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Overview: oxidant and particle photochemical processes above a
south-east Asian tropical rainforest (the OP3 project): introduction,
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Abstract. In April–July 2008, intensive measurements were
made of atmospheric composition and chemistry in Sabah,
Malaysia, as part of the “Oxidant and particle photochem-
ical processes above a South-East Asian tropical rainfor-

Correspondence to:C. N. Hewitt
(n.hewitt@lancaster.ac.uk)

est” (OP3) project. Fluxes and concentrations of trace
gases and particles were made from and above the rainfor-
est canopy at the Bukit Atur Global Atmosphere Watch sta-
tion and at the nearby Sabahmas oil palm plantation, using
both ground-based and airborne measurements. Here, the
measurement and modelling strategies used, the character-
istics of the sites and an overview of data obtained are de-
scribed. Composition measurements show that the rainforest
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site was not significantly impacted by anthropogenic pollu-
tion, and this is confirmed by satellite retrievals of NO2 and
HCHO. The dominant modulators of atmospheric chemistry
at the rainforest site were therefore emissions of BVOCs and
soil emissions of reactive nitrogen oxides. At the observed
BVOC:NOx volume mixing ratio (∼100 pptv/pptv), current
chemical models suggest that daytime maximum OH con-
centrations should be ca. 105 radicals cm−3, but observed OH
concentrations were an order of magnitude greater than this.
We confirm, therefore, previous measurements that suggest
that an unexplained source of OH must exist above tropical
rainforest and we continue to interrogate the data to find ex-
planations for this.

1 Introduction

Tropical and equatorial forests account for over half of the
World’s forests (1.8 billion ha) and act as a massive source
of matter and energy to the lower atmosphere. They exhibit
some of the most dynamic yet poorly understood biogeo-
chemical behaviour on Earth. This behaviour is driven by
solar radiation and is largely mediated by its transformation
into latent and sensible heat, with the concomitant uptake of
carbon by photosynthesis and the associated emission of re-
active, less-reactive and un-reactive trace gases, water vapour
and energy into the atmosphere. Simultaneously, ozone and
other trace gases, aerosol particles, and momentum, are lost
to the forest surface. A further important consequence of the
large solar radiation flux in the tropics is the very vigorous
convective uplift that occurs, which results in the rapid move-
ment of chemical species emitted at or near ground level into
the free troposphere, as shown, for example, in Surinam (An-
dreae et al., 2001). Hence reactive trace gas emissions from
the surface in the tropics may take part in chemical processes
at greater distances and at higher altitudes from their sources
than might otherwise occur.

Globally, tropical and equatorial forests are estimated
to account for almost half of all biogenic reactive volatile
organic compound (VOC) emissions into the atmosphere
(Guenther et al., 1995, 2006: global total 1150 Tg C/y, es-
timate for tropical forests∼500 Tg C/y). These compounds
are believed to play a major role in mediating the chem-
istry of the atmosphere, yet their roles in controlling chem-
ical budgets and processes in the atmosphere on the local,
regional and global scales are poorly understood, with con-
siderable and surprising gaps and uncertainties in knowledge
remaining (e.g. Lelieveld et al., 2008). In addition, it is pos-
sible that biological primary and secondary organic particles
play a pivotal role in the formation of cloud condensation nu-
clei (CNN) and thus control precipitation patterns in forested
regions (Barth et al., 2005).

Most previous work on the interactions between tropical
forests and atmospheric composition has been carried out in

Amazonia (e.g. the LBA project: Andreae et al., 2002; Avis-
sar et al., 2002), with less in Africa (e.g. the AMMA project:
Redelsperger et al., 2006) and very little in SE Asia. Un-
like the LBA and AMMA domains, which are contiguous
continental regions, the complex mosaic of tropical seas and
islands that exists in SE Asia makes the likely atmospheric
chemistry occurring there somewhat different to that else-
where. Structurally and floristically, the lowland dipterocarp
forest of SE Asia is very different to the rainforest of Ama-
zonia, and it is not known what differences this may cause in
the speciation and rates of emission of VOCs and hence in
atmospheric composition and chemistry. Furthermore, there
is strong evidence that transport from the boundary layer in
this “maritime continent” region into the upper troposphere,
and possibly subsequently into the stratosphere, is particu-
larly efficient (Fueglistaler and Haynes, 2005), so that the
region’s importance to global atmospheric processes may be
disproportionately large.

In common with the other tropical forest regions, SE Asia
is undergoing very rapid, and in some cases catastrophic,
rates of land use change. For example, in Malaysia, the area
of total land cover dedicated to oil palm plantations has in-
creased from∼1% in 1974 to∼13% (FAO, 2005; MPOC,
2008). In spite of attempts to implement policies to conserve
rainforest, logging of this dwindling resource continues at
a rapid rate, and natural forests are being replaced by crop
monocultures.

The multi-national OP3 (“Oxidant and particle photo-
chemical processes above a south-east Asian tropical rain-
forest”) project had the goal of better understanding the inter-
actions that exist between natural forests, atmospheric com-
position and the Earth’s climate system. The project had
the specific objectives of (a) understanding how emissions
of reactive trace gases from a tropical rainforest mediate the
regional scale production and processing of oxidants and
particles, and (b) better understanding the impacts of these
processes on local, regional and global scale atmospheric
composition, chemistry and climate. By very closely cou-
pling ground-based and airborne measurements of surface
fluxes and atmospheric composition of reactive trace gases
and particles with modelling studies of chemical processes,
the project aimed to address the following questions:

1. What are the rates of transfer of organic compounds
emitted from the tropical forest?

2. How are these organic compounds chemically pro-
cessed immediately after release?

3. To what extent do the regional organic emissions con-
tribute to the atmospheric aerosol in the region, and
what are the effects of the aerosol? What is the com-
position of the organic fraction of the aerosol?

4. What are the effects of these biogenic emissions on
global chemistry and climate?

Atmos. Chem. Phys., 10, 169–199, 2010 www.atmos-chem-phys.net/10/169/2010/
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The OH radical initiates the oxidative degradation of biogeni-
cally emitted VOCs, and its concentration defines the rate of
production of secondary products. A consistent and impor-
tant finding from field studies conducted in forested environ-
ments, characterised by high emissions of isoprene and low
levels of NOx, is the significant underestimation of OH by
models (Lelieveld et al., 2008; Ren et al., 2008; Butler et
al., 2008; Carslaw et al., 2001; Martinez et al., 2008; Tan et
al., 2001; Kubistin et al., 2009). These model underestima-
tions scale with isoprene concentration and indicate a current
inability to correctly describe isoprene oxidation. The OP3
project provided an excellent opportunity to confirm these
findings and to seek an explanation. Atmospheric chemistry
models, constrained to measured isoprene emission rates,
predict dramatic reductions in ambient OH concentrations in
forested areas, in contrast to observations and, as a conse-
quence, predict unrealistically high concentrations of other
trace gas constituents (Guenther et al., 2008). Simultane-
ous measurements of the OH concentration, isoprene con-
centration and fluxes and isoprene oxidation products were
made during OP3, together with many species that control
the rate of production and destruction of OH, providing a
stringent set of model constraints to investigate in detail any
modelled/measured discrepancies for OH.

Similarly, current models suggest that secondary organic
aerosol (SOA) in the tropics is dominated by biogenic aerosol
(e.g. Kanakidou et al., 2005), but the measurement database
is sparse. Emerging first measurements by aerosol mass
spectrometry indicate that sub-micrometre organic aerosol
concentrations are at the lower end of the model estimates,
with median concentrations of around 1 µg m−3 observed in
subtropical West Africa and Amazonia (Capes et al., 2009).
Despite recent progress, our picture of the formation pro-
cesses of biogenic SOA (BSOA) is still far from complete
(Hallquist et al., 2009). Again, the suite of measurements
during OP3 was designed to improve our understanding of
the levels, composition and formation processes of BSOA in
the SE Asian domain.

As described below, the focus of activity was the
Global Atmosphere Watch (GAW) station at Bukit Atur,
Sabah, Malaysia, on the island of Borneo (4◦58′49.33′′ N,
117◦50′39.05′′ E, 426 m a.s.l.) (http://gaw.empa.ch/gawsis/).
Two field campaigns were held during the periods 7 April–4
May 2008 (OP3-I) and 23 June–23 July 2008 (OP3-III). Dur-
ing OP3-III, the UK’s largest atmospheric science research
aircraft, a converted BAe 146–301, was based at Kota Kina-
balu International Airport during the period 8–23 July 2008
and operated for over 60 h over northern Borneo. Between
these two forest campaigns, a sub-set of instruments were de-
ployed in an oil palm plantation, where measurements were
made during the period 11 May–20 June 2008 (OP3-II).

In this paper, the land use, vegetation and climate char-
acteristics of the ground-based measurement sites are de-
scribed, together with an overview of the chemical clima-
tology of the region. The measurement and modelling tools

used in the project are also described, as are some prelimi-
nary conclusions.

2 Climate, weather, land use and vegetation of Sabah

2.1 Equatorial climate and forest formations

The equatorial tropics are characterised by rain throughout
the year, i.e., an absence of marked seasonal droughts. This
climatic regime covers: (i) Malaysia, Papua New Guinea and
much of Indonesia within tropical monsoon Asia, (ii) coastal
regions of Liberia, Nigeria and Cameroon, and central Congo
in Africa, and (iii) western Amazonia and a belt extend-
ing from the western Caribbean coast to the Pacific coast in
Ecuador in tropical America (McGregor and Nieuwolt, 1998;
Walsh, 1996). The equatorial tropics can be further clas-
sified into tropical superwet, tropical wet and tropical wet
seasonal, using a perhumidity index, based on a cumulative
annual score of the number of months with>200 mm (+2 in-
dex value), 100–199 mm (+1), 50–99 mm (−1) and<50 mm
(−2) of rainfall (Walsh, 1996). The extent of tropical super-
wet and wet climates (with a perhumidity index>10) shown
in Walsh (1996) is similar to the extent of tropical climates
of Asia and America lacking marked dry seasons shown in
McGregor and Nieuwolt (1998).

With the exception of the central Congo and the western
Caribbean, there is a good correspondence of regions with
a tropical wet or superwet climate and the extent of tropi-
cal lowland evergreen broadleaf rainforest. This forest for-
mation dominates within the majority of the Asian, West
African and American wet/superwet zone of the equatorial
tropics (Whitmore, 1998), and is the most common forest
formation in the tropics as a whole (Schmitt et al., 2008).
However, in areas locally above 750–1200 m altitude, low-
land evergreen broadleaf rainforest grades into lower mon-
tane and then upper montane forest. Such areas of mountain
forests are noted particularly in the wet/superwet zones of the
Asian tropics. Within low-lying areas of the wet and super-
wet zone, peat swamp, freshwater swamp and heath forest
are also present. In areas of podzolic sands, limestone or ul-
trabasic rocks other forest formations are developed locally.

The key exception to the link between climate and the
extent of lowland evergreen rainforest is found within cen-
tral Congo and the western Caribbean, where tropical semi-
evergreen rainforest dominates in areas classified as tropi-
cal wet. This semi-evergreen forest formation is important
throughout the surrounding seasonal tropics of continental
tropical Asia, north-east Australia, and eastern and southern
Amazonia (Whitmore, 1998).

Within the equatorial tropics, the dominant lowland ever-
green broadleaf rainforest is characterised by a lofty (45 m
or taller) and dense canopy with a large number of differ-
ent tree species occurring together. Usually over two thirds
of the upper canopy comprises tree species not contributing

www.atmos-chem-phys.net/10/169/2010/ Atmos. Chem. Phys., 10, 169–199, 2010

http://gaw.empa.ch/gawsis/


172 C. N. Hewitt et al.: The OP3 project: introduction, rationale, location characteristics and tools

more than 1% to the total number (Whitmore, 1998). The
soils typically associated with the occurrence of this forest
formation in tropical Asia are the Ultisol group, and within
western Amazonia the Oxisol group (Baillie, 1996; Chappell
et al., 2007).

