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Abstract

On the Role of Information in the Control of Multi-Agent Systems:

A Game Theoretic Approach

by

Bryce L. Ferguson

Due to the emergence of new communication and computation technologies, many

existing systems and infrastructures are experiencing revolutions in their behavior and

capabilities. For example, with the development of self-driving vehicles (which possess the

power to automate driving decisions and coordinate with other automated vehicles on the

road), new traffic patterns take place, and the opportunity to introduce safer and more

efficient driving behavior presents itself. Similarly, with the proliferation of large-language

AI models and access to social media, information can be garnered and exchanged in

new (sometimes unreliable) ways. These systems, among many others, consist of many

human and engineered entities (or agents) interacting and making decisions with the

limited information they possess about one another and the environment they are in;

we will refer to these systems as multi-agent systems. The main goal of this thesis

is to introduce new understandings of the role information plays in several aspects of

multi-agent systems, i.e., the information a system designer possesses about the agents,

the agents’ knowledge of the environment, and the agents’ ability to share information

and coordinate behavior among themselves. The contributions are split into two parts:

the first studies the interactions of designed decision-makers in distributed autonomous

systems, and the second studies behavior in social systems in which decision-makers are

human users. In each setting, we can model the interactions between agents (human or

engineered) through the mathematical framework of game theory. The findings of this
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work reveal several insights on the role of information in multi-agent systems, including 1)

showing to what extent greater information on human-agent preferences and engineered-

agent capabilities can aid in the design phase, 2) proving that revealing information to

agents (human or designed) can worsen system performance unless done carefully, and

3) quantifying the benefits and costs incurred by increasing the level of communication

and collaboration among agents. These insights will be shown through rigorous analysis

of several game-theoretic models.
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Chapter 1

Introduction

1.1 Motivation of This Thesis

The proliferation of high-speed communication and embedded computational intel-

ligence has ushered in a new era for engineers, presenting both opportunities and chal-

lenges. In various engineered domains, once complicated and independent processes are

being re-imagined by the development of technologies that automate decision-making

and the now accessible ability to communicate vast amounts of information very quickly.

For example, in the field of transportation, the development of smart and autonomous

vehicles has led researchers and city planners to consider new driving behaviors that may

be brought on from fleets or platoons of vehicles enabled to communicate and coordinate

driving behavior on the road. Similarly, the use cases of robotics increase immensely

with the ability to have many small, inexpensive robots cooperatively perform tasks as a

fleet. Additionally, individuals’ investments in home and commercial power storage and

generation threaten to disrupt traditional understandings of demand in the power grid by

allowing internet-connected devices to intelligently coordinate charging schedules. These

(and many other) emerging technologies form the basis of a new type of system that
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Introduction Chapter 1

consists of many interconnected components (termed agents); throughout this work, we

will term systems henceforth referred to as multi-agent systems.

Though forming such systems is an achievement in and of itself, the ability to ef-

fectively design and operate a multi-agent system requires a fundamental understanding

of the emergent collective behavior of the many sub-systems and agent decision-making

processes, which may not align with preexisting intuition. This challenge underscores

the purpose of this thesis: developing the fundamental theory of multi-agent systems

and garnering a greater understanding of control opportunities therein. The broad goal

of studying the behavior of multi-agent systems has been the focus of much recent re-

search; the chapters of this thesis primarily focus on the many roles information plays

in determining the emergent behavior of a multi-agent system. Particularly, the formal

analysis outlined in this thesis will seek to address the following questions:

� How does access to greater information about a system/environment aid in design-

ing a multi-agent system?

� How does revealing information to individual agents affect collective behavior?

� What improvements in multi-agent coordination are attainable by allowing agents

to communicate and collaborate in their decision-making?

These questions on the role of information in multi-agent systems have wide-reaching

implications and are the broad focus of this thesis. In each of the previously mentioned

multi-agent systems (fleet robotics, traffic routing, and power grids), several aspects of

behavior and decision-making can be associated with or attributed to different forms of

information. For example, the local sensor measurements for individual drones in a fleet

may be a form of collected information about the environment that can serve as an input

to designed control algorithms. Deciding how these drones interpret, implement, and

2



Introduction Chapter 1

share this information will impact the decisions of each individual drone (or agent) and,

thus, the emergent behavior of the fleet. Alternatively, in transportation, each human

driver may have some personalized response to a new toll lane being added to their

commute. The designer of this toll lane may benefit from modeling the resulting traffic

patterns, which relies on the amount of information they possess about the population

of drivers responding to different incentives that may be deployed. In these two settings,

information plays disparate but vital roles in our understanding of collective behavior in

multi-agent systems.

To study the behavior of a multi-agent system at a more fundamental level, we require

a rigorous set of tools that allow us to model the interactions of many decision-making

entities. For this, the analysis presented in this thesis adopts the framework of game

theory.

1.2 Preliminaries on Game Theory

At a high level, game theory can be described as a mathematical model for the

interactions of rational decision-makers. Though drawing its name from a friendly com-

petition, in the field of game theory, a game is any setting where a set of players interact

and make decisions for their own benefit. This can certainly capture two children play-

ing checkers, taking turns moving pieces to improve their chances of victory; however,

it can also capture a variety of other interactions, such as those of the agents in our

aforementioned multi-agent systems. Formally, a game is defined by a small list of math-

ematical objects: a set of players N = {1, . . . , n}, a set of actions for each player Ai,

and a utility or cost function that maps the collection of each players’ action to some

reward Ui : A1 × · · · × An → R. In itself, this model is very simple, but the particular

nuances of any multi-agent system can be embedded in these primitives (namely, the

3



Introduction Chapter 1

utility functions and action sets), making this framework fit for studying a wide variety

of decision-making problems.

As a field, game theory has developed rapidly over the last century. In 1928, in the

seminal work “On the Theory of Games of Strategy” [22], John Von Neumann studied

the interactions of two directly competing players in zero-sum games and proved (under

certain conditions) the existence of states where neither player could individually alter

their behavior and improve their individual reward. In 1950, John Nash took this idea

further and showed that in games with finitely many players (under certain conditions),

there exist states (now termed Nash equilibria) where no player can unilaterally deviate

their action to improve their reward [23]. Later still, in 1996, Dov Monderer and Lloyd

Shapley introduced the class of potential games, in which there exists an alignment of

the players’ objectives that gives rise to the existence of pure Nash equilibria and desir-

able convergence properties [24]; many of the studies in this thesis are within classes of

potential games in part thanks to the natural alignment of decision-making in engineered

and social multi-agent systems. Great amounts of research have gone on to study the

repeated [25], sequential [26], and dynamic [27] nature of decision making, different mar-

kets and environments in which agents interact [28], and, more recently, the interactions

of multiple learners [29].

Game theory has long had a presence in the field of economics. The immediate

application of game theory to problems of competing firms or corporations initiated new

disciplines of microeconomics, including mechanism design [30], matching markets [31],

the formation of conventions [27], and more. Game theory also helped unify several

existing principles such as Cournot competitions of competitively priced goods [32] and

welfare economics [33]. However, despite its common association, game theory is not a

tool restricted only to economists; the general mathematical framework has more recently

been used in several new domains.

4
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At the turn of the millennium, algorithmic game theory emerged in computer science

departments. As an extension of research on computer algorithms, game theory provided

a blueprint to describe the solution concepts of algorithms run in a distributed fashion.

One key concept that propelled the growth of algorithmic game theory was the introduc-

tion of the price of anarchy [34], which–defined informally–measures the degradation in

performance caused by a system’s agents making decisions locally as opposed to centrally.

Such a performance metric (or approximation ratio of selfish/distributed behavior) al-

lowed researchers to quantify the effects of previously acknowledged phenomena such as

the tragedy of the commons [143], the cost of selfish routing [35], and the inefficiency

of distributed algorithms [36]. At the same time, researchers in the field of automation

and control were embracing the new solution concept of Nash equilibrium within the

context of distributed dynamical systems [37, 38, 39], where largely the stability of and

convergence to Nash equilibria was evaluated in various dynamical systems. With the

evolution of these two new focuses of game theory research, when used in tandem, one

can formally describe the behavior and performance of a variety of multi-agent systems.

The expansion of game theory into engineering fields not only allows for cross-disciplinary

research but also enables researchers to more effectively address a variety of emerging

problems.

1.3 Game Theoretic Problems in Controls

The field of controls seeks to develop rules for algorithms that guide the behavior

of various cyber and physical systems. In expanding the breadth of systems to which

control theory can be applied and developed, game theory emerges as a framework to

help formalize several new challenges:

Distributed Control - In large-scale autonomous systems, it may be difficult or infeasi-

5



Introduction Chapter 1

ble to design and implement a control policy that simultaneously regulates the numerous

system components (e.g., a fleet of autonomous vehicles). To reduce complexity and com-

munication costs, a control designer may opt to implement more simple, local algorithms

that will allow each device to operate (e.g., each autonomous vehicle possessing onboard

self-driving software). If each local control algorithm is designed to optimize a defined

objective, then the interactions of the many automated components can be studied as a

mathematical game. Thus, the Nash equilibrium becomes a solution concept that can be

used to understand the emergent behavior of these new distributed autonomous systems,

such as autonomous vehicles, fleet robotics, and the Internet of Things.

Social Modeling - In many societal-level systems, a system operator may not be em-

powered to design and automate every facet of the system, rather some decisions may

be made by the system’s human users. To develop control algorithms that operate in

these environments, a system operator needs some understanding of not only how hu-

mans have previously behaved but also how they will react to various design choices.

For this, game theory again offers relevant opportunities, now in its ability to model the

interactions of human decision-makers, around which a control engineer can design. This

role of game theory has already proven useful in a variety of domains, particularly in

studying shared utilization and congestion in traffic, supply chain resource management,

and power demand, where congestion game models the negative consequences of users’

overlapping decisions and Wardrop equilibria serve as a simple model for the system’s

emergent behavior [151].

Robust Optimization - Some problems are posed and solved without even knowing their

game theoretic connections. A common problem in engineering is to select system pa-

rameters whilst being cognizant of various risks. To formulate this, one may transcribe

a minimax problem (of the form mina∈Amaxb∈B C(a, b)), in which one seeks to find an

optimal parameter (a) that minimizes a cost function (C) given the worst possible realiza-

6
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tion of some hazard or unknown feature (b). The solution and value of this optimization

problem provide a decision and guarantee that is robust to the risk of any hazard occur-

ring. This form of worst-case analysis is valuable in many settings like risk minimization,

Chebyshev centers and other spatial reasoning, pursuit evasion, and adversarial security.

The minimax problem has grown from the study of zero-sum games [22], in which two

players make decisions with oppositely aligned objectives. The equilibria of these games

are precisely the solutions to the minimax problem.

These emerging and existing problems have made game theory increasingly relevant

in many areas of engineering and computer science. As such, the contributions of this

thesis aim to further develop the existing understanding of game theory in control, par-

ticularly revolving around newly introduced aspects of information and communication.

Specifically, the forthcoming chapters will study how altering the amount of available

information and introducing new communication channels can affect the quality of solu-

tions offered via game theoretic approaches. This thesis will be divided into two parts:

the first will focus on the interactions of designed, autonomous agents, and the second

will focus on human agents with which we have a limited ability to influence.

1.4 Outline of Chapters

The thesis is divided into two parts, each consisting of three chapters. Part 1 is focused

on the use of game theory to understand the performance of distributed algorithms in

multi-agent systems. Part 2 studies control and influencing mechanisms in social systems

modeled by games. In each, the aforementioned aspects of information are explored,

namely, what value information possesses at the design phase and what opportunities a

system operator has in exploiting communication channels as a method of control. For

posterity and the ability of each chapter to stand alone, the chapters are largely unaltered
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from the published work on which they are based. The contributions of each are outlined

as follows:

Part 1: Multi-Agent Optimization and Distributed Resource Allocation

The first part of this thesis contains three chapters, each studying the distinct role of in-

formation in systems of many agents designed to optimize a prescribed objective function.

Each work offers some general insights but delves further into the model of distributed

resource allocation. In a distributed resource allocation problem or resource allocation

game, each agent must select which resources to ‘utilize’ from a shared set of resources.

Agents’ alignment in their decisions can be penalized or rewarded to model settings where

agents’ overlap is desirable or to be avoided. In this class of problems, the three chapters

are as follows:

Chapter 2: Collaborative Decision-Making and the k-Strong Price of Anarchy in Common

Interest Games - This chapter explores the benefits and costs of increasing communication

and coordination among agents. By allowing agents to coordinate in their decision-

making, new, stronger notions of equilibria become stable. This chapter studies the

added benefit to equilibrium welfare and added computational complexity incurred by

designing agents to coordinate. The contributions of this chapter originally appeared in

[1].

Chapter 3: The Cost of Informed Decision Making in Multi-Agent Maximum Coverage

Problems - In many settings, agents need not have full information about their environ-

ment. This chapter studies whether increasing the amount of information the agents of

a multi-agent system have is beneficial or detrimental. It is shown that increasing the

knowledge of the system state can actually induce less desirable equilibria and thus harm

system performance. However, the best-case equilibrium always improves. The trade-off

between improving the performance of best-case equilibria and worsening worst-case equi-

libria is explored via utility design. The contributions of this chapter originally appeared

8



Introduction Chapter 1

in [3].

Chapter 4: Robust Utility Design in Distributed Resource Allocation Problems with De-

fective Agents - If agents become defective, they may not just cause issues locally but can

cascade issues across the agents they interact with. This chapter studies how a subset of

the agents becoming defective (i.e., not contributing to the system welfare but still inter-

acting with other agents) can alter the global dynamics. First, the drop in equilibrium

welfare caused by the presence of defective agents is bounded. Then, agents’ utilities are

designed to encourage overlap in the case of defective agents among the group. Finally,

the trade-off between designing for the presence or absence of defective agents is explored

via utility design. The contributions of this chapter originally appeared in [4].

Part 2: Congestion Control and Social Influencing

In the second part of this thesis, rather than focusing on the interactions of designed

autonomous agents, we focus on the challenge of influencing human agents. Human

agents possess their own individual preferences and cannot have their behavior directly

dictated to them. Instead, to alter the decision-making and collective behavior of social

systems, we need to consider the design of mechanisms that influence behavior. Suc-

cessfully performing this influence relies on the amount of information available to the

system operator. We study the facets of information in social influence in several ways,

largely in the context of congestion games.

Chapter 5: The Effectiveness of Subsidies and Tolls in Congestion Games - Monetary

incentives are a direct approach to influencing human behavior; however, two such in-

centives exist: subsidies and tolls. In this chapter, we study the relative performance of

subsidies and tolls in influencing social behavior under budgetary constraints and when

users’ responses to incentives are uncertain. Subsidies outperform tolls under similar

budgetary constraints with little heterogeneity; however, as the amount of heterogeneity

increases, tolls prove to be more robust. The contributions of this chapter originally

9
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appeared in [5].

Chapter 6: Information Signalling with Concurrent Monetary Incentives in Bayesian

Congestion Games - A less direct mechanism of influencing human behavior is to strate-

gically reveal information as a way to shape the population’s beliefs. In this work, we

consider a model of Bayesian persuasion where an information source can strategically

signal information to agents as a mechanism to shape posterior beliefs and behavior. We

show that revealing truthful information can sometimes be harmful. To remedy this,

we consider the concurrent use of monetary incentives and show that with appropriately

designed incentives, system performance is guaranteed to improve. The contributions of

this chapter originally appeared in [2].

Chapter 7: Value of Information in Incentive Design: A Case-Study in Simple Conges-

tion Networks - In designing any influencing mechanism, a system designer’s effectiveness

is conditioned on their understanding of the system in which they work. In this chap-

ter, we study the capabilities of a toll designer in various informational environments.

We quantify the value of different pieces of information (such as information about the

population of users or information about the network in which they interact) and pro-

vide a comparative analysis of which is more valuable. The contributions of this chapter

originally appeared in [8].

This work was supported by Office of Naval Research under Grant #N00014-20-

1-2359, Air Force Office of Scientific Research under Grants #FA95550-20-1-0054 and

#FA9550-21-1-0203, Army Research Lab through ARL DCIST CRA #W911NF-17-2-

0181, National Science Foundation under Grant #ECCS-1638214, French National Re-

search Agency (ANR) under Grant # ANR-19-CE48-0018-01.
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Chapter 2

Collaborative Decision-Making and

the k-Strong Price of Anarchy in

Common Interest Games

The control of large-scale, multi-agent systems often entails distributing decision-making

across the system components. However, with advances in communication and compu-

tation technologies, we can consider new collaborative decision-making paradigms that

bridge centralized and distributed control architectures. In this section, we seek to un-

derstand the benefits and costs of increased collaborative communication in multi-agent

systems. We specifically study this in the context of common interest games in which

groups of up to k agents can coordinate their actions in maximizing a common objective

function. The equilibria that emerge in these systems are the k-strong Nash equilibria

of the common interest game; studying the properties of these states provide relevant

insights into the efficacy of inter-agent collaboration. Our contributions come threefold:

1) provide bounds on how well k-strong Nash equilibria approximate the optimal system

welfare, formalized by the k-strong price of anarchy, 2) prove the run-time and transient
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performance of collaborative agent-based dynamics, and 3) introduce techniques of re-

designing objectives for groups of agents which improve system performance. We study

these three facets generally as well as in the context of resource allocation problems, in

which we provide tractable linear programs that give tight bounds on the k-strong price

of anarchy.

2.1 Introduction

Large-scale systems such as transportation services [40], robotic fleets [41], supply

chains [42], or cloud computing services [43] can be challenging to design effective control

schemes for due to their many components and vast scale. The two prevailing paradigms

to design control schemes are centralized control [44, 45, 46], which guides behavior across

the entire system and distributed control [47, 48, 49], which allows local components

to guide their own behavior. Each of these approaches possesses respective pros and

cons: centralization allows for more direct manipulation of system behavior at the cost

of greater communication and computation requirements, while decentralization reduces

the communication and computation requirements but cannot always attain the desired

system behavior. With advancements of small computers and communication technolo-

gies [50, 3, 51, 52], we are enabled to design new paradigms that exist between centralized

and distributed control.

Specifically, we study the efficacy of learning in multi-agent systems when individ-

ual system components (or agents) can partially communicate and thus coordinate their

behavior. Many engineering domains are on the precipice of enabling these collabora-

tive paradigms; for example, autonomous vehicle platoons with connected cruise con-

trol [53], unmanned aerial surveillance vehicles with range-limited communication [54],

and cloud computing networks with emerging distributed learning techniques [55]. In
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Figure 2.1: Illustration of the k-strong Nash equilibrium local optimality guarantee
for a 3 agent matrix game where k ∈ {1, 2, 3}. In each case, if the dark cube is a
k-strong Nash equilibrium, then it is an optimal joint action over the highlighted re-
gion. As k (the size of collaborative groups) increases, the local optimality is strength-
ened by holding over all k-lateral deviations.

each of these settings, inter-agent communication and collaboration offer the opportunity

to improve the performance attainable by the system as a whole; however, implement-

ing these frameworks incurs costs that are both monetary–in the form of the additional

technology required–and computational–in the form of more complex decision-making

algorithms. In this section, we provide tools to help better understand the benefits and

costs associated with collaborative communication in multi-agent systems.

We model a multi-agent system as a common interest game where some (but not

all) groups of agents can collaborate in selecting their actions to maximize the system

welfare. We particularly focus on the case where a collaborative action takes the form of

a group best response, i.e., a group of agents updating their actions in response to the

remaining players’ actions. As the size and number of these collaborative groups increase,

a coordinated group decision has a larger impact on system behavior. To range the level of

collaboration between the fully distributed setting (where no agents can collaborate) and

the fully centralized setting (where all agents can collaborate collectively), we consider the

cases where groups of up to k agents can collaborate. In these collaborative environments,

a stable state of the system is that of the k-strong Nash equilibrium [56]. Researchers

have studied the existence [57] and computation [58] of strong Nash equilibria in settings
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including congestion games [59], lexicographical games [60], and Markov games [61]. This

section applies these concepts to multi-agent systems. To understand the possible benefits

of collaboration to system performance, we quantify how well k-strong Nash equilibria

approximate the optimal welfare, termed the k-strong price of anarchy [62, 63]. To

understand the possible cost of collaboration, we analyze the running time and transient

performance of agent-based dynamics, which converge to k-strong Nash equilibria.

Distributed learning in games has been a widely studied area in controls [64], but the

ability to reach equilibrium with coalitional best responses has not yet been studied; sim-

ilarly, the efficient computation of a k-strong Nash equilibrium has largely been studied

from a centralized perspective [58]. Quantifying the k-strong price of anarchy has been

studied in network formation games [62, 63] and load balancing games [65, 66, 67], as

well as more general utility maximizing games [68, 69]. In many of these, the bounds are

either not tight or only hold in the limit of large numbers of players.

Organization - In this section, we provide tools to understand the benefits and costs

of collaborative communication by studying the qualities of k-strong Nash equilibria. In

Section 2.3.1, we consider the case where groups of agents are designed to maximize

the system welfare and introduce the notion of (λ, µ)-k-coalitionally smooth games (a

generalization of smooth games [70] and coalitionally smooth games [68]), and provide

bounds on the k-strong price of anarchy. Then, in Section 2.3.2, we focus on the well

studied setting of distributed resource allocation problems [36, 71, 72, 73, 74, 4], and

provide tight bounds on the k-strong price of anarchy via the solution of a tractable

linear program. Fig. 2.3 plots these bounds and demonstrates how increased collabora-

tion improves efficiency guarantees in several classes of resource allocation problems. In

Section 2.4, we consider the effects of group decision-making on agent-based dynamics;

specifically, we show the added run-time complexity of coalitional round-robin dynamics

and provide transient performance guarantees of asynchronous best response dynamics.
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We support our findings with numerical examples, which highlight that collaborative

agent-based dynamics provide better performance but require more evaluations of the

system’s welfare. In Section 2.5, we consider that the system operator may be able to

design the agents’ objective separately from the system welfare; we provide a generalized

technique for bounding the k-strong price of anarchy in this setting. In Section 2.5.2, we

again focus on the setting of resource allocation and provide two linear programs to lower

and upper bound the attainable k-strong price of anarchy guarantee via utility design.

2.2 Preliminaries

Throughout, we will denote [n] = {1, . . . , n}. We will regularly use the binomial

coefficient
(
n
k

)
= n!

(n−k)!k! in constructing optimization problems; we define this value as 0

when n < k for ease of notation.

2.2.1 Collaborative Decision Making

Consider a finite set of agents N = {1, . . . , n}. Each agent i ∈ N selects an action

ai from a finite action set Ai. When each agent selects an action, we will denote their

joint action by the tuple a = (a1, . . . , an) ∈ A = A1 × · · · × An. Let G = (N,A) be a

tuple encoding the components of the agent environment. The system’s performance is

dictated by the agents’ actions; as such, for each joint-action a we assign a system welfare

W (a) where W : A → R≥0 is the system designer’s objective function. With this, we

let the tuple (G,W ) denote a multi-agent system (often referred to as a system) which

defines the primitives of the system designer’s problem of designing an effective control

algorithm.

The system designer would like to configure the agents to reach a joint action that
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maximizes the system welfare, i.e.,

aopt ∈ argmax
a∈A

W (a). (2.1)

Though this system state is ideal, it may be difficult to attain as 1) solving for the optimal

allocation can be combinatorial and in some cases (including those from Section 2.3.2)

NP-hard [36], and 2) it requires a centralized authority to control all agents, which may

be practically or logistically difficult. To resolve this, we will consider that agents make

decisions in a decentralized manner.

Fully distributing the decision-making involves designing each agent to update their

action locally and has been widely studied and developed to guarantee reasonable system

behavior [47]; however, fully distributing decision-making may often become unneces-

sary as emerging communication technologies enable collaborative inter-agent decision-

making [50]. To implement one such collaborative system architecture, a system operator

must make two decisions: 1) which group of agents can collaborate on their decisions

(possibly subject to some operational constraints), and 2) how the agents should collab-

orate on their decisions. A natural choice for the latter is a group best response. Let

Γ ⊆ N be a group of agents endowed with the ability to collaboratively select a group

action aΓ ∈ AΓ =
∏

i∈ΓAi, which they select by maximizing the system welfare over their

group action-set,

aΓ ∈ argmax
a′Γ∈AΓ

W (a′Γ, a−Γ), (2.2)

where a−Γ denotes the actions of the players i ∈ N \ Γ. If there are multiple elements in

the argmax, the group breaks them at random unless they can remain with their current

action.

Intuitively, a group best responding and collaboratively maximizing the system wel-
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fare should lead to direct improvements to system performance; however, one can consider

other group decision-making rules as well. In particular, in Section 2.5, we will consider

that the system designer can design the agents’ objective separately from the system

objective as a means to further shape system behavior. In either case, one would imagine

that the greater the collaborative structure, the greater the impact on emergent behavior.

For the system operator’s decision over which groups should collaborate, let C ⊆ 2N

denote the collaboration set, or the set of groups of agents (Γ ∈ C) able to collaborate

their decisions. These collaborations can overlap–where agents can partake in multiple,

disparate collaborations–and vary in size. For example, if agents send signals through

a communication network [75], we will have C = {(i, j) ∈ N2 | (i, j) ∈ E} where E are

the edges in a communication graph. If agents are allowed to communicate with each

other one at a time and make pairwise decisions [76], then C = {(i, j) ∈ N2}. If agents

can only communicate with others within a local proximity [77], then C = {Γ ⊆ N |

ρ(i, j) ≤ d ∀i, j ∈ Γ} where ρ measures the distance between two agents and d is a

maximum communication range. Once the system operator decides on the collaborative

structure and the group decision-making protocol, the agents’ decision-making process

forms a collaborative multi-agent system, denoted by the tuple (G,W, C).

As we vary the number and size of collaborative sets, we can consider control paradigms

somewhere between centralized (i.e., {N} ∈ C) and fully distributed (i.e., C =
⋃
i∈N{i}).

This section seeks to understand the efficacy of different levels of communication/ col-

laboration. To more effectively quantify this, we consider a specific type of collaboration

set in which we can range between the centralized and distributed extremes.
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Figure 2.2: Strong Price of Anarchy in resource covering games with n = 20 players
and coalitions up to size k (horizontal axis). As the size of groups that are allowed to
collaborate grows, so too does the approximation ratio (i.e., strong price of anarchy) of
a k-strong Nash equilibrium. The efficiency of an equilibrium can be further improved
by designing the utility functions agents are set to maximize. The solid green line is
the k-strong price of anarchy when agents maximize the system objective (generated
by Theorem 2.3.1). The dashed red line is an upper bound on the k-strong price of
anarchy while using an optimal utility design (generated by Proposition 2.5.2).

2.2.2 k-Strong Nash Equilibria

We consider the collaboration sets that contain groups of agents up to size k. Let

Ck = {Γ ⊆ N | |Γ| = k} denote the subsets of exactly k agents and C[k] =
⋃
ζ∈[k] Cζ be the

subsets that contain at most k agents. When k = 1, we recover the fully distributed

setting, and when k = n, we recover the fully centralized setting. As we vary k between

1 and n, we sweep through different levels of communication and collaboration.

In the game-theoretic approach to multi-agent systems, a Nash equilibrium is a joint

action where no agent can unilaterally deviate their action to improve the system wel-

fare [56]. We generalize this concept to the setting of collaborative decision-making by

considering a k-strong Nash equilibrium as a joint action where no group of k agents can

deviate their group’s actions to improve the welfare.

Definition 1. A joint-action akSNE ∈ A is a k-strong Nash equilibrium for the common-
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interest game (G,W, C[k]) if

W (akSNE) ≥ W (a′Γ, a
kSNE
−Γ ), ∀a′Γ ∈ AΓ, Γ ∈ C[k]. (2.3)

Let kSNE(G,W ) ⊆ A denote the set of all k-strong Nash equilibria. This definition

differs slightly from the literature, where k-strong Nash equilibria are defined by no group

of agents deviating to a new group action that is Pareto-optimal for the group (i.e.,

no agent receives a lower payoff with respect to their individual utility function) [56];

when the agents respond to a common interest objective, the definitions are equivalent.

Additionally, in general games, k-strong Nash equilibria need not exist; however, that

is not the case in our setting due to the common-interest structure we impose on agent

decision-making.

Proposition 2.2.1. In a system (G,W ) with collaboration set C[k] for any k ∈ [n], a

k-strong Nash equilibrium exists.

The proof appears in the Appendix A.1.

The main focus of this section is understanding how equilibrium performance changes

with the level of collaborative communication. Notice that (2.3) serves as a local opti-

mality guarantee in the neighborhood of k-lateral deviations. Fig. 2.1 depicts this for

a three-player matrix game; when k = 1, a 1-strong Nash equilibrium is optimal over

the unilateral deviations, when k = 2 a 2-strong Nash equilibrium is optimal over the

bilateral deviations, and when k = 3 = n, the 3-strong Nash equilibrium is optimal over

the whole joint-action space. From this, we observe that the local optimality guarantee is

strengthened as we increase the level of collaboration k (i.e., k′SNE ⊆ kSNE for k′ > k).

To quantify the effect of varying k on equilibrium performance, we consider the ra-

tio of worst-case equilibrium welfare and the optimal attainable welfare, termed the
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k-strong price of anarchy.

SPoAk(G,W ) =
minakSNE∈kSNE(G,W )W (akSNE)

maxaopt∈AW (aopt)
∈ [0, 1], (2.4)

where we let 0/0 be defined as 1 to ignore the degenerate case when no welfare is

attainable. In the multi-agent system (G,W ) with communication structure C[k], ev-

ery k-strong Nash equilibrium approximates the optimal solution at least as well as

SPoAk(G,W ). Accordingly, we will use the k-strong price of anarchy to understand the

efficiency associated with collaborative decision-making. For example, in Fig. 2.2, we

depict the k-strong price of anarchy in resource covering games [36] for 1 ≤ k ≤ n,

illustrating the performance guarantees attainable between centralized and distributed

control paradigms.

2.2.3 Summary of Contributions

This section studies the benefits and costs of increased collaborative communication

within multi-agent systems. Our contributions come threefold:

1) In Section 2.3, we provide tools to quantify the k-strong price of anarchy when agents

optimize the system objective. We introduce (λ, µ)-k-coalitionally smooth games and

provide a k-strong price of anarchy guarantee using the parameters λ and µ. We then

focus on the class of resource allocation games, where in Proposition 2.3.2, we show

that these parameters can be found via the solution to a tractable linear program. In

Theorem 2.3.1, we show that combining the constraints of each of the k linear programs

gives a tight bound. Figure 2.3 depicts the k-strong price of anarchy for several classes

of resource allocation games.

2) In Section 2.4, we study collaborative dynamics that reach these equilibria. In Sec-

tion 2.4.1, we introduce the coalitional round-robin dynamics and show that an equi-
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Figure 2.3: Tight k-strong price of anarchy bounds for resource allocation games
with various welfare functions. We illustrate four settings of local welfare function
(top, left to right), and for each, we use Theorem 2.3.1 to generate tight bounds on
the k-strong price of anarchy for all 1 ≤ k ≤ n. The bottom figures show these
bounds and illustrate how increased inter-agent collaboration increases our efficiency
guarantees on equilibrium system welfare.

librium is reached in a finite number of best responses and that the number of welfare

comparisons grows with a small-base exponential of k. In Section 2.4.2, we introduce the

asynchronous coalitional best response dynamics, which we show converge almost surely.

Further, if the game is (λ, µ)-k-coalitionally smooth , then we provide a bound on the

transient performance (or the cumulative welfare along the dynamics). We support these

findings with a numerical study in Section 2.4.3.

3) In Section 2.5, we consider how to improve the design of a group’s decision-making

process. By providing the agents with a new, designed objective function, the system

designer may alter the set of equilibria and ideally increase the k-strong price of anarchy.

In Section 2.5.1, we generalize the notion of coalitional smoothness to the setting where

the agents’ objective differs from the system welfare, and in Theorem 2.5.1, we show how

we can construct an optimal utility rule. Fig. 2.5 shows the k-strong price of anarchy

under the optimal utility design for resource allocation games, demonstrating the added

benefit of designing how groups of agents make decisions.
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2.3 Quantifying k-Strong Price of Anarchy

2.3.1 Coalitionally Smooth Games

We first consider the efficiency of k-strong Nash equilibria for general multi-agent

systems. This efficiency–quantified by the k-strong price of anarchy–is conditioned on

the system welfare W and the agent decision-making environment G. In Definition 2, we

provide a condition on a system (G,W ) that will be useful in bounding the k-strong price

of anarchy.

Definition 2. A system (G,W ) is (λ, µ)-k-coalitionally smooth , where λ, µ ∈ Rk
≥0, if

for all a, a′ ∈ A

1(
n
ζ

) ∑
Γ∈Cζ

W (a′Γ, a−Γ) ≥ λζW (a′)− µζW (a), ∀ζ ∈ [k]. (2.5)

In (2.5), we provide a constraint on the welfare function stating that the average

effect of a group of size ζ deviating their action from a to a′ is lower bounded by a linear

combination of the welfare of a and a′. The term smooth is in reference to the welfare

function’s change over the joint-action space being bounded by (2.5). Additionally, Def-

inition 2 extends the classic notion of smooth games [70] and coalitional smoothness for

strong equilibria [68] to the setting of k-coalitions in common interest games.

In effect, every system (G,W ) is smooth with λζ = µζ = 0 for all ζ ∈ [k], but some

parameters (λ, µ) are more useful than others. In Proposition 2.3.1, we show that the

parameters λ and µ from Definition 2 can be used to lower bound the k-strong price of

anarchy.

Proposition 2.3.1. A system (G,W ) that is (λ, µ)-k-coalitionally smooth has k-strong
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price of anarchy satisfying

SPoAk(G,W ) ≥ λζ
1 + µζ

, ∀ζ ∈ [k]. (2.6)

Proof. Let akSNE ∈ A denote a k-strong Nash equilibrium in the system (G,W ) (i.e.,

satisfying Definition 1), and let aopt ∈ argmaxa∈AW (a) denote an optimal joint action.

For any ζ ∈ [k], we have

W (akSNE) =
1(
n
ζ

) ∑
Γ∈Cζ

W (akSNE) (2.7a)

≥ 1(
n
ζ

) ∑
Γ∈Cζ

W (aoptΓ , akSNE
−Γ ) (2.7b)

≥ λζW (aopt)− µζW (akSNE). (2.7c)

Where (2.7a) holds from |Cζ | =
(
n
ζ

)
, (2.7b) holds from Definition 1, and (2.7c) holds from

Definition 2. Rearranging, we get W (akSNE)/W (aopt) ≥ λζ/(1 + µζ).

(2.6) provides k lower bounds on the k-strong price of anarchy, i.e., a k-strong Nash

equilibrium approximates the system optimal at least as well as maxζ∈[k]{λζ/(1 + µζ)}.

Often, the best lower bound is provided by ζ = k; however, this is not true in general.

As such, we must consider each of the constraints in (2.5) to derive the best bounds.

The efficiency bounds of this form are valuable for several reasons, including: 1)

they can be used to provide insights on the transient guarantees of various multi-agent

dynamics (see Section 2.4, 2) they easily generalize to broader equilibrium concepts

(subject of future work), and 3) if parameters (λ, µ) can be shown to satisfy (2.5) for

a set of systems S, then each system (G,W ) ∈ S inherits the efficiency guarantee of

(2.6). This last point is particularly pertinent, as system models may be subject to

noise, mischaracterizations, or changes over time. If the efficiency guarantee holds across
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many similar systems, then the guarantees are essentially robust to these issues.

In the Section 2.3.2, we will provide methods to find coalitional smoothness parame-

ters for classes of resource allocation games via tractable linear programs.

2.3.2 Resource Allocation Games

In this section, we consider the well studied class of resource allocation games [72,

36, 73, 74, 78]. Consider a set of resources or tasks R = {1, . . . , R}, to which agents are

assigned, i.e., agent i ∈ N selects a subset of these resources as its action ai ⊆ R from a

constrained set of subsets Ai ⊆ 2R. Each resource r ∈ R has a value vr ≥ 0; the welfare

contributed by a resource is vrw(|a|r), where w : {0, . . . , n} → R≥0 captures the added

benefit of having multiple agents assigned to the same resources and |a|r is the number of

agents assigned to r in allocation a. Assume that w(0) = 0 as no welfare is contributed

by resources assigned to zero agents and further that w(y) > 0 for all y > 0. The system

welfare is thus

W (a) =
∑
r∈R

vrw(|a|r). (2.8)

For ease of notation, we will refer to the system welfare by the local welfare rule w, noting

in the agent-environment G, it generates a welfare function W via (2.8).

As discussed in 2.3.1, we wish to find efficiency bounds that hold over a class of

resource allocation problems. Let G = (R, N,A, {vr}r∈R) denote a resource allocation

problem, and let Gn denote the set of all such resource allocation problems with at most

n agents. In Proposition 2.3.2, we propose a tractable linear program whose solution

provides parameters (λ, µ) which satisfy Definition 2 for every system (G,w) ∈ Gn×{w}.

From Proposition 2.3.1, this also provides a lower bound on the k-strong price of anarchy

for the class of resource allocation problems with local welfare w.

Proposition 2.3.2. Each resource allocation problem (G,w) ∈ Gn × {w} is (λ, µ)-k-
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coalitionally smooth with λζ = 1/ν⋆ζ and µζ = ρ⋆ζ/ν
⋆
ζ − 1, where (ρ⋆ζ , ν

⋆
ζ ) is a solution to

the linear program (Pζ):

(ρ⋆ζ , ν
⋆
ζ ) ∈ argmin

ρ≥ν≥0
ρ

s.t. 0 ≥ w(o+x)− ρw(e+x)+

ν


(
n

ζ

)
w(e+x)−

∑
0≤α≤e
0≤β≤o
α+β≤ζ

(
e

α

)(
o

β

)(
n−e−o
ζ−α−β

)
w(e+x+β−α)


∀(e, x, o) ∈ I (Pζ)

The constraints are parameterized by the triples I := {(e, x, o) ∈ N3
≥0 | 1 ≤ e +

x+ o ≤ n}. With the possibility of collaboration, an equilibrium becomes more difficult

to characterize than in a fully distributed setting. We circumvent this by introducing

a parameterization which allows us to generalize the O
(∑k

ζ=1

(
n
ζ

)
mζ
)

comparisons of

(2.3) (where m := maxi∈N |Ai|) into O(n3) linear inequalities. Further, satisfying these

inequalities provides parameters (λζ , µζ) that satisfy Definition 2, leading to (Pζ) as a

search for such parameters with the best k-strong price of anarchy guarantee.

Proof of Proposition 2.3.2: The proof largely relies on introducing a parameterization

that lets us treat (2.5) as a set of linear constraints. Consider a resource allocation game

(G,w) ∈ Gn × {w} and any two actions a, a′ ∈ A. To each resource r ∈ R, we assign a

label (er, xr, or), where

er = |{i ∈ N | r ∈ ai \ a′i}|

xr = |{i ∈ N | r ∈ ai ∩ a′i}|

or = |{i ∈ N | r ∈ a′i \ ai}|.
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This is to say, er denotes the number of agents utilizing resource r in joint action a but

not a′, or is the number that uses resource r in joint action a′ but not a, and xr is the

number that uses r in both a and a′. In the set of games Gn, let I = {(e, x, o) ∈ N3
≥0 |

1 ≤ e+x+ o ≤ n} denote the set of possible labels, and θ(e, x, o) :=
∑

r∈R(e,x,o)
vr, where

R(e,x,o) = {r ∈ R | er = e, xr = x, or = o} denotes the set of resources with label (e, x, o).

The parameter θ ∈ R|I|
≥0 is a vector with elements for each label.

We will now express the terms in (2.5) using this parameterization. Because W (a) =∑
r∈R vrw(|a|r) depends only on the number of agents utilizing a resource, we can repre-

sent |a|r = er + xr and write the system welfare as

W (a) =
∑
r∈R

vrw(er + xr)

=
∑

(e,x,o)∈I

( ∑
r∈Re,x,o

vr

)
w(e+ x)

=
∑
e,x,o

θ(e, x, o)w(e+ x).

When not stated, the sum over (e, x, o) is implied to be for each label in I. Similar steps

can be followed to show W (a′) =
∑

e,x,o θ(e, x, o)w(o+ x).

Finally, the term
∑

Γ∈Cζ W (a′Γ, a−Γ) can similarly be transcribed by this parameteri-
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zation:

∑
Γ∈Cζ

W (a′Γ, a−Γ)

=
∑
Γ∈Cζ

∑
e,x,o

∑
r∈R(e,x,o)

vrw(|a′Γ, a−Γ|r)

=
∑
e,x,o

∑
r∈R(e,x,o)

vr
∑
Γ∈Cζ

w(|a′Γ, a−Γ|r)

=
∑
e,x,o

∑
r∈R(e,x,o)

vr
∑

0≤α≤e
0≤β≤o
α+β≤ζ

(
e

α

)(
o

β

)(
n−e−o
ζ−α−β

)
w(e+x+β−α)

=
∑
e,x,o

θ(e, x, o)
∑

0≤α≤e
0≤β≤o
α+β≤ζ

(
e

α

)(
o

β

)(
n−e−o
ζ−α−β

)
w(e+x+β−α)

where the set of coalitions Cζ was partitioned according to the action profile of the agents

in each coalition. We let α denote the number of agents in Γ that utilize resource r only

in joint action a and β the number of agents in Γ that utilize r only in joint action a′. By

simple counting arguments, there are exactly
(
e
α

)(
o
β

)(
n−e−o
ζ−α−β

)
coalitions grouped with the

same α and β. This decomposition is possible as the number of agents utilizing resource

r after a group Γ deviates is precisely e+ x+ β − α.

The smoothness constraint (2.5) is satisfied only if

1(
n
ζ

)∑
e,x,o

θ(e, x, o)
∑

0≤α≤e
0≤β≤o
α+β≤ζ

(
e

α

)(
o

β

)(
n−e−o
ζ−α−β

)
w(e+x+β−α)

≥ λζ
∑
e,x,o

θ(e, x, o)w(o+ x)− µζ
∑
e,x,o

θ(e, x, o)w(e+ x).
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As θ(e, x, o) ≥ 0 for all (e, x, o) ∈ I, it is sufficient to satisfy

1(
n
ζ

) ∑
0≤α≤e
0≤β≤o
α+β≤ζ

(
e

α

)(
o

β

)(
n−e−o
ζ−α−β

)
w(e+x+β−α)

≥ λζw(o+ x)− µζw(e+ x), ∀(e, x, o) ∈ I. (2.9)

Observe that (2.9) is independent of a, a′, and G. As such, this set of constraints serves

as a sufficient condition that any G ∈ Gn satisfies (2.5) for all respective a, a′ ∈ A.

To find parameters λζ and µζ that provide the best k-strong price of anarchy guar-

antee, we formulate the following optimization problem:

max
λζ ,µζ≥0

λζ
1 + µζ

(P1ζ)

s.t. (2.9)

We restrict λζ to be non-negative, though this constraint is not active except in degenerate

cases. Finally, we transform (P1ζ) by substituting new decision variables ρ = (1+µζ)/λζ

and ν = 1/
((

n
ζ

)
λζ

)
≥ 0. The new objective becomes 1/ρ. Note that the constraint

(e, x, o) = (1, 0, 0) implies ρ ≥ 0; we can thus invert the objective and change the

minimization to a maximization, giving (Pζ).

The smoothness parameters found via Proposition 2.3.2 can be used with Proposi-

tion 2.3.1 to generate lower bounds on the k-strong price of anarchy. However, these

bounds need not be tight, i.e., there may be no system in the class Gn×{w} that attains

this inefficiency, and better bounds may be possible. To study what efficiency we can

guarantee across a class of resource allocation problems, we define the k-strong price of
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P ⋆ = min
ρ,{νζ≥0}ζ∈[k]

ρ

s.t. 0 ≥ w(o+x)− ρw(e+x)

+
∑
ζ∈[k]

νζ


(
n

ζ

)
w(e+x)−

∑
0≤α≤e
0≤β≤o
α+β≤ζ

(
e

α

)(
o

β

)(
n−e−o
ζ−α−β

)
w(e+x+β−α)


∀(e, x, o) ∈ I

(P[k])

anarchy bound for (Gn, w) as

SPoAk(Gn, w) = min
G∈Gn

SPoAk(G,w). (2.10)

This performance ratio is parameterized by our choice of welfare function w and the size

of collaborative coalitions k. In Theorem 2.3.1, we provide a linear program whose value

provides an exact value of SPoAk(Gn, w). We do this by showing that the constraints of

the k linear programs in Proposition 2.3.2 can be combined to give an exact quantification

of the k-strong price of anarchy bound.

Theorem 2.3.1. For the class of resource allocation problems Gn with welfare function

w, when groups maximize the common interest welfare, then

SPoAk(Gn, w) = 1/P ⋆(n,w, k), (2.11)

where P ⋆(n,w, k) is the solution to (P[k]).

The proof appears in Appendix A.1.

