
UNIVERSITY OF CALIFORNIA
SANTA CRUZ

MOTION PLANNING TO AVOID OBSTACLES WITH HYBRID
DYNAMICS

A thesis submitted in partial satisfaction of the
requirements for the degree of

Master of Science

in

COMPUTER ENGINEERING
with an emphasis in ROBOTICS AND CONTROL

by

Adam Ames

June 2021

The Thesis of Adam Ames
is approved:

Professor Ricardo G. Sanfelice, Chair

Professor Gabriel Elkaim

Professor Abhishek Halder

Quentin Williams
Interim Vice Provost and Dean of Graduate Studies

Table of Contents

List of Figures iv

Abstract vi

1 Introduction 1
1.1 Preliminaries on Hybrid Systems 2

2 Problem Statement and Outline of Proposed Solution 4

3 Modeling the Obstacles and the Vehicle 6
3.1 Modeling the Obstacles . 6
3.2 Modeling the Quadrotor and Tracking Controller 8

4 Mathematical problem statement 12

5 The Motion-Planning Algorithm 14
5.1 Supporting Sets and Constraints 15
5.2 Problem Reformulation and Algorithm 16

6 Simulations 19

7 Experiments 22
7.1 Experimental Setup . 22
7.2 Experimental Results . 23

8 Conclusion 26

A Hybrid Reference Tracking Controller 27

Bibliography 31

iii

List of Figures

2.1 The quadrotor V is moving towards the target T while avoiding the
obstacles O1 and O2. The set M(τ, xa, rk−1(τ)) is the sphere where
the quadrotor can move in τ time from initial state xa with initial
reference state rk−1(τ). The initial states of obstacles O1 and O2

are given by xo, with O′1 and O′2 being the obstacles at time τ . The
sets U1(τ, xo) and U2(τ, xo) contain all the unsafe points around the
path of O1 to O′1 and O2 to O′2 over the time period [0, τ]. Moving
directly towards the target causes the quadrotor to collide with O2

at (10, 8.5, 3). The motion planner moves the quadrotor to (10, 9, 4)
which avoids the obstacles while moving to the target. 5

3.1 Diagram of the feedback loop. The hybrid controller generates a
torque and thrust for the quadrotor from the current state and
reference trajectory. The motion capture system collects the posi-
tion, velocity, rotation, and angular velocity of the quadrotor and
updates the state of the quadrotor within the hybrid controller. . 10

iv

6.1 Simulation using a point mass model. The quadrotor moves directly
toward the target until the obstacle is within the planning window
around (0.3, 0.3, 1.5). The quadrotor then makes a left turn to avoid
the bouncing obstacle before returning to moving toward the target
set. Initial quadrotor location is denoted as the blue x at (3, 3, 2)
and initial obstacle location is marked by the red x at (−1,−1, 5)
and had an initial velocity of (1, 1, 0). The planning period was
0.5s, with an execute period 0.2s, and an obstacle radius of 0.3m.
The target set was a sphere centered at (0, 0, 1) with a radius of
0.3m. The maximum acceleration of the point mass was 23m/s2. . 20

6.2 Simulation using quadrotor dynamical model. The quadrotor moves
to the negative x direction to avoid the two obstacles then arcs back
toward the target set. Initial quadrotor state is (0, 1, 3, 0, 0, 0, I3×3, 0, 0, 0)
and initial obstacle states (−0.03, 0, 4, 0, 1, 0) and (0.03, 1, 2, 0,−0.5, 0).
The planning period was 0.3 seconds, with an execute period 0.05s,
and an obstacle radius of 0.05m. The target set was a sphere cen-
tered at (0, 0, 4) with a radius of 0.3m. 21

7.1 Plot of the Crazyflie avoiding two obstacles. The Crazyflie has an
initial position of (0.29,−0.20, 0.68) and the obstacles had initial
positions of (0.44,−0.11, 1.08) and (0.43,−0.10, 1.07). The light
colored spheres depict the unsafe set, with the color of the sphere
denoting the time as shown in the color bar. The unsafe set at time
t is all spheres between t and t + τe. The smaller colored spheres
show the position of the Crazyflie over time. The wire frame sphere
denotes the target set centered at (0.18,−0.12, 0.67) with radius 0.1m 24

7.2 Plot of distance between quadrotor and obstacles over time for three
experiment runs. In each experiment, the quadrotor was avoiding
two obstacles. Large jumps in distance are caused by the camera
system not capturing one of the obstacles for a frame, resulting in
the further obstacle to become the closest. 25

v

Abstract

Motion Planning to Avoid Obstacles with Hybrid Dynamics

by

Adam Ames

This paper proposes a set-based feedback motion planning algorithm to drive a

quadrotor to a target set while avoiding dynamic obstacles which behave like a

bouncing ball. The planner makes use of a library of motion primitives to allow for

complex maneuvers and fast planning times. The planner is capable of avoiding

obstacles with unknown angular velocities which change the obstacle velocity at

bounces, resulting in safe trajectories with the use of safety margins. Simulation

and experimental data of the planner are presented.

vi

Chapter 1

Introduction

Quadrotors have been the focus of increasing amounts of research with their

popularity as an autonomous vehicle platform continuing to grow. A large portion

of this research has been focused on solving the motion planning and obstacle

avoidance problem. There are been many strategies ranging from velocity fields,

like that proposed in [10], to graph search algorithms like in [3]. One popular

approach is receding horizon control [1] [7], where the motion planning problem is

converted to a constrained optimization problem. Obstacle avoidance is achieved

through hard constraints on the optimization with soft constraints selecting from

the safe trajectories. While the collision avoidance problem has been well studied,

the case when obstacles bounce has been largely neglected. To the best of the

author’s knowledge there is only one currently published paper which includes the

bouncing obstacle case. In [6], a Nonlinear MPC approach is used to generate a

series of safe control inputs for a quadrotor with obstacles allowed to move in a

line or behave like a bouncing ball. Our approach differs in the obstacle model and

the planning methodology. The proposed planner generates a reference trajectory

instead of a control input, and the bouncing ball model used also includes the

influence of the obstacle’s angular velocity at impact.

