
UCLA
UCLA Electronic Theses and Dissertations

Title
Constrained Inference and Decoding for Controlling Natural Language Processing Models

Permalink
https://escholarship.org/uc/item/5r18q1t7

Author
Meng, Tao

Publication Date
2024

Peer reviewed|Thesis/dissertation

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/5r18q1t7
https://escholarship.org
http://www.cdlib.org/

UNIVERSITY OF CALIFORNIA

Los Angeles

Constrained Inference and Decoding for Controlling

Natural Language Processing Models

A dissertation submitted in partial satisfaction

of the requirements for the degree

Doctor of Philosophy in Computer Science

by

Tao Meng

2024

© Copyright by

Tao Meng

2024

ABSTRACT OF THE DISSERTATION

Constrained Inference and Decoding for Controlling

Natural Language Processing Models

by

Tao Meng

Doctor of Philosophy in Computer Science

University of California, Los Angeles, 2024

Professor Kai-Wei Chang, Chair

With the rapid development of neural models in natural language processing (NLP), large

and deepmodels achieve state-of-the-art across NLP tasks, and are deployed in real-world

applications. Models become black-box to our human. Therefore, effective approaches

controlling NLP moedls are demanding. Controlling helps model solve particular tasks.

For example, when we ask the model to generate a recipe, we have a constraint about

what ingredients we want the recipe to contain. In addition, as NLP researchers, we are

responsible for preventing models from generating offensive or other unpredictable out-

puts, otherwise deploying them in real-world applications may cause society issues. To

control the NLP models, my research focus on injecting constraints, a set of rules that the

model must follow, to control the model behaviour via constrained inference and decod-

ing. My research goal is to develop techniques leveraging different kinds of constraints

in various scenarios for structure prediction models and large language models. Gener-

ally, constraints represent human knowledge and expectation to the model outputs, and

constrained inference is the bridge between human beings and the neural models.

ii

The dissertation of Tao Meng is approved.

Yizhou Sun

Cho-Jui Hsieh

Adnan Youssef Darwiche

Kai-Wei Chang, Committee Chair

University of California, Los Angeles

2024

iii

To my family.

iv

TABLE OF CONTENTS

1 Introduction . 1

2 Background and RelatedWork . 5

2.1 Integer Linear Programming (ILP) . 5

2.2 Cross-Lingual Dependency Parsing . 6

2.3 Large Language Models (LLMs) . 6

2.4 Applications of Constrained Inference . 7

3 Constrained InferencewithPre-definedConstraintsonDistributionGap

8

3.1 Distribution Gap and Hard Constraints . 8

3.2 Corpus-Level Constraints and Inference . 9

3.2.1 Corpus-Level Constraints . 10

3.2.2 Lagrangian Relaxation . 11

3.3 Distributional Constraints and Inference 14

3.3.1 Distributional Constraints . 14

3.3.2 Posterior Regularization Inference in Model Transfer 15

4 Application: MitigatingGenderBiasAmplificationwithConstraintsBridg-

ing the Bias Gap . 19

4.1 Background and Related Work . 19

4.2 Constraints and Inference Formulations . 20

4.3 Experiments Setup . 22

v

4.4 Bias Amplification in Distribution . 23

4.5 Bias Amplification Mitigation . 23

5 Application: Cross-lingualDependencyParsingwithConstraintsBridg-

ing theWord Order Gap between Languages 27

5.1 Background:Graph-Based Parser . 27

5.2 Corpus-Level Constraints about Word Order 28

5.3 Formulations . 30

5.3.1 Model and Inference . 30

5.3.2 Constraints . 30

5.4 Experimental Results . 31

5.5 Setup . 31

5.6 Parsing Performances . 34

5.7 Contributions of Individual Constraints . 35

6 An ILP Framework for Mining Constraints from Data 38

6.1 Mining Constraints with Integer Linear Programming 39

6.1.1 Mining Inequality Constraints . 40

6.1.2 Mining Equality Constraints . 43

6.1.3 Latent Variables . 44

6.2 Experiments . 45

6.2.1 Sudoku . 45

6.2.2 Minimal Spanning Tree . 47

6.2.3 Hierarchical Multi-label Classification 49

6.3 Analysis and Discussion . 52

vi

6.3.1 Feasible Set Size Analysis . 52

6.3.2 Discussion about Running Time . 53

7 Controllable Text Generation with Neurally-Decomposed Oracle . . . 57

7.1 Introduction . 57

7.2 Methodology . 60

7.2.1 Setup: Notations and Problem Formulation 60

7.2.2 Token-level Guidance and Closed-Form Solution For q∗ 61

7.2.3 Approximating RC
p by NADO and Theoretical Analysis 62

7.2.4 Training NADO . 63

7.2.5 Sampling . 65

7.3 Experiments . 66

7.3.1 Text Generation with Lexical Constraints 66

7.3.2 Machine Translation with Formality Change 70

7.4 Conclusion . 71

8 Application: Controllable Generation with Large Language Models in

Detoxification . 77

8.1 Introduction . 77

8.2 Experiments . 79

8.2.1 Comparsion of Detoxification Methods 80

8.2.2 The Effect of Coupling Models . 80

8.2.3 The Effect of Base Model Size . 81

8.2.4 The Effect of Auxiliary Model Size 82

vii

9 Attribute Controlled Fine-tuning for Large Language Models 83

9.1 Introduction . 83

9.2 Methodology . 85

9.2.1 Formalization and Algorithm Overview 85

9.2.2 Fine-tuning LLM with Posterior Regularization 86

9.2.3 Optimal Distribution in Feasible Region 87

9.2.4 Estimating Rp
C from Training Data and LLM 88

9.2.5 Iteratively Updating pθ by Regularized Fine-tuning 88

9.2.6 Parallel Fine-tuning . 91

9.2.7 Adaptive Regularizer . 91

9.3 Experiments . 92

9.3.1 Detoxification . 93

9.3.2 Multi-task Scenario . 94

9.3.3 Toxicity Classification . 97

9.4 Conclusion . 98

10 Conclusion . 99

viii

LIST OF FIGURES

4.1 An instance from the imSitu dataset. Given an input image, the task it to iden-

tify the activity depicted in the image as well as the objects (noun) and their

semantic role. 20

4.2 x-axis and y-axis are the bias toward male in the training corpus and the pre-