In Fig. 2.3, we consider four welfare functions and plot the tight bounds on the

k-strong price of anarchy for 1 ≤ k ≤ n. As expected, we observe that increased commu-

nication improves efficiency guarantees; the amount of this increase is useful in determin-
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ing the benefits of inter-agent communication/collaboration. However, this collaboration

comes at a cost; in Section 2.4, we will study the complexity of distributed dynamics

reaching k-strong Nash equilibria.

2.4 Coalitional Dynamics

Section 2.3 provided several tools for quantifying the efficiency guarantees of k-

strong Nash equilibria. In this section, we will study the qualities of group-based dy-

namics that reach these equilibria. Particularly, we will discuss the convergence rate and

transient performance when agents follow the Coalitional round-robin and Asynchronous

Best Response, respectively. We will denote at as the joint action occurring at time t ∈ N

and Γt ⊆ N as the group of agents updating their action at time t.

2.4.1 Round Robin

We first consider the k-coalitional round robin agent dynamics, in which each group

of k agents updates their actions sequentially, following a set order σ ∈ Σ(nk)
, where σ(z)

for z ∈ {1, . . . ,
(
n
k

)
} is the index of a group Γ ∈ C[k]. We will call a round one pass

through σ in which each group updates their action. At their turn, the group Γt selects

their best response to the current action, i.e., at+1
Γt ∈ argmaxaΓt∈AΓt

W (aΓt , a−Γt), where

ties are broken uniformly at random unless atΓt ∈ argmaxaΓt∈AΓt
W (aΓt , a−Γt), in which

case the group selects their current action at+1
Γt = atΓt . The dynamics are more formally

described in Algorithm 1.

These dynamics are synchronous (in that agents must follow a set order) but provide

an understanding of how groups of agents can make decisions in a localized manner, and

we can analyze the equilibrium hitting time. In the fully distributed setting (k = 1), it

has been shown that these dynamics reach a Nash equilibrium in finite time and require
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Algorithm 1 k-Round-Robin Dynamics

procedure kRoundRobin(W,A, N, σ, a)
a← NULL

while a ̸= a do
a← a
for z ∈ {1, . . . ,

(
n
k

)
} do

Γ← Ck(σ(z)) ▷ Get group
for a+Γ ∈ AΓ \ aΓ do ▷ Group deviations

if W (a+Γ , a−Γ) > W (a) then
a← (a+Γ , a−Γ)

O(nm) welfare evaluations [79]. In Proposition 2.4.1, we find that in the coalitional

settings, we maintain the finite convergence time and incur a small base exponential

gain in the number of welfare comparisons required. Recent work has shown that the

examples that realize these worst-case hitting times are fragile and that equilibria can

be computed in polynomial-time under smoothed running-time analysis [80]. As a first

step, we consider the worst-case run time, but the authors believe that similar findings on

the added complexity of group decision-making will hold under smoothed running-time

analysis, though this is the subject of ongoing work.

Proposition 2.4.1. The k-Coalitional-Round-Robin dynamics converge in finite time

and requires O
(
mn
(

1
1−1/m

)k)
welfare evaluations.

Proof. First, we verify that the output of Algorithm 1 is a k-strong Nash equilibrium,

then we consider how long it takes Algorithm 1 to converge. Algorithm 1 terminates

after a round in which no group Γ ∈ Ck can select a new action in which the welfare

increases, i.e., W (a) ≥ W (aΓ, a−Γ) for all aΓ ∈ AΓ and Γ ∈ Ck where a is the output of

Algorithm 1. A deviation for a any subgroup Γ′ ∈ C[k] is subsumed by the joint action

(aΓ′ , aΓ\Γ′) ∈ AΓ. As such, a state a terminates Algorithm 1 if and only if it satisfies

(2.3) and is a k-strong Nash equilibrium.

Without loss of generality, we assume each agent possesses m actions; for each agent,
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i that has fewer actions, assign m− |Ai| dummy actions with minimum welfare. In one

round of the k-Round-Robin dynamics, each group of agents is given the opportunity to

deviate their action. First, we note that no group Γ will respond to the same complimen-

tary group action a−Γ in two consecutive rounds unless a is a k-strong Nash equilibrium.

If the group Γ rejects a group action aΓ in response to a−Γ, the joint action (aΓ, a−Γ)

is eliminated from consideration as an output of Algorithm 1. Accounting for overlaps

between the groups, in any round that does not start in a k-strong Nash equilibrium,

at least y =
∑k

ζ=1

(
n
ζ

)
(m− 1)ζ , joint actions are eliminated as possible outputs of Algo-

rithm 1. As there are mn joint actions in total, there can be at most r ≤ ⌊mn
y
⌋+1 rounds

that do not start in a k-strong Nash equilibrium; this proves the finite convergence time.

In each round, there are exactly
(
n
k

)
mk welfare checks; thus, the total number of welfare

checks is no more than (m
n

y
+ 1)

(
n
k

)
mk. Removing lower order terms from y gives the

stated bound.

From Proposition 2.4.1, we observe two things: 1) the coalitional dynamics do not

require drastically more welfare evaluations than the fully distributed round robin, but 2)

the convergence rate is slow regardless of k. In light of this, we turn our focus to under-

standing the transient performance of collaborative decision-making dynamics. Further,

in many settings, it is desirable to allow agents or groups to update their actions asyn-

chronously. In Section 2.4.2, we will consider both of these factors in the asynchronous

best response dynamics.

2.4.2 Asynchronous Best-Response Dynamics

Motivated by settings where agents (or groups of agents) perform action revisions

asynchronously or on their own time scales, we consider a dynamical system where the

next group of agents to update is random.
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We define the Asynchronous k-Coalitional Best-Response Dynamics as follows: let

t ≥ 0 denote the number of agent (or group) updates that have yet occurred1. The

updating group Γt is selected at random, such that the size of the group ζ is picked with

probability pζ = E[|Γt| = ζ] and the specific agents in the group are drawn uniformly at

random. Once formed, the updating group Γt chooses their best response in the same

manner as the coalitional round robin described in Section 2.4.1.

From their distributed decision-making and asynchronicity, these dynamics capture

the behavior of real-time multi-agent systems components. In Theorem 2.4.1, we show

these dynamics converge almost surely to a k-strong Nash equilibrium, and further, if the

system is (λ, µ)-k-coalitionally smooth , we provide a bound on the cumulative welfare

relative to the optimal.

Theorem 2.4.1. The Asynchronous k-Coalitional Best-Response Dynamics converge al-

most surely to the set of k-strong Nash equilibrium. Further, if (G,W ) is a (λ, µ)-

k-coalitionally smooth system, then after T ≥ 1 update steps, the cumulative expected

welfare satisfies

E

[
1

T

T∑
t=1

W (at)

]
≥ T − 1

2T

∑k
ζ=1 pζλζ

1 +
∑k

ζ=1 pζµζ
W (aopt), (2.12)

where pζ is the probability a group of size ζ best responds.

Interestingly, the bound on the average transient welfare depends on how frequently

groups of different sizes are sampled to perform their best response. When the agents

are designed to more regularly collaborate in larger groups, the transient guarantee will

often be better.

1Counting time steps in terms of the number of updates subsumes cases where agents (or groups)
update with respect to individual and independent random clocks. The rate of each clock is analogous
to the selection probability for different groups.
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Proof. First, we show that the Asynchronous k-Coalitional Best-Response Dynamics con-

verges in general. A group Γ revises their action only to one of strictly higher pay-

off if one exists. Consider the resulting Markov chain M with states A. Any state

a ∈ A \ kSNE has an outgoing edge with positive probability as there exists some group

Γ ∈ C[k] that is selected with probability p|Γ|/|C|Γ|| > 0 which would revise their ac-

tion. Any state a ∈ kSNE has no outgoing edges with positive probability as no group

Γ ∈ C[k] can revise their action to strictly increase the welfare. Finally, there are no

cycles (excluding self-loops) inM, as every outgoing edge is directed from a joint action

of lower welfare to one of strictly higher welfare. As such, the set kSNE is absorbing and

P[limt→∞ at ∈ kSNE] = 1.

Now, consider that the system (G,W ) is (λ, µ)-k-coalitionally smooth . As the se-

lection of the updating group is random, the welfare at time t+ 1 is a random variable,

even when conditioned on at; the expectation of the succeeding welfare can be written

E[W (at+1) |at = a] =
k∑
ζ=1

pζ
∑
Γ∈Cζ

1(
n
ζ

)W (a+Γ , a−Γ)

≥
k∑
ζ=1

pζ
∑
Γ∈Cζ

1(
n
ζ

)W (aoptΓ , a−Γ)

≥
k∑
ζ=1

pζ
(
λζW (aopt)− µζW (a)

)
=

(
k∑
ζ=1

pζλζ

)
W (aopt)−

(
k∑
ζ=1

pζµζ

)
W (a),

where a+Γ ∈ argmaxaΓ∈AΓ
W (aΓ, a−Γ) is the update state for the group Γ following the

dynamics; the welfare for each possible updated joint action is the same, so determining

which group action is selected is irrelevant. As a+Γ is a best response, the welfare is no

better for selecting a different action, namely aoptΓ . The final inequality holds from (2.5).
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Taking the expectation of E[W (at+1) | at = a] over at gives

E
[
W (at+1)

]
≥

(
k∑
ζ=1

pζλζ

)
W (aopt)−

(
k∑
ζ=1

pζµζ

)
E
[
W (at)

]
.

Rearranging terms shows

E
[
W (at+1)

]
−

∑k
ζ=1 pζλζ

1 +
∑k

ζ=1 pζµζ
W (aopt)

≥

(
k∑
ζ=1

pζµζ

)( ∑k
ζ=1 pζλζ

1 +
∑k

ζ=1 pζµζ
W (aopt)− E

[
W (at)

])
.

Observe that either E [W (at)] ≥
∑k
ζ=1 pζλζ

1+
∑k
ζ=1 pζµζ

W (aopt) or E [W (at+1)]−
∑k
ζ=1 pζλζ

1+
∑k
ζ=1 pζµζ

W (aopt) ≥

0. Accordingly, in expectation, every other update must satisfy the bound, giving the

average cumulative welfare bound in (2.12).

Theorem 2.4.1 shows that the transient efficiency changes with the frequency with

which different group sizes perform best responses. To attain the best transient guarantee,

we can select p carefully.

Corollary 1. If a system (G,w) is a resource allocation problem in Gn × {w}, then

selecting pζ ∝
ν⋆ζ∑

ψ∈[k] (
n
ψ)ν⋆ψ

for all ζ ∈ [k] gives

E

[
1

T

T∑
t=1

W (at)

]
≥ T − 1

2T
SPoAk(Gn, w)W (aopt).

The proof is omitted as it is straightforward by rearranging terms in the constraints

of (D).

Together, Theorem 2.4.1 and Corollary 1 provide insight into the transient perfor-

mance of non-deterministic multi-agent dynamical systems with collaborative communi-
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cation. Future work will study the traits of non-best-response dynamics, namely regret-

based decision-making.

2.4.3 Numerical Example

We support the findings of Section 2.4.2 by numerical example. We randomly generate

resource allocation problems and simulate the coalitional asynchronous best response

dynamics when groups of size k ∈ {1, 2, 3, 4, 5} update.

The resource allocation problems are generated by creating 100 resources with values

independently drawn uniformly at random on [0, 1]. Each of the 25 agents is endowed

with between 1 and 10 actions (also sampled uniformly at random). For each action

of each player, each resource is included in that particular action with probability 0.25.

This defines a tuple G. We use the local welfare function w(x) = xe−x/5 to capture

some added benefit from having multiple agents use the same resource and eventual

diminishing returns and increased cost from over congestion.

We select a random initial condition and run the asynchronous best response dynamics

with pk = 1 for one value k ∈ {1, 2, 3, 4, 5} (i.e., only groups of exactly size k are sampled,

but the simulation is repeated for 1 ≤ k ≤ 5. We ran this simulation 100 times.

At left in Fig. 2.4, we plot the average welfare across the simulations over the number

of group action revisions. We observe that the larger coalitions provide superior transient

and long-run performance. However, a single group action revision requires more com-

putation for larger coalitions. At right in Fig. 2.4, for each coalition size k ∈ {1, . . . , 5},

we show a scatter plot of the number of cumulative welfare evaluations and the attained

system welfare, along with a trend line fit to the data within two standard deviations

of the average number of welfare evaluations. Here, we observe that for lower values of

welfare, the smaller coalitions can attain similar welfare with fewer welfare evaluations
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Figure 2.4: Numerical example of the coalitional asynchronous best response dynam-
ics. At left, the system welfare is plotted over the number of group action revisions,
and at right it is plotted over the number of welfare evaluations. From this data, we
can observe that group revisions offer superior system transient and long-term perfor-
mance but require more welfare evaluations to compute group actions.

but that the larger coalitions reach higher welfare much more regularly.

These conclusions help to identify the trade-off in designing systems with collaborative

communication: better performance is attainable at the cost of greater computation.

2.5 Utility Design

Up until this point, agents and groups of agents have been set to optimize the system

welfare W over their respective individual or group actions. Though this is a reason-

able approach, the system designer may seek to further improve system performance by

designing how a group of agents makes a decision. Consider that groups of agents in-

stead maximize the objective function U : A → R≥0 (henceforth referred to as the utility

function), i.e.,

aΓ ∈ argmax
a′Γ∈AΓ

U(a′Γ, a−Γ), (2.13)

where ties are still broken at random unless the current group action is in the argmax. By

designing the utility function U , the system operator can alter how groups of agents make
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Figure 2.5: Bounds on the k-strong Price of Anarchy using the optimal utility function
in the class of resource allocation games with welfare function w. Upper bound on
SPoA⋆k(Gn, w) generated by Proposition 2.5.2 and lower bound and utility rule that
attains it generated by Theorem 2.5.1. Compared with the k-strong price of anarchy
when agents optimize the system welfare (lighter line), we demonstrate the possible
and guaranteed gain in equilibrium performance attainable by designing group deci-
sion-making for collaborative multi-agent systems.

decisions and, ideally, improve the performance of the system. A multi-agent system is

now captured by the tuple (G,W,U), where the previous results are the special case when

U = W .

By redefining the objective functions groups of agents seek to maximize, we addition-

ally alter the equilibria that emerge from collaborative decision-making. We alter the

definition of k-strong Nash equilibria to hold with respect to the utility function, i.e.,

U(akSNE) ≥ U(a′Γ, a
kSNE
−Γ ), ∀a′Γ ∈ AΓ, Γ ∈ C[k]. (2.14)

Let kSNE(G,U) denote the set of k-strong Nash equilibria when agents optimize the

objective U . The new set of equilibria implies the equilibrium performance guarantee

may also change. As such, we redefine the k-strong price of anarchy as the approximation

of the optimal welfare provided the system equilibria under objective function U ,

SPoAk(G,W,U) =
minakSNE∈kSNE(G,U)W (akSNE)

maxaopt∈AW (aopt)
. (2.15)

With this new design opportunity, we identify two goals in understanding the new
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attainable performance of collaborative decision-making: 1) quantifying the performance

of a prescribed utility function, and 2) finding a utility function that provides the great-

est k-strong price of anarchy guarantees. We address these two points in general in

Section 2.5.1 and more thoroughly within resource allocation problems in Section 2.5.2.

2.5.1 Generalized Coalitionally Smooth Games

In this section, we consider the general setting and particularly focus on quantifying

the k-strong price of anarchy of a system (G,W,U). As in Section 2.3.1, we introduce

a notion of smooth systems now generalized to the setting where the agent objective U

differs from the system objective W .

Definition 3. A system (G,W,U) is (λ, µ)-k-generalized-coalitionally smooth , where

λ, µ ∈ Rk
≥0, if for all a, a′ ∈ A

1(
n
ζ

) ∑
Γ∈Cζ

U(a′Γ, a−Γ)− U(a) +W (a)

≥ λζW (a′)− µζW (a), ∀ζ ∈ [k]. (2.16)

Like (2.5), (2.16) provides a bound on average deviation effect of a group of size ζ

but on the utility function instead of the welfare. In Proposition 2.5.1, we show that

(λ, µ)-k-generalized-coalitionally smooth system permits a bound on the k-strong price

of anarchy.

Proposition 2.5.1. A system (G,W,U) that is (λ, µ)-k-generalized-coalitionally smooth

has k-strong price of anarchy satisfying

SPoAk(G,W,U) ≥
λζ

1 + µζ
, ∀ζ ∈ [k]. (2.17)
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Proof. Let akSNE ∈ A denote a k-strong Nash equilibrium when agents follow objective

function U , and let aopt ∈ argmaxa∈AW (a) denote an optimal joint action. For any

ζ ∈ [k], we have

W (akSNE)≥ 1(
n
ζ

)∑
Γ∈Cζ

U(aoptΓ , akSNE
−Γ )−U(akSNE)+W (akSNE) (2.18a)

≥ λζW (aopt)− µζW (akSNE). (2.18b)

Where (2.18a) holds from 1

(nζ)

∑
Γ∈Cζ U(a

opt
Γ , akSNE

−Γ ) − U(akSNE) ≥ 0 by akSNE being a

k-strong Nash equilibrium and (2.7c) holds from Definition 3. Rearranging, we get

W (akSNE)/W (aopt) ≥ λζ/(1 + µζ).

Beyond quantifying the k-strong price of anarchy for a system (G,W,U), one may

wish to find the utility function which provides the best efficiency guarantee, i.e.,

U ∈ argmax
U ′:A→R≥0

SPoAk(G,W,U
′).

For a specific problem (G,W ), it is possible to design a utility function which guarantees

that a system optimal aopt is a unique equilibrium and provides SPoAk(G,W,U) = 1

(e.g., U(a) =
∑

i∈N 1[[]ai = aopti ]). However, this would require knowing the optimal

allocations a priori, which poses several problems, including: 1) computing an optimal

allocation can be intractable, and 2) system parameters may be subject to modeling er-

rors, noise, or changes over time, causing the optimal allocations to change. As such, we

will consider the design of utility rules, which provide a set of instructions to construct

a utility function across a class of systems and eliminate the computational burden of

solving for a new utility function for each system while maintaining improved perfor-

mance guarantees. Luckily, the approach in Proposition 2.5.1 is amenable to generating
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performance guarantees across a class of systems, and in Section 2.5.2, we will investigate

optimal utility rules more thoroughly in resource allocation problems.

2.5.2 Resource Allocation Games

In this section, we consider the k-strong price of anarchy in classes of resource allo-

cation problems when the agents’ objective is derived from a utility rule u ∈ Rn+1
≥0 . In

an agent environment G = (N,A,R, {vr}r∈R), the utility rule u can be applied to derive

the utility function

U(a) =
∑
r∈R

vru(|a|r).

To normalize the utility function, we set u(0) = 0. We ultimately consider the perfor-

mance of a utility rule u across all agent environments G ∈ Gn with welfare function w.

We slightly abuse notation to refer to a system by the tuple (G,w, u). To quantify this

performance, we generalize the k-strong price of anarchy bound defined in Section 2.4.1

to hold for cases where groups of agents optimize the utility function.

SPoAk(Gn, w, u) = min
G∈Gn

SPoAk(G,w, u). (2.19)

The performance ratio is parameterized by the pair (w, u); as such, we will discuss the

effectiveness of a utility rule u with respect to a given welfare function w.

Taking the utility rule approach completely eliminates the computational cost of

deriving a utility function for each problem instance; now we seek to understand the

capabilities of this approach in two ways: 1) in Theorem 2.5.1 we demonstrate how we

can construct utility rules with good performance guarantees, and 2) in Proposition 2.5.1

we provide an upper bound on the best attainable performance a utility rule can provide.

In Corollary 2, we provide a formal condition on when the constructed utility rule is
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optimal.

Theorem 2.5.1. Any resource allocation problem (G,W ) ∈ Gn × {w} with the utility

rule ũζ is (1, ρ̃ζ − 1)-k-generalized-coallitionally smooth, where ũζ and ρ̃ζ are solutions to

the linear program,

(ρ̃ζ , ũζ) ∈ argmin
ρ≥0,u∈Rn+1

≥0

ρ

s.t. 0 ≥ w(o+x)− ρw(e+x)+
(
n

ζ

)
u(e+x)−

∑
0≤α≤e
0≤β≤o
α+β≤ζ

(
e

α

)(
o

β

)(
n−e−o
ζ−α−β

)
u(e+x+β−α)


∀(e, x, o) ∈ I. (Qζ)

Proof. Consider the parameterization described in the proof of Proposition 2.3.2, where

for any two actions a, a′ ∈ A, we can rewriteW (a) =
∑

e,x,o θ(e, x, o)w(e+x) andW (a′) =∑
e,x,o θ(e, x, o)w(o+x). Now, we can additionally rewrite U(a) =

∑
e,x,o θ(e, x, o)u(e+x)

and

∑
Γ∈Cζ

W (a′Γ, a−Γ)

=
∑
e,x,o

θ(e, x, o)
∑

0≤α≤e
0≤β≤o
α+β≤ζ

(
e

α

)(
o

β

)(
n−e−o
ζ−α−β

)
w(e+x+β−α).

We can now write out (2.16), the (λ, µ)-k-generalized-coalitionally smooth constraint,
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as

∑
e,x,o

θ(e, x, o)

(
1(
n
ζ

) ∑
0≤α≤e
0≤β≤o
α+β≤ζ

(
e

α

)(
o

β

)(
n−e−o
ζ−α−β

)
u(e+x+β−α)

− u(e+ x)

)
≥
∑
e,x,o

θ(e, x, o) (λζw(o+x)−(µζ+1)w(e+x)) .

As before, we can observe that this constraint is sufficiently satisfied when

1(
n
ζ

) ∑
0≤α≤e
0≤β≤o
α+β≤ζ

(
e

α

)(
o

β

)(
n−e−o
ζ−α−β

)
u(e+x+β−α)− u(e+ x)

≥ λζw(o+x)−(µζ+1)w(e+x), ∀(e, x, o) ∈ I. (2.20)

The task of finding smoothness parameters that give the best price of anarchy guar-

antee becomes the same problem as (P1ζ) but now with constraint set (2.20). By sub-

stituting the decision variables ρ = (1 + µζ)/λζ and ν = 1/
((

n
ζ

)
λζ

)
≥ 0, we attain the

new constraint set

0 ≥ w(o+x)− ρw(e+x)+

ν


(
n

ζ

)
u(e+x)−

∑
0≤α≤e
0≤β≤o
α+β≤ζ

(
e

α

)(
o

β

)(
n−e−o
ζ−α−β

)
u(e+x+β−α)


∀(e, x, o) ∈ I. (2.21)

The new objective2 becomes 1/ρ.

2As an aside, the transformed program up to this point can be used to evaluate the performance of
a specified utility rule.
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Finally, we let u ∈ Rn
≥0 become a decision variable in the program. Observe that

every occurrence of u is multiplied by ν and every occurrence of ν multiplies u. As such,

we can define the new decision variable u′ = νu and retrieve the linear program (Qζ).

The utility rule ûζ that (Qζ) provides gives us some guarantee on attainable perfor-

mance from designing group decision-making in collaborative systems. However, it is not

yet clear if these are the best possible utility rules. To understand what the best possible

performance is of a collaborative system, we define the optimal k-strong price of anarchy

as

SPoA⋆
k(Gn, w) = sup

u:[n]→R≥0

SPoAk(Gn, w, u). (2.22)

This upper bound informs us of what efficiency is possible to hope for out of a collabo-

rative system. In Proposition 2.5.2, we bound this quantity.

Proposition 2.5.2. For the class of resource allocation problems Gn×{w}, when agents

maximize the optimal utility design objective u⋆,

SPoA⋆
k(Gn, w) ≤ 1/Q⋆(n,w, k), (2.23)

where Q⋆(n,w, k) is value of the linear program

Q⋆(n,w, k) = min
ρ≥0,{uζ∈Rn+1

≥0 }ζ∈[k]

ρ

s.t. 0 ≥ w(o+x)− ρw(e+x)+

∑
ζ∈[k]


(
n

ζ

)
uζ(e+x)−

∑
0≤α≤e
0≤β≤o
α+β≤ζ

(
e

α

)(
o

β

)(
n−e−o
ζ−α−β

)
uζ(e+x+β−α)


∀(e, x, o) ∈ I. (Q[k])
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The proof appears in Appendix A.1.

Note that Theorem 2.5.1 provides a utility rule with associated performance guarantee

which lower bounds SPoA⋆
k(Gn, w), and Proposition 2.5.2 provides an upper bound. In

Corollary 2, we note that when these two bounds match, we have a tight bound on

SPoA⋆
k(Gn, w) as well as an optimal utility rule.

Corollary 2. For the class of resource allocation problems Gn × {w}, if the value of

(Qζ) satisfies ρ⋆ζ = Q⋆(n,w, k), then SPoA⋆
k(Gn, w) = 1/Q⋆(n,w, k) is a tight bound and

a solution ũζ to (Qζ) is an optimal utility rule.

Proof. This follows immediately from 1/ρ⋆ζ =
λζ

1+µζ
being a lower bound on SPoA⋆

k(Gn, w)

and the reciprocal of the value of (Q[k]), 1/Q⋆ being an upper bound. When the two

match, the bound must be tight.

The two bounds coinciding is not guaranteed but does occur at the extremes (k = 1

and k = n); further, the gap between the two bounds is often small, and the lower bound

attained by the utility rule constructed in Theorem 2.5.1 often demonstrates a signifi-

cant improvement over the setting where agents simply optimize the system objective.

Consider the four welfare functions from Fig. 2.3 again; for each, we find that the utility

rule computed using Theorem 2.5.1 and the upper bound on SPoA⋆
k(Gn, w) using Propo-

sition 2.5.2. In Fig. 2.5 we plot these lower and upper bounds on SPoA⋆
k(G20, w) for each

utility function and for each value of 1 ≤ k ≤ n; these values are juxtaposed with the

k-strong price of anarchy when agents optimize the system objective w to demonstrate

the possible gain in performance from designing the agents’ objective in collaborative

systems.
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2.6 Conclusion

In this section, we provided a variety of tools for evaluating the benefits and costs of

collaborative communication in multi-agent systems. A collaborative multi-agent system

was modeled by a common interest game where groups of players collaboratively per-

form their best responses simultaneously. We specifically considered the k-strong Nash

equilibrium as a relevant equilibrium concept to gain insights into system behavior be-

tween the fully centralized and fully distributed settings. We introduced the notion of

(λ, µ)-k-coalitionally smooth systems and derived bounds on how well the k-strong Nash

equilibrium approximates the optimum in such systems. Further analysis studied the

running time of collaborative multi-agent decision dynamics and their transient per-

formance, as well as the possible performance gains from designing agents’ objectives

separately from the system objective. Finally, we underwent a more thorough study in

the class of resource allocation games, in which we provided tractable linear programs

whose solutions give tight bounds on the k-strong price of anarchy in resource allocation

games. Future work will study less extensive communication paradigms and dynamical

systems that emerge when agents learn together.
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The Cost of Informed Decision

Making in Multi-Agent Maximum

Coverage Problems

The emergent behavior of a distributed system is conditioned by the information available

to the local decision-makers. Therefore, one may expect that providing decision-makers

with more information will improve system performance; in this work, we find that this is

not necessarily the case. In multi-agent maximum coverage problems, we find that even

when agents’ objectives are aligned with the global welfare, informing agents about the

realization of the resource’s random values can reduce equilibrium performance by a factor

of 1/2. This affirms an important aspect of designing distributed systems: information

need be shared carefully. We further this understanding by providing lower and upper

bounds on the ratio of system welfare when information is (fully or partially) revealed

and when it is not, termed the value-of-informing. We then identify a trade-off that

emerges when optimizing the performance of the best-case and worst-case equilibrium.
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3.1 Introduction

In large-scale systems, the prospect of distributing decision-making to local entities is

becoming increasingly enticing as a method to reduce complexity while maintaining some

level of performance. This can take the form of swarm control for robotic fleets [81], au-

tonomous driving decisions in mobility services [40], local task assignment decisions [82],

and many more. Taking a distributed approach entails assigning each agent a decision-

making algorithm, such as maximizing an assigned local objective function [83], then

analyzing the system’s equilibria [84]. As agents need not possess full knowledge of the

overall system; the local decisions (and, ultimately, global behavior) are dependent on the

information communicated with and between the agents [85, 4] In this work, we address

how available information affects system performance.

We focus on maximum coverage problems: a class of models in which each agent

selects a set of resources from a ground set, with the objective of maximizing the value

of covered resources. To solve this in a distributed fashion, each agent is given a utility

function to evaluate what set of resources to cover; this forms a game played by the

agents with their resource selection as their action and the evaluation of their assigned

utility function as their payoff. Existing work has focused on how to design these utility

rules and how well the resulting equilibria of the emergent game approximate the optimal

welfare [72, 36, 86]. In this work, we generalize this model to consider the case where

agents have uncertainty about the resources’ values. In this setting, we ask how revealing

information to local decision-makers affects equilibrium performance. Interestingly, we

find that revealing truthful information about the system state can worsen system per-

formance. While this phenomenon has been observed before in social systems [87], here

we find that similar conclusions hold even when the local decision-makers’ objectives are

aligned with the global welfare.
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To study this, we consider a Bayesian persuasion framework, in which a well-informed

system operator can strategically reveal information to agents using messages (or signals)

which contain partial information [88]. In this work, we study how this information re-

vealing affects equilibrium welfare. To this end, we introduce a new performance metric

termed the value-of-informing, which measures the ratio between the equilibrium wel-

fare under an information-revealing policy and when no information is revealed. This

measures the gain or loss in welfare from revealing information.

The framework of Bayesian persuasion has gained traction in the areas of economics,

operations research, and engineering, but typically for settings concerned with the be-

havior and beliefs of human users (e.g., traffic routing apps [89, 13, 90], pricing/investing

decisions [91], hybrid work policies [92], etc.). Results are typically restricted to a binary

classification on whether revealing full information helps or not [93, 88], or methods to

compute optimal information revealing policies in limited settings [94, 95, 90], often with

no guarantee on the magnitude of improvement. Here, we adapt the ideas of information

provisioning to the setting of engineered systems, where designed decision-making com-

ponents can improve their estimate of the system state by receiving relevant messages

(e.g., a fleet of surveillance drones receiving live map updates).

Revealing information to local decision-makers can obviously improve the welfare

of emergent system equilibria; however, in this work, we find that this is not always

the case. In fact, system performance may degrade by a factor of 1/2 when revealing

truthful information to local decision-makers. The possible loss in system welfare from

informing decision-makers comes from two sources (1) the multiplicity of equilibria and

(2) the local objective assigned to each decision-maker. We study the aforementioned

value-of-informing when considering the best-case and worst-case equilibria for different

local objectives. Ultimately, we highlight a trade-off between the possible loss from

revealing information to best-case and worst-case equilibrium guarantees when agents’
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local objectives are designed.

3.2 Problem Formulation

3.2.1 Maximum Coverage Problem

Maximum coverage problems have been used to model resource allocation, sensor

coverage, job scheduling, and more [96]. Consider the multi-agent maximum coverage

problem, in which R = {1, . . . , R} is a finite set of resources. For each resource r ∈ R,

let vr ≥ 0 be the value of that resource; further, let v ∈ R|R|
≥0 be the vector containing

each resource value. Let N = {1, . . . , n} be a set of agents, where each agent i ∈ N can

be assigned to cover a subset of resources ai ⊆ R. The set of allowable assignments for

each agent is defined by Ai ⊆ 2R. When each agent is assigned, an allocation of agents

is denoted a = (a1, . . . , an) ∈ A = A1 × . . .×An. Let (G, v) define a maximum coverage

problem where G = (N,R,A).

In an allocation a, the system welfare is equal to the total value of resources covered

by at least one agent, i.e.,W (a; v) =
∑

r∈∪i∈Nai vr. However, finding an optimal allocation

aopt ∈ argmaxa∈AW (a; v) is NP-hard [36]. It is for this reason, we consider a distributed

solution technique to approximate this optimal solution.

3.2.2 Distributed Decision Making

Let each agent i ∈ N possess a local objective function

Ui(a; v) =
∑
r∈ai

vrf(|a|r),
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Figure 3.1: Depiction of information signaling in maximum coverage problems. On
the left is the support of a random state variable v. At right is a maximum coverage
problem, to which we have assigned each agent a local objective. The agents in the
coverage problem possess the prior distribution of the unknown state variable and
receive some partial information πk about the realization. The manner in which
information is revealed will alter how agents evaluate their objectives and change the
emergent behavior.

which depends on their own action and the actions of every other agent. This local

objective, or utility function, is parameterized by a local utility rule f : N → R that

takes as argument |a|r, the number of agents covering resource r in allocation a. The

system operator can adopt a utility rule f without exact knowledge of the problem

instance if needed.

When agents sequentially and repeatedly update their assignment to one that cur-

rently maximizes their utility function, these best-response dynamics have fixed points

that are the Nash equilibria of the underlying game. The convergence of best response

dynamics in potential games to pure Nash equilibria are addressed in [36, 84]. Nash

equilibrium allocations can be defined by

Ui(a
Ne; v) ≥ Ui(a

′
i, a

Ne
−i ; v) ∀a′i ∈ Ai, i ∈ N, (3.1)

where a−i denotes the allocation of all agents but player i. Let NE(G, v, f) denote

the set of states satisfying (3.1). These states represent the possible solutions of the

distributed dynamics, and we will consider their welfare as an approximation of the

maximum coverage problem.
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3.2.3 Uncertainty and Information Signaling

In this work, we consider how uncertainty and information can affect the efficacy of

distributed decision-making. We consider this uncertainty in the form of randomness for

the resources values. Let v ∈ R|R|
≥0 (the vector containing the value of each resource r ∈ R)

be a discrete random variable with prior distribution µ0. A realization of v determines

each resource’s value [v1, . . . , v|R|] = v, i.e., the resource values may be correlated. Let

the support of v be V := supp(v).

First, we consider the case where agents are uninformed about the system state,

i.e., they know the prior distribution µ0 but not the exact realization of v. In this

setting, the agents optimize their expected utility, which we will denote U i(a;µ0) =

Ev∼µ0
[∑

r∈ai vrf(|a|r)
]
. Let NE(G, µ0, f) = NE(G,Ev∼µ0 [v], f). Additionally, the ob-

jective of the maximum coverage problem is to maximize the expected welfare, i.e.,

W (a;µ0) = Eµ0
[∑

r∈∪i∈Nai vr

]
.

As a means to try and improve the performance of the distributed decision-making

agents, we may consider revealing information about the realization of the system state.

One option is to reveal full information (or let agents know the realization exactly);

however, either due to communication constraints or by design choice, it is often mean-

ingful to reveal only partial information as well. In line with the broader Bayesian

Persuasion framework, consider revealing information with an information signaling pol-

icy Π = {π1, . . . , πm}, where πk ⊆ V , πj ∩ πk = ∅, and
⋃m
k=1 πk = V . This signaling

policy Π forms a partition over the support of our random state variable v. The signal

π ∈ Π is revealed to the agents when v ∈ π.1 The new system operates as follows: A

system operator adopts a signaling policy Π and utility rule f . A state v is drawn from

1In this work, we consider signaling policies that are deterministic mappings from state to signal.
In general, signal π could be drawn randomly based on state v. Many of the results easily generalize
to this setting, but for ease of exposition and relevance to our problem setting of informing designed
decision-makers, we present the results for deterministic signaling by treating Π as a partition of V.
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µ0, and all agents are informed of which element of Π the realization belongs to. The

corresponding signal π is sent, and each player i ∈ N computes the posterior belief on the

realization µπ(x) = P[v = x|v ∈ π] = µ0(x)/
(∑

v′∈π µ0(v
′)
)
if v ∈ π and zero otherwise.

The agents then seek to maximize their expected utility with the posterior belief.

Agents may now condition their action on the received signal. Let α ∈ AΠ denote a

joint strategy, where an element αi(π) ∈ A captures the action agent i takes when they

receive signal π. In a strategy profile α, agent i has an expected payoff of U i(α;µ0,Π) =

Ev∼µ0
[∑

r∈αi vrf(|α|r)
]
. Note that αi is implicitly a function of the received signal π,

which itself is determined by the state variable v; as such, each of αi, π, and v are random

variables. The expected welfare becomes W (α;µ0,Π) = Ev∼µ0
[∑

r∈∪i∈Nαi vr

]
.

When agents follow best-response dynamics, the set of fixed points becomes the set

of Bayes-Nash equilibria, BNE(G, µ0,Π, f). A strategy αBNe in this set satisfies

U i(α
BNe;µ0,Π) ≥ U i(α

′
i, α

BNe
−i ;µ0,Π) ∀α′

i ∈ AΠ
i . (3.2)

The signaling policy Π will alter this equilibria set and thus the guarantees of our dis-

tributed solution to the maximum coverage problem.

Our motivation for this work is understanding how giving agents information can

affect system welfare. Due to the multiplicity of equilibria, we consider two perspectives:

the optimistic perspective in which the system designer cares about the best attainable

system performance, and the pessimistic perspective in which the system designer cares

about the worst possible performance. For the optimistic perspective, the system de-

signer evaluates a signaling policy Π by its effect on the system welfare in the best-case

equilibrium; as such, let the optimistic value-of-informing with signaling policy Π be

VoI+(G, µ0,Π, f) =
maxα∈BNE(G,µ0,Π,f)W (α;µ0,Π)

maxa∈NE(G,µ0,f)W (a;µ0)
,
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which measures the gain in optimistic welfare by using policy Π. Similarly, for the

pessimistic perspective, the system operator evaluates a signaling policy Π by its effect

on the system welfare in the worst-case equilibrium; let the pessimistic value-of-informing

be

VoI−(G, µ0,Π, f) =
minα∈BNE(G,µ0,Π,f)W (α;µ0,Π)

mina∈NE(G,µ0,f)W (a;µ0)
,

which is the same ratio but now with the worst-case equilibrium strategy and allocation.

These values inform a system operator of how revealing information will affect their equi-

librium guarantees. They differ from the well-known price-of-anarchy/stability measures

in that they relate two equilibrium performances rather than equilibrium to optimal.

3.3 Main Results

The main contribution of this work is in lower and upper bounding the value-of-

informing for best- and worst-case equilibria. These bounds depend on agents’ local

decision-making process. In Section 3.3.1, we focus on the case where agents’ payoffs

are aligned with the system objective and find that revealing information improves the

best-case equilibrium (VoI+ ≥ 1) but can worsen the worst-case equilibrium (VoI− ≤ 1).

In Section 3.3.2, we generalize these bounds to any local utility rule f . In Section 3.3.3,

we observe a trade-off in the lower bounds on VoI+ and VoI−; Fig. 3.2 characterizes this

trade-off and highlights the fact that altering the local objectives of agents affects the

efficacy of revealing information.

3.3.1 Marginal Contribution

The first utility design we will consider is the marginal contribution, where each agent

makes decisions that maximize their contribution to the system welfare, i.e., Ui(a) =
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W (a) −W (a−i). This can be expressed by the local utility rule fmc(x) := 1[x=1]. When

agents follow this utility rule, their preferences are aligned with global welfare. This

utility rule has the property that it maximizes the best-case equilibrium guarantee, known

as the price-of-stability ratio [86]. However, as of yet, the effect of revealing information

to decision-makers using this utility function has not been addressed. In Theorem 3.3.1,

we address this question by providing lower and upper bounds on the value-of-informing

for the best- and worst-case equilibria.

Theorem 3.3.1. In a Bayesian Maximum Coverage problem (G, µ0,Π), with utility rule

fmc, the value-of-informing for the best-case equilibrium satisfies

1 ≤ VoI+(G, µ0,Π, f
mc) ≤ |Π|, (3.3a)

and for the worst-case equilibrium satisfies

1/2 ≤ VoI−(G, µ0,Π, f
mc) ≤ 2|Π|. (3.3b)

All of these bounds are tight, but the upper bounds on VoI−.

Before proving the statement, we discuss the consequences of these results. We first

see that revealing more information (increasing the cardinality of Π) provides significant

opportunities for improvement in either perspective2. However, revealing information

need not always have such a positive effect. In the optimistic perspective, revealing

information can only improve performance (VoI+ ≥ 1); however, doing so does not come

without consequence, as revealing information can reduce the quality of the worst-case

equilibrium by a factor of 1/2 (VoI− = 1/2). This fact affirms an important property

of information in a multi-agent system: revealing information must be done carefully.

2A more refined understanding of this improvement can be attained by considering the difference
between the realizations and the prior mean.
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The proof relies on the following lemma characterizing Bayes-Nash equilibria and the

expected welfare.

Lemma 1. A joint strategy α is a Bayes-Nash equilibrium if and only if

(α1(π), . . . , αn(π)) ∈ NE(G,E[v | πk], f)

for each π ∈ Π. Additionally, the expected welfare of a joint strategy α is a weighted

average of the welfare of the joint actions α(π) in the respective deterministic games,

i.e.,

W (α;µ0,Π) =
m∑
k=1

pkW (α(πk);E[v|πk]) ,

where pk =
∑

v∈πk µ0(v).

Proof. Let α ∈ AΠ denote a joint strategy. We show the first claim by observing the

following transformation for any α,

U i(α;µ0,Π) = E

[∑
r∈R

E[vr|π]f(|α(π)|r)

]
(3.4a)

=
m∑
k=1

pkUi (α(πk);E[v|πk]) , (3.4b)

where (3.4a) holds from the law of total expectation. Because α can be any m-tuple of

joint actions, (3.2) is satisfied if and only if Ui (α(π);E[v|π]) ≥ Ui (a
′
i, α−i(π);E[v|π]) , for

all a′i ∈ Ai, π ∈ Π; or, that α(π) is a Nash equilibrium for the deterministic game G

with values E[v|π] for each π ∈ Π. The second claim follows (3.4) with welfare in place

of utility.

Proof of Theorem 3.3.1: Best-case equilibrium - We will make use of the function W ⋆(v),

which denotes the welfare of an optimal allocation in G when the values are v. We
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note that with the marginal contribution utility rule, each optimal allocation aopt is an

equilibrium; thus, the welfare of the best Nash equilibrium is the optimal welfare [86],

or W ⋆(v) = maxa∈AW (a; v) = maxaNe∈NE(G,v,fmc)W (aNe). We first make several obser-

vations about the function W ⋆. Observe that W ⋆(v) = maxa∈A
∑

r∈R vr1[|a|r>0], is the

point-wise maximum of a set of affine (and thus convex) functions of v, which is itself

convex. Further, W ⋆ is positively homogeneous, i.e., W ⋆(λv) = λW ⋆(v) for all λ ≥ 0 and

v ≥ 0, and W ⋆ is monotone in v, i.e., v ⪰ v′ ⇒ W ⋆(v) ≥ W ⋆(v′) where “⪰” denotes the

element-wise inequality.

Using the properties ofW ⋆, we will prove the bounds on VoI+. First, the lower bound.

Consider the Bayesian covering game (G, µ0,Π). Observe that

max
a∈NE(G,µ0,fmc)

W (a;µ0) = W ⋆

(
m∑
k=1

pkE[v|πk]

)
(3.5a)

≤
m∑
k=1

pkW
⋆(E[v|πk]) (3.5b)

= max
α∈BNE(G,µ0,Π,fmc)

W (α;µ0,Π), (3.5c)

where (3.5a) holds from the fact the maximum-welfare Nash equilibrium is a system

optimum with values Eµ0 [v] and the law of total probability, (3.5b) holds fromW ⋆ convex

and Jensen’s inequality, and (3.5c) holds from the second claim of Lemma 1 and the first

claim of Lemma 1 with the fact the maximum-Nash is a system optimum. Rearranging

terms gives the first inequality in (3.3a). It is tight when |V| = 1.
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Now, we consider the upper bound on VoI+.

max
α∈BNE(G,µ0,Π,fmc)

W (α;µ0,Π) =
m∑
k=1

pkW
⋆(E[v|πk]) (3.6a)

=
m∑
k=1

W ⋆ (pkE[v|πk]) ≤
m∑
k=1

W ⋆(Eµ0 [v]) (3.6b)

= |Π|
(

max
a∈NE(G,µ0,fmc)

W (a;µ0)

)
, (3.6c)

where (3.6a) holds from the fact a Bayes-Nash joint strategy α is an m-tuple of Nash

equilibria, the maximum-welfare Nash equilibrium is optimal in W (· ; v) and the second

claim in Lemma 1. (3.6b) holds from W ⋆ positive homogeneous and the monotonicity of

W ⋆; more specifically,

Eµ0 [vr] =
∑
k∈[m]

pkE[vr|πk]

= pkE[vr|πk] +
∑

k′∈[m]\k

pk′E[vr|πk′ ] ≥ pkE[vr|πk],

holds ∀ r ∈ R, πk ∈ Π. (3.6c) holds from the definition W ⋆.

To see this is tight, consider a problem with R resources and one agent who can select

a single one of them, i.e., A1 = {1, . . . , R}. Each resource can take on one of two values:

0 or 1. The prior µ0 is that exactly one resource is ever of value 1 with equal probability;

so the support of v has R elements, each of which occurs with probability 1/R. When

uninformed, the single agent is indifferent over their actions and cannot attain a payoff

greater than 1/R. When informed, the single agent can always select the resource of

value 1. Thus VoI+ = R = |V| = |Π|.