1

1.1 Preliminaries on Hybrid Systems

A hybrid dynamical system is a system with both continuous and discrete

dynamics. The hybrid system H for the state x ∈ Rn and input u ∈ Rm can be

modeled as, following [5],

H :=


ẋ ∈ F (x, u) (x, u) ∈ C

x+ ∈ G(x, u) (x, u) ∈ D
(1.1)

The data of the system H = (C,D, F,G) describe how the system evolves over

time. The flow map F describes the continuous evolution of x while the state and

input are in the flow set C. The jump map G describes the discrete evolution of

x while the state and input are in the jump set D.

A hybrid time domain E ⊂ R≥0×N is defined as union of intervals E∩([0, T]×

{0, 1, . . . , J}) = ⋃J−1
j=0 ([tj, tj+1], j) for each (T, J) ∈ E, with the time interval

t0 = 0 ≤ t1 ≤ t2 ≤ . . . ≤ tJ = T . A hybrid arc φ : R≥0×N→ Rn is parameterized

by regular time t ∈ [0, T] and discrete number of jumps j ∈ {0, 1, . . . , J} on the

domain (T, J) ∈ dom φ. A hybrid arc φ is a solution to the hybrid system H with

input u ∈ Rm if the following conditions are met:

• φ(0, 0) ∈ cl(C) ∪D

• For all j ∈ N such that Ij := {t : (t, j) ∈ dom φ} has nonempty interior,

(φ(t, j), u(t)) ∈ C for all t ∈ int Ij and φ(t, j) ∈ F (φ(t, j), u(t)) for almost

all t ∈ Ij

• For all (t, j) ∈ dom φ such that (t, j + 1) ∈ domφ, (φ(t, j), u(t)) ∈ D and

φ(t, j + 1) ∈ G(φ(t, j), u(t))

where cl(S) is the closure of the set S.

2

The finite-horizon reachability map for a hybrid system H collects states the

system can reach from some initial state ξ over a given time interval [0, T] with

at most J jumps. This reachability map is defined in [8] as

RH(T, J, ξ) := {φ(t, j) : φ ∈ ŜH(ξ), (t, j) ∈ dom φ ∩ T(T, J)} (1.2)

with ŜH(ξ) denoting the set of all solutions to the hybrid system H from initial

state ξ and T(T, J) denoting the hybrid time horizon [0, T]× {0, 1, 2 . . . J}.

Notation: The 2 norm of a vector x is denoted as |x|, with the infinity norm

denoted as |x|∞. The set of real numbers is represented by R. The subset Y of

X is given as Y ⊂ X. The unit ball B ⊂ R3 is defined as B := {x ∈ R3 : |x| ≤ 1}.

The set of natural numbers is denoted as N. The map f of x to y is denoted as

f : x 7→ y. The set of unit quaternions S ⊂ R4 is defined as S := {q ∈ R4 : |q| = 1}.

The vector en contains all zeros except the nth position which is 1. The distance

from a vector p to a set is defined as dist(p,Q) := {min(|p>q|∞) : q ∈ Q}. The

derivative with respect to vector x is defined as Dx(F) = ∂vec(F)
∂vec(x)> with vec(x)

denoting the matrix x reshaped as a column vector. The determinant of a matrix

R is denoted det(R). For a vector q ∈ Rn and a set P ∈ Rn, the arg maxp∈P pq

is the largest value of pq for all p ∈ P . A sequence of variables x indexed by k is

denoted as {xk}k∈N≥1. The Minkowski sum is the addition of two sets such that

A+B := {a+ b : a ∈ A, b ∈ B}

3

Chapter 2

Problem Statement and Outline

of Proposed Solution

The goal of this paper is to provide an algorithm that generates a reference

trajectory that steers a quadrotor to a desired hovering location while evading

dynamic obstacles with limited information. To formulate the problem, consider

a quadrotor V whose state is xa and multiple obstacles O1,O2, . . . ,ON . Let each

obstacle Oi have state xoi
consisting of position poi

∈ R3, velocity voi
∈ R3, and

angular velocity ωoi
∈ R3, with only the obstacle positions known. Consider a

target set T containing all the desired points for the quadrotor position pa to

converge to. Using a feedback control algorithm, the reference trajectory has to

steer the quadrotor position to the target set in finite time while avoiding collisions

with the obstacles. This is shown in Figure 2.1 with the quadrotor V moving to

reach the target set T while avoiding obstacles O1 and O2.

