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The human anterior insula (aINS) is a topographically organized brain region, in which ventral 

portions contribute to socio-emotional function through limbic and autonomic connections, 

whereas the dorsal aINS contributes to cognitive processes through frontal and parietal 

connections. Open questions remain, however, regarding how aINS connectivity varies over time. 

We implemented a novel approach combining seed-to-whole-brain sliding-window functional 

connectivity MRI and k-means clustering to assess time-varying functional connectivity of aINS 

subregions. We studied three independent large samples of healthy participants and longitudinal 

datasets to assess inter-and intra-subject stability, and related aINS time-varying functional 

connectivity profiles to dispositional empathy. We identified four robust aINS time-varying 

functional connectivity modes that displayed both “state” and “trait” characteristics: while modes 

featuring connectivity to sensory regions were modulated by eye closure, modes featuring 

connectivity to higher cognitive and emotional processing regions were stable over time and 

related to empathy measures.

Keywords

Anterior insula; Socio-emotional functioning; Time-varying functional connectivity; Trait; State

1. Introduction

The human anterior insula (aINS) is a functionally heterogeneous region implicated in 

functions ranging from interoceptive awareness and emotion processing to time perception 

and cognitive control (Craig, 2009). In humans, neuroimaging studies have begun to 

parcellate the aINS, based on its patterns of functional and structural connectivity. For 

example, task-free fMRI (tf-fMRI) studies, which measure the brain-wide correlation 

structure in slow (<0.1 Hz), spontaneous blood oxygen level dependent (BOLD) signal 

fluctuations (Smith et al., 2009; Fox et al., 2005), have shown that the ventral, agranular 

aINS is functionally connected to limbic and autonomic processing regions that include the 

pregenual anterior cingulate cortex, the amygdala, and subcortical structures such as the 

thalamus and periaqueductal gray (Seeley et al., 2007; Deen et al., 2011; Kurth et al., 2010; 

Touroutoglou et al., 2012; Uddin, 2014). These regions make up the “salience network”, a 

large-scale distributed system that represents the homeostatic significance of prevailing 

stimuli and conditions (Critchley, 2005; Critchley and Harrison, 2013; Sturm et al., 2018; 

Guo et al., 2016; Zhou and Seeley, 2014). In contrast, the dorsal, dysgranular aINS is 

connected to a cingulo-opercular “task-control network” whose nodes include dorsolateral 

and opercular prefrontal, anterior midcingulate, and anterior parietal areas involved in 

cognitive control processes such as task-set initiation and maintenance (Seeley et al., 2007; 

Touroutoglou et al., 2012; Uddin, 2014; Dosenbach et al., 2006). Under task-free conditions, 

both aINS subregions, but perhaps especially the dorsal aINS (Uddin, 2014; Nomi et al., 

2016), show activity that is anticorrelated with the “default mode network”, a system 

including the posterior cingulate cortex, inferior parietal lobules, and precuneus (Buckner et 

al., 2008). In addition to the dorsal-ventral axis, hemispheric lateralization of the aINS is 

proposed to help maintain bodily homeostasis by adjusting and balancing autonomic outflow 

based on bioenergetics demands (Craig, 2009; Critchley and Harrison, 2013; Sturm et al., 

2018). Recent evidence suggests that while the left-sided (dominant hemisphere) aINS 
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controls parasympathetic tone, the homotopic right (non-dominant) aINS is more closely 

linked to sympathetic tone and responses (Craig, 2009; Critchley and Harrison, 2013; Sturm 

et al., 2018). Structural and functional changes in aINS subregions have been reported in a 

variety of neuropsychiatric conditions, ranging from mood and anxiety disorders to 

schizophrenia, autism, and frontotemporal dementia (Zhou and Seeley, 2014; Menon and 

Uddin, 2010; Seeley et al., 2012; Brandl et al., 2019; Williams, 2016).

Standard tf-fMRI has helped to reveal the functional organization of the human aINS and 

other brain areas by providing a snapshot of functional connectivity as averaged across the 

duration of a scanning session. Although long-range structural connections are assumed to 

be relatively stable in the adult brain (Sporns et al., 2005), coordinated functional activity is 

dynamic, with the brain continuously reshaping network configurations in response to 

prevailing conditions or task demands (Lurie et al., 2018; Preti et al., 2017; Allen et al., 

2014). Approaches that capture time-varying connectivity bring the potential to clarify how 

brain dynamics are organized and relate to function. We reasoned that this approach could 

help clarify how the aINS may change its network partners in response to salient internal 

and external stimuli and possibly contribute to the development of more granular and 

personalized fingerprints of brain function in health and disease. Such time-varying 

functional connectivity has been shown to relate to clinical outcomes (Damaraju et al., 2014; 

Kaiser et al., 2016; Sourty et al., 2016); task performance (Saggar et al., 2018); and 

behaviorally relevant measures of cognitive (Madhyastha et al., 2015; Shine et al., 2016a; 

Vidaurre et al., 2017), emotional (Résibois et al., 2017; Tobia et al., 2017), and attentional 

processing (Sadaghiani et al., 2015; Ekman et al., 2012). One of the few studies applying 

time-varying functional connectivity analyses to the insula parcellated it into posterior, 

middle, and dorsal and ventral anterior components, revealing partially overlapping time-

varying connectivity profiles for ventral and dorsal aINS subregions. Ventral and dorsal 

profiles diverged based on distinct contributions from limbic/emotional processing and 

cingulo-opercular/cognitive regions mirroring findings from static tf-fMRI studies (Nomi et 

al., 2016).

Despite this body of research, it remains unclear how distinct aINS subregions dynamically 

engage the salience and task-control networks over time. Moreover, it is largely unknown 

whether time-varying functional connectivity of the aINS — or any region for that matter — 

is modulated by externally-driven states or instead displays trait characteristics such as 

within-subject temporal stability and relationships to behavioral or dispositional measures. 

To gain a deeper understanding of these issues, we implemented a novel approach 

combining seed-to-whole-brain sliding-window functional connectivity and k-means 

clustering to derive time-varying functional connectivity profiles of aINS subregions across 

three large, independent samples of healthy participants, including eyes open vs. eyes closed 

conditions and longitudinal datasets. Across methods and samples, we found that aINS 

subregions display shared and distinct time-varying connectivity “modes” that bind together 

cognitive and/or emotional processing areas versus upstream sensory and motor cortices. 

Overall, the findings suggest that short-term temporal variability in aINS connectivity 

reflects both state and trait characteristics, revealing a path toward use of such data for 

assessing psychopharmacological treatment efficacy as well as long-term therapeutic disease 

modification in neuropsychiatric conditions.

Pasquini et al. Page 3

Neuroimage. Author manuscript; available in PMC 2020 May 14.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



2. Materials and methods

Participants

All participants were healthy, cognitively normal adults, recruited from two different centers 

(Table 1, Supplementary Fig. S1). Elderly participants were retrospectively selected from the 

Hillblom Aging Network, an extensively characterized longitudinal cohort assessed at the 

University of California, San Francisco (UCSF) Memory and Aging Center. Subjects were 

required to have a Clinical Dementia Rating Scale score (Morris, 1997) of 0 (range 0–3) and 

a Mini-Mental State Examination score (Tombaugh and McIntyre, 1992) of 28 (range 0–30) 

or higher. Secondary inclusion criteria were based on availability of the Interpersonal 

Reactivity Index, a widely used questionnaire measuring emotional and cognitive empathy. 