dictions, respectively. Each dot stands for an activity. The blue reference lines

indicate the bias score in training is equal to that in test and the dash lines in-

dicate the margin (= 0.05). The dots in red stand for being out of margin and

violating the constraints. The black lines are linear regressions of the dots. Re-

sults show that we can almost remove the bias amplification in distributions

(see 4.2a and 4.2b), and reduce 30.9% amplification in top predictions (see

4.2c and 4.2d) after applying posterior regularization. 25

4.3 The curve of training and test accuracy, and bias amplificationwith the number

of training epochs. The optimal model evaluated on the development set is

found in the grey shade area. 26

5.1 Ratio gap v.s. ∆ perf. 37

5.2 The performance improvement is highly correlated to the difference in corpus

linguistic statistics (estimated by weighted average ratio gaps in constraints)

between target and source languages. (The Pearson Correlation Coefficient is

0.938.) . 37

6.1 The pentagons (blue solid line) in Fig. 6.1a and 6.1b show the outer and the

inner polytopes of 5 training samples {wi,yi}5i=1 (see Sec. 6.1.1). The dashed

red line shows the boundary of the feasible set (yellow region). We also show

wi as the normal vector of the outer line. 40

ix

6.2 Results on ImCLEF07A in EM accuracy using base models with different per-

formance levels. 50

6.3 On the left Fig. 6.3a shows the empirical and expectation sizes of outer and

inner polytope, comparing with ground truth. E[|SO|](1/(M +1)) is the expec-

tation of outer polytope size estimated by pj = 1
M+1

while E[|SO|] is estimated

with empirical pj. Note that the empirical inner polytope and its theoretical

curve almost coincide. On the right Fig. 6.3b shows the distribution of pj esti-

mated from 20, 000 training data comparing with 1/(M + 1). 54

6.4 The trade-off between inference time and model accuracy when an approxi-

mate inference solver is used. Results are on MST. The x-axis is the allowed

maximum relative gap between the returned solution and the optimum so-

lution. On the left figure, the performance of our approach drops when the

MIPGap is large, but our approach still significantly outperforms the neural

network baseline (10.4%). The right figure shows that the inference time sig-

nificantly reduces when MIPGap gets large. 56

7.1 Illustration of pipeline incorporating NADO (left) andmodel architecture (right). 58

7.2 Comparative study of the effectiveness of regularization in NADO training. . . 68

8.1 Comparative study of the effect of coupling in NADO architecture. x, y-axis are

the toxicity score of the prompts and generated texts, respectively. 81

9.1 A conceptually visualization of base LLM distribution pθ and optimal distribu-

tion q∗ in fine-tuning. The polygon is representing the feasible region Q where

the constraints are satisfied. On (a) it shows the regularizer term is defined as

the closest distance from pθ to Q. Regularized by KL-divergence from q, on (b)

we show the LLM distribution pθ is gradually pushed towards the feasible region. 89

x

9.2 An illustration of sequential and parallel fine tuning for three iterations. We

use T (time step) to indicate the time. Oracle, symbolizes the process of sam-

pling data from an LLM, labeling with an oracle and training the NADOmodel.

On the left, we show sequential execution with the grey arrows showing the

direction of flow. On the right, we show the parallelized execution. Note that

in this case, all components (left to right) of each iteration is run at the same

time step (except in iteration 1). Note also, that the grey dashed arrows (from

iteration 2 onwards) do not flow across components within the same iteration

level, indicating the independence of each component from other components

in the same level. This allows them to be executed in parallel. 90

xi

LIST OF TABLES

5.1 Cross-lingual transfer performances for dependency parsing on 19 languages

from 13 different families, with the performance on the source language (En-

glish) as a reference. Performances are reported per UAS (we observe simi-

lar trends for LAS). We compare the baseline model [AZM19] with our two al-

gorithms (Lagrangian relaxation and posterior regularization) considering the

oracle constraints, and the corpus-statistics constraints compiled fromWALS.

Columns∆WALS denote the improvements bring by leveragingWALS feature

as constraints. We also create a Features column to show three WALS features

[83A,85A,87A] for each language. The values {1, -1, 0, ?} stand for the same as

English, opposite to English, no dominant order, and feature missing, respec-

tively. 32

5.2 Ablation study: averageUASof baselinemodelwith different sets of constraints.

Proj. represent projective constraints. C1-C3 and oracle are introduced in 5.5.

The improvements for projective constraint and oracle are compared to base-

line. For the other three constraint sets the improvement is compared tomodel

with projective constraint. 36

5.3 Contribution of individual constraints and their statistics in Hindi. The second

column lists the ratios estimated from oracle in English/ baseline in Hindi/

oracle in Hindi, respectively. The improvement is measured in UAS. The im-

provement of constraints is computed same as Table 5.2 37

6.1 Sudoku results. EQ stands for equality constraint mining. Performance is re-

ported in entry-level accuracy. Our approaches can successfully identify the

underlying Sudoku constraints. 46

xii

6.2 MST results in exact match (EM) accuracy in Train and Test, the average edge

accuracy (Edge) and the ratio of solutions that are feasible (Feasibility). Here,

the feasibility means the solution forms a tree. 48

6.3 Detailed results (grey zone in Fig. 6.2) evaluated by exactmatch accuracy (EM),

the ratio of solutions that are feasible (Feasibility), and average accuracy of

label assignments (Label Acc.). 49

6.4 Running time in seconds for experiments. The time is computed by averaging

in 3 runs. 55

7.1 Unsupervised/SupervisedLexically ConstrainedGeneration results onYelpRe-

view (unsupervised), News (unsupervised) andCommonGen (supervised) dataset.