2.2 Local climate and forest formations

The majority of the island of Borneo (total area 743 330 km2)

has a superwet climate (Walsh, 1996) and the most extensive
forest formation is lowland evergreen broadleaf rainforest,
occupying some 257 000 km2 (Schmitt et al., 2008). A sim-
ilar situation is observed at the 76 115 km2 regional scale of
the state of Sabah, Malaysian Borneo. Within Borneo Island,
and elsewhere within equatorial Asia, the lowland evergreen
rainforest typically has a tree family dominance ofDiptero-
carpaceae(Whitmore, 1984). Most of the state of Sabah was
once covered with rainforest (Schmitt et al., 2008), particu-
larly such mixed dipterocarp forest. Currently, some 47%
(36 049 km2) of the state lies within Permanent Forest Estate
(PFE: Fig. 1a). Most of this PFE (74%) is maintained un-
der a selective harvesting system (PFE Production Forest),
while the remaining 26% is classified as PFE Protection For-
est. Within eastern Sabah, most of the cleared lands are now
used for the cultivation of oil palm trees (Fig. 1b). Some
commercial timber plantations are also present within Sabah.

The Bukit Atur GAW tower used for OP3 sampling is lo-
cated within the PFE Production Forest of the Ulu Segama
– Malua Forest Reserve, but is less than 5 km east of
the 438 km2 area of PFE Protection Forest known as the
Danum Valley Conservation Area (DVCA). The Ulu Segama
– Malua Forest Reserve is 2411 km2 in area and is divided
into annual timber harvesting coupes. The GAW tower lies
at the centre of the 22.6 km2 “Coupe 88” which was sub-
jected to selective timber harvesting in 1988. An average of
96 m3 of timber ha−1 was cut by both tractor and high-lead
harvesting (Tangki and Chappell, 2008). The central area
of this coupe was subsequently rehabilitated by enrichment
planting (Moura-Costa, 1996). As part of a study covering a
225 km2 area Tangki and Chappell (2008) calculated an av-
erage tree biomass of 172 t ha−1 for Coupe 88, (using five
inventory plots surveyed in March 1997), and demonstrated
a strong correlation (r2=0.76) between such coupe-averaged
values and Landsat-5 TM band 4 (near-infra red) radiance.
Tangki (2008) demonstrated thatDipterocarpaceaewere the
most abundant tree family recorded for the 225 km2 area as
a whole (comprising of only lowland evergreen broadleaf
rainforest), butEuphobiaceaehad become more abundant in
Coupe 88 following timber harvesting.

Within the immediate vicinity of the Bukit Atur GAW
tower, we calculate the average perhumidity index to be 22
(using the daily rainfall data for the period 1996–2008 from
the Danum Valley Field Centre (DVFC), located 8 km from
Bukit Atur at 4◦58′ N, 117◦48′′ E, 100 m a.s.l.). Hence Bukit
Atur is classified as having a superwet climate. The index
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Figure 1. Land cover maps of Sabah showing (a) the extent of Permanent Forest 
Estate (PFE) based on Sabah Forest Department (1998) data, where dark green shows 
PFE Protection Forest, and light green PFE Production Forest; non-PFE commercial 
timber plantation is also shown in light brown, and (b) extent of oil palm (orange) and 
other land covers based on a preliminary classification of remote sensing imagery. 
The satellite data used to produce this map was medium resolution data from 
Landsat7-ETM+. Eight images from 2005 to 2008 were used. All the images were 
first geo-referenced using 1:50,000 topographic maps of Sabah.  After refinements of 
the training area collection, the data were reclassified into the eight land cover classes, 
excluding cloud and shadow. 
 
 

 
 

 
 

Fig. 1. Land cover maps of Sabah showing(a) the extent of Perma-
nent Forest Estate (PFE) based on Sabah Forest Department (1998)
data, where dark green shows PFE Protection Forest, and light green
PFE Production Forest; non-PFE commercial timber plantation is
also shown in light brown, and(b) extent of oil palm (orange) and
other land covers based on a preliminary classification of remote
sensing imagery. The satellite data used to produce this map was
medium resolution data from Landsat7-ETM+. Eight images from
2005 to 2008 were used. All the images were first geo-referenced
using 1:50 000 topographic maps of Sabah. After refinements of the
training area collection, the data were reclassified into the eight land
cover classes, excluding cloud and shadow.

did however range from 9 (1997) to 23 (1999) as a result of
the 4–5 year cycle in the rainfall caused by El Niño South
Oscillation phenomena (Chappell et al., 2001). During the
OP3 campaign year of 2008, the perhumidity index was 22,
and therefore identical to the longer-term average.

The 23-year mean rainfall (1986–2008 inclusive) for the
DVFC rain gauge is 2840 mm (±438 mm standard devia-
tion). The wettest month is typically January with 310 mm
precipitation. April is typically the driest month with
155 mm on average, but it also has the most variable rain-
fall total with a coefficient of variation (CV) of 69% against
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a mean monthly CV of 46%. Indeed, the three-month pe-
riod from February to April has the least predictable rainfall
totals, with CV values all over 57%. This variability in rain-
fall totals may relate to the period being at the change from
the northeast monsoon (approximately November–April) to
the southwest monsoon (approximately May–October: Bidin
and Chappell, 2006).

Rainfall in 2008 totalled 3220 mm, the fifth wettest year in
the 23-year record with 113% of normal rainfall. The mag-
nitude of the seasonal variations in rainfall was the smallest
on record with a CV of 23%, against the long-term average
monthly CV of 47%. This lack of marked seasonality was
also shown in the number of days with rainfall. A total of
257 rain-days, the largest number in the 23-year record, were
observed in 2008 against an average of 226 rain-days.

2.3 Campaign meteorology

Most of the OP3 measurements were undertaken within the
four-month period of April to July 2008. This period was
124% more wet than normal, with 1045 mm of rainfall. No-
tably, the driest month according to the longer-term record,
April, received 170% of the normal rainfall at 263 mm. The
April–July 2008 period was also cooler, with a mean temper-
ature of 27.1◦C, which was 99% of the norm for April–July
2001–2008.

A clear diurnal cycle in the rainfall is observed, even
within the records of the relatively short OP3 campaign pe-
riod of April–July (Fig. 2a). The presence of a late afternoon
peak in rainfall at DVFC, which is more pronounced when
several years of data are summarised, as in Bidin and Chap-
pell (2006), results from the diurnal development of convec-
tive rainfall cells, which is consistent with LIDAR observa-
tions (peak rainfall typically observed around 15:00 LT) and
measurements of radiation and heat fluxes at the site (Pear-
son et al., 2010; Helfter et al., 2010). The predominance of
rainfall delivery by convective events also results in an ex-
treme localisation of the rainfall field. Within a 5 km2 region
encompassing the summit of Bukit Atur, Bidin and Chap-
pell (2003) demonstrated that inter-gauge correlation in an-
nual rainfall totals fell to 0.90 over distances of only 1.1 km,
which is short even by comparison with other convective sys-
tems.

Figure 2 also shows median temperatures at various
heights at Bukit Atur for the combined periods of OP3-I and
OP3-III, measured with aspirated thermocouples. The over-
all median temperature at 30 m was 25.1±1.6◦C. This is sim-
ilar to the long-term surface temperature data from DVFC,
taking into account a typical temperature gradient with alti-
tude. During the campaign, the atmospheric stability varied
from strongly stable at night to strongly unstable during the
middle of the day, as would be expected for a convective re-
gion with low wind speeds.

When the boundary layer was stable, the rainforest canopy
was decoupled from the overlying atmosphere, resulting

 45 

Figure 2. Local-time diurnal cycles in (top panel) mean rainfall, (middle panel) 
median temperature at various heights on the Bukit Atur GAW tower, and (bottom) 
median canopy-top photosynthetically active radiation (PAR), over the OP3 campaign 
months of April - July 2008. Dashed lines on temperature and PAR graphs show 
approximate sunrise and sunset times. Dotted lines on the PAR graph show 5th and 
95th percentiles.  
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Fig. 2. Local-time diurnal cycles in (top panel) mean rainfall, (mid-
dle panel) median temperature at various heights on the Bukit Atur
GAW tower, and (bottom) median canopy-top photosynthetically
active radiation (PAR), over the OP3 campaign months of April–
July 2008. Dashed lines on temperature and PAR graphs show ap-
proximate sunrise and sunset times. Dotted lines on the PAR graph
show 5th and 95th percentiles.

very frequently in nocturnal radiation fogs. LIDAR data
(not shown) demonstrate this, and also suggest a day-time
(10:00–18:00 LT) mixing height of∼800 m. The strong
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daytime turbulence, along with weak winds, makes chemi-
cal box-modelling a reasonable strategy for interpretation of
daytime atmospheric composition (Sect. 5, below), but un-
derstanding measurements made at night, when the atmo-
sphere near the surface is strongly stratified, requires more
careful consideration of vertical mixing (Pugh et al., 2010a).

The bottom panel of Fig. 2 shows the diurnal cycle in pho-
tosynthetically active radiation (PAR), measured at canopy-
top height. There is a tail of dull days (shown by the 5th
percentile) but, on the whole, the period of the campaign
was bright. The warm temperatures and bright sunshine
produced substantial emissions of biogenic volatile organic
compounds (BVOCs) from the forest (Sect. 4.2.2, below).

Turning from vertical mixing/convective effects, to take
a more horizontal/advective view, backwards air mass tra-
jectories were analysed in order to characterise the origins
of chemical species measured at Bukit Atur during the mea-
surement campaigns. They were calculated by the British At-
mospheric Data Centre (BADC) Web Trajectory Service us-
ing European Centre for Medium-Range Weather Forecasts
(ECMWF) wind fields. A series of trajectories was calcu-
lated, with one trajectory for every hour during OP3-I and
OP3-III. These were then analysed to give an ensemble rep-
resentation of air mass residency time as a function of loca-
tion for the whole of each campaign (Ashbaugh et al., 1985).
Back trajectories are calculated for the 24 h before arrival
at Bukit Atur, with a time resolution of 30 min, and a final
pressure altitude of 950 hPa. Back trajectories that touch the
ground have been removed. Figure 3a and b show air mass
residency time on a 0.1◦×0.1◦ grid for all back trajectories
from the first and third campaign periods, respectively.

The first campaign period (OP3-I) was influenced by air
masses from most directions, in contrast to OP3-III when the
air was predominantly from the south. The southern air in
the third period can be split into two main areas of origin:
the SE air from the sea with a minimal fetch over land, and
the SW air which is exclusively over land. This can be used
to identify and compare periods of marine and terrain influ-
enced air. It is possible to extend this analysis by using only
trajectories from periods when a certain measurement is ele-
vated, giving a coloured probability distribution of the source
of the measured quantity. A subsequent paper will use these
techniques to present a more in-depth analysis of chemical
origins in the future.

2.4 Land-cover classification and VOC emissions
modelling

Biogenic VOC emissions are highly sensitive to land-cover
characteristics and can vary over several orders of magni-
tude across different landscapes. This is partly due to vari-
ability in total biomass density but is greatly enhanced by
variability among different plant species, especially for com-
pounds such as isoprene that are emitted by less than a third
of all plant species. This presents a daunting challenge for at-
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Figure 3. Air mass residency times for air reaching Bukit Atur (black circle) during 
(top panel) OP3-I and (bottom panel) OP3-III. No colour means no trajectories passed 
over that area in the last 24 hours.  
 
   

 
 
 
 
 
 
 

Fig. 3. Air mass residency times for air reaching Bukit Atur (black
circle) during (top panel) OP3-I and (bottom panel) OP3-III. No
colour means no trajectories passed over that area in the last 24 h.

tempts to characterize regional BVOC emissions, especially
in highly diverse tropical forests.

Guenther et al. (1995) estimated global biogenic VOC
emissions using the highest resolution (0.5◦) and most de-
tailed global map of land-cover and land-use (Olson, 1992)
available at that time. Figure 4 (top left panel) illustrates
the Olson (1992) classification of Borneo landscapes, which
include six unmanaged land-cover types, dominated by trop-
ical rainforest (50%), marsh/swamp (14%) and tropical mon-
tane (7%) and three managed land-cover types dominated by
re-growing woods (9%) and paddy rice (7%). The associ-
ated isoprene emission factor map shown in Fig. 4 (top right
panel) characterizes the gross features of Borneo but does not
represent the full diversity of landscapes in this region. A
major limitation of the Olson global ecosystem approach is
that, for example, all re-growing woods are lumped together
and observations from North American and European forests
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Figure 4. Land cover distributions for Borneo used by the global biogenic VOC 
emissions inventory of Guenther et al 1995) (top left) and by MEGAN (Guenther et 
al. 2006)(bottom left) and associated isoprene emission factor (µg m-2 h-1) map used 
by Guenther et al. (1995) (top right) and by MEGAN (Guenther et al. 2006) (bottom 
right). 
 