Out of 224 elderly subjects with a tf-fMRI scan and at least one Interpersonal Reactivity 

Index available, a cross-sectional cohort of 121 elderly adults was selected based on 

availability of the Interpersonal Reactivity Index within three months of the tf-fMRI scan. A 

second sample was built based on availability of longitudinal tf-fMRI scans. Out of total 184 

older adults with longitudinally assessed tf-fMRI, 68 were excluded because they 

overlapped with the cross-sectional sample (N = 121, described above) and 72 were 

excluded since they did not meet our selection criteria of being scanned twice within a 5–13 

month interval. This procedure resulted in a final selection of 44 participants having 

longitudinal data and that did not overlap with the cross-sectional sample. All visits included 

neuropsychological testing and a neurologic exam in addition to a structural MRI and tf-

fMRI scan. Exclusion criteria included a history of drug abuse, psychiatric or neurological 

conditions, and current use of psychoactive medications.

Twenty additional younger participants were recruited from a simultaneous FDG-PET/tf-

fMRI study at the Klinikum rechts der Isar, Technische Universitӓt München (Riedl et al., 

2016). Neuroimaging data was assessed twice within an interval of one month, during task-

free conditions with either eyes closed or eyes open. Participants were randomly assigned to 

one of the two conditions, resulting in eight participants assessed with eyes closed at the first 

and with eyes open at the second scan, and 12 participants assessed with eyes open at the 

first and eyes closed at the second scan. Exclusion criteria included a history of psychiatric 

or neurological conditions, use of psychoactive medications, pregnancy, and renal failure.

For all samples, written informed consent was obtained from all involved participants and 

the study was approved by the institutional review board where the data was acquired 

(UCSF/Klinikum rechts der Isar).

Empathy Assessment

The Interpersonal Reactivity Index (Davis, 1980) was completed by the participant’s 

informant within three months of tf-fMRI scan. This questionnaire is composed by four 

subscales, each one consisting of 7 questions that can comprehensively reach a maximum 

score of 35. While empathic concern and personal distress measure emotional aspects of 

empathy, perspective taking and the fantasy score are designed to assess cognitive aspects of 

empathy. The Interpersonal Reactivity Index was chosen since it has been widely used to 

assess different aspects of empathy in healthy and neuropsychiatric conditions (Davis, 1980; 
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Rankin et al., 2006). For example, studies in frontotemporal dementia, a neurodegenerative 

diseases of socioemotional dysfunction, have shown that deficits in subscales of the 

Interpersonal Reactivity Index are linked to structural deterioration of the aINS and regions 

connected to the aINS such as the anterior cingulate and orbitofrontal cortices (Rankin et al., 

2006; Nana et al., 2018).

Neuroimaging data acquisition

The cross-sectional and longitudinal cohorts from the Hillblom Aging Network were 

scanned at the UCSF Neuroscience Imaging Center on a Siemens Trio 3T scanner. A T1-

weighted MP-RAGE structural scan was acquired with acquisition time = 8 min 53 s, 

sagittal orientation, a field of view of 160 × 240 × 256 mm with an isotropic voxel resolution 

of 1 mm3, TR = 2300 ms, TE = 2.98 ms, TI = 900 ms, flip angle = 9°. Task-free T2*-

weighted echoplanar fMRI scans were acquired with an acquisition time = 8 min 6 s, axial 

orientation with interleaved ordering, field of view = 230 × 230 × 129 mm, matrix size = 92 

× 92, effective voxel resolution = 2.5 × 2.5 × 3.0 mm, TR = 2000 ms, TE 27 ms, for a total 

of 240 volumes. During the 8-minute tf-fMRI acquisition protocol, participants were asked 

to close their eyes and concentrate on their breathing.

Data from the Klinikum rechts der Isar was acquired on an integrated Siemens Biograph 

scanner capable of simultaneously acquiring PET and MRI data (3T). FDG-PET activity and 

tf-fMRI was simultaneously measured during the initial 10 min immediately after bolus 

injection of the FDG tracer. Scanning was performed in a dimmed environment obtained by 

switching off all lights, including those in the scanner bore. Subjects were instructed to keep 

their eyes closed or open, to relax, to not think of anything in particular, and to not fall 

asleep. MRI data were acquired using the following scanning parameters: Task-free 

echoplanar fMRI scans: TR, 2.000 ms; TE, 30 ms/angle, 90°; 35 slices (gap, 0.6 mm) 

aligned to AC/PC covering the whole brain; sFOV, 192 mm; matrix size, 64 × 64; voxel size, 

3.0 × 3.0 × 3.0 mm3 (each measurement consists of 300 acquisitions in interleaved mode 

with a total scan time of 10 min and 8 s); MP-RAGE: TR, 2.300 ms; TE, 2.98 ms; angle, 9°; 

160 slices (gap, 0.5 mm) covering the whole brain; FOV, 256 mm; matrix size, 256 × 256; 

voxel size, 1.0 × 1.0 × 1.0 mm3; total length of 5 min and 3 s.

Neuroimaging data preprocessing

Before preprocessing, all images were visually inspected for quality control. Images with 

excessive motion or image artifact were excluded. T1-weighted images underwent 

segmentation using SPM12 (http://www.fil.ion.ucl.ac.uk/spm/software/spm12/). For each tf-

fMRI scan, the first five volumes were discarded. SPM12 and FSL (http://fsl.fmrib.ox.ac.uk/

fsl) software were used for subsequent tf-fMRI preprocessing. The remaining volumes were 

slice-time corrected, realigned to the mean functional image and assessed for rotational and 

translational head motion. Volumes were next co-registered to the MP-RAGE image, then 

normalized to the standard MNI-152 healthy adult brain template using SPM segment, 

producing MNI-registered volumes with 2 mm3 isotropic resolution. These volumes were 

spatially smoothed with a 6 mm radius Gaussian kernel and temporally bandpass filtered in 

the 0.008–0.15 Hz frequency range using fslmaths. Nuisance parameters in the preprocessed 

data were estimated for the CSF using a mask in the central portion of the lateral ventricles 
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and for the white matter using a highest probability cortical white matter mask as labeled in 

the FSL tissue prior mask. Additional nuisance parameters included the 3 translational and 3 

rotational motion parameters, the temporal derivatives of the previous 8 terms (white 

matter/CSF/6 motion), and the squares of the previous 16 terms (Satterthwaite et al., 2013). 

Subjects were included only if they met all of the following criteria: no inter-frame head 

translations greater than 3 mm, no inter-frame head rotations greater than 3°, and less than 

24 motion spikes (defined as inter-frame head displacements > 1 mm), less than 10% of the 

total number of frames. Nuisance parameters were regressed out from the filtered data using 

fslmaths, and masked with a binarized, skull-stripped MNI-152 brain mask. The WM/CSF/

head movement denoised data was used for the subsequent time-varying functional 

connectivity analysis. Findings with global signal regression are not presented in the main 

body of the manuscript but were generated for the longitudinal dataset and are reported as 

sensitivity analysis in the Supplement.