CVRG stands for constraints coverage. For insertion-based models, on Com-

monGen dataset we directly use the keyword as initial context with no further

permutation. p, q denote the basemodel and the combinedmodel in our frame-

work, respectively. The domain adaptation pretrained model produces sam-

ples unconditioned on the constraints, and thus results in worse results than

other setups. Results with * mark are from the open leader board on the test

set instead of development set. 73

7.2 Human evaluation of generated texts in CommonGen test set. The detailed de-

scription for the four metrics (scale: from 1 to 3) and the evaluation setups can

be found in the Appendix. Baseline stnads for GPT-2 Large fine-tune setting,

and NADO stands for the best system, Seq2seq pretrained + NADO. We also

evaluate the first gold reference provided in the dataset for comparison. NADO

outperforms base model in all four metrics. (The difference is statistical signif-

icant tested by Wilcoxon signed ranks one-sided test, p-value < 0.02) 74

7.3 Somemore qualitative generation resultswith randomly selected concepts about

NeurIPS. 75

xiii

7.4 FormalMachine Translation results. We follow [YK21] setting to choose BLEU

score and average formality scores as the metric. We slightly improve the for-

mality score compared to FUDGE, while significantly boost the BLEU score. . 76

8.1 Comparative study of detoxification methods evaluated in toxicity trend (8.1a)

and expected maximum toxicity (8.1b). 78

8.2 Ablation study of the base model and auxiliary model sizes in detoxification. . 82

9.1 Toxicity scores of Llama-7B model with different detoxification methods. . . . 93

9.2 Benchmark performance of Llama-7B and Falcon-7B with toxicity control. . . 95

9.3 Pairwise comparison by OPT-30B on ToxiGen sampling data. 96

9.4 Jigsaw dataset performance of Llama-7B model with toxicity control. 97

xiv

ACKNOWLEDGMENTS

First and foremost, I would like to nominate my supervisor Kai-Wei Chang, as the BEST

SUPERVISOR in the world. In March 2018 I got the his offer but I missed the UCLA visit

day. He invited me to have a campus tour and introduced the group members to me. At

the beginning of my Ph.D., I did not have much research experience, my English is poor,

and my understanding to NLP was more than naive. He taught me a lot of things. Instead

of how to publish, he spent much efforts teaching me how to be a good independent re-

searcher, how to think critically, how to learn from others and how to expressmy thinking.

I have tricky taste in research topic, andmay focus on topics far from his funding projects,

but Kai-Wei is always supportive. Inmywhole Ph.D. life I never do research on some topic

I am not interested in. I am also a lazy student but I never feel pressure from him. Some-

times I lose motivation in research and don’t have progress for weeks. I never got blamed

by Kai-Wei and he just chatted casually withme about some research questions in our reg-

ular meeting. Sometimes I stuck in research, or got bad reviews, he always supports me

by convincing me my research is good and I am a good researcher. The harshest words he

said to me is ’the figure is ugly’. Before joining his group I never imagine the Ph.D. life can

be such smooth and I could be so lucky to have a nice supervisor. Thank you Kai-Wei and

hope you become the greatest NLP researcher!

I would also thank all the professors in my committee, Prof. Adnan Darwiche, Prof.

Cho-jui Hsieh and Prof. Yizhou Sun, for providing valuable feedback during my Ph.D.

Your comments and questions inspire me to think deep and think big.

It is my pleasure to have somany great collaborators from both academia and industry

in my Ph.D. life. I learn to consider research problems in different perspectives.

I feelmore than fortunate to spend over five years inUCLANLP groupwithmy amazing

friends in Room 368. I love the time we spend together discussing our recent research,

interesting topic, good paper and so on. We drive to hotpot every weekend, sharing our

xv

lifes. I love the kind and pure atmosphere in 368.

Lastly, I want to thank to my family. They always stand behind supporting me, letting

me know I am cared and protected. I love you all!

Honestly, the five-year Ph.D. journey is the best time in my life so far. I appreciate you

all making my life so colorful. I will always remember my life here!

xvi

VITA

2014–2018 B.E. (Institute for Interdisciplinary Information Sciences), Tsinghua

University.

PUBLICATIONS

Tao Meng, Nanyun Peng and Kai-Wei Chang. Target Language-Aware Constrained In-

ference for Cross-lingual Dependency Parsing. EMNLP. 2019.

Shengyu Jia*, TaoMeng*, Jieyu Zhao, and Kai-Wei Chang. Mitigating Gender Bias Am-

plification in Distribution by Posterior Regularization. ACL (Short). 2020.

Fan Yin, Quanyu Long, TaoMeng* and Kai-Wei Chang. On the Robustness of Language

Encoders against Grammatical Errors. ACL. 2020.

Da Yin, Tao Meng* and Kai-Wei Chang. SentiBERT: An Effective, Transferable and In-

terpretable Architecture for Compositional Sentiment Semantics. ACL. 2020.

TaoMeng, Kai-Wei Chang. An Integer Linear Programming Framework forMining Con-

straints from Data. ICML. 2021.

Sidi Lu, Tao Meng, and Nanyun Peng. InsNet: An Efficient, Flexible, and Performant

Insertion-based Text Generation Model. NeurIPS 2022.

xvii

Tao Meng*, Sidi Lu, Nanyun Peng and Kai-Wei Chang. Controllable Text Generation

with Neurally-Decomposed Oracle. NeurIPS (Oral) 2022.

Honghua Zhang, LiunianHarold Li,TaoMeng, Kai-Wei Chang andGuy Van den Broeck.

InsNet: On the Paradox of Learning to Reason from Data. IJCAI 2023.

xviii

CHAPTER 1

Introduction

In recent years, deep neural networks have significantly advanced natural language pro-

cessing (NLP), achieving state-of-the-art results across various tasks. Models are deployed

in many real-world applications, which helps reduce human efforts in many area. How-

ever, neural models are still a black-box for human. As models grow larger and more

complex, they become increasingly difficult for humans to understand and control.

It is necessary to explore how to control a neural model. One reason is that in some

taskswe need to achieve control on specific attributes such as lexically constrained genera-

tion, where we are asked to generate a sentence including particular tokens. Furthermore,

models have to be controlled. We observe that models may generate unpredictable out-

puts such as offensive generation [WFK19, GGS20] or bias amplification [ZWY17]. This

has created a significant challenge for NLP development and applications, highlighting

the need for better model control.

To address this challenge, I propose leveraging constraints - specific rules thatmachine

learning models must follow for certain instances or distributions - to achieve better con-

trol over neural models. My research aims to improve model control through constraints

by incorporating human knowledge into constraints and injecting them into models by

constrained inference and decoding.

We have different kinds of constraints. Considering the way we define the constraints,

we have model-based constraints and rule-based constraints. Categorized by the scope

of constraints, we have instance-level, corpus-level and distribution-level constraints. My

1

research is to develop techniques to handle constraints in different scenarios.