 

 
 
 
 

Fig. 4. Land cover distributions for Borneo used by the global biogenic VOC emissions inventory of Guenther et al., 1995) (top left) and
by MEGAN (Guenther et al., 2006) (bottom left) and associated isoprene emission factor (µg m−2 h−1) map used by Guenther et al. (1995)
(top right) and by MEGAN (Guenther et al., 2006) (bottom right).

were used to assign a single isoprene emission factor to all
occurrences of this land-cover type across the globe. The
Guenther et al. (1995) estimate of annual isoprene emission
from Borneo is about 10 Tg of carbon, which is 2% of the
estimated global total.

The availability of satellite observations has greatly im-
proved quantitative estimates of eco-region distributions and
other land-cover variables, including leaf area indices (LAI)
and plant functional type (PFT) cover fractions. In addi-
tion, the development of a global geo-referenced eco-region
map by Olson et al. (2001) represents an additional major
advance for biogenic emission modeling. This high reso-
lution digital map is the product of over 1000 biogeogra-
phers, taxonomists, conservation biologists and ecologists
from around the world. Each of the 867 eco-regions rep-
resented on this map has relatively uniform species com-
position and is accompanied by an online database (http:
//www.nationalgeographic.com/wildworld/) that includes a
description of the dominant plant species. Figure 4 (lower
left) shows that this database divides Borneo into seven eco-
regions with Borneo lowland rainforests covering just over
half of the total land area, Borneo montane rainforests and
Sundaland heath forests together comprise about 25%, and
the remaining four ecoregions (Kinabalu montane alpine
meadows, Borneo peat swamp forests, Borneo freshwater
swamp forests, Sunda Shelf mangroves) each make up 1 to

8% of the total. While the total area associated with broad
types (e.g. tropical forest, montane forest) agree reasonably
well with the Olson (1992) database, the details differ con-
siderably. Figure 4 (bottom right) shows that land-cover re-
sults in considerable differences between the isoprene emis-
sion factor distribution of Guenther et al. (1995) and the
MEGAN model (Guenther et al., 2006) which uses the Ol-
son et al. (2001) eco-region map and satellite derived PFT
(e.g. crop, broadleaf tree, shrub) cover fractions. In addition,
MEGAN uses plant species composition estimates from the
Olson et al. (2001) global terrestrial eco-region database and
the Leff et al. (2004) crop species distribution database. Al-
though the spatial pattern is quite different, the annual iso-
prene emission for Borneo differs by less than 5% when the
MEGAN land-cover is used in place of Guenther et al. (1995)
land-cover data. This good agreement, however, is the result
of major offsetting differences between these two land-cover
databases. The Guenther et al. (1995) foliar density and LAI
estimates are about 50% higher, resulting in about 25% more
isoprene, but the emission factors are about 25% lower. The
result is a very similar annual isoprene emission but for dif-
ferent reasons.

The MEGAN framework can be used to estimate re-
gional to global biogenic VOC emissions but the accuracy of
the results is dependent on the availability of representative
measurements of individual ecoregions. A lack of BVOC
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measurements from Borneo resulted in the assignment of
MEGAN version 2.1 emission factors to the ecoregions of
Borneo that were based on observations from other tropical
regions. Improved estimates for future versions of MEGAN
and other models are highly dependent on the availability
of observations characterizing the dominant plant functional
types within major global ecoregions. In fact, our initial anal-
ysis of emissions from Bukit Atur show that the default base
emission rates in MEGAN prior to the OP3 observations are
a factor of four too high for this forest ecoregion. We also
confirm that, unusually for a species classified as crop in
MEGAN, oil palm is an intense isoprene emitter.

3 Measurement strategy and methods

The overall measurement strategy for OP3 was to perform
integrated measurements from the forest-floor, through the
forest canopy, above the canopy and then up-scaled to the
regional scale using airborne measurements, with clear link-
ages between measurements made at the different sites at the
different scales.

3.1 Ground based measurements

Ground based measurements were centred on the 100 m
tower at the Bukit Atur GAW station (4◦58′49.33′′ N,
117◦50′39.05′′ E, 426 m a.s.l.) (http://gaw.empa.ch/gawsis/).
An “in-canopy” sampling site was established 2 km E of the
Bukit Atur tower (4◦58′49.10′′ N, 117◦51′19.12′′ E) and a
further “oil palm plantation” sampling site was established
at the Sabahmas oil palm estate, 70 km NE of Bukit Atur
(5◦14′58.69′′ N, 118◦27′15.76′′ E).

3.1.1 Forest floor (soil) NOx flux measurements

The fluxes of NOx from forest soil were measured using a
continuous automated dynamic chamber system at the “in-
canopy site”. Seven spatially distributed chambers were used
in order to represent the spatial variation inherent in soil NOx
emissions at each site. The chamber construction and oper-
ation is described in Pilegaard (2001) while the flux calcula-
tion method was modified from Conrad (1994), with further
details available in Dorsey and Gallagher (2010). In addition,
fluxes of nitrous oxide (N2O) and methane (CH4) were made
at the “in-canopy site”, at a near-by undisturbed primary for-
est site, at a heavily disturbed road-side site and from the
soils at the oil palm plantation (see below), using static soil
chambers (Siong et al., 2009; Ryder et al., 2010).

3.1.2 Within-canopy concentration profiles

At the “in-canopy site”, measurements were made of the
vertical gradients (from the ground to 32 m height) of the
concentrations of ozone, NOx, volatile organic compounds,

particle size distribution and composition, as well as tem-
perature, relative humidity, radiation and turbulence. Four
platforms were strapped against an emergent tree (Canarium
decumanum), at 8, 16, 24, 32 m. Each platform sup-
ported sonic anemometers, inlets to a gradient system for
O3/NO/NO2 and fine thermocouples. In addition, an auto-
mated winch system continuously raised and lowered a tem-
perature/humidity probe, a PAR sensor, an optical particle
spectrometer (GRIMM 1.08) and an inlet leading to a PTR-
MS. This gave vertical gradient measurements between 2 and
28 m (Ryder et al., 2010). In a clearing near the in-canopy
site, LIDAR measurements were made of wind speed and di-
rection and of aerosol backscatter throughout the boundary
layer.

3.1.3 Concentration and flux measurements at Bukit
Atur

The largest number of ground-based measurements were
made at the Bukit Atur GAW station, which routinely records
CO2 and O3 mixing ratios, and various aerosol parame-
ters. The station consists of a main building with four air-
conditioned laboratories at the base of a 100 m tower, all lo-
cated in a large (∼150×50 m) clearing on the top of a hill
and surrounded by forest. The surrounding forest canopy ex-
tends∼10 m above the base of the tower. Four mobile sea-
container laboratories were deployed around the base of the
tower to provide extra instrument accommodation. Electri-
cal power was provided by generators, located 2 km E of the
station. Pollution events, attributable to individual vehicles
arriving on site, the generators, or to small leaks of reactive
compounds on site, were identified by elevated concentra-
tions of the oxides of nitrogen and by wind direction analy-
sis, and are excluded from subsequent data analysis. Table 1
summarises the measurements made at Bukit Atur: the criti-
cal measurements included:

– eddy covariance and gradient flux measurements of
trace gases and particles;

– speciated concentration measurements of trace gases
and particles;

– measurements of aerosol size-dependent hygroscopicity
and critical supersaturations for cloud growth;

– concentration measurements of OH, HO2, and the sum
of hydroperoxy and organic peroxy radicals;

– OH reactivity measurements (the rate at which OH is
removed from the atmosphere);

– characteristics of boundary layer turbulence and mix-
ing.
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Figure 5. Flight tracks of the BAe 146 research aircraft over Sabah during OP3-III. 
The underlying map is as shown in Fig. 1b.  
 
 

 

Fig. 5. Flight tracks of the BAe 146 research aircraft over Sabah during OP3-III. The underlying map is as shown in Fig. 1b.

3.1.4 Concentration and flux measurements at the
Sabamas oil palm plantation

The Sabahmas oil palm plantation measurement site used
during OP3-II was located in a 33 ha flat area of oil
palm (Elaeis guineensis× Elaeis oleiferahybrid, progeny
“Guthrie”) trees. The trees were of uniform age (12 years)
and height (12 m). The site comprised a 15 m tower and an
8 m canopy access platform. Instruments were housed in a
hut at the base of the platform. The analytical methods used
were the same as at Bukit Atur, including the measurements
of aerosol sub-micrometre composition, fluxes of aerosol,
BVOCs, ozone and CO2, although the suite of measurements
made was not as comprehensive. In particular, measurements
of OH and other radicals and of the oxides of nitrogen were
not made.

3.1.5 Airborne measurements

Airborne measurements (see Table 1) were made dur-
ing OP3-III using the Natural Environment Research
Council/UK Meteorological Office’s BAe 146–301 Facility
for Airborne Atmospheric Measurements (FAAM) aircraft
(Lewis et al., 2007), deployed to Kota Kinabalu airport, less
than 30 min flying time from Bukit Atur. In general, the same
type of flight plan was executed on each flight, with one pro-
file up and one down, interrupted by straight and level runs at
altitudes of 100–250, 1500, 3000 and 6000 m above ground
over the rainforest (centred on Bukit Atur), over an exten-
sive and homogeneous agro-industrial oil palm landscape
surrounding and including the Sabahmas oil palm plantation
estate, and in transects between the two sites. Flights were
made morning and afternoon giving typically four stacked

profiles, allowing a picture to be built up of the concentra-
tions of trace gases and particles during the daytime. Two
flights were also made over the ocean up- and down-wind of
Sabah.

In order to link the ground-based and airborne measure-
ments, the aircraft flew past the Bukit Atur measurement sta-
tion on more than ten occasions, at the same height above
sea-level as the base of the GAW tower and at approximately
500 m horizontal separation. Table 2 summarises the flights
made during the OP3 deployment and Fig. 5 shows the geo-
graphical extent of the flights over Sabah.

4 The chemical climatology of Sabah and Bukit Atur

4.1 Satellite observations

Satellite observations of key tropospheric trace gases allow
the surface and aircraft trace gas measurements above the
rainforest surrounding Bukit Atur to be put in a wider context
relative to Borneo and the larger south-east Asian region. We
focus on formaldehyde (HCHO) and nitrogen dioxide (NO2),
which are good indicators of emissions and photochemical
activity, to examine the atmospheric chemistry over Borneo
during the OP3 campaigns in 2008. Global background con-
centrations of HCHO are determined by the balance between
the source (from the oxidation of methane) and the OH sink.
Concentrations are typically much larger over continents due
to additional sources from the oxidation of biogenic and an-
thropogenic VOCs, and from biomass burning (either di-
rectly released or from the oxidation of co-emitted VOCs)
(Palmer et al., 2003; Fu et al., 2007). Anthropogenic activi-
ties, biomass burning and soil emissions are the main source
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Table 1. Overview of the measurements made in OP3.

Species Method/
Analytical
Technique

Ground† Air Temporal
Resolution

Detection
Limit

Measurement
Uncertainty

Reference

NMHC, includ-
ing isoprene
and oxygenates

Disjunct eddy
covariance flux
measurement
with continu-
ous flow and
analysis by
PTR-MS

√
BA, OP Fluxes:

30 min
Mixing
ratios:∼7 s

Fluxes:
< 0.05
mg m−2 h−1

Mixing ra-
tios: 10–100
pptv

Fluxes:
Precision =
∼ ±30%
Mixing ratios
∼ ±10%

(Langford et
al., 2009)

NMHC, includ-
ing isoprene
and oxygenates

Automated
PTR-MS
gradient

√
IC Gradient ev-

ery 7 min
10–100 pptv (Karl et al.,

2007)

NMHC, includ-
ing isoprene,
monoterpenes
and oxygenates

Dual Channel
Gas Chro-
matograph
with
Flame ionisa-
tion detectors
(DC-GC-FID)

√
BA

√
1 h ground
variable air

1 pptv variable, typ-
ically around
10%

(Lewis et al.,
2007; Lewis et
al., 2005)

Terpenoids, al-
cohols, aldehy-
des

GC-PID,
portable mass
spectrometer

√
BA

CO2/H2O flux Eddy-
covariance
flux using
infrared gas
analyser Li-Cor
7000/7500

√
BA, OP 30 min fluxes (Aubinet et al.,

2000)

NO2 flux Eddy covari-
ance using laser
induced
fluorescence

√
BA 30 min fluxes (Farmer et al.,

2006)

HNO3, HCl,
HNO2, NH3,
SO2, NH+

4 ,

NO−

3 , Cl−,

SO2−

4

Wet effluent
denuder &
steam jet
aerosol collec-
tor, online IC
(GRAEGOR)

√
BA 1 h (Thomas et al.,

2009)

Turbulence,
sensible heat
flux

Eddy-
covariance
using sonic
anemometry

√
BA 30 min fluxes

Soil NO flux Dynamic auto-
chamber using
NO analyser

√
IC (Pilegaard et

al., 2006)
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Table 1. Continued.