Worst-case equilibrium - To focus on equilibrium strategies, let aNe(v) denote a Nash

equilibrium joint action in the game G when the values are v. The following steps will
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hold for any Nash equilibrium, and the proof will be completed by considering aNe(v)

as the welfare minimizing Nash equilibrium. Observe that the uninformed Nash welfare

satisfies

W (aNe(Eµ0 [v]);Eµ0 [v]) ≤ W ⋆(Eµ0 [v]) ≤
m∑
k=1

pkW
⋆(E[v|πk])≤

m∑
k=1

pk2W (aNe(E[v|πk]);E[v|πk]),

where the first inequality holds from the definition of W ⋆, the second holds from prop-

erties of W ⋆ shown in the first part of the proof, and the third holds from the price-of-

anarchy bound of 1/2 [78]. Letting aNe(v) be the worst-case Nash equilibrium when the

values are v in each occurrence, the rightmost expression is the worst-case welfare in a

Bayes-Nash joint strategy via Lemma 1. This gives the first inequality in (3.3a).

To see that this bound is tight, consider a resource allocation game with three re-

sources, R = {1, 2, 3}, and two players, N = {1, 2} with two actions each: A1 = {r1, r2}

and A2 = {r2, r3}. Let resource r1 have value v1 = 1 and r3 have value v3 = 0. Let the

value of resource r2 be a random variable, where v2 = 1 − ε with probability 1 − p and

v2 = 1+ε(1−p) with probability p. When the agents are not informed of the realization of

v2, its expected value is E[v2] = 1−ε(1−p)2 < 1 and there is a unique Nash equilibrium of

a = (r1, r2), providing a welfare of W (a;µ0) = 2−ε(1−p)2. When the full revelation sig-

naling policy Π = {{r1}, {r2}} is used, then when v2 = 1−ε, there is a unique equilibrium

of α1 = (r1, r2), and when v2 = 1+ε(1−p) there are two equilibria, the worse of which is

α2 = (r2, r3). This gives an expected welfare ofW (α;µ0) = (1−p)(2−ε)+p(1+ε(1−p))

and a gain of informing agents of VoI−(Π, fmc) = (1−p)(2−ε)+p(1+ε(1−p))
2−ε(1−p)2 . Letting p→ 1 and

ε→ 0 we get VoI−(Π, fmc)→ 1/2.

Finally, we show the upper bound on VoI−. Observe that the welfare of a Bayes-Nash
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Figure 3.2: Lower bounds on the value of revealing information for the best- and
worst-case equilibria. If the utility rule f is designed to lessen the loss to worst–
case equilibria (increasing VoI−), then there is a greater possible loss to the worst–
case equilibrium (decreasing VoI+). This trade-off matches the tight bounds from
Theorem 3.3.1 and Proposition 3.3.1, which appear as the endpoints of this plot.
The bounds are generated by comparing the value-of-informing to the price-of-anar-
chy/stability via Theorem 3.3.2 and the price of stability to the price-of-anarchy via
[86, Theorem 4.1].

strategy α = {aNe(E[v|π])}π∈Π under the signaling policy Π satisfies

m∑
k=1

pkW (aNe(E[v|πk]);E[v|πk]) ≤
m∑
k=1

pkW
⋆(E[v|πk])

≤ |Π| ·W ⋆(Eµ0 [v]) ≤ 2|Π| ·W (aNe(Eµ0 [v]);Eµ0 [v]),

where the first term is the expected payoff of α, and the first inequality holds from W ⋆

being the optimal welfare, the second holds from the upper bound on VoI+, and the third

holds from the price-of-anarchy bound.

3.3.2 Utility Design & Informing Efficacy

In Section 3.3.1, we considered the special case in which agents’ local objectives were

aligned with the global objective using the marginal cost utility rule fmc. In this section,

we generalize this result to any utility rule by leveraging a connection to the price-of-

stability and price-of-anarchy.
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In the deterministic setting, the price-of-stability/anarchy are used to quantify how

the best-case and worst-case equilibria approximate the system optimal. These metrics

can be generalized to the Bayesian setting but need not be informative or insightful on the

effects of revealing information within a single problem instance (i.e., failing to capture the

benefits and consequences of comparing bounds derived from different problem instances).

Let PoA(G, v, f) =
min

aNe∈NE(G,v,f)
W (aNe;v)

maxaopt∈AW (aopt;v)
denote the price-of-anarchy for a deterministic

maximum coverage problem, and let PoS(G, v, f) =
max

aNe∈NE(G,v,f)
W (aNe;v)

maxaopt∈AW (aopt;v)
denote the

price-of-stability.

Though not immediately apparent, we establish a connection between the price-of-

stability/anarchy in deterministic covering games and the value-of-informing in Bayesian

covering games. In Theorem 3.3.2, we leverage this connection to generate bounds on

VoI+ and VoI− for any utility design.

Theorem 3.3.2. Let ψ := infv∈conv(V) PoS(G, v, f) and ρ := infv∈conv(V) PoA(G, v, f),

then the value of informing for the best-case equilibrium satisfies

ψ ≤ VoI+(G, µ0,Π, f) ≤ ψ−1|Π|, (3.7a)

and for the worst-case equilibrium satisfies

ρ ≤ VoI−(G, µ0,Π, f) ≤ ρ−1|Π|. (3.7b)

Proof of Theorem 3.3.2: The proof will rely on the function W ⋆(v) = maxa∈AW (a; v)

and several of its properties shown in the proof of Theorem 3.3.1. First, we prove the

bounds on VoI+. Let a ∈ NE(G,Eµ0 [v], f) be an arbitrary Nash equilibrium in the

deterministic game G with values Eµ0 [v] and utility rule f , and let α ∈ BNE(G, µ0,Π, f)

be an arbitrary Bayes-Nash equilibrium in G with prior µ0 on v and information signaling
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policy Π and utility function f . Observe that the expected welfare of α satisfies

W (α;µ0,Π) =
m∑
k=1

pkW (α(πk);E[v|πk]) (3.8a)

≤
m∑
k=1

pkW
⋆(E[v|πk]) (3.8b)

≤ |Π|W ⋆(Eµ0 [v]) (3.8c)

≤ ρ−1|Π|W (a;Eµ0 [v]), (3.8d)

where (3.8a) holds from Lemma 1, (3.8b) holds from the definition of W ⋆, (3.8c) holds

from the monotonicity and positive homogeneity of W ⋆ (previously shown in (3.6b)-

(3.6c)), and (3.8d) holds from the definition of ρ.

Similarly, we can show that the expected total welfare of the uninformed equilibrium

a satisfies

W (a;µ0) ≤ W ⋆(v) (3.9a)

≤
m∑
k=1

pkW
⋆(E[v|πk]) (3.9b)

≤
m∑
k=1

pkρ
−1W (α(π);E[v|πk]) (3.9c)

= ρ−1W (α;µ0,Π), (3.9d)

where (3.9b) holds from the convexity of W ⋆, (3.9c) holds from the definition of ρ, and

(3.9d) holds from Lemma 1. Because (3.8) and (3.9) hold for any a ∈ NE(G,Eµ0 [v], f) and

α ∈ BNE(G, µ0,Π, f), it holds for each being the respective welfare minimizing equilibria.

If we consider only the case where a and α are the welfare maximizing equilibria, i.e.,

a ∈ argmaxa′∈NE(G,Eµ0 [v],f)
W (a′;Eµ0 [v]) and α ∈ argmaxα′∈BNE(G,µ0,v,f)W (α′;µ0,Π)
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3.3.3 Optimistic/Pessimistic Trade-Off

Theorem 3.3.2 highlighted the fact that altering the utility design will change the

impact of information revealing; however, the given bounds need not be tight. It appears

that using a utility design with a higher price-of-anarchy in the deterministic setting will

lead to an improved lower bound on VoI−. As such, we will more closely consider the

price-of-anarchy maximizing rule

f g(x) := (x− 1)!

1
(n−1)(n−1)!

+
∑n−1

i=x
1
i!

1
(n−1)(n−1)!

+
∑n−1

i=1
1
i!

,

when x > 0, and f g(0) = 0, proven optimal in [36]. In Proposition 3.3.1, we show tight

lower bounds on VoI with f g.

Proposition 3.3.1. While using the the price-of-anarchy maximizing rule f g, the value-

of-informing for the best-case equilibrium satisfies

1− 1

e
≤ VoI+(G, µ0,Π, f

g), (3.10a)

and for the worst-case equilibrium satisfies

1− 1

e
≤ VoI−(G, µ0,Π, f

g), (3.10b)

Further, each of these lower bounds is tight.

Proof of Proposition 3.3.1: Theorem 3.3.2 can be used to show that each of (3.10a)

and (3.10) are valid lower bounds. To see these bounds are tight, consider a maximum

coverage problem with resource set R = {rpi}n−1
i=1

⋃
{rsj}zj=1 where z = ⌈1/(f g(n) − ε)⌉.

The first n− 1 players can select a single resource from the public resources {rsj}zj=1 or

their respective private resource rpi for player i, i.e., Ai = {rs1 , . . . , rsz , rpi}, ∀i ∈ N \{n}.
64



The Cost of Informed Decision Making in Multi-Agent Maximum Coverage Problems Chapter 3

The final player has exactly one action to use all the shared resources simultaneously

An = (rs1 , . . . , rsz). Each private resource rpi has value vrpi = f g(n)− ε with probability

one where ε > 0. The value of the shared resources are random; each takes on value 1

w.p. 1/z < f g(n)− ε and 0 otherwise, and follow distribution µ0 such that exactly one is

ever the high value. When uninformed, each of the first n−1 players strictly prefers their

private resource, giving a unique equilibrium welfare ofW (aNe;µ0) = 1+(n−1)(f g(n)−ε).

Under the full information reveal policy Π, each of the n−1 agents strictly prefer to use the

one shared resource of value 1, giving an expected welfare ofW (αBNe;µ0,Π) = 1. Because

each of the informed and uninformed equilibria are unique, this gives VoI+(µ0,Π) =

VoI−(µ0,Π) =
1

1+(n−1)(fg(n)−ε) → 1− 1
e
as ε→ 0 and n→∞.

Comparing the lower bounds of Theorem 3.3.1 and Proposition 3.3.1 highlights a

trade-off between revealing information in the optimistic and pessimistic perspectives.

We further examine this trade-off in Fig. 3.2. Using Theorem 3.3.2 and recent results

of [86], we can characterize lower bounds on VoI+ and VoI− for different utility rules.

3.4 Conclusion and Future Work

We addressed the possible benefit and consequences of revealing information to local

decision-makers in a distributed system. By lower and upper bounding the value-of-

informing, this work (1) quantified the possible effects of information revealing and (2)

identified a trade-off between the guarantees of revealing information in the optimistic

and pessimistic perspective. Future work will answer the design question and develop

methods to solve for information signaling policies that optimize expected system welfare.
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Chapter 4

Robust Utility Design in Distributed

Resource Allocation Problems with

Defective Agents

The use of multi-agent systems to solve large-scale problems can be an effective method

to reduce physical and computational burdens; however, these systems should be robust

to sub-system failures. In this work, we consider the problem of designing utility func-

tions, which agents seek to maximize, as a method of distributed optimization in resource

allocation problems. Though recent work has shown that optimal utility design can bring

system operation into a reasonable approximation of optimal, our results extend the ex-

isting literature by investigating how robust the system’s operation is to defective agents

and by quantifying the achievable performance guarantees in this setting. Interestingly,

we find that there is a trade-off between improving the robustness of the utility design

and offering good nominal performance. We characterize this trade-off in the set of re-

source covering problems and find that there are considerable gains in robustness that

can be made by sacrificing some nominal performance.
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4.1 Introduction

Multi-agents systems have emerged as a viable method of implementing distributed

system operation. In teams of robots [97, 98], resource allocation problems [99, 100], au-

tonomous mobility and delivery [101, 102], and many other large-scale systems, distribut-

ing certain decision making processes to individual agents can help reduce computational

and communication burdens. Designing local control laws for agents that guarantee good

system performance overall can be difficult; a promising method of solving this problem

is by using tools from game theory to describe the system operation [103]. A system

designer can assign each agent a local objective or utility function which they seek to

maximize. By carefully designing these utility functions, the system designer can guar-

antee that the emergent system behavior is within a good approximation of the system

optimal [104, 105]. Though the use of game theoretic techniques in distributed control is

encouraging, the robustness of these utility designs is not well understood, and certain

sub-system failures may cause significant degradation in the system performance.

In this work, we consider the problem of utility design in resource allocation problems

in which each agent selects a set of resources (or tasks) with the objective of maximizing

the system welfare through the agents’ collective actions. To determine a preference over

actions, each agent is assigned a local objective (or utility) function which they seek to

maximize by repeatedly updating their action; the equilibria of this process are the Nash

equilibria of the game formed between the agents with their payoffs described by their

local objectives. By designing the utility rules of the agents, a system operator can alter

the Nash equilibria and improve the equilibrium performance guarantees. The problem of

utility design has been studied in many settings of resource allocation problem [36, 72, 78]

and has been proven to be effective at offering reasonable approximations of the optimal

system welfare. In this work, we seek to understand the robustness of utility rules
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to sub-system failures by investigating the impact of defective agents on performance

guarantees.

Previous work has considered how sub-system failures can affect the operation of a

distributed control system. In [106], the authors look at how performance of greedy

submodular-maximization degrades as communication channels between agents are re-

moved and find that certain design modifications can be beneficial. The authors of [107]

introduce a framework to discuss the robustness properties of log-linear learning: a pro-

cess in which users’ action updates are noisy best responses. They find that the presence

of a single heterogeneous agent can alter the long-term group behavior but do not discuss

the impact this agent has on system welfare. In [108], the authors consider the effect

of heterogeneous agents on opinion dynamics in networked systems and their impact on

group consensus. In this work, we not only consider how these types of agents affect

the system operation and equilibria but also how they impact the system welfare and

achievable performance guarantees of a utility design. We further consider how existing

design techniques can be modified to offer improved robustness to defective agents.

The results of this work give insight on the robustness of game theoretic techniques

of distributed control in resource allocation problems with defective agents. We consider

two types of defective agents: (1) stubborn agents which do not update their actions

and do not contribute to the system welfare but do alter the agents’ perceived utilities,

and (2) failure-prone agents that have a probability of failing to contribute to the system

objective. In either setting, the presence of these defective agents will alter the intended

system operation and worsen system performance guarantees. In Section 4.3, we first

leverage existing results on utility design for resource allocation to provide a tractable

linear program which can be used to compute the optimal, robust utility design in the

presence of either type of defective agent. This program not only tells us the struc-

ture of the optimal utility design, but also the associated performance guarantees. In
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Section 4.4, to better understand the affect these defective agents have on system perfor-

mance, we focus on the class of covering problems. We find that significant performance

improvements are attainable by designing utility rules more robustly; however, these de-

sign modifications necessarily reduce the system performance in the nominal setting. In

Theorem 4.4.1, we characterize the trade-off frontier between offering good nominal and

robust performance in the presence of a finite number of stubborn agents. Similarly, in

Section 4.4.2 we offer a numerical analysis to highlight a similar trade-off in the setting

of failure-prone agents.

4.2 Preliminaries

Consider a multi-agent system comprised of a finite set of agents N = {1, . . . , n}

whose interactions comprise the operation of the system. Each agent i ∈ N has a set

of allowable actions Ai that they can employ. When each agent i ∈ N has selected an

action ai ∈ Ai, we denote the joint action or allocation of users decisions by the tuple

a = (a1, . . . , an) ∈ A = A1 × . . . × An. To quantify the efficacy of system operation,

each joint action is mapped to a global objective value via a system welfare function

W : A → R.

The objective of a system operator is to design a distributed decision-making process

that enables system operation at a joint action a ∈ A that maximizes the system welfare

aopt ∈ argmaxa∈AW (a). One popular approach to the design of such processes is to

design a utility function Ui : A → R for each agent i ∈ N in the system that will influence

and guide the agent’s local decision making [103]. By employing suitable distributed

learning algorithms, e.g., fictitious play [109] or regret matching [110], a system operator

can ensure that the resulting distributed process converges to an equilibrium of the

designed games. This work will primarily focus on the notion of pure Nash equilibrium,
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which is characterized by a joint action profile aNe ∈ A that satisfies

Ui(a
Ne
i , a

Ne
−i) ≥ Ui(a

′
i, a

Ne
−i), ∀a′i ∈ Ai, i ∈ N, (4.1)

where a−i denotes the action of all players excluding player i. Here, it is important to

highlight that the design of utility function shapes the underlying equilibria of the systems

which in turn influences the performance of the underlying system at such equilibria.

One of the fundamental goals of a system operator is to design utility function that

lead to highly efficient equilibria as measured with regard to the system welfare. We

measure the efficiency of a Nash equilibrium by the ratio between the equilibrium system

welfare and the optimal system welfare. This performance guarantee is termed the price

of anarchy, and can formally be defined as

PoA(G) =
mina∈NE(G)W (a)

maxa∈AW (a)
, (4.2)

where G = (N,A, {Ui}i∈N ,W ) is a given game equipped with a performance metric

and NE(G) is the set of Nash equilibria in the game. The effectiveness of utility design

has been studied in many settings, and has been shown to be effective at providing a

reasonable approximation for the system optimal [36, 100]. In fact, in many cases such

an approach provides the same approximation ratio as the best centralized algorithms

[111].

The focus of this paper is on class of multi-agent systems pertaining to resource

allocation problems. Here, there is ground set of resources (or tasks) R and each agent

i ∈ N is associated with an admissible choice set Ai ⊂ 2R. Further, each resource r is

associated with a non-decreasing welfare function wr : {0, 1, . . . , n} → R≥, where wr(k)

encodes the welfare accrued at resource r when k ≥ 0 agents are at resource r. The
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system welfare can thus be written as

W (a) =
∑
r∈R

wr(|a|r), (4.3)

where |a|r denotes the number of agents utilizing resource r in allocation a. As above, the

goal of a system operator is to design agent utility functions to optimize the efficiency of

the resulting equilibria. To that end, here we focus on the design of agent utility functions

where each resource r is associated with a a local utility rule fr : {0, . . . , n} → R≥0 that

describes how agents should assess the benefit of selecting resource r given the behavior

of the other agents in the system. For these utility designs to be robust to different

problem instances, we assume that the local utility function is the same for each agent1.

When a system designer chooses a set of local utility rules f = {fr}r∈R, the utility of

agent i given an action profile a ∈ A is of the form

Ui(a) =
∑
r∈ai

fr(|a|r). (4.4)

We will express a resource allocation game by the tuple G = (N,A,R, {wr, fr}r∈R), as

the utility functions and welfare functions are derived from the pairs {wr, fr}r∈R. A

resource allocation game, with non-decreasing local utility functions permits a potential

function and thus at least one Nash equilibrium exists [72].

When designing the local utility rules f , a system operator may have minimal infor-

mation about the specific game instance G, such as uncertainty about the agents available

1Because we consider a worst-case analysis, we cannot differentiate between the role of two agents, as
if we designed the utility rule of agent i and j differently, a problem may be realized where their roles are
reversed. If the system designer had full knowledge of the problem structure, designing agents’ utilities
heterogeneously can certainly help; however, it is currently unknown as to whether player specific utility
functions can help in improving worst-case performance guarantees across a class of problem instances.
Additionally, adopting a local utility rule that is consistent for each player lets us maintain the potential
game structure.
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actions or the full set of resources. For example, in the context of content distribution

networks and data caching, the system operator has little knowledge of the available

servers and the paths over the internet that connect them [112], in ride-sharing, the re-

quests of passengers are not known until they are placed [113], or in team formations, the

tasks may be changing over time [114]. A common assumption in the literature is that

the system operator has knowledge of the type of different resource welfare functions,

which we express byW , but is unsure of the specific game instance or the specific welfare

functions employed. The goal of a system operator is to design a local utility rule fr for

each welfare function wr ∈ W . We define this association by the map F : W → Rn
≥0,

where fr = F(wr). Accordingly, given a set of potential welfare functions W and a local

utility rule F , we denote the set of possible games as

GW,F = {(N,A,R, {wr,F(wr)}r∈R) : wr ∈ W ,A1, . . . ,An ⊆ 2R}.

Note that GW,F consists of any resource allocation game with n agents where each resource

r ∈ R employs the pair {wr, fr = F(wr)} where wr ∈ W . Given the set of possible

welfare functions W , the goal of a system operator is to design the local utility rules F

to optimize the price of anarchy over the family of games GW,F , i.e.,

PoA(GW,F) = inf
G∈GW,F

PoA(G). (4.5)

There are several recent works that highlight how to compute the local utility rule F

that optimizes the price of anarchy given in (4.5) [72, 105].
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4.3 Robust Utility Design

This work focuses on understanding the robustness of these game theoretic methods

of distributed control to sub-system failures in the form of defective agents. As such,

we seek to understand the impact of defective agents on the price of anarchy and what

improvements are possible when agents’ utilities are designed with the knowledge that

these hazards may exist. Specifically, we consider two different modes of agent failures,

stubborn agents and failure prone agents, and illustrate how one can design robust utility

function to optimize performance guarantees in these non-ideal settings.

4.3.1 Stubborn Agents

We consider a setting where there exist a finite number of stubborn agents in the

system. While these stubborn agents do not contribute to the system welfare, they do

impact the behavior of the agents in the systems and can potentially diminish the quality

of the resulting equilibria.

To that end, we consider a scenario where there are at most m defective agents that

can each occupy a subset of the resources in R. Because each stubborn agent can occupy

any subset of the resources, we instead represent the allocation of stubborn agents by the

number of stubborn agents on each resource. Accordingly, we will express the behavior of

the stubborn agents by the tuple d = {dr}r∈R, where dr ∈ {0, 1, . . . ,m} for each resource

r ∈ R. Further, we will express the collective behavior in our system by the tuple (a; d)

to reflect the behavior of both the nominal and stubborn agents. Here, it is important

to highlight that the stubborn agents do not impact the system welfare, which stays of

the form

W (a; d) =
∑
r∈R

wr(|a|r).
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However, the presence of stubborn agents does affect the utility functions of the nominal

agents who are unable to differentiate between the behavior of stubborn agents and other

nominal agents. Here, the utility function for any agent i ∈ N , action profile a ∈ A, and

stubborn agent profile d is of the form

Ui(a; d) =
∑
r∈ai

fr(|a|r + dr), (4.6)

where fr ∈ Rn+m
≥0 . We will now measure the price of anarchy associated with a given

form of stubborn behavior d ∈ {0, . . . ,m}|R| as

PoA(G, d) =
mina∈NE(G,d)W (a)

maxaopt∈AW (aopt)
, (4.7)

where NE(G, d) defines the equilibria associated with the game defined by d given in

(4.6). As stated before, the goal of a system operator is to design a local utility rule F

that optimizes the worst-case performance measure over both game instances G ∈ GW,F

and stubborn-agent behavior d ∈ {0, . . . ,m}|R|, i.e.,

PoA(GmW,F) = inf
G∈GW,F

min
d∈{0,...,m}|R|

PoA(G, d). (4.8)

The following proposition demonstrates that one can find the local utility rule F that

optimizes the price of anarchy via the solution of a tractable linear program.

Proposition 4.3.1. Let W = {
∑B

b=1 αbwb|αb ≥ 0 ∀b ∈ [B]} be a set of resource value

functions where wb ∈ Rn
≥0 is a basis welfare function. For each b ∈ [B], let (f ⋆b , µ

⋆
b) be
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the solution of the following linear program

(f ⋆b , µ
⋆
b) ∈ argmax

f∈Rn+m, µ∈R
µ (4.9)

s.t. wb(z + y)− µwb(x+ y)

+ xf(x+ y + d)− zf(x+ y + d+ 1) ≤ 0

∀(x, y, z) ∈ In, d ∈ {0, . . . ,m},

where In = {(x, y, z) ∈ N3
≥0 | 1 ≤ x+ y+ z ≤ n}. The following statements hold true for

the family of resource allocation games with at most n agents and m stubborn agents:

(i) There exists a linear local utility rule F∗ that optimizes the price of anarchy given

in (4.8). Furthermore, if w =
∑B

b=1 αbwb, then F∗(w) =
∑B

b=1 αbf
∗
b .

(ii) The optimal price of anarchy satisfies PoA(GmW,F∗) = maxb∈[B] 1/µ
⋆
b .

The linear program (4.9) is a generalization of [105, Theorem 3.7] which solves the

local utility design problem in the nominal setting and is recovered when m = 0. The

proof appears in Appendix A.2.1. Here, the local utility function f is treated as a vector

in Rn+m where f(i) denotes what the utility rule evaluates to when i agents utilize a

resource; the linear program thus has n +m + 1 decision variables and |In| constraints.

It is interesting to note that the optimal local utility design in a class of games of the

described form decomposes into finding an optimal basis local utility function for each

basis value function (a phenomenon first observed in [7]), making the computation of these

utility rules more efficient. The parameterization using tuples of the form (x, y, z, d) is

described in the appendix along with the proof. This approach not only solves for the

optimal local utility rule, but also gives the associated price of anarchy guarantee. By

comparing the solution of (4.9) when m = 0 and when m > 0, we can observe the

impact stubborn agents have on the capabilities of a system designer. The magnitude of
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this performance degradation is discussed in Section 4.4.1, along with an investigation

of the impact the design modifications that promote robustness have on the nominal

performance of the system.

4.3.2 Failure Prone Agents

The second type of defective agent we consider are failure prone agents, where each

agent operates normally but has a probability of failing and not contributing to the global

objective. Every agent will follow the designed utility rule but has a chance of failing

and no longer contributing to the system welfare. In contrast to the defective agents in

the previous section which were ineffective and stubborn in their action selection, here

an agent that fails can be thought of as ineffective but still updating their actions as a

normal agent would. Additionally, each agent independently fails to contribute to the

welfare with probability p. In a resource allocation problem G, each agent (failed or

not) will follow their best response dynamic until the system reaches a Nash equilibrium

aNe ∈ NE(G). In an allocation a, a resource r ∈ R, utilized by |a|r agents, has Xr ≤ |a|r

non-failed agents remaining with probability

P[Xr = x] =

(
|a|r
x

)
(1− p)x p|a|r−x.

In a game G, the expected system welfare in an allocation a is

W (a) = E

 ∑
{r∈R:Xr>0}

wr(Xr)

 . (4.10)

The price of anarchy when agents are failure-prone PoA(G; p) is thus the worst-case

ratio between the expected system welfare in a Nash equilibrium and the optimal expected

system welfare. The worst-case performance guarantee is a lower bound on the price of
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anarchy over resource covering games with a probability of failure p, i.e., PoA(GW,F ; p).

As described in Section 4.3.1, the optimal local utility design problem can be described

as finding a mapping F that maximizes PoA(GW,F ; p).

Proposition 4.3.1 provides a tool for computing local utility rules that are robust to

stubborn agents for general local welfare functions. Additionally, we can amend the local

welfare function and use the same linear program to compute the optimal local utility

rule in the face of failure prone agents.

Corollary 3. Let W = {
∑B

b=1 αbwb|αb ≥ 0 ∀b ∈ [B]} be a set of resource value functions

where wb ∈ Rn
≥0 is a basis welfare function. If agents fail with probability p, then for

each b ∈ [B], let (f ⋆b , µ
⋆
b) be the solution of the (4.9) with m = 0 and the amended value

functions

wb(x) =
x∑
k=0

wb(k)

(
x

k

)
(1− p)k px−k ∀ b ∈ [B]. (4.11)

The following statements hold true for the family of resource allocation games with at

most n agents and probability of failure p:

(i) There exists a linear local utility rule F∗ that optimizes the price of anarchy given

in (4.8). Furthermore, if w =
∑B

b=1 αbwb, then F∗(w) =
∑B

b=1 αbf
∗
b .

(ii) The optimal price of anarchy satisfies PoA(GW,F∗ ; p) = maxb∈[B] 1/µ
⋆
b .

4.4 Efficacy of Robust Design

In Section 4.3, a linear program was introduced that can be used to solve for the

optimal local utility design and associated performance guarantee. In this section, we

seek to better understand the impact of these defective agents and what opportunities

are available by utilizing a more robust design. To answer this, we look at a specific

setting of resource allocation problems called covering problems. Here, each resource r
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contributes a fixed value to the system if it is utilized (or covered) by at least one agent.

The welfare function for a covering problem can thus be written as

W (a) =
∑
r∈R

vr · w(|a|r),

where w(x) is an indicator function that takes value 1 if x > 0 and 0 otherwise. These

problems are a specification of the more general problem description in Section 4.3 where

there is now only a single basis function and W = {α · w | α > 0}. The focus to this

setting allows for a more detailed analysis of robust performance as closed form solutions

to general resource allocation problems with defective agents is still an open problem.

As discussed in Proposition 4.3.1, the optimal local utility rules satisfy a linearity

property, therefore in the set of covering problems, we need only find a single local utility

function f : [n] → R≥0 that is scaled by the resources value vr to determine the local

utility, i.e.,

Ui(a) =
∑
r∈ai

vr · f(|a|r).

As the welfare functions are described by a single basis, and we need only consider a

single vector f to define a utility rule, the set of covering games can be denoted Gw,f . For

brevity, and because the welfare basis function will not change, we will simply denote

this set of games Gf and note the covering welfare function is implied. Altering f will

constitute changes to the local utility design. Finding the form of the optimal local utility

rule f in closed form is not trivial. However, in [36] the authors find that the local utility

rule

f 0(j) := (j − 1)!

1
(n−1)(n−1)!

+
∑n−1

i=j
1
i!

1
(n−1)(n−1)!

+
∑n−1

i=1
1
i!

, (4.12)

is optimal in the nominal covering setting and provides a price of anarchy guarantee of

1− 1
e
. In this work, we investigate how performance guarantees like this are impacted by
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the presence of defective agents. Additionally, we ask if appropriate design modifications

to the local utility rule can make the system more robust to defective agents and what

impact these design modifications have on the systems nominal performance.

4.4.1 Stubborn Agents in Covering

In Proposition 4.3.1, a linear program was introduced whose solution gives the optimal

local utility rule for a class of games with stubborn agents. In this section, we seek to

further understand the impact of stubborn agents on performance guarantees by finding

the optimal, robust local utility rule and associated performance guarantee in covering

problems. Interestingly, we find that though robust design modifications can improve

robust performance, these changes necessarily reduce the utility rules performance in

the nominal setting, thus highlighting a trade-off between guaranteeing good robust and

nominal performance. We let Gmf denote the set of covering games with local utility rule

f and at most m stubborn agents. By comparing the price of anarchy guarantees in the

nominal setting G0f and in the presence of stubborn agents Gmf , we can discuss not only

the newly found robustness of a utility rule f , but also what performance guarantees it

maintains in the nominal setting.

Theorem 4.4.1 quantifies the trade-off between utility rules that are robust to stubborn

agents and utility rules with good nominal performance in terms of price of anarchy

guarantees.

Theorem 4.4.1. Let t ∈ [0, 1] be a chosen tuning parameter. In the class of covering

games, if a local utility rule f achieves a robust price of anarchy guarantee of

PoA(Gmf ) ≥
Γm + e

e−1

1 + tΓm
, (4.13)

79



Robust Utility Design in Distributed Resource Allocation Problems with Defective Agents
Chapter 4

Figure 4.1: Achievable price of anarchy guarantees in the nominal setting G0f and in
the presence of m stubborn agents Gmf . Each line represents a Pareto-optimal frontier
for the achievable performance guarantee in each setting for a specific m. The left
(red) endpoints represent the price of anarchy guarantees of the optimal, robust utility
rule f t=1 and the right (blue) endpoints represent the price of anarchy guarantees of
the optimal, nominal utility rule f t=0. A system designer is only capable of offering
joint performance guarantees that are on the line connecting the endpoints or lower.
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where Γm = m!
e−

∑m−1
i=0

1
i!

e−1
−1, then its nominal price of anarchy guarantee will be no better

than

PoA(G0f ) ≤
(e− 1)(1 + tΓm)

1 + (e− 1)(1 + tΓm)
. (4.14)

Further, the price of anarchy guarantees in (4.13) and (4.14) can be jointly realized by a

local utility rule

f t(j) = f 0(j)−max

{
t

(
f 0(j)− m

j
f 0(m)

)
, 0

}
. (4.15)

The proof of Theorem 4.4.1 appears in Appendix A.2.2.

The trade-off described in (4.13) and (4.14) is depicted in Fig. 4.1 for several values

of m. The horizontal axis measures the nominal price of anarchy and the vertical axis

measures the price of anarchy when there are at most m stubborn agents. By choosing

t = 0 the local utility rule optimizes the nominal price of anarchy guarantee and choosing

t = 1 optimizes the robust price of anarchy guarantee. The line drawn by varying the

parameter t ∈ [0, 1] constitutes a Pareto-optimal frontier on the multi-objective problem

of maximizing the nominal and robust performance guarantees.

By letting t = 0, we can evaluate the performance of the optimal, nominal utility

rule f t=0 = f 0 defined in (4.12). Clearly, the performance degrades as more stubborn

agents are introduced into the problem: the presence of two stubborn agents reduces the

performance of the nominal utility rule f t=0 by almost 60% down to PoA(Gm=2
f t=0 ) = 0.2541.

By designing the utility rule more robustly, the price of anarchy guarantee in Gm=2
f can be

improved by almost 20% by using f t=1; however, this increase in robustness comes at the

cost of nominal performance, as the local utility rule f t=1 is approximately 7% less efficient

than the optimal in the nominal setting. A system designer who would like to optimize

both performance metrics can provide guarantees only up to the Pareto-optimal frontier

81



Robust Utility Design in Distributed Resource Allocation Problems with Defective Agents
Chapter 4

Figure 4.2: Optimal local utility rules that are robust to failure-prone agents for
several probabilities of failure p. As the probability of agent failure increases, the
optimal utility rule is larger for values of k > 1, thus incentivizing more overlap in
agents resource usage.

described by (4.13) and (4.14) and shown in Fig. 4.1; these Pareto-optimal performance

guarantees can be achieved by using f t for t ∈ [0, 1].

4.4.2 Failure-Prone in Covering

Optimal Utility Rules

Utilizing our results from Section 4.3.2, we perform a numerical analysis with (4.9)

to understand the necessary design modifications and attainable performance guarantees

with failure-prone agents in the setting of recource covering, i.e., w is the indicator

function. From Corollary 3, we can compute optimal utility rules and price of anarchy

guarantees using the augmented value function

w(x) =
x∑
k=0

w(k)

(
x

k

)
(1− p)k px−k = 1− px,

and the linear program provided in (4.9) with m = 0. Via the solution to the linear pro-

gram, we not only investigate how the optimal utility rule and price of anarchy change
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Figure 4.3: (a) Price of anarchy in covering problems with failure prone agents under
nominal utility rule f0 and robust utility rule fp. The robust utility rule offers sig-
nificant performance improvements in the presence of failure prone agents. (b) Price
of anarchy in covering problems under nominal utility rule f0 and robust utility rule
fp designed for agents failing with probability p. The robust utility rule sacrifices
notable performance in the original setting.

with the probability of failure, we further investigate how the design modifications affect

the nominal performance, had the agents not been failure prone. Additionally, we con-

sider these performance metrics when the agents are not only failure-prone, but when

there exist stubborn agents as well.

First, we utilize (4.9) to compute the optimal utility rule in the presence of failure-

prone agents for several values of p, the probability failure. In Fig. 4.2, we see that the

optimal local utility rule fp(k) increases with p for values of k > 1. Intuitively, this

implies that it is optimal to design agents utilities as to promote more overlap in the

resources they utilize. The larger the number of agents utilizing a resource will lead to

a better chance that the resource will be covered by at least one non-failed agent. As p

approaches 1, it is optimal for all agents to greedily, and without consideration of one

another, to choose the most valuable set of resources.

Though these design modifications may make the system more robust to failure-prone

agents, they may not be effective in the nominal setting.
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Nominal & Robust Performance

In Fig. 4.3, we analyze the performance trade-off between designing utility rules for

the nominal and failure-prone settings. For p ∈ [0, 1], we compute the optimal utility

rule fp that is robust to agent failure with probability p using (4.9) with m = 0. We then

compare the performance of this new, robust utility rule with the performance of the

nominal utility rule f 0, defined in (4.12), when agents are failure-prone and when agents

are not failure-prone. Fig. 4.3 (left) shows the price of anarchy guarantees of the nominal

and robust utility rules in presence of failure-prone agents. When the probability of

failure is large, the robust utility rule offers large improvements to the expected system

welfare; when p = 0.75, the robust utility rule offers a price of anarchy guarantee of

PoA(Gfp=0.75 ; p = 0.75) = 0.8629 which is a 63% increase from the performance of the

nominal utility rule f 0 in this setting. However, as seen in Fig. 4.3 (right), if the system

designer is incorrect and the agents are not failure-prone, the use of the robust utility

rule causes a loss in performance; when p = 0.75 the price of anarchy of the robust

utility rule without failure prone agents is PoA(Gfp=0.75 ; p = 0) = 0.3129, which is a 49%

decrease from if the nominal had been used. This difference in price of anarchy guarantees

again highlights a trade-off between the achievable nominal and robust performance. As

the probability of failure increases, the optimal local utility rules in the robust setting

struggle to offer good, nominal performance guarantees.

Performance Trade-off

The previous numerical result highlights a trade-off between optimizing nominal perfor-

mance and robust performance in the setting of failure-prone. However Fig. 4.3 only

captures the fact that optimizing both objectives becomes more difficult as the proba-

bility of failure increases. Similar to Section 4.3.1, we would also like to understand the

trade-off between the objectives when good (but not optimal) performance is desired in
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Figure 4.4: Trade-off between nominal and robust performance guarantees for agents
that fail with probability p = 0.99 (left), p = 0.75 (middle), and p = 0.25 (right).
Each line represents an empirical Pareto-optimal frontier for the achievable joint price
of anarchy bound in each setting. The left (red) endpoints represent the price of
anarchy guarantees of the optimal, robust utility rule fp and the right (blue) endpoints
represent the price of anarchy guarantees of the optimal, nominal utility rule f0. By
simulation, utility rules were generated that populated the grey region of each plot
and up to the trade-off frontier.

both settings. In Fig. 4.4, we offer a bound on this trade-off by means of Monte Carlo

simulation. By randomly generating many possible local utility rules f , and using (4.9)

to compute the performance guarantees in the nominal and robust setting, we are able

to generate a lower bound on the Pareto-optimal frontier. Fig. 4.4 demonstrates similar

results to Fig. 4.1 in that the trade-off becomes more significant as the magnitude of

the possible sub-system failures (here failure-prone agents) increases. Additionally, it is

clear that reasonable concessions can be made to either the nominal or robust objective

to guarantee better performance in both.

Failure-Prone and Stubborn Agents

Finally, we consider the case where agents are not only failure-prone (are ineffective but

not stubborn), but that there also exists some defective, stubborn agents as introduced

in Section 4.3.1. Here, we again utilize (4.9) with welfare function defined accordingly by

Corollary 3 to represent the failure prone agent setting, but now with m > 0 stubborn

agents. In Fig. 4.5, we see the price of anarchy guarantees unsurprisingly degrade as

more stubborn agents are introduced into the system, however it is interesting to note

that the relative amount of this degradation does not vary much with p. This essentially
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Figure 4.5: Price of anarchy guarantee in the setting of failure-prone agents where m
stubborn agents are present. The presence of stubborn agents unsurprisingly lowers
the performance guarantees, but the amount by which this happens appears to be
relatively independent of p, the probability of failure.

shows that the two forms of failures do not cause cascading issues but do degrade system

performance.

4.5 Conclusion

This work studies the robustness of local utility rules to sub-system failures in the

form of stubborn and failure-prone agents. We provide linear programs that compute and

evaluate the optimal local utility rules in the face of these defective agents. Our results

show that there is a trade-off in designing utility rules that are robust and that give good

nominal performance, which is characterized for the setting of covering problems.
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Part II

Congestion Control and Social

Influencing
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Chapter 5

The Effectiveness of Subsidies and

Tolls in Congestion Games

Are rewards or penalties more effective in influencing user behavior? This work compares

the effectiveness of subsidies and tolls in incentivizing user behavior in congestion games.

The predominantly studied method of influencing user behavior in network routing prob-

lems is to institute taxes which alter users’ observed costs in a manner that causes their

self-interested choices to more closely align with a system-level objective. Another con-

ceivable method to accomplish the same goal is to subsidize the users’ actions that are

preferable from a system-level perspective. We show that, when users behave similarly

and predictably, subsidies offer superior performance guarantees to tolls under similar

budgetary constraints; however, in the presence of unknown player heterogeneity, subsi-

dies fail to offer the same robustness as tolls.
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5.1 Introduction

In systems governed by a collective of multiple decision making users, system perfor-

mance is often dictated by the choices those users make. Though each user may make

decisions rationally, the emergent behavior observed in the system need not align with

the objective of the system designer. This phenomenon appears in many engineering

settings including distributed control [103], resource allocation problems [115], electric

power grids [116], and transportation networks [113], as well as many logistical problem

settings such as marketing [117] and supply-chain management [118]. A prominent metric

to quantify this emergent inefficiency is the price of anarchy, defined as the worst-case

ratio between the social welfare experienced when users make self interested decisions

and the optimal social welfare [119, 120].

A promising method of mitigating this inefficiency is by introducing incentives to

the system’s users, influencing their decisions to more closely align with the system op-

timal [121]. One example of such incentives is to levy taxes, eliciting monetary fees

from users will affect their preferences over the available actions (e.g., tolls in trans-

portation) [19, 122, 123]. Such taxes have been shown to be effective in reducing system

inefficiency as measured by the price of anarchy ratio [71, 124, 7, 125]. Another method

to influence user behavior is to subsidize the actions that are preferable from a system

level perspective. Subsidies have been studied as a tool to influence users in transporta-

tion [126], supply chains [127], congestion [128], and emissions [129]. Though subsidies

require the system operator to pay its users, it is possible that the savings obtained

from efficient use of the infrastructure outweigh the cost incurred from the implemented

incentives [130, 131]; additionally, one could consider implementing subsidies as rebates

to a fixed, opt-in fee, to prevent a loss of revenue for the system operator. Though

the use of subsidies is feasible in theory and in implementation, this method has been

89



The Effectiveness of Subsidies and Tolls in Congestion Games Chapter 5

studied significantly less than the tax equivalent; the relative performance of each is thus

unknown.

In this paper, we seek to understand the relative performance of subsidies and taxes in

influencing user behavior in socio-technical systems. Specifically, we consider a network

routing problem in which users must traverse a network with congestible edges with

delays that grow as a function of the local mass of users. Finding a route for each user

that minimizes the total latency in the system is straightforward if the system designer

has full control in directing the users. However, when users select their own routes, the

resulting network flow need not be optimal [33]. Modeling the selfish routing problem

as a congestion game, we adopt the Nash flow as a solution concept of the emergent

behavior in the system. From the users’ selfish routing, the price of anarchy may be

large [132]. To alleviate this emergent inefficiency, we introduce incentives to the users’

which alter their observed costs and preferences. The objective of such incentives is to

shape the users’ preferences so the performance of the resulting Nash flow will improve.

A well studied method of incentivizing users in congestion games is to tax the users,

i.e., introducing tolls to links in the network [19, 122, 123, 71, 124, 7, 125, 133, 134]. In

each of these referenced works, the price of anarchy is used to measure the effectiveness

of a tolling scheme. Indeed in the most elementary settings, tolls exist that influence

users to self route in line with the system optimum [33]. However, when more nuance is

introduced in the form of player heterogeneity (i.e., players differing in their response to

incentives), the task of designing tolls becomes more involved. When the toll designer

possesses sufficient knowledge of the network structure and user population, they may

still compute and implement tolls which incentivize optimal routing [125]. However, in

the case where the system designer has some uncertainty in the network parameters or

behavior of the user population, it may not be possible to design tolls that give optimal

system performance; thus, tolls are often designed to minimize inefficiency measured by
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the price of anarchy ratio [123, 135, 136], and again, encouraging results exist.

Though the study of tolling in congestion games is extensive, there are few results

regarding subsidies as incentives in this context, especially in the presence of uncertain

user heterogeneity. In [137], the authors investigate budget-balanced tolls in which the

sum of all monetary transactions is zero, but the authors only consider homogeneous

users. The authors of [138] give the first formal analysis of subsidies in congestion games

and provide an algorithm that computes optimal rebates when users are homogeneous and

the network structure is known. The authors of [139] consider more general incentives,

but in an evolutionary setting. From a system designer’s perspective, subsidies may be

a feasible method of influencing user behavior; the performance guarantees of subsidies

is thus of interest as well as how this performance compares to tax incentives.

Though there is a clear disparity in the breadth of results in the literature on tolls and

subsidies, we bridge this gap by proving fundamental relationships between the perfor-

mance and robustness of subsidies and tolls. Namely, subsidies offer better performance

guarantees than tolls under budgetary constraints but are inherently less robust to user

heterogeneity. The manuscript is outlined as follows:

Section 5.2.6: Performance of Incentives. In Theorem 5.2.1, it is shown in the

nominal setting, where users behave similarly and predictably, that subsidies give

better performance guarantees under similar budgetary constraints.

