during the mission. Therefore, the type of robot

and the number of current, taken tasks might influence MRTA results with our approach.

8.5 The Experiment Result in a Distributed Multi-

Robot System

In the distributed MRS, all robots may begin MRTA processes. The overall result is

shown in Fig. 8.6, which is different from the previous results. After Task 1 and Task 3

were released, Robot 3 took Task 1 and Robot 6 took Task 3 based on Table 8.11. After

Figure 8.6. The Experiment Result in the Distributed MRS
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Task 1 Task 3

Robot 1 0.547552 0.020103

Robot 2 0.577923 0.028283

Robot 3 0.662591 0.028283

Robot 4 0.012649 0.577923

Robot 5 0.017155 0.577923

Robot 6 0.020103 0.607180

Table 8.11. The Collected Success Rates in the First MRTA Process in the Distributed
MRS

Task 1 Task 2 Task 3 Task 4

Robot 1 0.547552 0.688851 0.020103 0.020103

Robot 2 0.577923 0.662591 0.028283 0.017155

Robot 3 0.688851 0.547552 0.028283 0.014710

Robot 4 0.012649 0.028283 0.577923 0.662591

Robot 5 0.017155 0.017155 0.577923 0.662591

Robot 6 0.023725 0.020103 0.635384 0.607180

Table 8.12. The Collected Success Rates in the Second MRTA Process in the Dis-
tributed MRS

Task 5 Task 6

Robot 1 0.669572 0.590862

Robot 2 0.693208 0.618503

Robot 3 0.590862 0.669572

Robot 4 0.530752 0.644703

Robot 5 0.530752 0.644703

Robot 6 0.669572 0.644703

Table 8.13. The Collected Success Rates in the Third MRTA Process in the Distributed
MRS
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Task 2 and Task 4 were released later, Robot 1 took Task 2 and Robot 4 and Robot 5

took Task 4, and Robot 3 and Robot 6 kept executing their current, taken tasks according

to Table 8.12. After Task 1, Task 2, Task 3, and Task 4 were completed and Task 5 and

Task 6 were released, Robot 1 and Robot 2 took Task 5 and Robot 3 took Task 6 as listed

in Table 8.13. In the last MRTA process, Robot 1 and Robot 2 were chosen to take Task

5 depending on programming although the success rates from Robot 1 and Robot 6 are

the same. It is possible that Robot 2 and Robot 6 take Task 5 if dissimilar programs are

written. This situation might be rare when the environment is more complex, when the

skill conditions vary, when the number of robots increases, when the number of values

in Node D or Node E enlarges, or after training and updating CPTs. More results in a

distributed MRS can be seen in case studies in Chapter 9 and Chapter 10.

8.6 The Experiment Result with an Abnormal Con-

dition

In this abnormal situation, the MRS is designed as a distributed system because it is

crucial that robots may freely communicate with each other and make their own decisions,

and the mission might be fulfilled no matter whether any robots fail. Hence, all robots

are ST robots. In this experiment, Robot 6 was forced to fail during the mission as

a dynamic factor, whereas other robots were able to successfully complete the mission

as shown in Fig. 8.7. When Robot 6 failed, it abandoned the current task, Task 3.

Subsequently, Robot 4 took over Task 3 from Robot 6 according to Table 8.14. In the

end, all tasks were accomplished even though the order of task execution was different

from the previous results for the reason that the maximum sum of the average success rate
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Figure 8.7. The Experiment Result with the Abnormal Condition

and the priority of tasks were considered in each MRTA process according to Table 8.15

and Table 8.16. This result correspondingly explains that our approach may overcome

unpredictable surroundings.
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Task 1 Task 2 Task 3 Task 4

Robot 1 0.547552 0.688851 0.020103 0.020103

Robot 2 0.577923 0.662591 0.028283 0.017155

Robot 3 0.688851 0.547552 0.028283 0.014710

Robot 4 0.012649 0.028283 0.577923 0.662591

Robot 5 0.017155 0.017155 0.577923 0.662591

Robot 6 0.021150 0.017927 0.024046 0.020375

Table 8.14. The Collected Success Rates After Robot 6 Failed

Task 3 Task 4 Task 5 Task 6

Robot 1 0.020103 0.020103 0.669572 0.590862

Robot 2 0.028283 0.017155 0.693208 0.618503

Robot 3 0.023725 0.010888 0.590862 0.669572

Robot 4 0.714215 0.547552 0.669572 0.644703

Robot 5 0.577923 0.662591 0.561657 0.693208

Robot 6 0.024046 0.020375 0.017618 0.029050

Table 8.15. The Collected Success Rates After Task 5 and Task 6 Were Released

Task 4 Task 5

Robot 1 0.014710 0.715701

Robot 2 0.010888 0.737133

Robot 3 0.010888 0.590862

Robot 4 0.547552 0.669572

Robot 5 0.607180 0.530752

Robot 6 0.020375 0.017618

Table 8.16. The Collected Success Rates After Task 3 and Task 6 Were Completed
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Chapter 9

Case Study: A Search-and-Rescue

Mission

In this chapter, we are going to apply our approach to a real search-and-rescue mission.

Our method, in the comprehensive experiments, has been validated to solve diverse types

of MRTA problems (ST/MT-SR/MR-IA) in various MRSs (centralized, decentralized,

and distributed) under dynamic conditions (a changeable task list and a failing robot).

However, the task list of the mission was unrealistic, and the robots did not have actual

abilities, which means these robots completed fabricated tasks in the mission. Conse-

quently, an authentic search-and-rescue mission with several tasks is designed, and robots

with equipment accomplish meaningful tasks in the mission. The videos of the search-

and-rescue mission can be found in [169].

9.1 Problem Statements

In a realistic search-and-rescue mission, robots would be assigned to search for targets

like injured people in a wreck. After locating all targets, robots for rescue would move

the targets to safe places, and redundant robots in the wreck may assemble at a gathering
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Task

Type

Required

Skills

Target

Point
Details Priority

Released

Time

Task 1 SR

Driving,

Camera,

Sensor

(20, 35)
Detect

a target
High First

Task 2 SR

Driving,

Arm,

Sensor

(20, 35)

Move

the target

to (2, 35)

Medium

Released when

the target exists

in Task 1

Task 3 SR

Driving,

Camera,

Sensor

(31, 20)
Detect

a target
High First

Task 4 SR

Driving,

Arm,

Sensor

(31, 20)

Move

the target

to (50, 2)

Medium

Released when

the target exists

in Task 3

Task 5 SR

Driving,

Camera,

Sensor

(45, 35)
Detect

a target
High First

Task 6 SR

Driving,

Arm,

Sensor

(45, 35)

Move

the target

to (28, 53)

Medium

Released when

the target exists

in Task 5

Task 7 MR
Driving,

Camera
(35, 2) None Low First

Table 9.1. The Task List of the Search-and-Rescue Mission

Robot

Type
Skills

Battery

Level

Initial

Position

Driving

Speed

Robot 1 ST Driving, Camera, Sensor 3.3 V (10, 5) 2 in/s

Robot 2 ST Driving, Camera, Sensor 3.1 V (55, 5) 2 in/s

Robot 3 ST Driving, Camera, Sensor 3.2 V (60, 20) 2 in/s

Robot 4 ST Driving, Arm, Sensor 3.3 V (20, 50) 2 in/s

Robot 5 ST Driving, Arm, Sensor 3.1 V (5, 15) 2 in/s

Robot 6 ST Driving, Arm, Sensor 3.2 V (60, 45) 2 in/s

Table 9.2. The Robot List of the Search-and-Rescue Mission
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Figure 9.1. The Map of the Environment: Drawing (left) and Picture (right)

place out of the wreck. After all the targets are saved, this mission is accomplished.

Therefore, based on this idea, the task list of the search-and-rescue mission is created in

Table 9.1. Task 1, Task 3, and Task 5 require a robot with a camera and a sensor to

search for targets at specific locations. Task 2, Task 4, and Task 6 request a robot with

an arm and a sensor to move targets to safe places. Task 7 asks all working robots with

cameras inside the search area to retreat to a gathering point. Hence, Task 1, Task 3,

and Task 5 are released at the beginning with high priority, and Task 2, Task 4, and Task

6 with medium priority will be released when targets are found. Task 7 is released at

the beginning but with low priority. As can be seen, these tasks in the search-and-rescue

mission are designed for concrete purposes. The robots with cameras, arms, or sensors are

listed in Table 9.2. They are located at different initial positions outside the search area.

In this case, all robots are assumed to be ST robots because there is only one mission.

Regarding the map in Fig. 9.1, many barriers are in the search area. The size of the red

obstacle is 12” x 3”, and the size of the blue obstacle is 6” x 3”. The real targets are
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Figure 9.2. The Robot with a Camera Skill (left) and the Robot with an Arm Skill
(right)

yellow. The environment is dynamic, which means the task list is changeable, robots may

fail, and new obstacles may appear. Depending on this information, the MRTA problem

is a heterogeneous SR/MR-ST-IA problem under dynamic conditions.

9.2 Experiment Setup

9.2.1 Hardware and Software

Each hardware, low-cost robot is composed of a Raspberry Pi 2, a Linkbot 1, an Arduino

Uno, and an IR range sensor. A robot with a camera skill has an additional Pi camera,

and a robot with an arm skill has an extra fixed arm as shown in Fig. 9.2. An Arduino

Uno 5, which is a micro-controller, is used to receive signals from an IR range sensor and

send data to a Raspberry Pi. Mobile-C 3 is utilized to build agent-based frameworks for

the MRS. An OpenCV library 6 is applied to target recognition from the picture taken

5Arduino Official Website: https://www.arduino.cc/
6OpenCV Official Website: https://opencv.org/
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with a Pi camera. An A* algorithm is exploited to find the shortest path from the current

location to a target point.

9.2.2 The Design of a Multi-Robot System

In this case, because all robots are ST robots and the environment is dynamic, the MRS

is designed as distributed to allow robots to individually make decisions. The agent-based

framework is shown in Fig. 7.7 and Fig. 7.8 in Chapter 7, where robots with the same

abilities utilize the identical framework.