Time-varying functional connectivity analysis

For each individual, average blood oxygen level dependent signal time courses were 

extracted from the right and left ventral and dorsal aINS using four regions-of-interest from 

the Brainnetome Atlas (http://atlas.brainnetome.org/). In order to assess the impact of seed 

region selection, in the cross-sectional dataset activity time courses were also extracted from 

a language-relevant region centered on the left inferior frontal gyrus (IFG), using a region-

of-interest defined in a previous study (Gorno-Tempini, 2004). Using in-house custom 

scripts based on Python (https://www.python.org/) and FSL, a sliding-window approach was 

implemented to generate time-varying seed-to-whole-brain connectivity maps (Fig. 1A). The 

derived time series from the aINS and the entire tf-fMRI scan of each subject were divided 

into sliding-windows of 18 TRs (36 s) in steps of 1 TR creating 218 (275 for eyes closed/

open) untapered, rectangular windows. At each window, linear regression was used to derive 

seed-to-whole-brain time-varying functional connectivity maps for each aINS seed (Fig. 

1B). A window size of 36 s was chosen based on previous research showing that window 

sizes between 30 and 60 s capture additional variations in functional connectivity not found 

in larger window sizes (Allen et al., 2014; Damaraju et al., 2014; Hutchison et al., 2013). 

Ideal sliding-window size has been explored by additional methodological work assessing 

the relationship between window length and cut-off frequencies, supporting the use of 

sliding-windows between lengths of 30–60 s for tf-fMRI data preprocessed using a low-pass 

filter set at 0.15 Hz (Leonardi and Van De Ville, 2015). These studies are further supported 

by empirical findings showing that cognitive states can be discerned within such window 

lengths (Shirer et al., 2012; Wilson et al., 2015). Nevertheless, in order to assess the impact 

of sliding-window length, control analyses were performed with window lengths of 72 TR 

(144 s). The resulting findings did not significantly differ from the reported findings with 

windows of 36 s (Supplementary Results and Fig. S2); therefore 36 s windows were used 

throughout. The code used to derive time-varying functional connectivity maps is provided 

in the Appendix of the Supplement and in GitLab (https://gitlab.com/juglans/sliding-

window-analysis/tree/master). The derived time-varying functional connectivity maps were 

finally standardized to z-scores (see Video 1 for left ventral aINS time-varying functional 

connectivity maps of a typical study participant), masked with a binarized gray matter mask, 

vectorized, and concatenated across subjects resulting in windows x voxels matrices for each 
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aINS seed. K-means clustering was then applied to the concatenated window matrices using 

a k = 4 to produce four clusters representing four time-varying functional connectivity 

modes of aINS subregions present across the course of the functional scan (Fig. 1C). The k-

means algorithm used Euclidean distance, and an optimal solution was selected after 100 

iterations and 10 replications. The optimal number of clusters, referred to henceforward as 

modes, was determined using elbow and silhouette plots and by performing additional 

clustering solutions with k = 3, 5, and 6 (Supplementary Results and Fig. S3). With lower k 

solutions, the identified modes merged, resulting in information loss. Using higher k 

solutions resulted in the generation of redundant sub-modes, exemplified by Mode 4 of the 

left ventral aINS that would split in anterior and posterior centered components 

(Supplementary Fig. S3B). A total of three clustering analyses per aINS subregion were 

independently performed on time-varying functional connectivity windows: one on the 

cross-sectional dataset; one on the longitudinal dataset; and one on the eyes closed/open 

dataset (see Supplementary Fig. S1 for a schematized summary of k-means clustering 

analyses performed).

Group-averaged maps of the four identified modes were generated, for each seed region, 

using the mode-specific centroid maps rendered using k-means clustering. The spatial 

similarity of modes derived from distinct aINS subregions and distinct groups was assessed 

by vectorizing the mode’s template maps and performing Pearson’s correlation analyses. To 

assess the distinct spatial contribution of major large-scale brain networks to time-varying 

connectivity modes, we used publicly available templates of major brain networks from a 

study investigating the functional network organization of the human brain (Power et al., 

2011) (https://www.jonathanpower.net/2011-neuron-bigbrain.html). Briefly, in this study 

subgraphs corresponding to major brain systems were derived from tf-fMRI data of >300 

healthy adults by retaining 2% of the strongest correlations. This procedure resulted in 12 

binary templates spanning cognitive, primary sensory and subcortical systems: the salience, 

default, cingulo-opercular task-control, executive-control, ventral attention, dorsal attention, 

auditory, visual, ventral sensori-motor, dorsal sensorimotor, medial temporal lobe (“memory 

retrieval”) and subcortical networks (Seeley et al., 2007; Power et al., 2011; Dosenbach et 

al., 2007) (Supplementary Fig. S4). Subsequently, for each aINS subregion the averaged z-

score value enclosed within these brain network templates was extracted from the mode-

specific centroid maps generated in the cross-sectional dataset.

Further, the assignment of each window to a specific mode was used to derive: (i) the 

number of transitions from one mode to another; (ii) a fractional occupancy metric for each 

mode, defined as the number of windows assigned to that mode divided by the total number 

of windows; and (iii) how often aINS subregions simultaneously occupy distinct mode 

configurations in time. To identify meta-profiles of aINS time-varying functional 

connectivity, individual subject fractional occupancy profiles, defined as a vector of 16 

elements summarizing the time fraction separately spent by individual aINS subregions on 

the four identified modes, were derived from the cross-sectional dataset. Fractional 

occupancy profiles were subsequently clustered using k-means with a clustering solution of 

k = 4 based on a silhouette analysis (using Euclidean distance, 100 iterations, and 10 

replication). On the cross-sectional sample, static functional connectivity maps were also 

generated through voxel-wise regression analyses of each aINS seed’s time-course for the 
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duration of the entire scan, following previous established methods (Seeley et al., 2009; 

Toller et al., 2018).

Statistical analysis

Statistical analyses were carried out using R (https://www.r-project.org/) and Matlab-R2018 

(https://www.mathworks.com/products/matlab.html). Pearson’s correlation was used to 

assess the spatial similarity of modes derived from different clustering analyses, using maps 

thresholded for z-values higher than 0.3 and lower than −0.3.

In the cross-sectional dataset, the Shannon diversity index was used to analyze whether aINS 

subregions of an individual subject transitioned repeatedly between distinct modes or 

showed instead a stereotypic behavior spending most of the time only in a specific aINS 

mode:

Shannon diversity index = −
i = 0

n − 1
pilog2pi

wherein p is the fractional occupancy of an aINS subregion in a specific time-varying 

functional connectivity mode. A Shannon diversity index of 1.4 indicates that all modes are 

equally occupied by the aINS, while the lower the Shannon diversity index, the higher the 

fractional occupancy of the aINS on one specific mode.

In the cross-sectional dataset, one-way ANOVAs were used to investigate whether aINS 

subregions differed, within subjects, in terms of mode-specific fractional occupancy, number 

of transitions, and Shannon diversity index. For descriptive purposes, averages and standard 

deviations derived over all aINS subregions and modes are reported. Additionally, for each 

meta-profile cluster identified in the cross-sectional dataset, one-way ANOVAs were used to 

assess differences in mode-specific fractional occupancy averaged across aINS subregions. 

The assignment of participant to four meta-profiles of time-varying aINS fractional 

occupancy was additionally used to test differences in aINS subregions’ static connectivity 

using ANOVA models and post-hoc t-tests implemented in SPM12 (height threshold p < 

0.005; extent threshold p < 0.05 FWE corrected for multiple comparisons).