In the first half of my Ph.D. life, I have been specifically focused on developing tech-

niques in structural prediction models in NLP, injecting corpus-level and distribution-

level pre-defined constraints. By leveraging constraints, we can achieve better model per-

formance by bridging the gap between the model prediction and ground truth in corpus-

level or distribution. An integer linear programming framework for automatically mining

constraints is proposed to reduce human efforts in figuring out the constraints in different

scenarios.

In the second half, large language models (LLMs) develop rapidly and dominate NLP

community. They achieve remarkable performance on all benchmarks and refresh the

state-of-the-art. I focus more on controlling LLM, including developing a constrained de-

coding algorithm by leveraging an auxiliary model, and propose a novel attribute con-

trolled fine-tuning approach.

My research goal is to leverage constraints to control the black-box neural NLP mod-

els. Such controlling can not only prevent models from generating unpredictable outputs,

but also improve the model performance. Results show that constrained inference is ef-

fective in controlling the models, without hurting the model performance on downstream

tasks irreverent from the controlling attributes. The controlled models are closer to our

expectation. As the rules defined by human, constraints represent human knowledge and

expectation, while constrained inference plays a role as a bridge between human beings

and neural models.

In Chapter 2 we cover some background knowledge used inmy research including fun-

damental NLP application and NLP models.

In Chapter 3 we introduce two constrained inference algorithm that are widely used

in machine learning. My research develops various of algorithms for different application

and models based on them.

2

In Chapter 4 we show a bias amplification problem in a vision-and-language task.

Specifically, a machine learning model failed to mimic the biases in the training dataset

but further amplifies that. We inject distributional constraints to successfully control the

amplification.

In Chapter 5 we consider the cross-lingual dependency parsing task. For low-resource

langauges, we do not have enough data to train a good parser. Researchers usually lever-

age an English parser to parse the text in the low-resource language. However, they may

have different word order, which cause a poor performance in the transfer. We utilize

the knowledge about word order from human experts, compile them into constraints and

inject constraints into the parser to significantly improve the performance.

In Chapter 6 we explore an integer linear programming framework to automatically

mine constraints from data. In previous work all the constraints are pre-defined or given

by human experts, which takes a lot of human efforts. With this framework, we are able

to mine constraints in linear form from data, including structural constraints or hard con-

straints in puzzle games.

In Chapter 7 we adapt the constrained inference method to controlling large language

models. We regard the constraints as a black-box function, and the controlling as an op-

timization problem. We first decompose the sentence-level constraints into token-level

guidance. Considering the intractability of the decomposition, we leverage an auxiliary

model to approximate the token-level guidance trained by data sampled from the model.

As a decoding-time control approach, our decoding time and space complexity is similar

as the original decoding.

In Chapter ??we apply the proposed constrained decoding algorithm in large language

model detoxification. We demonstarte that our algorithm is efficient and effective in con-

trolling a large langauge model. We conduct ablation study about different factors in con-

strained decoding algorithm and show the empirical results.

3

In Chapter 9 we introduce a large language model fine-tuning algorithmwith attribute

control based on constrained decoding. This novel fine-tuning algorithms control pre-

defined attribute during fine-tuning on corpus, achieving same level performance onbench-

mark and as efficient as original fine-tuning.

We summarize this thesis in Chapter 10.

4

CHAPTER 2

Background and RelatedWork

In this chapter, we will talk about the background knowledge of the methods we analyzed

and purposed in this prospectus. It will cover three parts: the first part is about integer

linear programming (ILP), which is widely used in inference problems, and we will lever-

age it our constrained inference algorithms as well as the constraint mining framework.

The second part is about cross-lingual dependency parsing, which is a fundamental NLP

task and we will use it as an application to test our purposed methods. The third part is

about the basic notation and formulation about large language models. The last part is

about the related work about the applications using constrained inference.

2.1 Integer Linear Programming (ILP)

An ILP is basically a linear programming (LP) with restriction that all the variables can

only take integer values. In LP, the objective function and the (in)equality constraints are

linear with respect to the variables. Formally, an ILP can be written as:

max
y∈Zd

w · y s.t. Ay ≤ b. (2.1)

where d ∈ Z is the dimension, w ∈ Rd is the weights in the objective function, and A ∈

Rn×d,b ∈ Rn define the linear constraints.

ILP is a general and flexible framework supporting various of constraints including

propositional logic [RY04]. In practice, ILP is widely used in formulating constrained

inference in machine learning tasks, including semantic role labeling [PRY04], entity-

relation extraction [RY05], sentence compression [CL08], dependency parsing [MSX09],

5

multi-lingual transfer [MPC19], corefernece resolution [CSK13], relation extraction [YFL20]

and reducing bias amplification [ZWY17]. In these tasks, we get the weights from a neural

model, and guarantee that without constraints, the ILP problem is same as the original

neural methods. The constraints are pre-defined and are compiled from some external

knowledge.

ILPs are in general NP-hard. However, in practice, these inference problems often

can be solved efficiently using a commercial ILP solver. Besides, approximation inference

techniques (e.g., LP-relaxation [FG09], loopy belief proprogation [MWJ13]) can be used

to obtain approximate solutions. See discussion in [FJ08].

2.2 Cross-Lingual Dependency Parsing

Dependency parsing is a task of extracting the grammatical structure of a sentence. The

grammatical structure is organized as a directed tree, and the arcs between two words

show their dependency, labeled by the type of their relations.

Cross-lingual dependency parsing is a task that train a parser on the source language

and apply it on the target language. The cross-lingual transferability is given by the mul-

tilingual embedding, such as FastText [BGJ17] or multilingual BERT [DCL18].

There are mainly two kinds of parser in dependency parsing: graph-based parser and

transition-based parser. In this prospectus we will only use graph-based parser, and the

inference problem can be formulated as a directed minimal spanning tree task, which will

be introduced in Sec. 5.1

2.3 Large Language Models (LLMs)

LLMs are one of the most popular models in NLP community and it shows amazing ca-

pability in NLP tasks. Formally, LLM is an auto-regressive model, predicting next token

distribution based on the input and generation prefix. We usually denote x as the input

to an LLM, y as the generation and yi as the token at position i. We use y<i to denote the

6

generation prefix to position i. The probability of generating a particular sentence y given

input x is given by

p(y|x) :=
∏
i

p(yi|x,y<i).