9.2.3 The Bayesian Networks of the Tasks

According to the information about the tasks and our approach described in Chapter 6,

the BNs of the tasks can be generated. Task 1, Task 3, and Task 5 require three skills

(driving, camera, and sensor), so the BNs are created as Fig. 9.3 but with different task

Figure 9.3. The BN of Task 1 in the Search-and-Rescue Mission
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Figure 9.4. The BN of Task 2 in the Search-and-Rescue Mission

Figure 9.5. The BN of Task 7 in the Search-and-Rescue Mission
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names. Task 2, Task 4, and Task 6 need three skills (driving, arm, and sensor), so the

BNs are built as Fig. 9.4 except for the names of the tasks. Task 7 requests two skills

(driving and camera), and its BN is shown in Fig. 9.5. The initial CPTs of the nodes

in the BNs are the same as the CPTs illustrated in Chapter 6. The cost of Task 1, Task

3, or Task 5 is in seconds which can be calculated when a robot drives from the current

location to the target point and recognizes the target within three seconds. The cost of

Task 2, Task 4, or Task 6 is in seconds which may be calculated when a robot drives from

the current location to the target point and moves the target to the safe point. The cost

of Task 7 is calculated in the seconds a robot spends from the current location to the

gathering point. Last, the value of the threshold of the success rate is 0.05 during the

MRTA process.

9.3 The Experiment Result without Accidents

The result of the search-and-rescue mission is shown in Fig. 9.6. When the task list was

released, Robot 1 took Task 1, Robot 2 took Task 3, and Robot 3 took Task 5 according

to Table 9.3. Robots were not available to execute Task 7 due to low success rates and low

priority. After Task 5 was completed, Task 6 was released because the target was localized.

Robot 6 took Task 6 based on Table 9.4. After Task 1 and Task 3 were completed, only

Task 2 was released because the target in Task 1 was found, whereas the target in Task 3

was not found. According to Table 9.5, Robot 4 took Task 2, and Robot 1, Robot 2, and

Robot 3 executed Task 7. Finally, the mission was successfully completed. This result

can be seen as the outcome under static surroundings since no robot fails or no unknown

obstacle exists except the changeable task list.
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Figure 9.6. The Experiment Result without Accidents

Task 1 Task 3 Task 5 Task 7

Robot 1 0.506464 0.538796 0.405057 0.607180

Robot 2 0.369700 0.506464 0.473413 0.635384

Robot 3 0.405057 0.473413 0.538796 0.547552

Robot 4 0.016968 0.010772 0.014550 0.006867

Robot 5 0.014550 0.014550 0.007954 0.017155

Robot 6 0.010772 0.012513 0.019882 0.009366

Table 9.3. The Collected Success Rates in the First MRTA Process
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Task 1 Task 3 Task 6 Task 7

Robot 1 0.631707 0.601396 0.009267 0.547552

Robot 2 0.473413 0.601396 0.012513 0.607180

Robot 3 0.506464 0.570433 0.016968 0.547552

Robot 4 0.016968 0.010772 0.369700 0.006867

Robot 5 0.014550 0.014550 0.258576 0.017155

Robot 6 0.010772 0.012513 0.439620 0.009366

Table 9.4. The Collected Success Rates After Task 5 Was Completed

Task 2 Task 6 Task 7

Robot 1 0.023464 0.009267 0.547552

Robot 2 0.012513 0.012513 0.577923

Robot 3 0.010772 0.016968 0.547552

Robot 4 0.473413 0.369700 0.006867

Robot 5 0.439620 0.258576 0.017155

Robot 6 0.369700 0.473413 0.010888

Table 9.5. The Collected Success Rates After Task 1 and Task 3 Were Completed

9.4 The Experiment Result with One Failing Robot

In this experiment, Robot 2 was forced to fail during the mission while other robots were

still able to take over tasks and successfully complete the mission as shown in Fig. 9.7.

When Robot 2 failed, Robot 1 took over Task 3 based on Table 9.6. After Task 3 and Task

5 were completed, only Task 6 was released because the target in Task 5 was localized

and no target was found in Task 3. Additionally, Robot 1 took Task 1, and Robot 6

took Task 6 as shown in Table 9.7. Finally, after Task 1 was completed and the target

was found, Task 2 was released. Robot 4 took Task 2, and Robot 1 and Robot 3 took

Task 7 according to Table 9.8. Due to the failure of Robot 2, only two robots, Robot 1
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Figure 9.7. The Experiment Result with One Failing Robot

and Robot 3, collaboratively completed Task 7. In the end, all tasks were successfully

accomplished even though one robot failed in the mission. This result, again, confirms

that our approach may succeed under volatile surroundings when robots fail.
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Task 1 Task 3 Task 5 Task 7

Robot 1 0.538796 0.570433 0.439620 0.635384

Robot 2 0.008047 0.014729 0.014729 0.024046

Robot 3 0.439620 0.506464 0.570433 0.516003

Robot 4 0.016968 0.010772 0.014550 0.006867

Robot 5 0.014550 0.014550 0.007954 0.017155

Robot 6 0.010772 0.012513 0.019882 0.009366

Table 9.6. The Collected Success Rates After Robot 2 Failed

Task 1 Task 6 Task 7

Robot 1 0.601396 0.009267 0.577923

Robot 2 0.008047 0.007206 0.024046

Robot 3 0.506464 0.016968 0.547552

Robot 4 0.016968 0.369700 0.006867

Robot 5 0.014550 0.258576 0.017155

Robot 6 0.010772 0.439620 0.009366

Table 9.7. The Collected Success Rates After Task 3 and Task 5 Were Completed

Task 2 Task 6 Task 7

Robot 1 0.023464 0.009267 0.516003

Robot 2 0.005250 0.007206 0.024046

Robot 3 0.010772 0.016968 0.547552

Robot 4 0.473413 0.369700 0.006867

Robot 5 0.439620 0.258576 0.017155

Robot 6 0.473413 0.570433 0.014710

Table 9.8. The Collected Success Rates After Task 1 Was Completed
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9.5 The Experiment Result with One Unknown Ob-

stacle

In this experiment, one unknown obstacle was added to the map to simulate a dynamic

environment, whereas robots may perceive it and update the map through communication.

In the beginning, Robot 1 took Task 1, Robot 2 took Task 3, and Robot 3 took Task 5

as usual. However, the situation changed after the obstacle was located and Task 5 was

completed. According to Table 9.9, Robot 3 took over Task 3 because the cost (the length

of the route) of Task 3 for Robot 2 increased. The success rate of Task 3 for Robot 2 was

Task 1 Task 3 Task 6 Task 7

Robot 1 0.631707 0.601396 0.007954 0.547552

Robot 2 0.333520 0.369700 0.004031 0.635384

Robot 3 0.506464 0.538796 0.016968 0.449083

Robot 4 0.016968 0.010772 0.369700 0.006867

Robot 5 0.014550 0.014550 0.258576 0.017155

Robot 6 0.010772 0.012513 0.439620 0.008037

Table 9.9. The Collected Success Rates After Finding an Obstacle and Completing
Task 5

Task 2 Task 3 Task 6 Task 7

Robot 1 0.023464 0.570433 0.009267 0.516002

Robot 2 0.004854 0.369700 0.004855 0.662590

Robot 3 0.010772 0.538796 0.016968 0.449083

Robot 4 0.473413 0.010772 0.369700 0.006867

Robot 5 0.439620 0.014550 0.258576 0.017155

Robot 6 0.405057 0.014550 0.473413 0.008037

Table 9.10. The Collected Success Rates After Task 1 Was Completed
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Task 2 Task 6 Task 7

Robot 1 0.014550 0.009267 0.547552

Robot 2 0.004854 0.004855 0.662590

Robot 3 0.010772 0.016968 0.449083

Robot 4 0.538796 0.439620 0.009366

Robot 5 0.439620 0.258576 0.017155

Robot 6 0.506464 0.570433 0.008037

Table 9.11. The Collected Success Rates After Task 3 Was Completed

Figure 9.8. The Experiment Result with One Unknown Obstacle
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smaller than the counterpart of Robot 1 or Robot 3. Additionally, Robot 6 took Task 6

which was released after the target was found in Task 5. After Task 1 was completed,

Robot 1 took over Task 3, and Robot 4 took Task 2 since the target was detected in Task

1 depending on Table 9.10. Finally, after Task 3 was completed, Robot 1, Robot 2, and

Robot 3 executed Task 7, and Robot 4 and Robot 6 kept executing Task 2 and Task 6

respectively based on Table 9.11. In the end, all tasks were successfully accomplished

although one previously unknown obstacle was on the map as shown in Fig. 9.8. This

result verifies that our approach may work in dynamic surroundings even when unknown

obstacles appear.
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Chapter 10

Case Study: The Training of The

Search-and-Rescue Mission

In Chapter 8 and Chapter 9, only initial CPTs were utilized to solve MRTA problems

although the results were rational and acceptable. We, nevertheless, could collect data

from repeating experiments and update CPTs to receive more accurate success rates in

order to obtain near-optimal solutions. Hence, in this chapter, we are going to collect

massive data, train the CPTs of the BNs, re-complete the search-and-rescue mission, and

compare the results before and after training. The video of the search-and-rescue mission

after training can be found in [169].

10.1 Data Collection

In order to collect scattering data for training, robots with different voltages were normally

separated on the map with disparate costs, and one robot was tested at one time. At the

beginning of the execution of a task, we may know the number of current, taken tasks

(Node A), the type of robot (Node B), the cost (Node D), the remaining energy (Node E),

and the possessing skills (Node J, Node L, and Node N). On the other hand, we are not
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able to obtain the values of Nodes F, G, K, M, and O during the execution. In the end, the

value of Node H can be determined whether the robot successfully completed the task (by

driving to the target point, detecting the target, or moving the target) without bumping

into any obstacles. As a result, this is a supervised learning process with incomplete data.

After completing many experiments, the collected data can be seen in Appendix A.

Even though we have collected 219 data, the number of data is not enough for training.

We could continually repeat the experiments until enough data are collected. Nonetheless,

it may take much time to collect a large amount of data from real experiments. To save

time, two reasonable assumptions and two facts are designated in order to increase the

number of data based on the collected data. First, after observing the results of the

experiments, we found that the remaining energy was not very critical in this mission

because the cost was too small to consume energy. In addition, the value of the remaining

energy is not the main reason that causes the robot to fail, but the value of the cost

is. The higher the cost is, the lower chance the task can be completed. Consequently,

Assumption 1 and Assumption 2 are given. Furthermore, a robot without enough required

skills for a task could not execute the task under any conditions, which is stated in Fact

1. Finally, a task could not be completed if no robot takes the task, so Fact 2 is listed.

With these two assumptions and two facts, we increased the amount of data to 9039 to

begin the training process. Partial examples of data in Task 1 are shown in Appendix B.