Finally, in the cross-sectional dataset, four multiple linear regression models were used to 

test the association of mode-specific fractional occupancies with subscales of the 

Interpersonal Reactivity Index (Davis, 1980). Subscales of the Interpersonal Reactivity 

Index were used as dependent variables, and each model contained the mode-specific 

fractional occupancies averaged across aINS subregions. Each model was corrected for age, 

sex, and sum frame-wise head displacement (p < 0.05 uncorrected for multiple 

comparisons). To assess specificity of the aINS results, four additional models were 

estimated, using subscales of the Interpersonal Reactivity Index as dependent variables and 

fractional occupancy of time-varying functional connectivity modes derived from the left 

IFG as predictors.

For the longitudinal datasets, cosine similarity was used to assess the similarity of fractional 

occupancy profiles across distinct scanning dates.
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Cosine similarity = 1 −
∑i = 1

n AiBi
∑i = 1

n Ai2 ∑i = 1
n Bi2

Where A and B are the vectorized fractional occupancy profiles of all aINS subregions at 

two different scanning dates. Cosine similarity varies between 1 and 0, with 1 indicating 

identical fractional occupancy profiles. Paired t-tests were performed to assess differences in 

fractional occupancy in the longitudinal and in the eyes closed/open datasets. All statistical 

findings are reported at p < 0.05, two-tailed, uncorrected for multiple comparisons except 

where specified otherwise.

3. Results

3.1. Bilateral ventral and dorsal aINS occupy four overlapping but distinct time-varying 
functional connectivity modes

By combining seed-to-whole-brain functional connectivity, sliding-window analysis, and k-

means clustering, we found that aINS subregions adopt four overlapping but distinct large-

scale configurations or “modes” of time-varying functional connectivity (Fig. 2A). All 

modes were characterized by bilateral connectivity between the aINS and anterior cingulate 

cortices. Modes could be distinguished from each other, however, by specific patterns of 

connectivity to other brain regions (Fig. 2A and Supplementary Table S1). In Mode 1, all 

four aINS subregions showed connectivity to the anterior midcingulate/pre-supplementary 

motor area, right frontal operculum, and dorsal parietal and dorsolateral prefrontal areas that 

together make up the task-control network. Mode 2 was characterized by negative 

connectivity to primary visual and sensorimotor areas and prominent connectivity to the 

ventral striatum and thalamus. Mode 3 showed inverted connectivity patterns to the same 

regions. Finally, Mode 4 showed connectivity patterns aligned with more ventral salience 

network regions, including pre- and subgenual anterior cingulate and orbitofrontal cortices, 

with additional connectivity to the temporal poles for the right ventral aINS. All four modes 

were identified in each aINS subregion, as shown by the correlation matrix highlighting the 

spatial correspondence of equivalent modes (Fig. 2B). Important distinctions were found, 

however, when comparing dorsal and ventral aINS connectivity patterns within modes. In 

Mode 1, the dorsal aINS showed prominent anti-correlations to the precuneus, angular 

gyrus, and medial prefrontal cortex regions that make up the default mode network (Buckner 

et al., 2008). In Mode 4, the ventral aINS showed a more ventral connectivity pattern that 

encompassed subgenual anterior cingulate cortex and temporal poles, when compared to the 

dorsal aINS (Fig. 2C, Supplementary Fig. S6A). Modes derived from homologous left and 

right aINS regions differed from each other mainly with regard to the extent of ipsilateral 

connectivity to neighboring regions (Supplementary Figs. S6B–C). Importantly, similar 

aINS time-varying functional connectivity modes were identified using longer sliding-

window lengths (Supplementary Fig. S2), lower and higher clustering solutions 

(Supplementary Fig. S3), and data preprocessed using global signal regression 

(Supplementary Fig. S7).
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3.2. aINS subregions coherently transition between time-varying functional connectivity 
modes

Average fractional occupancy, i.e. the proportion of time spent by aINS subregions in the 

four time-varying functional connectivity modes ranged from 0.18 (left ventral aINS in 

Mode 2) to 0.30 (right ventral aINS in Mode 1), with an overall average of 0.25 ± 0.20 (Fig. 

3A). Importantly, no significant differences in mode-specific fractional occupancy were 

found across the four aINS subregions (Mode 1: F = 0.2, p = 0.82; Mode 2: F = 0.7, p = 

0.56; Mode 3: F = 0.4, p = 0.77; Mode 4: F = 0.5, p = 0.71). In only a few participants did 

aINS subregions spend disproportionate time in only one mode. The number of transitions 

was also comparable across aINS subregions (F = 0.4, p = 0.759; Fig. 3B), with an overall 

average of 18.0 ± 6.6 transitions over the task-free acquisition. In particular, our data shows 

that there were no direct transitions between the primary sensory anticorrelated Mode 2 and 

the primary sensory correlated Mode 3 (Supplementary Fig. S8), suggesting that aINS 

subregions need to transition to modes rooted in cognitive networks before occupying 

primary sensory-centered modes characterized by opposing connectivity patterns. The 

Shannon diversity index was used to quantify the diversity of fractional occupancy and to 

compare this diversity across subregions. On average, aINS subregions showed high 

Shannon diversity, suggesting that each subregion moved between modes in most subjects, 

rather than stacking on a single mode. The overall average Shannon diversity index of 

fractional occupancy across aINS subregions was 1.0 ± 0.2 and did not significantly differ 

between subregions (F = 0.8; p = 0.503; Fig. 3C). Subject-level fractional occupancy profiles 

are illustrated in Fig. 3D, which shows two subjects with contrasting signatures. We finally 

sought to assess whether aINS subregions coherently occupy the same modes at the same 

time, or for instance, how often the right ventral and dorsal aINS are simultaneously 

connected to Mode 1. For each subject and each aINS subregion, we assessed how often 

possible mode configurations were jointly occupied in time. This analysis revealed a 

tendency across aINS subregions to occupy the same modes in time (Fig. 3E). On average, 

the right ventral and dorsal aINS occupied the same modes 50% of the time, the left ventral 

and dorsal aINS 53% of the time, the right and left ventral aINS in 51% of the time, and the 

right and left dorsal aINS 61% of the time. These findings suggest an overall tendency for 

aINS subregions to cohesively engage the same modes over time under task-free scanning 

conditions.

3.3. Individual aINS connectivity mode occupancy profiles are reproducible across 
samples and within subjects over time

To assess the generalizability and reproducibility of our findings, we next turned to a 

longitudinal healthy aging dataset, which consisted of 44 participants who were scanned 

twice over an interval between 5 and 13 months. Clustering of time-varying connectivity 

windows identified modes that strongly resembled the four modes derived from the larger 

(and non-overlapping) cross-sectional dataset (Fig. 4A–D and Supplementary Fig. S5 panels 

A, C and E). Average fractional occupancies of aINS subregions in the four modes were 

comparable with the cross-sectional sample (comparing Figure 3A to 4A–D). Across aINS 

subregions and modes, paired t-tests revealed no significant differences in fractional 

occupancy when comparing the first scanning date with the second (p < 0.05 uncorrected for 

multiple comparisons, for details on paired t-test statistics see Supplementary Table S2). 
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Within subjects, cosine similarity analysis showed that most participants had relatively 

stable fractional occupancy profiles over time (mean cosine similarity = 0.70 ± 0.19 s.d.), as 

further supported by the inverted bell-shaped distribution of cosine similarity (Fig. 5A). 