To solve this problem, we propose a feedback motion-planning algorithm that

generates a reference trajectory by computing and manipulating two sets, one

describing where the quadrotor can move and the other containing all possible

obstacle locations. More precisely, the first set is called mobility set, denoted

4

U1(τ, xo)

U2(τ, xo)

M(τ, xa, rk−1(τ))

V

O′2

O2
O1

T
O′1

Figure 2.1: The quadrotor V is moving towards the target T while avoiding the
obstacles O1 and O2. The set M(τ, xa, rk−1(τ)) is the sphere where the quadrotor
can move in τ time from initial state xa with initial reference state rk−1(τ). The
initial states of obstacles O1 and O2 are given by xo, with O′1 and O′2 being the
obstacles at time τ . The sets U1(τ, xo) and U2(τ, xo) contain all the unsafe points
around the path of O1 to O′1 and O2 to O′2 over the time period [0, τ]. Moving
directly towards the target causes the quadrotor to collide with O2 at (10, 8.5, 3).
The motion planner moves the quadrotor to (10, 9, 4) which avoids the obstacles
while moving to the target.

M(τ, ξa, ξr) and contains all trajectories that the quadrotor can reach from an

initial vehicle state ξa and initial reference state ξr over the continuous time in-

terval [0, τ], as shown by M(τ, xa, rk−1(τ)) in Figure 2.1. The second set is called

the unsafe set, denoted Ui(τ, ξo), contains all points the ith obstacle can reach

from initial obstacle state ξo over the time interval [0, τ]. In Figure 2.1, the un-

safe set for obstacles O1 and O2 are U1(τ, xo1) and U2(τ, xo2). With M(τ, ξa, ξr)

and Ui(τ, ξo) for each i, the proposed algorithm generates a reference trajectory

that, using the reference tracking controller, drives the quadrotor to the target set

without colliding with any obstacle.

5

Chapter 3

Modeling the Obstacles and the

Vehicle

In order to define the mobility and unsafe sets, the quadrotor and obstacle

models used to generate the sets must be defined.

3.1 Modeling the Obstacles

Each obstacle is considered a bouncing ball moving in R3, with the ith obsta-

cle’s state given by

xoi
= (poi

, voi
) (3.1)

xoi
∈ Xoi

:= R6 (3.2)

where poi
= (pxoi

, pyoi
, pzoi

) ∈ R3 is position and voi
= (vxoi

, vyoi
, vzoi

) ∈ R3 is

velocity. When moving in free air, the motion of a bouncing ball is modeled using

6

the equations of projectile motion without air resistance, namely

ṗoi
= voi

(3.3)

v̇oi
=
[
0 0 −γ

]
(3.4)

where γ > 0 is the gravity acceleration.

The obstacle’s impact with the ground is modeled as an instantaneous velocity

change, leading to the definition of the jump map Goi
(xoi

). Note that this reverses

the sign of the vertical velocity and the restitution coefficient λ ∈ (0, 1) models

the energy loss at impacts. Accelerations in the x and y directions are generated

by the spin of the ball. Since the angular velocities are not known, the exact

trajectory cannot be predicted. Instead of a single velocity after a jump, we

define the set of possible velocities. This is done to capture the effect of all values

withing the expected angular velocity range. The set Σ ⊂ R contains all possible

changes in linear velocity from the expected angular velocities of the ball. The

impact can then be modeled as:

x+
oi
∈ Goi

(xoi
) := {(p+

xoi
, p+

yoi
, p+

zoi
, v+
xoi
, v+
yoi
, v+
zoi

) : p+
xoi

= pxoi
, p+

yoi
= pyoi

,

p+
zoi

= 0, v+
xoi

= vxoi
+ Σ, v+

yoi
= vyoi

+ Σ, v+
zoi

= −λvzoi
} (3.5)

where + is the Minkowski sum. The impacts occur when the obstacle reaches

the ground and if we assume the obstacle is a point mass, then impacts occur at

pzoi
= 0.

The combination of the continuous and discrete dynamics of the bouncing ball

leads to the following hybrid model for each obstacle Oi:

Hoi
= (Coi

, Foi
, Doi

, Goi
), (3.6)

7

where

Coi
:= {xoi

∈ R6 : pzoi
≥ 0}

Foi
(xoi

) =
[
voi

0 0 −γ
]>

Doi
:= {xoi

∈ R6 : pzoi
= 0, vzoi

≤ 0}

Goi
(xoi

) ∈ (pxoi
, pyoi

, 0, vxoi
+ Σ, vyoi

+ Σ,−λvzoi
)

3.2 Modeling the Quadrotor and Tracking Con-

troller

The quadrotor V is modeled after the quadrotor with reference tracking feed-

back controller proposed in [2]. The quadrotor state is given as

xb = (pa, va, Ra, ωa) (3.7)

where pa ∈ R3 is position in world inertial frame, va ∈ R3 is linear velocity in world

inertial frame, Ra ∈ SO(3) with SO(3) = {R ∈ R3×3 : R>R = I3, det(R) = 1} is

rotation with respect to the world frame as a rotation matrix, and ωa ∈ R3 is the

angular velocity with respect to the world frame. The dynamics of the quadrotor

are

ṗa = va (3.8)

v̇a = −Rae3
f

m
+ ge3 (3.9)

Ṙa = RaS(ωa) (3.10)

ω̇a = −J−1S(ωa)Jωa + J−1M (3.11)

8

where e3 =
[
0, 0, 1

]>
, m is the quadrotor mass, f ∈ R is the thrust input,M∈ R3

is the torque input, J ∈ R3×3 is the inertia tensor, and S(x) is the skew-symmetric

matrix form of some vector x, namely

S(x) =


0 −x3 x2

x3 0 −x1

−x2 x1 0



The hybrid tracking controller is comprised of two parts. The first is a satu-

ration controller which reduces the translational error between the state and the

reference. The second uses the output of the saturation controller with the cur-

rent state and a memory variable to drive the quadrotor rotation to the reference.