• Assumption 1: If a robot completes a task with a certain cost, all experiments of

the task might be completed by the robot with the same or lower costs under any

remaining energy.
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• Assumption 2: If a robot does not complete a task with a certain cost, all exper-

iments of the task might not be completed by the robot with the same or higher

costs under any remaining energy.

• Fact 1: If a robot does not have enough skills, it could not complete the assigned

task at any cost.

• Fact 2: If a robot does not take a task, the task could not be completed, and the

cost could not be determined.

10.2 The Training Process

In the BNs of the tasks, eight CPTs (Nodes C, D, F, G, H, K, M, and O) are in Task 1,

Task 2, Task 3, Task 4, Task 5, and Task 6, and seven CPTs (Nodes C, D, F, G, H, K, and

M) are in Task 7. All CPTs could be updated through training. However, in this search-

and-rescue mission, there are no MT robots, and there are no other missions assigned to

this robot team. The CPT of Node C, thus, is not able to be updated in that the value

of Node A is always 0 and the value of Node B is always ST. Moreover, if the number of

collected data is large enough, the cost (Node D) would be a nearly normal distribution,

so updating the CPT of Node D is minor. Lastly, the skill condition varies with time, so

we are supposed to utilize certain algorithms to determine the current conditions during

the mission. Hence, updating the CPTs of Nodes K, M, and O (the skill conditions) is

inappropriate. As a result, we focus on updating the CPTs of Nodes F, G, and H in this

mission.

To update the CPTs of Nodes F, G, and H in the BNs, the maximum likelihood (ML)
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approach is utilized in training with a large data set. According to the descriptions in

Sec. 6.5 and the incomplete data we collected, expectation maximization (EM) and the

ML approach are applied during the training process.

10.2.1 Expectation Maximization (EM)

Based on the general equation, Eq. (6.4), we are able to calculate the conditional probabil-

ity of the missing component (Nodes F, G, K, M, and O). For example, we may calculate

the conditional probability of Node F in the case d1−1 in Appendix B as shown in Eq.

(10.1) . Additionally, we can calculate the terms we need to use in the next step for the

ML approach with Eq. (10.2) and Eq. (10.3). By repeating the process, all necessary

terms can be calculated.

Pr (F = Y |d1−1) =
Pr (F,d1−1)

Pr (d1−1)
= 0.999379 (10.1)

Pr (D = 3 ∼ 6sec, E = 4 ∼ 5V |d1−1) =
Pr (DE,d1−1)

Pr (d1−1)
= 1.0 (10.2)

Pr (D = 3 ∼ 6sec, E = 4 ∼ 5V, F = Y |d1−1) = Pr (F = Y |d1−1) = 0.999379 (10.3)

10.2.2 The Maximum Likelihood (ML) Approach

In the training process, we primarily update the CPTs of Node F, Node G, and Node

H in each task during the learning process. As we mentioned in Chapter 6, the CPT of

Node F is different in each task, so the number of cases (N) in Eq. (10.4) is only related

to Task 1 instead of the whole data. Because the CPT of Node G is different from the
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number of required skills, Eq. (10.5) is for the CPT of Node G with two required skills

(in Task 7), and Eq. (10.6) is for the CPT of Node G with three required skills (in Tasks

1 to 6). Last, the CPT of Node H is the same in each task, so the number of cases (N) in

Eq. (10.7) is the total number of cases in the incomplete data (D). By writing respective

equations, we are able to update the CPTs of Node F, Node G, and Node H in each task

as shown in Appendix C where the maximum probability is 0.999999999999999 and the

minimum probability is 0.000000000000001 to avoid the conditional probability which is

zero or one during the training process.

P 1 = (F = Y |D = 3 ∼ 6 sec, E = 4 ∼ 5 V )

=

∑N
i=1 PrP 0 (F,DE|di)∑N
i=1 PrP 0 (DE|di)

= 0.8747023052

(10.4)

P 1 = (G = Y |C = Y,K = G,M = G)

=

∑N
i=1 PrP 0 (G,CKM |di)∑N
i=1 PrP 0 (CKM |di)

= 0.9856118613

(10.5)

P 1 = (G = Y |C = Y,K = G,M = G,O = G)

=

∑N
i=1 PrP 0 (G,CKMO|di)∑N
i=1 PrP 0 (CKMO|di)

= 0.9765505897

(10.6)

P 1 = (H = Y |C = Y, F = Y,G = Y )

=

∑N
i=1 PrP 0 (H,CFG|di)∑N
i=1 PrP 0 (CFG|di)

= 0.9890817593

(10.7)

After obtaining all the updated CPTs, the first iteration of the updating process is

completed, whereas the result does not converge according to the ML theory. Based
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Figure 10.1. Log-Likelihood vs Iterations During Training

on Fig. 10.1, the result of the log-likelihood would converge to around -55850 after 30

iterations. We, hence, set -55860 as the value of the threshold to stop the training process

and obtain the settled results of the updated CPTs of Nodes F, G, and H as shown in

Tables 10.1 to 10.10.
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E
P(F=Yes|DE)

2∼3 V 3∼4 V 4∼5 V

0∼3 sec 0.9999990811 0.9999994158 0.9999999840

3∼6 sec 0.9999988613 0.9999990811 0.9999994158

6∼9 sec 0.9999968748 0.9999972584 0.9999977927

9∼12 sec 0.9999908872 0.9999916785 0.9999927147

12∼15 sec 0.9999706650 0.9999726065 0.9999750336

15∼18 sec 0.9998919410 0.9998977128 0.9999046686

18∼21 sec 0.9874800273 0.9879035644 0.9884080828

21∼24 sec 0.9043875314 0.9055226293 0.9068725315

24∼27 sec 0.8755338290 0.8766120706 0.8778627080

27∼30 sec 0.7499420854 0.7511760344 0.7525677711

30∼33 sec 0.5259716828 0.5277492729 0.5296834505

33∼36 sec 0.0589417835 0.0619178070 0.0649457952

36∼39 sec 0.0004801259 0.0005950417 0.0007259993

39∼42 sec 0.0003782633 0.0004801259 0.0005950417

D

Larger than 42 sec 0.0002871695 0.0003782633 0.0004801259

Table 10.1. The Updated CPT of Node F in Task 1

E
P(F=Yes|DE)

2∼3 V 3∼4 V 4∼5 V

0∼3 sec 0.9999917000 0.9999947702 0.9999998584

3∼6 sec 0.9999896511 0.9999917000 0.9999947702

6∼9 sec 0.9999881699 0.9999896511 0.9999917000

9∼12 sec 0.9999870372 0.9999881699 0.9999896511

12∼15 sec 0.9999563043 0.9999592204 0.9999628616

15∼18 sec 0.9998296111 0.9998388130 0.9998498904

18∼21 sec 0.9991968254 0.9992336462 0.9992766533

21∼24 sec 0.9951895039 0.9953836717 0.9956047707

24∼27 sec 0.8838514680 0.8862264714 0.8889289949

27∼30 sec 0.4165085183 0.4189662479 0.4216517147

30∼33 sec 0.4142253339 0.4165085183 0.4189662479

33∼36 sec 0.0003614161 0.0004411997 0.0005332580

36∼39 sec 0.0000785890 0.0000975790 0.0001192799

39∼42 sec 0.0000208068 0.0000264835 0.0000329160

D

Larger than 42 sec 0.0000157532 0.0000208068 0.0000264835

Table 10.2. The Updated CPT of Node F in Task 2
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E
P(F=Yes|DE)

2∼3 V 3∼4 V 4∼5 V

0∼3 sec 0.9999958237 0.9999973607 0.9999999282

3∼6 sec 0.9999948035 0.9999958237 0.9999973607

6∼9 sec 0.9999940687 0.9999948035 0.9999958237

9∼12 sec 0.9999812980 0.9999829431 0.9999850913

12∼15 sec 0.9999337687 0.9999382289 0.9999437906

15∼18 sec 0.9997254192 0.9997404261 0.9997584682

18∼21 sec 0.9986029139 0.9986679128 0.9987437351

21∼24 sec 0.9908372764 0.9912115108 0.9916372525

24∼27 sec 0.8115032455 0.8149690067 0.8189060743

27∼30 sec 0.4143982506 0.4193136667 0.4246955225

30∼33 sec 0.0080687816 0.0097139483 0.0116281569

33∼36 sec 0.0066352222 0.0080687816 0.0097139483

36∼39 sec 0.0053711888 0.0066352222 0.0080687816

39∼42 sec 0.0042451255 0.0053711888 0.0066352222

D

Larger than 42 sec 0.0032328927 0.0042451255 0.0053711888

Table 10.3. The Updated CPT of Node F in Task 3

E
P(F=Yes|DE)

2∼3 V 3∼4 V 4∼5 V

0∼3 sec 0.9999825557 0.9999890450 0.9999997048

3∼6 sec 0.9999781977 0.9999825557 0.9999890450

6∼9 sec 0.9999750336 0.9999781977 0.9999825557

9∼12 sec 0.9999726065 0.9999750336 0.9999781977

12∼15 sec 0.9999706650 0.9999726065 0.9999750336

15∼18 sec 0.9999690579 0.9999706650 0.9999726065

18∼21 sec 0.9999676876 0.9999690579 0.9999706650

21∼24 sec 0.9998827031 0.9998870155 0.9998919410

24∼27 sec 0.9994899649 0.9995067953 0.9995255781

27∼30 sec 0.9849074891 0.9852756184 0.9856828894

30∼33 sec 0.8198314895 0.8210962653 0.8224950738

33∼36 sec 0.5695481841 0.5704002269 0.5713153833

36∼39 sec 0.5222650682 0.5229841294 0.5237381312

39∼42 sec 0.3360512987 0.3371166031 0.3381928275

D

Larger than 42 sec 0.1119797242 0.1144585996 0.1168427140

Table 10.4. The Updated CPT of Node F in Task 4
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E
P(F=Yes|DE)