Species Method/
Analytical
Technique

Ground† Air Temporal
Resolution

Detection
Limit

Measurement
Uncertainty

Reference

Soil N2O/CH4
flux

Static soil
chamber with
off-line GC
analysis

√
IC, OP 1 h

OH, HO2 FAGE
(Fluorescence
Assay by Gas
Expansion)
laser-induced
fluorescence

√
BA 10 s (OH)

2.4×105

molecule
cm−3 (3 min
av.)
(HO2)

3.8×106

molecule
cm−3 (3 min
av.)

44 % (OH)
50 % (HO2)

(2σ )

(Whalley et al.,
2010a, b)

OH, HO2 FAGE
(Fluorescence
Assay by Gas
Expansion)
laser-induced
fluorescence

√
60 s (OH)

2.3×106

molecule
cm−3 (1 min
av.)
(HO2)

2.0×106

molecule
cm−3 (1 min
av.)

28 % (OH
& HO2) (2σ)

OH Reactivity FAGE
√

BA 1 min 22 % (2σ) (Ingham et al.,
2009)

6RO2 + HO2,
HO2

PERCA (PEr-
oxy Radical
Chemical Am-
plifier), dual in-
let

√
BA

√
1 min 0.4 pptv

(10 min)
38% (1σ) (Fleming et al.,

2006)

NO3, CH2O,
NO2, HONO,
O3, CHOCHO

Differential
Optical Ab-
sorption
Spectroscopy

√
BA 10min 2 pptv, 480

pptv, 80 pptv,
150 pptv, 4.6
ppbv,
150 pptv

1.5 pptv,
500 pptv, 60
pptv, 130 pptv,
4 ppbv, 130
pptv

(Plane and
Saiz-Lopez,
2006)

NO2, HCHO,
CHOCHO

MAX-DOAS
√

BA (Leigh et al.,
2006)

Photolysis fre-
quencies (incl.
j(O1D),j(NO2))

Calibrated filter
(2π and 4π
sr) radiometers
and spectral-
radiometer

√
BA/IC

√
1s n/a 14% and 13%

0–90◦ SZA
(Bohn et al.,
2008; Edwards
and Monks,
2003; Volz-
Thomas, et al.,
1996)

O3 UV absorption
√

BA
√

1 s 0.6 ppbv 10%±3.4 ppbv
(±1σ)

(Heard et al.,
2006)
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Table 1. Continued.

Species Method/
Analytical
Technique

Ground† Air Temporal
Resolution

Detection
Limit

Measurement
Uncertainty

Reference

O3 flux eddy
correlation

Dry chemilu-
minescence

√
BA, OP 30 min fluxes

from 0.05 s
0.1 ppbv (G̈usten et al.,

1990; Gusten
and Heinrich,
1996)

O3/NO/NO2
gradient

Chemilu-
minescence
(O3), thermal
converter

√
BA/IC 15 min

NO
NO2
6NOy ,
6NOy -HNO3

NO/O3 chemi-
luminescence
detectors Pho-
tochemical
convertor +
above
Gold tube/CO
converter +
above
Gold tube con-
vertor and de-
nuder

√
BA 10 min 3 pptv for

NO, 7 pptv
for NO2

15% for NO
and 20% for
NO2 at 50 pptv

Pike et al., 2009

NO
NO2
6NOy ,
6NOy-HNO3

NO/O3 chemi-
luminescence
detectors Pho-
tochemical
convertor
+ above
Gold tube/CO
converter +
above
Gold tube con-
vertor and de-
nuder

√
10 s 3 pptv for

NO and 15
pptv for NO2

8% for NO at
1 ppbv and 9%
for NO2 at
1 ppbv

(Brough et al.,
2003; Stewart,
et al., 2008)

NO2 Laser-induced
fluorescence
(LIF)

√
BA 1 Hz 3.6 pptv/60 s 20% (Dari-

Salisburgo
et al., 2009)

6PNs Thermal-
dissociation
LIF

√
BA 1 Hz 13 pptv/60 s 40% (Dari-

Salisburgo
et al., 2010)

6ANs Thermal-
dissociation
LIF

√
BA 1 Hz 13 pptv/60 s 40% (Aruffo et al.,

2010)

NO2 flux LIF-Eddy
covariance

√
BA 10 Hz 11 pptv/60s 20% (Dari-

Salisburgo
et al., 2010)

Atmos. Chem. Phys., 10, 169–199, 2010 www.atmos-chem-phys.net/10/169/2010/



C. N. Hewitt et al.: The OP3 project: introduction, rationale, location characteristics and tools 181

Table 1. Continued.

Species Method/
Analytical
Technique

Ground† Air Temporal
Resolution

Detection
Limit

Measurement
Uncertainty

Reference

H2O2, 6

ROOH
Dual-channel
fluorometric
detector

√
1 min 50 pptv 14% (1σ) (Penkett et al.,

1995)

H2O vapour Dew point
hygrometer

√
BA

√

H2O flux Eddy-
covariance
using UV
Absorption

√
BA 30 min fluxes

100 Hz
8% (q-
dependent)

(Coe et al.,
1995)

CH2O Fluorometric
detection
(Hantzsh
reaction)

√
BA 1 min 100 pptv 17% (2σ) (Still et al.,

2006)

Speciated alde-
hydes, ketones
and alcohols
NMHC, includ-
ing isoprene
and oxygenates

GC/GC detec-
tion, PTR-MS

√
15 s 50–120 pptv 13–16% (1σ)

>C7 NMHC
(e.g. terpenes)

Adsorbent
tubes &
GC/TOF-MS

√
Variable 50 pptv ±(5%+20 pptv) (Capes et al.,

2009)

CO Chemilu-
minesence

√
BA

√
(Gerbig et al.,
1999)

PAN GC/ECD (elec-
tron capture de-
tection)

√
90 s 5 pptv 5% (Whalley et al.,

2004)

PAN GC/ECD (elec-
tron capture de-
tection)

√
BA 10 min PAN:15

pptv, PPAN,
MPAN:25
pptv

20% (2σ ) (Harrison et al.,
2006)

Alkyl nitrates,
organic N

GC and neg-
ative ion CI
GC/MS

√
BA

√
G: 1 h
A: variable

0.005 pptv 13% (2σ) (Reeves et al.,
2007; Worton
et al., 2008)

Reactive
halocarbons

GC/MS
√

BA
√

G: 1 h
A: variable

0.005 pptv 15% (2σ) (Worton et al.,
2008)

Halocarbons GC/ECD
√

BA ∼ 15 min ∼ 0.5 pptv 5–10% (Gostlow et al.,
2009)
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Table 1. Continued.

Species Method/
Analytical
Technique

Ground† Air Temporal
Resolution

Detection
Limit

Measurement
Uncertainty

Reference

Aerosol
number
concentration

CPCs total
particle number
concentration
(>3 nm);

√
BA

√
30 min
(ground)
1 s (aircraft)

N/A N/A

Aerosol size
distribution

SMPS ground:
3< Dmd <700
nm Air:
3< Dmd <350
nm

√
BA/IC

√
30 min
(ground)
1 min
(aircraft)

N/A N/A

Optical and
aerodynamic
particle
counters
(0.3/0.1–
20/3µm)

√
BA/IC

√
30 min
(ground)
1 s (aircraft)
in-canopy
gradients
(2–32 m)

N/A N/A

Ultra-fine
particle fluxes

Eddy Correla-
tionDp >3 nm,
>10 nm, inde-
pendent CPCs

√
BA Fluxes

30 min. Raw
0.3 s.

< 0.01
particle/cm3

±10% @
3×105

particles/cm3.

(Buzorius et al.,
1998)

Aerosol size
segregated
chemical
composition

Aerodyne
Aerosol Mass
Spectro-
meter (40 nm<
Dvad<

0.8 µm),
non-refractory
SO2−

4 , NO−

3 ,

NH+

4 , organic
species

√
BA, OP

√
30 min
(ground)
10 s (profile)
30 s (SLR)

Ground: 3 ng
m−3 (NO−

3 ,

SO2−

4 ) and

11 ng m−3

(NH+

4 ), 10
min average,
high res
mode
Air: 3 ng
m−3 (NO−

3 ,

SO2−

4 ) and

30 ng m3

(NH+

4 ) 30 s
average

15% Ground:
(Aiken et al.,
2008; Cana-
garatna et al.,
2007)
Aircraft:
(Crosier et al.,
2007)

Size segregated
chemically spe-
ciated aerosol
mass fluxes

Eddy-
covariance
using Aero-
dyne Aerosol
Mass Spec-
trometer. (40
< Dvad<800
nm), non-
refractory
SO2−

4 , NO−

3 ,

NH+

4 , organic
species

√
BA, OP 30-min

fluxes
10 ng m−2

s−1
±10 ng m−2

s−1
(Nemitz et al.,
2008)
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Table 1. Continued.

Species Method/
Analytical
Technique

Ground† Air Temporal
Resolution

Detection
Limit

Measurement
Uncertainty

Reference

Size-segregated
bioaerosol

WIBS
√

BA, IC (Kaye et al.,
2005)

Genetic
bioaerosol

Genetic analy-
sis of filters

√
BA, IC, OP 12-h

Cloud liquid
water

Gerber PVM-
100

√
0.1 s 0.005 g m−3 (Gerber, 1991)

Aerosol Scat-
tering proper-
ties

3 wavelength
nephelometer

√
2 mm−1 5% (Osborne et al.,

2008)

Cloud Conden-
sation Nuclei
Activity

CCN
spectrometer

√
BA

(single)

√
(two) 1 h (ground) (Roberts and

Nenes, 2005)

Aerosol hygro-
scopicity

Hygroscopic
Tandem Differ-
ential Mobility
Analyser

√
BA 1 h (Gysel et al.,

2007)

Meteorological
parameters
(Wind speed
& direction,
solar radiation,
PAR, precipita-
tion, wetness,
pressure, tem-
perature, RH,
turbulence, sen-
sible heat flux)

Standard mete-
orological sen-
sors (aspirated
thermocouples,
Vaisala WXT)

√
BA, IC, OP 30 min

temperature
gradients

Boundary
Layer Height

LIDAR
√

BA 1 s 20–60 m (Pearson et al.,
2009)

† – BA=Bukti Atur site; IC=In-canopy site; OP=oil-palm site (OP3-II).

of variability in the tropospheric NO2 columns (Martin et al.,
2002, 2003).

Figure 6a and b shows HCHO and NO2 column distribu-
tions over Borneo during April–July 2008, quantified using
UV spectroscopic measurements taken by the nadir-viewing
data from SCIAMACHY (HCHO; De Smedt et al., 2008)
and OMI (NO2; ATBD-OMI-02) instruments respectively.
NO2 is a strong absorber at UV wavelengths and, because
the OMI instrument provides daily coverage, the NO2 col-
umn data can be averaged onto a fine resolution grid of
1.0◦

×1.0◦ (longitude× latitude). In contrast, we average

the HCHO columns onto a coarser 2.5◦
×2.0◦ grid (to im-

prove the signal-to-noise ratio), since it is a much weaker
absorber and because global coverage is only achieved by
SCIAMACHY at the Equator every 6 days. Scenes with frac-
tional cloud coverage>40% are excluded from our analysis.

Figure 6b shows that NO2 measurements from OMI iden-
tify anthropogenic NOx signals from Bangkok, Jakarta,
Surabaya and Singapore. Enhanced HCHO also seen over
these cities indicates intense photochemical activity, likely
associated with polluted conditions. Over Indochina in April,
elevated HCHO and NO2 columns are loosely correlated
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Table 2. Overview of aircraft flights made in OP3.