Section 5.3: Incentives with Heterogeneity. In Theorem 5.3.1 it is shown that tolls

can effectively mitigate the negative effects of player heterogeneity while in Theo-

rem 5.3.2 it is shown subsidies cannot.

Section 5.3.1: Robustness of Incentives. It is shown that tolls are more robust

to uncertainty in the user population than subsidies. In the presence of a budgetary

constraint, Theorem 5.3.3 shows that uncertainty degrades subsidy performance more

rapidly than it degrades toll performance.
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Section 5.4: Trade-off in Performance and Robustness. Given the contrast in the

nominal performance of subsidies and the robustness of tolls to user heterogeneity,

this fundamental relationship is analyzed between the two in parallel-affine congestion

games by finding the level of uncertainty at which the robustness of tolls gives superior

performance guarantees than subsidies.

In addition to finding general performance and robustness relationships between sub-

sidies and tolls, we additionally find explicit price of anarchy bounds for optimal tolls

and subsidies in several classes of congestion games to show that the differences in per-

formance can be significant. We introduce tools to construct optimal incentives and

corresponding performance guarantees.

5.2 Preliminaries

5.2.1 System Model

Consider a directed graph (V,E) with vertex set V , edge set E ⊆ (V × V ), and k

origin-destination pairs (oi, di). Denote by Pi the set of all simple paths connecting origin

oi to destination di. Further, let P = ∪ki=1Pi denote the set of all paths in the graph.

A flow on the graph is a vector f ∈ R|P|
≥0 that expresses the mass of traffic utilizing

each path. The mass of traffic on an edge e ∈ E is thus fe =
∑

P :e∈P fP , and we say

f = {fe}e∈E. A flow f is feasible if it satisfies
∑

P∈Pi fP = ri for each source-destination

pair, where ri is the mass of traffic traveling from origin oi to destination di.

Each edge e ∈ E in the network is endowed with a non-negative, non-decreasing

latency function ℓe : R≥0 → R≥0 that maps the mass of traffic on an edge to the delay
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Figure 5.1: An example network routing problem G with two origin-destination pairs:
(o1, d1) = (v1, v4) with r1 = 1/2, and (o2, d2) = (v2, v4) with r2 = 1/2.

users on that edge observe. The system cost of a flow f is the total latency,

L(f) =
∑
e∈E

fe · ℓe(fe). (5.1)

A routing problem is specified by the tuple G = (V,E, {ℓe}e∈E, {ri, (oi, di)}ki=1) as illus-

trated in Fig. 5.1, and we let F(G) denote the set of all feasible flows. We define the

optimal flow f opt as one that minimizes the total latency, i.e.,

f opt ∈ argmin
f∈F(G)

L(f). (5.2)

We denote a family of routing problems by G. A family of routing problems is any set of

routing problems, often specified by a specific network topology (e.g., parallel networks)

and/or edge latency function types (e.g., polynomial latency functions) but can also be

a singleton.

5.2.2 Incentives

In this paper, we consider the problem of selfish routing, where each user in the

system chooses a path as to minimize their own observed delay. Let Ni be the set of

users traveling from origin oi to destination di. Each non-atomic user x ∈ Ni is thus
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free to choose between paths P ∈ Pi. Let each Ni be a closed interval with Lebesgue

measure µ(Ni) = ri that is disjoint from each other set of users, i.e., Ni ∩Nj = ∅ ∀ i, j ∈

{1, . . . , k}, i ̸= j. The full set of agents is thus N = ∪ki=1Ni whose mass is µ(N) =∑k
i=1 ri.

It is well known that selfish routing can lead to sub-optimal system performance [132].

It is therefore up to a system designer to select a set of incentive functions τe : R≥0 →

R ∀e ∈ E to influence the behavior of the users in the system to more closely align with

the system optimal flow. These incentives can be regarded as monetary transfers with

the users dependent on the paths they choose.

A user x ∈ Ni traveling on a path Px ∈ Pi observes cost

Jx(Px, f) =
∑
e∈Px

ℓe(fe) + τe(fe). (5.3)

A flow f is a Nash flow if

Jx(Px, f) = min
P∈Pi

{∑
e∈P

ℓe(fe) + τe(fe)

}

∀x ∈ Ni, i ∈ {1, . . . , k}. (5.4)

A game is therefore characterized by a routing problem G and a set of incentive

functions {τe}e∈E, denoted by the tuple (G, {τe}e∈E). It is shown in [140] that a Nash

flow exists in a congestion game of this form if the latency and incentive functions are

Lebesgue-integrable.
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5.2.3 Incentive Mechanisms & Performance Metrics

To determine the manner in which incentive functions are applied to edges, we inves-

tigate incentive mechanisms. To formalize this notion, let

L(G) := {(ℓe, e, G)}e∈E(G)

be the set of identifiers for each link or edge in the routing problem G. Further, for a

family of problems, let L(G) = ∪G∈GL(G) be the set of links that occur in the family

of games G. An element in L(G) is a tuple of the latency function ℓe, edge index e,

and routing problem G which it exists in; with this information, a specific edge can be

identified to which incentives can be assigned.

For each edge e in the routing problem G with latency function ℓe, an incentive mech-

anism T assigns an incentive T (ℓe; e,G), i.e. τe(fe) = T (ℓe; e,G)[fe], where T (ℓe; e,G)[fe]

is the incentive evaluated at fe. This mapping is denoted by T : L(G) → T where T is

some set of allowable incentive functions. For brevity, an incentive mechanism will be

written simply as T (ℓe), but it is assumed that, unless otherwise stated, the incentive

designer has knowledge of the exact edge and full network structure when assigning an

incentive T (ℓe); these are termed network-aware incentive mechanisms [125, 71], and are

the focus of Theorem 5.2.1 and Theorem 5.3.3.

In the case where the incentive mechanism must be designed for a family of routing

problems and without knowledge of the full network structure, we add the implied con-

straint that two edges with the same latency function are indistinguishable and must have

the same assigned incentive; we highlight such cases by terming the mechanism network-

agnostic. The use of network-agnostic incentive mechanisms has been studied in [136, 7];

these incentives are useful because of their robustness in settings with frequent changes

to the system structure (i.e., commerce, supply-chain-management, and even traffic when
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considering accidents and emergencies), where partial changes to the network structure

or edge latencies need not require global redesign of the incentive mechanism. One such

incentive that fits this framework is the classic Pigouvian or marginal cost tax,

Tmc(ℓ)[f ] = f · d
df
ℓ(f), (5.5)

which is known to incentivize users to route optimally in many classes of congestion

games [33]. This is only true however, when there is no bound on the incentive and users

are homogeneous [136].

We use the price of anarchy to evaluate the performance of a taxation mechanism,

defined as the worst case ratio between total latency in a Nash flow and an optimal flow,

exemplified in Fig. 5.1. Let Lnf(G, T ) be the highest total latency in a Nash flow of the

game (G, T (L(G))). Additionally, let Lopt(G) be the total latency under the optimal flow

f opt. The inefficiency can be characterized by

PoA(G, T ) =
Lnf(G, T )

Lopt(G)
. (5.6)

We extend this definition to a family of instances

PoA(G, T ) = sup
G∈G

Lnf(G, T )

Lopt(G)
, (5.7)

where T is used in each routing problem. The price of anarchy is now the worst case

inefficiency over all such routing problems while using incentive mechanism T . The

objective of such incentive mechanisms is to minimize this worst case inefficiency, thus

the optimal incentive mechanism is defined as,

T opt ∈ arg inf
T :L(G)→T

PoA(G, T ), (5.8)
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such that it minimizes the price of anarchy for a class of routing problems G.

5.2.4 Tolls & Subsidies

We differentiate between two forms of incentives, tolls τ+e : R≥0 → R≥0 and subsidies

τ−e : R≥0 → R≤0. With tolls, the player’s observed cost is strictly increased, i.e., the

system designer levies taxes for the users to pay depending on their choice of edges.

With subsidies, the players cost is strictly reduced, i.e., the system designer offers some

payments to users for their choice of action. The main focus of this work is to assess

which is more effective in influencing user behavior, tolls or subsidies.

A tolling mechanism is one which only assigns tolling functions, defined as T+ :

L(G) → T + where T + is the set of all non-negative, integrable functions on R+. An

optimal tolling mechanism is one that minimizes the price of anarchy ratio, i.e.,

T opt+ ∈ arg inf
T :L(G)→T +

PoA(G, T ). (5.9)

An optimal subsidy mechanism is defined analogously with non-positive subsidy func-

tions. In the following sections, we compare the price of anarchy ratio associated with

the optimal toll and optimal subsidy.

The following example, illustrated in Fig. 5.1, highlights the notation and the differ-

ence between tolls and subsidies.

Example 1. Consider the network G in Fig. 5.1 with two origin destination pairs: (o1, d1)

= (v1, v4) with r1 = 1/2, and (o2, d2) = (v2, v4) with r2 = 1/2. The optimal flow in

G, that minimizes (5.1), is f opt ≈ {0.289, 0.211, 0.25, 0.25, 0.461} with a total latency of

L(f opt) ≈ 0.683. With no tolling, the Nash flow is fNe = {1/2, 0, 0, 1/2, 0} with total

latency L(fNe) = 1 producing a price of anarchy of PoA(G, ∅) ≈ 1.465. Under a scaled

marginal-cost toll, the cost incurred by a user for utilizing edge e is ℓe(fe)+fe· ddfe ℓe(fe) and
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the Nash flow becomes the same as f opt, leading to a price of anarchy of PoA(G, Tmc) = 1.

Similarly, under a subsidy mechanism T−(ℓe) =
1
3
fe · ddfe ℓe(fe)−

2
3
ℓe, the Nash flow is again

the optimal, and PoA(G, T−) = 1.

This example highlights that subsidies and tolls are both effective at reducing the

inefficiencies associated with selfish routing. In this work, we study how this performance

changes under budgetary constraints and user price-heterogeneity.

5.2.5 Summary of Our Contributions

We start by addressing the nominal homogeneous setting, in which all users react to

incentives identically. In Theorem 5.2.1, in any congestion game, we show that under

a similar budgetary constraint, the optimal subsidy offers better performance than the

optimal toll; the magnitude of this difference is exemplified in Proposition 5.2.1 by deriv-

ing explicit price of anarchy bounds for optimal tolls and subsidies in affine congestion

games.

Next, we look at the efficacy of each incentive in mitigating the effect of user het-

erogeneity as the budgetary constraint is lifted. In Theorem 5.3.1, we show that tolls

can effectively eliminate the effect of user heterogeneity when the bound on incentives is

lifted. However, in Theorem 5.3.2, it is shown that even in congestion games with convex,

non-decreasing, continuously-differentiable latency functions, it is impossible for subsi-

dies to mitigate the effect of user heterogeneity, even with the ability to give arbitrarily

large payments.

When budgetary constraints do exist and users are heterogeneous in their response to

incentives, we show in Theorem 5.3.3 that, for tolls and subsidies bounded to give similar

performance in the homogeneous setting, the performance of subsides is worse than tolls

when users become heterogeneous, i.e., the performance of subsidies degrades more sig-
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nificantly from player heterogeneity than tolls. This is exemplified in Proposition 5.3.1,

giving price of anarchy bounds for robust incentives in affine congestion games.

Finally, because subsides offer better performance under similar budgetary constraints

in the homogeneous setting and tolls offer better robustness in the face of user heterogene-

ity, we investigate what level of user heterogeneity allows tolls to outperform similarly

bounded subsides. In Theorem 5.4.1, a relationship between the incentive bound and

level of heterogeneity is derived in a class of parrallel-affine congestion games that leads

to similar performance guarantees of the optimal toll and subsidy.

5.2.6 Bounded Incentives

We first look at the case where users are homogeneous in their response to incentives.

This setting has been the focus of study for many incentive related works [33, 7, 71,

133, 134]. For these reasons, we start by comparing the effectiveness of subsidies and

tolls in this setting when additional budgetary constraints are added. Subsidies and

tolls both serve as mechanisms for influencing user behavior and can be implemented by

similar methods. The act of applying constraints on either is of little difference to the

system designer, however the reasoning for these constraints may differ. For instance,

budgetary constraints on subsidies can serve to limit the monetary obligation of the

system operator, while bounding tolls can prevent scenarios where users may avoid using

the network entirely. Though any specific budgetary constraint on either incentive is

heavily influenced by the problem setting, here we seek to understand more generally

how limits on the magnitude of incentives comparatively affect subsidies and tolls.

To explore this, we introduce bounded tolls and subsidies. A bounded toll satisfies

τ+e (fe) ∈ [0, β · ℓe(fe)] for fe ≥ 0 and each e ∈ E, where β is a bounding factor. A

bounded tolling mechanism is denoted by T+(ℓe; β). Similarly, a bounded subsidy satisfies
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τ−e (fe) ∈ [−β · ℓe(fe), 0] for fe ≥ 0 and each e ∈ E, and a bounded subsidy mechanism is

denoted by T−(ℓe; β). This form of bounded incentive functions resembles the bounded

path deviations studied in [120]. Though many forms of bounding constraint can be

considered, this form is chosen as it can be applied to network-aware and-network agnostic

incentive mechanisms, captures the idea that larger delays can be incentivized more

significantly, and avoids trivialities caused by arbitrarily large delays. Additionally, these

constraints can be represented as the total incentive in a routing problem being within a

multiplicative factor β of the total latency, i.e.,
∑

e∈E feτe(fe) ≤ βL(f).

For some bounding factor β, let T +
β denote the set of taxation mechanisms appropri-

ately bounded by β. More formally, T +
β = {T |T : L(G)→ T +(β)}, where

T +(β) = {τ+e ∈ T + | τ+e (fe) ∈ [0, β · ℓe(fe)] ∀fe ≥ 0}

is the set of all tolling functions bounded by β. To compare the efficacy of bounded tolls

and subsidies, we define an optimal bounded tolling mechanism as

T opt+(β) ∈ arg inf
T+∈T +

β

PoA(G, T+). (5.10)

The optimal bounded subsidy mechanism T opt−(β) is defined analogously. For brevity,

bounded mechanisms are often written T (β) when being discussed without reference to

their use on a specific edge and T (ℓe; β) when they are referenced to a specific edge

latency function.

Though we consider any toll bound β ≥ 0, we offer the following definition to differ-

entiate from cases where the bound is very large or trivially zero.

Definition 4. A toll (subsidy) is tightly bounded if τ(f) = βℓ(f), (if τ(f) = −βℓ(f))

for some f ≥ 0.
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When an optimal incentive is tightly bounded, the budgetary constraint is active.

5.2.7 General Relation of Performance

We first consider the relationship between bounded subsidies and tolls in general

for congestion games (i.e., arbitrary latency functions and network topologies). Theo-

rem 5.2.1 states that bounded subsidies outperform similarly bounded tolls with respect

to the price of anarchy, and strictly outperform when the budgetary constraint is active.

Theorem 5.2.1. For a congestion games G, under a bounding factor β ≥ 0 the optimal

subsidy mechanism T opt−(β) has no greater price of anarchy than the optimal tolling

mechanism T opt+(β), i.e.,

PoA
(
G, T opt+(β)

)
≥ PoA

(
G, T opt−(β)

)
≥ 1. (5.11)

Additionally, if every optimal subsidy is tightly bounded1, then the first inequality in (5.11)

is strict.

The proof of Theorem 5.2.1 appears at the end of this section; we first discuss the

implications of this result. Theorem 5.2.1 implies that when limiting the size of monetary

transactions with homogeneous users, subsidies are more effective than tolls at influencing

user behavior. This result holds for any congestion game. Though (5.11) need not be

strict in general, there does exist a gap between the performance of tolls and subsidies in

many non-trivial settings. To illustrate this, we offer the following example to highlight

that bounded subsidies may strictly outperform bounded tolls and outline the proof

structure.

Example 2. Polynomial Congestion Network. Consider a congestion game, depicted in

1T opt−(ℓe;β) satisfies Definition 4 with bounding factor β for each ℓe ∈ L(G).
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ℓ1(f1) = fp1

ℓ2(f2) = 1

o d

Figure 5.2: Two link parallel congestion game. One edge possesses a polynomial
latency function, the other a constant latency function. This routing problem realizes
the worst case price of anarchy for polynomial congestion games [141].

Fig. 5.2, possessing two nodes forming a source destination pair with unit mass of traffic

and two parallel edges between them, one with latency function ℓ1(f1) = fp1 , where p is a

positive integer, and the other ℓ2(f2) = 1. This example has been shown to demonstrate

the worst case inefficiency among polynomial congestion games [141].

Step 1: Identify an Optimal Incentive. When users are homogeneous in their sensi-

tivity to incentives, an optimal toll for this class of games is the marginal cost toll in

(5.5), proven to incentivize optimal routing [33]. Notice that the marginal-cost toll will

manifest in this network as

τmc
1 (f1) = pfp1 , τmc

2 (f2) = 0, (5.12)

and indeed incentivize the Nash flow to be the system optimal of f1 = 1/
p√
p+ 1.

Step 2: Find Incentives with similar performance. It can be shown that any incentive

mechanism in the set

{T (ℓ) = λTmc(ℓ) + (λ− 1)ℓ | λ > 0} , (5.13)

has the same performance as the marginal cost taxation mechanism. This observation

can be proven from the later Lemma 2.

Step 3: Identify Bounded Subsidies and Tolls. For a bounding factor β ≥ p the
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marginal cost taxation mechanism gives a price of anarchy of one; however, for β ∈ [0, p),

there exists no taxation mechanism in the set defined in (5.13) which possesses all optimal

mechanisms. The similar subsidy mechanism

T−(ℓ) = (1/(p+ 1)− 1)ℓ+ (1/(p+ 1))Tmc(ℓ), (5.14)

which manifests in the network as

τ−1 (f1) = 0, τ−2 (f2) =
−p
p+1

, (5.15)

is in the set of optimal incentive mechanisms and is valid under bounding factors β ≥ p
p+1

.

Thus, for bounding factors β ∈ [ p
p+1

, p), there exists a subsidy mechanism that gives price

of anarchy one, but there does not exist a tolling mechanism that does the same. For other

bounding factors, the same principles can be followed. In Section 5.2.8, the magnitude

of the difference of performance between subsidies and tolls is further explored in the

context of affine congestion games.

Having concluded Example 2, in Lemma 2 we show a transformation on incentive

mechanisms that does not affect the price of anarchy under homogeneous user sensitiv-

ities. This transformation gives us the important relationship between incentive mech-

anisms that their performance is not unique and similar performance can be garnered

with different magnitudes of transactions.

Lemma 2. Let T : L(G) → T be an incentive mechanism over the family of congestion

games G. If another influencing mechanism is defined as Tλ(ℓe) = λT (ℓe) + (λ− 1)ℓe for

any λ > 0, then

PoA(G, T ) = PoA(G, Tλ). (5.16)

The proof of Lemma 2 appears in Appendix B.1.
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Proof of Theorem 5.2.1: First, observe that if β = 0 the only permissible incentive func-

tion for tolls and subsidies is τ+e (fe) = τ−e (fe) = 0, i.e., there is no incentive. Therefore,

the left and right hand side of (5.11) equate to the unincentivized case and (5.11) holds

with equality.

Let je(fe) = ℓe(fe) + τe(fe) denote the cost a player observes for utilizing an edge

e when a mass of fe users are utilizing it. The observed cost of a player x ∈ N can

be rewritten as Jx(Px, f) =
∑

e∈Px je(fe). In the case where β > 0, a bounded tolling

function on an edge must exist between τ+e (fe) ∈ [0, β · ℓ(fe)], and the edges observed

cost satisfies j+e (fe) ∈ [ℓe(fe), (1 + β) · ℓe(fe)]. Similarly, a subsidy function on an edge

must exist between τ−e (fe) ∈ [−β · ℓ(fe), 0], and the edges observed cost satisfies j−e (fe) ∈

[(1− β) · ℓe(fe), ℓe(fe)].

Let T+(ℓe; β) be a bounded tolling mechanism with edge costs of j+e (fe). Now, define

Tλ(ℓe) = λT+(ℓe; β) + (λ − 1)ℓe; from Lemma 2, T+ and Tλ have the same price of

anarchy for any λ > 0. Let ĵe be the edge cost under influencing mechanism Tλ, from

the construction of Tλ

ĵe = ℓe + Tλ(ℓe) = ℓe + λT+(ℓe; β) + (λ− 1)ℓe = λj+e . (5.17)

We now look at the cases where β ∈ (0, 1) and β ≥ 1 respectively. When β ∈ (0, 1),

let λ = (1− β). Now,

ĵe(fe) = (1− β)j+e (fe) ∈ [(1− β)ℓe(fe), (1− β2)ℓe(fe)]

⊂ [(1− β)ℓe(fe), ℓe(fe)],

thus the edge costs are sufficiently bounded such that Tλ is a permissible subsidy mech-

anism bounded by β with the same price of anarchy as T+. If β ≥ 1 let λ = 1/(1 + β)
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and get

ĵe(fe) =
1

(1 + β)
j+e (fe) ∈

[
1

(1 + β)
ℓe(fe), ℓe(fe)

]
⊂ [(1− β)ℓe(fe), ℓe(fe)],

and again Tλ is a permissible subsidy mechanism bounded by β. By letting T+ = T opt+

we obtain (5.11).

We have proven that, for β > 0, if PoA(G, T opt−(β)) = PoA(G, T opt+(β)), then there

exists a T opt−(β) that does not achieve the bound. The contrapositive of this is that if

every optimal subsidy achieves the bound, the price of anarchy guarantees are not equal.

In this case, the optimal subsidies are each tightly bounded and PoA(G, T opt−(β)) <

PoA(G, T opt+(β)), proving the final part of Theorem 5.2.1.

5.2.8 Bounded Incentives in Affine Congestion Games

In Proposition 5.2.1, we explicitly give the price of anarchy bounds of optimal bounded

tolls and subsidies in affine congestion games with homogeneous users, again demonstrat-

ing the strictly superior performance of subsidies as well as illustrating the magnitude

of this difference in performance. Observe that the optimal subsidy outperforms the

optimal toll for each incentive bound, matching the results from Theorem 5.2.1.

As a means of illustrating Theorem 5.2.1, we look at the well studied class of affine

congestion games, denoted by

Gaff := {G|ℓe(fe) = aefe + be, ae, be ≥ 0,∀e ∈ E(G)} .

We include this result to highlight the appreciable gap in performance between subsidies

and tolls in this setting.
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Figure 5.3: Price of Anarchy bounds for comparable tolls and subsidies in affine con-
gestion games. (Left) Price of Anarchy under optimal toll and subsidy respectively
bounded by a factor β from Proposition 5.2.1. (Right) Price of Anarchy of a nom-
inally equivalent toll and subsidy with heterogeneity of user sensitivity introduced
from Proposition 5.3.1; SU/SL expresses the amount of possible heterogeneity in the
population.

Proposition 5.2.1. The optimal bounded network-agnostic tolling mechanism in Gaff is

T opt+(af + b; β) =


βax β ∈ [0, 1),

ax β ≥ 1,

(5.18)

with a price of anarchy bound of

PoA(Gaff , T opt+(β)) =


4

3+2β−β2 β ∈ [0, 1),

1 β ≥ 1.

(5.19)

Additionally, the optimal bounded network-agnostic subsidy mechanism in Gaff is

T opt−(af + b; β) =


−βb β ∈ [0, 1/2),

−b/2 β ≥ 1/2,

(5.20)
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with a price of anarchy bound of

PoA(Gaff , T opt−(β)) =


4

3+2β̂−β̂2
β ∈ [0, 1/2),

1 β ≥ 1/2,

(5.21)

where β̂ = 1/(1− β)− 1. Accordingly, for any β ∈ (0, 1),

PoA(Gaff , T opt+(β)) > PoA(Gaff , T opt−(β)). (5.22)

The proof of Proposition 5.2.1 appears in Appendix B.1. Fig. 5.3 (left) illustrates the

price of anarchy for tolls and subsidies respectively over various incentive bounds. Though

this result is only for a specific class of games, it helps to quantify the broader notion

of Theorem 5.2.1: when users are homogeneous in their response to incentives, a subsidy

can consistently give price of anarchy closer to one and often by a significant margin.

In the following sections, we further inspect this relationship when user heterogeneity is

introduced.

5.3 Incentives with Heterogeneity

Section 5.2.6 showed that, when users are homogeneous in their response to incentives,

subsidies offer better performance guarantees than tolls under budgetary constraints. We

now seek to understand how each type of incentive performs when users differ in their

price sensitivity.

Specifically, each user x ∈ N is associated with a sensitivity sx > 0 to incentives. We

call s : N → R>0 a sensitivity distribution. We highlight the case where sx = c ∀x ∈ N

for some known constant c as a homogeneous distribution of user sensitivities2, in which

2Without loss of generality, we use sx = 1 for a homogeneous population, as was the case in Sec-

107



The Effectiveness of Subsidies and Tolls in Congestion Games Chapter 5

each user behaves similarly; any other distribution is referred to as a population of

heterogeneous users.

A user x ∈ Ni traveling on a path Px ∈ Pi observes cost

Jx(Px, f) =
∑
e∈Px

ℓe(fe) + sxτe(fe). (5.23)

A flow f is a Nash flow if

Jx(Px, f) = min
P∈Pi

{∑
e∈P

ℓe(fe) + sxτe(fe)

}

∀x ∈ Ni, i ∈ {1, . . . , k}. (5.24)

A game is now denoted by the tuple (G, s, {τe}e∈E).

To quantify the robustness of an incentive mechanism, we also consider that the

system designer may be unaware of users’ response to incentives. We denote a set of

sensitivity distributions by S = {s : N → [SL, SU]}, where SL > 0 is a lower bound

on users’ sensitivity to incentives and SU ≥ SL is an upper bound; we include these

bounds to quantify the range of users responses, signifying the amount of possible user

heterogeneity.

We extend the prior definition of the price of anarchy to include the heterogene-

ity of users. Let Lnf(G, s, T ) be the highest total latency in a Nash flow of the game

(G, s, T (L(G))). Now we define,

PoA(G, S, T ) = sup
G∈G

sup
s∈S

Lnf(G, s, T )

Lopt(G)
, (5.25)

where the price of anarchy ratio is now the worst case inefficiency over all routing problem,

tion 5.2.6
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sensitivity distribution pairs using the incentive mechanism T .

To illustrate this notation, we revisit Example 1, also depicted in Fig. 5.1, but now

with user heterogeneity.

Example 3. In the routing problem G, depicted in Fig. 5.1, consider the user sensitivity

distribution s = {sx = 2∀x ∈ N1, sx = 1/2∀x ∈ N2}. As a reminder, the optimal flow in

G is f opt ≈ {0.289, 0.211, 0.25, 0.25, 0.461} with a total latency of L(f opt) ≈ 0.683, and

with no tolling, the Nash flow is fNe = {1/2, 0, 0, 1/2, 0} with total latency L(fNe) =

1 producing a price of anarchy of PoA(G, s, ∅) ≈ 1.465. With a marginal cost toll

Tmc as defined in (5.5), the Nash flow becomes fNe ≈ {0.224, 0.276, 0.167, 0.333, 0.443}

producing a price of anarchy of PoA(G, s, Tmc) ≈ 1.04. With a subsidy mechanism

T−(ℓe) = 1
3
fe · d

dfe
ℓe(fe) − 2

3
ℓe as defined in (5.14) with p = 2, the Nash flow becomes

fNe ≈ {0, 0.5, 0.137, 0.363, 0.637} producing a price of anarchy of PoA(G, s, T sub) ≈ 1.32.

This example shows that user heterogeneity can have a notable impact on the effec-

tiveness of incentives and can affect their relative performance. In the remainder of this

paper, we consider the setting where users are heterogeneous in their price sensitivity

when discussing the relative performance of subsidies and tolls. We start by looking at

tolls and subsidies independently and investigate their performance in the limit of allow-

able incentives, i.e., as the budgetary constraint is lifted, how does each type of incentive

fare?

In Theorem 5.3.1 we look at the performance of tolls first and find that, when the

budgetary constraint is lifted, tolls can eliminate the negative effect of user heterogeneity.

Theorem 5.3.1. For a class of congestion games G, let T ∗ ∈ arg infT PoA(G, T ) be an

optimal incentive mechanism for homogeneous populations, then

lim
β→∞

inf
T+∈T +

β

PoA(G, S, T+) = PoA(G, T ∗). (5.26)
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Furthermore, if G is any class of non-atomic congestion games that has convex, non-

decreasing, and continuously differentiable latency functions, then

lim
β→∞

inf
T+∈T +

β

PoA(G, S, T+) = 1. (5.27)

The proof of Theorem 5.3.1 appears in Appendix B.13. The proof of Theorem 5.3.1

follows closely from Lemma 3 and the notion of responsiveness to heterogeneity presented

in the following section. The result follows from the idea that larger incentives are less

impacted by user heterogeneity.

After observing positive results for the use of tolls with user heterogeneity, we next

seek to understand the effectiveness of subsidies in the same situation. In Theorem 5.3.2,

we show that, even in a restricted class of congestion games, subsidies cannot effectively

mitigate the effect of player heterogeneity in the same way tolls do.

Theorem 5.3.2. Let G be any class of non-atomic congestion games that has convex,

non-decreasing, and continuously differentiable latency functions, the set of latency func-

tions is closed under nonnegative scalar multiplication, and has at least one network

where the untolled price of anarchy is greater than one. There exists no network-agnostic

subsidy mechanism T that gives price of anarchy of 1, i.e.,

lim
β→∞

inf
T−∈T −

β

PoA(G, S, T−) > 1. (5.28)

3This result is reminiscent of [33] stating that there exist tolls that influence optimal selfish routing
in some settings. In this paper, we extend the result from [33] to cases where users are heterogeneous
and classes of games where a price of anarchy of one may not be achievable. We note that Theorem 5.3.1
is more general than of [136, Theorem 1], as this result is given for general incentives and is not reliant
on marginal cost taxes nor is it limited to the family of congestion games in which they are optimal.
Further, the results of [125] cover the case in which the system designer is fully aware of the users’ price
sensitivities (or value of time in their case) and applies fixed tolls. In contrast, in this paper the toll
designer is unaware of the users’ exact price sensitivities but is still able to provide a flow-varying tolling
scheme that gives a price of anarchy of one as the bounding constraint is lifted.
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The proof of Theorem 5.3.2 appears in Appendix B.1.

Though the class of routing problems has a more strict definition than in Theo-

rem 5.3.1, the result is still very general and holds for most cases other than singleton

networks and those where the price of anarchy is always 1. From Theorem 5.3.1 and

Theorem 5.3.2 we conclude that without the presence of budgetary constraints, tolls can

mitigate the effect of player heterogeneity while subsidies cannot. However, this rela-

tionship was shown only as the budgetary constraint was lifted; in the next section, we

further investigate the effect of user heterogeneity on subsidies and tolls while budgetary

constraints on the incentives remain.

5.3.1 Robustness of Incentives

In Section 5.3, user heterogeneity was discussed in the sense of whether incentives

could or could not fully mitigate the effect of non-uniform user behavior. In many cases

the very large incentives needed to completely eliminate the negative effects of user het-

erogeneity are not possible, particularly in the presence of budgetary constraints. It

is thus of interest what the performance guarantees are when the effects of user het-

erogeneity cannot be entirely overcome and how this compares when using subsidies or

tolls.

To compare the robustness of bounded tolls and subsidies, we define an optimal

bounded tolling mechanism as

T opt+(β, S) ∈ arg inf
T+∈T +

β

PoA(G, S, T+). (5.29)

The optimal bounded subsidy mechanism T opt−(β, S) is defined analogously. For nota-

tional convenience, we will omit the dependence on S in the homogeneous setting.

Often, increased user heterogeneity causes performance of an incentive mechanism
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to diminish. We give the following definition for classes of congestion games with this

property.

Definition 5. A class of congestion games is responsive to player heterogeneity if

PoA(G, S, T ∗) is strictly increasing with SU/SL > 1 for an optimal bounded incentive

mechanism T ∗ ∈ arg infT PoA(G, S, T ).

These classes of games are those that have a degradation in performance from in-

creased player heterogeneity, even while the optimal incentive mechanism is in use; many

classes of well studied congestion games possess this property [136].

5.3.2 General Relation of Robustness

In Theorem 5.3.3, we give a robustness result that shows the performance of subsidies

degrades more quickly than tolls as player heterogeneity is introduced.

Theorem 5.3.3. For a class of congestion games G, define two incentive bounds β+ and

β− such that

PoA
(
G, T opt−(β−)) = PoA(G, T opt+(β+)

)
, (5.30)

then at the introduction of player heterogeneity,

PoA
(
G, S, T opt−(β−, S)) ≥ PoA(G, S, T opt+(β+, S)

)
≥ 1. (5.31)

Additionally, each inequality in (5.31) is strict if G is responsive to player heterogeneity

and SL < SU.

Intuitively, this result stems from the fact that subsidies are more finely tuned to give

performance guarantees, as guaranteed in Theorem 5.2.1. Essentially, applying a small,

negative incentive to an edge’s increasing latency function will have a more significant
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impact on the shape of the users’ cost function than a larger, positive toll. This fact causes

the same amount of player heterogeneity to have a larger effect on Nash flows caused

by subsidies than with an equivalent toll. Thus, when increased player heterogeneity

escalates the inefficiency, this relationship is strict. Though the relationship isn’t strict

for general classes of congestion games, it is for many well studied cases, including the

aforementioned polynomial congestion games.

We show in Lemma 3 a relation between nominally equivalent incentives in the hetero-

geneous population setting; specifically, we show that the heterogeneous price of anarchy

decreases as incentives increase costs to the users.

Lemma 3. For a class of congestion games G, let T be an incentive mechanism. If

Tλ(ℓ) = (λ−1)ℓ+λT , then PoA(G, S, Tλ) is non-increasing with λ and strictly decreasing

if G is responsive to user heterogeneity and SL < SU.

The proof of Lemma 3 appears in the appendix.

Proof of Theorem 5.3.3: First, we give the following definition for incentives that have

the same performance in the homogeneous setting.

Definition 6. For any incentive mechanism T and λ > 0, each incentive mechanism

satisfying Tλ(ℓe) = (λ − 1)ℓe + λT (ℓe) is termed nominally equivalent. From Lemma 2,

nominally equivalent incentives satisfy

PoA(G, T ) = PoA(G, Tλ). (5.32)

The theorem follows closely from Lemma 2 and Lemma 3. First, suppose T opt+(β+)

is an optimal tolling mechanism bounded by β+. From Lemma 2 there exists a nominally

equivalent subsidy T−
λ . If T

−
λ ̸∈ T −

β− , then there must exist a T+
λ ∈ T +

β+ that is nominally

equivalent to T opt−(β−) from the monotonicity and invertability of the transformation in
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Lemma 2. From (5.30), this implies there exists a nominally equivalent T opt+(β+) and

T opt−(β−).

Now, let T opt−(β−, S) be the optimal subsidy with player heterogeneity bounded by

β−. From the fact before, we know there exists a toll T+ that is nominally equivalent to

T opt−(β−, S) and bounded by β+. From Lemma 3, we obtain that

PoA(G, S, T+) ≤ PoA(G, S, T opt−(β−, S)), (5.33)

and by the definition of T opt+(β+, S), we get

PoA(G, S, T opt+(β+, S)) ≤ PoA(G, S, T+). (5.34)

Combining (5.33) and (5.34) gives (5.31). If the class of games is responsive to player

heterogeneity, then PoA(G, S, Tλ) is strictly decreasing with λ and the relationship is

strict.

5.3.3 Robustness of Incentives in Affine Congestion Games

Theorem 5.3.3 states that the performance of subsidies degrades more quickly than

tolls when users differ in their response to incentives. Further, if a subsidy and a toll

perform the same in the homogeneous setting, the subsidy performs worse than the toll

with any level of user heterogeneity. To illustrate this fact, we again look at the class

of affine congestion games. In this section, we specifically look at Gpa, defined as the

class of parallel-network affine-latency congestion games in which each edge has positive

traffic in the untolled Nash flow. We assign taxes using the optimal scaled marginal cost

toll with player heterogeneity , T smc(af + b) := (
√
SLSU)

−1af . This tolling mechanism

was first introduced in [142], and was shown to minimize the price of anarchy in parallel
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affine congestion games with sensitivity distributions in S bounded by SL and SU. In

Proposition 5.3.1, we give price of anarchy bounds on the optimal scaled marginal cost

toll as well as a nominally equivalent subsidy T nes.

Proposition 5.3.1. Let Gpa be the set of fully-utilized parallel affine congestion games

with sensitivity distributions in S. The optimal scaled marginal cost tolling mechanism is

T smc(af + b) = af√
SLSU

with price of anarchy

PoA(Gpa, S, T smc) =
4

3

(
1−

√
q

(1 +
√
q)2

)
. (5.35)

where q := SL/SU. Additionally, a nominally equivalent subsidy is T nes(af + b) =

− 1
1+

√
SLSU

b, with price of anarchy

PoA(Gpa, S, T nes) =
4

3

(
1−

√
q̂

(1 +
√
q̂)2

)
, (5.36)

where

q̂ =
λq

1− q + λq
< q,

and λ =
√
SLSU/(1 +

√
SLSU).

The proof of Proposition 5.3.1 appears in the appendix. Observe that, because q̂ < q

in (5.35) and (5.36) the nominally equivalent subsidy has greater price of anarchy when

player heterogeneity is introduced. This can be seen in Fig. 5.3 (right). Intuitively, the

same amount of player heterogeneity has a larger effect on the subsidy than the toll.

5.4 Bounded & Robust Incentives

In the previous sections, it was shown that when users are homogeneous in their

response to incentives, subsidies offer better performance guarantees than tolls under
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similar budgetary constraints; however, as users become heterogeneous in their response

to incentives, the performance of subsidies degrades more quickly than that of tolls.

The logical next question we address is, how much heterogeneity causes bounded tolls

to outperform bounded subsidies? In general, this question is difficult to answer. We

therefore look at the case of affine congestion games on parallel networks while using

network-agnostic affine incentive functions. In Theorem 5.4.1, we find the incentive

bound β∗ that causes the price of anarchy of the optimal bounded toll and subsidy with

user heterogeneity to be equal. Without loss of generality (because we assume SL and

SU are known to the system designer), we normalize to SLSU = 1.

Theorem 5.4.1. Let T opt+(β, S) and T opt−(β, S) be an optimal, affine toll and subsidy

mechanism for Gpa with incentive bound β and player sensitivities between SL and SU.

An incentive bound of β∗ = 1/SU = SL gives

PoA(Gpa, S, T opt−(β∗, S)) = PoA(Gpa, S, T opt+(β∗, S)). (5.37)

As illustrated in Fig. 5.4, for lower levels of user heterogeneity (i.e., β∗ < 1/SU), the

optimal subsidy offers price of anarchy closer to one than the optimal toll. When there

is a larger amount of user heterogeneity (i.e., β∗ > 1/SU) the optimal toll has a lower

price of anarchy bound than the optimal subsidy.

The proof of Theorem 5.4.1 appears at the end of this section and is supported by

the following two propositions. Proposition 5.4.1 (originally introduced in [136]) gives

the optimal affine tolling mechanism and the accompanying price of anarchy guarantee.

Proposition 5.4.1. (Brown & Marden [136]) Let T+(k1, k2) denote an affine taxation

mechanism that assigns tolling functions τ+e (fe) = k1aefe + k2be. For any β > 0, the
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Figure 5.4: Price of anarchy under optimal bounded tolls and subsidies with hetero-
geneous users in parallel-affine congestion games with β = 0.4. When the amount of
user heterogeneity is low (i.e. SU/SL close to one), subsidies offer better performance
guarantees than tolls as stated in Theorem 5.2.1; however, as the level of heterogene-
ity increases, the performance of subsidies degrade more quickly than tolls, stated in
Theorem 5.3.3. When the incentive bound is β = 1/SU the performance of subsidies
and tolls is equal, as stated in Theorem 5.4.1.

optimal coefficients k∗1 and k∗2 satisfying

(k∗1, k
∗
2) ∈ argmin

0≤k1,k2≤β
PoA

(
Gpa, S, T+(k1, k2)

)
, (5.38)

are given by

k∗1 = β, (5.39)

k∗2 = max

{
0,

β2SLSU − 1

SL + SU + 2βSLSU

}
. (5.40)

Furthermore, for any G ∈ Gpa, PoA(G, S, T+(k∗1, k
∗
2)) is upper bounded by the following
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expression:

4

3

(
1− βSL

(1 + βSL)2

)
if β <

1√
SLSU

(5.41)

4

3

(
1−

(1 + βSL)(
SL

SU
+ βSL)

(1 + 2βSL +
SL

SU
)2

)
if β ≥ 1√

SLSU

. (5.42)

The proof of Proposition 5.4.1 appears in Appendix B.1. The price of anarchy bound

is shown in Fig. 5.4. Similarly, in Proposition 5.4.2 the optimal affine subsidy is given

along with its price of anarchy guarantee.

Proposition 5.4.2. Let T−(k1, k2) denote an affine subsidy mechanism that assigns sub-

sidy functions τ−e (fe) = k1aefe + k2be. For any β > 0, the optimal coefficients k∗1 and k∗2

satisfying

(k∗1, k
∗
2) ∈ argmin

−β≤k1,k2≤0
PoA

(
Gpa, S, T−(k1, k2)

)
, (5.43)

are given by

k∗1 = 0, (5.44)

k∗2 = −min

{
β,

1

SL + SU

}
. (5.45)

Furthermore, for any G ∈ Gpa, PoA(G, S, T−(k∗1, k
∗
2)) is upper bounded by the following

expression:

4

3
(1− βSL(1− βSL)) if β <

1

SL + SU

(5.46)

4

3

(
1− SL/SU

(1 + SL/SU)2

)
if β ≥ 1

SL + SU

. (5.47)

The proof of Proposition 5.4.2 appears in Appendix B.1. The price of anarchy bound

is shown in Fig. 5.4. The price of anarchy bounds equate at β = 1/SU, as substantiated
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by Theorem 5.4.1, and for β < 1/SU the subsidy price of anarchy bound is lower, while

for β > 1/SU the toll price of anarchy bound is lower and converging to one.

Proof of Theorem 5.4.1: Proposition 5.4.1 and Proposition 5.4.2 give the price of anarchy

bounds for the optimal affine incentives. By inspection, when β ∈ [ 1
SL+SU

, 1√
SLSU

], the

optimal toll and subsidy price of anarchy bounds fall in the domain of (5.41) and (5.46)

respectively. Additionally, when β = 1/SU, we can see that the optimal toll is T+( 1
SU
, 0)

and the optimal subsidy is T−(0, −1
SL+SU

); furthermore, these incentives have the same

price of anarchy bound, i.e.,

PoA

(
Gpa, S, T+

(
1

SU

, 0

))
= PoA

(
Gpa, S, T−

(
0,

−1
SL + SU

))
. (5.48)

It is easy to see from (5.41),(5.42),(5.46), and (5.47) that for β > 1/SU,

PoA
(
Gpa, S, T opt+

)
< PoA

(
Gpa, S, T opt−) ,

and for β < 1/SU,

PoA
(
Gpa, S, T opt+

)
> PoA

(
Gpa, S, T opt−) .

Therefore, β = 1/SU is the unique incentive bound that gives equal price of anarchy

for subsidies and tolls with heterogeneous users in the class of parallel, affine congestion

games.

5.5 Conclusion

In this work, the effectiveness of subsidies and tolls in congestion games were com-

pared in the presence of budgetary constraints on incentives and user heterogeneity. The
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results of this manuscript show that, in a nominal setting, smaller subsidies offer better

performance guarantees than tolls; however, in the face of unknown user heterogeneity,

tolls are more robust than subsidies. These results hold for general classes of non-atomic

congestion games, and future work will investigate if the main conclusions hold for atomic

congestion games as well. Future work may look at more general notions of user sensi-

tivities as well as other realistic emergent behavior for the society of users.
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Chapter 6

Information Signalling with

Concurrent Monetary Incentives in

Bayesian Congestion Games

The uncertainty held by a system’s users can cause ineffective decision-making. Nowhere

is this more apparent than in transportation networks, where drivers’ uncertainty over

current road/traffic conditions can negatively alter their routing choices. To alleviate

this, an informed system operator may signal information to uninformed users to per-

suade them into taking more preferable actions (e.g., Google/Apple maps providing live

traffic updates). In this work, we study public signalling mechanisms in the context of

Bayesian congestion games. We observe the phenomenon that though revealing informa-

tion can reduce system cost in some settings, in others, it can induce worse performance

than not signalling at all. However, we find an important relationship between informa-

tion signalling and monetary incentives: by utilizing both mechanisms concurrently, the

system operator can guarantee that revealing information does not worsen performance.