2∼3 V 3∼4 V 4∼5 V

0∼3 sec 0.9999990811 0.9999994158 0.9999999840

3∼6 sec 0.9999988613 0.9999990811 0.9999994158

6∼9 sec 0.9999968748 0.9999972584 0.9999977927

9∼12 sec 0.9999908872 0.9999916785 0.9999927147

12∼15 sec 0.9999706650 0.9999726065 0.9999750336

15∼18 sec 0.9998919410 0.9998977128 0.9999046686

18∼21 sec 0.9995255781 0.9995470243 0.9995721010

21∼24 sec 0.9973950226 0.9974986639 0.9976167874

24∼27 sec 0.9813547949 0.9820166619 0.9827553517

27∼30 sec 0.5770413086 0.5807142938 0.5847836125

30∼33 sec 0.3322044010 0.3358520523 0.3397515336

33∼36 sec 0.0033762370 0.0041101507 0.0049537119

36∼39 sec 0.0027301499 0.0033762370 0.0041101507

39∼42 sec 0.0021555343 0.0027301499 0.0033762370

D

Larger than 42 sec 0.0016398833 0.0021555343 0.0027301499

Table 10.5. The Updated CPT of Node F in Task 5

E
P(F=Yes|DE)

2∼3 V 3∼4 V 4∼5 V

0∼3 sec 0.9999958237 0.9999973607 0.9999999282

3∼6 sec 0.9999948035 0.9999958237 0.9999973607

6∼9 sec 0.9999940687 0.9999948035 0.9999958237

9∼12 sec 0.9999935082 0.9999940687 0.9999948035

12∼15 sec 0.9999930614 0.9999935082 0.9999940687

15∼18 sec 0.9999926921 0.9999930614 0.9999935082

18∼21 sec 0.9999779685 0.9999788958 0.9999799834

21∼24 sec 0.9999241555 0.9999269173 0.9999300713

24∼27 sec 0.9996913039 0.9997013688 0.9997125963

27∼30 sec 0.9984481696 0.9984948890 0.9985459284

30∼33 sec 0.8198314895 0.8210962653 0.8224950738

33∼36 sec 0.8186621765 0.8198314895 0.8210962653

36∼39 sec 0.5227286175 0.5243106840 0.5259716828

39∼42 sec 0.1880215101 0.1904457521 0.1928634230

D

Larger than 42 sec 0.0247508905 0.0269904427 0.0292164940

Table 10.6. The Updated CPT of Node F in Task 6
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E
P(F=Yes|DE)

2∼3 V 3∼4 V 4∼5 V

0∼3 sec 0.9999999338 0.9999999576 0.9999999988

3∼6 sec 0.9999998460 0.9999998752 0.9999999203

6∼9 sec 0.9999996505 0.9999996923 0.9999997512

9∼12 sec 0.9999991855 0.9999992538 0.9999993440

12∼15 sec 0.9999979943 0.9999981206 0.9999982801

15∼18 sec 0.9999946594 0.9999949263 0.9999952513

18∼21 sec 0.9999842661 0.9999849182 0.9999856884

21∼24 sec 0.9999473171 0.9999491987 0.9999513639

24∼27 sec 0.9997926354 0.9997992499 0.9998066876

27∼30 sec 0.9989973135 0.9990269175 0.9990595188

30∼33 sec 0.8566112525 0.8577081940 0.8589193177

33∼36 sec 0.7891021614 0.7900806466 0.7911376291

36∼39 sec 0.6596248367 0.6610505019 0.6625510497

39∼42 sec 0.2394862591 0.2427872056 0.2461138540

D

Larger than 42 sec 0.0006593094 0.0008699476 0.0011059778

Table 10.7. The Updated CPT of Node F in Task 7

C K M P(G=Yes|CKM)

Yes Good Good 0.999999999999999

Yes Good Bad 0.000000002532956

Yes Bad Good 0.001846195281535

Yes Bad Bad 0.000000000000001

No Good Good 0.500000

No Good Bad 0.500000

No Bad Good 0.500000

No Bad Bad 0.500000

Table 10.8. The Updated CPT of Node G (Two Required Skills)
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C K M O P(G=Yes|CKMO)

Yes Good Good Good 0.999999999999999

Yes Good Good Bad 0.000239455968839

Yes Good Bad Good 0.000239455968839

Yes Good Bad Bad 0.000000000000001

Yes Bad Good Good 0.612144892119595

Yes Bad Good Bad 0.000000000000001

Yes Bad Bad Good 0.000000000000001

Yes Bad Bad Bad 0.000000000000001

No Good Good Good 0.500000

No Good Good Bad 0.500000

No Good Bad Good 0.500000

No Good Bad Bad 0.500000

No Bad Good Good 0.500000

No Bad Good Bad 0.500000

No Bad Bad Good 0.500000

No Bad Bad Bad 0.500000

Table 10.9. The Updated CPT of Node G (Three Required Skills)

C F G P(H=Yes|CFG)

Yes Yes Yes 0.999999999999999

Yes Yes No 0.000000008771653

Yes No Yes 0.028478206613453

Yes No No 0.000000000000001

No Yes Yes 0.000000000000001

No Yes No 0.000000000000001

No No Yes 0.000000000000001

No No No 0.000000000000001

Table 10.10. The Updated CPT of Node H
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10.3 The Experiment Result after Training

To compare the results of MRTA before and after training, we may re-complete the search-

and-rescue mission after the updated CPTs are obtained during the training process. With

the same information about the tasks and the identical robots in the mission, all tasks were

successfully completed under the condition without accidents although the values of the

success rates in each MRTA process were totally different. According to Table 10.11, Task

1 was taken by Robot 1, Task 3 was taken by Robot 2, and Task 5 was taken by Robot 3,

Figure 10.2. The Experiment Result without Accidents after Training
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Task 1 Task 3 Task 5 Task 7

Robot 1 0.6645787882 0.6723121732 0.3985495426 0.6482979023

Robot 2 0.3639458691 0.6716114673 0.6708475611 0.6482986160

Robot 3 0.5099174286 0.6667399711 0.6724149334 0.6482895869

Robot 4 0.0009021152 0.0007400230 0.0009018079 0.0005734345

Robot 5 0.0008916022 0.0009010373 0.0003200713 0.0007203385

Robot 6 0.0007940539 0.0008945017 0.0009021809 0.0007196610

Table 10.11. The Collected Success Rates in the First MRTA Process After Training

Task 1 Task 3 Task 6 Task 7

Robot 1 0.6724811604 0.6724414038 0.0009008857 0.6482670895

Robot 2 0.6645787882 0.6724783657 0.0009021408 0.6482979023

Robot 3 0.6645787882 0.6724414038 0.0009021988 0.6482895869

Robot 4 0.0009021152 0.0007400230 0.5555984610 0.0005734345

Robot 5 0.0008916022 0.0009010373 0.1435751284 0.0007203385

Robot 6 0.0007940539 0.0008945017 0.6722866558 0.0007196610

Table 10.12. The Collected Success Rates After Task 5 Was Completed After Training

which was the same as the result before training. Nevertheless, the collected success rates

were different. The chosen success rates in each task were higher than the values before

training. In other words, the success rate would be more accurate than before because the

updated CPTs were built from the collected data with real experiments. After Task 5 was

completed, Task 6 was released due to the existing target, and Robot 6 took it depending

on Table 10.12. It can also be observed that the success rate of Task 6 for Robot 6 was

higher than before. After Task 1 and Task 3 were completed and Task 2 was released,

Task 2 was taken by Robot 4, and Robot 1, Robot 2, and Robot 3 took Task 7 based

on Table 10.13. The result was the same as before, whereas the success rates were also
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Task 2 Task 6 Task 7

Robot 1 0.0009021945 0.0009008857 0.6482670895

Robot 2 0.0008981586 0.0009021408 0.6482958904

Robot 3 0.0008024810 0.0009021988 0.6482895869

Robot 4 0.6694657718 0.5555984610 0.0005734345

Robot 5 0.5981500233 0.1435751284 0.0007203385

Robot 6 0.2928745807 0.6724340136 0.0007202015

Table 10.13. The Collected Success Rates After Task 1 and Task 3 Were Completed
After Training

higher or more accurate than before. In the end, all tasks were accomplished as shown

in Fig. 10.2. As can be seen, the MRTA results, in this case, are the same no matter

whether using the initial CPTs created based on experts’ knowledge or the updated CPTs

built with collected data. Nonetheless, the value of the success rate is more accurate or

closer to the real situation, which represents the MRTA result will be near-optimal after

training with a large amount of data.
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Chapter 11

Conclusion

In this dissertation, the novel approach with Bayesian Networks (BNs) in multi-robot

task allocation (MRTA) and the generic agent-based framework of multi-robot systems

(MRSs) are proposed and elaborated with several vivid examples and realistic experiments

to demonstrate that our approach could be efficiently applied to most applications and

effectively overcome current difficulties and challenges in robotics. In the beginning, we

summarized the classification of MRSs, the current frameworks of MRSs, the categoriza-

tion of MRTA, the existing MRTA methodology, and prevalent machine-learning methods

in robotics. Due to the diversity of MRS frameworks and the challenges of MRTA ap-

proaches under dynamic environments, an innovative viewpoint to solve MRTA problems

and the general structure of MRSs were introduced. The task success rate which can

be calculated with the BNs of tasks and Bayes’ theorem is considered in MRTA instead

of mere costs and rewards. Necessary agents are organized with agencies to construct

various MRSs even when state-of-the-art methods are involved in diverse applications. In

the end, the comprehensive experiments and the search-and-rescue mission with low-cost

hardware robots demonstrated that our proposed approach could competently solve chal-
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lenging problems under miscellaneous situations. Our contributions to this research are

listed and described as follows.

• A BN is used to combine the conditions of skills, the conditions of robots, and

the requirement of a task. It is rare to utilize a generalized algorithm to simulta-

neously consider the current state of a robot and the ability condition during an

MRTA process. Several algorithms may vary in different applications with existing

MRTA approaches, whereas they are specifically designed. With BNs, it is simple

to integrate dynamic factors in numerous applications.

• The parameter setup is formalized. Costs and rewards in the existing MRTA ap-

proach are commonly designed by experts case by case or arranged with trial and

error. With BNs, CPTs can be reasonably built with experts’ knowledge or with

collected data from real experiments without trial and error. The parameters in

CPTs may reflect authentic situations.

• The design of BNs of tasks is simple. Many algorithms of MRTA may be difficult

to design, especially for behavior-based approaches. With our technique, only the

nodes related to abilities are added to the general Bayesian Network with small

modifications. Particularly, most CPTs are commonly used in the BNs of tasks

without re-setup. Because of these reasons, it is easy to build BNs to comply with

the requirements of tasks.