The controller is captured by the hybrid system Ha(ξa, r) = (Cc, Fc, Dc, Gc) with

the data defined in (A.14)-(A.17). More detailed information can be found in the

appendix.

The combined quadrotor and tracking controller is modeled by the hybrid

system

Ha = (Ca, Fa, Da, Ga) (3.12)

with state

xa := (xb, xc) (3.13)

xa ∈ Xa := R6 × SO(3)× R6 × {−1, 1} × S3 (3.14)

for a given initial state ξa and reference trajectory r : R≥0 → R12×SO(3)×R3, T ∈

R≥0 with

r(t) := (pr(t), p(1)
r (t), p(2)

r (t), p(3)
r (t), Rr(t), ωr(t)), (3.15)

9

Ha

Quadrotor

p, v, R, ω f,M

r

Motion Capture
System

Marker Positions

Figure 3.1: Diagram of the feedback loop. The hybrid controller generates a
torque and thrust for the quadrotor from the current state and reference trajectory.
The motion capture system collects the position, velocity, rotation, and angular
velocity of the quadrotor and updates the state of the quadrotor within the hybrid
controller.

satisfying the following assumption.

Assumption 1. GivenMp,Mω > 0, the reference trajectory t 7→ r(t) is a solu-

tion to

ṙ ∈ Fd(r) := (p(1)
r , p(2)

r , p(3)_r,MpB, RrS(ωr),MωB), (3.16)

such that rge r ∈ Ωr for some compact set

Ωr ⊂ R12 × SO(3)× R3, (3.17)

satisfying e>3 Rr(t)e3 ≥ 0 for each t ≥ 0 (see [2]).

The data for the hybrid system Ha(ξa, r(t)) = (Ca, Fa, Da, Ga) modeling the

10

closed-loop controller and quadrotor dynamics is:

Ca := Cc (3.18)

Fa(xa, r(t)) :=
(
ṗa, v̇a, Ṙa, ω̇a, Fc(xa, r(t))

)
(3.19)

Da := Dc (3.20)

Ga(xa, r(t)) :=

 xb

Gc(xa, r(t))

 (3.21)

11

Chapter 4

Mathematical problem statement

The problem outlined in Chapter 2 can be formulated mathematically as

Problem 1. Given a quadrotor V with reference tracking controller whose dynam-

ics are captured by Ha, initial quadrotor state ξa, obstacles O1,O2, . . .ON whose

dynamics are captured by Ho, initial obstacle states ξoi
for i ∈ {1, 2, . . . , N}, min-

imum safe quadrotor obstacle distance ku, target closed set T ⊂ R3, and duration

τ ∈ R>0, compute a reference trajectory given by the sequence {rk}k∈N≥1 such that

1. r1(0) = ξa

2. For each k ∈ N≥1, with xa and xoi
being the current quadrotor and obstacle

states at time tc = (k − 1)τ

(a) rk−1 has been executed by the quadrotor for τ time

(b) rk(tc) = rk−1(tc)

(c) [tc, tc + τ] 3 t 7→ rk(t) satisfies Assumption 1

(d) The maximal solution φk to Ha from xa for input rk evolves for at least

τ seconds of flow and satisfies dist
(
φk(t, j),RHoi

(τ,∞, xoi
)
)
≥ ku for

all (t, j) ∈ domφk∩([tc, tc+τ]×N) so the distance between any possible

12

obstacle trajectory and the quadrotor is never below the minimum safe

distance

3. The maximal solution φ to Ha from ξa for input r, with r being the concate-

nation of all reference trajectories in {rk}k∈N, satisfies

(a) φ is complete

(b) There exists a finite time tf such that pφ(t, j) ∈ T for all (t, j) ∈ dom φ

such that t ≥ tf .

In the above problem, Ha is the feedback control algorithm mentioned in Chap-

ter 2 which is responsible for steering the quadrotor. The evasion of obstacles

is accomplished by requirement 2d on each trajectory rk, enforcing a minimum

distance between the obstacle and quadrotor. Convergence of the quadrotor to

the target set within some finite time is included by requirement 3b.

13

Chapter 5

The Motion-Planning Algorithm

To solve the Problem 1, we propose a feedback motion planning algorithm.

The algorithm operates over multiple iterations, with each iteration extending

the executed reference trajectory by τe ordinary time. To prevent the planner

from selecting a trajectory from which there is no safe extension due to an obstacle

outside of τe horizon, each iteration plans for τp > τe ordinary time. The proposed

algorithm is as follows:

Step 1: Compute quadrotor mobility set for the quadrotor model in (3.18)-(3.21).

Step 2: Compute unsafe set for all obstacles using the model in (3.6).

Step 3: Remove trajectories from the mobility set M(τ, xa, r(k−1)) that violate

safety constraints, building the safe mobility set.

Step 4: Solve an optimization problem selecting the lowest cost reference trajec-

tory from the safe mobility set.

Step 5: Execute τe seconds of the reference trajectory.

Step 6: Go to Step 1 to replan from the new quadrotor and obstacle states.