Flight Flight description Date in 2008 Take off-
Landing Times
(UTC)

B384 Survey flight (Bukit Atur, oil palm, SW of Kota
Kinabalu)

9 July 02:13–05:32

B385 Bukit Atur (ground sampling site) and SW of Kota
Kinabalu

10 July 01:10–05:04
07:04–10:41

B386 Bukit Atur 12 July 01:02–04:48
06:10–9:59

B387 Maliau Basin, S of Sabah.
N of Bukit Atur and W of oil palm plantation

13 July 00:54–06:01
06:30–10:10

B388 Bukit Atur and oil palm 15 July 00:54–04:43
06:01–09:33

B389 Ocean flight SE of Sabah 16 July 00:49–04:31
05:39–09:40

B390 CASCADE (Marine flight, W and NW of Sabah) 18 July 22:57–03:14

B391 SW of Bukit Atur, oil palm 19 July 00:54–05:06
06:15–09:48

B392 Mainly oil palm plantation 21 July 00:48–04:46
05:53–09:46

B393 Ocean flight (NW and SE of Sabah) 22 July 00:43–05:10

Local Time is (UTC+8).

with AATSR fire-counts (not shown) (Arino et al., 2005) and
hence are probably due to fire emissions (Fu et al., 2007).
During May, enhanced HCHO columns over the Gulf of
Thailand may reflect outflow from fires occurring in Sumatra
and from the Sibu area of eastern Borneo. However, dur-
ing the OP3 campaigns, fire activity over Malaysian Borneo
was minimal and the levels of HCHO and NO2 were gen-
erally low, with their column amounts typically approach-
ing their background values of∼5×1015 molecules cm−2

and∼5×1014 molecules cm−2, respectively. These low val-
ues also suggest that during the OP3 measurement period
the HCHO source from biogenic VOC oxidation was weak.
We observe a slight HCHO enhancement during April over
Danum Valley (Fig. 6a), but it is difficult to assign source
attribution.

In Fig. 6c we show the monthly-mean 12-year time series
of (continuous) HCHO and (non-continuous) NO2 columns,
retrieved from the GOME and SCIAMACHY instruments
(De Smedt et al., 2008; Martin et al., 2002, 2003), to-
gether with the total number of fire-counts detected by the

ATSR/AATSR instruments (Arino et al., 2001, 2005). High
correlations between HCHO and NO2 columns and the fire-
count data suggest that biomass burning over Borneo drives
observed variability of these trace gases. We find that anoma-
lously high HCHO and NO2 columns were due to intense
burning periods associated with strong El Nino conditions,
indicated here by the Multivariate El Nino Southern Oscilla-
tion (ENSO) Index (Wolter and Timlin, 1998), as expected.
For example, during 1997/98 an increased number of forest
and peat fires during the warmer and drier El Nino condi-
tions (Levine, 1999) led to extremely high trace gas column
concentrations.

Our recent analysis shows that spatial correlations be-
tween the 12-year HCHO and NO2 data, and the associated
assimilated meteorological data, vegetation activity and fire-
counts were strongest in southernmost Borneo and not over
the Bukit Atur (Danum Valley) region (Barkley et al., 2009).
The low trace gas columns observed over this region during
2008 are consistent with our understanding of past variabil-
ity.
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Figure 6(a). Monthly averaged SCIAMACHY HCHO columns on a 2.5° × 2.0° 
(longitude × latitude) grid, with cloud coverage ≤ 40%.  (b) Monthly averaged OMI 
NO2 columns on a 1.0° × 1.0° grid, with cloud coverage ≤ 40%.  (c) The 
(deseasonalized and normalized) monthly-mean time series anomalies over Borneo of 
HCHO (red) and NO2 (grey) columns retrieved by the GOME and SCIAMACHY 
instruments (De Smedt et al., 2008; Martin et al. 2002).  The total number of 
firecounts detected by the ATSR/AATSR instruments (Arino et al., 2001, 2005) 
(black) and the Multivariate El Nino Southern Oscillation Index (MEI) (Wolter and 
Timlin, 1998) (blue) are also shown. The correlation of the MEI with the HCHO, NO2 
and firecount timeseries is given in the plot-title; the correlation of the HCHO 
timeseries with NO2 and firecounts are shown inset. 
 
 
 
 

Fig. 6. (a). Monthly averaged SCIAMACHY HCHO columns on a 2.5◦
×2.0◦ (longitude× latitude) grid, with cloud coverage≤40%. (b)

Monthly averaged OMI NO2 columns on a 1.0◦×1.0◦ grid, with cloud coverage≤40%. (c) The (deseasonalized and normalized) monthly-
mean time series anomalies over Borneo of HCHO (red) and NO2 (grey) columns retrieved by the GOME and SCIAMACHY instruments (De
Smedt et al., 2008; Martin et al., 2002). The total number of firecounts detected by the ATSR/AATSR instruments (Arino et al., 2001, 2005)
(black) and the Multivariate El Nino Southern Oscillation Index (MEI) (Wolter and Timlin, 1998) (blue) are also shown. The correlation
of the MEI with the HCHO, NO2 and firecount timeseries is given in the plot-title; the correlation of the HCHO timeseries with NO2 and
firecounts are shown inset.

4.2 In-situ observations

4.2.1 Airborne measurements

The in-situ observations made during the OP3 project were
centred on sites representative of natural rainforest and oil
palm plantations (see above), with aircraft flights over each
landscape and over the up- and down-wind oceans (see
above). Figure 7 shows aircraft measurements of six species
taken on flights near to the Bukit Atur GAW station and the
adjacent oil palm plantations. Data are shown from flights
(a) below 500 m above ground level, representative of the
boundary layer and (b) above 2500 m, representative of the
free troposphere. Also indicated on the plots is the approx-
imate boundary between the natural rainforest and the palm
oil plantations.

Within the boundary layer (Fig. 7a), the most striking
concentration difference between the rainforest and plan-
tation is for isoprene. Concentrations over the rainfor-
est were typically 1000–3000 pptv, with concentrations over

the plantation significantly higher (2–5 times higher; 5000–
10 000 pptv). This is consistent with the higher emission rate
of isoprene from oil palm trees (Elaeis guineensis) compared
to most rainforest tree species (Wilkinson et al., 2006). The
plantation landscape also contains associated agro-industrial
activities (e.g. road traffic, oil palm processing plants and ni-
trogenous fertiliser application) and as a result, NOx concen-
trations were also higher compared to the rainforest. How-
ever, whereas the higher isoprene concentrations observed
tended to be in the west of the oil palm plantation area,
higher NOx levels were concentrated in the north and east
of the plantation area, where the majority of plantation pro-
cessing plants were observed to be situated. In this area, typ-
ical NOx levels were 1000–1500 pptv, with up to>2000 pptv
observed when flying through or close to the plume of a pro-
cessing plant. Further south in the plantation area, closer to
the boundary with the rainforest, NOx was much lower, with
levels typically<300 pptv, which is similar to levels that are
observed over the rainforest.
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Figure 7a. Flight track of all data collected from the aircraft below 500 m 
(above ground level), coloured by NOx, isoprene, ozone and organic/sulphate 
aerosol concentrations. 
 
 

Fig. 7a. Flight track of all data collected from the aircraft below
500 m (above ground level), coloured by NOx, isoprene, ozone and
organic/sulphate aerosol concentrations.

CO shows a similar behaviour to NOx, with higher levels
(100–110 ppbv) observed over the northern and eastern plan-
tation area compared to further south and over the rainforest
(70–90 ppbv). Levels of sulphate aerosol show little differ-
ence between the two land use areas, with both exhibiting
aerosol loading of 0.25–1 µg m−3.

The result of the increased levels of primary pollutants
over the oil palm plantation compared to the rainforest can
be seen in the observed ozone, a species that is not directly
emitted into the atmosphere but produced photochemically.
Ozone was significantly higher (20–25 ppbv) over the eastern
area of oil palm plantation, corresponding to the area where
NOx was generally higher. Over the western area of oil palm
plantation, where NOx levels are lower but isoprene levels
are still high, and over the natural rainforest, where both NOx
and isoprene are lower, ozone is observed to be 8–15 ppbv.
This demonstrates the need for increased NOx emissions, as
well as isoprene, in order for significant extra ozone produc-
tion to occur (Hewitt et al., 2009). More organic particulate
was observed over the oil palm plantation than the rainfor-
est, with average loadings of 0.67 µg m−3 and 0.48 µg m−3

respectively, which is consistent with our ground based mea-
surements (see below) and could be due to enhanced produc-
tion of secondary organic material, although primary emis-
sions from the processing plants and human settlements may
also be contributing.

 52 

Figure 7b. Flight track of all data collected from the aircraft above 2500 m 
(in the free troposphere), coloured by NOx, isoprene, ozone and 
organic/sulphate aerosol content. 
 
 

Fig. 7b. Flight track of all data collected from the aircraft above
2500 m (in the free troposphere), coloured by NOx, isoprene, ozone
and organic/sulphate aerosol content.

In the free troposphere (Fig. 7b), very little isoprene or sul-
phate aerosol was observed over either the rainforest or plan-
tation and levels of CO were similar over both areas (∼50–
60 ppbv). NOx levels were higher in the eastern plantation re-
gion (200–300 pptv) compared to the rainforest (<50 pptv);
however this did not lead to increased ozone in the free tro-
posphere over the plantation. This is likely to be due to the
very low levels of isoprene and other biogenic VOCs, which
do not have a long enough lifetime to escape the boundary
layer. Organic aerosol was also very low over both planta-
tion and rainforest in the free troposphere, with an average
organic loading of 0.03 µg m−3.

As described above, some flights were also undertaken
over the ocean, both upwind and downwind of Sabah. Levels
of isoprene and NOx were very low in both cases and there
was no obvious enhancement in ozone in the upwind flights.
These data were collected on only two days; however our ini-
tial interpretation of this is that Sabah is not a large exporter
of primary or processed pollutants to the wider region.

4.2.2 Bukit Atur measurements

Data were taken within the rainforest at the Bukit Atur GAW
station during two four-week intensive measurement periods
(OP3-I and OP3-III). The GAW station has made ozone mea-
surements since January 2007 and these data are shown in
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Figure 8. Ground level ozone concentrations measured at the Bukit Atur GAW site 
2007 - 2008. Data are shown as hourly points with a 24 hour running average. 
 
 
 

Fig. 8. Ground level ozone concentrations measured at the Bukit
Atur GAW site 2007–2008. Data are shown as hourly points with a
24 h running average.

Fig. 8. Gaps in the data are due to lightning strikes rendering
the instrument inoperable. However the plot shows that the
levels of ozone observed during the OP3 intensive periods in
2008 are typical for the site.

Campaign daytime (10:00–14:00) average isoprene and
total monoterpene fluxes measured at 75 m on the GAW
tower were 1.2 and 0.3 mg m−2 h−1 respectively during OP3-
I and 2.1 and 0.49 mg m−2 h−1 during OP3-III (Langford et
al., 2010). These values were comparable to measurements
made above regions of the Congo during the EXPRESSO
field campaigns (Greenberg et al., 1999; Klinger et al., 1998;
Serca et al., 2001) and are somewhat smaller than values re-
ported above regions of the Amazon (Karl et al., 2007; Kuhn
et al., 2007). The typical monoterpene to isoprene ratio was
between 0.2–0.25, which is within the upper range of ratios
reported in other tropical regions (Guenther et al., 2008). The
fluxes of other biogenic VOCs, including methanol, acetone
and acetaldehyde, were very much smaller, accounting for
just 2% of the total measured VOC emissions.

Figure 9a shows hourly averaged median diurnal cycles
for NO, NO2, O3, isoprene and sulphate and organic aerosol
mass concentration, taken at Bukit Atur during June and July
2008. Only data from the six days when flights took place
over the station were used in the averaging for a direct com-
parison between the ground-based and aircraft data in the
boundary layer and free troposphere over the rainforest. Note
that since Bukit Atur is on a ridge, some of the boundary
layer data collected by the aircraft over the surrounding for-
est were at the same or lower altitude (above sea level) as the
GAW tower.

For NO, a peak of∼100 pptv was observed between 07:00
and 08:00 local time, which corresponds to the onset of
NO2 photolysis. This was followed by a drop to∼40 pptv
by 11:00, with NO then remaining fairly constant through-
out the day, until a further drop to∼20 pptv occurred at
around 17:00. NO then remained constant throughout the
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Figure 9a. Average diurnal concentration profiles for NOx, isoprene, ozone and 
organic/sulphate aerosol content for the Bukit Atur ground site and aircraft data taken 
over surrounding rainforest below 500 metres above ground level (BL) and in the free 
troposphere above 2500 metres (FT). The error bars on the aircraft data indicate 1σ 
standard deviations for data taken on the four flights. 
 