• The success rates of tasks are utilized to allocate tasks to robots during an MRTA

process. A utility calculated with costs and rewards is not the only factor to assign
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tasks to robots now that the conditions of robots and skills are needed to be consid-

ered. It is more appropriate to allocate tasks with the success rate calculated based

on the BN and Bayes’ theorem. Finding the maximum sum of task success rates is

utilized to benefit a group of robots in static and dynamic environments.

• The proposed approach to MRTA is learnable. Most current MRTA methods are

not learnable. The CPT of a BN, nevertheless, can be updated with a large data

set to reflect realistic situations, which means our approach is learnable.

• The generic agent-based framework of MRSs is provided. Considering more and

more modern strategies are utilized in robotics and most MRS structures are de-

signed independently, essential agents are introduced and classified with agencies in

the generic agent-based framework. With this framework, researchers may add or

create needed agents to execute respective programs in their applications without

changing the basic structure of MRSs.

• The new approach to MRTA and the generic agent-based framework were testified

with hardware, low-cost robots under dynamic conditions. Some methods or algo-

rithms were only in theories or examined in simulations; however, our approach was

demonstrated with hardware robots. Additionally, highly efficient hardware might

not be required with our model. Researchers or workers in companies with limited

resources, therefore, may be able to apply our approach to their applications or

products.
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Chapter 12

Future Work

Through the comprehensive experiments and the search-and-rescue mission, we have al-

ready demonstrated that our approach could be efficiently applied to different types of

MRSs (centralized, decentralized, and distributed), dynamic environments (adjustable

task lists, changeable maps, and robot conditions), distinctive types of MRTA problems

(ST or MT robots, SR or MR tasks, instantaneous assignments, and the priority of tasks),

and a heterogeneous, middle-scale robot team. Nonetheless, our approach might not be

limited to these applications. Researchers may extend our methodology to other fields.

Possible future works and extensions are depicted as follows.

• A robot team may be homogeneous. Even though our approach is designed to

overcome dynamic conditions, we may still apply it to a homogeneous robot team.

The type of robot, the energy condition, the type of skill on each robot, and the

skill condition can be assumed the same, so all robots would be identical, which

creates a homogeneous robot team. Therefore, our approach is very applicable to a

homogeneous MRS.
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• The size of a robot team may increase. Only six robots were tested in our exper-

iments; notwithstanding, the number of robots may increase to analyze scalabil-

ity. Our MRTA approach is a hybrid method, so its scalability could be between

the scalability with an optimization-based approach in a centralized MRS and the

counterpart with an auction-based approach in a distributed MRS. In the future,

hardware experiments with more robots are needed to assess scalability.

• An MRTA problem could be a time-extended-assignment (TA) problem under static

environments. Due to dynamic environments, TA problems were not considered.

However, because robots would not fail in static environments, it is possible to solve

TA problems to minimize the execution time with the highest success rate. The

optimal combination in our approach might be modified to obtain the maximum

sum of success rates when including the execution order of tasks.

• Several missions are executed at the same time. There is only one mission in the

search-and-rescue mission, so we are not able to observe the huge influence of ST

and MT robots in a team. Hereafter, multiple missions might be concurrently

assigned to a robot team to verify MT robots might take one task in each mission

simultaneously.

• Other machine-learning or modern approaches may be included in an MRS. Only

BNs are utilized in MRTA in this research although we have already thought of state-

of-the-art methods when proposing the generic agent-based framework. Researchers

may apply their modern techniques including on-board learning to fault detection,
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perception, information fusion, motion planning, and coordination to validate the

flexibility of our framework.

• The generic agent-based framework might work in other software frameworks. Al-

though Mobile-C is the only software framework we used in this dissertation, the

generic agent-based framework is not specialized to Mobile-C. Researchers may uti-

lize other software frameworks to build agent-based frameworks based on the generic

agent-based framework to analyze its workability.

• Our methodology may be applied to other research areas. The proposed approach

was only implemented in search and rescue in that robot types and environments

are usually more complicated than other applications. Researchers and scholars

in robotics may apply our approach to their interesting fields, such as security

patrolling, surveillance, material cleaning, warehouse systems, assembly systems,

exploration, games with robots, or even robotic arms with several joints. These

applications might examine the extension of our approach in the future.
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Appendix A

Collected Data from Experiments

A B C D E H J L N

d1 0 ST Y 5.828 s 4.1 V Y Y Y Y

d2 0 ST Y 8.914 s 4.1 V Y Y Y Y

d3 0 ST Y 11.328 s 4.1 V Y Y Y Y

d4 0 ST Y 14.950 s 4.1 V Y Y Y Y

d5 0 ST Y 15.036 s 4.1 V Y Y Y Y

d6 0 ST Y 20.243 s 4.1 V N Y Y Y

d7 0 ST Y 23.399 s 4.1 V Y Y Y Y

d8 0 ST Y 25.985 s 4.1 V Y Y Y Y

d9 0 ST Y 29.450 s 4.1 V Y Y Y Y

d10 0 ST Y 31.985 s 4.1 V Y Y Y Y

d11 0 ST Y 35.192 s 4.1 V N Y Y Y

d12 0 ST Y 5.828 s 3.2 V Y Y Y Y

d13 0 ST Y 8.914 s 3.2 V Y Y Y Y

d14 0 ST Y 11.328 s 3.2 V Y Y Y Y

d15 0 ST Y 14.950 s 3.2 V Y Y Y Y

d16 0 ST Y 15.036 s 3.2 V Y Y Y Y

d17 0 ST Y 20.243 s 3.2 V Y Y Y Y

d18 0 ST Y 23.399 s 3.2 V N Y Y Y

d19 0 ST Y 25.985 s 3.2 V Y Y Y Y

d20 0 ST Y 29.450 s 3.2 V Y Y Y Y

d21 0 ST Y 31.985 s 3.2 V Y Y Y Y

d22 0 ST Y 35.192 s 3.2 V N Y Y Y

d23 0 ST Y 5.828 s 2.4 V Y Y Y Y

d24 0 ST Y 8.914 s 2.4 V Y Y Y Y

d25 0 ST Y 11.328 s 2.4 V Y Y Y Y

d26 0 ST Y 14.950 s 2.4 V Y Y Y Y

d27 0 ST Y 15.036 s 2.4 V Y Y Y Y

d28 0 ST Y 20.243 s 2.4 V N Y Y Y

d29 0 ST Y 23.399 s 2.4 V N Y Y Y

d30 0 ST Y 25.985 s 2.4 V Y Y Y Y

d31 0 ST Y 29.450 s 2.4 V Y Y Y Y

d32 0 ST Y 31.985 s 2.4 V Y Y Y Y

d33 0 ST Y 35.192 s 2.4 V Y Y Y Y

Table A.1. The Collected Data of Task 1
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A B C D E H J L N

d1 0 ST Y 11.000 s 4.1 V Y Y Y Y

d2 0 ST Y 14.914 s 4.1 V Y Y Y Y

d3 0 ST Y 17.328 s 4.1 V Y Y Y Y

d4 0 ST Y 19.914 s 4.1 V Y Y Y Y

d5 0 ST Y 23.157 s 4.1 V Y Y Y Y

d6 0 ST Y 26.414 s 4.1 V Y Y Y Y

d7 0 ST Y 29.399 s 4.1 V N Y Y Y

d8 0 ST Y 31.950 s 4.1 V Y Y Y Y

d9 0 ST Y 35.450 s 4.1 V N Y Y Y

d10 0 ST Y 37.985 s 4.1 V N Y Y Y

d11 0 ST Y 41.192 s 4.1 V N Y Y Y

d12 0 ST Y 11.000 s 3.2 V Y Y Y Y

d13 0 ST Y 14.914 s 3.2 V Y Y Y Y

d14 0 ST Y 17.328 s 3.2 V Y Y Y Y

d15 0 ST Y 19.914 s 3.2 V Y Y Y Y

d16 0 ST Y 23.157 s 3.2 V Y Y Y Y

d17 0 ST Y 26.414 s 3.2 V N Y Y Y

d18 0 ST Y 29.399 s 3.2 V N Y Y Y

d19 0 ST Y 31.950 s 3.2 V Y Y Y Y

d20 0 ST Y 35.450 s 3.2 V N Y Y Y

d21 0 ST Y 37.985 s 3.2 V N Y Y Y

d22 0 ST Y 41.192 s 3.2 V N Y Y Y

d23 0 ST Y 11.000 s 2.5 V Y Y Y Y

d24 0 ST Y 14.914 s 2.5 V Y Y Y Y

d25 0 ST Y 17.328 s 2.5 V Y Y Y Y

d26 0 ST Y 19.914 s 2.5 V Y Y Y Y

d27 0 ST Y 23.157 s 2.5 V Y Y Y Y

d28 0 ST Y 26.414 s 2.5 V Y Y Y Y

d29 0 ST Y 29.399 s 2.5 V N Y Y Y

d30 0 ST Y 31.950 s 2.5 V Y Y Y Y

d31 0 ST Y 35.450 s 2.5 V N Y Y Y

d32 0 ST Y 37.985 s 2.5 V N Y Y Y

d33 0 ST Y 41.192 s 2.5 V N Y Y Y

Table A.2. The Collected Data of Task 2
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A B C D E H J L N