2.4 Applications of Constrained Inference

Constraints are widely incorporated in variety of tasks. To name a few, [RY04] propose

to formulate constrained inferences in NLP as integer linear programming problems. To

solve the intractable structure, [RC12] decompose the structure and incorporate constraints

on some composite tasks. To improve the performance of a model, [CC11, PCE15] incor-

porate constraints on exact decoding tasks and inference tasks on graphical models, and

[CSK13,Dal15,Mar15] incorporate corpus-level constraints on semi-supervisedmultilabel

classification and coreference resolution. [ZWY17] incorporate corpus-level constraints

to avoid amplifying gender bias on visual semantic role labeling and multilabel classifica-

tion.

7

CHAPTER 3

Constrained Inference with Pre-defined Constraints

on Distribution Gap

Our research goal is to design an efficient inference algorithm working on pre-defined

constraints for bridging the distribution gap and given machine learning models. The

constraints can either help themodel perform better within domain, or improve the trans-

ferability in some cross-domain tasks. In this chapter, we introduce various of constraints

and their corresponding inference algorithms.

3.1 Distribution Gap and Hard Constraints

Distribution gap means some meaningful features have different distributions between

twodomains, or between themodel predictions and the ground truth. Formally, we denote

the input space asX and output space as Y .On the spaceX ×Y we define feature function

h : X × Y → R. The distribution gap means for two distribution p and q, the marginal

distribution of h is quite different. Here p can be the real-world distribution and q can be

the model predictions.

Hard constraints are a set of deterministic constraints, such as “a determiner is always

on the left of the word it depends on” in dependency parsing task, or “an image labeled

as a flower must be labeled as a plant, and must not be labeled as a car” in hierarchical

multilabel classification task. Formally, the hard constraint can be formalized as equality

or inequality about feature function h, such as h(x, y) = 1 or h(x, y) > 0.5.

Models usually give scores or potentials for each possible output and the inference pro-

8

cedure is find the optimal one. Thus, in inference the most efficient and straightforward

way to incorporate the hard constraints is to filter out the invalid outputs. For example, in

dependency parsing when we decide the dependent of a word, we can ignore the invalid

possibilities and pick the optimal one from the rest.

However, in some tasks like structure predictions, the output space can be exponen-

tially large and it can be hard to enumerate all the possible outputs. A general solution can

be ILP discussed in Sec. 2.1 if we can compile the task and constraints into linear form,

which is pretty common in practice. For some special hard constraints, there exists some

ad-hoc efficient inference algorithms based on dynamic programming or decomposition,

e.g., Chu-Liu algorithm [CL65] for the projective constraint in dependency parsing.

Leveraginghard constraints benefit themachine learningmodels since all the instances

satisfy the constraints. However, meaningful hard constraints are not always exist since

exceptions are very common in real-world applications. For exmaple, in part-of-speech

(POS) tagging task, a constraint “every sentence should contain at least one verb” forces

each predicted tag sequence has at least one verb. Formally, x is the input sequence and

y is the predicted tag sequence. We define the feature function as

h(x,y) =


0 ∀i yi ̸= verb

1 ∃i yi = verb

Although this constraint h(x, y) = 1 makes sense, there might be short phrase without

verb in the corpus. Thus it’s necessary to relax the hard constraints into soft constraints.

3.2 Corpus-Level Constraints and Inference

To deal with the exceptions, it is necessary to leverage soft constraints. Intuitively, soft

constraints are a set of constraints that in most of the time the data should satisfy, but ex-

ceptions are also allowed, just like the verb constraint in POS tagging task. To formulate

the soft constraints, basically two kinds of approaches are popular: 1) convert constraints

9

into penalty terms in the objective function, e.g., semantic loss [XZF18]. 2) add slack vari-

ables to each of the constraints and the objective function, e.g., soft SVM. 3) formulate the

task as a maximum satisfiability problem (MAXSAT), e.g., SATNet [WDW19].

These approaches are good solutions in instance level. However, they are still not hard

to bridge the distribution gap. If we take the view of a branch of instances, i.e., a corpus,

drawn independently from the distribution, the constraints can be better formulated and

easier to control. Thus, we leverage corpus-level constraints [CSK13, Dal15, Mar15].

3.2.1 Corpus-Level Constraints

Corpus-level constraints are constraints about the proportion of instances satisfying instance-

level constraints. Formally, given a corpus {xi}Ni=1 drawn from input space X , where N is

the number of instances, the model can make the corresponding predictions {ŷi}Ni=1. We

define D = {xi, ŷi}Ni=1 and the instance-level constraint h(x, y) = 1 we define the ratio

function

R(h,D) =

∑
(xi,yi)∈D h(xi, yi)

|D|
(3.1)

R(h,D) denotes the ratio of instances inD that satisfy the instance level constraint C.

Based on this ratio we can formulate corpus-level constraints. We can restrict that most

of the instances should satisfy the constraint by setting R(h,D) ≥ r, or vice versa. We can

also calibrate the ratio by constraint r1 ≤ R(h,D) ≤ r2.This kind of calibration constraints

can be treated as two separate constraints.

The ratio r, r1, r2 can be pre-defined from external knowledge, or it can be treated as

hyper-parameters, like the weights for penalty terms in soft constraints.

Actually binary constraints functionh canbe replacedby any real value feature function

to make the constraints more general. The ratio function R(h,D) represents the average

feature in the predictions in the corpus D. For example, the verb constraint in POS tag-

ging task, we can set h(x,y) as a verb counter, and formulate constraint “on average each

sentence should contain at least one verb in the corpus” by setting r = 1. Also, we can

10

inverse function h to make all the constraints have consistent signs (≥ or ≤). Without

the loss of generality, in the following we set each constraint has form R(h,D) − r ≤ 0,

and use the pair C = (h,D) to represent the constraint.

3.2.2 Lagrangian Relaxation

To address the inference with corpus-level constraints, we leverage Lagrangian Relaxation

(LR). LR has been applied in various NLP applications [RC12, RC11]. Basically, the LR

algorithm introduces Lagrangianmultipliers to relax the constraint optimization problem

to an unconstrained optimization problem, and estimates the Lagrangianmultipliers with

gradient-based methods.