 
 

 
 
 
 
 
 
 

Fig. 9a. Average diurnal concentration profiles for NOx, iso-
prene, ozone and organic/sulphate aerosol content for the Bukit
Atur ground site and aircraft data taken over surrounding rainforest
below 500 ms above ground level (BL) and in the free troposphere
above 2500 m (FT). The error bars on the aircraft data indicate 1σ

standard deviations for data taken on the four flights.

night. NO2 exhibits a clear diurnal cycle peaking at around
midnight at 300 pptv, with a minimum of∼150 pptv in
mid-afternoon. These values are comparable to NOx mea-
surements made in Amazonia (e.g. Ganzeveld et al., 2008)
and over West Africa during the AMMA experiments (e.g.
Saunois et al., 2009).

Boundary layer aircraft measurements of NO and NO2
were in reasonable agreement with the ground based mea-
surements, although airborne NO levels were consistently
lower. This, along with the non-zero night-time levels, sug-
gests a local NO source that was diluted throughout the
boundary layer. NO and NO2 levels in the free troposphere
were much lower, being<10 pptv and∼20 pptv, respec-
tively. A full description of ground level NOx data and dis-
cussion of the chemistry is given by Pike et al. (2009) and
Pugh et al. (2010b).

Isoprene was the most abundant terpenoid compound ob-
served and showed a clear diurnal cycle with very low
(<40 pptv) levels at night and a peak of∼2000 pptv in mid
afternoon. This was caused by the dependence of isoprene
emission from trees on temperature and light (Guenther et
al., 1993). Boundary layer isoprene measurements from
the aircraft were in good agreement with the ground-based
Bukit Atur measurements, and free tropospheric isoprene
levels were, as expected, very low. Limonene, alpha-pinene
and beta-pinene were the most abundant monoterpene com-
pounds observed. Relatively high concentrations of 2-ethyl
hexanol and some aldehydes were also seen in samples taken
from within the forest canopy in the vicinity of Bukit Atur.

The concentrations of NO2, peroxy nitrate (RO2NO2) and
alkyl nitrate (RONO2) were measured at Bukit Atur with a
laser induced fluorescence system (Aruffo et al., 2009). The
diurnal cycle of RO2NO2 followed the isoprene diurnal cy-
cle, with maximum concentrations in the afternoon. Since
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RO2NO2 compounds are produced in the oxidation of iso-
prene and other terpenoids, this result provides evidence for
the oxidation of BVOC in the vicinity of the forest canopy.
Additional evidence for the active photochemical processing
of isoprene is provided by the increase in concentrations of
its oxidation products, methyl vinyl ketone and methacrolein,
observed in the afternoons.

The concentrations of HO2+RO2 were measured at
Bukit Atur using PEroxy Radical Chemical Amplification
(PERCA) technology (Karunaharan et al., 2009) over 20
days in OP3-I and 29 days in OP3-III. Mean midday mixing
ratio of 33.5±3.3 and 35.5±3.5 parts per trillion (pptv) were
calculated from the continuous measurements of the sum of
the inorganic and organic peroxy radicals from OP3-I and
OP3-III respectively. The mean net ozone production rate
may then be calculated using:

N(O3) = kp[NO][HO2+RO2]

−{f ·j (O1D)+k1[OH]+k2[HO2]}[O3]

wherekp is a combined rate coefficient for the oxidation of
NO to NO2 by all peroxy radicals andf ·j (O1D)[O3] repre-
sents the fraction of ozone photolysed to yield O(1D) atoms
and then OH (withf being the proportion of O(1D) atoms
which react with H2O to give OH rather than being colli-
sionally deactivated). The rate constantsk1 andk2 are from
the ozone loss reactions:

OH+O3 = HO2+O2 (R1)

HO2+O3 = OH+2O2 (R2)

The net formation of ozone was found to be strongly depen-
dent on the concentration of isoprene, having a linear sensi-
tivity (e.g. d ln(P (O3))/d ln(isoprene)=1)). Since HO2+RO2
are produced during the oxidation of isoprene and other ter-
penoids, taken together with the observations of MVK and
methacrolein formation, this result provides evidence for the
oxidation of BVOC in the vicinity of the forest canopy and
of the role of isoprene in the formation of ozone in the near-
canopy environment during the daytime.

Evidence of BVOC reactivity also comes from differen-
tial optical absorption spectroscopy (DOAS) measurements.
DOAS was used at Bukit Atur to make the first measure-
ments in a tropical rainforest of glyoxal (CHOCHO), one of
the major products of isoprene oxidation by OH. Mixing ra-
tios much higher than in other rural locations were observed,
with a maximum of 1.6 ppbv and average around 600 pptv.
HCHO was also measured, peaking at 4.5 ppbv and with an
average around 3 ppbv. Both species were closely correlated
to isoprene (which should be their major source in this envi-
ronment), and peaked in the early afternoon. A box model
indicates that the production efficiency of glyoxal from iso-
prene is∼10%. Although glyoxal was significantly scav-
enged during rain showers, it is mostly removed by reaction
with OH and photolysis (lifetime at midday∼2.3 h) rather

than uptake on background aerosol in this environment, be-
cause, as discussed earlier, aerosol mass loadings were low.

There was a slight diurnal trend in ground-based O3 mea-
surements, with levels of∼5 ppbv at 06:00, rising to∼8 ppbv
in mid afternoon. Note that the very small amplitude in
the diurnal pattern is typical of a hill-top site (Fowler et al.,
2008) and contrasts with that observed at the in-canopy site
and over the low-lying palm plantations (see below). These
values are comparable to above canopy measurements made
above regions of Amazonia (Karl et al., 2007). Boundary
layer O3 levels also show an increase throughout the day, but
at higher levels (10–13 ppbv), probably because the bound-
ary layer O3 is less depleted by deposition to the canopy
(Matsuda et al., 2006; Cros et al., 2000). These boundary
layer values are slightly less than those measured over Ama-
zonia and West Africa during the GABRIEL and AMMA
campaigns (Ganzveld et al., 2008; Saunois et al., 2009).
There is little vertical structure in the O3 mixing ratio at
higher heights above the rainforest, with levels in the free tro-
posphere being very similar to those in the boundary layer.
Ozone vertical profiles were therefore more like those ob-
served during the monsoon over northern Australia, than
those observed during monsoon break periods (Heyes et al.,
2009).

Concentrations of OH display a clear diurnal cycle,
peaking at solar noon, with significant concentrations ob-
served: up to 8.7×106 molecules cm−3 (60 min average) was
recorded on one day. During the GABRIEL campaign above
Amazonia, average midday boundary layer OH concentra-
tions were 5.75×106 molecules cm−3 (Martinez et al., 2008).
Although j (O1D) levels and humidity were high, the rela-
tively low O3 concentrations limit primary OH production.
The measured OH reactivity was very high, up to 87 s−1 (cor-
responding to a lifetime for OH approaching 10 ms). Accord-
ing to the measurements of reactive hydrocarbons (above),
this reactivity is dominated by reaction with isoprene, indi-
cating that significant OH sources must be present – in ad-
dition to primary production following ozone photolysis – in
order to maintain the elevated levels of OH levels recorded
(Whalley et al., 2010b). The OH diurnal profile was asym-
metric (i.e., lower post-noon than the equivalent time pre-
noon). This may be due to its main measured sink, iso-
prene, being present at higher concentrations in the after-
noon, but the asymmetric profile could also result from other
factors that have yet to be identified. OH concentrations up to
6×105 molecule cm−3 (60 min average) were also recorded
on several nights, consistent with measurements by other
groups in forested environments (Tan et al., 2001), with some
residual OH observed afterj (O1D) had dropped to zero.
Measured concentrations of HO2 and the sum of HO2+RO2
displayed similar profiles.

Boundary layer OH concentrations recorded on the aircraft
over Bukit Atur were similar to those measured at ground
level, whereas aircraft HO2 concentrations were higher than
measured at the ground, a reflection of the elevated NO levels
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at the surface. A full description of the OH, HO2 and OH
reactivity measurements is given in Whalley et al. (2009,
2010a) and Edwards et al. (2009, 2010).

The non-refractory sub-micrometre aerosol as measured
by aerosol mass spectrometry at the Bukit Atur ground site
was mostly composed of organics, sulphate, and ammonium,
with low levels of nitrate and chloride. Average loadings
were 0.74, 0.61, 0.21, 0.04 and 0.01 µg m−3, respectively,
giving a total aerosol loading of 1.61 µg m−3. The sulphate
was observed to be largely neutralised to ammonium sul-
phate. Organics showed a diurnal profile peaking around
21:00. The ensemble organic spectrum had am/z=44 to total
organics ratio of 0.15%, with prominent peaks atm/z=55 and
53, features which would be considered typical of a partially
oxygenated organic aerosol (e.g., Hallquist et al., 2009). The
sulphate showed no distinct diurnal profile, suggesting it was
regional in nature, potentially from the anthropogenic back-
ground, volcanoes or oxidised dimethyl sulphate originating
from marine phytoplankton (Dacey and Wakeham, 1986). Of
all the gas and aerosol species measured at Bukit Atur, sul-
phate aerosol most clearly showed the influence of regional-
scale transport rather than local sources and sinks. Both ni-
trate and chloride showed strong nocturnal peaks that could
be caused by partitioning from the gas phase as the tempera-
ture falls and humidity increases at night.

Slightly larger aerosol concentrations were measured from
the aircraft than the ground, both over the rainforest and
oil palm, with mean total loadings in the boundary layer of
1.66 and 1.78 µg m−3, respectively. Aerosol loadings were
much lower in the free troposphere, with an average total of
0.22 µg m−3. Free-tropospheric aerosol showed a larger sul-
phate contribution of 69%, compared with 43% in the bound-
ary layer.

The water uptake ability of the atmospheric aerosol at
Bukit Atur was probed in both the sub- and super-saturated
regimes with the use of a Hygroscopicity Tandem Differen-
tial Mobility Analyser (HTDMA; Cubison et al., 2005; Gy-
sel et al., 2007) and Cloud Condensation Nucleus counter
(CCNc; Roberts et al., 2005), respectively. Aerosol hygro-
scopic growth factors (GF) at 90% relative humidity (RH)
for particles of dry diameter (D0) from 27 to 217 nm showed
the aerosol to be externally mixed, with a mean growth fac-
tor (GFD0,90%) ranging between 1.3 and 1.6 with increasing
dry diameter and multiple growth factor modes at each dry
size evident. A Scanning Mobility Particle Analyser (SMPS;
TSI 3080) was operated upstream of the CCNc, to supply
quasi-monodisperse aerosol in the size range 30 to 220 nm.
Critical supersaturations (Sc) derived from fraction activated
CCN spectra, showed a diurnal variation in supersaturation
between 0.2 and 0.8% required to activate particles of a given
D0, primarily in the dry diameter range 50 to 120 nm.

4.2.3 Oil palm plantation measurements

Campaign daytime average (10:00–14:00) isoprene fluxes
measured at 15 m at the Sabahmas oil palm plantation site
were 8.6 mg m−2 h−1 during OP3-II (Misztal et al., 2010a).
This is four to seven times greater than the isoprene flux mea-
sured at Bukit Atur (see above). The fluxes of other biogenic
VOCs, including oxygenated species and more exotic com-
pounds (e.g. estragole: Misztal et al., 2010b), were smaller,
contributing∼15% of the total measured VOC emissions.
Net fluxes of monoterpenes were very small (<1% of total
VOC flux).

Figure 9b shows diurnal cycles of data taken at the ground-
based site within the Sabahmas oil palm plantation. Species
plotted are the same as for the Bukit Atur rainforest ground
site, with the exception of NO and NO2 which were not mea-
sured at ground level at Sabahmas. Boundary layer NO and
NO2 levels show slightly higher levels compared to the rain-
forest but the scatter on the data (indicated by the 1σ error
bars) is much larger. This is indicative of the high NOx con-
centrations observed in certain areas of the plantation land-
scape, as described above. Free troposphere NO and NO2
levels over the plantation were again much lower and very
similar to those observed over the rainforest.

Ground based isoprene data show a similar diurnal cycle
to the rainforest, with near zero levels at night, but with an
earlier peak at around 12:00. Isoprene concentrations are
much higher in the plantation, with peak daytime levels of
∼16 000 pptv. Isoprene concentrations in the boundary layer
over the plantation show a very similar diurnal profile, but
with a significantly lower peak of∼5000 pptv. The ground-
based measurements were made at the top of the oil palm
canopy, and hence this difference may be explained by dilu-
tion. Also, since the oil palm plantations are generally situ-
ated in low-lying, flat land, the aircraft measurements were
always made at a significant height above the ground level
measurements, unlike at Bukit Atur where the aircraft was
able to fly past the base of the GAW tower, located on a hill.