Stable fractional occupancies are exemplified in Subjects 10 (first scanning date in red; 

second scanning date in blue; cosine similarity = 0.98) and 41 (cosine similarity = 0.92) 

(Fig. 5B–C). A few participants, however, showed very different fractional occupancy 

profiles when comparing the two scanning dates, as exemplified by Subjects 21 (cosine 

similarity = 0.46) and 26 (cosine similarity = 0.24) (Fig. 5D–E). Overall, however, the 

temporal stability of the individual profiles suggests a major contribution from trait-level 

factors.

3.4. Eye opening decreases the time aINS spends anticorrelated with visual cortices

Independently performed clustering of time-varying connectivity data from the eyes closed/

open dataset revealed similar aINS modes to those identified in the cross-sectional and 

longitudinal aging datasets (Fig. 6A–B and Supplementary Fig. S5 panels B, D and E). For 

all subregions except the right ventral aINS, participants showed higher fractional 

occupancies in the anti-correlated primary sensory/motor Mode 2 with eyes closed and 

higher fractional occupancies in the task-control Mode 1 with eyes open (p < 0.05 

uncorrected, for details on paired t-test statistics see Supplementary Table S2).

3.5. Time-varying functional connectivity meta-profiles show that aINS subregions 
cohesively occupy the same modes

Individual subjects were clustered into meta-profiles (see Methods “Time-varying functional 
connectivity analysis”), based on the tendency of their aINS subregions to occupy specific 

time-varying functional connectivity modes. Individual fractional occupancy profiles of the 

cross-sectional sample (n = 121) were clustered into four clusters using k-means. Silhouette 

plots were used to choose the ideal number of clusters, k = 4 (Supplementary Fig. S9). This 

analysis revealed four meta-profiles, characterized by preferred fractional occupancy in one 

of the four time-varying functional connectivity modes (Fig. 7A). Meta-profile 1 (in green, 

26 subjects) was characterized by a tendency to spend time in the task-control Mode 1 (see 

Subject 22, Fig. 7A); Meta-profile 2 (in blue, 31 subjects) was characterized by a tendency 

to spend time in the sensory anticorrelated Mode 2 (see Subject 79, Fig. 7A); Meta-profile 3 

(in violet, 44 subjects) was characterized by a tendency to spend time in the sensory 

connected Mode 3 (see Subject 80, Fig. 7A); while Meta-profile 4 (in red, 20 subjects) was 

characterized by a tendency to spend time in the salience network Mode 4 (see Subject 88, 

Fig. 7A). To evaluate statistical differences in mode occupancy across meta-profiles, we 

averaged the time spent in each mode across aINS subregions and used one-way ANOVAs to 

test for significant group differences in mode-specific fractional occupancy across the 

distinct aINS meta-profiles (Meta-profiles 1, F = 50.1, p < 0.0001; Meta-profile 2, F = 39.8, 

p < 0.0001; Meta-profile 3, F = 79.6, p < 0.0001; Meta-profile 4, F = 46.1, p < 0.0001, see 

also Fig. 7B). These differences were further statistically assessed via post-hoc t-tests. In 

summary, these analyses revealed a preference for aINS subregions to collectively spend 

similar fractions of time in a given mode, whereas distinct modes were primarily occupied 

by subjects in different meta-profiles.
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Next, we asked whether the constituents of a given meta-profile would show group-level 

differences in terms of their static functional connectivity patterns. We therefore compared 

groups based on static functional connectivity of aINS subregions across the four meta-

profiles described above. This analysis revealed that participants in Meta-profile 1 showed 

prominent static anticorrelation of the dorsal aINS to the default mode network when 

compared to participants clustered on other meta-profiles. Participants clustered on Meta-

profile 2 and 3 showed marked visual and sensorimotor cortex static hypoconnectivity and 

hyperconnectivity, across all aINS subregions, when compared to participants of other meta-

profiles; while participants in Meta-profile 4 showed prominent static connectivity of all 

aINS subregions to more ventral frontal regions (Supplementary Fig. S10). In summary, key 

components of the time-varying connectivity modes were reflected in static connectivity 

differences between meta-profile-based groups.

3.6. Comparison of aINS and left IFG time-varying functional connectivity

To control for the location of the seed, we derived time-varying functional connectivity 

modes by seeding the left IFG. Time-varying functional connectivity modes of the left IFG 

shared some common themes with modes identified using aINS subregions (Supplementary 

Fig. S11A). The four identified modes showed similar connectivity to regions of the 

language network, such as the left IFG, pre-supplementary motor area, and superior parietal 

lobule (Gorno-Tempini, 2004; Friederici and Gierhan, 2013). This contrasts with the modes 

identified in aINS subregions that showed overlapping time-varying functional connectivity 

to typical task-control and salience network regions (Supplementary Fig. S11B). Modes 

derived from both the aINS and left IFG, however, showed similar patterns of default mode 

network anti-correlation (Mode 1), primary sensory anticorrelation (Mode 2), and primary 

sensory hypercorrelation (Mode 3). A fourth mode was identified using the left IFG, 

showing time-varying functional connectivity to regions of the dorsal attention network 

(Dosenbach et al., 2007) (Mode 4).

3.7. Time spent by the aINS in the task-control and salience networks correlates with 
metrics related to dispositional empathy

A key question of this work concerns whether individual differences in aINS time-varying 

connectivity relate to differences in aINS-associated traits and functions. Among the many 

tasks that activate and depend on the anterior insula, empathy is one of the best documented 

(Craig, 2009; Seeley et al., 2012). The Interpersonal Reactivity Index is an informant-based 

questionnaire widely used to assess distinct aspects of empathy (Davis, 1980). Emotional 

aspects of empathy are covered by the empathic concern and personal distress measures, 

with the first assessing another-centered emotional response, while the second reflects 

general anxiety and self-oriented emotional reactivity. Perspective taking and fantasy scores 

measure cognitive aspects of empathy, with the first assessing the tendency to spontaneously 

imagine the cognitive perspective of another person, while the second measures the tendency 

to project oneself into the experiences of fictional characters. Mode-specific fractional 

occupancies were averaged across aINS subregions and used as regressors in four models 

using subscales of the Interpersonal Reactivity Index as dependent variables. These multiple 

linear regression models were corrected for age, sex, and sum frame-wise head displacement 

and identified two significant positive associations with time-varying connectivity metrics. 
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First, fractional occupancy in the task-control Mode 1 predicted higher levels of personal 

distress, reflecting self-oriented feelings of personal anxiety and unease in tense 

interpersonal settings (β = 7.1; p < 0.05 uncorrected for multiple comparisons; 

Supplementary Table S3). Second, fractional occupancy in the salience Mode 4 correlated 

with higher scores on the fantasy subscale, reflecting greater ability to transpose one’s self 

imaginatively into the feelings and actions of fictitious characters in books, movies, and 

plays (β = 9.2; p < 0.05 uncorrected for multiple comparisons; Supplementary Table S3). 