We denote for instance-level unconstrained inference as

ŷ = argmax
ŷ∈Y

f(x, ŷ), (3.2)

the original inference algorithm can solve it. Nowwewant to do the global inference on the

corpus, satisfying our corpus-level constraints C = {(hi, ri, θi}Mi=1, whereM is the number

of constraints. We denote ŷ = (ŷ1, ŷ2, . . . , ŷN) as the global predictions. In following we

assume each instance has the same output space Y for simplicity. Actually, for different

output spaces Y1,Y2, . . . ,YN , y is drawn from space Y1×Y2×· · ·×YN and the formulation

is similar. Our inference problem can be formulated as

ŷ = argmax
y∈YN

N∑
i=1

f(xi, yi),

s.t. R(hi, D)− ri ≤ 0. i ∈ [N],

(3.3)

We plug Eq.(3.1) and rewrite the constraint R(h,D) = r as

N∑
i=1

h(xi, yi)− rN ≤ 0. (3.4)

Now we add Lagrangian multipiers λ = {λi}Mi=1 to the constraints in form of Eq.(3.4),

11

and the Lagrangian function is

L(D,λ; C) =
N∑
i=1

(
f(xi, yi) +

M∑
j=1

λj(hj(xi, yi)− rjN)

)
. (3.5)

We know that when the feasible solution exists, solving the min-max problem

min
λ≥0

max
y∈YN

L(D,λ; C)

is same as solving the original constrained optimization problem, which is also equivalent

to solve the dual form

max
y∈YN

min
λ≥0

L(D,λ; C).

To solve the dual form, we initialize λi to be 0. At iteration t, we firstly conduct an

constraint-augmented inference with a fixed λ(t):

ŷ(t) = argmax
y∈YN

L(D,λ(t); C). (3.6)

Although Eq.(3.6) is a global inference across the whole corpus, we notice that the La-

grangian function in Eq.(3.5) is decomposed into instance level, which means we can do

inference for each instance individually. If we can take the original inference algorithm

into consideration, and carefully design the constraint functions h to make them have the

similar form as f , we can apply the original inference algorithm on the new objective func-

tion. E.g., in Eq.(3.2) the original inference algorithm works when f is a linear function in

terms of y, we can design h as linear functions, too. The Lagrangian function is still linear

and the original inference algorithm works.

After solving the constraint-augmented inference, we compute the ratio of every con-

straint r̂i
(t) = R(hi, D), and use sub-gradient descent algorithm to update the Lagrangian

multipliers

λ
(t+1)
i = max{0, λ(t)

i − α(t)(ri − r̂i
(t))}.

Here α(t) denote the step size at iteration t. The algorithm is shown in Algorithm 1.

12

Algorithm 1 Lagrangian Relaxation for Constraint Inference
Input: Constraints C = {(hi, ri, θi)}Ni=1, corresponding ratio learning rate decay η, initial

learning rate α0

Output: Prediction ŷ, Lagrangian multipiers λ

1: α← α0

2: λi ← 0, i ∈ [N]

3: repeat

4: ŷ← argmaxL(D,λ; C)

5: r̂i ← R(hi, D), i ∈ [N]

6: if ∀i, abs(ri − r̂i) ≤ θ then

7: return ŷ

8: λi ← max{0, α(r̂i − ri)}, i ∈ [N]

9: α← ηα

10: untilMAX_ITER times

11: return ŷ, λ

Actually, what we get from LR is more than a branch of inference results. These La-

grangian multipliers are quite general and we can define the Lagrangian function in in-

stance level as

L(λ, x, y) = f(x, y) +
M∑
j=1

λjhj(x, y), (3.7)

here we drop the constant terms.

We can replace the objective function f(x, y) in Eq.(3.2) by L(λ, x, y). With the orig-

inal inference algorithm with the new objective function, the solution is guided by these

corpus-level constraints.

13

3.3 Distributional Constraints and Inference

The probabilistic models are able to compute the distribution over all possible outputs.

Based on the distribution, we make predictions by picking the output with highest poste-

rior probability, i.e., maximum-a-posteriori (MAP) inference. For those models, directly

adding constraints on distribution is more fundamental and smooth compared to adding

constraints on predictions, and also easier to bridge the gap in distribution.

3.3.1 Distributional Constraints

Constraints in distribution are usually soft constraints. We can think of a probabilistic

model for POS tagging that output a distribution over POS tags for each token. With the

constraint “each sentence should contain at least one verb in expectation”, the model is

still able to output a sentence without a verb after inference in some extreme cases, while,

in the same time, the constraint provide meaningful supervision to the model.

Different from the instance-level constraint definition in 3.1, the distribution constraints

are defined on a distribution pθ given by a probabilistic model instead of the predictions.

Formally, given input x, instance-level constraints function h : X × Y → {0, 1} and the

probabilistic model modeling the conditional probability pθ(y|x), we define the expected

rate about the constraints satisfaction

Ey∼pθ(·|x) [h(x, y)] =
∑
y∈Y

pθ(y|x)h(x, y). (3.8)

Based on this expectation, we can define distribution constraints. Taking the verb con-

straint in POS tagging task as an example again, we denote x is the token sequence and y

is the predicted tag sequence. h(x, y) Similar to the corpus-level constraints, we can for-

mulate some calibration constraints as well as the relaxed hard constraints.

This definition can also be extended to corpus-level. For corpus x = {xi}Ni=1 and cor-

responding inference instances y = {yi}Ni=1, according to the independency, we extend the

14

model into corpus-level as

pθ(y|x) =
N∏
i=1

pθ(yi|xi).

We then extend the constraint function h to corpus-level as

h(x,y) =
N∑
i=1

h(xi, yi),

which represents a counter for satisfactory. The expectation formula in Eq.(3.9) in corpus-

level can be written as

Ey∼pθ(·|x) [h(x,y)] =
∑
y∈YN

pθ(y|x)h(x,y) =
N∑
i=1

∑
yi∈Y

pθ(yi|xi)h(yi|xi), (3.9)

which means this form of corpus-level distribution constraints can be decomposed into

instance-level, whichmakes the inference tractable. Similar to the corpus-level constraint,

here we can also extend function h from binary to any real value function, and we can use

a consistent form to formulate the distribution constraints as

Ey∼p(·|x) [h(x,y)]− b ≤ 0. (3.10)

3.3.2 Posterior Regularization Inference in Model Transfer

Posterior Regularization (PR) is firstly purposed by [GGG10], where the distribution con-

straints are incorporated in an iterative training procedure. Based on this, we purpose

PR in terms of inference, i.e., without retraining the model, we leverage the constraints in

inference time.