d1 0 ST Y 6.500 s 4.1 V Y Y Y Y

d2 0 ST Y 10.000 s 4.1 V Y Y Y Y

d3 0 ST Y 14.157 s 4.1 V Y Y Y Y

d4 0 ST Y 17.536 s 4.1 V Y Y Y Y

d5 0 ST Y 19.657 s 4.1 V Y Y Y Y

d6 0 ST Y 22.950 s 4.1 V Y Y Y Y

d7 0 ST Y 26.657 s 4.1 V Y Y Y Y

d8 0 ST Y 29.192 s 4.1 V Y Y Y Y

d9 0 ST Y 6.500 s 3.2 V Y Y Y Y

d10 0 ST Y 10.000 s 3.2 V Y Y Y Y

d11 0 ST Y 14.157 s 3.2 V Y Y Y Y

d12 0 ST Y 17.536 s 3.2 V Y Y Y Y

d13 0 ST Y 19.657 s 3.2 V Y Y Y Y

d14 0 ST Y 22.950 s 3.2 V Y Y Y Y

d15 0 ST Y 26.657 s 3.2 V N Y Y Y

d16 0 ST Y 29.192 s 3.2 V Y Y Y Y

d17 0 ST Y 6.500 s 2.3 V Y Y Y Y

d18 0 ST Y 10.000 s 2.3 V Y Y Y Y

d19 0 ST Y 14.157 s 2.3 V Y Y Y Y

d20 0 ST Y 17.536 s 2.3 V Y Y Y Y

d21 0 ST Y 19.657 s 2.3 V Y Y Y Y

d22 0 ST Y 22.950 s 2.3 V Y Y Y Y

d23 0 ST Y 26.657 s 2.3 V Y Y Y Y

d24 0 ST Y 29.192 s 2.3 V N Y Y Y

Table A.3. The Collected Data of Task 3

122



A B C D E H J L N

d1 0 ST Y 19.950 s 4.1 V Y Y Y Y

d2 0 ST Y 22.778 s 4.1 V Y Y Y Y

d3 0 ST Y 25.071 s 4.1 V Y Y Y Y

d4 0 ST Y 27.657 s 4.1 V N Y Y Y

d5 0 ST Y 32.107 s 4.1 V N Y Y Y

d6 0 ST Y 34.778 s 4.1 V N Y Y Y

d7 0 ST Y 37.314 s 4.1 V Y Y Y Y

d8 0 ST Y 40.107 s 4.1 V Y Y Y Y

d9 0 ST Y 42.642 s 4.1 V Y Y Y Y

d10 0 ST Y 19.950 s 3.1 V Y Y Y Y

d11 0 ST Y 22.778 s 3.1 V Y Y Y Y

d12 0 ST Y 25.071 s 3.1 V Y Y Y Y

d13 0 ST Y 27.657 s 3.1 V Y Y Y Y

d14 0 ST Y 32.107 s 3.1 V N Y Y Y

d15 0 ST Y 34.778 s 3.1 V N Y Y Y

d16 0 ST Y 37.314 s 3.1 V N Y Y Y

d17 0 ST Y 40.107 s 3.1 V N Y Y Y

d18 0 ST Y 42.642 s 3.1 V N Y Y Y

d19 0 ST Y 19.950 s 2.4 V Y Y Y Y

d20 0 ST Y 22.778 s 2.4 V Y Y Y Y

d21 0 ST Y 25.071 s 2.4 V Y Y Y Y

d22 0 ST Y 27.657 s 2.4 V Y Y Y Y

d23 0 ST Y 32.107 s 2.4 V Y Y Y Y

d24 0 ST Y 34.778 s 2.4 V N Y Y Y

d25 0 ST Y 37.314 s 2.4 V Y Y Y Y

d26 0 ST Y 40.107 s 2.4 V Y Y Y Y

d27 0 ST Y 42.642 s 2.4 V Y Y Y Y

Table A.4. The Collected Data of Task 4
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A B C D E H J L N

d1 0 ST Y 5.000 s 4.1 V Y Y Y Y

d2 0 ST Y 7.414 s 4.1 V Y Y Y Y

d3 0 ST Y 11.328 s 4.1 V Y Y Y Y

d4 0 ST Y 13.450 s 4.1 V Y Y Y Y

d5 0 ST Y 17.899 s 4.1 V Y Y Y Y

d6 0 ST Y 20.243 s 4.1 V Y Y Y Y

d7 0 ST Y 23.571 s 4.1 V Y Y Y Y

d8 0 ST Y 25.414 s 4.1 V Y Y Y Y

d9 0 ST Y 28.399 s 4.1 V N Y Y Y

d10 0 ST Y 32.385 s 4.1 V Y Y Y Y

d11 0 ST Y 5.000 s 3.2 V Y Y Y Y

d12 0 ST Y 7.414 s 3.2 V Y Y Y Y

d13 0 ST Y 11.328 s 3.2 V Y Y Y Y

d14 0 ST Y 13.450 s 3.2 V Y Y Y Y

d15 0 ST Y 17.899 s 3.2 V Y Y Y Y

d16 0 ST Y 20.243 s 3.2 V Y Y Y Y

d17 0 ST Y 23.571 s 3.2 V Y Y Y Y

d18 0 ST Y 25.414 s 3.2 V Y Y Y Y

d19 0 ST Y 28.399 s 3.2 V Y Y Y Y

d20 0 ST Y 32.385 s 3.2 V N Y Y Y

d21 0 ST Y 5.000 s 2.3 V Y Y Y Y

d22 0 ST Y 7.414 s 2.3 V Y Y Y Y

d23 0 ST Y 11.328 s 2.3 V Y Y Y Y

d24 0 ST Y 13.450 s 2.3 V Y Y Y Y

d25 0 ST Y 17.899 s 2.3 V Y Y Y Y

d26 0 ST Y 20.243 s 2.3 V Y Y Y Y

d27 0 ST Y 23.571 s 2.3 V Y Y Y Y

d28 0 ST Y 25.414 s 2.3 V Y Y Y Y

d29 0 ST Y 28.399 s 2.3 V N Y Y Y

d30 0 ST Y 32.385 s 2.3 V Y Y Y Y

Table A.5. The Collected Data of Task 5
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A B C D E H J L N

d1 0 ST Y 16.571 s 4.1 V Y Y Y Y

d2 0 ST Y 18.899 s 4.1 V Y Y Y Y

d3 0 ST Y 22.071 s 4.1 V Y Y Y Y

d4 0 ST Y 26.642 s 4.1 V Y Y Y Y

d5 0 ST Y 28.521 s 4.1 V Y Y Y Y

d6 0 ST Y 32.314 s 4.1 V N Y Y Y

d7 0 ST Y 35.471 s 4.1 V Y Y Y Y

d8 0 ST Y 37.107 s 4.1 V Y Y Y Y

d9 0 ST Y 40.485 s 4.1 V N Y Y Y

d10 0 ST Y 42.092 s 4.1 V N Y Y Y

d11 0 ST Y 16.571 s 3.2 V Y Y Y Y

d12 0 ST Y 18.899 s 3.2 V Y Y Y Y

d13 0 ST Y 22.071 s 3.2 V Y Y Y Y

d14 0 ST Y 26.642 s 3.2 V Y Y Y Y

d15 0 ST Y 28.521 s 3.2 V Y Y Y Y

d16 0 ST Y 32.314 s 3.2 V N Y Y Y

d17 0 ST Y 35.471 s 3.2 V Y Y Y Y

d18 0 ST Y 37.107 s 3.2 V Y Y Y Y

d19 0 ST Y 40.485 s 3.2 V Y Y Y Y

d20 0 ST Y 42.092 s 3.2 V N Y Y Y

d21 0 ST Y 16.571 s 2.5 V Y Y Y Y

d22 0 ST Y 18.899 s 2.5 V Y Y Y Y

d23 0 ST Y 22.071 s 2.5 V Y Y Y Y

d24 0 ST Y 26.642 s 2.5 V Y Y Y Y

d25 0 ST Y 28.521 s 2.5 V Y Y Y Y

d26 0 ST Y 32.314 s 2.5 V N Y Y Y

d27 0 ST Y 35.471 s 2.5 V Y Y Y Y

d28 0 ST Y 37.107 s 2.5 V N Y Y Y

d29 0 ST Y 40.485 s 2.5 V N Y Y Y

d30 0 ST Y 42.092 s 2.5 V Y Y Y Y

Table A.6. The Collected Data of Task 6
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A B C D E H J L

d1 0 ST Y 1.207 s 4.1 V Y Y Y

d2 0 ST Y 5.707 s 4.1 V Y Y Y

d3 0 ST Y 8.707 s 4.1 V Y Y Y

d4 0 ST Y 11.621 s 4.1 V Y Y Y

d5 0 ST Y 13.121 s 4.1 V Y Y Y

d6 0 ST Y 16.207 s 4.1 V Y Y Y

d7 0 ST Y 20.035 s 4.1 V Y Y Y

d8 0 ST Y 22.899 s 4.1 V Y Y Y

d9 0 ST Y 25.692 s 4.1 V Y Y Y

d10 0 ST Y 29.399 s 4.1 V Y Y Y

d11 0 ST Y 32.228 s 4.1 V N Y Y

d12 0 ST Y 35.730 s 4.1 V N Y Y

d13 0 ST Y 36.899 s 4.1 V Y Y Y

d14 0 ST Y 39.107 s 4.1 V Y Y Y

d15 0 ST Y 1.207 s 3.2 V Y Y Y

d16 0 ST Y 5.707 s 3.2 V Y Y Y

d17 0 ST Y 8.707 s 3.2 V Y Y Y

d18 0 ST Y 11.621 s 3.2 V Y Y Y

d19 0 ST Y 13.121 s 3.2 V Y Y Y

d20 0 ST Y 16.207 s 3.2 V Y Y Y

d21 0 ST Y 20.035 s 3.2 V Y Y Y

d22 0 ST Y 22.899 s 3.2 V Y Y Y

d23 0 ST Y 25.692 s 3.2 V Y Y Y

d24 0 ST Y 29.399 s 3.2 V Y Y Y

d25 0 ST Y 32.228 s 3.2 V N Y Y

d26 0 ST Y 35.730 s 3.2 V Y Y Y

d27 0 ST Y 36.899 s 3.2 V Y Y Y

d28 0 ST Y 39.107 s 3.2 V N Y Y

d29 0 ST Y 1.207 s 2.4 V Y Y Y

d30 0 ST Y 5.707 s 2.4 V Y Y Y

d31 0 ST Y 8.707 s 2.4 V Y Y Y

d32 0 ST Y 11.621 s 2.4 V Y Y Y

d33 0 ST Y 13.121 s 2.4 V Y Y Y

d34 0 ST Y 16.207 s 2.4 V Y Y Y

d35 0 ST Y 20.035 s 2.4 V Y Y Y

d36 0 ST Y 22.899 s 2.4 V Y Y Y

d37 0 ST Y 25.692 s 2.4 V Y Y Y

d38 0 ST Y 29.399 s 2.4 V Y Y Y

d39 0 ST Y 32.228 s 2.4 V N Y Y

d40 0 ST Y 35.730 s 2.4 V Y Y Y

d41 0 ST Y 36.899 s 2.4 V Y Y Y

d42 0 ST Y 39.107 s 2.4 V Y Y Y

Table A.7. The Collected Data of Task 7
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Appendix B