We prove these findings in a general class of Bayesian congestion games. To understand
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the magnitude at which information signalling can affect system performance, we put

a deeper focus in the class of parallel networks with polynomial latency functions and

analytically characterize bounds on the change in system cost from signalling. Finally, we

consider the problem of solving for optimal signals with and without the concurrent use of

monetary incentives. We construct solvable optimization problems whose solutions give

optimal signalling policies even when the signalling policy is limited in its support; we

then quantify the benefit of these and other signalling mechanisms in numerical examples.

6.1 Introduction

The degree of traffic congestion on highways and roads in busy city areas is inher-

ently caused by the collective route choices of the drivers [33]. Though drivers often

choose routes that minimize their own travel time, the system behavior that emerges

from this decision-making need not be optimal [143]. This inefficiency can be further ex-

acerbated by drivers’ uncertainty over the state of the system [144, 87], e.g., uncertainty

on current weather conditions, traffic rates, or on-road collisions. With the deployment

of new sensing and communication technologies (e.g., vehicle-to-device and vehicle-to-

infrastructure), the traffic engineers overseeing these systems gain the opportunity to

learn these unknown system parameters; however, the effect of revealing this information

to drivers is not well understood.

The emergence of new sensing and communication technologies opens the door to

new methods for coordinating driving behavior and improving traffic patterns. One such

method is that of information signalling by a well-informed central authority [88, 145].

By partially revealing their information about system parameters to uninformed users,

the signaller allows the system users the opportunity to form new beliefs about their

environment. If the signaller reveals this information strategically, they may alter user
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behavior in such a way that the overall system performance is improved; for example,

Google/Apple maps can share the travel times of certain routes to guide driver decision

making in a way that can alter aggregate driving patterns and improve performance for

the user population [146]. One may initially think that all information should be shared

with the users; however, it has been observed in several problem settings (and affirmed

here) that this need not be optimal and could further degrade system performance [147,

148, 87, 149, 150]. The main focus of this work is determining what capabilities a system

operator has in improving congestion via information signalling and identifying when and

how this information should be shared.

We study the principles of information signalling in the context of Bayesian con-

gestion games, where a group of users (syn. drivers) must route themselves through a

congestible network while the exact congestion characteristics of each path are unknown.

Deterministic congestion games have been used in the transportation literature to model

driver decision-making and its effect on road traffic [33, 151, 152, 153, 154, 155, 156, 157,

158, 159]. Recently, Bayesian congestion games have emerged as a generalized model

in which the edge latency functions are random variables. The users possess a com-

mon prior belief over the random latencies of each route (for example, the belief there

was an accident on a road or the chance weather has affected driving conditions) but

do not observe the realization. The informed system operator does observe the realized

values of the random parameters and can strategically signal information about them

to the system users. This model for uncertain driving conditions have been used to

study how information signalling policies should be designed [89, 160, 95], what behav-

ior is likely to emerge [161, 162], and the associated performance of specific signalling

structures [90, 163, 164]. The results are typically limited to computational methods for

finding signalling policies or identifying whether or not revealing the state exactly is op-

timal. Additionally, for ease of analysis, much of the work in this area often assumes the
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signals are private (sent to individual users) [149], which does not give relevant insights

on public signals [165] (sent to all users) which we consider in this work.

Signalling mechanisms are becoming a topic of increasing research in their ability to

influence user behavior; however, this is not the only influencing mechanism at a system

operator’s disposal. Incentive mechanisms, where users are assessed monetary penalties

or rewards based on their actions, have long been studied as an effective means of co-

ordinating system behavior [5, 122, 7]. In transportation settings, these incentives may

manifest as road/bridge tolls or transit prices. The interplay between incentives and

signalling is an emerging area of study, and has up until now been limited to studying

simpler two-route networks [150, 166], consider only the situation where full information

is revealed to users or limited models of uncertainty [167, 168, 169], focus on mecha-

nisms where users must pay to acquire information [170, 171, 172], or provide numerical

studies rather than theoretical guarantees [173, 174]. To the best of our knowledge, no

existing work has analytically studied the relationship between monetary incentives and

information signalling in general a model for network routing with stochastic delays.

In this work, we provide insights on the benefit information signalling can provide with

and without the concurrent use of monetary incentives. Through example, we demon-

strate two key observations: (1) signalling, on its own, can worsen system cost, and (2)

co-designing signal and incentive mechanisms offer opportunities for improvement that

were not present when using each separately. In Theorem 6.3.1, we formalize the benefit

of co-designing these mechanisms: with appropriate monetary incentives, information

signalling will not worsen system performance, essentially making signalling robust. To

further understand the benefit of utilizing both mechanisms in tandem, we consider the

special class of parallel networks with polynomial latency functions in Section 6.4 and

derive bounds on the possible benefit a signalling policy can provide with and without

concurrent incentives.
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Finally, in Section 6.5, we address the problem of finding optimal signal-incentive

pairs, including when the possible number of signals is bounded. We show how one can

create solvable optimization problems to find the optimal signalling policies with and

without concurrent incentives that may or may not be allowed to update with the sent

signal.

We bolster the conclusions of this work with numerical examples in Section 6.4.3 and

Section 6.5.4, in which we find that concurrent signal-incentive mechanisms offer notable

improvements.

6.2 System Model

6.2.1 Congestion Games

Consider a directed graph (V,E) with vertex set V , edge set E ⊆ (V × V ), and k

origin-terminal pairs (oi, ti). Denote by Pi the set of all simple paths connecting origin oi

to destination ti. Further, let P = ∪ki=1Pi denote the set of all paths in the graph. A flow

on the graph is a vector f ∈ R|P|
≥0, where fP expresses the mass of traffic utilizing path P .

The mass of traffic on an edge e ∈ E is thus fe =
∑

P :e∈P fP , and we say f = {fe}e∈E.

A flow f is feasible if it satisfies
∑

P∈Pi fP = ri for each source-destination pair, where

ri is the mass of traffic traveling from origin oi to terminal ti.

When a larger number of users traverse the same path, the congestion (and thus

transit delay) on that path increases. To characterize this, each edge e is endowed with

a latency function ℓe : R≥0 → R≥0 that maps the mass of traffic on an edge to the

delay users on that edge observe. We assume each latency function is positive, convex,

non-decreasing, and continuously differentiable. The system cost of a flow f is the total
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latency,

L(f) =
∑
e∈E

fe · ℓe(fe). (6.1)

A routing problem is specified by the tuple G = (V,E, {ℓe}e∈E, {ri, (oi, ti)}ki=1), and we

let F(G) denote the set of all feasible flows. We define the optimal flow f opt as one that

minimizes the total latency, i.e.,

f opt ∈ argmin
f∈F(G)

L(f). (6.2)

Though this flow is desirable, it need not emerge from the self-interested decision-making

of the users. To model the setting where users are free to choose their own paths (such

as drivers selecting their own routes), let x ∈ [0, ri] denote the index of an infinitesimal

agent who uses a path Px ∈ Pi; the flow fe thus represents the mass of infinitesimal users

sharing an edge. Agents that minimize their own observed cost (e.g., their individual

travel delay) possess a cost function Jx(Px; f) =
∑

e∈Px ℓe(fe); plausible behavior that

can emerge in the system is that of a Nash flow fNe [33, 151, 175], which satisfies

Jx(Px; f) ≤ Jx(P
′; f), ∀P ′ ∈ Pi, x ∈ [0, ri], i ∈ [k]. (6.3)

These system states are those where no user has the incentive to change their action and

need not be optimal [35]; additionally, the total latency in any Nash flow in a game of

this form is the same [140].

6.2.2 Bayesian Congestion Games & Information Signalling

We consider a setting where the exact traffic conditions are unknown to drivers but

known precisely by a central system operator (e.g., Google Maps, Waze, Apple Maps,

etc.). Let each latency function take the form ℓe(fe) =
∑|K|

k=1 αe,k · ℓk(fe), where K =
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Figure 6.1: System model diagram. System users (drivers) must travel from their
source to their destination through a congested network with uncertain congestion
rates. The users do not know the current network state; however, the system operator
does. Leveraging its greater information, the system operator can devise a signalling
mechanism to send messages of partial information to the users to alter their beliefs
and, ultimately, their actions.

Figure 6.2: Two-link, parallel, Bayesian congestion game. One edge possesses a
linear latency function, the other a constant latency function. The coefficients of
each of these latency functions α1,0, α2,1 are unknown but distributed with prior
µ0 over A = [0, 2]2. At right, is an illustration of a truthful signalling policy
π : A → {s1, s2, s3}, which partitions A to map realizations to signals. After receiv-
ing a signal s, the agents compute their posterior µs, as illustrated by the posterior
beliefs with support defined by the subset of A to which it is associated. In general,
signals need not be deterministic/truthful, and we may choose a signalling policy
π : A → ∆(S), such that the signal s is drawn from a distribution conditioned on α;
the posterior beliefs are computed the same, but now need not be of the partitioned
form shown in this example.

{ℓ1, . . . , ℓK} is a set of basis latency functions1 and αe,k ≥ 0 is the weight of the basis

function ℓk(·) on the edge e ∈ E. To capture the idea of uncertainty in this problem, let

1This formulation can capture many models of congestion including polynomial (K =
{x0, x1, x2, . . . , xK}), exponential (K = {e0x, e0.5x, e2x, . . .}), and the Bureau of Public Roads (BPR)
latency functions (K = {x0, x4}), commonly used to model the congestion characteristics of physical
roads [176, 177].
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α ∈ R|E|·|K|
≥0 (whose elements contain the weight of each basis latency function on each

edge) be a random variable with distribution µ0(x) = P[α = x] and support A. We

assume the system operator observes the realization of this parameter, but the system

users do not. If the users reach a flow f , we extend (6.1) to be the expected total latency

over a distribution µ,

L(f ;µ) = E
α∼µ

[∑
e∈E

fe · ℓe(fe)

]
.

Because ℓe(·) is determined by α, it is a random variable.

As a method to coordinate behavior and induce more desirable system states, the

system operator may choose to signal relevant information to the users so they may

update their beliefs. To do so, a system operator selects a signalling policy π : A→ ∆(S)

that maps realizations of the system state α ∈ A to distribution, from which a signal

s ∈ S is sampled2 which may reveal information to system users. We assume these signals

are public, in that every user receives the same message but need not be truthful or reveal

the exact realization. Fig. 6.1 illustrates the signalling model in the context of network

congestion games where only partial information is provided to the users through signal

s. At the reception of signal s ∈ S, users infer the posterior distribution over the system

state α as

µs(α) =
π(s|α) · µ0(α)∫

A
π(s|β) · µ0(β)dβ

,

where π(s|α) is the probability of sending signal s when the system state realization is α.

Fig. 6.2 demonstrates how agents beliefs may be shaped in a two-link network with two

unknown parameters. By utilizing three signals, the system operator can induce three

posteriors that differ from the prior and lead to different network flows.

Under a signalling policy π, agents may change their chosen path based on which

2For ease of notation, we will often treat the set of signals S as finite; however, the set of signals can
be generalized to include a unique signal for each realization of the system state, i.e., S = A, which can
be uncountable.
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signal they receive. Let f = {f(s)}s∈S denote the tuple containing the flow that occurs

at the reception of each signal, and let σx = {σx(s) ∈ Pi}s∈S denote the path user

x ∈ [0, ri] selects after receiving each signal. When each agent adopts a strategy based

on the information system’s signals, the system designer now cares about the expected

total latency, expressed as

L(f ;µ0, π) =
∑
s∈S

ψ(s) · L(f(s);µs), (6.4)

where ψ(y) = P[s = y] =
∫
α′∈A π(s|α) ·µ0(α)dα denotes the distribution over signals. An

agent’s cost will now be their expected travel time,

Jx(σx; f , µ0, π) =
∑
s∈S

ψ(s) · E
α∼µs

 ∑
e∈σx(s)

ℓe (fe(s))


We can now define a Bayes-Nash Equilibrium as a tuple (fBNe, σBNe) as a set of strategies

where no agent elects to unilaterally change, i.e.,

Jx(σ
BNe
x ; fBNe, µ0, π) ≤ Jx(σ

′; fBNe, µ0, π),

∀σ′ ∈ (Pi)m, x ∈ [0, ri], i ∈ {1, . . . , k}. (6.5)

Our main focus in this work is understanding what opportunities a system designer

has in lowering the expected total latency by way of information provisioning, i.e., com-

paring L(fBNe;µ, π) with L(fBNe;µ, ∅) (where the use of ∅ denotes the case where no

information is shared with users). To quantify this improvement in system performance,

we define the benefit to system cost as

B(π;µ) = L(fBNe;µ, ∅)− L(fBNe;µ, π), (6.6)
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which measures the reduction in system cost from utilizing a signal policy π. The system

operator’s objective is to institute a signalling structure that reduces the system cost or,

equivalently, has a positive benefit. Several works have shown encouraging results on

the capabilities of information signalling and identified situations in which system cost

can be significantly reduced [90, 161, 160]. However, the consequences of information

signalling need not always be positive. In the following example, we identify that this

may be the case even in simple settings.

Example 4 (Consequences From Signalling). In this example, consider a population of

drivers tasked with selecting one of two commute options. One of the routes is always

delayed (either from natural hazards, uncertain demand, or irregular maintenance), while

the other has free-flowing traffic but congests as the number of drivers on that route

increases. However, the drivers are uncertain which route will be delayed.

Figure 6.3: Bayesian congestion game where which route has a constant large delay
and which has a linearly increasing delay is random.

To model this, consider a congestion game with two parallel edges E = {e1, e2}. One

edge has a linear latency function, and the other a constant; each edge is the linear

congestible edge with probability 1/2 (as depicted in Example 4). Let µ0(α
1) = 1/2 be

the prior belief that the first edge is the linear congestible edge (state α1). When no

information is revealed, users split over the two edges equally (f1 = f2 = 1/2), and the

expected system cost is L(fBNe;µ0, ∅) = 0.75.

If an information signal s is sent to the users, let q := P[α = α1 | s] be the posterior

belief that the first edge is the linear congestible edge. With this posterior, f1 = q users
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utilize the first edge, and the expected cost is L(f ;µs) = q2 − q + 1. For any value of

q ̸= 1/2, the expected system cost is greater than not revealing information; as such, any

signalling policy that causes users beliefs to differ from the prior will increase cost, i.e.,

B(π;µ) = L(fBNe;µ, ∅)− L(fBNe;µ, π) < 0 for all π : A→ ∆(S). This demonstrates our

first observation:

Observation: Revealing information to users can have negative consequences and in-

crease system cost.

Example 4 highlights that signalling, on its own, may not be capable of reducing

system cost. However, this is not the only influencing mechanism at a traffic engineer’s

disposal. Another mechanism to influence user behavior is that of monetary incentives,

which have been well studied in transportation and alleviating congestion [5, 122, 7], but,

to the authors’ best knowledge, the use of information signalling and monetary incentives

in tandem has yet to be studied in the context of traffic networks.

6.2.3 Monetary Incentives

Consider a congestion game G; an incentive designer can apply an incentive τe ∈ R

to each edge e ∈ E to change the cost experienced by users utilizing that edge, i.e.,

Jx(e; f) = ℓe(fe) + τe.

When a signal s is sent to the users, the expected cost to a user x on path Px in

flow f becomes Jx(Px; f) = E
[∑

e∈Px ℓe(fe) + τe | s
]
. This change in cost affects the

users’ decision-making and ultimately leads to new Nash flows, ideally with lower total

latency. Monetary incentives are a well-studied and highly utilized method of controlling

congestion in transportation [155, 156]. However, the relationship between incentives and

information signalling is not currently well understood; studying these two mechanisms
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concurrently is the main focus of this work.

To model the interplay of these two influencing mechanisms, note that at each signal,

the selected tolls will alter the Bayes-Nash Equilibrium3 by propagating this new cost

into (6.5). With incentives τ and signalling policy π, the equilibrium system cost will be

written L(fBNe;µ0, π, τ). One can identify scenarios where either mechanism is capable of

reducing congestion; however, this is not true in general. For a given Bayesian congestion

game, it is not immediately apparent if either influencing mechanism can independently

reduce system cost at all. In the following example, we will see that even in a simple

setting, quantifiable benefits exist to designing these mechanisms concurrently.

Example 5 (The Need for Co-Design). In this example, again, consider a population of

drivers tasked with choosing between two commutes. The traffic rates on one route are

always known, but the second sometimes contains a significant delay (perhaps caused by

routine closures and detours).

Figure 6.4: Bayesian congestion game where one edge has a constant congestion profile
while the other has an additional large delay with probability 1/2.

To model this situation, consider a congestion game with two parallel edges E =

{e1, e2}. The first edge has a deterministic latency function ℓ1(f1) = f1 + 1, while the

second edge has a latency function ℓ2(f2) = f2 + ζ where ζ = 2 with probability 1/2

and ζ = 0 otherwise (as depicted in Fig. 6.4). First, we show that no toll can reduce

system cost alone. When no information is revealed, each edge has the same expected

3Note that the Bayes-Nash equilibrium flow fBNe is now inherently dependent on the selected incen-
tives.
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cost, and the Bayes-Nash flow is fBNe = {(1/2, 1/2)}; the optimal flow is the same, i.e.,

f opt = (1/2, 1/2). As the unincentivized equilibrium is already optimal, clearly, no toll

can reduce system cost.

Now, consider some information signalling policy π with signal set S = {s1, . . . , sm}.

Note that LNe(ζ) = 1 + ζ/2. Using forthcoming tools from this work (i.e., Lemma 4),

it can be found that L(fBNe;µ0, ∅) = 1 + E[ζ]/2, thus, any signalling policy π does not

reduce system cost.

Finally, let π be the full-reveal signalling policy and τ1 = 0.5 and τ2 = 0. The

expected system cost with this signal/incentive pair is 1.4375 < 1.5 = 1 + E[ζ]/2. This

demonstrates our second observation:

Observation: There exist situations where signalling alone or tolling alone cannot pro-

vide the same opportunities in reducing system cost as signalling and tolling together.

Example 5 points to an important relationship between signals and incentives: there

exist opportunities in designing the two together, but the benefits are not readily obvious.

A co-design of the two mechanisms can be accomplished in two ways (1) by creating a

larger optimization problem in which signals and incentives are both decision variables

(see Section 6.5), and (2) by designing an incentive policy that can update with the sent

signal. We call incentives that can update with the signal signal-aware and incentives

that cannot signal-agnostic. This section highlighted the limitations of signal-agnostic

incentives; in Section 6.3 and Section 6.4, we will largely focus on the benefit of signal-

aware incentives.

6.2.4 Summary of Contributions

The main contributions of this work come in characterizing the interplay of two influ-

encing mechanisms: information signalling and monetary incentives. Further, we describe
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how these mechanisms can be designed concurrently to provide increased benefits in re-

ducing total latency. We propose two methods for this co-design. The first is utilizing

signal-aware incentives designed for a given signalling policy. In Proposition 6.3.1, we

characterize the optimal signal-aware toll for any signalling policy. One insight this work

provides is that these incentives make the signalling policy robust; in Theorem 6.3.1,

we show that while using the optimal signal-aware incentives, no information signalling

policy can worsen system cost. To further illustrate the advantage of co-designing signals

and incentives, we consider the sub-class of problems with parallel networks and polyno-

mial latency functions in Section 6.4, in which we find analytical bounds for how much a

signalling policy can change system cost. The insights from this section follow the more

general results and show that signalling can still provide a significant reduction in system

cost when incentives are also used.

The second method of co-design involves directly solving for the optimal signal-

incentive pairs. To do so, we leverage existing results on Generalized Moment Problems

to solve for optimal signalling mechanisms in the aforementioned class of parallel net-

works with polynomial latency functions. In Section 6.5, we survey the existing literature

and show how the optimal signal-incentive pairs (with either signal-agnostic or signal-

aware incentives) can be transcribed and solved as GMPs. Additionally, we amend the

problem to handle the case where there is a limited number of signals that can be sent

(i.e., |S| is bounded).

Finally, in Section 6.5.4, we offer a numerical simulation to quantify the above results

of signalling and incentive mechanisms concurrent use. This experiment demonstrates

several of the insights from this work, including that co-designed incentive mechanisms

offer notable performance improvements.
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6.3 Advantage of Incentives

Example 4 and Example 5 highlighted an opportunity to design signals and incentives

in tandem. In this section, we will focus on the qualities of incentives that can update

with the sent signal. Consider a signal-aware incentive mechanism T (s; π, µ0) that assigns

tolls {τe(s)}s∈S dependent on the signal broadcast by the information provider. A player

x ∈ [0, ri] with the strategy σx now observes an expected cost of

Jx(σx; f , µ0, π, T ) =

∑
s∈S

ψ(s) · E
α∼µs

 ∑
e∈σx(s)

ℓe (fe(s)) + τe(s)

 .
The Bayes-Nash flow definition remains as shown in (6.5), but now with users’ tolled

cost. We now seek to understand the effectiveness of jointly implementing a signalling

policy π and an incentive mechanism T . As such, we extend the definition of (6.6), which

quantifies the gain in system performance to include the effect of an incentive mechanism

T , i.e.,

B(π;µ, T ) = L(fBNe;µ, ∅, T )− L(fBNe;µ, π, T ). (6.7)

We measure the benefit of a signalling policy by comparing the system cost with

incentives and signalling and incentives alone. We do this because we largely want to

focus on the value that information signalling can provide on its own.

First, we must decide what monetary incentives to use. In Proposition 6.3.1, we

characterize an optimal signal-aware incentive mechanism for a given signalling policy.

Proposition 6.3.1. Let µ0 be a prior on the latency coefficients α in a Bayesian con-

gestion game G with positive, convex, non-decreasing, and continuously differentiable

latency functions that are of the form ℓe(fe) =
∑|K|

k=1 αe,k · ℓk(fe) where ℓk ∈ K, and let
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π : A → ∆(S) be a signalling policy. An optimal signal-aware incentive mechanism T ⋆

(i.e., maximizes L(fBNe;µ0, π, T )) assigns tolls according to

τ ⋆e (s) =

|K|∑
k=1

E
αe,k∼µs

[αe,k]ξeℓ
′
k(xe), (6.8)

where ξ ∈ argminf∈F(G) L(f ;Eα∼µs [α]).

The proof appears in Appendix A. Proposition 6.3.1 provides a mechanism for com-

puting the optimal incentives for any signalling policy π. The use of these incentives

in tandem with a signalling policy will alter the equilibrium flow and thus the system

cost. Motivated by the observed negative consequences of information signalling shown

in Example 4, Theorem 6.3.1 finds that the concurrent use of monetary incentives T ⋆

makes it such that signalling can never worsen system performance, i.e., have no negative

benefit. Under the use of any signaling policy π, at the reception of any signal s ∈ S,

T ⋆ incentivizes the network flow that minimizes the posterior expected cost. We show

that the total latency in an optimal flow is concave in α and apply Jensen’s inequality

to show the expected posterior total latency is no greater than the expected prior total

latency.

Theorem 6.3.1. Let µ0 be a prior on the latency coefficients α in a Bayesian congestion

game G with positive, convex, non-decreasing, and continuously differentiable latency

functions that are of the form ℓe(fe) =
∑|K|

k=1 αe,k · ℓk(fe) where ℓk ∈ K. While using the

signal-aware incentive policy T ⋆ (as defined in Proposition 6.3.1, any signalling policy

π : A→ ∆(S) has non-negative benefit to system cost, i.e.,

B(π;µ0, T
⋆) ≥ 0. (6.9)

Proof of Theorem 6.3.1: Consider a realization of a congestion game G with latency
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coefficients α. Let L⋆(α) denote the total latency in a Nash flow while using the incentive

mechanism T ⋆ as defined in Proposition 6.3.1. First, we characterize the Bayesian-Nash

flow with incentives T ⋆. If the signal s ∈ S is sent to users, they update their belief via

Bayesian inference to µs(α) =
π(s|α)·µ0(α)

ψ(s)
. In a flow f , user x ∈ [0, ri] taking path Px ∈ Pi

experiences an expected cost of

Jx(Px; f, µs) = E
α∼µs

∑
e∈Px

|K|∑
k=1

αe,k · ℓk(fe) + τ ⋆e (s)


=
∑
e∈Px

|K|∑
k=1

E[αe,k|s]ℓk(fe) + τ ⋆e (s).

Note that if f were not a Nash flow in the congestion game with coefficients E[α|s], then

by (6.3) there would exist a user x would be able to deviate their strategy σx(s) and

experience lower cost. Therefore, the only Bayes-Nash flows occur when f(s) is a Nash

flow with respect to E[α|s] and tolls τ ⋆e (s) for all s ∈ S. From Proposition 6.3.1, this is

the optimal flow in the network with coefficients E[α|s].

Next, consider the prior distribution µ0 on α, and let f be a flow in the network. The

expected total latency

L(f ;µ) = E
α∼µ

∑
e∈E

fe ·
|K|∑
k=1

αe,kℓk(fe)


=
∑
e∈E

fe ·
|K|∑
k=1

E
α∼µ

[αe,k] ℓk(fe)

= L(f ; E
α∼µ

[α]),

which follows from the linearity of expected value.

Combining the previous two observations, we obtain that the total latency in a Nash

flow in the congestion game G with latency coefficients α when using T ⋆, can be expressed
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as

L(fBNe;µ0, π, T
⋆) =

∑
s∈S

ψ(s)L⋆(E[α|s]). (6.10)

Next, we observe that L⋆(α) is concave. L⋆(α) can be expressed as the pointwise

infimum over f ∈ F(G) for a given α,

L⋆(α) = inf
f∈F(G)

L(f ;α) = inf
f∈F(G)

∑
e∈E

|K|∑
k=1

αe,kfe · ℓk(fe).

Observing that
∑

e∈E
∑|K|

k=1 αe,kfeℓk(fe) is affine in α (and thus concave in α) for each f ,

we can invoke that the pointwise infimum over a class of functions that are each concave

is itself, concave [178]. Thus L⋆(α) is concave though need not be affine.

Now, consider the total latency in a Bayes-Nash flow with signal policy π and incentive

T ⋆,

L(fBNe;µ0, π, T
⋆) =

∑
s∈S

ψ(s) · L⋆(E[α|s]) (6.11a)

≤ L⋆
(∑
s∈S

ψ(s) · E[α|s]

)
(6.11b)

= L⋆(E[α]) = L(fBNe;µ0, ∅, T ⋆), (6.11c)

where the (6.11a) holds from (6.10) and (6.11b) holds from the concavity of L⋆. From

this, we can see that B(π;µ0, T
⋆) ≥ 0, i.e., while utilizing incentive scheme T ⋆, signalling

cannot increase system cost.

6.4 Polynomial Routing Games on Parallel Networks

In this section, we seek to further understand the connection between signalling and

incentivizing by characterizing closed-form bounds on the benefit a signalling policy can

138



Information Signalling with Concurrent Monetary Incentives in Bayesian Congestion Games
Chapter 6

provide with and without incentives. We do this in the context of Bayesian congestion

games on parallel networks (i.e., one source-terminal pair with n directed edges directly

connecting them) with polynomial latency functions (i.e., ℓk(·) is a monomial). For the

remainder of this work consider that the basis latency set K is determined by the set

of monomial basis functions with degrees D = {d1, . . . , d|K|} where di ∈ Z≥0 expresses

the degree of basis latency function ℓi
4, e.g., D = {0, 1} represents affine congestion

rates, D = {0, 4} can represent the well-known Bureau of Public Roads (BPR) latency

functions, commonly used to model the congestion characteristics of physical roads [176,

177], and D = {0, . . . , D} can represent any positive, convex, increasing polynomial up

to degree D [7]. Without loss of generality, we will index α by the polynomial degree

d ∈ D. We assume these latency functions are positive, increasing, convex polynomials;

additionally, we note from Remark 2 in Appendix B that, without loss of generality, we

can normalize to a unit demand, i.e., r = 1.

Though this class is restricted relative to the general class of congestion networks,

our findings illustrate insights on the effects of signalling that can be observed only more

dramatically more broadly and is a new step in generality from many similar works.

Additionally, the proofs of Theorem 6.4.1 and Theorem 6.4.2 develop new tools leveraging

the geometry and gradient of the system cost function, which can in future work be

applied to more general classes of problems as well as more specific case studies.

We highlight two important possible realizations of the random variable α that will

be used throughout: α̌ ∈ R|E|·|D|
≥0 such that α̌e,d = inf{supp(αe,d)} (where supp(·) denotes

the support of α) in which each parameter takes its lowest value, and α̂ ∈ R|E|·|D|
≥0 such

that α̂e,d = sup{supp(αe,d)} in which each parameter takes its largest value. Note that α̌

and α̂ need not be in the support of α, but rather represent the corners of the smallest box

that contains the support of α that are closest and furthest from the origin respectively.

4We assume that 0 ∈ D is always satisfied.
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Further, to avoid degenerate cases, we institute the following assumption on Bayesian

congestion games.

Assumption 1. In a Bayesian Congestion Game G with prior µ0, 0, 1 ∈ D is always

satisfied, and, for each edge e ∈ E, α̌e,0, α̌e,1 > 0.

This assumption prevents cases where traffic can be routed with zero delay and has

zero effect on congestion.

6.4.1 Signalling Alone

When a system designer seeks to improve system performance by solely using a public

information-signalling system, Theorem 6.4.1 provides bounds on the benefit a signalling

policy can provide.

Theorem 6.4.1. Consider the class of parallel Bayesian congestion games with polyno-

mial latency functions whose degrees come from the set D. For any distribution over the

latency coefficients µ0 and any signalling policy π, the benefit in the expected total latency

of a Bayes-Nash flow from signalling satisfies

−Θ∥E[α]− α̌∥2 ≤ B(π;µ0) ≤ Θ∥E[α]− α̌∥2, (6.12)

where Θ := |D|+ ρ+−ρ−0
2ρ−1

(|E|+ |D| − 1), ρ−0 = mine∈E α̌e,0, ρ
−
1 = mine∈E α̌e,1, ρ

+ =

maxe∈E
∑

d∈D(d + 1)α̂e,d, E[α] =
∫
z∈A zµ0(z)dz, and α̌ ∈ R|E|·|D|

≥0 such that α̌e,d =

inf{supp(αe,d)} for each e ∈ E, d ∈ D. Additionally, there exists a µ0 such that for

any truthful π ̸= ∅ (i.e., π : A→ S is deterministic),

B(π;µ0) =
√
|D| · ∥E[α]− α̌∥2. (6.13)
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Further, if d ∈ D where d > 0, then there exists a µ0 such that for any truthful π ̸= ∅,

B(π;µ0) = −∥E[α]− α̌∥2. (6.14)

The proof of Theorem 6.4.1 appears at the end of this section.

Theorem 6.4.1 reveals the capabilities a signalling policy has in improving system

performance. It also highlights the reality that revealing information can make system

performance worse. Though the bounds in (6.12) are not tight, the most interesting

aspect of these bounds is what parameters they are conditioned on, providing some

insights on how the different primitives of a network routing problem affect the efficacy

of signalling. The bounds for the benefit of a signalling policy depend on the number of

terms considered in each latency function |D|, the size of the network |E|, as well as the

distance between the average system state and the edge of its support ∥E[α] − α̌∥2 and

other terms that change with the support. One can think that the number of latency

terms |D| characterizes the complexity of the model of network congestion while ∥E[α]−

α̌∥2 measures the amount of uncertainty about the system parameters. Additionally,

(6.13) and (6.14) show that there exist situations where regardless of what signalling

policy is chosen, revealing information can greatly benefit or hinder system performance.

For many of the proofs in this section, we will utilize the following Lemma, demon-

strated in the proof of Theorem 6.3.1 and proven in Appendix A.

Lemma 4. With a prior µ0 and a signalling policy π, the Bayes-Nash flow fBNe can

be characterized by {fNe
(s)}s∈S, where f

Ne
(s) is the Nash flow in the network G with

coefficients αs = E[α|s]. Additionally, for a given flow f , the expected total latency with

distribution µ over the coefficients α is equal to the total latency in the network with the

expected coefficients, i.e., L(f ;µ) = L(f ;Eα∼µ[α]). Together, these facts show that the

expected total latency in a Bayes-Nash flow is equal to the weighted average of the total
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latency in the expected network after receiving each signal, i.e.,

L(fBNe;µ0, π) =
∑
s∈S

ψ(s)LNe(Eα∼µs [α]), (6.15)

where LNe(α) denotes the total latency in a Nash flow in the deterministic congestion

game G with latency coefficients α.

To prove Theorem 6.4.1, in Lemma 5 we provide a fact about the function LNe(α)

which bounds the difference in total latency between any two realizations of edge latency

coefficients.

Lemma 5. Consider the class of parallel congestion games with polynomial latency func-

tions with degrees drawn from the set D with coefficients α ∈ A. Let a, b ∈ R|E|·|D|
≥0 be two

possible sets of coefficients for a congestion game with edge set E, then

|D|+ ρ+ − ρ−0
2ρ−1

(|E|+ |D| − 1) ≥ L
Ne(a)− LNe(b)

||a− b||2
, (6.16)

where ρ−0 = mine∈E α̌e,0, ρ
−
1 = mine∈E α̌e,1, and ρ

+ = maxe∈E
∑

d∈D(d+ 1)α̂e,d.

The proof appears in Appendix B.

Proof of Theorem 6.4.1: We start by proving the lower bound on B(π;µ0), which quanti-

fies how much the use of a signalling policy can worsen the system performance. Consider

the prior µ0 and signalling policy π : A → ∆(S). If µs is the posterior formed from re-

ceiving signal s, let αs = Eα∼µs [α].

To prove the lower bound, first, define the set

Â =
∏

e∈E,d∈D

[inf{supp(αe,d), sup{supp(αe,d)]

that is the smallest box in R|E|·|D|
≥0 that contains A = supp(α). Note that α̌ is the corner
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of this box that is closest to the origin. Let, L̂Ne be the concave closure of the function

LNe over Â, i.e.,

L̂Ne = sup
{
z|(α, z) ∈ ConvÂ(L

Ne)
}
,

where ConvÂ(LNe) denotes the convex hull of the graph of LNe over the domain Â. With

this, we show

B(π;µ0) = L(fBNe;µ0, ∅)− L(fBNe;µ0, π) (6.17a)

= LNe(α0)−
m∑
s∈S

ψ(s) · LNe(αs) (6.17b)

≥ LNe(α̌)− L̂Ne(α0) (6.17c)

= L̂Ne(α̌)− L̂Ne(α0) (6.17d)

≥ −Θ∥E[α]− α̌∥2, (6.17e)

where (6.17b) holds from Lemma 4, (6.17c) holds from LNe monotonically increasing in

α and α̌e,d ≤ αe,d for all e ∈ E, d ∈ D, and α ∈ A, as well as the concave closure

L̂Ne being greater than any concave combination of points in A and
∑

s∈S ψ(s)αs = α0,

(6.17d) holds from LNe(α̌) = L̂Ne(α̌) due to α̌ being a corner of Â, and (6.17e) holds from

Lemma 5 and the definition of Θ from the theorem statement along with the observation

that the maximum gradient in the concave closure L̂Ne must also occur in the original

function LNe by the intermediate value theorem.
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Now, we prove the upper bound using similar methods:

B(π;µ0) = L(fBNe;µ0, ∅)− L(fBNe;µ0, π) (6.18a)

= LNe(α0)−
m∑
s∈S

ψ(s) · LNe(αs) (6.18b)

≤ LNe(α0)− LNe(α̌) (6.18c)

≤ Θ∥E[α]− α̌∥2. (6.18d)

Together, these two bounds show the range of attainable performance improvements by

utilizing a signalling policy π. The fact thatB(π;µ0) can be negative shows that providing

information to users need not always help. In fact, for any signalling policy π, there exist

scenarios where adding information can be detrimental to system performance.

To see (6.13), consider a two link parallel network where ℓ1(f1) = 1, and ℓ2(f2) =∑
d∈D β(f2)

d, i.e., α2,d = β for all d ∈ D. When β ≤ 1/|D|, f2 = 1 and LNe(β) = β · |D|.

When β > 1, f1 > 0 and LNe(β) = 1. Consider a distribution µ0 where β = 0 with

probability 1− ϵ and 1
ϵ·|D| with probability ϵ. The expected value of β is thus 1/|D| The

expected total latency without signalling is LNe(β = 1/|D|) = 1. Because any truthful

signal π will reveal the two possible realizations of β, the expected total latency with π

is

LNe(0)(1− ϵ) + LNe

(
1

ϵ · |D|

)
ϵ→ LNe(0) = 0

as ϵ→ 0. The benefit of π is thus

L(fBNe;µ0, ∅)− L(fBNe;µ0, π) = 1 = −
√
|D| · ∥E[α]− α̌∥2,

where α is a vector with |D| entries of value 1
|D| .

To see (6.14), consider the two link parallel network where ℓ1(f1) = (f1)
d + β and
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Figure 6.5: The benefit of revealing information with and without the concurrent use
of incentives. π is the uniform-grid signal structure where the support A is partitioned
into a grid with granularity b; as b increases, more information is revealed to the
users. At left, the benefit of using the uniform-grid signalling policy πb is shown
for the setting described in Section 6.4.3 with and without the concurrent use of the
incentive mechanism T ⋆. When incentives are used, revealing information provides
a positive benefit and improves performance, which is shown to be generally true
in Theorem 6.3.1. With no incentives, the benefit becomes negative, and revealing
information worsens system cost, which was shown to be possible in Example 4 and
Theorem 6.4.1.

ℓ2(f2) = β(f2)
d + 1 and f1 + f2 = 1; in this congestion game, β = α1,0 = α2,d is

a single parameter that represents two, correlated coefficients. It is difficult to char-

acterize the Nash flow in closed form; however, we can utilize the following two facts

(1) ∂
∂β
LNe(β)|β=0 = 0 and (2) ∂

∂β
LNe(β)|β→∞ = 1. Let µ0 be a distribution on β. From

the first fact, L(fBNe;µ0, ∅) = LNe(β) → LNe(0) as β → 0. Now, consider the prior

distribution µ0(α) = {0, w.p. 1 − ϵ, β/ϵ, w.p. ϵ}. Any signalling policy π will reveal

which β as 0 or β/ϵ, as such,

L(fBNe;µ0, π) = LNe(0)(1− ϵ) + LNe(β/ϵ)ϵ.

From fact (2) above, as ϵ→ 0, L(fBNe;µ0, π)→ β. From these two facts, with sufficiently

small β,

L(fBNe;µ0, ∅)− L(fBNe;µ0, π)→ −β = −∥E[β]− β∥2,

where β = 0 to match (6.14).
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6.4.2 Signals & Incentives

Theorem 6.4.1 showed that revealing information has the possibility of increasing or

decreasing system cost. It is already known from Theorem 6.3.1 that concurrently uti-

lizing appropriate monetary incentives removes the possibility of worsening performance;

however, it is not yet clear how these incentives affect a signalling policy’s ability to

improve performance.

Theorem 6.4.2 provides bounds on the benefit a signalling policy can provide while

also utilizing the signal-aware incentive mechanism T ⋆. We see that by concurrently uti-

lizing incentives and signalling, the system designer can guarantee the benefit of signalling

is non-negative and still have room for significant improvement.

Theorem 6.4.2. Consider the class of parallel Bayesian congestion games with polyno-

mial latency functions whose degrees come from the set D. For any distribution over

the latency coefficients µ0 and any signalling policy π, the decrease in the expected total

latency of a Bayes-Nash flow from signalling satisfies

0 ≤ B(π;µ0, T
⋆) ≤ Ξ∥E[α]− α̌∥2, (6.19)

where Ξ := |D| + ρ+−ρ−0
4ρ−1

(
|E|+

∑
d∈D\{0}(d+ 1)d

)
, ρ−0 = mine∈E α̌e,0, ρ

−
1 = mine∈E α̌e,1,

ρ+ = maxe∈E
∑

d∈D(d + 1)α̂e,d, E[α] =
∫
z∈A zµ0(z)dz, and α̌ ∈ R|E|·|D|

≥0 such that α̌e,d =

inf{supp(αe,d)} for each e ∈ E, d ∈ D.

Comparing the bounds on the benefit of a signalling policy with and without the

use of incentives (i.e., (6.12) and (6.19)), we see that incentives can make the use of

signals more robust (non-negative benefit) while allowing for similar opportunities to

improve performance. We further support this conclusion in Section 6.4.3 by providing a

numerical example and comparing the benefit of revealing information with and without
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incentives.

Before we prove Theorem 6.4.2, we state the following lemma that is similar to

Lemma 5 but applies to L⋆.

Lemma 6. Consider the class of parallel congestion games with polynomial latency func-

tions with degrees coming from the set D with coefficients α ∈ A. Let a, b ∈ R|E|·|D|
≥0 be

two possible sets of coefficients for a congestion game with edge set E, then

|D|+ ρ+ − ρ−0
4ρ−1

|E|+ ∑
d∈D\{0}

(d+ 1)d

 ≥ L⋆(a)− L⋆(b)
||a− b||2

. (6.20)

where ρ−0 = mine∈E α̌e,0, ρ
−
1 = mine∈E α̌e,1, ρ

+ = maxe∈E
∑

d∈D(d+ 1)α̂e,d.

The proof of Lemma 6 is in Appendix B.

Proof of Theorem 6.4.2: Consider the prior µ0 and signalling policy π : A → ∆(S).

If µs is the posterior formed from receiving signal s, then let αs = Eα∼µs [α]. When

utilizing the incentive mechanism T ⋆ which assigns incentives as stated in (6.8), then

Proposition 6.3.1 states that the equilibrium flow that emerges when signal s is received

will be f ⋆(s) ∈ argminL(f ;αs); as such L⋆(αi) is the total latency that occurs.

The lower bound of (6.19) is immediate from Theorem 6.3.1. For the upper bound,

we show that

B(π;µ0, T
⋆) = L(fBNe;µ0, ∅, T ⋆)− L(fBNe;µ0, π, T

⋆)

= L⋆(α0)−
∑
s∈S

ψ(s) · L⋆(αs) (6.21a)

≤ L⋆(α0)− L⋆(α̌) (6.21b)

≤ Ξ∥E[α]− α̌∥2, (6.21c)

where the (6.21a) holds from Lemma 4, (6.21b) from L⋆ non-decreasing with α, and
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(6.21c) from Lemma 6 and the definition of Ξ in the theorem statement.

The bound can be proven tight by considering an example in which di = 0 for each

d ∈ D (i.e., all latency terms are constant. Consider an Bayesian congestion game

in a two link parallel network in which the first edge has latency ℓ1(f1) = 1 and the

second has ℓ2(f2) =
∑

d∈D ζ, where ζ = α2,d ≥ 0 for each d ∈ D is a single unknown

latency parameter that represents |D|, perfectly correlated coefficients. Let µ0 be a

prior distribution on ζ such that µ0(ζ = 0) = 1 − ϵ and µ0(ζ = 1/(|D| · ϵ)) = ϵ; as

such Eζ∼µ0 [ζ] = 1/|D| and using Lemma 4 tells us the expected total latency without

signalling is L(fBNe;µ0, ∅, T ⋆) = 1. Now, consider the use of a signalling policy π that

reveals the state to the users; again, using Lemma 4, we see the total latency with the

signalling policy π is L(fBNe;µ0, π, T
⋆) = 0. To see this matches our bound in (6.19),

we note that the mean coefficient vector is E[α] = [1, 0, . . . , 0, 1/|D|, . . . , 1/|D|]T and the

bottom of our support is α̌ = [1, 0, . . . , 0]T . Substituting this in, we get that the bound

in (6.19) equates to 1.

6.4.3 Benefit of Truthful Signalling

To understand how the benefit of signalling changes as more truthful information

is revealed, we offer the following numerical example. Consider a Bayesian congestion

game with two edges, ℓ1(f1) = f 2
1 + α1,0 and ℓ2(f2) = α2,2f

2
2 + 1, where α1,0 and α2,2 are

parameters unknown to the user. We consider that these two parameters are drawn from

a truncated normal distribution, i.e., let

z ∼ N


30
30

 , 180 ·
2 1

1 2


 ,
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and define the prior over α1,0, α2,2 as µ0(α) = P[α = z|z ∈ A] where A = [0, 60]2 is their

support.

Now, we analyze the benefit of the uniform-grid signalling policy with and without the

concurrent use of the signal-aware incentive mechanism T ⋆ as defined in Proposition 6.3.1.

This signalling policy is truthful in that each user is informed accurately of what partition

the realization of the latency coefficient parameter α is in and reveals more information

as the number of partitions increases. Let b be an integer representing the granularity of

the signalling mechanism, i.e., the number of times A is partitioned along each dimension

as shown in Fig. 6.5, i.e.,

πi,j =

[
60

b
(i− 1),

60

b
i

]
×
[
60

b
(j − 1),

60

b
j

]
,

essentially forming a uniform grid over A.

In Fig. 6.5, we plot the benefit of using the uniform-grid signalling policy with and

without the concurrent use of the incentive mechanism T ⋆, i.e., B(π;µ0) and B(π;µ0, T
⋆).

Observe that when no incentives are used, increasing the amount of information revealed

to users (i.e., larger b) causes the benefit to become increasingly negative; meaning as

more information is revealed, the signalling policy makes the system performance worse.

Conversely, while using incentive mechanism T ⋆, as more information is added, the benefit

becomes increasingly positive and revealing information now improves performance.