Similar to LR inference, our PR inference is also an algorithm not only gives the con-

strained inference results, but also a transferred model with respect to constraints. The

only different is that in PR our constraints are on the distribution. We know that the pre-

diction space Y can be exponentially large, while the distribution over prediction space is

evenmuch larger, whichmakes the constrained inference inefficient and even intractable.

Luckily, the distribution constraints and corpus-level distribution constraints, as we de-

fined in Sec. 3.3.1, are tractable based on PR.

15

The PR inference uses the distribution constraints to define a feasible distribution set,

and find a feasible distribution that is closest to the distribution given by the model by

minimizing the KL-divergence. The constrained inference problem can then be converted

into an MAP inference problem on the best feasible distribution.

Formally, given a set of distribution constraints about distribution q:

Ey∼q(y) [h(x, y)]− b ≤ 0,

here h(x, y) and b are vectors. We use Q to denote the feasible set

Q = {q | Ey∼q(y) [h(x, y)]− b ≤ 0}, (3.11)

here (x, y) is a instance but we can also use corpus-level constraints by using a branch of

instances (x,y).

We have the distribution pθ(y|x) learned by model and find the closest feasible distri-

bution q∗(y) by solving the optimization problem

q∗(y) = argmin
q∈Q

KL(q(y)∥pθ(y|x)). (3.12)

This optimization problem, considering the form of the feasible set in Eq.(3.11), ac-

cording to [GGG10], has close form solution:

q∗(y) =
pθ(y|x) exp(−λ∗ · h(x, y))

Z(λ∗)
(3.13)

where λ∗ is the solution of

λ∗ = argmax
λ≥0
−b · λ− logZ(λ),

Z(λ) =
∑
y∈Y

pθ(y|x) exp(−λ∗ · h(x, y)).
(3.14)

The Eq.(3.14) is also an optimization problem, but compared to Eq.(3.12), we have

same number of variables (λ) as constraints rather than a distribution, which is much

more tractable. When the output space Y is not so large and we can enumerate it, we

16

can apply sub-gradient ascent to solve the optimization problem in Eq.(3.14). After we

get a feasible distribution q∗ satisfying our constraints, we can apply the original inference

algorithm on distribution q∗ instead of pθ to get the predictions.

When the output space Y is not enumerable, like Y is a structure or it is a global infer-

ence on corpus-level, we cannot directly apply the sub-gradient ascent and we need to do

decomposition to normalization term Z(λ) first. In the following, we take the corpus-level

decomposition as an example.

In corpus-level extension of distribution constraints, we have

pθ(y|x) =
N∏
i=1

pθ(yi|xi),

h(x,y) =
N∑
i=1

h(xi, yi),

and define Zi(λ) =
∑
yi∈Y

pθ(yi|xi) exp(−λ∗ · h(xi, yi)).

(3.15)

Thus,

Z(λ) =
∑
y∈YN

pθ(y|x) exp(−λ∗ · h(x,y))

=
∑
y∈YN

N∏
i=1

pθ(yi|xi) exp(−λ∗ · h(xi, yi))

=
N∏
i=1

∑
yi∈Y

pθ(yi|xi) exp(−λ∗ · h(xi, yi))

logZ(λ) =
N∑
i=1

logZi(λ).

(3.16)

This decomposition makes the sub-gradient methods on Eq.(3.14) tractable. Also, this

shows that with the corpus-level constraints, although the solution q∗ is a distribution over

a branch of instances, it can be decomposed into instance level distribution as

q∗(yi) =
pθ(yi|xi) exp(−λ∗ · h(xi, yi))

Zi(λ∗)
.

17

For other large spaceY , if the functionh and the probability pθ can be decomposed like

Eq.(3.15), the decomposition on Z(λ) also works.

18

CHAPTER 4

Application: Mitigating Gender Bias Amplification

with Constraints Bridging the Bias Gap

Advancedmachine learning techniques have boosted the performance of natural language

processing. Nevertheless, recent studies, e.g., [ZWY17] show that these techniques inad-

vertently capture the societal bias hidden in the corpus and further amplify it. However,

their analysis is conducted only on models’ top predictions. In this paper, we investigate

the gender bias amplification issue from the distribution perspective and demonstrate that

the bias is amplified in the view of predicted probability distribution over labels. We fur-

ther propose a bias mitigation approach based on posterior regularization. With little per-

formance loss, our method can almost remove the bias amplification in the distribution.

Our study sheds the light on understanding the bias amplification.

4.1 Background and RelatedWork

We follow the settings in [ZWY17] to focus on the imSitu vSRL dataset [YZF16], in which

we are supposed to predict the activities and roles in given images and this can be regraded

as a structure prediction task (see Fig. 4.1).

We apply the Conditional RandomField (CRF)model for the structure prediction task.

We denote y as a joint prediction result for all instances, and yi as a prediction result for

instance i. We use yv to denote the predicted activity, and yr to denote the predicted role.

An activity can have multiple roles and usually one of them conveys the gender informa-

tion. For an instance i, the CRF model predicts the scores for every activity and role, and

19

Figure 4.1: An instance from the imSitu dataset. Given an input image, the task it to iden-

tify the activity depicted in the image as well as the objects (noun) and their semantic role.

the score for a prediction is the summation of all these scores. Formally,

fθ(yi, i) = sθ(yiv, i) +
∑

e∈yir
sθ(yiv, e, i),

where sθ(yiv, i) and sθ(yiv, e, i) are the scores for activity y
i
v of instance i, and the score for

role e of instance iwith activity yiv, respectively. We can infer the top structure for instance

i by:

argmaxyi∈Yi fθ(yi, i),

where Y i refers to all the possible assignments to the instance.

[ZWY17] demonstrate bias amplification in the top prediction and present a bias mit-

igation technique by inference with corpus-level constraints. In the following, we extend

their study to analyze the bias amplification in the posterior distribution by the CRFmodel

and define the corresponding corpus-level distribution constraints.