14

5.1 Supporting Sets and Constraints

The quadrotor mobility set is the set of all possible reference trajectory quadro-

tor trajectory pairs (r, φ). To generate this set, all possible reference trajectories

must be generated. Since this is difficult to implement for most systems in prac-

tice, we approximate the set using a motion primitive library Ωp. The library is

generated using the quadrotor dynamics in (3.8)-(3.11) by using inputs f andM

satisfying

−ω̇e3
f

m
− 2

(
RS(ω)e3

ḟ

m

)
−Re3

f̈

m
∈MpB

M∈MωB

withMp andMω being the quadrotor’s maximum snap and angular acceleration

respectively. The restrictions on f andM are to ensure all trajectories within Ωr

satisfy the conditions of Assumption 1. These reference trajectories are used as

inputs to simulations of the closed-loop quadrotor model (3.12) from the current

quadrotor state, with the resulting trajectories building the solution set ŜHa(ξa).

The quadrotor mobility setM(τ, ξa, ξr) containing all reference trajectory quadro-

tor trajectory pairs (r, φ) for the given initial vehicle state ξa, motion primitive

library Ωp, and initial reference state ξr over the time interval [0, τ], is defined as

M(τ, ξa, ξr) :=
{

(r, φ) : φ(t, j) = φa(t, j),∀(t, j) ∈ dom φ ∩ [0, τ]× N,

φa ∈ ŜHa(ξa, r),∀r ∈ Ωp, r(0) = ξr

}
(5.1)

where the set ŜHa(ξa, r) contains all solutions to the hybrid system Ha from initial

state ξa for reference trajectory r.

The set of all possible obstacles states is called the unsafe set. For each ob-

stacle, the unsafe set is denoted as Ui(τ, ξoi
) for the given initial state ξoi

over the

15

hybrid time horizon [0, τ]× N. The set is defined as

Ui(τ, ξoi
) := RHoi

(τ,∞, ξoi
). (5.2)

The set containing all possible states of all obstacles is the unsafe set U(τ, ξo),

defined as

U(τ, ξo) :=
N⋃
i=1

Ui(τ, ξoi
). (5.3)

The safe mobility set, MS(τ, ξa, ξr, ξo) is constructed by removing any trajec-

tories in M(τ, ξa, ξr) which violate the minimum safe distance to the unsafe set

U(τ, ξo).

MS(τ, ξa, ξr, ξo) =
{

(r, φa) ∈M(τ, ξa, ξr) : dist(pφa(ta, ja), pφo(to, jo)) ≥ ku,

∀(ta, ja) ∈ dom φa and ∀(to, jo) ∈ dom φo, for all φo ∈ U(τ, ξo)
}

(5.4)

where pφa(t, j) is the positional component of φ(t, j). The constant ku is the

constraint on the minimum allowed distance between the quadrotor position and

the unsafe set for a trajectory to be considered safe.

5.2 Problem Reformulation and Algorithm

Using the above sets, each reference trajectory from Problem 1 can be restated

as follows:

Problem 2. Given T ⊂ R3, planning window τp ∈ R>0, execution window τe ∈

(0, τp], previous reference trajectory rprev : [0, τp] → Ωr, previous reference cost

κprev, vehicle state xa ∈ Xa, and obstacle state xo ∈ Xo, generate a reference

trajectory r̂ ∈ Ωp with domain [0, τp] which will

16

minimize
r̂

κ(r̂, φ, rprev, κprev)

subject to

C1) r̂(0) = rprev(τe)

C2) (r̂, φ) ∈MS(τp, xa, rprev, xo)

where τp is the planning window and φ is the solution to Ha from initial state xa

with reference trajectory r̂ over [0, τp]× N.

The cost functional κ is defined as

κ(r̂, φ, rprev, κprev) := dist(pφ(τp, jτ),T) + κp(r̂, rprev, κprev) (5.5)

where

κp(r̂, rprev, κprev) :=


0 if r̂(t) = rprev(t+ τe), for all t ∈ [0, τp − τe]

khκprev otherwise

with jτ being the number of jumps at time τe, pφ(t, j) denoting the position of

the trajectory φ at (t, j), and kh ∈ R≥0 being the hysteresis tuning constant.

Chattering is a scenario where a planner switches between different trajectories

without making progress to the goal. The planner can chatter when the quadrotor

and target are on opposite sides of an obstacle and there is noise in the quadrotor

position. This will result in the planner changing the path around the obstacle

at each iteration, resulting in the quadrotor becoming trapped. To prevent this,

a hysteresis term κp is introduced that increases the cost of references which do

not share the first τp − τe seconds of trajectory with the last τp − τe seconds of

the previous reference trajectory. This punishes switching trajectories, reducing

chattering.

17

Solving Problem 2 for each reference while the previous is followed by the

quadrotor, results in Algorithm 1.