6.5 Optimal Signal Design

In the preceding sections of this paper, we showed the range of possible benefit a

signalling policy can provide with and without the concurrent use of monetary incentives.

In this section, we address how one can compute an optimal signalling policy π⋆. In
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Figure 6.6: Simulation results for the system cost (expected total latency) in a
four-link parallel congestion game with affine latency functions. The comparison is
made between seven information/incentive settings: no, true/full, and optimal sig-
nalling, as well as no signalling and optimal signalling with the use of concurrent
signal-agnostic (ag. tolls) and signal-aware (aw. tolls) incentives, respectively. The
optimal signals and associated total latency are found using (PT) and (P) with and
without constraints (6.23); the asterisk denotes that the solution is approximate,
found using the GloptiPoly solver. We find that the optimal signals provide notable
improvements over signalling naively (true signal) and that both types of tolls further
aid the benefit of signalling.

general, the optimal signal can be NP-hard to find [179]; however, in many problems,

this is not the case [180]. We remain in the context of parallel, polynomial-latency

congestion games. However, if the signalling platform is limited (e.g., physical signs or

discrete UI options), the designer may be limited to a small/finite number of possible

signals, i.e., |S| = Λ ≤ |A|. In Section 6.5.1, we survey the result in [160], which shows

a method of transcribing the optimal signalling policy problem as a generalized moment

problem (GMP) which can be approximately solved with existing solvers [181]. Because

we have observed in this work that the concurrent use of monetary incentives can aid in

information signalling, we propose two extensions to solve for co-designed signal/incentive

pairs with both signal-aware and signal-agnostic incentives. In Section 6.5.2, we show

that the signal-agnostic co-design problem can be done by an expansion of the decision

variables and the problem remains a GMP. In Section 6.5.3, we show that the signal-aware

co-design allows for a simplification where the polynomial constraints can be removed,

making the program geometric and solvable via convex programming techniques.
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6.5.1 Computing Optimal Signals

We assume that α is realized from a prior distribution µ0 with finite support A =

{α1, . . . , αm}. A signalling policy π : A → ∆(S) can now be represented by an m × Λ

column stochastic matrix, where Λ ≤ m defines the designer’s constraint on their available

signals5, and π(s, k) = P[s|αk]. A signal-dependent flow tuple f can be represented by a

Λ× n matrix, where f(s, e) is the flow on edge e in the flow that emerges after receiving

signal s. The expected system cost of a signalling policy π with flows f can thus be

written as

L(f ;µ0, π) =
m∑
k=1

Λ∑
s=1

L(f(s, -);αk) · P[s ∩ αk]

=
m∑
k=1

Λ∑
s=1

∑
e∈E

∑
d∈D

αke,d(f(s, e))
d+1 · π(s, k)µ0(k). (6.22)

Note that (6.22) is polynomial in f and π.

In order to find the optimal signalling mechanism, we must introduce a constraint

that f is a Bayes-Nash equilibrium; from Lemma 4, we can do this by requiring f(s, -) to

be a Nash flow with the expected latency coefficients given the signal, i.e.,

m∑
k=1

ℓe,k(f(s, e))µs(k) ≤
m∑
k=1

ℓe′,k(f(s, e
′))µs(k),

∀e ∈ E s.t. f(s, e) > 0, e′ ∈ E, s ∈ S,

5From [88], we need not consider signal sets with more than m signals.
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where µs(k) =
π(s,k)µ0(k)

ψ(s)
; this can be rewritten as

f(s, e) ·
m∑
k=1

(
ℓe,k(f(s, e))−ℓe′,k(f(s, e′))

)
π(s, k)µ0(k) ≤ 0,

∀e, e′ ∈ E, s ∈ S. (6.23)

Using (6.22) and (6.23), along with other constraints, we can write the following op-

timization problem, whose solution is the signalling mechanism that minimizes expected

total latency in a Bayes-Nash flow:

minimize
f∈RΛ×n

≥0 , π∈RΛ×m
≥0

L(f ;µ0, π)

subject to (6.23),

1TΛπ = 1Tm,

f1n = 1Λ

(P)

Note that (P) has a polynomial objective, polynomial inequality constraints, and

linear equality constraints. Problems of this form can be cast as instances of the gener-

alized problem of moments and solved approximately using a semidefinite programming

approach [181], as discussed in [160]. In Section 6.5.4, we will use the solution to (P) to

numerically investigate the benefit of optimal signals.

6.5.2 Optimal Signal-Agnostic Co-design

Example 5 showed that signals and tolls may be less effective when designed sepa-

rately. We will show how the Co-design with signal-agnostic incentives can be done with

little more complication than the signal design case. Let τ ∈ Rn
≥0 be a vector for the

signal-agnostic incentive levied on each edge. The objective of the optimization problem
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will remain the same as in (6.22); however, the equilibrium constraint will be affected by

τ . The new equilibrium constraints become

f(s, e)
m∑
k=1

(
ℓe,k(f(s, e))+ τe−ℓe′,k(f(s, e′))− τ ′e

)
π(s, k)µ0(k)

≤ 0, ∀e, e′ ∈ E, s ∈ S. (6.24)

Using (6.22) and (6.24), we get the new program

minimize
f∈RΛ×n

≥0 , π∈RΛ×m
≥0 , τ∈Rn≥0

L(f ;µ0, π)

subject to (6.24),

1TΛπ = 1Tm,

f1n = 1Λ

(PT)

The program (PT) belongs to the same class of GMPs as (P), but with more constraints.

In Section 6.5.4 and Fig. 6.6, we discuss how the co-designed mechanisms may improve

performance.

6.5.3 Optimal Signal-Aware Co-design

In this section, we seek to solve for optimal signals/incentive pairs with signal-aware

incentives. The incentive design portion of this task is handled by Proposition 6.3.1,

which states that the incentive mechanism T ⋆ is optimal for any π. We thus look for how

to design a signalling policy while concurrently using these incentives.

Remark 1. The optimal signal-incentive pair (π⋆, T ⋆) uses monetary incentives from

Proposition 6.3.1 and signalling policy from the solution to (P) without constraints (6.23).

Remark 1 follows from the fact that T ⋆ causes the Bayes-Nash flow f(s, ·) after re-
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ceiving a signal s to be one that minimizes the expected total latency given s. As

such, removing (6.23) from (P) allows f(s, ·) to be any feasible flow; in the minimization

problem f(s, ·) thus becomes one that minimizes the expected total latency, or be what

emerges from using T ⋆.

Additionally, after removing (6.23) from (P), the problem has only linear equality

constraints and a posynomial objective. This problem is thus a geometric program and

can be transformed into a convex optimization problem [178]. We will use the solution

to this program to compare the effectiveness of the optimal signal-incentive pair with

signal-aware incentives to other settings in Section 6.5.4.

6.5.4 Value of Optimal Signalling

To quantify the performance of optimal signalling mechanisms, we discuss a generated

numerical example and draw several conclusions. The example is described in Fig. 6.6 and

depicts a setting in which users must traverse a parallel network with four edges whose

travel delays grow in an affine manner. Users are uncertain of these latency functions

but know they come from three possible states (potentially caused by road accidents or

weather-related hazards). In this problem, we compute the expected total latency in

seven different settings: no signalling, truthful signalling which reveals the exact state,

and the optimal signal, as well as no signalling and optimal signalling alongside the

optimal signal-agnostic and signal-aware incentives, respectively. The optimal signals

are found using the polynomial optimization solver GloptiPoly [182], which casts the

problem as a generalized moment problem and finds an approximate solution via semi-

definite programming (the asterisk in Fig. 6.6 is to denote the signalling mechanisms are

found by this approximate solution method). We identify the following observation from

the simulation:
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1) Signalling can offer notable performance improvements. Simply revealing the truth

offered a 7.25% reduction in system cost, and signalling optimally offered an 8.67%

reduction.

2) Incentives can further aid in the capabilities of signalling. The optimal signal-incentive

pairs – for both signal aware and agnostic incentives – offered the most significant per-

formance improvements over signalling alone or incentivizing alone.

3) Signal-aware incentives give the best performance and make optimal mechanisms eas-

iest to compute. This is apparent from the last row of the right table in Fig. 6.6 and

Remark 1.

6.6 Conclusion

In this paper, we study the effectiveness of information signalling in the context

Bayesian congestion games. Our main observations are that designing signalling mech-

anisms and monetary incentives concurrently can offer improvements that cannot be

offered by either alone; one such improvement is that concurrently using appropriate

monetary incentives and information signals can help avoid cases where revealing infor-

mation worsens expected total travel latency. To further this understanding, we derive

bounds on the possible benefit of signalling with and without the concurrent use of mon-

etary incentives and provide methods to compute the optimal signalling policies.

Future work may investigate the capabilities of a system operator with less reliable

mechanisms (e.g., uncertainty of their own about the system state and heterogeneity in

users’ beliefs and responses to incentives). Additionally, further studies may uncover if

these conclusions exist in settings outside of Bayesian congestion games and apply the

proposed techniques to more empirical problems.
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Chapter 7

Value of Information in Incentive

Design: A Case-Study in Simple

Congestion Networks

It is well-known that system performance can experience significant degradation from

the self-interested choices of human users. Accordingly, in this manuscript we study the

question of how a system operator can exploit system-level knowledge to derive incentives

to influence societal behavior and improve system performance. Throughout, we focus

on a simple class of routing games where the system operator has uncertainty regarding

the network characteristics (i.e., latency functions) and population characteristics (i.e.,

sensitivity to monetary taxes). Specifically, we address the question of what information

can be most effectively exploited in the design of taxation mechanisms to improve system

performance. Our main results characterize an optimal marginal-cost taxation mecha-

nism and associated performance guarantee for varying levels of network and population

information. The value of a piece of information cannot be known a priori, so we adopt

a worst-case interpretation of the value a piece of information is guaranteed to provide.
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Several interesting observations emerge about the relative value of information, including

the fact that the value of population information saturates unless we also acquire more

network knowledge.

7.1 Introduction

The self-interested decision making of system users can cause significant degrada-

tion in overall performance [33]. This emergent inefficiency caused by selfish behavior

is commonly characterized by the ratio between the worst-case social welfare resulting

from choices of self-interested users and the optimal social welfare; this quantity is often

referred to as the price of anarchy [119] and is a well studied metric of system level

inefficiency in the areas of resource allocation [183], distributed control [83], and trans-

portation [184]. A common line of research studies how incentive mechanisms can be

designed to influence users to make decisions more in line with the social optimal [121].

For the implementation of such incentives to be effective, a system designer must consider

how the users will respond.

When designing an incentive scheme, a system designer is benefited by having more

information about the problem, e.g., a more accurate model of the system infrastructure

or of the human users’ behavior. This paper seeks to understand how and what pieces

of information aid in the incentive design task. Though increased understanding of the

problem setting seems beneficial, in settings such as road traffic [185], power grids [186],

supply chains [42], advertising [187], among others, there is an abundance of potential

information sources. Though we can devise ways to learn different pieces of informa-

tion [188], there is some cost that must be invested in acquiring it. The central questions

that we focus on in this manuscript are as follows:

(i) What are the incentive mechanisms that optimize the efficiency of the emergent
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collective behavior for a given level of informational awareness?

(ii) What type of information, i.e., what specific information about the network or

population, can be best exploited to improve the efficiency of the emergent collective

behavior through an appropriately designed incentive mechanism?

We answer question (i) to understand how to effectively use the available information;

however; the main message of this manuscript revolves around the answers to question

(ii). In particular, is it better for a societal planner to invest in getting more detailed

information regarding the infrastructure characteristics or population characteristics?

How do the granularity and quality of the information impact the attainable performance

guarantees?

We are particularly motivated by problems relating to congestion and traffic, where

the system operator may wish to influence users away from more congestible roads.

Recent work has studied this problem in practice [189], where the authors performed

experiments in Bangalore to see how users respond to incentives persuading them to

alter their commute from the common, direct route to a less direct route. The author

finds that without additional information, incentives provide limited opportunities and

identified value-of-time/price-sensitivity as an important factor. Inspired by this and

related studies [190, 191], we introduce a formal model where each user (driver) has

to choose between two decisions (direct commute or long commute) and are influenced

by their perceived cost (travel time) as well as an imposed tax. To capture the system

designer’s uncertainty, we consider that each user has their own price sensitivity, affecting

how they relate temporal and monetary costs. We model this as a congestion game with

two links and a population of heterogeneous users, where the behavior that emerges from

users self-interested decisions is a Nash flow. It is widely known that the system-level

behavior can be suboptimal and the degree of suboptimality is typically characterized

158



Value of Information in Incentive Design: A Case-Study in Simple Congestion Networks Chapter 7

by the price of anarchy [35]. Typically, this form of analysis is relegated to studying

worst-case scenarios; we seek to extend this by considering how available information

may alter what performance guarantees are attainable.

Related Works — Research has sought to explore the use of tolling or taxation

mechanisms to improve the system cost in congestion games [7, 71, 176]. These monetary

incentives alter users’ preferences in a manner that reduces the price of anarchy; however,

the majority of this work does not consider the effects of user heterogeneity.

In the works that do study heterogeneous users in congestion games, there are a

number of positive and negative results pertaining to the effectiveness of taxation mech-

anisms [192, 120, 5, 193]. On the positive side, there always exists a taxation mechanism

that can completely mitigate any efficiency loss [122, 125, 123]. On the negative side,

this taxation mechanism intimately depends on the detailed information pertaining to

both the network (i.e., topology, edge latency functions, etc.) as well as the population

(i.e., demands, sensitivities, etc.), which significantly limits its applicability. Accord-

ingly, recent work in [136] focuses on robust taxation mechanisms that do not require

such extensive knowledge. While the derived taxation mechanism does not necessarily

guarantee optimality on a network by network basis, it does provide strictly better per-

formance guarantees than the uninfluenced behavior in broad classes of networks. Hence,

these results hint at an apparent trade-off between robustness and optimality.

Contributions — In this work, we seek to bridge the gap between optimal taxation

mechanisms that require detailed information, and robust tolls that require less informa-

tion but may fail to perfectly optimize routing. We consider a case study in 8 information

domains and derive the tolling scheme that makes use of the available information opti-

mally as well as the resulting price of anarchy bound.

Section 7.2.3 highlights these comparisons, and section Section 7.3 provides formal
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proofs. Though the system model we consider is simple relative to the general class of

congestion games, the observations of this work (1) provide lower bounds on the possible

inefficiency that can occur more generally, and (2) discover phenomona that, if can occur

in simple settings, can occur more broadly and require consideration in future planning.

Chief among these observations is that acquiring environmental knowledge (about the

congestion rates of roads) proves more valuable than population knowledge (the exact

price sensitivity of each user). Additional findings are discussed in the body of this

manuscript.

7.2 Model and Performance Metrics

7.2.1 Congestion Routing Game

Consider a population of users N = [0, 1], represented by a closed interval. To

model situations with a very large number of users, a player has infinitesimal mass

and is indexed by a real number in x ∈ [0, 1] = N . To model a simple road traffic

scenario, the users must traverse a graph from an origin o to a destination d by taking

one of two routes, represented by parallel edges e1 and e2; this is designed to represent

two commute options: a congestible, direct route and an open but indirect route. Let

E = {e1, e2} denote the set of edges. The function e : N → E (assumed to be Lebesgue

integrable) captures the action of each user, i.e., each user x ∈ N takes an action by

selecting a route e(x) ∈ E. A flow on edge e is the mass of users taking that route

as their action, or fe(e) =
∫
x∈N 1[e(x) = e]dx where 1[·] is the indicator function. For

notational convenience we will omit the flow f reliance on e when clear from context. Let

f = (f1, f2) ∈ ∆(E) denote a network flow, where ∆(E) denotes the standard probability

simplex over the set E; that is,
∑

e∈E fe = 1. To characterize transit delay, each edge
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e ∈ E in the network has a latency function of the form

ℓe(fe) = aefe + be. (7.1)

where ae ≥ 0 and be ≥ 0 are coefficients used to model how transit delay on an edge

grows with more traffic. The latency on an edge is thus a non-decreasing, non-negative

function of the flow on that edge. Though this model does not capture all the relevant

features of traffic, this setting does capture the decision making of a population of human

users. Additionally, this simple model has been used to describe the driving patterns

and congestion rates of commuters in real word traffic systems [189], proving useful in

characterizing how incentives and users’ decision making affect global performance.

For a flow f , the system cost is characterized by the total latency in the network,

defined as

L(f) =
∑
e∈E

fe · ℓe(fe), (7.2)

and we denote the flow that minimizes this total latency as f opt ∈ argminf∈∆E L(f). We

specify a particular network by the tuple G = (E, {ℓe}e∈E).

This work examines taxation mechanisms as tools to influence the self-interested,

price-sensitive user population to reach more efficient equilibria. We model this routing

problem as a congestion game where each edge e ∈ E is assigned a flow dependent

tolling function τe : [0, 1] → R+. A user x ∈ N has a price-sensitivity s(x) > 0; this

price-sensitivity is subjective for each user and relates the user’s cost from being tolled

to their cost from experiencing delays and is the reciprocal of the user’s value of time.

Without loss of generality, we order players’ indices by their individual price-sensitivity,

i.e., s(x) ≥ s(y) if x ≥ y. The function s : N → R≥0 thus captures the distribution of

price-sensitivity over the users in population N . In a flow f , the cost function for a user
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x that is on an edge e(x) ∈ E can be expressed as

Jx(f) = ℓe(x)
(
fe(x)

)
+ s(x)τe(x)

(
fe(x)

)
. (7.3)

Each user will choose to take the route that minimizes their own cost. When each

user does so, the system reaches a Nash equilibrium eNe, satisfying

eNe(x) ∈ argmin
e∈E

{ℓe (fe(e)) + s(x)τe (fe( e))}, ∀x ∈ N.

In a Nash equilibrium, we will call the resulting network flow a Nash flow fNe :=

f(eNe) (again, we typically omit the reliance on e for brevity), also known as a Wardrop

equilibrium [151]. A game is therefore characterized by a network G, price-sensitivity

distribution s : [0, 1]→ R+, and a set of tolling functions {τe}e∈E, denoted by the tuple

(G, s, {τe}e∈E). It is shown in [140] that a Nash flow will always exist in a congestion

game of this form, and the total latency of a Nash flow is unique for each s.

7.2.2 Taxation Mechanisms & Performance Metrics

To understand the robustness of a tolling scheme, we consider the performance over

a class of networks and users’ sensitivities. For a network G, we identify the latency

functions which constitute the network by L(G); further, for a family of congestion games

G, let L(G) =
⋃
G∈G L(G) be the set of all latency functions that exist in the games in G.

A taxation mechanism T maps latency functions ℓe to tolling functions τe. For a

family of networks G, this mapping is denoted T : L(G) → T , where T is the set of

all admissible tolling functions on [0, 1]. In this work, we consider a form of tolling

function that is linear with the flow on that edge known as scaled marginal-cost tolls. We
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parameterize the tolls by

τe(fe) = kfe ·
dℓe
dfe

(fe) = kaefe, ∀ e ∈ E, (7.4)

where k is a parameter set by the system designer and ae is the linear component of

the edge latency function. Though broader forms of tolling mechanisms can be used

to effectively influence users, scaled marginal-cost tolls offer several properties useful for

analysis and implementation. If one considers a setting where the toll designer is under no

constraint (outside of the implied information constraints), then unbounded incentives

can be designed that guarantee optimal performance in nearly every setting by using

unbounded step functions or unbounded incentives as described in [136, 5]. Because

unbounded incentives are not reasonable in many settings, a toll designer has two options:

they could choose to add a constraint bounding the magnitude of the incentives, or they

could restrict their design to a class of tolling mechanisms that are intrinsically bounded.

In this work, we focus on the latter by studying the design of optimal scaled marginal-

cost tolls which are bounded whenever the latency is finite. Scaled marginal-cost tolls

have been studied in congestion games with little available information on the network or

users’ price sensitivities [142]; further, in [136], it is shown that in some low information

settings the optimal bounded tolls and associated performance guarantees can be found

by solving for the optimal scaled marginal-cost toll; because of their desirable properties

and connection to the literature, we consider scaled marginal-cost tolls throughout.

To formalize the notion of uncertainty in users’ response, we consider families of

sensitivity distributions that can occur when the system designer is only aware of the

lower bound SL and upper bound SU on users’ price sensitives. We define the set of

possible sensitivity distributions as S = {s : [0, 1] → [SL, SU]}. When the average

price sensitivity s of the users is introduced to the system designer, the set of possible
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distributions becomes S(s) = {s ∈ S|
∫ 1

0
s(x)dx = s}; it is clear that S(s) ⊆ S. To

evaluate the performance of a tolling mechanism, let Lnf(G, s, T ) be the total latency

on a network G, with price sensitivity distribution s, in the Nash flow fNe when tolls

are assigned according to taxation mechanism1 T , and let Lopt(G) be the minimum total

latency which occurs under the optimal flow f opt. The price of anarchy compares the

Nash flow on a network with the optimal flow; this characterizes the inefficiency of the

network and can be defined as

PoA(G, s, T ) =
Lnf(G, s, T )

Lopt(G)
≥ 1. (7.5)

We extend this definition to include families of networks and sensitivity distributions,

i.e.,

PoA(G, S, T ) = sup
G∈G

sup
s∈S

{
Lnf(G, s, T )

Lopt(G)

}
, (7.6)

such that the price of anarchy is now the worst-case inefficiency over possible networks

and populations. Note that the same taxation mechanism T is applied to any realized

instance.

7.2.3 Optimal Tolling & Our Contributions

The system designer’s goal when designing a taxation mechanism is to minimize worst-

case inefficiency given uncertainties over the network and/or user sensitivities. Thus, we

define an optimal tolling mechanism as

T ∗ ∈ arg inf
T :L(G)→T

PoA(G, S, T ),

1The taxation mechanism is a mapping from latency functions to tolling functions. A game with
taxation mechanism T is therefore denoted (G, s, {T (ℓe)|ℓe ∈ G}). For brevity, we simply denote this as
(G, s, T ).
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Figure 7.1: Price of anarchy bounds under optimal taxation mechanisms with varying
amounts of partial information (SU/SL = 10).

such that it is the taxation mechanism which minimizes the price of anarchy expressed

in (7.6) for a given family of networks G and sensitivity distributions S. To understand

and compare the value of different pieces of information, we seek to quantify the perfor-

mance guarantees under the optimal tolling mechanism in different information settings.

Therefore, we define the price of anarchy bound under an optimal tolling mechanism as

PoA∗(G, S) ≜ inf
T :L(G)→T

PoA(G, S, T ), (7.7)

which will serve as the measure of how useful information is to the system designer.

In this paper, we demonstrate the value of different pieces of information to a system

designer by comparing the price of anarchy bounds of the optimal incentive in different

information settings as shown in Fig. 7.1. We consider these questions in the class of

two link parallel networks as these networks often display worst-case inefficiency over

larger classes of networks and allow us to analyze the benefit of these partially informed

tolls [141]. Many of the results generalize to parallel and more general networks; for those

that do not, these results provide lower bounds on the price of anarchy. In Section 7.4,

we discuss this context in more detail. For uniformity of presentation, all results are

expressed for two link networks. Additionally, the purpose of this work is to identify

information factors that affect the incentive design task. If interesting observations can

occur in simple problems, then certainly they can occur more generally.
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Fig. 7.1 depicts a snap-shot of the theoretical results for SU/SL = 10. In the top left,

the toll designer possesses no information about the network or users’ price sensitivities,

making the zero toll (τe = 0∀e ∈ E) optimal and recovering the price of anarchy bound for

this class of networks of 4/3 = 1.33 [35]; we show this formally in Proposition 7.3.3. As the

toll designer acquires more information, their performance improvements are captured

by moving down and to the left. The information available to the system designer is

encoded in the arguments of the price of anarchy expression defined in (7.7). With

regard to network information, we consider two possible cases of information available to

the system designer:

� network-agnostic PoA∗(G, · ) - the system designer is unaware of the specific

problem instance and only knows the class of possible networks and must choose a

taxation mechanism that is applied to each2.

� network-aware PoA∗(G, · ) - the system designer is aware of the specific network

and may design tolls for that specific instance3.

When the system designer is aware of the exact network characteristics, they will be

able to design tolls more effectively. From this fact, we expect a network-aware toll

to perform no worse than a network-agnostic one. The benefit of this information for

different settings can be seen by comparing the two rows of Fig. 7.1.

Similarly, we consider several settings for the system designer’s knowledge of the

user-sensitivity distribution:

2Though it was assumed prior that the demand in the network is always of unit size, when the system
designer is network-agnostic it is without loss of generality that they are also unaware of the demand in
the network. We thus consider demand as an implied piece of network information.

3Though the network structure is consistent throughout each routing problem, we use the nomencla-
ture of network-aware to match the literature, where network-agnostic tolls must be assigned with only
local edge latency characteristics while network-aware tolls are designed with information of each edge’s
latency function.
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� sensitivity-agnostic PoA∗( · , S>0) - the system designer knows nothing about

the users’ sensitivities except they are bounded away from zero.

� bound-aware PoA∗( · , S) - the system designer knows the lower-bound SL and

upper-bound SU, on users’ possible sensitivities.

� mean-aware PoA∗( · , S(s)) - the system designer knows the lower-bound SL and

upper-bound SU as well as the mean s of users’ sensitivities.

� distribution-aware PoA∗( · , s) - the system designer knows the exact distribution

on user sensitivities.

The sensitivity distribution serves as a model for the population’s behavior. Refining the

set of possible distributions reduces the designer’s uncertainty and allows them to design

more effective tolls. The benefit of increasing the information available to the system

designer can be seen by comparing the columns of Fig. 7.1.

The main focus of this work is to investigate which pieces of information give the

greatest gains in the performance of tolls with respect to the price of anarchy ratio.

Though it is clear that additional information will help tolls provide better guarantees,

it is not obvious what will provide a better gain in performance when introduced to

an uninformed system designer: network-awareness or population-awareness. Further,

the value of a piece of information is highly contextual, and it is impossible to know

a priori what value new information provides, thus we adopt a worst-case approach for

comparing performance. Comparing the worst-case performance bounds of each setting

(such as those demonstrated in Fig. 7.1) shows:

1. Comparing elements (B) and (C) shows that the full distribution of users’ price

sensitivities need not be any more helpful than the mean alone, thus the value of

population information saturates.
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2. Comparing elements (D) and (G) shows that, in the absence of any population

information, network-awareness may be of no help, however, in the presence of

full population information, network-awareness allows for tolls that can always

incentivize optimal self-routing.

3. Comparing elements (B) and (E) shows that the guaranteed value of information

about network characteristics is more valuable than the guaranteed value of the

mean of users’ price sensitivities.

To further illustrate the results and highlight that the relationships between informa-

tion settings hold more generally, we provide a plot of each price of anarchy bound for

varying levels of population heterogeneity. Fig. 7.2 shows the best attainable price of an-

archy bounds under scaled marginal cost tolling in the previously described information

settings for each SL/SU ∈ [0, 1]. As the SL/SU approaches 1, there is less discrepancy

between the different users’ price sensitivities and all tolls can optimize performance;

as SL/SU approaches zero, the differences between users’ responses can be arbitrarily

large and no toll is effective. For values of SL/SU in between, we see that the previously

described relationships hold, and network information proves more valuable than popula-

tion information. These findings illuminate several important considerations for incentive

designers. In problems closely related to our described setting (such as the tolling exper-

iment in [189]), our results inform what information the toll designer should invest in

acquiring. Further work is needed to understand if identical conclusions are true in other

settings, however identifying them in our setting highlights that these comparisons need

to be considered more broadly.
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Figure 7.2: Worst-case price of anarchy in each information setting over levels of
user heterogeneity SL/SU ∈ [0, 1]. Each plot represents the best achievable price of
anarchy bound using scaled marginal cost tolls for one of the information settings:
(A) network agnostic, mean agnostic, (B) & (C) network agnostic, mean (or full
distribution) aware, (E) network aware, mean agnostic, and (F) network aware, mean
aware. Each toll guarantees superior performance than the untolled price of anarchy
of 4/3. The values of each line at SL/SU = 0.1 are those presented in Fig. 7.1. By
varying the value of SL/SU, we can see that the relationship between settings holds
when looking at worst-case performance guarantees.

7.3 Main Results

In each setting considered, we provide a result reporting the price of anarchy bound

under an optimal toll, as well as a subsidiary result reporting the the optimal scaled

marginal-cost toll when applicable. The main conclusions can be observed numerically

in Fig. 7.1, while the analytic expressions are given in the following subsections. In this

work, we limit the search for optimal tolls to a search over scaled marginal-cost tolling

mechanisms. Taxation mechanisms of this form can be parameterized by a single scaling

factor k, and will be denoted T (k) which assigns to an edge e a toll τe(fe) = kaefe. As

discussed previously, these tolls posses desirable properties in that they are naturally

bounded when the latency is finite, and they can be reasonably implemented in network-

aware and network-agnostic settings; further, in [136, Lemma 2.2] the authors show that

the optimal bounded toll can be found by searching for the optimal scaled marginal-cost

toll in the network-agnostic case. In the network-aware case, it is an open question as to

what form an optimal, bounded taxation mechanism will take.
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7.3.1 Network-agnostic, bound-aware

The first scenario we consider is when the system designer is agnostic of the exact net-

work characteristics and knows only the lower and upper bound on user sensitivities; we

provide a bound on the price of anarchy under an optimal scaled marginal-cost taxation

mechanism in this setting.

Theorem 7.3.1. When only SL and SU are known, the price of anarchy under an optimal

scaled marginal-cost tolling mechanism is

PoA∗ (G, S) =

(
q − 1 +

√
q2 + 14q + 1

)2
8q
(
−q − 1 +

√
q2 + 14q + 1

) , (7.8)

where q := SL/SU.

This result gives a performance guarantee for the setting where the system designer

has minimal information about the population and network characteristics. This result

is a generalization of [142, Theorem 1], where we now consider networks that need not

have traffic on every edge in a Nash flow. As a means to find this upper bound, we first

derive the optimal scaled marginal-cost toll. In the proof of Theorem 7.3.1, at the end

of this subsection, we will use this toll to show the associated price of anarchy bound.

Proposition 7.3.1. When only SL and SU are known, the optimal network-agnostic

marginal-cost toll scaling factor is

kagn =
−SL − SU +

√
S2
L + 14SLSU + S2

U

2SLSU

. (7.9)

Proof. We start by finding the scaling factor kagn for the optimal scaled marginal-cost

toll. In this information setting, the optimal scaling factor was found in [194] to be the
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Table 7.1: Table of Commonly Used Notation & Abbreviations
E Edge set indexed by e ∈ E
fe Flow on edge e
ℓe(·) Latency on edge e as a function of edge flow
ae Linear coefficient of latency function on edge e
be Constant coefficient of latency function on edge e
L(·) Total latency as a function of network flow
Lnf(·) Total latency in a Nash flow
Lopt(·) Total latency in the optimal flow
G Congestion routing game problem instance
G Family of Congestion routing game problems
τe(·) Toll on edge e as a function of edge flow
s(·) User price sensitivity as a function of user index
S Set of population sensitivity distributions
SL, SU Lower and upper bound on users’ price sensitivity
s Average user price sensitivity
τe(·) Toll applied to edge e as a function of edge flow
T (·) Incentive mechanisms that maps edges to tolls
kagn scalar of network/sensitivity agnostic toll
k(s) scalar of network agnostic/mean aware toll
k(G) scalar of network aware/sensitivity agnostic toll
k(s,G) scalar of network/mean aware toll
kgm geometric mean scaling factor 1/

√
SLSU

PoA(·) Price of anarchy as a function of a class of congestion
games, price sensitivity set, and incentive mechanisms

PoA⋆(·) Price of anarchy using optimal toll as a function of a class
of congestion games and price sensitivity set

Common Abbreviations
opt optimal over respective domain
Nf Nash flow (often w.r.t. toll, population, and game)
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solution to the equation

4

4 (1 + kagnSL)− (1 + kagnSL)
2 =

(1 + kagnSU)
2

4kagnSU

. (7.10)

It is shown in [194] that when SL < SU, (7.10) always has exactly one solution on the

interval (1/SU, 1/SL), and that solution is the desired optimal scale factor. (7.9) is a

solution to (7.10), so we show here that (7.9) describes this desired solution by showing

that kagn is in the interval (1/SU, 1/SL). Define the term p = SU/SL. Because p > 1,

we have

1 + 14p+ p2 > 1 + 14p+ p2 + 8(1− p) = (p+ 3)2 .

Thus, (7.9) can be lower bounded by

kagn >
−1− p+

√
(p+ 3)2

2SU

=
1

SU

. (7.11)

Likewise, define q = SL/SU (so that q < 1), we have

1 + 14q + q2 < 1 + 14q + q2 + 8(1− q) = (q + 3)2,

yielding a lower bound on kagn of

kagn <
−1− q +

√
(q + 3)2

2SU

=
1

SL

. (7.12)

Thus, the scaling factor kagn defined in (7.9) exists in the interval (1/SU, 1/SL). It can

be shown by substitution that (7.9) satisfies (7.10).
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Proof of Theorem 7.3.1: Using the scaling factor from Proposition 7.3.1, (7.8) can be

found by substituting (7.9) into (7.10).

7.3.2 Network-agnostic, mean-aware

We consider the mean sensitivity as additional information to just the bounds SL, SU.

If the system designer is aware that the mean user sensitivity is s̄, the set of possible

sensitivity distributions is reduced to the set S(s) ⊂ S. Using this information, the toll

designer is able to refine the optimal mechanism and improve the performance guarantees.

The price of anarchy of an optimal toll in this setting is shown in Fig. 7.1, where value

(B) is noticeably lower than (A) demonstrating the value of information to the system

designer.

In deriving this bound, we perform a series of reductions in the set of feasible instances

to one which realizes the worst-case price of anarchy. In Lemma 7, we show that any Nash

flow can emerge by a population with a bimodal sensitivity distribution, thus reducing our

search for worst-case instances to those with bimodal sensitivity populations. In Lemma 8

we further identify two distributions, one of which will realize worst-case inefficiency. In

Lemma 9 we reduce the search over networks to those with only one linear and one

constant edge, and in Lemma 10 we identify two such networks that constitute worst-

case instances. We will first prove these lemmas that will aid in proving several later

theorems.

We say users x, y have the same type if s(x) = s(y). Further let a bimodal distribution

be one in which there exist exactly two user types; the set of such distributions is denoted

Sbi(s) ⊂ S(s). We denote a bimodal distribution with types S1 and S2 by (S1, S2). Note

that for a given s, S1 and S2, the mass of users with each sensitivity is well defined.

Additionally, we adopt the convention used elsewhere that the network links are indexed
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such that b1 ≤ b2.

Lemma 7. A Nash flow f for a sensitivity distribution s ∈ S(s), under a linear tax T ,

is likewise a Nash flow for some distribution s′ ∈ Sbi(s) in which one type of user is

indifferent between the two edges and all users on each edge are of a single type. This

implies the price of anarchy over sensitivities in S(s) is equal to the price of anarchy over

bimodal distributions in Sbi(s), i.e.,

PoA(G, S(s), T ) = PoA(G, Sbi(s), T ). (7.13)

Proof. Let s1 ∈ S(s) be some distribution of users’ sensitivities, and let Sind be the

sensitivity that has equal cost between the two links in the Nash flow fNe, i.e., solution

to

(1 + Sindk)a1f
Ne
1 + b1 = (1 + Sindk)a2f

Ne
2 + b2. (7.14)

Note that in the case where Sind > SU or Sind < SL, any distribution s ∈ S will have the

same Nash flow with all users choosing the same edge. First, consider the case where

Sind < µ(s1), where µ(·) is the mean of the distribution. From Claim 1.1.2 in [142], if

a user has a sensitivity S < Sind, then they strictly prefer the first link; if they have a

sensitivity S > Sind then they strictly prefer the second.

Now, let s2 be a new distribution where each user who had chosen edge 1 now has

sensitivity Sind. The Nash flows from s1 and s2 are the same, as the same number of

users have a sensitivity S ≤ Sind and thus the same users choose the first edge. It is clear

that µ(s2) > µ(s1) as no user has a lower sensitivity and some have higher.

Now, consider a third distribution s3, where users who chose edge 2 now have some

sensitivity S ′ ∈ (Sind, SU]; these users will now strictly prefer the second edge of the

network but the Nash flow will remain unchanged. If we pick S ′ = SU, the mean has
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surely increased again; if we pick S ′ = Sind, because we are in the case Sind < s, the

mean is lower than µ(s1). Because µ(s3) is continuous with S
′, we can select S ′ so that

µ(s3) = µ(s1). The case of Sind > µ(s1) is similar.

The distribution s3 = (Sind, S
′) induces the same Nash flow as s1 and now, one set of

users is indifferent and users of the same type exist on the same edge only.

Having shown in Lemma 7 that any feasible Nash flow can be realized by a population

with a bimodal sensitivity distribution, we note that the worst-case price of anarchy can

be realized by a bimodal distribution. Our search further reduces as we characterize two

specific distributions that give worst-case inefficiency.

Lemma 8. For a given network G ∈ G and scaled marginal-cost tax T with toll scaling

factor k, two distributions s
(s,G,k)
l and supp, that maximize and minimize (respectively)

the flow on the first edge of the network, realize the price of anarchy over those in Sbi(s),

PoA(G, Sbi(s), T ) = PoA
(
G, {s(s,G,k)l , supp}, T

)
(7.15)

Proof. The proof follows from the fact that total latency is quadratic in the flow, thus

the largest price of anarchy will come from the flow that is furthest from optimal. From

Lemma 7, we see that any flow induced by a distribution s ∈ S(s) can be realized by

a bimodal distribution that has one set of users observing equal cost between the links

and each edge containing only one sensitivity type. We therefore define s
(s,G,k)
l as the

distribution that maximizes fNe
1 and supp as the distribution which maximizes fNe

1 .

Next, we focus on which networks exhibit worst-case inefficiency and reduce our search

to the set of instances with have one linear latency function and one constant; the set of
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such networks is defined as

G lc = {G|ℓ1(f1) = a1f1, ℓ2(f2) = b2, a1, b2 ≥ 0}.

Lemma 9. For any G ∈ G, there exists a Ĝ ∈ G lc ⊂ G that, under the same scaled

marginal-cost tolling mechanism T (k), has a higher price of anarchy, implying

PoA(G, S(s), T (k)) = PoA(G lc, S(s), T (k)). (7.16)

The proof of Lemma 9 appears in the appendix.

Finally, we identify two specific networks that demonstrate worst-case inefficiency.

For a given set of distributions S(s) and toll scaling factor k, we define two networks:

(1) Gβ ∈ G lc with latency functions ℓ1(f1) = f1 and ℓ2(f2) = β and satisfies

s
(s,Gβ ,k)

l = (SL, SU), and

(2) Gα ∈ G lc with latency functions ℓ1(f1) = f1 and ℓ2(f2) = α and satisfies

s
(s,Gα,k)
u = (SL, SU). Due to the discussion in the proof of Lemma 9, any network in G lc

with cost functions satisfying b2/a1 = β will have the same price of anarchy as Gβ, and

the same is true for for Gα.

Lemma 10. For linear constant networks, under sensitivity distributions in S(s) with

toll scaling factor k, the network Gα or Gβ will realize the upper bound on the price of

anarchy, i.e.,

PoA(G lc, S(s), T (k)) = PoA({Gα, Gβ}, S(s), T (k)).

Proof. It can be seen by differentiation of (B.34), the price of anarchy increases with the

value of the indifferent sensitivity when fNe
1 < f opt

1 and decreases when fNe
1 < f opt

1 . Recall

176



Value of Information in Incentive Design: A Case-Study in Simple Congestion Networks Chapter 7

that s
(s,G,k)
l has f1l > f opt

1 and indifferent sensitivity Sl 1; similarly, supp has f1u < f opt
1

and indifferent sensitivity Su2. It is therefore true that having Sl 1 = SL or Su2 = SU is a

necessary condition for the network which maximizes the price of anarchy.

Further, in bimodal distributions (S1, S2) where users are homogeneous on either link,

fNe
1 = (S2−s)/(S2−S1). For s

(s,G,k)
l when users with sensitivity Sl 1 = SL are indifferent,

the largest flow that can occur on f1 occurs when s
(s,G,k)
l = (SL, SU). Similarly, for

supp, when users with sensitivity Su2 = SU are indifferent, the least flow in f1 has

supp = (SL, SU). One of these two conditions must be met by a network G ∈ Glc to

maximize the price of anarchy. Those networks are the defined Gα and Gβ.

For ease of notation, we will define a change of variable z(x) = 1
1+s(x)k

and zL = 1
1+SLk

and zU = 1
1+SUk

.

Proposition 7.3.2. When SL, SU and the mean sensitivity s are known, the optimal

network-agnostic marginal-cost toll scaling factor k(s) will be the solution on (1/SU, 1/SL)

to

PoA(Gβ, (SL, SU), T (k)) = PoA(Gα, (SL, SU), T (k)), (7.17)

where

β = R/zL, α =


1

2(zU−z2U )
, 1

2(1−zU )
≥ R

R/zU , otherwise.

(7.18)

where R := (SU − s)/(SU − SL).

The proof of Proposition 7.3.2 appears in the appendix.

Finally, the price of anarchy under the optimal tolling mechanism can be expressed

as in the following theorem.
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Figure 7.3: Price of anarchy in each information setting over various mean sensitivities.
Each plot represents a bound for one of the introduced tolling mechanisms: (A)
network agnostic, mean agnostic toll, (B) network agnostic, mean aware toll, (E)
network aware, mean agnostic toll, and (F) network aware, mean aware toll. Each
toll gives superior performance guarantees than the untolled price of anarchy of 4/3.
Price sensitivity bounds SL = 1 and SU = 10 are shown; changing these values has a
minimal effect on the relation between the lines.

Theorem 7.3.2. When SL, SU and the mean sensitivity s are known, the price of anarchy

under an optimal, scaled marginal-cost toll is given by

PoA∗ (G, S(s)) = R2 − βR + β

β − β2/4
, (7.19)

where R := (SU − s)/(SU − SL), and β = (1 + SLk(s))R, with k(s) being the solution

to (7.17).

In Fig. 7.3, we show the price of anarchy bound of the network-agnostic, mean-aware

tolls alongside the price of anarchy bound in several other settings. As mentioned before,

the value of knowing certain pieces of information (in this case the mean) is highly

contextual: when the mean s is close to one of the lower or upper bound SL and SU, the

mean is very informative as users’ sensitivities must be more concentrated around the

average. However, in worst-case, the mean sensitivity does not offer as much value to

the toll designer as the knowledge of the edge latency functions as in the network-aware,

mean-agnostic case.

Proof of Theorem 7.3.2: From Lemma 10, a network Gβ realizes the price of anarchy

when the toll scaling factor is chosen optimally as in Proposition 7.3.2. The price of
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anarchy for this network is found by substituting β from (B.39) into the latency function

ratio in (B.37).

7.3.3 Network-agnostic, distribution-aware

When the system designer is informed of the average user sensitivity, they are able

to improve the price of anarchy ratio by utilizing the new information. It would seem

that having precise knowledge would allow further reductions in the price of anarchy;

however, in Theorem 7.3.3 it is shown that full information on the user sensitivities does

not improve the price of anarchy.

Theorem 7.3.3. The worst-case performance guarantee for the network-agnostic taxa-

tion mechanism with knowledge of the full user sensitivity distribution is no better than

that of the network-agnostic, mean-aware:

max
s∈S(s)

PoA∗(G, s) = PoA∗(G, S(s)). (7.20)

When the system designer is uncertain of the network characteristics, the full sensitiv-

ity distribution information is no more valuable than the average of the users sensitivities,

in worst-case; this is highlighted in Fig. 7.1 where the price of anarchy in box (B) and

(C) are equal.

Proof. The proof follows similarly from Section 7.3.2, utilizing Lemma 7, Lemma 8,

Lemma 9, and Lemma 10. Observe the two worst-case problem instances: Gα with

bimodal distribution (SL, SU) with mean s, and Gβ with bimodal distribution (SL, SU)

with mean s. Because the user sensitivity distribution is the same in both instances, if

this distribution was known apriori, the networks Gα and Gβ would still constitute worst-

case instances and the optimal tolling mechanism must be selected as in Proposition 7.3.2

179



Value of Information in Incentive Design: A Case-Study in Simple Congestion Networks Chapter 7

and give the same performance guarantee as if only the mean was known.

7.3.4 Network-aware, sensitivity-agnostic

In the previous sections, it is shown that additional information about the population

of users may help improve the performance guarantees of an optimal taxation mechanism.

In the following sections we will also see how full knowledge of the network characteristics

can improve the efficacy of tolls. Specifically, in this section we consider the case where

the system designer has full information on the network characteristics but knows nothing

about the users’ sensitivities except that they are bounded away from zero; in this setting,

the additional information will not help.