Partial Collected Data with

Assumptions and Facts

A B C D E H J L N

d1−1 0 ST Y 5.828 s 4.1 V Y Y Y Y

d1−2 0 ST Y 2.000 s 4.1 V Y Y Y Y

d1−3 0 ST Y 5.828 s 3.2 V Y Y Y Y

d1−4 0 ST Y 2.000 s 3.2 V Y Y Y Y

d1−5 0 ST Y 5.828 s 2.4 V Y Y Y Y

d1−6 0 ST Y 2.000 s 2.4 V Y Y Y Y

d2−1 0 ST Y 8.914 s 4.1 V Y Y Y Y

d2−2 0 ST Y 5.000 s 4.1 V Y Y Y Y

d2−3 0 ST Y 2.000 s 4.1 V Y Y Y Y

d2−4 0 ST Y 8.914 s 3.2 V Y Y Y Y

d2−5 0 ST Y 5.000 s 3.2 V Y Y Y Y

d2−6 0 ST Y 2.000 s 3.2 V Y Y Y Y

d2−7 0 ST Y 8.914 s 2.4 V Y Y Y Y

d2−8 0 ST Y 5.000 s 2.4 V Y Y Y Y

d2−9 0 ST Y 2.000 s 2.4 V Y Y Y Y

. . . . . .

d11−1 0 ST Y 35.192 s 4.1 V N Y Y Y

d11−2 0 ST Y 37.000 s 4.1 V N Y Y Y

d11−3 0 ST Y 40.000 s 4.1 V N Y Y Y

d11−4 0 ST Y 43.000 s 4.1 V N Y Y Y

d11−5 0 ST Y 35.192 s 3.2 V N Y Y Y

d11−6 0 ST Y 37.000 s 3.2 V N Y Y Y

d11−7 0 ST Y 40.000 s 3.2 V N Y Y Y

d11−8 0 ST Y 43.000 s 3.2 V N Y Y Y

d11−9 0 ST Y 35.192 s 2.4 V N Y Y Y

d11−10 0 ST Y 37.000 s 2.4 V N Y Y Y

d11−11 0 ST Y 40.000 s 2.4 V N Y Y Y

d11−12 0 ST Y 43.000 s 2.4 V N Y Y Y

. . . . . .

Table B.1. The Partial Collected Data of Task 1 with Assumption 1 and 2
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A B C D E H J L N

d1 0 ST Y 2.000 s 4.1 V N Y Y N

d2 0 ST Y 2.000 s 4.1 V N Y N Y

d3 0 ST Y 2.000 s 4.1 V N Y N N

d4 0 ST Y 2.000 s 4.1 V N N Y Y

d5 0 ST Y 2.000 s 4.1 V N N Y N

d6 0 ST Y 2.000 s 4.1 V N N N Y

d7 0 ST Y 2.000 s 4.1 V N N N N

d8 0 ST Y 5.000 s 4.1 V N Y Y N

d9 0 ST Y 5.000 s 4.1 V N Y N Y

d10 0 ST Y 5.000 s 4.1 V N Y N N

d11 0 ST Y 5.000 s 4.1 V N N Y Y

d12 0 ST Y 5.000 s 4.1 V N N Y N

d13 0 ST Y 5.000 s 4.1 V N N N Y

d14 0 ST Y 5.000 s 4.1 V N N N N

. . . . . .

d106 0 ST Y 2.000 s 3.2 V N Y Y N

d107 0 ST Y 2.000 s 3.2 V N Y N Y

d108 0 ST Y 2.000 s 3.2 V N Y N N

d109 0 ST Y 2.000 s 3.2 V N N Y Y

d110 0 ST Y 2.000 s 3.2 V N N Y N

d111 0 ST Y 2.000 s 3.2 V N N N Y

d112 0 ST Y 2.000 s 3.2 V N N N N

d113 0 ST Y 5.000 s 3.2 V N Y Y N

d114 0 ST Y 5.000 s 3.2 V N Y N Y

d115 0 ST Y 5.000 s 3.2 V N Y N N

d116 0 ST Y 5.000 s 3.2 V N N Y Y

d117 0 ST Y 5.000 s 3.2 V N N Y N

d118 0 ST Y 5.000 s 3.2 V N N N Y

d119 0 ST Y 5.000 s 3.2 V N N N N

. . . . . .

Table B.2. The Partial Collected Data of Task 1 with Fact 1
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A B C E H J L N

d1 0 ST N 4.1 V N Y Y Y

d2 0 ST N 4.1 V N Y Y N

d3 0 ST N 4.1 V N Y N Y

d4 0 ST N 4.1 V N Y N N

d5 0 ST N 4.1 V N N Y Y

d6 0 ST N 4.1 V N N Y N

d7 0 ST N 4.1 V N N N Y

d8 0 ST N 4.1 V N N N N

d9 0 ST N 3.2 V N Y Y Y

d10 0 ST N 3.2 V N Y Y N

d11 0 ST N 3.2 V N Y N Y

d12 0 ST N 3.2 V N Y N N

d13 0 ST N 3.2 V N N Y Y

d14 0 ST N 3.2 V N N Y N

d15 0 ST N 3.2 V N N N Y

d16 0 ST N 3.2 V N N N N

d17 0 ST N 2.4 V N Y Y Y

d18 0 ST N 2.4 V N Y Y N

d19 0 ST N 2.4 V N Y N Y

d20 0 ST N 2.4 V N Y N N

d21 0 ST N 2.4 V N N Y Y

d22 0 ST N 2.4 V N N Y N

d23 0 ST N 2.4 V N N N Y

d24 0 ST N 2.4 V N N N N

Table B.3. The Partial Collected Data of Task 1 with Fact 2
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Appendix C

The Updated CPTs in the First

Iteration

E
P(F=Yes|DE)

2∼3 V 3∼4 V 4∼5 V

0∼3 sec 0.8117722755 0.8747023052 0.9962777837

3∼6 sec 0.7736172227 0.8117722755 0.8747023052

6∼9 sec 0.7283683977 0.7561541939 0.7972199011

9∼12 sec 0.6838074336 0.7056836980 0.7357424361

12∼15 sec 0.6367561849 0.6550119368 0.6788153447

15∼18 sec 0.5844126290 0.6003694027 0.6203663391

18∼21 sec 0.5033912400 0.5197130785 0.5394432575

21∼24 sec 0.4529612221 0.4686487586 0.4871106567

24∼27 sec 0.4200999745 0.4341247229 0.4503004266

27∼30 sec 0.3397708262 0.3533369678 0.3687625626

30∼33 sec 0.2404151423 0.2537649753 0.2687968292

33∼36 sec 0.1118519554 0.1258304413 0.1415272305

36∼39 sec 0.0567033099 0.0696432707 0.0841050111

39∼42 sec 0.0450338792 0.0567033099 0.0696432707

D

Larger than 42 sec 0.0344364765 0.0450338792 0.0567033099

Table C.1. The Updated CPT of Node F in Task 1
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E
P(F=Yes|DE)

2∼3 V 3∼4 V 4∼5 V

0∼3 sec 0.7738836610 0.8494300468 0.9955256768

3∼6 sec 0.7281504180 0.7738836610 0.8494300468

6∼9 sec 0.6972462743 0.7281504180 0.7738836610

9∼12 sec 0.6747648323 0.6972462743 0.7281504180

12∼15 sec 0.6253965341 0.6441958693 0.6687231443

15∼18 sec 0.5700691226 0.5865401584 0.6071988534

18∼21 sec 0.5052894685 0.5202975300 0.5385530416

21∼24 sec 0.4263129250 0.4404657219 0.4572731463

24∼27 sec 0.3183037869 0.3328705582 0.3498387824

27∼30 sec 0.2197709186 0.2353820995 0.2532826674

30∼33 sec 0.2059486965 0.2197709186 0.2353820995

33∼36 sec 0.0710159115 0.0857713137 0.1024053865

36∼39 sec 0.0605974279 0.0744624334 0.0899551823

39∼42 sec 0.0498104946 0.0627754939 0.0771578973

D

Larger than 42 sec 0.0380481875 0.0498104946 0.0627754939

Table C.2. The Updated CPT of Node F in Task 2

E
P(F=Yes|DE)

2∼3 V 3∼4 V 4∼5 V

0∼3 sec 0.7861905468 0.8576389191 0.9957699743

3∼6 sec 0.7429188327 0.7861905468 0.8576389191

6∼9 sec 0.7136592189 0.7429188327 0.7861905468

9∼12 sec 0.6651829108 0.6883056245 0.7201055957

12∼15 sec 0.6132928013 0.6326713258 0.6579698828

15∼18 sec 0.5546837151 0.5717063684 0.5930748917

18∼21 sec 0.4854430678 0.5010020212 0.5199493406

21∼24 sec 0.4001155686 0.4148439521 0.4323625798

24∼27 sec 0.2840022397 0.2992071397 0.3169540187

27∼30 sec 0.1866872415 0.2018335491 0.2192607740

30∼33 sec 0.0754241119 0.0900239648 0.1066931709

33∼36 sec 0.0624922551 0.0754241119 0.0900239648

36∼39 sec 0.0509249413 0.0624922551 0.0754241119

39∼42 sec 0.0404883904 0.0509249413 0.0624922551

D

Larger than 42 sec 0.0309995258 0.0404883904 0.0509249413

Table C.3. The Updated CPT of Node F in Task 3
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E
P(F=Yes|DE)

2∼3 V 3∼4 V 4∼5 V

0∼3 sec 0.7600636336 0.8402118870 0.9952513427

3∼6 sec 0.7115662147 0.7600636336 0.8402118870

6∼9 sec 0.6788153447 0.7115662147 0.7600636336

9∼12 sec 0.6550119368 0.6788153447 0.7115662147

12∼15 sec 0.6367561849 0.6550119368 0.6788153447

15∼18 sec 0.6221525106 0.6367561849 0.6550119368

18∼21 sec 0.6100524361 0.6221525106 0.6367561849

21∼24 sec 0.5600199740 0.5712350708 0.5844126290

24∼27 sec 0.5006659463 0.5113555994 0.5236399094

27∼30 sec 0.4164530934 0.4275467579 0.4400812278

30∼33 sec 0.3360793331 0.3477772476 0.3608183913

33∼36 sec 0.2751719917 0.2872805985 0.3006182667

36∼39 sec 0.2572874950 0.2687807862 0.2812045257

39∼42 sec 0.1852561426 0.1966661008 0.2088903726

D

Larger than 42 sec 0.1082037100 0.1193625242 0.1312962945

Table C.4. The Updated CPT of Node F in Task 4

E
P(F=Yes|DE)