Algorithm 1: Motion planning algorithm with input
(T, τp, τe, ξa, ξo,Ha,Hoi

)
1: κ0 ← 0
2: r0 ← 0
3: xa ← ξa
4: xo ← ξo
5: for k = 1, 2, . . . do
6: M ← ∅
7: U ← ∅
8: MS ← ∅
9: for all r̂ ∈ Ωp, r̂(0) = rk−1(τe) do

10: The solution φa of Ha is simulated from xa for reference r̂ for [0, τp]
seconds of flow

11: M ←M ∪ {(r̂, φa)}
12: end for
13: for i ∈ {1, 2, . . . , N} do
14: The solution φo of Hoi

is simulated from xoi
for [0, τp] seconds of flow

15: U ← U ∪ {φo}
16: end for
17: for all (r̂, φa) ∈M do
18: for all φo ∈ U) do
19: if dist(pφa(ta, ja), pφo(to, jo)) ≥ ku, ∀(ta, ja) ∈ dom φa and

∀(to, jo) ∈ dom φo then
20: MS ←MS ∪ {(r̂, φa)}
21: end if
22: end for
23: end for
24: (rk, φ) is the solution to Problem 2 given (T, τp, τe, rk−1, κk−1, xa, xo)
25: κk ← κ(rk, φ, rk−1, κk−1)
26: Execute rk for τe seconds.
27: Update xa and xo
28: end for

18

Chapter 6

Simulations

Simulations have been run using both a double integrator point mass model

and the combined quadrotor controller model. For the simulation in Figure 6.1, the

point mass model was used. The mobility set was discritzed at by applying 1000

different input acceleration vectors to the model and simulating the behavior from

its current state for 0.5 seconds. The acceleration vectors were generated using five

different acceleration values in steps of 4.6 at 20 evenly spaced angles from 0 to 1.9π

in the xy plane and 10 evenly spaced angles from −0.5π to 0.5π in the xz plane.

By checking for collision with the simulated obstacle set the unsafe trajectories

were removed and the remaining trajectories build the set MS(τ, xa, xo, rk−1).

For the simulation shown in Figure 6.2, the hybrid controller and quadrotor

dynamical model was used. The set of possible reference trajectories was approxi-

mated using 1728 different reference trajectories, generated from 12 increments of

each pitch torque, roll torque, and thrust as inputs to (3.8)-(3.11). All reference

trajectories had no yaw torque. The planning time was τp = 0.3 seconds and

execution time of τe = 0.05 seconds. The mass, inertial tensor, and single motor

maximum thrust were from the system identification of the Crazyflie quadrotor

in [4]. The controller constants were the same as in the simulations of [2], except

19

Figure 6.1: Simulation using a point mass model. The quadrotor moves di-
rectly toward the target until the obstacle is within the planning window around
(0.3, 0.3, 1.5). The quadrotor then makes a left turn to avoid the bouncing obsta-
cle before returning to moving toward the target set. Initial quadrotor location
is denoted as the blue x at (3, 3, 2) and initial obstacle location is marked by the
red x at (−1,−1, 5) and had an initial velocity of (1, 1, 0). The planning period
was 0.5s, with an execute period 0.2s, and an obstacle radius of 0.3m. The tar-
get set was a sphere centered at (0, 0, 1) with a radius of 0.3m. The maximum
acceleration of the point mass was 23m/s2.

α = 0.5, δ = 0.5 and β = kv/4. The code for the simulations can be found at

https://github.com/HybridSystemsLab/CrazyFlieAvoidanceSimulation.

20

https://github.com/HybridSystemsLab/CrazyFlieAvoidanceSimulation

Figure 6.2: Simulation using quadrotor dynamical model. The quadrotor moves
to the negative x direction to avoid the two obstacles then arcs back toward the
target set. Initial quadrotor state is (0, 1, 3, 0, 0, 0, I3×3, 0, 0, 0) and initial obstacle
states (−0.03, 0, 4, 0, 1, 0) and (0.03, 1, 2, 0,−0.5, 0). The planning period was 0.3
seconds, with an execute period 0.05s, and an obstacle radius of 0.05m. The
target set was a sphere centered at (0, 0, 4) with a radius of 0.3m.

21

Chapter 7

Experiments

To show the algorithm’s viability for use in online motion planning scenarios

with limited compute resources the following experiment was conducted.

7.1 Experimental Setup

The experiments were run on aWindows 10 computer with a dual core 3.20GHz

processor with 8GB of memory. Quadrotor and obstacle position data was cap-

tured using eight motion capture cameras running at 120Hz. Velocities were

calculated using the difference in position and capture time between two frames.

The experimental quadrotor was a Crazyflie 2.0 controlled over 2.4GHz radio

though the Crazyflie client. The obstacles used were 0.08m diameter wiffle balls

wrapped in retro-reflective tape to allow tracking by the motion capture system.

To recover the restitution constant and Σ factor, one obstacle was tossed 15 times

with different spins from a height of approximately 1.5m. The restitution constant

was calculated as the average change in vertical velocity from before to after the

impact. The set Σ was constructed using the largest change in horizontal velocity

from before to after the impact. The ball was found to have a restitution constant

22

of λ = 0.65 and possible velocity change from spin of Σ = [−0.02, 0.02]m/s. The

obstacles were thrown toward the quadrotor from a horizontal distance of 0.15m

to 0.7m and a height between 0.7m and 0.85m with staring horizontal velocities

between 0m/s and 0.01m/s and vertical velocities between −0.2m/s and 0.6m/s.

The motion planner and controller were implemented in Matlab. The experimen-

tal quadrotor controller was comprised of four PIDs which drove the quadrotor to

the reference. The PIDs output desired thrust, yaw, pitch, and roll values which

were sent to the Crazyflie client over ZeroMQ at a rate of 50Hz. The motion

planner used a planning window of τp = 0.3s, execution window of τe = 0.28s,

and an minimum safe distance of ku = 0.2m.