Measurements of O3 at the ground in the plantation ex-
hibit a very different diurnal cycle compared to the rainfor-
est, with near zero night-time concentrations and a peak of
∼5 ppbv at 11:00–12:00. This is followed by a steady de-
crease throughout the day until O3 reaches close to zero at
around 23:00. This general pattern is typical of that for a low-
lying site, where O3 lost by reaction with NO emitted from
fertilised plantation soils and deposition at night is not re-
plenished by mixing from aloft, due to the more ready estab-
lishment of a stable boundary layer compared with elevated,
more windy, sites (Fowler et al., 2008). Data taken in the
boundary layer above the plantation show a similar diurnal
cycle to the rainforest, with an increase throughout the day
to a peak of∼15 ppbv. This mean value is 2 to 3 ppbv higher
than the rainforest levels, but as indicated by the 1σ error
bars there is scatter in this value, which reflects the variabil-
ity in the NOx and its impact on O3 concentrations. Increased
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Figure 9b. Average diurnal profiles for isoprene, ozone and organic/sulphate aerosol 
content for the oil palm plantation ground site and aircraft data (also with NOx) taken 
over surrounding oil palm plantations and below 500 m above ground level (BL) and 
in the free troposphere above 2500 m (FT). The error bars on the aircraft data indicate 
1σ standard deviations for data taken on the four flights. 
 
 
 

 

Fig. 9b. Average diurnal profiles for isoprene, ozone and or-
ganic/sulphate aerosol content for the oil palm plantation ground
site and aircraft data (also with NOx) taken over surrounding oil
palm plantations and below 500 m above ground level (BL) and in
the free troposphere above 2500 m (FT). The error bars on the air-
craft data indicate 1σ standard deviations for data taken on the four
flights.

deposition to the oil palm trees, reaction with NOx from local
sources, and reaction with isoprene, are three possible con-
tributing factors for the low concentrations and earlier peak
of day-time O3 observed on the ground in the plantation.

The total aerosol loading, as measured by the AMS, at
the oil palm site was on average 1.6 µg m−3, similar to the
aerosol loading measured by AMS at the forest site (Nemitz
et al., 2009, 2010). The mass was dominated by organic
aerosol, which made up on average 65% of the total mass,
with sulphate contributing 20% of the total mass. The or-
ganic aerosol exhibits a clear diurnal trend with two maxima,
occurring at approximately 08:00 and 15:00 local time. The
ensemble mass spectrum measured at the oil palm resem-
bles the classic oxygenated organic aerosol spectrum (e.g.
Hallquist et al., 2009), dominated by mass fragmentm/z44,
resulting from carboxylic acid functionality. An examination
of mass fragment-specific diurnal profiles indicates that frag-
ments thought to be associated with less oxygenated organic
aerosol make a smaller contribution to the afternoon max-
imum in the organic mass relative to those masses arising
from oxygenated fragments, e.g.m/z44.

Sulphate aerosol shows a slightly different trend in mass to
the total organics, with a broader maximum during the day-
time, although there was large day-to-day variability. Both
the nitrate and chloride fractions showed an obvious max-
imum, coincident with the morning organic aerosol maxi-
mum, but both lacked the increase in mass observed in the
organic fraction during the afternoon.

5 Modelling and assessment

As stated in the introduction above, a fundamental aim of
the OP3 project was to understand the role played by bio-
genic emissions from the tropical rainforest: what is the na-
ture of the emissions, how are they transformed and how do
these processes then impact local, regional and hemispheric
scale atmospheric chemistry; what will be the implications
of global change for these processes and their impacts?

To address these questions, the OP3 project employed a
range of models, varying in their spatial scale of interest and
chemical complexity, as shown in Table 3. Thus, a model of
transport and chemistry through and above the forest canopy
has been used to address the canopy measurements, to study
vertical transport of gas and aerosol species, their emission
and deposition, and chemical transformation (Ryder et al.,
2009). A range of chemical box models (some run along air
parcel trajectories) has been employed to study local chem-
istry, addressing both the ground based and aircraft measure-
ments. These very detailed models aim to inform the chemi-
cal mechanisms used in our regional and global models that,
in turn, are used to study the impact of the biogenic emis-
sions at the regional and wider scales. They are also used to
investigate transport and variability.

Understanding the fast photochemistry processes (mainly
involving HOx and ROx) is carried out using constrained box
models. These use the observed concentrations of species
providing HOx sources, sinks and inter-conversion pathways,
to calculate the concentrations of OH, HO2 and other short
lived species such as the sum of peroxy radicals (RO2), for
comparison with observations. Insight from these calcula-
tions allows our understanding of the complex organic chem-
istry occurring in this region to be evaluated, the level of
chemical complexity required to capture these processes to
be quantified and the impact of the approximations made in
the chemical transport models to be evaluated.

The constrained-box-model focus is split between the
ground-based and aircraft data. One investigation has used
the Master Chemical Mechanism, a near-explicit mechanism
that considers the degradation of a suite of hydrocarbons in
the atmosphere (Jenkin et al., 2003; Saunders et al., 2003).
For both ground and aircraft data, a zero-dimensional box
model is constrained with the observed concentrations of
longer-lived species such as hydrocarbons, NOx, O3, rele-
vant meteorological data and observed photolysis rates; the
models predict radical concentrations which can be com-
pared with those measured. The ground-based model is a
continuation of a previous modelling framework (e.g. Em-
merson et al., 2007) that has been used extensively for sim-
ilar comparisons (Heard and Pilling, 2003). The aircraft
based model uses the Dynamically Simple Model of Atmo-
spheric Chemical Complexity (DSMACC) (Emmerson and
Evans, 2009) model and follows previous aircraft based work
(Jaegle et al, 2000; Olson et al., 2006). Preliminary results
show that for the first (April–May) ground-based campaign,
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Table 3. Modelling tools employed in the OP3 project.

Model name Brief description Domain References

Canopy model 1-D transport and
chemistry

Ground to canopy
top – six levels

Ryder et al. (2009)

MCM – York 4500 species,>12 500
reactions. Near-explicit
chemistry; long lived
gases constrained by
observations

Ground-based box Emmerson et al. (2007)

Dynamically Simple
Model of Atmospheric
Chemical Complexity
(DSMACC)

Reduced chemistry;
long lived gases
constrained by
observations

Steady state calcula-
tions along aircraft
flight track

Emmerson and Evans
(2009)

CiTTyCAT 200 species,>800
reactions including
MIM2 isoprene
scheme, Jenkin alpha-
pinene and RACM
limonene

Boundary layer: one
well-mixed layer in
daytime, two at night.

Pugh et al. (2010b)

Cambridge p-
TOMCAT chemical
transport model

63 species, 177 reac-
tions. Simple organic
mechanism, including
isoprene. Separate bro-
mocarbon scheme.

Global. Variable reso-
lution, usually 3◦×3◦

or 0.5◦×0.5◦

Cook et al. (2007),
Voulgarakis et al.
(2009)

p-TOMCAT box As above Box model Pike et al. (2009)

there is reasonable agreement between modelled and mea-
sured OH on some days, but an under-prediction on oth-
ers. The OH loss for the OP3 campaigns was dominated
by isoprene chemistry, with smaller contributions fromγ t

terpinene and limonene.γ -Terpinene becomes much more
important at night-time, when isoprene emissions are effec-
tively zero. Modelling of the aircraft data is in a more pre-
liminary state but shows relatively good agreement between
the observed and simulated HO2 with poorer agreement for
the OH. Whether this reflects issues with making OH obser-
vations from aircraft or with our understanding of the chem-
istry of isoprene will require further analysis.

Reduced chemical mechanisms, of the kind traditionally
employed in global chemical transport models, have also
been used in box model mode, to compare against the mea-
sured constituent data and to investigate the significance of
processes. Thus, the CiTTyCAT model (Wild et al., 1996;
Evans et al., 2000; Emmerson et al., 2004; Donovan et al.,
2005) has been used to study the chemical regimes probed
by the OP3 measurements, both over the rainforest and over
palm oil plantations, and to explore how local air quality
could be affected should palm oil (a major isoprene-emitter)

become an even more dominant crop, replacing the rainfor-
est. Hewitt et al. (2009) show that under these circumstances,
what happens to local and regional-scale emissions of NOx
will be crucial. Without control of NOx emissions, the levels
of ozone could become unacceptably high, damaging both
crop and human health.

We find that CiTTyCAT can represent the broad features of
atmospheric composition above a tropical rainforest (Pugh et
al., 2010a). In particular, the model can fit daytime NOx and
O3 chemistry. Ambient concentration measurements have
been used to estimate a net NO flux of 5 µg N m−2 h−1. De-
position of intermediate VOC oxidation products can have
a very significant influence on their concentrations and the
chemistry of the boundary layer, highlighting the need for
further investigation into deposition processes over tropical
forests.

Another box model study with a reduced chemical mech-
anism has focussed on the ground-based measurements of
ozone and NOx (Pike et al., 2009). This study suggests that
the chemical mechanism included in the Cambridge global
chemistry transport model, p-TOMCAT (Cook et al., 2007;
Voulgarakis et al., 2009a, b) can reproduce the measurements
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if a parametrization of mixing out of and into the boundary
layer is included.

The Cambridge p-TOMCAT global model has been used
to look at regional-scale chemistry. Figure 10 (Pike et al.,
2009) shows surface ozone concentrations from two calcu-
lations for April 2008, with the model run at two differ-
ent spatial resolutions (approx 3◦

×3◦ and 0.5◦×0.5◦, re-
spectively). At the lower resolution (typical of multi-annual
integrations), the model significantly overestimates surface
ozone over Borneo. Little spatial structure is evident and de-
tailed flight track comparisons (not shown) fail to reproduce
much observed structure. In contrast, at the high resolution,
the model now captures a significant land – sea difference in
surface ozone, driven by deposition over the land. Modelled
ozone concentrations are still somewhat higher than observed
but are now closer to the observations.

6 Conclusions

The overall aim of the OP3 project was to better understand
the interactions that exist between SE Asian rainforests, at-
mospheric composition and, ultimately, the Earth’s climate
system. In pursuing this aim, an extensive field deployment
was carried out in 2008, supported by satellite data retrievals
and modelling studies. The field deployment, from April to
the end of July 2008, comprised extensive composition and
flux measurements within and above the rainforest canopy,
along with a more limited set of measurements in and above
an oil palm plantation. Composition measurements across
most of the state of Sabah in northern Borneo, and out to sea
on both windward and leeward sides of the island, were pro-
vided by flights of the FAAM BAe 146. Remote sensing of
land cover has shown that the chosen sites were representa-
tive of large areas of Borneo and the rest of insular SE Asia;
long-term meteorological and ozone data gathered as part of
the Global Atmosphere Watch programme show that weather
and ozone mixing ratios during the time period of the field
deployment were typical of the long term record.

Composition measurements show that the rainforest site
was not impacted significantly by anthropogenic pollution,
and this is confirmed by satellite retrievals of NO2 and
HCHO. The dominant modulators of atmospheric chemistry
at the rainforest site were therefore emissions of BVOCs and
soil emissions of reactive nitrogen oxides. At the observed
BVOC:NOx volume mixing ratio (∼100 pptv/pptv), current
chemical models suggest that daytime maximum OH con-
centrations should be ca. 105 radicals cm−3, but observed OH
concentrations were an order of magnitude greater than this.
We confirm, therefore, previous measurements which sug-
gest that an unexplained source of OH must exist above trop-
ical forests (Lelieveld et al., 2008) and continue to interrogate
the data to find explanations for this.

Marked differences in BVOC and NOx concentrations,
and in BVOC fluxes, were measured in the rainforest and the
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Figure 10. Mean surface ozone concentrations (ppbv) for April 2008 taken from two 
integrations of the Cambridge p-TOMCAT chemical transport model. The upper plot 
shows mean ozone from an integration at 3 x 3 degrees horizontal resolution. At this 
resolution, Borneo is poorly represented and ozone is over estimated. The lower plot 
shows the same result but when the model is run at 0.5 x 0.5 degree horizontal 
resolution. Ozone concentrations have improved and there is a noticeable land-sea 
difference consistent with the shape of the island. 
 