These results remained significant when removing outliers (Mode 1 and personal distress β 
= 6.9, p < 0.05 uncorrected for multiple comparisons; Mode 4 and fantasy score β = 9.2, p < 

0.05 uncorrected for multiple comparisons). No significant associations were found between 

fractional occupancy in any mode and the empathic concern or perspective taking subscales. 

As hypothesized, fractional occupancy of left IFG time-varying connectivity modes was not 

significantly associated with any measure of dispositional empathy (p < 0.05 uncorrected for 

multiple comparisons, see Supplementary Table S3).

4. Discussion

To date, most efforts to relate large-scale networks to individual differences have relied on 

metrics that capture the topology or strength of node-to-node static functional (or 

“intrinsic”) connections. Here, we developed a novel approach combining seed-to-whole-

brain functional connectivity, sliding-window analysis, and k-means clustering on tf-fMRI 

data to identify distinct time-varying functional connectivity modes of the aINS, a brain 

region critical for many human socio-emotional functions (Craig, 2009; Seeley et al., 2012). 

These robust modes were identified across methods and samples, showing both “state” and 

“trait” characteristics. In particular, while aINS modes related to sensory processing were 

modulated by visual input (eyes closed vs. open conditions during scanning), modes 

featuring connectivity to cognitive and emotion processing regions were stable over time and 

related to measures of dispositional empathy.

4.1. Partially overlapping but distinct time-varying aINS functional connectivity modes

Our pipeline reliably identified four time-varying functional connectivity modes of the aINS 

across different subregions, methods, and samples. These modes were characterized by 

common connectivity of aINS subregions to the contralateral insula and to the anterior 

cingulate cortex, but could be differentiated from each other based on recruitment of other 

brain regions. Mode 1 was characterized by a more dorsal connectivity pattern that 

resembles previous characterizations of a cingulo-opercular task-control network (Seeley et 

al., 2007; Dosenbach et al., 2006; Sadaghiani and D’Esposito, 2015) involving the bilateral 

aINS and anterior cingulate cortex, with additional connectivity to dorsomedial parietal and 

dorsolateral frontal areas. Mode 2 was characterized by negative connectivity to primary 

sensory areas and increased connectivity to the thalamus while Mode 3 showed an inverted 

connectivity pattern to these regions. Finally, Mode 4 was characterized by fronto-insular 

connectivity to more rostral and ventral portions of the anterior cingulate cortex, resembling 

the salience network (Seeley et al., 2007; Uddin, 2014), with additional connectivity to the 

temporal pole and medial orbitofrontal cortex, components of the “semantic-appraisal 

network” (Seeley et al., 2012; Guo et al., 2013). These findings are consistent with those of a 
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previous region-of-interest-based time-varying functional connectivity study focusing on the 

insula, which reported time-varying visual and sensorimotor hyperconnectivity of the ventral 

aINS. Our findings differ, however, in that we did not detect positive default mode network 

connectivity to the dorsal aINS and that patterns of hypoconnectivity to primary visual and 

sensorimotor areas were less apparent in the aforementioned study (Nomi et al., 2016). 

While left and right aINS subregions primarily differed with respect to connectivity to 

regions in the ipsilateral hemisphere, consistent differences in time-varying functional 

connectivity at the system-level were identified when comparing ventral to dorsal aINS 

subregions. Mirroring static functional connectivity studies and the aforementioned time-

varying connectivity study on the insula (Touroutoglou et al., 2012; Uddin, 2014; Nomi et 

al., 2016), the task-control Mode 1 of the dorsal aINS showed stronger anti-correlations to 

the default mode network than did its ventral counterpart. This observation is in line with 

salience network models proposing that the dorsal aINS receives ventral aINS input streams 

regarding the moment-to-moment condition of the body and then, based on these inputs, 

recruits task control (Dosenbach et al., 2006) and executive control (Seeley et al., 2007) 

network resources to maintain cognitive set and guide behavior while inhibiting the default 

mode network (Zhou and Seeley, 2014). The salience network Mode 4 showed stronger 

connectivity between ventral aINS and ventromedial prefrontal, orbitofrontal, and 

temporopolar cortices when compared to its dorsal aINS counterpart. This finding is in line 

with functional-anatomical models suggesting a close alliance between the salience and the 

semantic appraisal networks (Zhou and Seeley, 2014; Seeley et al., 2012; Guo et al., 2013), 

whose main components (the temporal pole, ventral striatum, medial orbitofrontal cortex, 

and amygdala) have been proposed to interact with autonomic representations in the aINS to 

construct the meaning and significance of social and non-social stimuli under prevailing 

conditions (Zhou and Seeley, 2014; Seeley et al., 2012; Guo et al., 2013). Importantly, we 

did not find any differences across aINS subregions in the number of transitions or in the 

diversity of fractional occupancy profiles. Moreover, our analyses exploring overlapping 

mode occupancy across aINS subregions revealed that distinct aINS subregions tend to 

occupy the same mode at the same time. Further support for this conclusion comes from the 

clustering analysis of individual fractional occupancy profiles, which led to the identification 

of four meta-profiles characterized by occupancy of a dominant mode. Although our 

findings are not conclusive on whether aINS subregions always engage the same mode in 

time, they comprehensively suggest a tendency for coherent mode occupancy that could 

potentially underpin specific trait characteristics or behavioral states. Future studies could 

leverage methods such as directed and effective connectivity to assess the temporal 

relationships between intrinsic time-varying activity of distinct aINS subregions, which 

could be lagged, phase-shifted, or anticorrelated over time. In order to assess the specificity 

of aINS time-varying functional connectivity modes, we assessed and compared time-

varying functional connectivity of the left IFG, a region involved in language processing and 

syntax production (Gorno-Tempini, 2004; Friederici and Gierhan, 2013; Hickok and 

Poeppel, 2007). The left IFG showed region-specific contributions from language processing 

regions but also displayed pronounced anticorrelation to default mode network regions in 

Mode 1 and similar time-varying connectivity to the same sensory regions found in Modes 2 

and 3 derived from the aINS. These findings suggest that distinct brain regions, although 

characterized by seed specific connectivity patterns, may cohesively transition between 
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broader modes characterized by shared regional time-varying functional connectivity 

patterns, possibly revealing a fundamental property of functional brain organization.

4.2. “State” characteristics of aINS time-varying functional connectivity modes

Having determined that two of the four major modes of aINS connectivity involved varying 

connectivity to sensory, and, most notably, visual cortices, we chose to evaluate how sensory 

input modifies aINS connectivity dynamics. To this end, we studied the same participants 

under eyes closed and eyes open scanning conditions. Compared to the eyes open condition, 

participants with eyes closed spent significantly less time in the task-control network Mode 

1 but more time in the primary sensory anti-correlated Mode 2. This finding is consistent 

with recent static connectivity studies revealing occipital and sensorimotor functional 

changes in eyes closed versus open scanning conditions (Wei et al., 2018; Agcaoglu et al., 

2019) and suggests that environmental conditions impact time-varying aINS connectivity by 

shifting the major modes occupied. Therefore, a measurable component of time-varying 

connectivity may reflect external cues such as conditions of eyes closure (Riedl et al., 2016; 

Hahn et al., 2018), mental states (Shine et al., 2016b; Kucyi, 2018), or internally driven 

physiological conditions of the body (Guo et al., 2016). Finally, it is tempting to speculate 

that aINS occupancy of the visually anticorrelated Mode 2 might reflect levels of drowsiness 

and fluctuations in alertness. Intriguingly, a recent study investigated wakefulness 

fluctuations as a source of time-varying functional connectivity by combining 

simultaneously acquired tf-fMRI and EEG data (Haimovici et al., 2017). This study revealed 

progressive whole-brain hypoconnectivity during deeper sleep stages (N2 and N3) when 

compared to wakefulness, raising the possibility that the increased aINS fractional 

occupancy in Mode 2 during eyes closed is related to reduced levels of alertness and 

wakefulness.