7.2 Experimental Results

The quadrotor was able to reliably avoid the obstacles and converge to the

target set in each test. The motion planner implemented had low computational

delay with planner updates having a mean computation time of 83ms, median of

84ms, and a maximum time of 138ms. In figure 7.2, the distance between the

quadrotor and the obstacle of multiple experiments are shown, with the minimum

being 0.16m. The violations of the minimum unsafe distance were due to the

communication delay between the Crazyflie and the controller, which were not

accounted for by the controller. Code for the experiments can be accessed at

https://github.com/HybridSystemsLab/CrazyFlieAvoidanceExperiment.

23

https://github.com/HybridSystemsLab/CrazyFlieAvoidanceExperiment

Figure 7.1: Plot of the Crazyflie avoiding two obstacles. The Crazyflie has
an initial position of (0.29,−0.20, 0.68) and the obstacles had initial positions of
(0.44,−0.11, 1.08) and (0.43,−0.10, 1.07). The light colored spheres depict the
unsafe set, with the color of the sphere denoting the time as shown in the color
bar. The unsafe set at time t is all spheres between t and t + τe. The smaller
colored spheres show the position of the Crazyflie over time. The wire frame
sphere denotes the target set centered at (0.18,−0.12, 0.67) with radius 0.1m

24

0 0.2 0.4 0.6 0.8 1 1.2

Time (s)

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

D
is

ta
n

c
e

 (
m

)

Distance Between Quadrotor and Obstacles

Test 1 Obstacle 1

Test 1 Obstacle 2

Closest Obstacle Test 1

Closest Obstacle Test 2

Closest Obstacle Test 3

Figure 7.2: Plot of distance between quadrotor and obstacles over time for three
experiment runs. In each experiment, the quadrotor was avoiding two obstacles.
Large jumps in distance are caused by the camera system not capturing one of
the obstacles for a frame, resulting in the further obstacle to become the closest.

25

Chapter 8

Conclusion

In this paper, we presented a set based feedback motion planner for a quadrotor

avoiding bouncing ball like dynamic obstacles with limited obstacle state infor-

mation. Simulation using the hybrid controller and quadrotor model shows the

algorithm’s ability to avoid multiple obstacles while converging to the target. Ex-

perimental results show the algorithm’s feasibility in real world scenarios with

limited computing power and real time constraints.

26

Appendix A

Hybrid Reference Tracking

Controller

The hybrid reference tracking feedback controller is composed of two parts.

The first minimizes position and velocity tracking errors, p0 and v0, and combined

tracking error r̃ for a reference position pr and velocity vr. The tracking errors are

defined as p0 = pr − pa, v0 = vr − va, and r̃ = kpp0 + kvv0. Within the combined

tracking error, the tuning constraints kp and kv are used to determine the weight

of the position and velocity error. Using these errors, an integral state z is defined

within the controller, where

ż = kzDv0(V 0(p0, v0))> (A.1)

V (p0, v0) =
3∑
i=1

1
2

[
σK(r̃i) e>i v0

] [
kv

kp
β −β − β kp

] σK(r̃i)

e>i v0


+
∫ ri

0
σK(ξ)dξ (A.2)

27

with β ∈ (0, kv). The function σK is a K saturation function mapping σK : R→ R.

The second part of the controller seeks to drive the rotation of the quadrotor to

that of the reference trajectory. Since the rotation of the quadrotor determines its

acceleration, the positional controller must change the attitude of the quadrotor

to drive the position and velocity to that of the reference. The rotational error

R1 ∈ SO(3) is therefore defined between the reference trajectory and the rota-

tion determined by the positional controller. The rotation from the translational

controller R0 ∈ SO(3) is

R0 =
I3 + S

(
−S(Rae3) µ

|µ|

)
+
S(−S(Rae3) µ

|µ|)
2

1− e>3 R>a µ
|µ|

Ra (A.3)

The term µ is the output of the feedback law

µ(r, po, vo, z) = ar −


σK(r̃1)

σK(r̃2)

σK(r̃3)

−

σK(z1)

σK(z2)

σK(z3)

− ge3 (A.4)

This rotation error is then defined as

R1 := RaR
>
0 (A.5)

From this rotation error, there exists a unique unit quaternion q1 = [η1, ε1] ∈ S3

with scalar component η1 and vector component ε1 satisfying

R1 = I3 + 2η1S(ε1) + 2S(ε1)2 (A.6)

and quadrotor dynamics defined in [2]. This error quaternion satisfying (A.6) and

the quadrotor dynamics can also be found by the controller using the memory

28

variable q̂1 ∈ S3 as follows

q1 := arg max
p∈(R1)

q̂>1 p. (A.7)

From this error quaternion q1, the angular velocity from the translational con-

troller is defined as

ω0 = −1
2R
>
0 Γ(R)>0 Dt(R0) +R>0 (−ω?0 − kqhε1) (A.8)

ω?0 = 2kzkV0

kh
(η1S(µ)− S(µ)S(ε1))Dv0(V0)> (A.9)

Γ(R) = −
[
S(Re1) S(Re2) S(Re3)

]>

The variable h ∈ {−1, 1} is a logic variable used by the controller to select the

direction of the rotation error. In (A.9), the continuous function V0(p0, v0, z) is

defined as

V0(p0, v0, z) := kzV (p0, v0) +
3∑
i=1

(∫ |zi|

0
σK(ξ)dξ

)
. (A.10)

The tuning constraint kz sets the weight of V (p0, v0) relative to the integral state.