Proposition 7.3.3. When the the exact network G is known, but users’ sensitivities

s ∈ S>0 are only known to be bounded away from zero, no taxation mechanism can

improve the price of anarchy, i.e.,

sup
G∈G

PoA∗(G, S>0) = PoA∗(G, S>0) = 4/3. (7.21)

Proposition 7.3.3 shows shows that even if the exact network characteristics are

known, some information about the population’s response is required to improve worst-

case performance guarantees. This is consistent with box (D) of Fig. 7.1; Further, this

implies the top left box as well: when no information on network or population is present,

no toll can lower the price of anarchy below 4/3.

Proof. If each user has the same sensitivity S; further, consider the classic Pigou network

with two parallel edges, one with latency ℓ1(f1) = f1 and ℓe(f2) = 1. In the absence of

any tolling, the Nash flow is fNe = (1, 0) and the optimal is f opt = (1/2, 1/2), giving a

price of anarchy of 4/3. When all users travel on the same link (either the first or the
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second) in the Nash flow, the price of anarchy is 4/3, the same as the untolled case. Any

tolling mechanism that incentives users to utilize the second link (i.e., τ1 > τ2) can be

made arbitrarily ineffective by letting S → ∞, causing the Nash flow to be fNe = (0, 1)

and the price of anarchy to be 4/3.

7.3.5 Network-aware, mean-agnostic

As seen in the previous section, network information will not help a system designer

that has no knowledge of the population. When the system designer at least has bounds

on the possible sensitivities of users, the optimal toll will be able to improve performance.

Theorem 7.3.4. When only SL and SU are known, the price of anarchy under an opti-

mal, network-aware, scaled marginal-cost toll is tightly upper bounded by

PoA∗ (G, S) ≤ 4

3

(
1−

√
q(

1 +
√
q
)2
)

(7.22)

where q := SL/SU.

By comparing box (B), (C) and (E) in Fig. 7.1, one can observe that network infor-

mation is significantly more valuable than additional population information beyond the

lower and upper bound.

To prove this bound, we assume the toll designer can determine the Nash flow of a

possible homogeneous low-sensitivity population associated with each toll scaling factor;

this assumption is reasonable as the Nash flow of a homogeneous population can be

found by solving a convex optimization problem [35]. Let fNe
i (G,S, k) be the mass of

traffic on edge i in network G in a Nash flow of a population of users with homogeneous

price-sensitivity S and tolling factor k.

Proposition 7.3.4. For any network G ∈ G and any SU ≥ SL > 0, let kgm = (SLSU)
−1/2.
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The following is an optimal network-aware marginal-cost toll scaling factor:

k(G) =

 0 if fNe
2 (G,SL, k

gm) = 0,

kgm otherwise.
(7.23)

Proof. Consider the following cases, differentiated by the structure of Nash flows resulting

from k = kgm := (SLSU)
−1/2:

1. fNe
2 (G,SL, k

gm) > 0 , and

2. fNe
2 (G,SL, k

gm) = 0.

It is shown in [142] that in Case (1), it must be true that Lnf (G,SL, k) = Lnf (G,SU, k)

and that this choice of k is uniquely optimal, resulting in the price of anarchy given

in (7.22).

Consider Case (2). Here, the extreme low-sensitivity population with s = SL strictly

prefers link 1 when k = kgm, effectively stripping the designer of their influence over the

price of anarchy. It can easily be shown (using, e.g., tools from [142]) that

k ≤ kgm =⇒ Lnf (G,SL, k) = Lnf (G, ∅) , (7.24)

but that

k† > kgm =⇒ Lnf
(
G,SU, k

†) > Lnf (G, ∅) . (7.25)

That is, in this regime, the designer cannot change the behavior of s = SL without

increasing tolls, but cannot increase tolls because this would cause the high-sensitivity

population with s = SU to route more inefficiently. That is, k = 0 is an optimal tolling

coefficient in this case.4

4In this case, the set of price-of-anarchy-minimizing tolling coefficients is not a singleton in general:
any coefficient satisfying Lnf(G,SL, k) ≥ Lnf(G,SU, k) is optimal. Implication (7.24) means that this
set always contains k = 0.
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Proof of Theorem 7.3.4 It follows easily from the results in [142] that in Case (2) when

k ≤ kgm, it is true for any s that Lnf(G, s, k) ≤ Lnf(G,SU, k
gm); the price of anarchy

bound for this scenario is thus precisely that in [142], where now we include games which

need not have flow on every edge in an untolled Nash flow.

7.3.6 Network-aware, mean-aware

Next, we consider when the system designer is network-aware and mean-aware to

illustrate the gain in performance when the system designer has knowledge of the network

and partial information of the population.

Theorem 7.3.5. When SL, SU and the mean sensitivity s are known, under an optimal,

network-aware, scaled marginal-cost tolling mechanism, the price of anarchy is tightly

upper bounded by

PoA∗ (G, S(s)) ≤ R2 − βR + β

β − β2/4
, (7.26)

where R = (SU − s)/(SU − SL) and β is the unique solution on the interval [0, 2] to

β = R

(
1 +

√
1 +R− β

s/SL +R− β

)
. (7.27)

In order to prove this, we start by making several of the same reductions as in Sec-

tion 7.3.2. In this setting, the optimal network-aware toll is found and denoted by the

scaling factor k(s,G).

Proposition 7.3.5. For a network G ∈ G with price sensitivity distributions s ∈ S(s)

with extreme sensitivity distributions s
(s,G,k)
l = (Sl 1, Sl 2) and supp = (Su1, Su2), the opti-
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mal toll scaling factor for a linear toll will take the form,

k(s,G) =
1√

Sl 1Su2
. (7.28)

Proof of Proposition 7.3.5: From Lemma 7, under the same tolling mechanism, the

set of Nash flows caused by S(s) is equal to those caused by distributions with bounds

[Sl 1, Su2] and no mean constraint. The optimal scaling factor will therefore minimize the

price of anarchy over this set of distributions. From [142], the optimal scaling factor for

a linear toll will take this form.

Lemma 9 shows that a transformation from a network G ∈ G to a network Ĝ ∈ G lc will

increase the price of anarchy; we also note that this transformation had no dependence

on the toll scaling factor and we can thus choose a k that is optimal for the resulting

network.

Corollary 4. When making a reduction from G ∈ G to Ĝ ∈ G lc, the price of anarchy

increases regardless of the toll scaling factor k, including when k = k(s,G) for each network

before and after the reduction.

Proof: In the proof of Lemma 9, the relation between k and the price of anarchy

was not used; instead, it was shown that the price of anarchy increases as the network is

transformed from any two link network, to one that was in G lc. Consider having network

G with the non-optimal toll scaling factor k(s,Ĝ). When the reduction from G to Ĝ is

done, by Lemma 9 we have

PoA(G, S(s), T (k(s,G)) ≤ PoA(G, S(s), T (k(s,Ĝ))

≤ PoA(Ĝ, S(s), T (k(s,Ĝ)).

Proof of Theorem 7.3.5: It is shown in Lemma 10 that a set of two networks realizes the
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price of anarchy. The price of anarchy for the network Gβ is found by (B.37). Now, let

G′, defined by β′, be a network that has the same price of anarchy when the flow R is on

the first link, One solution is clearly β = β′, the other is β′ = (4−β)R
R2−βR+β

. Using the cost

function of network G, we have β = (1+SLk(s,G))R. Thus, if β
′ satisfied supp = (SL, SU)

for the same mean sensitivity, then

β′ =
(4− β)R

R2 − βR + β
= (1 + SUk(s,G′))R. (7.29)

However, it can be shown that the right hand side of (B.38) is strictly less than the

left hand side. This imposes that the flow f1 = R cannot be a Nash flow in G′ under

distributions in S(s) and therefore not achieve the same price of anarchy as G. This

implies that the price of anarchy for Gβ is greater than that of Gα when both are tolled

optimally with respect to Proposition 7.3.5. As this network is optimally tolled, from

Proposition 7.3.5, it will be the case that

Su2 =
s− SL

1 +R− β
+ SL. (7.30)

Now, in sensitivity distribution s
(s,G,k)
l = (SL, SU), users with sensitivity SL are indifferent

with optimally scaled toll k(s,G). Using β from (B.38) and substituting the optimal

scaling factor with extreme sensitivity from (7.30) leads to the characterization of β in

the theorem statement, and the price of anarchy is found by substituting this into (B.37).

7.3.7 Network-aware, distribution-aware

In [125], the authors show that in the fully informed setting, there exist fixed tolls

that will incentivize the users to self route optimally. We will extend this work to our
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framework to show that, when the system designer known the full user sensitivity distri-

bution and the network characteristics, they can always design a toll that gives price of

anarchy of one.

Let F (S) be a cumulative distribution function of the users’ sensitivities in population

s. Further, let F−1(f) be a preimage of [SL, SU] under F (S) where if the preimage is

non-singleton, the minimum sensitivity is used, i.e., F−1(f) is the sensitivity at which f

mass of users have a lower sensitivity.

Theorem 7.3.6. For the network G with population s, the linear toll

T (af + b) =
1

F−1(f opt
1 )

af, (7.31)

where f opt
1 = 2a2+b2−b1

2(a1+a2)
will have price of anarchy one, i.e., PoA∗(G, s) = 1 for any G

and s.

Box (G) in Fig. 7.1 shows that, when sufficient information is available, the inefficiency

can be entirely eliminated, regardless of the problem instance.

Proof. First, note that for a network G, the optimal flow will be f opt
1 = 2a2+b2−b1

2(a1+a2)
. If S is

the sensitivity at which a user is indifferent between the two paths in the optimal flow,

then any user with lower sensitivity will use the first edge. If the indifferent sensitivity

is S⋆ = F−1(f opt
1 ) then picking k such that

(1 + S⋆k)a1f
opt
1 + b1 = (1 + S⋆k)a2(1− f opt

1 ) + b2 (7.32)

is satisfied, the equilibrium flow will be f opt. Substituting S⋆ and solving for k gives

k = 1

F−1(fopt1 )
.
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7.4 Empirical Study

The theoretical claims of this work are presented in the setting of two-link, affine-

latency congestion games with scaled marginal cost tolls. As mentioned previously, some

of these results generalize beyond this simple class of networks; we presented each result

in this reduced setting to improve uniformity in presentation. Specifically, by matching

the upper bound in [35], Proposition 7.3.3 holds for all networks, even those with multiple

source-destination pairs. Theorem 7.3.6 easily generalizes to multi-link parallel networks

following the same steps as presented in this work. Theorem 7.3.1 and Theorem 7.3.4

can be shown to hold after a slight transformation for multi-link parallel networks by

following steps from [136]. This leaves Theorem 7.3.2, Theorem 7.3.3, and Theorem 7.3.5

as results where it is not known if our findings generalize to other classes of networks.

In this section, we will motivate why we believe these results offer insights more broadly

and the relationships likely hold more generally.

To understand how the results of this work extend to more general networks, we

focus on understanding how the derived, optimal, scaled marginal-cost tolls perform in

networks of greater than two links. We do this empirically by randomly generating a large

number of five-link parallel networks with different population sensitivity distributions

and recording the price of anarchy. Fig. 7.4 shows the empirical price of anarchy values

and demonstrates that every found parallel network has a strictly better price of anarchy

than the 2-link bound.

We focus our simulation on the mean aware setting to understand how these results

generalize. To garner these empirical results, we set s = 1 and vary the lower and

upper bound over several values. For many values of α ∈ (0, 1), such that SL = s − α

and SU = s + α, we randomly generate 500 networks with five parallel edges, where

the coefficients ae and be in the latency function ℓe(fe) = aefe + be are independently
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Figure 7.4: Empirical price of anarchy in 5-link parallel congestion networks compared
to two-link bound. Specifically, the study is in the mean-aware, network-agnostic in-
formation setting, where in each game the optimal scaled marginal cost toll k(s) from
Prop. 7.3.1 is used. With average sensitivity s = 1, the population sensitivity dis-
tributions were chosen with lower bound SL = s − α and upper bound SU = s + α.
For varying values of α ∈ (0, 1), 500 parallel networks with 5 links and 100 popula-
tion sensitivity distributions (including demonstrably worst-case distributions) were
randomly generated and the price of anarchy while using k(s) was recorded for each
realization.

drawn uniformly at random from [0, 1]. For each realized network, a set of sensitivity

distribution were generated; the generated distributions included ones randomly created

with 2, 3, 4, and 5 sensitivity values with positive weight. Fig. 7.4 shows a scatter plot

of each recorded price of anarchy along with the maximum over these empirical samples.

It is not surprising that the 2-link bound appears to hold over the class of parallel

networks; in [141], it is shown that the price of anarchy in non-atomic congestion games

is independent of the network structure, and worst-case examples are realized by two-

link networks. Though it is not obvious this relationship holds with the introduction

of tolling, in [142], the authors show that scaled-marginal cost tolls similarly experience

worst-case performance over parallel networks in two-link networks.

7.5 Conclusion

This work studies the value of different types of information to a toll designer. When

comparing the performance guarantees awarded to toll designers with differing available
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information, we observe that, though possessing additional information can give a system

designer greater capabilities, it is not trivial which specific pieces of information are most

helpful in influencing user behavior. The results of this work offer comparisons between

the value of different types of information, including when additional information is

helpful and when it is not.
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Chapter 8

Conclusions

This thesis presented several works on the role of information in the control of multi-

agent systems. Tools from game theory are used throughout to model the interactions

of multiple decision-makers in distributed autonomous and social environments. The

broadest conclusions from this thesis are that 1) significant opportunities for improving

the performance and capabilities of multi-agent systems are available by introducing new

channels of information communication, and 2) information needs to be used and shared

carefully lest system performance be inadvertently worsened.

190



Appendix A

Appendix Title A

A.1 Omitted proofs of Chapter 2

Proof of Proposition 2.2.1: To show existence, we can simply observe that aopt ∈

argmaxa∈AW (a) is a k-strong Nash equilibrium for any k ∈ [n]. Because W (aopt) ≥

W (a′) for all a′ ∈ A, the global optimal satisfies W (aopt) ≥ W (a′Γ, a
opt
−Γ), ∀a′Γ ∈ AΓ, Γ ∈

C[k].

Proof of Theorem 2.3.1: The proof can be outlined by four parts: first, the problem of

finding SPoAk(Gn, w) is transformed and relaxed, second, the parameterization used in

the proof of Proposition 2.3.2 is used to turn the relaxed problem into a linear program,

next, an example is constructed to show the linear program provides a tight bound,

finally, we take the dual of said linear program.

1) Relaxing the problem: Quantifying SPoAk(Gn, w) can be expressed as taking the min-

imum k-strong price of anarchy over all games in Gn, i.e.,

min
G∈Gn

minakSNE∈kSNE(G)W (akSNE)

maxaopt∈AW (aopt)
(D1)
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Figure A.1: Game construction for worst-case k-strong price of anarchy. Three of the
n players’ action sets are shown (color coded in red, green, and blue respectively) on
three of n! rings for the label (e, x, o) = (2, 1, 1). A ring has n positions, one for each
player. For a label (e, x, o) we generate n! rings for all the orderings of players over
positions. This is repeated for each label. Players still only have two actions, but each
action covers resources from each ring. The value of a resource is equal to the value
of θ⋆, a solution to (D), for the label with which it is associated.

max
θ∈R|I|

≥0

∑
e,x,o

w(o+ x)θ(e, x, o)

s.t.
∑
e,x,o


(
n

ζ

)
w(e+ x)−

∑
0≤α≤e
0≤β≤o
α+β≤ζ

(
e

α

)(
o

β

)(
n−e−o
ζ−α−β

)
w(e+x+β−α)

 θ(e, x, o) ≥ 0

∀ζ ∈ {1, . . . , k}∑
e,x,o

w(e+ x)θ(e, x, o) = 1 (D)
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To make this problem more approachable, we introduce several transformations and

relaxations. First, rather than searching over the entire set of game Gn, we search over

the set of games Ĝn, in which each agent has exactly two actions. This reduction of the

search-space can be down without loss of generality, i.e., SPoAk(Gn, w) = SPoAk(Ĝn, w).

Trivially, Ĝn ⊂ Gn. Further consider any game G ∈ Gn; if for every player each of their

actions is removed except their action in the optimal allocation aopti and their action in

their worst k-strong Nash equilibrium akSNE
i , the new problem will maintain the same k-

strong price of anarchy, but will now exist in Ĝn. With this reduction, we will denote each

player’s action set as Âi = {aopti , akSNE
i }. Second, we normalize each resource value vr

such that the equilibrium welfare is one. This too can be done without loss of generality

by scaling each resource identically thus not altering the SPoA ratio. Third, we invert

the objective and consider the maximization of W (aopt)/W (akSNE). Finally, we sum over

each of the k-coalition equilibrium constraints. For each ζ ∈ [k], rather than satisfying

each inequality in (2.3), sum over every combination of the ζ out of n players, denoted

Cζ . Applying these reductions to (D1) gives,

max
G∈Ĝn

W (aopt)

s.t.

(
n

ζ

)
W (akSNE) ≥

∑
Γ∈Cζ

W (aoptΓ , akSNE
−Γ ), ∀ζ ∈ [k],

W (akSNE) = 1

(D2)

(D2) provides a lower bound on SPoAk(Gn, w) as the feasible set was expanded. Later,

we will show that the bound is tight by constructing an example that realizes it.

2) Parameterization: We use the parameterization introduced in the proof of Proposi-

tion 2.3.2 with respect to the joint actions a = akSNE and a′ = aopt. By considering any

θ ∈ R|I|
≥0, we can parameterize any game G ∈ Ĝn; to find the worst-case price of anarchy,
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we search over all such parameters, i.e., look over the entire class of games. The linear

program (D) is the result of the search for the vector θ that results in the highest price

of anarchy.

3) Constructing an example: Consider the following resource allocation problem: for

each label (e, x, o) ∈ I and permutation of the n player σ ∈ Σn, define a ring of n

resources. Total, there are nn!|I| resources. Let r
(e,x,o)
i,j denote the resource with label

(e, x, o) at position i in the jth ring. Consider, for instance, the n! rings associated

with the label (e, x, o) = (2, 1, 1) as depicted in Fig. A.1. We will construct the actions

akSNE
i and aopti so that for each resource in these rings, e + x = 3 agents have it in only

their equilibrium action, and x + o = 2 agents have it only in their optimal action. In

the first ring (with the monotonic permutation σ = (1, 2, 3, . . . , n)), agent i has actions

akSNE
i = {r(2,1,1)i,1 , r

(2,1,1)
i+1%n,1, r

(2,1,1)
i+2%n,1} and aopti = {r(2,1,1)i+2,1 , r

(2,1,1)
i+3%n,1}, where % denotes the

modulo operator so the selected resources wrap around the ring. This pattern continues

for each ring j ∈ [n!] with a different permutation of players σ ∈ Σn. At a ring with label

(e, x, o) and permutation σ, player i has the actions akSNE
i = {r(e,x,o)σ(i),j , . . . , r

(e,x,o)
σ(i)+e+x−1%n,j}

and aopti = {r(e,x,o)σ(i)+e%n,j, . . . , r
(e,x,o)
σ(i)+e+x+o−1%n,j}. Finally, each resource of type (e, x, o) has

a value θ(e, x, o) where θ is a fixed parameter. The function which encodes the welfare

from player overlap is w.

In the joint action akSNE, each resource is covered by exactly e + x agents and the

system welfare can be written

W (akSNE) =
∑
e,x,o

nn!θ(e, x, o)w(e+ x). (A.1)
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Similarly, joint action aopt satisfies

W (aopt) =
∑
e,x,o

nn!θ(e, x, o)w(o+ x). (A.2)

Now, consider a coalition Γ ∈ C[k] and denote by ζ its cardinality. The system welfare of

this group deviating their action to aoptΓ is

W (aoptΓ , akSNE
−Γ ) =

∑
e,x,o

n!∑
j=1

n∑
i=1

θ(e, x, o)w(|aoptΓ , akSNE
−Γ |r)

=
∑
e,x,o

θ(e, x, o)
∑

0≤α≤e
0≤β≤o
α+β≤ζ

nn!

(
e

α

)(
o

β

)(
n−e−o
ζ−α−β

)
w(e+x+β−α) (A.3)

where we let r be the shorthand for r
(e,x,o)
i,j . The second equality holds by defining α and β

as the number of players in Γ who invested in resource r exclusively in their action akSNE

or aopt respectively. By counting arguments, there are exactly
(
e
α

)(
o
β

)(
n−e−o
ζ−α−β

)
positions

for the players in Γ which yield the profile (α, β) for a resource at some fixed position in

the ring, there are ζ! ways to order the players in Γ, (n − ζ)! ways to order the players

not in Γ, and n resource in each ring.

Verifying akSNE is a k-strong Nash equilibrium boils down to showing (A.1) is greater

than or equal to (A.3). We can see that this holds whenever θ is a feasible point in (D).

Accordingly, the k-strong price of anarchy satisfies

1

Q⋆
≤ SPoAk(Gn, w) ≤

1∑
e,x,o θ(e, x, o)w(o+ x)

, (A.4)

where the first inequality holds from the reductions made in part 1, and the second holds

as the k-strong price of anarchy is upper bounded by any particular problem; comparing

(A.1) and (A.2) gives the final expression. Letting θ take on the solution to (D) shows
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the bound is tight.

4) Taking the Dual: Before considering the dual program to (D), we first show that the

primal is feasible. It is easy to verify the feasible set is non-empty by considering the

point θ(1, 0, 0) = 1/w(1) and zero otherwise. Now, we must show that the feasible set

is compact and thus the value of (D) is bounded. From the equality constraint, we can

obtain

1 ≥ min
y>0

w(y)
∑
e,x,o
e+x>0

θ(e, x, o).

Because we assume w(y) > 0 for all y > 0, we show that each value of θ(e, x, o) such that

e + x > 0 is bounded. For the remaining values of θ(0, 0, o), consider the equilibrium

constraint1 when ζ = 1. By rearranging terms, and observing the bounded terms from

the previous argument, we observe L ≥ w(1)
∑

o∈[n] oθ(0, 0, o), where L is a bounded

value. Because w(1) > 0, the remaining decision variables are also bounded, and thus

the feasible set is finite.

Now, we find the dual program to (D). Because (D) is a linear program, we can

rewrite it in the more concise form

max
θ∈R|I|

b⊤θ

s.t. c⊤ζ θ ≥ 0, ∀ζ ∈ [k] (νζ),

d⊤θ − 1 = 0 (ρ),

θ ≥ 0 (ϕ)

where ν ≥ 0, ρ, and ϕ ≥ 0 are the associated dual variables. The Lagrangian function

is defined as L(θ, ν, ρ, ϕ) = b⊤θ + (
∑

ζ∈[k] νζc
⊤
ζ θ) − ρ(d⊤θ − 1) + ϕ⊤θ. Let g(ν, ρ, ϕ) =

supθ∈R|I| L(θ, ν, ρ, ϕ) serve as an upper bound to (D). The dual program is derived by min-

1The ζ = 1 constraint is present in (D) for all k ≥ 1.
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imizing g(ν, ρ, ϕ); note that this value is only unbounded above unless b⊤+
∑

ζ∈[k] νζc
⊤
ζ −

ρd⊤ + ϕ⊤ = 0. Substituting this into the objective, and removing the free variable ϕ so

that the equality constraint becomes an inequality, the dual problem becomes

min
ρ,{νζ∈R≥0}ζ∈[k]

ρ

s.t. b⊤ − ρd⊤ +
∑
ζ∈[k]

νζcζ ≤ 0, (P1)

From strong duality, (P1) provides the same value as (D). Expanding the hidden terms

shows that (P1) is equivalent to (P[k]).

Proof of Proposition 2.5.2: The proof is straighforward, and simply requires generalizing

the constraint set of (P[k]). Consider taking the same steps as the proof of Theorem 2.3.1,

but with the equilibrium constraint defined by the utility rule u. This will result in the

same linear program as in (P[k]), but now with the constraint set

0 ≥ w(o+x)− ρw(e+x)+

∑
ζ∈[k]

νζ


(
n

ζ

)
u(e+x)−

∑
0≤α≤e
0≤β≤o
α+β≤ζ

(
e

α

)(
o

β

)(
n−e−o
ζ−α−β

)
u(e+x+β−α)


∀(e, x, o) ∈ I. (A.5)

At this point, the new linear program will provide tight bounds on a specified utility rule

u.

Finally, we substitute the new decision variable uζ ∈ Rn
≥0 into each occurrence of νζu.

This enlarges the feasible set, which now subsumes all the feasible points that would
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evaluate a utility rule u by satisfying u = uζ for all ζ ∈ [k]. As we do not enforce this

constraint, the value of the final program (Q[k]) provides a lower bound on the original

program, or its reciprocal provides an upper bound on the k-strong price of anarchy

under the optimal utility design.

A.2 Omitted proofs of Chapter 4

A.2.1 Proof of Proposition 4.3.1

We note that this proof follows similarly to that of [72, 105] but now with the presence

of stubborn agents. Here we go through the construction of the linear program and

important steps of the proof, but direct the reader to [72, 105] for a more detailed

explanation. We begin by identifying the problem of characterizing the price of anarchy

in a class of games GmW,F for a class of games with a single basis value function w (i.e.,

W = {αw | α > 0}) while using a local utility rule f = F(w). Each resource welfare

function can therefore be written as wr(x) = vrw(x), where vr is the ‘value’ of that

specific resource. We will discuss at the end how the solution to a single basis function

can extend to the original statement. In looking for price of anarchy bounds we note that

a class of resource covering problems G with utility rule f has the same price of anarchy as

the class of problems G∗ where each agent has exactly two actions Ai = {aNe
i , a

opt
i },2 thus

we will search for price of anarchy bounds in these two-action games and note they hold

more generally. The price of anarchy over GmW,F while utilizing utility rule f , PoA(GmW,F),

2This can be seen by transforming each game G ∈ G into one with two actions by removing all actions
but the worst equilibrium aNe and the optimal allocation aopt. Because aNe remains a Nash equilibrium,
the price of anarchy is unchanged.
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can be written as

min
G∈GmW,F

W (aNe)

W (aopt)
(A.6)

s.t. Ui(a
Ne; d) ≥ Ui(a

opt
i , aNe

−i ; d) ∀i ∈ N.

Where G = (N,A, {Ui}i∈N ,W ) encodes all of the information about a problem instance.

This program is not efficient to solve in general, however, we will make use of a param-

eterization that will greatly ease the computation of the price of anarchy. First, we will

modify (A.6) by normalizing W (aNe) = 1, which can be done by homogeneously scaling

each resource value and will not alter the problems price of anarchy. Next, we relax the

equilibrium constraint from holding for every agent i ∈ N to only hold as a summation

over all agents, i.e.,
∑

i∈N Ui(a
Ne; d) − Ui(a

opt
i , aNe

−i ; d) ≥ 0. Note, that this relaxation

will cause the new program to provide a lower bound for the original, however we will

show that this bound is tight. Finally, we take the reciprocal of the objective and turn

the minimization problem into a maximization problem. The new program, which the

solution of will be a lower bound for the original, can be written

max
G∈GmW,F

W (aopt) (A.7)

s.t.
∑
i∈N

Ui(a
Ne; d)− Ui(aopti , aNe

−i ; d) ≥ 0,

W (aNe) = 1.

Now, we make use of a parameterization that was also described in the proof of

Theorem 4.4.1. Each resource is given a label (xr, yr, zr, dr) defined by xr = |aNe\aopt|r,

zr = |aopt\aNe|r, yr = |aopt ∩ aNe|r, and dr is the number of stubborn agents. The label

denotes the number of agents that utilize a resource in only their Nash action xr, only
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their optimal action zr, or both yr. The set of all such labels is In = {(x, y, z) ∈ N3
≥0 | 1 ≤

x+y+z ≤ n}. For each label we define a parameter θ(x, y, z, d) =
∑

r∈R(x,y,z,d) vr, where

R(x, y, z, d) is the set of resources with label (x, y, z, d). We can express several quantities

using this paramerization as follows:

∑
i∈N

Ui(a
Ne; d) =

∑
r∈R

vr[(xr + yr)f(xr + yr + dr)]

=
∑
x,y,z,d

(x+ y)f(x+ y + d)θ(x, y, z, d),

∑
i∈N

Ui(a
opt
i , aNe

−i ; d) =
∑
x,y,z,d

[yf(x+ y + d) + zf(x+ y + d+ 1)]θ(x, y, z, d),

W (aNe) =
∑
x,y,z,d

w(x+ y)θ(x, y, z, d),

W (aopt) =
∑
x,y,z,d

w(z + y)θ(x, y, z, d).

Note that we write the sum over all labels in In as
∑

x,y,z,d for brevity. Rewriting (A.7)

using this parameterization gives

p⋆ = max
θ∈R|In|

∑
x,y,z,d

w(z + y)θ(x, y, z, d) (A.8)

s.t.
∑
x,y,z,d

[xf(x+ y + d)− zf(x+ y + d+ 1)]θ(x, y, z, d) ≥ 0,

∑
x,y,z,d

w(x+ y)θ(x, y, z, d) = 1,

θ ≥ 0.

As discussed when introducing (A.7), p⋆ offers a lower bound on the price of anarchy.

We further show that using the solution to (A.8), θ⋆, one can construct a game whose

price of anarchy is a tight upper bound.
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For each label (x, y, z, d) such that θ⋆(x, y, z, d) > 0, introduce n resources each with

value θ⋆(x, y, z, d)/n. As in Fig. A.2, define each players action set to cover x+y of these

resources in their equilibrium action aNe
i and z + y of these resources in their optimal

action aopti where y of the resources are in both actions. By considering the n resources in

a ring, and offsetting each agents action sets by one resource, each agent can experience

this set of resources symmetrically. Finally, let d stubborn agents be placed on each of

these resources. If this is repeated for each label, then one can observe that player i will

have utility

Ui(a
Ne; d) =

∑
x,y,z,d

(x+ y)f(x+ y + d)θ(x, y, z, d)

≥
∑
x,y,z,d

[yf(x+ y + d) + zf(x+ y + d+ 1)]θ(x, y, z, d)

= Ui(a
opt
i , aNe

−i ; d),

where the inequality holds from the constraint in (A.8) and θ⋆ being a feasible solution;

thus aNe is a Nash equilibria, and the price of anarchy of this game is at most W (aNe)
W (aopt)

=∑
x,y,z,d w(x+y)θ

⋆(x,y,z,d)∑
x,y,z,d w(z+y)θ

⋆(x,y,z,d)
= 1∑

x,y,z,d w(z+y)θ
⋆(x,y,z,d)

= 1
p⋆
, where the second equality holds from

the constraint in (A.8). The constructed game therefore offers an upper bound on the

price of anarchy of 1/p⋆, the solution to (A.8), offers a matching lower bound, proving

the bound is tight.

Notice that (A.8) is a linear program with decision variable θ. Next we find the dual
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Figure A.2: Game construction for resource allocation problems utilizing the solution
to (A.6). For each tuple (x, y, z, d), n resources are created with value θ⋆(x, y, z, d)/n.
For a resource with label (x, y, z, d), design the action set of agent i to utilize the
first x + y of these resources in their first action, aNe

i , and the x + 1 to x + y + z
resources in their other action aopti . For the proceeding agent, follow the same process
but increasing the index of the starting resource by 1. If the agent were to use
the non-existent n + 1 or greater resource, start the assignment from the beginning,
essentially forming a ring. Once each action set is assigned for all n agents, each
resource will be used by x + y agents in the action aNe and y + z agents in aopt,
matching the label it was assigned. We can observe that aNe is a Nash equilibrium
from the constraints in (A.6). For a similar, but more detailed explanation, see [72].

of (A.8) to be

d⋆ = min
λ≥0,µ∈R≥0

µ (A.9)

s.t. w(z + y)− µw(x+ y)

+ λ[xf(x+ y + d)− zf(x+ y + d+ 1)] ≤ 0

∀(x, y, z) ∈ In, d ∈ {1, . . . ,m}.

Because, (A.8) is a linear program, and thus convex, by the principle of strong duality,

d⋆ = p⋆ = PoA(GmW,F)
−1. Finally, to optimize the price of anarchy over local utility rules,

we need only minimize (A.9) over f : [n +m] → R≥0, which can be treated as a vector

in Rn+m. Allowing f to be a decision variable in (A.9) would cause each constraint to be

bilinear in f(i) and λ; however, every occurrence of λ is multiplied by an f(i) for some
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i and vice versa, therefore the two decision variables can be combined into one giving a

program of the form (4.9).

Finally, we note that (i) an optimal utility rule can be composed as the optimal

utility rule for each basis function, i.e., for a resource with value wr =
∑B

b=1 αbwb for

some {αb}Bb=1, then f opt
r =

∑B
b=1 αbf

opt
b where f opt

b is the optimal utility rule for the

basis function wb described prior, and (ii) the worst case price of anarchy over the set

of games with resource value functions in W = {
∑B

b=1 αbwb|αb ≥ 0 ∀b ∈ [B]}, is equal

to the maximum of the sets of games with just one of these basis functions. These two

observations have been shown in [7, 105] and follow identically here. This gives the final

form of the optimal local utility design and the associated performance guarantee.

A.2.2 Proof of Theorem 4.4.1

In this appendix, we give the full proof of Theorem 4.4.1 as well as several supporting

lemmas. As in the proof of Proposition 4.3.1, we restrict our search to games where each

player has two actions A = {aNe
i , a

opt
i } and note that the price of anarchy over this class

is the same as the original with larger agent action sets. The price of anarchy bounds

in (4.13) and (4.14) are tight along the Pareto-optimal frontier. To prove that each is

an upper bound, we will make use of several examples; three structures of parameterized

problem instances are shown in Fig. A.3. To show that these are lower bounds, we will

make use of smoothness inequalities introduced in [70]. If, given a utility rule f , each

Nash equilubria aNe ∈ NE(Gf ) satisfies

W (aNe) ≥ λ ·W (aopt) + µ ·W (aNe), (A.10)

for some λ, µ ∈ R, then the price of anarchy will satisfy PoA(Gf ) ≥ λ
1−µ . We will provide

lower bounds by finding values of λ and µ for different settings (e.g., with and without
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Figure A.3: (Left) Example A: GA

A problem instance with one agent having two choices: a resource with value one and
a resource with value γ covered by η defective agents. When γ ≤ 1/f(η+1), the agent
may pick the resource of value one in equilibrium leading to PoA(GA

f ) =
1
γ ≥ f(η+1).

(Center) Example B: GB

A problem with ξ + 1 agents each with two choices: selecting ξ resources of value 1,
aNe
i , or one resource of value γ with η defective agents, aopti . The agents’ equilibrium

and optimal actions are distinct from one another, implying in the allocation aNe, xi
agents cover each resource of value 1, and in aopt, each resource of value γ is covered
by one agent. When γ ≤ ξf(ξ)

f(η+1) , a
Ne is an equilibrium allocation with PoA(GB

f ) =
1
γ .

(Right) Example C: GC

A problem with ξ + 1 agents each with two choices: selecting ξ resources of value
1, aNe

i , or the remaining resource of value 1 and one resource of value γ with η
defective agents, aopti . The agents’ equilibrium and optimal actions are distinct from
one another, implying in the allocation aNe, ξ agents cover each resource of value 1,
and in aopt, every resource is covered by one agent. When γ ≤ ξf(ξ)−f(ξ+1)

f(η+1) , aNe is an

equilibrium allocation with PoA(GC
f ) =

1
1+γ .

stubborn agents); often, to do so, we will utilize the fact that the welfare of a Nash

equilibria can be lower bounded by

W (aNe) ≥
∑
i∈N

ui(a
opt
i , aNe

−i)−
∑
i∈N

ui(a
Ne) +W (aNe), (A.11)

which holds from the definition of a Nash equilibrium (4.1) where ui(a
opt
i , aNe

−i) ≤ ui(a
Ne)

for all i ∈ N , implying
∑

i∈N ui(a
opt
i , aNe

−i) −
∑

i∈N ui(a
Ne) ≤ 0. Additionally, using the

prameterization discussed in Section 4.3, where, in an allocation (a, a), each resource

r ∈ R is given a label (xr, yr, zr, dr) defined by xr = |aNe\aopt|r, zr = |aopt\aNe|r, yr =

|aopt∩aNe|r, and dr is the number of stubborn agents, where for two joint actions a, a′ ∈ A,
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|a\a′|r is the number of agents that utilize resource r in action a but not a′ and |a ∩ a′|r

is the number of agents that utilize resource r in both a and a′. This parameterization

allows us to write W (aNe) =
∑

r∈R vr1[] [xr + yr] and W (aopt) =
∑

r∈R vr1[] [yr + zr];

additionally, (A.11) can be rewritten as

W (aNe) ≥
∑
r∈R

vr[zrf(xr + yr + dr + 1) (A.12)

− xrf(xr + yr + dr) + 1[] [xr + yr]],

where the welfare function w(x) = 1[] [x] is the indicator function that the argument is

greater than zero in covering games. Manipulating the right hand side of (A.12) into the

form of (A.10) will be the primary method of lower bounding the price of anarchy of a

utility rule f in a class of games.

From [36], the optimal utility rule in covering games with no stubborn agents and

arbitrarily many regular agents G0 is

f 0(j) := (j − 1)!
e−

∑j−1
i=0

1
i!

e− 1
∀j ≥ 1, (A.13)

and f 0(0) = 0. This can also be seen by taking n to infinity in (4.12). The performance

guarantee of f 0 is PoA(G0f0) = 1− 1
e
, which can be seen from the following lemma.

Lemma 11 (Gairing 2009 [36]). In the class of problems G0, with utility rule

f 0(j) = (j − 1)!
e−

∑j−1
i=0

1
i!

e− 1
∀j ≥ 1, (A.14)

(A.10) is satisfied with λ = 1 and µ = −1/(e− 1).

This utility rule is useful in constructing the optimal utility rules in the setting with

stubborn agents. Additionally, the following claim is useful in proving several lower-
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bounds.

Lemma 12. The local utility rule f 0 defined in (A.13) satisfies

jf 0(j)− f 0(j + 1) =
1

e− 1
∀ j ∈ N. (A.15)

Proof. The claim can be proven directly by substitution:

jf 0(j)− f 0(j + 1) = j

(
(j − 1)!

e−
∑j−1

i=0
1
i!

e− 1

)
− (j)!

e−
∑j

i=0
1
i!

e− 1

=
j!

e− 1

(
j∑
i=0

1

i!
−

j−1∑
i=0

1

i!

)
=

1

e− 1
.

The following several lemmas will define and quantify the smoothness coefficients of

some useful local utility rules.

Lemma 13. In the class of problems Gm, with utility rule

f
m
(j) =

{ m
j
f 0(m), if j ∈ {1, . . . ,m}

f 0(j), otherwise,
(A.16)

(A.10) is satisfied with λ = f 0(m+ 1) and µ = 1−mf 0(m).

Proof. Let Ra ⊂ R be the set of all resources where xr+yr+dr ≥ m+1 and let Rb ⊂ R

be the set of all resources where xr + yr + dr ≤ m, forming a partition of R.
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For the resources in Ra,

∑
r∈Ra

vr[zrf
0(xr + yr + dr + 1)− xrf 0(xr + yr + dr) + 1]

≥
∑
r∈Ra

vr[(zr + yr)f
0(xr + yr + dr + 1)

− (xr + yr + dr)f
0(xr + yr + dr) + 1]

(A.17a)

≥
∑
r∈Ra

vr[f
0(xr + yr + dr + 1)1[] [zr + yr]

− (xr + yr + dr)f
0(xr + yr + dr) + 1]

(A.17b)

≥
∑
r∈Ra

vr[f
0(xr + yr + dr + 1)1[] [zr + yr]

− f 0(xr + yr + dr + 1)− 1

e− 1
+ 1]

(A.17c)

≥
∑
r∈Ra

vr[f
0(m+ 1)1[] [zr + yr]− f 0(m+ 1)− 1

e− 1
+ 1] (A.17d)

=
∑
r∈Ra

vr[f
0(m+ 1)1[] [zr + yr] + (1−mf 0(m))1[] [xr + yr]], (A.17e)

where (A.17a) and (A.17d) hold from f 0 decreasing, (A.17b) holds from f 0 positive, and

(A.17c) and (A.17e) hold from Lemma 12.
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For the resources in Rb,

∑
r∈Rb

vr[zrf
m
(xr + yr + dr + 1)− xrf

m
(xr + yr + dr) + 1[] [xr + yr]]

=
∑
r∈Rb

vr[
zr

xr + yr + dr + 1
(mf 0(m))

− xr
xr + yr + dr

mf 0(m) + 1[] [xr + yr]]

(A.18a)

≥
∑
r∈Rb

vr[(zr + yr)f
0(m+ 1)

− xr
xr + yr + dr

(f 0(m+ 1) +
1

e− 1
) + 1[] [xr + yr]]

(A.18b)

≥
∑
r∈Rb

vr[f
0(m+ 1)1[] [zr + yr] + (1− f 0(m+ 1)− 1

e− 1
)1[] [xr + yr]] (A.18c)

=
∑
r∈Rb

vr[f
0(m+ 1)1[] [zr + yr] + (1−mf 0(m))1[] [xr + yr]]. (A.18d)

where (A.18b) holds from Lemma 12 and (A.18c) holds from xr/(xr + yr + dr) ≤ 1,

providing the same lower bound for the price of anarchy.

It follows that λ = f 0(m+ 1) and µ = 1−mf 0(m) satisfy (A.10).

Lemma 14. In the class of problems G0, with utility rule

f
m
(j) =

{ m
j
f 0(m), if j ∈ {1, . . . ,m}

f 0(j), otherwise,
(A.19)

(A.10) is satisfied with λ = mf 0(m) and µ = e−2
e−1
−mf 0(m).

Proof. Let Rc ⊂ R denote the set of resources where xr > 0 or yr > 0, and let Rd ⊂ R

be the set of resources where xr = yr = 0. First recall the bound from (A.17e) and
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(A.18d) that together give

∑
r∈R

vr[zrf
m
(xr + yr + 1)− xrf

m
(xr + yr) + 1[] [xr + yr]] (A.20)

≥
∑
r∈R

vr[f
0(m+ 1)1[] [zr + yr] + (1−mf 0(m))1[] [xr + yr]], (A.21)

in the special case where dr = 0, as is the case for games the class G0. For the set Rc,

∑
r∈Rc

vr[f
0(m+ 1)1[] [zr + yr] + (1−mf 0(m))1[] [xr + yr]]

=
∑
r∈Rc

vr[

(
mf 0(m)1[] [zr + yr] +

1

e− 1

)
+ (1−mf 0(m))1[] [xr + yr]] (A.22a)

≥
∑
r∈Rc

vr[(mf
0(m))1[] [zr + yr] +

1

e− 1
+ (1−mf 0(m))1[] [xr + yr]] (A.22b)

=
∑
r∈Rc

vr[(mf
0(m))1[] [zr + yr] +

(
e− 2

e− 1
−mf 0(m)

)
1[] [xr + yr]], (A.22c)

where (A.22a) holds from Lemma 12, (A.22b) holds from 1[] [x] ≤ x for all non-negative

integer x, and (A.22c) holds from definition ofRc that 1[] [xr + yr] = 1. For the remaining

resources in Rd,

∑
r∈Rd

vr[zrf
m
(xr + yr + 1)− xrf

m
(xr + yr) + 1[] [xr + yr]]

=
∑
r∈Rd

vr[zrf
0(1)] ≥

∑
r∈Rd

vr[zrmf
0(m)] (A.23a)

≥
∑
r∈Rd

vr[(mf
0(m))1[] [zr + yr] +

(
e− 2

e− 1
−mf 0(m)

)
1[] [xr + yr]], (A.23b)

where (A.23a) holds from the definition of f
m

and mf 0(m) < f 0(1) = 1, and (A.23b)

holds from f 0 positive and xr = yr = 0. From (A.22c) and (A.23b), λ = mf 0(m) and

µ = e−2
e−1
−mf 0(m) satisfy (A.10).
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Lemma 15. In the class of problems Gm, with utility rule

f 0(j) = (j − 1)!
e−

∑j−1
i=0

1
i!

e− 1
∀j ≥ 1, (A.24)

(A.10) is satisfied with λ = f 0(m+ 1) and µ = 0.

Proof. As in Lemma 13, let Ra ⊂ R be the set of all resources where xr+yr+dr ≥ m+1

and let Rb ⊂ R be the set of all resources where xr + yr + dr ≤ m, forming a partition

of R. For the resources in the set Ra, follow the steps of (A.17a)-(A.17e) and note that

jf 0(j) ≤ 1 for all j, therefore (A.17e) is further lower-bounded by

∑
r∈Ra

vr[1[] [zr + yr]f
0(m+ 1)]. (A.25)

For the resources in Rb,

∑
r∈Rb

vr[zrf
0(xr + yr + dr + 1)− xrf 0(xr + yr + dr) + 1[] [xr + yr]]

=
∑
r∈Rb

vr[(zr + yr)f
0(xr + yr + dr + 1)

− (xr + yr)f
0(xr + yr + dr) + 1[] [xr + yr]]

(A.26a)

≥
∑
r∈Rb

vr[(zr + yr)f
0(xr + yr + dr + 1)] (A.26b)

≥
∑
r∈Rb

vr[1[] [zr + yr]f
0(m+ 1)], (A.26c)

where (A.26a) holds from f 0 decreasing, (A.26b) holds from jf 0(j) ≤ 1 for all j ≥ 0, and

(A.26c) holds from 1[] [x] ≤ x for all non-negative integer x. From (A.25) and (A.26c),

λ = f 0(m+ 1) and µ = 0 satisfy (A.10).