4.3. “Trait” characteristics of aINS time-varying functional connectivity modes

To the extent that modes and profiles of time-varying aINS functional connectivity represent 

traits, individuals should show stability of these features over time. To assess this stability, 

we studied a longitudinal dataset of cognitively healthy older adults. The four aINS modes 

were stable over an average of 9 months in this sample, whether assessed by comparing 

fractional occupancy at the group level via parametric tests or at the individual level via 

cosine similarity. These findings converge with several recent studies showing that 

individual topologies in static functional brain organization are highly stable across time and 

show unique features with promise for use in precision functional mapping of individual 

human brains (Gordon et al., 2017; Laumann et al., 2015; Poldrack et al., 2015; Guo et al., 

2012). In line with previous work associating aINS function with social-emotional functions 

such as empathy (Nomi et al., 2016; Gu et al., 2012; Leigh et al., 2013), we found that the 

time aINS subregions cohesively spent in the task-control Mode 1 was positively associated 

with personal distress, while the time aINS subregions spent in the salience Mode 4 was 

positively associated with the fantasy score from the Interpersonal Reactivity Index. Caution 

is advised, however, in the interpretation of these findings since the statistical associations 

were modest and did not survive correction for the four models used to assess these 

relationships. Nevertheless, the identified associations were specific to the aINS (compared 

to the left IFG) and survived when removing outliers, adding tentative support for the trait 
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characteristics of aINS time-varying functional connectivity. Nonetheless, the strongest 

evidence for a trait component to the identified modes remains their reproducibility in 

individual subjects. The personal distress subscale measures “self-oriented” feelings of 

personal anxiety and unease in tense interpersonal settings. The level of personal distress 

was associated with greater time spent in a mode characterized by dorsal cingulo-opercular 

regions overlapping with the task-control network and anti-correlations to the default mode 

network, in line with findings associating connectivity of the anterior cingulate cortex and 

insula with pre-scan anxiety levels, dispositional anxiety, and affective symptoms in mood 

disorders (Seeley et al., 2007; Williams, 2016; Menon, 2011). The fantasy score reflects the 

capacity of participants to transpose themselves imaginatively into the feelings and actions 

of fictitious characters in books, movies, and plays. This capacity requires a high level of 

social contextualization and involves semantic processes typically associated with regions of 

the semantic appraisal network, such as the temporal lobes and ventro-medial prefrontal 

areas (Zhou and Seeley, 2014; Seeley et al., 2012; Guo et al., 2013), the same regions 

contributing to the salience Mode 4. Importantly, fractional occupancies of time-varying 

functional connectivity modes derived from the left IFG were not significantly associated 

with measures of dispositional empathy, suggesting a degree of specificity of these findings 

to the aINS.

4.4. Limitations and future directions

Although time-varying functional connectivity analyses have been of increasing interest to 

the human brain mapping community, consensus is still lacking about whether time-varying 

fluctuations in BOLD signal coherence reflect brain physiology or are mainly due to noise 

stochastically occurring in the scanner between the acquisition of distinct brain volumes 

(Laumann et al., 2017). One limitation of this work relates to the use of hard clustering 

techniques such as k-means to extract modes of time-varying functional connectivity, since 

distinct modes are likely to reflect extremes in time-varying connectivity gradients rather 

than discrete clusters of topographical connectivity. Therefore, the ideal number of derived 

time-varying connectivity modes may vary depending on the temporal and spatial resolution 

of the used dataset, on the investigated anatomical region, and on the specific question of the 

researcher. We make no claim that the aINS transitions between only four modes, but since 

we were interested in large-scale time-varying connectivity patterns, we deemed it 

impractical to use an overly fine-grained mode decomposition by applying higher clustering 

solutions. Further, the sliding-window approach has been scrutinized because of its moderate 

reliability (Choe et al., 2017) and since its output is prone to influence by head movement, 

sliding-window length, and other methodical choices (Hindriks et al., 2016; Byrge and 

Kennedy, 2017; Nalci et al., 2018), such as global signal regression. In our study, however, 

we did not find any significant association between time spent by distinct aINS subregions 

in a specific mode and summary measures of head movement, as exemplified by the 

regression analyses associating fractional occupancy and dispositional empathy, which were 

corrected for mean frame-wise head displacement (Satterthwaite et al., 2013; Power et al., 

2014). Importantly, our control analyses using the longitudinal dataset preprocessed with 

global signal regression resulted in the identification of time-varying functional connectivity 

modes that highly resembled the time-varying modes derived using data without global 

signal regression (Supplementary results and Fig. S6). The only exception was for the 
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primary sensory hyperconnected Mode 3, which was not identified in three out of four aINS 

subregions, suggesting that this mode is highly modulated by the global signal. A recent 

report suggested that noise sources (for instance motion and respiration) can have a 

temporally lagged effect on the BOLD signal, which is greatly reduced by global signal 

regression (Byrge and Kennedy, 2017). However, a recent study investigating time-varying 

functional connectivity in mice reliably mapped distinct time-varying patterns of tf-fMRI co-

activation that occurred at specific phases of global signal fluctuations (Gutierrez-Barragan 

et al., 2018). These findings suggest that the global signal may partially relate to oscillatory 

cycling of slowly propagating neural activity, as observed in lag threads of propagated tf-

fMRI signal in the human brain (Mitra et al., 2015) and transient variation in calcium co-

activation patterns in mice (Matsui et al., 2016). Slow oscillation in the global signal have 

been proposed to coordinate fluctuating periods of brain network topologies characterized 

by heightened global integration and shifts in arousal (Shine et al., 2016a; Liu et al., 2018).

Finally, the limitations in temporal resolution affecting the sliding-window approach may 

also explain the inability to detect mode-specific fractional occupancy differences between 

the left and right aINS, although both regions play a distinct role in autonomic outflow and 

behavior (Sturm et al., 2018; Guo et al., 2016). More sophisticated methods that preserve the 

temporal richness of tf-fMRI data, such as hidden Markov models and Topological Data 

Analysis (Saggar et al., 2018; Vidaurre et al., 2017), may help elucidate lateralized 

differences in time-varying connectivity of the left and right aINS. However, the detection of 

static functional connectivity heterogeneity informed by time-varying fractional occupancy 

profiles and the reproducibility of our findings across distinct preprocessing pipelines, 

sliding-window lengths, clustering choices, samples, and time points (within individuals) 

(Abrol et al., 2017) increase confidence in the biological relevance of findings. In the future, 

our approach could be extended to analyze time-varying functional connectivity of other 

brain regions, or to assess time-varying fractional occupancy profiles in psychiatric and 

neurological disorders characterized by aINS dysfunction.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Fig. 1. Time-varying functional connectivity pipeline.
(A) For each individual Si, average BOLD activity time courses were extracted from 

subregions of the aINS, here the left ventral. (B) For each individual, 218 time-varying seed-

to-whole-brain connectivity maps (SiW1–SiW218) were generated using a sliding-windows 

of 18 TRs (36 s) in steps of 1 TR. (C) The derived connectivity windows were vectorized 

and concatenated across subjects resulting in windows x voxels matrices for each aINS seed. 