The torque and thrust passed to the quadrotor from these controllers are given

by

f = m|µ| (A.11)

and

M = S(ωa)Jωa + J
(
− kω(ωa − ω0)− khR>0 ε1 +Dt(ω0)

)
. (A.12)

Combining the above equations, the hybrid reference tracking controller Hc =

(Cc, Fc, Dc, Gc) with state

xc =
[
z h q̂1

]>
(A.13)

29

and set of possible states Xc := R3 × {−1, 1} × S3 has data

Cc :=
{
xc ∈ Xc :

(
arg max
p∈Q(R1)

(q̂>1 p), h
)
∈ Q+

δ , dist(q̂1,Q(R1)) < α

}
(A.14)

Fc(xc, r(t)) :=


kzDv0(V 0(p0, v0))>

0

0

 (A.15)

Dc := D1 ∪D2 (A.16)

D1 :=
{
xc ∈ Xc : (arg max

p∈Q(R1)
(q̂>1 p), h) ∈ Q−δ

}

D2 := {xc ∈ Xc : dist(q̂1,Q(R1)) ≥ α}

Gc(xc, r(t)) :=


(z,−h, q̂1) if xc ∈ D1

(z, h, arg maxp∈Q(R1)(q̂>1 p)) if xc ∈ D2

(A.17)

where 0 < α < 1. The sets Q−δ and Q+
δ are defined as Q−δ = {(q, h) ∈ S3 × H :

hη ≤ −δ}, Q+
δ = {(q, h) ∈ S3 × H : hη ≥ −δ} for a constant δ ∈ (0, 1). The

set Q(R) contains all quaternions {q,−q} ⊂ S3 satisfying R(q) = R(−q) = R for

each R ∈ SO(3). For more information, see [2].

30

Bibliography

[1] Olov Andersson, Oskar Ljungqvist, Mattias Tiger, Daniel Axehill, and
Fredrik Heintz. Receding-Horizon Lattice-Based Motion Planning with Dy-
namic Obstacle Avoidance. In 2018 IEEE Conference on Decision and Con-
trol (CDC), pages 4467–4474, December 2018. ISSN: 2576-2370.

[2] P. Casau, R. G. Sanfelice, R. Cunha, D. Cabecinhas, and C. Silvestre. Robust
global trajectory tracking for a class of underactuated vehicles. Automatica,
58:90–98, August 2015.

[3] Cosmin Copot, Andres Hernandez, Thi Thoa Mac, and Robin De Keyse.
Collision-free path planning in indoor environment using a quadrotor. In
2016 21st International Conference on Methods and Models in Automation
and Robotics (MMAR), pages 351–356, August 2016.

[4] Julian Forster. System identification of the crazyflie 2.0 nano quadrocopter.
page 147.

[5] R. Goebel, R. G. Sanfelice, and A. R. Teel. Hybrid Dynamical Systems:
Modeling, Stability, and Robustness. Princeton University Press, New Jersey,
2012.

[6] Björn Lindqvist, Sina Sharif Mansouri, Ali-akbar Agha-mohammadi, and
George Nikolakopoulos. Nonlinear MPC for Collision Avoidance and Control
of UAVs With Dynamic Obstacles. IEEE Robotics and Automation Letters,
5(4):6001–6008, October 2020. Conference Name: IEEE Robotics and Au-
tomation Letters.

[7] Sikang Liu, Nikolay Atanasov, Kartik Mohta, and Vijay Kumar. Search-
based motion planning for quadrotors using linear quadratic minimum time
control. In 2017 IEEE/RSJ International Conference on Intelligent Robots
and Systems (IROS), pages 2872–2879, September 2017. ISSN: 2153-0866.

[8] Mohamed Maghenem and Ricardo G. Sanfelice. Local lipschitzness of reach-
ability maps for hybrid systems with applications to safety. In Proceedings
of the 23rd International Conference on Hybrid Systems: Computation and

31

Control, HSCC ’20, New York, NY, USA, 2020. Association for Computing
Machinery.

[9] Mohamed Mghenem and Ricardo G. Sanfelice. Safety characterization in
hybrid inclusions using barrier functions: poster abstract. In Proceedings of
the 22nd ACM International Conference on Hybrid Systems: Computation
and Control, pages 282–283, Montreal Quebec Canada, April 2019. ACM.

[10] Julián Rascón-Enríquez, Luis Arturo García-Delgado, José R. Noriega, Ale-
jandro García-Juárez, and Eduardo S. Espinoza. Tracking Control for Quad-
Rotor Using Velocity Field and Obstacle Avoidance Based on Hydrodynam-
ics. Electronics, 9(2):233, February 2020. Number: 2 Publisher: Multidisci-
plinary Digital Publishing Institute.

32

	List of Figures
	Abstract
	Introduction
	Preliminaries on Hybrid Systems

	Problem Statement and Outline of Proposed Solution
	Modeling the Obstacles and the Vehicle
	Modeling the Obstacles
	Modeling the Quadrotor and Tracking Controller

	Mathematical problem statement
	The Motion-Planning Algorithm
	Supporting Sets and Constraints
	Problem Reformulation and Algorithm

	Simulations
	Experiments
	Experimental Setup
	Experimental Results

	Conclusion
	Hybrid Reference Tracking Controller
	Bibliography