 
 
 
 

	  
	  

	  
	  

Fig. 10. Mean surface ozone concentrations (ppbv) for April 2008
taken from two integrations of the Cambridge p-TOMCAT chem-
ical transport model. The upper plot shows mean ozone from an
integration at 3×3 degrees horizontal resolution. At this resolu-
tion, Borneo is poorly represented and ozone is over estimated.
The lower plot shows the same result but when the model is run at
0.5×0.5 degree horizontal resolution. Ozone concentrations have
improved and there is a noticeable land-sea difference consistent
with the shape of the island.

oil palm plantation. By an accident of the non-linearity of
boundary-layer chemistry, ozone mixing ratios over the two
landscapes were similar, although plumes of higher ozone
were observed in air impacted by emissions from oil-palm
processing plants.

The land-sea mosaic of SE Asia makes it difficult for
global atmospheric chemistry-and-transport models run at
typical resolution to capture the observed atmospheric com-
position; runs at higher horizontal resolution provide much
better agreement with measurements. A missing OH source
notwithstanding, simple chemistry schemes, as currently im-
plemented in most global models, can match observed ozone
and NOx diurnal patterns, if a parametrization of mixing out
of and into the boundary layer is included.

Overall, the SE Asian rainforest has shown itself to have
significant differences from the more intensively studied
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Amazon rainforest – in tree speciation and, hence, in BVOC
emission potential, and in the apparent lack of seasonality
of emissions. It also exhibits significant differences to the
oil palm plantations that are replacing it. A striking simi-
larity, however, is the sustained oxidative capacity of the at-
mosphere above the rainforest in both SE Asia and Amazo-
nia. Our current inability to adequately explain this limits
the confidence we can have in our projections of how atmo-
spheric composition and climate may change in the future.
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F., Monod, A., Pŕevôt, A. S. H., Seinfeld, J. H., Surratt, J. D.,
Szmigielski, R., and Wildt, J.: The formation, properties and im-
pact of secondary organic aerosol: current and emerging issues,
Atmos. Chem. Phys., 9, 5155–5235, 2009,
http://www.atmos-chem-phys.net/9/5155/2009/.

Harrison, R. M., Yin, J., Tilling, R. M., Cai, X., Seakins, P. W.,
Hopkins, J. R., Lansley, D. L., Lewis, A. C., Hunter, M. C.,
Heard, D. E., Carpenter, L. J., Creasy, D. J., Lee, J. D., Pilling,
M. J., Carslaw, N., Emmerson, K. M., Redington, A., Derwent,
R. G., Ryall, D., Mills, G., and Penkett, S. A.: Measurement
and modelling of air pollution and atmospheric chemistry in the
UK West Midlands conurbation: Overview of the PUMA Con-
sortium project, Sci. Total Environ., 360, 5–25, 2006.

Heard, D. E., Read, K. A., Methven, J., Al-Haider, S., Bloss, W.
J., Johnson, G. P., Pilling, M. J., Seakins, P. W., Smith, S. C.,
Sommariva, R., Stanton, J. C., Still, T. J., Ingham, T., Brooks,
B., De Leeuw, G., Jackson, A. V., McQuaid, J. B., Morgan, R.,
Smith, M. H., Carpenter, L. J., Carslaw, N., Hamilton, J., Hop-
kins, J. R., Lee, J. D., Lewis, A. C., Purvis, R. M., Wevill, D. J.,
Brough, N., Green, T., Mills, G., Penkett, S. A., Plane, J. M. C.,
Saiz-Lopez, A., Worton, D., Monks, P. S., Fleming, Z., Rickard,
A. R., Alfarra, M. R., Allan, J. D., Bower, K., Coe, H., Cubison,
M., Flynn, M., McFiggans, G., Gallagher, M., Norton, E. G.,
O’Dowd, C. D., Shillito, J., Topping, D., Vaughan, G., Williams,
P., Bitter, M., Ball, S. M., Jones, R. L., Povey, I. M., O’Doherty,
S., Simmonds, P. G., Allen, A., Kinnersley, R. P., Beddows, D.
C. S., Dall’Osto, M., Harrison, R. M., Donovan, R. J., Heal, M.
R., Jennings, S. G., Noone, C., and Spain, G.: The North Atlantic
Marine Boundary Layer Experiment (NAMBLEX). Overview of
the campaign held at Mace Head, Ireland, in summer 2002, At-
mos. Chem. Phys., 6, 2241–2272, 2006,
http://www.atmos-chem-phys.net/6/2241/2006/.

Heard, D. E. and Pilling, M. J.: Measurement of OH and HO2 in
the troposphere, Chem. Rev., 103, 5163–5198, 2003.

Helfter, C., Phillips, G. J., Coyle, M., Di Marco, C. F., Langford, B.,
Whitehead, J., Dorsey, J. R., Gallagher, M. W., Sei, E. Y., Fowler,
D., and Nemitz, E.: Momentum and heat exchange above South
East Asian rainforest in complex terrain. Atmos. Chem. Phys.
Discuss., in preparation, 2010.

Hewitt, C. N., MacKenzie, A. R., Di Carlo, P., Di Marco, C. F.,
Dorsey, J. R., Evans, M., Fowler, D., Gallagher, M. W., Hopkins,
J. R., Jones, C. E., Langford, B., Lee, J. D., Lewis, A. C., Lim,
S. F., McQuaid, J., Misztal, P., Moller, S. J., Monks, P. S., Ne-
mitz, E., Oram, D. E., Owen, S. M., Phillips, G. J., Pugh, T. A.
M., Pyle, J. A., Reeves, C. E., Ryder, J., Siong, J., Skiba, U., and
Stewart, D. J.: Nitrogen management is essential to prevent trop-
ical oil palm plantations from causing ground-level ozone pollu-
tion, P. Natl. Acad. Sci. USA, 106, 18447–18451, 2009.

Ingham, T., Goddard, A., Whalley, L. K., Furneaux, K. L., Edwards,
P. M., Seal, C. P., Self, D. E., Johnson, G. P., Read, K. A., Lee,
J. D., and Heard, D. E.: A flow-tube based laser-induced fluo-
rescence instrument to measure OH reactivity in the troposphere,
Atmos. Meas. Tech., 2, 465–477, 2009,
http://www.atmos-meas-tech.net/2/465/2009/.

Jaegle, L., Jacob, D. J., Brune, W. H., Faloona, I., Tan, D., Heikes,

B. G., Kondo, Y., Sachse, G. W., Anderson, B., Gregory, G. L.,
Singh, H. B., Pueschel, R., Ferry, G., Blake, D. R., and Shetter,
R. E.: Photochemistry of HOx in the upper troposphere at north-
ern midlatitudes, J. Geophys. Res.-Atmos., 105(D3), 3877–3892,
2000.

Jenkin, M. E., Saunders, S. M., Wagner, V., and Pilling, M. J.: Pro-
tocol for the development of the Master Chemical Mechanism,
MCM v3 (Part B): tropospheric degradation of aromatic volatile
organic compounds, Atmos. Chem. Phys., 3, 181–193, 2003,
http://www.atmos-chem-phys.net/3/181/2003/.

Kanakidou, M., Seinfeld, J. H., Pandis, S. N., Barnes, I., Dentener,
F. J., Facchini, M. C., Van Dingenen, R., Ervens, B., Nenes, A.,
Nielsen, C. J., Swietlicki, E., Putaud, J. P., Balkanski, Y., Fuzzi,
S., Horth, J., Moortgat, G. K., Winterhalter, R., Myhre, C. E.
L., Tsigaridis, K., Vignati, E., Stephanou, E. G., and Wilson, J.:
Organic aerosol and global climate modelling: a review, Atmos.
Chem. Phys., 5, 1053–1123, 2005,
http://www.atmos-chem-phys.net/5/1053/2005/.

Kaye, P. H., Stanley, W. R., Hirst, E., Foot, E. V., Baxter, K. L.,
and Barrington, S. J.: Single particle multichannel bio-aerosol
fluorescence sensor, Optics Express, 13(10), 3583–3593, 2005.

Klinger, L. F., Greenberg, J., Guenther, A., Tyndall, G., Zimmer-
man, P., M’Bangui, M., and Moutsambote, J. M.: Patterns in
volatile organic compound emissions along a savanna-rainforest
gradient in central Africa, J. Geophys. Res.-Atmos., 103, 1443–
1454, 1998.

Langford, B., Davison, B., Nemitz, E., and Hewitt, C. N.: Mix-
ing ratios and eddy covariance flux measurements of volatile or-
ganic compounds from an urban canopy (Manchester, UK), At-
mos. Chem. Phys., 9, 1971–1987, 2009,
http://www.atmos-chem-phys.net/9/1971/2009/.

Langford, B., Misztal, P. Nemitz, E., Davison, B., Helfter, C., Lee,
J., MacKenzie, A. R., and Hewitt, C. N.: Fluxes of volatile or-
ganic compounds from a south-east Asian tropical rainforest, At-
mos. Chem. Phys. Discuss., in preparation, 2010.

Leff, B., Ramankutty, N., and Foley, J. A.: Geographic distribution
of major crops across the world, Global Biogeochem. Cy., 18,
GB1009, doi:10.1029/2003GB002108, 2004.

Leigh, R. J., Corlett, G. K., Friess, U., and Monks, P. S.: Concurrent
multiaxis differential optical absorption spectroscopy system for
the measurement of tropospheric nitrogen dioxide, Appl. Optics,
45, 7504–7518, 2006.

Lelieveld, J., Butler, T. M., Crowley, J. N., Dillon, T. J., Fischer,
H., Ganzeveld, L., Harder, H., Lawrence, M. G., Martinez, M.,
Taraborrelli, D., and Williams, J.: Atmospheric oxidation capac-
ity sustained by a tropical forest, Nature, 452, 737–740, 2008.

Levine, J.: The 1997 Fires in Kalimantan and Sumatra, Indonesia:
Gaseous and Particulate Emissions, Geophys. Res. Lett., 26(7),
815–818, 1999.

Lewis, A. C., Evans, M. J., Methven, J., Watson, N., Lee, J. D.,
Hopkins, J. R., Purvis, R. M., Arnold, S. R., McQuaid, J. B.,
Whalley, L. K., Pilling, M. J., Heard, D. E., Monks, P. S., Parker,
A. E., Reeves, C. E., Oram, D. E., Mills, G., Bandy, B. J., Stew-
art, D., Coe, H., Williams, P., and Crosier J.: Chemical compo-
sition observed over the mid-Atlantic and the detection of pollu-
tion signatures far from source regions, J. Geophys. Res.-Atmos.,
112, D10S39, doi:10.1029/2006JD007584, 2007.

Lewis, A. C., Hopkins, J. R., Carpenter, L. J., Stanton, J., Read, K.
A., and Pilling, M. J.: Sources and sinks of acetone, methanol,

Atmos. Chem. Phys., 10, 169–199, 2010 www.atmos-chem-phys.net/10/169/2010/

http://www.atmos-chem-phys.net/9/5155/2009/
http://www.atmos-chem-phys.net/6/2241/2006/
http://www.atmos-meas-tech.net/2/465/2009/
http://www.atmos-chem-phys.net/3/181/2003/
http://www.atmos-chem-phys.net/5/1053/2005/
http://www.atmos-chem-phys.net/9/1971/2009/


C. N. Hewitt et al.: The OP3 project: introduction, rationale, location characteristics and tools 197

and acetaldehyde in North Atlantic marine air, Atmos. Chem.
Phys., 5, 1963–1974, 2005,
http://www.atmos-chem-phys.net/5/1963/2005/.

Martin, R. V., Jacob, D. J., Chance, K., Kurosu, T. P., Palmer, P.
I., and Evans, M. J.: Global inventory of nitrogen oxide emis-
sions constrained by space-based observations of NO2 columns,
J. Geophys. Res., 108(D17), 4537, doi:10.1029/2003JD003453,
2003.

Martin, R. V., Chance, K., Jacob, D. J., Kurosu, T. P., Spurr, R. J.
D., Bucsela, E., Gleason, J. F., Palmer, P. I., Bey, I., Fiore, A. M.,
Li, Q. B., Yantosca, R. M., and Koelemeijer, R. B. A.: An im-
proved retrieval of tropospheric nitrogen dioxide from gome, J.
Geophys. Res.-Atmos., 107, 4437, doi:10.1029/2001JD001027,
2002.

Martinez, M., Harder, H., Kubistin, D., Rudolf, M., Bozem, H.,
Eerdekens, G., Fischer, H., Gurk, C., Klüpfel, T., Königstedt,
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