K-means clustering was then applied to the concatenated window matrices using a value of k 

= 4 to produce four clusters representing four time-varying aINS modes present across the 

course of the functional scan. (D) Group averaged maps of the four modes were generated 

using the cluster-specific centroid maps generated through k-means (threshold at −0.5 > z > 

0.5). The assignment of each window to a specific mode, was used to derive fractional 

occupancy profiles for each mode (i.e. the time spent by an aINS subregion in each mode), 

defined as the number of windows assigned to one mode divided through the total number of 

generated windows. aINS = anterior insula; BOLD = blood oxygen level dependent signal.
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Fig. 2. Time-varying functional connectivity modes of the aINS.
(A) Spatial maps of the four time-varying functional connectivity modes identified across 

the four aINS subregions in the cross-sectional dataset. Threshold at −0.5 > z > 0.5, negative 

connectivity is depicted in blue, positive in red. The right side of the brain is shown on the 

right side of the image. (B) Correlation matrix reflecting the spatial similarity of modes 

identified in distinct aINS subregions. (C) Differences in time-varying connectivity between 

correspondent modes of the right dorsal and ventral aINS (threshold at −0.3 > z > 0.3, higher 

connectivity of the dorsal aINS is depicted in red, higher connectivity of the ventral aINS in 

blue).
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Fig. 3. Temporal characteristics of the identified aINS time varying functional connectivity 
modes.
(A) Violin plots reflecting group fractional occupancy in the four identified time-varying 

functional connectivity modes across the four aINS subregions. (B) Violin plots representing 

the number of transitions between time-varying functional connectivity modes across the 

four aINS subregions. (C) Violin plots representing the diversity of fractional occupancy 

profiles – measured using the Shannon diversity index – across aINS subregions. This 

measure reflects whether an aINS subregion tends to spend similar amounts of time in 

different modes or spends most of its time in only one mode. (D) Polar plots schematizing 

the fractional occupancies of aINS subregions into the four time-varying functional 

connectivity modes. On the left side, the fractional occupancy profile of Subject 47 

transitions between several modes, and is characterized by a high number of transitions and 

by high Shannon diversity index averaged across aINS subregions. On the right side, we can 

appreciate the highly stereotyped fractional occupancy profile of Subject 22, with aINS 
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subregions spending most of their time in a single mode. Regardless of the subregion, aINS 

subregions in this participant tend to spend time only in Mode 1, showing hence a low 

number of transitions and low Shannon diversity index averaged across aINS subregions. (E) 

Heat maps reflecting how specific modes are jointly occupied at the same time by distinct 

aINS subregions. Scale bar reflects the average group probability that distinct aINS 

subregions occupy certain mode configurations.
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Fig. 4. Time-varying functional connectivity modes across time.
In the longitudinal data sample, spatial patterns of time-varying functional connectivity 

modes where identified across the four aINS subregions bearing high similarity to the modes 

identified in the cross-sectional sample (maps averaged across both time points, sagittal 

plane only panels A-D). Fractional occupancy in the identified modes did not significantly 

differ between the first (red violin plots) and second scanning dates (blue violin plots) ~9 

months apart (paired t-test; p < 0.05 uncorrected for multiple comparisons).
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Fig. 5. Individual fractional occupancy of aINS subregions across time.
(A) Violin plot representing the similarity of aINS fractional occupancy profiles across 

scanning dates assessed using cosine similarity. Subjects 10, 41, 21 and 26 are highlighted 

with red circles in the individual data plot. The individual fractional occupancy profiles of 

these subjects and correspondent cosine similarity values are further schematized in panels 

B-E, where the fractional occupancies are shown at the first (red) and second (blue) scanning 

dates. aINS fractional occupancy in Subjects 10 and 41 did not substantially differ between 

scanning dates (note the overlap in the polar plots and the high cosine similarity index), 

while Subjects 21 and 26 showed very different aINS fractional occupancy profiles when 

assessed at different time points (note the little overlap in the polar plot and the low cosine 

similarity index).
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Fig. 6. Time-varying functional connectivity modes during scanning with eyes closed versus eyes 
open.
In the eyes closed/open dataset, spatial patterns of time-varying functional connectivity 

modes where identified across the left dorsal, right dorsal, left ventral, and right ventral aINS 

bearing high similarity to the modes identified in the cross-sectional sample (maps averaged 

across eyes closed/open conditions, sagittal plane only panels A-D). With exception of the 

right ventral aINS, fractional occupancy in the visually anticorrelated Mode 2 was 

significantly higher during eyes closed (red violin plots) than during eyes open scanning 

(blue violin plots). On the other hand, in the eyes open condition participants spent 

significantly more time in the task-control Mode 1 (paired t-test; p < 0.05 uncorrected for 

multiple comparisons). *p < 0.05; **p < 0.005.
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Fig. 7. Meta-profiles of time-varying dynamic connectivity modes.
(A) Individual fractional occupancy profiles of aINS subregions were clustered into four 

clusters, reflecting four meta-profiles of time-varying aINS functional connectivity. 26 

subjects were clustered into Meta-profile 1 (triangles, green), 31 into Meta-profile 2 (+sign, 

blue), 44 into Meta-profile 3 (circles, violet), and 20 into Meta-profile 4 (x’s, red). Panels 

show individual fractional occupancy profiles representative of the identified meta-profiles 

(see black circles in the scatterplots). Across aINS subregions, Subject 22 tended to spend 

time in Mode 1, Subject 79 in Mode 2, Subject 80 in Mode 3, and Subject 88 in Mode 4. (B) 

When averaged across aINS subregions, one-way ANOVAs and related post-hoc t-tests 

reveal that the aINS of participants clustered in Meta-profile 1 showed significantly higher 

fractional occupancy in Mode 1. Similarly, the aINS of participants clustered on Meta-

profiles 2, 3, or 4, spent more time on Modes 2, 3, or 4, respectively.
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Table 1

Demographics and sample characteristics.

Dataset Cross-sectional Longitudinal Eyes closed/open

Number of subjects 121 44 20

Age in years, mean (s.d.) 69.3 (3.6) 72.9 (7.6) 42.8 (6.4)

Sex (Female/Male) 73/48 25/19 9/11

Handedness (L/A/R) 0/0/121 6/0/38 0/0/20

Education in years, mean (s.d.) 17.6 (2.0) 17.5 (1.9) 14.4 (2.6)

IRI-EC, mean (s.d.) 27.4 (4.8) NA NA

IRI-PT, mean (s.d.) 24.3 (5.7) NA NA

IRI-PD, mean (s.d.) 13.1 (5.0) NA NA

IRI-FS, mean (s.d.) 18.3 (5.1) NA NA

Interval between scanning dates in months, mean (s.d.) NA 9.2 (2.7) 1.0 (0.2)

A = ambidextrous; EC = empathic concern; FS = fantasy score; IRI = Interpersonal Reactivity Index; L = left; NA = not applicable; PD = personal 
distress; PT = perspective taking; R = right; s.d. = standard deviation.
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