2∼3 V 3∼4 V 4∼5 V

0∼3 sec 0.8117722755 0.8747023052 0.9962777837

3∼6 sec 0.7736172227 0.8117722755 0.8747023052

6∼9 sec 0.7283683977 0.7561541939 0.7972199011

9∼12 sec 0.6838074336 0.7056836980 0.7357424361

12∼15 sec 0.6367561849 0.6550119368 0.6788153447

15∼18 sec 0.5844126290 0.6003694027 0.6203663391

18∼21 sec 0.5236399094 0.5381386034 0.5557544537

21∼24 sec 0.4502838771 0.4639100042 0.4800666675

24∼27 sec 0.3581674864 0.3713665217 0.3867265554

27∼30 sec 0.2275959320 0.2420977364 0.2587403930

30∼33 sec 0.1705895868 0.1844684384 0.2001932332

33∼36 sec 0.0645858985 0.0779656679 0.0930651809

36∼39 sec 0.0526167070 0.0645858985 0.0779656679

39∼42 sec 0.0418191989 0.0526167070 0.0645858985

D

Larger than 42 sec 0.0320057813 0.0418191989 0.0526167070

Table C.5. The Updated CPT of Node F in Task 5

132



E
P(F=Yes|DE)

2∼3 V 3∼4 V 4∼5 V

0∼3 sec 0.7861905468 0.8576389191 0.9957699743

3∼6 sec 0.7429188327 0.7861905468 0.8576389191

6∼9 sec 0.7136592189 0.7429188327 0.7861905468

9∼12 sec 0.6923550020 0.7136592189 0.7429188327

12∼15 sec 0.6759760012 0.6923550020 0.7136592189

15∼18 sec 0.6628307771 0.6759760012 0.6923550020

18∼21 sec 0.6214481238 0.6332318794 0.6474383217

21∼24 sec 0.5741163504 0.5850217333 0.5978166044

24∼27 sec 0.5183776193 0.5287553718 0.5406573884

27∼30 sec 0.4507910163 0.4609109412 0.4723006756

30∼33 sec 0.3360793331 0.3477772476 0.3608183913

33∼36 sec 0.3253599751 0.3360793331 0.3477772476

36∼39 sec 0.2172718169 0.2283618941 0.2404151423

39∼42 sec 0.1267569861 0.1380475008 0.1503143072

D

Larger than 42 sec 0.0747565068 0.0857558216 0.0976769246

Table C.6. The Updated CPT of Node F in Task 6

E
P(F=Yes|DE)

2∼3 V 3∼4 V 4∼5 V

0∼3 sec 0.8401694577 0.8935543450 0.9968364806

3∼6 sec 0.7962863173 0.8305155596 0.8871098335

6∼9 sec 0.7586500871 0.7832101791 0.8196097151

9∼12 sec 0.7230996500 0.7421167532 0.7683207088

12∼15 sec 0.6871801999 0.7027577059 0.7231198431

15∼18 sec 0.6490602788 0.6623976466 0.6791406725

18∼21 sec 0.6070378672 0.6188814705 0.6332757358

21∼24 sec 0.5592230084 0.5700726795 0.5829114198

24∼27 sec 0.5032315472 0.5134439822 0.5252611076

27∼30 sec 0.4357729871 0.4456150809 0.4567939470

30∼33 sec 0.3262930483 0.3378858438 0.3508784279

33∼36 sec 0.3079958353 0.3190364013 0.3311722121

36∼39 sec 0.2420051366 0.2527070142 0.2643277971

39∼42 sec 0.1257874352 0.1366920776 0.1485801350

D

Larger than 42 sec 0.0326685918 0.0428472821 0.0541074355

Table C.7. The Updated CPT of Node F in Task 7
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C K M P(G=Yes|CKM)

Yes Good Good 0.9856118613

Yes Good Bad 0.0007634422

Yes Bad Good 0.0011826465

Yes Bad Bad 0.0000363324

No Good Good 0.500000

No Good Bad 0.500000

No Bad Good 0.500000

No Bad Bad 0.500000

Table C.8. The Updated CPT of Node G (Two Required Skills)

C K M O P(G=Yes|CKMO)

Yes Good Good Good 0.9765505897

Yes Good Good Bad 0.0010485538

Yes Good Bad Good 0.0010485538

Yes Good Bad Bad 0.0000361309

Yes Bad Good Good 0.0015829227

Yes Bad Good Bad 0.0000423596

Yes Bad Bad Good 0.0000423596

Yes Bad Bad Bad 0.0000029806

No Good Good Good 0.500000

No Good Good Bad 0.500000

No Good Bad Good 0.500000

No Good Bad Bad 0.500000

No Bad Good Good 0.500000

No Bad Good Bad 0.500000

No Bad Bad Good 0.500000

No Bad Bad Bad 0.500000

Table C.9. The Updated CPT of Node G (Three Required Skills)
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C F G P(H=Yes|CFG)

Yes Yes Yes 0.9890817593

Yes Yes No 0.0314478368

Yes No Yes 0.2153004347

Yes No No 0.0002854063

No Yes Yes 0.000000000000001

No Yes No 0.000000000000001

No No Yes 0.000000000000001

No No No 0.000000000000001

Table C.10. The Updated CPT of Node H
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[69] Pablo Iñigo-Blasco, Fernando Diaz-del Rio, Ma Carmen Romero-Ternero, Daniel
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Failure detection in robotic arms using statistical modeling, machine learning and
hybrid gradient boosting. Measurement, 146:425–436, 2019.

[149] Riccardo Pinto and Tania Cerquitelli. Robot fault detection and remaining life
estimation for predictive maintenance. Procedia Computer Science, 151:709–716,
2019.

[150] Zoubin Ghahramani. Probabilistic machine learning and artificial intelligence. Na-
ture, 521(7553):452–459, 2015.

[151] Susmita Ray. A quick review of machine learning algorithms. In 2019 International
conference on machine learning, big data, cloud and parallel computing (COMIT-
Con), pages 35–39. IEEE, 2019.

[152] Sotiris B Kotsiantis, Ioannis Zaharakis, P Pintelas, et al. Supervised machine learn-
ing: A review of classification techniques. Emerging artificial intelligence applica-
tions in computer engineering, 160(1):3–24, 2007.

[153] Jens Kober, J Andrew Bagnell, and Jan Peters. Reinforcement learning in robotics:
A survey. The International Journal of Robotics Research, 32(11):1238–1274, 2013.

[154] Niko Sünderhauf, Oliver Brock, Walter Scheirer, Raia Hadsell, Dieter Fox, Jürgen
Leitner, Ben Upcroft, Pieter Abbeel, Wolfram Burgard, Michael Milford, et al. The
limits and potentials of deep learning for robotics. The International journal of
robotics research, 37(4-5):405–420, 2018.

148



[155] Christopher M Bishop. Model-based machine learning. Philosophical Transac-
tions of the Royal Society A: Mathematical, Physical and Engineering Sciences,
371(1984):20120222, 2013.

[156] Adnan Darwiche. Modeling and reasoning with Bayesian networks. Cambridge
university press, 2009.

[157] Han-Saem Park and Sung-Bae Cho. A modular design of bayesian networks using
expert knowledge: Context-aware home service robot. Expert Systems with Appli-
cations, 39(3):2629–2642, 2012.

[158] Xiao Jia and Max Q-H Meng. A survey and analysis of task allocation algorithms
in multi-robot systems. In 2013 IEEE International Conference on Robotics and
biomimetics (ROBIO), pages 2280–2285. IEEE, 2013.

[159] Laura Von Rueden, Sebastian Mayer, Katharina Beckh, Bogdan Georgiev, Sven
Giesselbach, Raoul Heese, Birgit Kirsch, Julius Pfrommer, Annika Pick, Rajkumar
Ramamurthy, et al. Informed machine learning–a taxonomy and survey of integrat-
ing prior knowledge into learning systems. IEEE Transactions on Knowledge and
Data Engineering, 35(1):614–633, 2021.

[160] Liang Yang, Juntong Qi, Dalei Song, Jizhong Xiao, Jianda Han, Yong Xia, et al.
Survey of robot 3d path planning algorithms. Journal of Control Science and En-
gineering, 2016, 2016.

[161] Mahdi Fakoor, Amirreza Kosari, and Mohsen Jafarzadeh. Revision on fuzzy arti-
ficial potential field for humanoid robot path planning in unknown environment.
International Journal of Advanced Mechatronic Systems, 6(4):174–183, 2015.

[162] Daniel Kersten, Pascal Mamassian, and Alan Yuille. Object perception as bayesian
inference. Annu. Rev. Psychol., 55:271–304, 2004.

[163] Stergios I Roumeliotis and George A Bekey. Extended kalman filter for frequent
local and infrequent global sensor data fusion. In Sensor Fusion and Decentralized
Control in Autonomous Robotic Systems, volume 3209, pages 11–22. SPIE, 1997.

[164] Hao Li and Fawzi Nashashibi. Cooperative multi-vehicle localization using split
covariance intersection filter. IEEE Intelligent transportation systems magazine,
5(2):33–44, 2013.

[165] Thumeera R Wanasinghe, George KI Mann, and Raymond G Gosine. Decentralized
cooperative localization for heterogeneous multi-robot system using split covariance
intersection filter. In 2014 Canadian Conference on Computer and Robot Vision,
pages 167–174. IEEE, 2014.

[166] Joelle Al Hage, Maan E El Najjar, and Denis Pomorski. Multi-sensor fusion ap-
proach with fault detection and exclusion based on the kullback–leibler divergence:

149



Application on collaborative multi-robot system. Information Fusion, 37:61–76,
2017.

[167] Jesus Capitan, Matthijs TJ Spaan, Luis Merino, and Anibal Ollero. Decentral-
ized multi-robot cooperation with auctioned pomdps. The International Journal of
Robotics Research, 32(6):650–671, 2013.

[168] Ching-Wei Chuang and Harry H Cheng. A novel approach with bayesian networks
to multi-robot task allocation in dynamic environments. In International Design
Engineering Technical Conferences and Computers and Information in Engineering
Conference, volume 85444, page V08AT08A047. American Society of Mechanical
Engineers, 2021.

[169] Ching-Wei Chuang. The videos of the hardware experiments in the dissertation,
2023. https://ucdavis.box.com/s/rdc6a0mteq431gja1oide7s0xz6okzdn.

150