Proof of Theorem 4.4.1: To prove that the curve defined by (4.13) and (4.14) represent

a Pareto-optimal frontier of the multi-criterion problem of minimizing PoA(Gmf ) and
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PoA(G0f ), we first give a parameterized utility rule that draws the curve then show a

tight lower and upper bound on it’s price of anarchy, and finally show this utility rule

is indeed Pareto-optimal. Let f t(j) = tf
m
(j) + (1 − t)f 0(j) for some t ∈ [0, 1], be a

local utility rule parameterized by t ∈ [0, 1]. Through some rearanging, this is equivalent

to (4.15). We will show the price of anarchy guarantees of this utility rule draw the

Pareto-optimal frontier.

Part 1: Upper Bound We will give problem instances that upper bound the price

of anarchy over the set Gm and G0 for the utility rule f t. For the nominal price of

anarchy, let GC ∈ G0 be a covering game as described in Fig. A.3 (right) with η = 0,

γ = ξf(ξ)−f(ξ+1)
f(1)

. By selecting ξ ≥ m + 1 agents in the game (where m is the number of

defective agents for which f t is designed), from Lemma 12

γ =
1

(e− 1)f t(1)
=

1

(e− 1)(tmf 0(m) + (1− t))
.

Defining Γm = mf 0(m)−1 = m!
e−

∑m−1
i=0

1
i!

e−1
−1, the price of anarchy of the described game

is

PoA(GC
f t) =

1

1 + γ
=

(e− 1)(1 + tΓm)

1 + (e− 1)(1 + tΓm)
.

Because GC ∈ G0, PoA(G0f t) ≤ PoA(GC
f t). For the price of anarchy in the perturbed

agent setting, let GA ∈ Gm be a covering game as described in Fig. A.3 (left) with η = m

and γ = f t(1)/f t(m+ 1). From the definition of f t and Lemma 12, the price of anarchy

of this game, with utility rule f t is

PoA(GA
f t) =

f 0(m+ 1)

1 + t(mf 0(m)− 1)
=

Γm + e
e−1

1 + tΓm
.

Because GA ∈ Gm, PoA(Gmf t) ≤ PoA(GA
f t). This provides our upper bounds for the price

of anarchy over G0 and Gm while using the utility rule f t.
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Part 2: Lower Bound To lower bound the price of anarchy, we again look for

coefficients λ, µ that satisfy (A.10). From the definition of f t, (A.12) can be rewritten

W (aNe) ≥
∑
r∈R

tvr[zrf
m
(xr + yr + dr + 1) (A.27)

− xrf
m
(xr + yr + dr) + 1[] [xr + yr]]

+ (1− t)vr[zrf 0(xr + yr + dr + 1)

− xrf 0(xr + yr + dr) + 1[] [xr + yr]],

where f
m
is as defined in (A.16). For any game in Gm, from Lemma 13 and Lemma 15,

(A.27) can be lower bounded by

f 0(m+ 1) ·W (aopt) + t(1−mf 0(m)) ·W (aNe),

producing for the lower bound on the price of anarchy of

PoA(Gmf t) ≥
f 0(m+ 1)

t(1−mf 0(m))
=

Γm + e
e−1

1 + tΓm
. (A.28)

For the price of anarchy over the nominal setting G0 with utility law f t, (4.14) needs

to be lower bounded for the case where dr = 0 for all r ∈ R. From Lemma 14 and

Lemma 11, this lower bound is

(tmf 0(m) + (1− t))W (aopt)

+

(
t

(
e− 2

e− 1
−mf 0(m)

)
+ (1− t) −1

e− 1

)
W (aNe).
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This gives a lower bound on the nominal price of anarchy while using f t of

PoA(G0f t) ≥
tmf 0(m) + (1− t)

1−
(
t
(
e−2
e−1
−mf 0(m)

)
+ (1− t) −1

e−1

)
=

(e− 1)(1 + tΓm)

1 + (e− 1)(1 + tΓm)
.

Part 3: Pareto-Optimality Consider a local utility rule f with nominal price of

anarchy guarantee

PoA(G0f ) > x (A.29)

for some x ∈ [0, 1]. Consider a game GC ∈ G0 following Fig. A.3 (right) where η = 0 and

ξ = m+ 1. If γ = ((m+ 1)f(m)− f(m+ 2))/f(1), then

PoA(GC
f ) =

1

1 + 1
(e−1)f(1)

,

from the assumption that f(j) = f 0(j) ∀j ≥ m+ 1 and Lemma 12. To satisfy the price

of anarchy guarantee in (A.29),

f(1) >
x

(e− 1)(1− x)
. (A.30)

Now, consider the game GA ∈ Gm described by Fig. A.3 (left) where η = m and γ =

f(1)/f(m+ 1) = f(1)/f 0(m+ 1). The price of anarchy of this game is PoA(GA
f ) = 1/γ.

From (A.30),

PoA(GA
f ) <

(e− 1)f 0(m+ 1)(1− x)
x

. (A.31)

In (A.31), choose x = (e−1)(1+tΓm)
1+(e−1)(1+tΓm)

for some t ∈ [0, 1] and

PoA(Gmf ) ≤ PoA(GA
f ) <

Γm + e
e−1

1 + tΓm
(A.32)
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from the fact Γm = f 0(m+1)+ 1
e−1

. The monotonicity of each price of anarchy expression

shows the logic is reversible, matching the theorem. A similar argument could be followed

for other values of the utility rule.
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B.1 Omitted proofs of Chapter 5

We prove Lemma 2 using the definition of the Nash flow, and by showing this trans-

formation does not affect user preferences.

Proof of Lemma 2: Let f ′ be a Nash flow for a game G ∈ G under influencing mechanism

T . User x ∈ Ni observes cost

Jx(Px, f
′) =

∑
e∈Px

ℓe(f
′
e) + τe(f

′
e), (B.1)

and by the definition of Nash flow, will have preferences satisfying

Jx(Px, f
′) ≤ Jx(P

′, f ′), ∀P ′ ∈ Pi. (B.2)
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In the same flow f ′, but now under influencing mechanism T̂ , user x observes cost

Ĵx(Px, f
′) =

∑
e∈Px

ℓe(f
′
e) + λτe(f

′
e) + (λ− 1)ℓe(f

′
e), (B.3)

=
∑
e∈Px

λ(τe(f
′
e) + ℓe(f

′
e)) (B.4)

= λJx(Px, f
′). (B.5)

Observe that through the same process, it can be shown that Ĵx(P, f
′) = λJx(P, f

′)

for every P ∈ Pi. From (B.2),

(1/λ)Ĵx(Px, f
′) ≤ (1/λ)Ĵx(Px, f

′), ∀Px ∈ Pi (B.6)

Ĵx(Px, f
′) ≤ Ĵx(Px, f

′), ∀Px ∈ Pi. (B.7)

(B.7) holds for all x ∈ N , satisfying that f ′ is a Nash equilibrium in G under T̂ . It is

therefore the case that any equilibrium in any game G ∈ G under T is also an equilibrium

under T̂ , thus

Lnf(G, T ) = Lnf(G, T̂ ), (B.8)

and, because this holds for every game G ∈ G, it certainly holds for the supremum over

the set which is the same as (5.16) by definition.

Proof of Proposition 5.2.1: We first look at the optimal bounded toll and its associated

price of anarchy bound. Trivially, when β > 1 the optimal toll is the marginal cost toll

that gives price of anarchy of one. For a bounding factor β ∈ [0, 1), a feasible bounded

toll must satisfy

τ+e (fe) ∈ [0, β · ℓe] = [0, βaefe + βbe]. (B.9)

Because the tolls are network-agnostic, and must satisfy an additivity property discussed
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in [136] as well as in the proof of Theorem 5.3.2, we can therefore reduce the search for

an optimal bounded toll to τ+e (fe) = k1aefe + k2b2 where k1, k2 ∈ [0, β]. We first show

that the optimal toll will have k2 = 0.

Let T+ be a tolling mechanism that assigns bounded tolls with some k1, k2 ∈ [0, β].

A player x ∈ Ni utilizing path Px in a flow f observes cost

Jx(Px, f) =
∑
e∈Px

(1 + k1)aefe + (1 + k2)be. (B.10)

Now, consider an incentive mechanism T̂ where edges are assigned tolls τe(fe) = (1+k1
1+k2
−

1)aefe. Under this new incentive, the same player as before now observes cost

Ĵx(Px, f) =
∑
e∈Px

1 + k1
1 + k2

aefe + be. (B.11)

Because the player’s cost in (B.10) and (B.11) are proportional, the players preserve the

same preferences and the Nash flows remains unaltered. Because (1+k1
1+k2
− 1) ≤ k1 ≤ β

the new incentive is bounded by β. Note that any toll that improves the price of anarchy

satisfies k1 > k2; this can be seen by considering the worst-case example depicted in

Fig. 5.2 with p = 1. Because 0 < k < β, we need only consider tolls of the form

τe(fe) = kaefe when in search of the optimal bounded toll. When k < 0 the price of

anarchy is at least 4/3 and is indeed not optimal1.

For a tolling mechanism T+(af + b) = kaf with k ∈ [0, β) ⊆ [0, 1), a player’s cost

takes the form

Jx(Px, f) =
∑
e∈Px

(1 + k)ae + be. (B.12)

1Consider the classic Pigou network, as in Fig. 5.2 with p = 1. It is well known this network gives
the worst case price of anarchy of 4/3 with Nash flow of f1 = 1. Consider using a taxation mechanism
T (af + b) = kaf for some k < 0 and observe that the Nash flow is unchanged, thus not reducing the
price of anarchy for the class of affine congestion games.
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When player cost functions take this form, the game is similar to that of an altruistic

game (introduced in [192]) and has price of anarchy of

PoA(Gaff , T+) =
4

3 + 2k − k2
. (B.13)

The price of anarchy is decreasing with k ∈ [0, 1) and thus the optimal toll occurs when

k is maximized at k = β.

For the optimal subsidy, we now note that incentives must be bounded by τe(fe) ∈

[−βℓe(fe), 0]. From Lemma 2, we can map any such subsidy to an equivalent toll, now

constrained to the region τ̂e(fe) ∈ [0, β̂ℓe(fe)] where β̂ = ( 1
1−β − 1). It was shown prior

that the optimal tolling mechanism in this region is T̂ (af + b) = β̂af . Finally, we can

again use Lemma 2 to map back to the optimal bounded subsidy,

T opt−(af + b) = (λ− 1)(af + b) + λT̂ (af + b), (B.14)

with λ = 1 − β. The result is an optimal subsidy of the form T opt−(af + b) = −βb for

β ∈ [0, 1/2). The price of anarchy bound comes from considering the equivalent toll.

Proof of Lemma 3: First, we assume without loss of generality, that SL = 1. To see

this, we make an equivalent problem where this is true and show the same price of

anarchy bound holds. Let T be any incentive mechanism and S be a family of sensitivity

distributions with lower bound SL and upper bound SU. In any game G ∈ G, a player

x ∈ Ni observes costs as expressed in (5.3). Observe that if we normalize every sensitivity

distribution s ∈ S by multiplying by 1/SL and correspondingly scale the incentive by SL

the player cost remains unchanged. It is therefore the case that any equilibrium is
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preserved and unchanged, enforcing that

PoA(G, S, T ) = PoA (G, S/SL, SL · T ) . (B.15)

Accordingly, we will consider that SL = 1 throughout.

Let f be a flow in G ∈ G induced by sensitivity distribution s ∈ S, and let T be

an incentive mechanism that assigns tolls τ+e . From Lemma 2 a nominally equivalent

incentive mechanism can be found by using the transformation T̂ (ℓe;λ) = (λ − 1)ℓe +

λT (ℓe), where choosing λ sufficiently close to zero causes T̂ to be a subsidy mechanism.

We will show that for any λ ∈ (0, 1), the incentive mechanism T̂ performs worse than T

at the introduction of player heterogeneity.

Let ŝ be a new sensitivity distribution such that

ŝx = g(sx, λ) =
sx

λ+ sx − sxλ
, (B.16)

for all x ∈ N . Now, consider an agent’s cost in flow f with sensitivity ŝ under incentive

mechanism T̂ . An agent x ∈ Ni utilizing path Px in f experiences cost,

Ĵx(Px, f) =
∑
e∈Px

ℓe(fe) + ŝxT̂ (ℓe(fe);λ)

=
∑
e∈Px

ℓe(fe) + ŝx[(λ− 1)ℓe + λτ+e (fe)]

=
λ

λ+ sx − sxλ
∑
e∈Px

(ℓe(fe) + sxτe(fe)),

which is proportional to Jx(Px, f). By observing proportional costs, players preserve the

same preferences over paths, preserving the same Nash flows.

Finally, we show that ŝ is a feasible sensitivity distribution in S. From the original
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bounds SL and SU, any generated distribution ŝ exists between g(SL, λ) and g(SU, λ).

From before, SL = 1, thus from (B.16), g(SL = 1, λ) = 1 = SL, for any λ ∈ (0, 1). Now,

observe that any generated distribution satisfies

g(SU, λ) =
SU

λ+ SU − SUλ
≤ SU, (B.17)

for any λ ∈ (0, 1). Thus any generated distribution ŝ is sufficiently bounded by SL and SU

and is a feasible distribution in S. By choosing f to be a Nash flow, we can see that any

Nash flow that can be induced by some s ∈ S while using T can similarly be induced by ŝ ∈

S while using T̂ . It is therefore the case that the price of anarchy with user heterogeneity

is non-decreasing as λ decreases, showing the monotonicity. Further, if SL < SU, then

SL ≤ g(SL, λ) ≤ g(SU, λ) < SU, and if G is responsive to user heterogeneity, the price of

anarchy is strictly increasing with λ.

Proof of Theorem 5.3.1: Lemma 3 states that though two incentive mechanisms have

the same price of anarchy when users are homogeneous (from Lemma 2), they need not

perform the same when users are heterogeneous. Further, by increasing λ, one can lower

the heterogeneous price of anarchy without altering the performance in the homogeneous

setting. The proof of Theorem 5.3.1 is a simple extension of Lemma 3. Increasing λ

reduces the effect of player heterogeneity on the price of anarchy, and by letting λ→∞

we can construct an incentive that recovers (5.26).

In Theorem 1 of [136], the authors propose a realization of this result when using

marginal cost taxes. In the class of congestion games where marginal cost taxes are

optimal in the homogeneous setting, they show that the taxation mechanism

T u(ℓe; k)[fe] = k

(
ℓe(fe) + fe ·

d

dfe
ℓe(fe)

)

220



Appendix Title B Chapter B

has a price of anarchy of 1 as k approaches infinity, i.e.,

lim
k→∞

PoA(G, S, T u(k)) = 1. (B.18)

This same result can be recovered using Theorem 5.3.1. The marginal cost taxation

mechanism defined in (5.5) has the same performance as

Tλ(ℓe)[fe] = (λ− 1)ℓe(fe) + λTmc(ℓe)[fe].

By taking the limit as λ approaches infinity, this incentive becomes

Tλ(ℓe)[fe] = λ

(
ℓe(fe) + fe ·

d

dfe
ℓe(fe)

)
= T u(ℓe;λ)[fe].

Not only does this give us the same toll, but by Lemma 3, we know that

lim
λ→∞

PoA(G, S, Tλ) = PoA(G, Tmc) = 1, (B.19)

giving the final statement in Theorem 5.3.1.

Proof of Theorem 5.3.2: First, consider a game G ∈ G that has a unique equilibrium and

optimal flow respectively, to obtain a heterogeneous price of anarchy of one, the equilib-

rium must be the same for any sensitivity distribution s ∈ S. If a taxation mechanism

is agnostic of the users’ sensitivities, the only way this can be accomplished is by letting

the magnitude of the subsidies become large compared to the latency function; for a

player x ∈ N this causes Jx(Px, f) ≈
∑

e∈Px sxT (ℓe)[fe]. With this subsidy, the users

price sensitivity does not affect their preference over paths.

Each of the following three conditions is necessary for a sufficiently large subsidy to
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incentivize optimal routing (we justify each but note the proof that any one is necessary

is trivial).

1. Additivity. A network-agnostic incentive mechanism must satisfy T (αℓ1 + βℓ2) =

αT (ℓ1)+βT (ℓ2). A proof of this appears in [7]; intuitively, a single latency function

can be represented as multiple in series and the total incentive must be the same

in both cases to guarantee the same total cost.

2. Incentives are Unbounded. |T (ℓ)[f ]| > M ∀ M ∈ [0,∞) ∀ℓ ∈ L(G), f > 0. Any

bounded incentive may allow different sensitivity distributions to induce different

equilibrium flows. When the optimal flow is unique, a bounded incentive is inca-

pable of enforcing each equilibrium flow be optimal.

3. Related by Marginal Cost. For any two edges ℓi, ℓj with respective flow fi, fj, if

ℓmc
i (fi) ≤ ℓmc

j (fj) then T (ℓi)[fi] ≤ T (ℓj)[fj], where ℓ
mc
i (fi) = ℓi(fi) + fi

d
dfi
ℓi(fi) is

the marginal cost on edge i. Recall that T is defined as a cost and therefore negative

for subsidies, thus this condition states that users must receive less subsidy on edges

with higher marginal cost. It is shown in [132] that when users observe the marginal

cost, the equilibrium flow is optimal.

Note that condition 2 implies player costs are negative: ℓ(f)+T (ℓ)[f ] < 0 ∀ℓ ∈ L(G), f >

0. Similarly, condition 3 implies that incentives are non-decreasing: if f1 > f2 then

T (ℓ)[f1] ≥ T (ℓ)[f2] ∀ℓ ∈ L(G).

We now show that no network-agnostic subsidy mechanism can satisfy each of these

three conditions. Assume T is an optimal subsidy mechanism. By the symmetry of

condition 3, we see that if ℓmc
i (fi) = ℓmc

j (fj), then T (ℓi)[fi] = T (ℓj)[fj]. Consider a

unit mass of traffic traversing a two link parallel network with edges possessing latency

functions ℓ1 and ℓ2 that are strictly increasing. Let f1 be the solution to ℓmc
1 (f1) =
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ℓmc
2 (1 − f1), and by condition 3, T (ℓ1)[f1] = T (ℓ2)[1 − f1]. Now, consider a similar

network, but ℓ2 is replaced by a scaled latency function 1
2
ℓ2. Now, define f ′

1 as the

solution to ℓmc
1 (f ′

1) = 1
2
ℓmc
2 (1 − f ′

1); from ℓ1, ℓ2 strictly increasing, f ′
1 < f1. Implied by

condition 3, T (ℓ1)[f
′
1] < T (ℓ1)[f1] and T (ℓ2)[1 − f1] < T (ℓ2)[1 − f ′

1]. From conditions 1

and 2, T (ℓ2)[1− f ′
1] <

1
2
T (ℓ2)[1− f ′

1] = T (1
2
ℓ2)[1− f ′

1]. Put together this gives,

T (ℓ1)[f
′
1] < T (ℓ1)[f1] = T (ℓ2)[1− f1]

< T (ℓ2)[1− f ′
1]

< T (
1

2
ℓ2)[1− f ′

1],

implying T (ℓ1)[f
′
1] ̸= T (1

2
ℓ2)[1− f ′

1], contradicting condition 3.

Proof of Proposition 5.3.1: The first part of the proposition comes from [142]. We thus

find the nominally equivalent subsidy mechanism and find the associated price of anarchy

bound.

For notational convenience, let k = 1/
√
SLSU; the robust marginal cost toll is thus

T smc(af + b) = kaf . From Lemma 2, we can derive a nominally equivalent subsidy by

T nes(af + b) = (λ− 1)(af + b) + λ(kaf), for any λ > 0. By letting λ = 1/(1 + k), we get

the nominally equivalent subsidy to be T nes(af + b) = −kb/(1 + k) = − 1
1+

√
SLSU

b.

To determine the price of anarchy of T nes with player heterogeneity, we use the result

of Theorem 5.3.3 to determine the equivalent level of heterogeneity on the nominally

equivalent toll, T smc. Let s ∈ S be a feasible sensitivity distribution, bounded by SL and

SU. As it is defined above, we seek to find the preimage of [SL, SU] under the function

g(S, 1/(1+k)). Without loss of generality, we normalize [SL, SU], to [q, 1] and look for its

preimage. Because g is continuous on S ∈ [0, 1], we look at the endpoints of the region.

We first note that g(1, λ) = 1 for any λ > 0. Next, we determine q̂ such that g(q̂, λ) = q
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as

q̂ =
λq

1− q + λq
,

and by setting λ = 1/(1 + k) =
√
SLSU/(1 +

√
SLSU) recover the equivalent amount of

heterogeneity, q̂, on T smc as the original subsidy T nes with heterogeneity q. By replacing

q with q̂ in (5.35) we obtain the price of anarchy for T nes with heterogeneity.

Proof of Proposition 5.4.2: The proof follows similar steps to that of Proposition 5.4.2,

which appears in [136]. Let G ∈ Gpa be a game instance and user be distributed with

sensitivity s ∈ S. Because each network in G is parallel, each path constitutes a single

edge. Under an affine subsidy mechanism T−(k1, k2), player x ∈ N utilizing edge e

observes cost

Jx(e, f) = (1− k1sx)aefe + (1− k2sx)be,

where k1, k2 > 0. Note that scaling users cost functions does not alter their preference

over their paths, thus without loss of generality we can write player costs as

Jx(e, f) =
(1− k1sx)
(1− k2sx)

aefe + be. (B.20)

We define a new incentive mechanism T ′(af + b) = k′af . Now, let s′ be a new

sensitivity distribution such that players observe the same cost under T ′ as they did in

(B.20) with sensitivity distribution s, i.e.,

(1− k1sx)
(1− k2sx)

= (1 + k′s′x). (B.21)

The new distribution can be realized by the transformation

s′x =
sx(k2 − k1)
k′(1− k2sx)

. (B.22)
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The taxation mechanism T ′ constitutes a scaled marginal cost toll, for which, the follow-

ing result exists:

Theorem B.1.1. Brown & Marden [142]: For any network G ∈ G with flow on all edges

in an un-tolled Nash flow, and any s ∈ S, any scaled marginal cost taxation mechanism

reduces the total latency of any Nash flow when compared to the total latency of any Nash

flow associated with the un-tolled case, i.e., for any k > 0

Lnf(G, s, TA(k, 0)) < Lnf(G, s, ∅). (B.23)

Furthermore, the unique optimal scaled marginal-cost tolling mechanism uses the scale

factor

k∗ =
1√
SLSU

= argmin
k≥0

{PoA(G, S, TA(k, 0))}. (B.24)

Finally, the price of anarchy resulting from the optimal scaled marginal-cost taxation

mechanism is

PoA(G, S, TA(k∗, 0)) = 4

3

1−
√
SL/SU(

1 +
√
SL/SU

)2
 ≤ 4

3
. (B.25)

Because of this, we set k′ = 1√
S′
LS

′
U

to be the optimal scaled marginal cost taxation

mechanism over the new family of sensitivity distributions S′, generated by transforming

each sensitivity distribution in S as in (B.22).

Now, in the original subsidy mechanism T (k1, k2), let

k1 = k′ =
1√
S ′
LS

′
U

. (B.26)

Combining (B.22) and (B.26) gives an expression for the accompanying choice of k2 to
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satisfy (B.21),

k2 =
k21SLSU − 1

2k1SLSU − SL − SU

. (B.27)

Observe that (B.25) is decreasing with SL/SU < 1. For the similar taxation mecha-

nism T ′,

S ′
L

S ′
U

=
SL(1− k2SU)

SU(1− k2SL)
, (B.28)

for S′ found by (B.22). Notice (B.28) is decreasing with k2 < SU
2. Therefore, from

(B.27), decreasing k1 decreases the price of anarchy; thus picking k∗1 = 0 is optimal.

Substituting into (B.27) gives k∗2 = 1/(SL + SU). For β < 1/(SL + SU) it is easy to show

by a similar transformation that k∗1 = 0 and k∗2 = β.

Finally, for subsidies of the form TA(0,−k) with k < 1, we show the price of anarchy

bound. Let s ∈ S be the users’ sensitivity distribution. Let T+ = (λ−1)ℓ(x)+λTA(0,−k)

and let s′ be a new sensitivity distribution. Letting λ = 1/(1− k) and s′x =
sx(1−k)
1−ksx ,

ℓe(fe) + s′xT
+(ℓe)[fe] =

aefe + be +
sx(1− k)
1− ksx

[( 1

1− k
− 1
)
(aefe + be)−

k

1− k
be

]
=

1

1− ksx
(aefe + be − ksxbe)

∝ ℓe(fe) + sxT
A(0,−k)[fe].

From player costs being proportional, we can analyze T+ to get the price of anarchy

bound. The new incentive manifests as T+(af + b) = k
1−kaf . Because k ≤

1
SL+SU

for an

optimal bounded subsidy (and by our assumption that SLSU = 1 for ease of notation),

k ≤ 1

SL + SU − 1
=

1

1/SU + SU − 1
≤ 1 =

1√
SLSU

.

2k2 need be less than SU for a bounded price of anarchy. A simple construction to show this is Pigou’s
network in Fig. 5.2 with s = SU.
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Thus the price of anarchy for T+ is dictated by (5.41). Substituting S ′
L = SL(1−k)

1−kSL
and

β = k/(1− k) for k ∈ [0, 1
SL+SU

] gives the price of anarchy in Proposition 5.4.2.

B.2 Omitted proofs of Chapter 6

B.2.1 Proofs for general congestion networks

Proof of Lemma 4: To prove the first claim, consider the prior µ0 on α and the signalling

policy π : A → ∆(S). If the signal s ∈ S is sent to users, they update their belief via

Bayesian inference to µs(α) =
π(s|α)·µ0(α)

ψ(s)
. In a flow f , user x ∈ [0, ri] taking path Px ∈ Pi

experiences an expected cost of

Jx(Px; f, µs) = E
α∼µs

∑
e∈Px

|K|∑
k=1

αe,k · ℓk(fe)


=
∑
e∈Px

|K|∑
k=1

E[αe,k|s]ℓk(fe).

Note that if f were not a Nash flow in the congestion game with coefficients E[α|s], then

by (6.3) there exists a user x who would be able to deviate their strategy σx(s) and

experience lower cost. Therefore, the only Bayes-Nash flows occur when f(s) is a Nash

flow with respect to E[α|s] for all s ∈ S. Further, because the total latency in a Nash

flow is unique, so too is the expected total latency in a Bayes-Nash flow.

To prove the second claim, consider the distribution µ0 on α, and let f be some flow.

227



Appendix Title B Chapter B

The expected total latency

L(f ;µ) = E
α∼µ

∑
e∈E

fe ·
|K|∑
k=1

αe,kℓk(fe)


=
∑
e∈E

fe ·
|K|∑
k=1

E
α∼µ

[αe,k] ℓk(fe) = L(f ; E
α∼µ

[α]),

which follows from the linearity of expected value.

Proof of Proposition 6.3.1: Consider that the users receive signal s from signalling policy

π and prior µ0 (forming posterior µs), and reach a flow of f . From Lemma 4 the expected

total latency in this flow is equal to the total latency of this flow in the expected network,

i.e., L(f ;µs) = L(f ;αs), where αs = Eα∼µs [α]. Thus, an optimal flow at the reception of

signal s is one that satisfies f opt(s) ∈ argminf L(f ;αs).

We now look for an incentive that will influence users such that f opt(s) becomes a

Nash flow in a congestion game with latency coefficients αs. To do so, we note that

G with flow-varying incentive functions τe(fe) is a potential game [152] with potential

function Φ(f ;α) =
∑

e∈E
∫ fe
0
ℓe(z) + τe(z)dz. As such, the flow in argminf Φ(f ;α) is

a Nash equilibrium. For the polynomial latency functions considered in this work, let

τe(z) =
∑|K|

k=1 zαe,kℓ
′
k(z). Now, the potential function becomes

Φ(f ;α) =
∑
e∈E

∫ fe

0

|K|∑
k=1

αe,kℓk(z) + zαe,kℓk(z)dz

=
∑
e∈E

|K|∑
k=1

feαe,kℓk(fe) = L(f ;α),

and the Nash flow that minimizes Φ also minimizes L; as such, f opt(s) becomes a Nash

equilibrium in the game with the coefficients αs.

Finally, notice that by selecting the fixed incentive τ ⋆e (s) = τe(f
opt
e (s)), the equilibrium
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conditions do not change and f opt(s) remains a Nash flow. Nash flows retain the same

uniqueness properties under fixed incentives, and thus assigning τ ⋆(s) minimizes the

expected total latency when s is sent. If this is done for each signal, the total latency

with each signal will be minimal, and so too will the overall expected total latency,

making T ⋆ an optimal incentive mechanism.

B.2.2 Proofs for parallel network polynomial latency

Remark 2. In parallel, polynomial Bayesian congestion games, without loss of generality,

we can assume a unit traffic rate, r = 1, even when r ∼ ν is a random variable.

Proof: Consider a congestion game G with demand r and latency functions from the

basis set of polynomials D. Define a mapping Q(G, γ) that outputs a new congestion

game Ĝ with latency functions ℓ̂e(fe) =
∑

d∈D
αe,d
γd+1 (fe)

d. Let f be a flow in G with total

traffic r. Now, consider the flow γf = {γ ·fe}e∈E in Ĝ. Each edge e ∈ E will have latency

ℓ̂e(γfe) =
∑

d∈D
αe,d
γd+1 (γfe)

d = 1
γ
ℓe(fe). Notice that latency on each edge is scaled by 1/γ,

and the preference structure is preserved; therefore, if f is a Nash flow in G, then γf is

a Nash flow in Ĝ. Further, L(γf ; Ĝ) =
∑

e∈E γfeℓ̂e(γfe) =
∑

e∈E feℓe(fe) = L(f ;G), and

the two networks will have the same total latency.

If (α, r) ∼ µ0, e.g., µ0(x, y) = P[α = x, r = y], then consider that α̂ ∼ µ̂0, where

µ̂0(z) =
∑

x,y|Q(x,1/y)=z µ0(x, y). Now α̂ has the same distribution over total latency.

Proof of Lemma 5 We assume r = 1, which is without loss of generality from Remark 2.

We note that LNe(α) is continuous but need not be continuously differentiable; as such,

we look for the largest gradient in the differentiable regions of the support. Let fNe(α)

be the Nash flow in the parallel congestion game with polynomial coefficients α, i.e.,

LNe(α) = L(α, fNe(α)) =
∑

e∈E
∑

d∈D αe,d(f
Ne
e )d+1. First, we seek to bound the partial

derivative of LNe(α) with respect to some parameter αe,d. Clearly, ∂
∂αe,d
LNe(α) ≥ 0 in

229



Appendix Title B Chapter B

parallel networks as no Braess’s paradox type example can exist [195]. To upper-bound

this partial derivative, we will consider a case where by increasing αe,d any mass of traffic

that chooses to leave edge e will all choose the edge e′; in general, this may not occur with

every change in αe,d, as users may disperse over multiple edges, however, if we consider

that users do all move to the same edge, and we pick edge e′ as the one that increases

the total latency most rapidly, then the following upper-bound will hold. With this, note

∂
∂αe,d

fNe
e = − ∂

∂αe,d
fNe
e′ , and the partial derivative is

∂

∂αe,d
LNe(α) = (fNe

e )d+1 +

(∑
d′′∈D

αe′,d′′(d
′′ + 1)(fNe

e′ )
d′′+1

−
∑
d′∈D

αe,d′(d
′ + 1)(fNe

e )d
′

)
∂

∂αe,d
fNe
e′ (B.29)

Now, we note that latency on edges e and e′ must be the same in a Nash flow, thus

ℓe(f
Ne
e ) = ℓe′(f

Ne
e′ ) and

∂
∂αe,d

ℓe(f
Ne
e ) = ∂

∂αe,d
ℓe′(f

Ne
e′ ). Using this equality, and the fact that

∂
∂αe,d

fNe
e = − ∂

∂αe,d
fNe
e′ , we can evaluate the derivative and rearrange to get

∂

∂αe,d
fNe
e′ =

(fNe
e )d

ℓ′e(f
Ne
e ) + ℓ′e′(f

Ne
e′ )
≤ (fNe

e )d

2ρ−1
, (B.30)

where ρ−1 = mine∈E α̌e,1. Substituting (B.30) into (B.29) gives us

∂

∂αe,d
LNe(α) ≤ (fNe

e )d+1 +
ρ+ − ρ−0
2ρ−1

(fNe
e )d, (B.31)

where ρ−0 = mine∈E α̌e,0 and ρ
+ = maxe∈E

∑
d∈D(d+1)α̂e,d. Now, the gradient of LNe(α)
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must satisfy

∥∇LNe(α)∥2 ≤

√√√√∑
e∈E

∑
d∈D

(
(fNe
e )d+1+

ρ+ − ρ−0
2ρ−1

(fNe
e )d

)2

≤

√√√√(∑
e∈E

∑
d∈D

(fNe
e )d+1+

ρ+ − ρ−0
2ρ−1

(fNe
e )d

)2

≤
∑
d∈D

(∑
e∈E

fNe
e

)d+1

+
ρ+ − ρ−0
2ρ−1

·∑
e∈E

(fNe
e )0

∑
d∈D\{0}

(∑
e∈E

fNe
e

)d


= |D|+ ρ+ − ρ−0
2ρ−1

(|E|+ |D| − 1) ,

where the first inequality holds from (B.31), the second and third hold from the super-

additivity of convex monomials of positive terms, and the final equality holds from the

assumption that r = 1. Finally, consider two sets of coefficients a, b ∈ A.

LNe(a)− LNe(b)

∥a− b∥2

=
1

∥a− b∥2

∫ 1

λ=0

(a− b)T∇LNe(λa+ (1− λ)b)dλ

≤ 1

∥a− b∥2

∫ 1

λ=0

∥a− b∥2 · ∥∇LNe(λa+ (1− λ)b)∥2dλ

≤
∫ 1

λ=0

|D|+ ρ+ − ρ−0
2ρ−1

(|E|+ |D| − 1) dλ

= |D|+ ρ+ − ρ−0
2ρ−1

(|E|+ |D| − 1).

Where the first inequality holds from Cauchy-Schwarz, and the second holds from our

observation above on the norm of the gradient of LNe(α).

Proof of Lemma 6: This proof follows very similarly to the proof of Lemma 5, but now,
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in an optimal flow f ⋆(α), the latency on each edge is not equal, however, the marginal-

cost on each edge is [33]. Let νe(fe) =
∑

d∈D(d + 1)αe,d(fe)
d be the marginal cost on

edge e with flow fe. Now, in the optimal flow f ⋆ (which emerges from using the tolls

T ⋆), νe(f
⋆
e ) = νe′(f

⋆
e′) and

∂
∂αe,d

νe(f
⋆
e )4 = ∂

∂αe,d
νe′(f

⋆
e′). Evaluating and rearranging these

derivatives gives

∂

∂αe,d
f ⋆e′ =

(d+ 1)(f ⋆e )
d

ν ′e(f
⋆
e ) + ν ′e′(f

⋆
e′)
≤ (d+ 1)(f ⋆e )

d

4ρ−1
. (B.32)

With this, we can upper bound the partial derivative of L⋆ as

∂

∂αe,d
L⋆(α) ≤ (f ⋆e )

d+1 +
ρ+ − ρ−0
4ρ−1

(d+ 1)(f ⋆e )
d. (B.33)

Following the same steps as in the proof of Lemma 5, the gradient of L⋆ must satisfy

∥∇L⋆(α)∥2 ≤ |D|+
ρ+ − ρ−0
4ρ−1

|E|+ ∑
d∈D\{0}

(d+ 1)d

 .

Finally, we can use this bound as in the proof of Lemma 5 to complete the proof.

B.3 Omitted proofs of Chapter 7

Proof of Lemma 9: Consider a network G ∈ G with affine latency functions on each

link ℓi(f) = aif + bi. Let Ĝ have cost functions ℓ̂i(f) = âif + b̂i with âi ≥ 0 and

b̂i ≥ 0. We first show that simply removing the constant latency term on the first edge

b1 strictly increases the price of anarchy under any scaled marginal-cost toll. Using the

optimal and Nash flow in (B.34), if b̂2 = b2 − b1 and b̂1 = 0 then G and Ĝ will have

the same optimal flow and Nash flow for a distribution s. From (7.2), we observe that
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Lopt(G) = Lopt(Ĝ) + b1 as well as Lnf(G, s, k) = Lnf(Ĝ, s, k) + b1; therefore,

PoA (G, S(s), T (k)) =
Lnf
(
Ĝ, s, T (k)

)
+ b1

Lopt(Ĝ) + b1

≤
Lnf
(
Ĝ, s, T (k)

)
Lopt(Ĝ)

= PoA(Ĝ, S(s), T (k)).

Thus, for any network G ∈ G, there exists a network Ĝ with a linear latency function on

an edge with higher price of anarchy.

Next, we show a network G ∈ G will have the same price of anarchy as a network

Ĝ ∈ G under the same linear toll if the latency functions of Ĝ equal the latency functions

of G times a scaling factor c. Under a distribution s ∈ S, G and Ĝ will have the same

Nash flow. Using the indifferent sensitivity Sind that is the solution to (7.14), the Nash

flow and optimal flow on the first edge are

f opt
1 =

2a2 + b2 − b1
2(a1 + a2)

, fNe
1 =

(1 + Sindk)a2 + b2 − b1
(1 + Sindk)(a1 + a2)

. (B.34)

Under the same distribution s, Sind will satisfy

(1 + Sindk)ca1f
Ne
1 + cb1 = (1 + Sindk)ca2f

Ne
2 + cb2, (B.35)

which are the latency functions for the network Ĝ. It is now clear that G and Ĝ will

have the same Nash and optimal flows. From the definition of total latency in (7.2), the

latency in Ĝ will be c times the latency in G under the same flow. The price of anarchy,

which is the ratio of two total latencies, will be identical in G and G′.

Lastly, we show that by decreasing a2 in a network, the price of anarchy will increase.

In Lemma 7, it was shown that any feasible Nash flow can be induced by a bimodal
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sensitivity distribution in which users are segregated on either link by their sensitivity.

The price of anarchy for the network G with a Nash flow caused by s will therefore be,

PoA(G, s, T (k)) =
ℓ1(f

Ne
1 )fNe

1 + ℓ2(f
Ne
2 )fNe

2

ℓ1(f
opt
1 )f opt

1 + ℓ2(f
opt
2 )f opt

2

. (B.36)

Let us consider the case where fNe
2 > f opt

2 . Now, consider a new network, Ĝ which

replaces latency function ℓ2(f) = a2f + b2 in G with ℓ̂2(f) = a2f + b̂2 where b̂2 = b2 + δ

such that δ > 0. Because the users are segregated on the links, the Nash flow will not

change. Note that because fNe
2 > f opt

2

ℓ2(f
Ne
2 )

ℓ2(f
opt
2 )

=
a2f

Ne
2 + b2

a2f
opt
2 + b2

<
fNe
2

f opt
2

.

It can now be shown that

Lnf(G, s, T (k))

Lopt(G)
<
Lnf(G, s, T (k)) + δfNe

2

Lopt(G) + δf opt
2

=
Lnf(Ĝ, s, T (k))

Lopt(Ĝ)
.

Thus the price of anarchy has increased in the new network Ĝ, under the same sensitivity

distribution and toll, when b2 was increased, which has the same effect as decreasing the

other terms and holding b2 constant. A very similar argument can be followed for when

fNe
2 < f opt

2 by picking â2 = a2 − δ, and the price of anarchy then again increases.

Proof of Proposition 7.3.2: The k that solves (7.17) equates the price of anarchy

for Gβ and Gα. It is shown in Lemma 10 that these networks realize the worst-case

inefficiency and in Lemma 8 it is shown the worst-case distribution will be s
(s,G,k)
l and

s
(s,G,k)
u respectively, both defined as the bimodal distribution (SL, SU) with mean s and

mass R of the lower sensitivity type. To show this is optimal, it is sufficient to show that
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the price of anarchy for the network Gβ is decreasing with k while the price of anarchy

for the network Gα is increasing with k. If the networks have this relation with k, then

the k that minimizes the price of anarchy must equalize them.

Consider a network G ∈ G lc characterized by γ = b2/a1. If this satisfies that s
(s,G,k)
l =

(SL, SU) or s
(s,G,k)
u = (SL, SU), then the price of anarchy for this network will be

PoA(G, S(s), T ) =


R2−γR+γ
γ−γ2/4 , γ < 2

R2 − γR + γ, γ ≥ 2.

(B.37)

This piecewise-continuous expression is locally minimized by γ = 2R, further, by differ-

entiation, it can be observed that it is monotone decreasing for 0 < γ < 2R and monotone

increasing for γ > 2R.

For the previously defined network Gβ, under the bimodal distribution (SL, SU),

β = (1 + SLk)R = R/zL, (B.38)

where β is dependent on the scaling factor k. From [194], the optimal scaling factor k

will be in (1/SU, 1/SL). Therefore, for any k, β < 2R. The price of anarchy for this

network is therefore monotone decreasing with β, and from (B.38), β is clearly increasing

with k. The price of anarchy of the network is therefore decreasing with k. Similarly for

Gα, under the distribution (SL, SU), the worst network is found by maximizing (B.37)

over γ = α, giving

1

2(zU − z2U)
= α > 2R, (B.39)

when 1
2(zU−z2U )

≥ R, and R/zU = α > 2R, and the price of anarchy will be increasing

with k.
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[37] S. Li and T. Başar, Distributed algorithms for the computation of noncooperative
equilibria, Automatica 23 (July, 1987) 523–533.

[38] T. Başar, Relaxation techniques and asynchronous algorithms for on-line
computation of non-cooperative equilibria, Journal of Economic Dynamics and
Control 11 (Dec., 1987) 531–549.

[39] J. Shamma and G. Arslan, Dynamic fictitious play, dynamic gradient play, and
distributed convergence to Nash equilibria, IEEE Transactions on Automatic
Control 50 (2005), no. 3 312–327.

[40] S. Wollenstein-Betech, A. Houshmand, M. Salazar, M. Pavone, C. G. Cassandras,
and I. C. Paschalidis, Congestion-aware Routing and Rebalancing of Autonomous
Mobility-on-Demand Systems in Mixed Traffic, in 2020 IEEE 23rd International
Conference on Intelligent Transportation Systems (ITSC), pp. 1–7, 2020.

[41] A. Khamis, A. Hussein, and A. Elmogy, Multi-robot task allocation: A review of
the state-of-the-art, Cooperative robots and sensor networks 2015 (2015) 31–51.
Publisher: Springer.

[42] V. Ranganathan, P. Kumar, U. Kaur, S. H. Li, T. Chakraborty, and R. Chandra,
Re-Inventing the Food Supply Chain with IoT: A Data-Driven Solution to Reduce
Food Loss, IEEE Internet of Things Magazine 5 (Mar., 2022) 41–47. Conference
Name: IEEE Internet of Things Magazine.

[43] K. Tsakalozos, H. Kllapi, E. Sitaridi, M. Roussopoulos, D. Paparas, and A. Delis,
Flexible use of cloud resources through profit maximization and price
discrimination, in Proc. International Conference on Data Engineering,
pp. 75–86, 2011. ISSN: 10844627.

[44] F. G. Filip, Decision support and control for large-scale complex systems, Annual
Reviews in Control 32 (Apr., 2008) 61–70.

[45] C. Daini, P. Goatin, M. L. D. Monache, and A. Ferrara, Centralized Traffic
Control via Small Fleets of Connected and Automated Vehicles, in 2022 European
Control Conference (ECC), pp. 371–376, July, 2022.

[46] L. Fang and H. Li, Centralized resource allocation based on the cost–revenue
analysis, Computers & Industrial Engineering 85 (July, 2015) 395–401.

239



[47] G. Antonelli, Interconnected dynamic systems: An overview on distributed control,
IEEE Control Systems Magazine 33 (2013), no. 1 76–88. Publisher: IEEE.

[48] J. R. Marden, G. Arslan, and J. S. Shamma, Cooperative Control and Potential
Games, IEEE Transactions on Systems, Man, and Cybernetics, Part B
(Cybernetics) 39 (2009), no. 6 1393–1407.

[49] R. M. Murray, Recent research in cooperative control of multivehicle systems,
Journal of Dynamic Systems, Measurement, and Control 129 (May, 2007)
571–583. tex.eprint:
https://asmedigitalcollection.asme.org/dynamicsystems/article-
pdf/129/5/571/5538275/571\ 1.pdf.

[50] A. Das, T. Gervet, J. Romoff, D. Batra, D. Parikh, M. Rabbat, and J. Pineau,
Tarmac: Targeted multi-agent communication, in International conference on
machine learning, pp. 1538–1546, 2019. tex.organization: PMLR.
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