4.2 Constraints and Inference Formulations

Formally, the probability of prediction yi for instance i and the joint prediction y defined

by CRF model with parameters θ are given by

pθ(yi, i) ∝ exp(fθ(yi, i)),

pθ(y) =
∏

i
pθ(yi, i),

(4.1)

20

since instances are mutually independent.

In this section, we will define how to quantify the bias and the bias amplification in the

distribution, and introduce the corpus-level constraints towards restricting the bias in the

distribution.

We focus on the gender bias on activities in the vSRL task. To quantify the gender bias

given a particular activity v∗, [ZWY17] uses the percentage that v∗ is predicted together

with male agents among all prediction with genders. This evaluation focuses on the top

prediction. In the contrast, we define bias function B(p, v∗, D) w.r.t distribution p and

activity v∗, evaluating the bias toward male in dataset D based on the conditional proba-

bility P (X|Y), where event Y : given an instance, its activity is predicted to be v∗ and its

role is predicted to have a gender; event X : this instance is predicted to have gendermale.

Formally,

B(p, v∗, D)

=Pi∼D,y∼p(yir ∈M |yiv = v∗ ∧ yir ∈M ∪W)

=

∑
i∈D
∑

yi:yiv=v∗,yir∈M
p(yi, i)∑

i∈D
∑

yi:yiv=v∗,yir∈M∪W p(yi, i)
.

(4.2)

This bias can come from the training set Dtr. Here we use b∗(v∗,male) to denote the

“dataset bias” toward male in the training set, measured by the ratio of between male and

female from the labels:

b∗ =

∑
i∈Dtr

1[ŷiv = v∗, ŷir ∈M]∑
i∈Dtr

1[ŷiv = v∗, ŷir ∈M ∪W]
,

where ŷi denotes the label of instance i.

Ideally, the bias in the distribution given by CRF model should be consistent with the

bias in the training set, since CRF model is trained by maximum likelihood. However,

the amplification exists in practice. Here we use the difference between the bias in the

posterior distribution and in training set to quantify the bias amplification, and average it

21

over all activities to quantify the amplification in the whole dataset:

A(p, v∗, D) = sgn(b∗ − 0.5)[B(p, v∗, D)− b∗],

Ā(p,D) =
1

|V |
∑
v∗∈V

A(p, v∗, D).

Note that if we use the top prediction indicator function to replace p in A, Ā, it is the same

as the definition of the bias amplification in top prediction in [ZWY17].

The corpus-level distribution constraints aim at mitigating the bias amplification in

test setDts within a pre-defined margin γ,

∀v∗, |A(p, v∗, Dts)| ≤ γ, (4.3)

and this corpus-level distribution constraints can be written into the form of Eq.(3.10).

For example, the constaint A(p, v∗, Dts) < γ is equivalent as setting

h(x, y) =


1 yr ∈M ∧ yv = v∗

0 yr ∈ W ∧ yv = v∗

b∗ + γ yr /∈M ∪W ∨ yv ̸= v∗

b = b∗ + γ.

4.3 Experiments Setup

We conduct experiments on the vSRL task to analyze the bias amplification issue in the

posterior distribution and demonstrate the effectiveness of the proposed bias mitigation

technique.

Dataset Our experiment settings follow [ZWY17]. We evaluate on imSitu [YZF16] that

activities are selected fromverbs, roles are fromFrameNet [BFL98] andnouns fromWord-

Net [Fel98]. We filter out the non-human oriented verbs and images with labels that do

not indicate the genders.

22

Model We analyze the model purposed together with the dataset. The score functions

we describe in Sec. 5.1 are modeled by VGG [SZ15] with a feedforward layer on the top of

it. The scores are fed to CRF for inference.

4.4 Bias Amplification in Distribution

Figures 4.2a and 4.2c demonstrate the bias amplification in both posterior distribution

pθ and the top predictions y, respectively. For most activities with the bias toward male

(i.e., higher bias score) in the training set, both the top prediction and posterior distribu-

tion are even more biased toward male, vise versa. If the bias is not amplified, the dots

should be scattered around the reference line. However, most dots are on the top-right or

bottom-left, showing the bias is amplified. The black regression line with slope > 1 also

indicates the amplification. Quantitatively, 109 and 173 constraints are violated when an-

alyzing the bias in distribution an in top predictions. Most recent models are trained by

minimizing the cross-entropy loss which aims at fitting the model’s predicted distribution

with observed distribution on the training data. In the inference time, the model outputs

the top predictions based on the underlying prediction distribution. Besides, in practice,

the distribution has been used as an indicator of confidence in the prediction. Therefore,

understanding bias amplification in distribution provides a better view about this issue.

To analyze the cause of bias amplification, we further show the degree of amplification

along with the learning curve of the model (see Fig. 4.3). We observed that when the

model is overfitted, the distribution of the model prediction becomes more peaky1. We

suspect this is one of the key reasons causes the bias amplification.

4.5 Bias Amplification Mitigation

We set the margin γ = 0.05 for every constraint in evaluation. However, we employ a

stricter margin (γ = 0.001) in performing posterior regularization to encourage the model

1This effect, called overconfident, has been also discussed in the literature [GPS17].

23

to achieve a better feasible solution. We use mini-batch to estimate the gradient w.r.t λ

with Adam optimizer [KB15] when solving Eq. (3.14). We set the batchsize to be 39 and

train for 10 epochs. The learning rate is initialized as 0.1 and decays after everymini-batch

with the decay factor 0.998.

Results We then apply the posterior regularization technique tomitigate the bias ampli-

fication in distribution. Results are demonstrated in Figures 4.2b (distribution) and 4.2d

(top predictions). The posterior regularization effectively calibrates the bias in distribu-

tion and only 5 constraints are violated after the calibration. The average bias amplifica-

tion is close to 0 (Ā: 0.032 to−0.005). By reducing the amplification of bias in distribution,

the bias amplification in top predictions also reduced by 30.9% (Ā: 0.097 to 0.067). At the

same time, the model’s performance is kept (accuracy: 23.2% to 23.1%).

Note that calibrating the bias in distribution cannot remove all bias amplification in the

top predictions. We posit that the requirement ofmaking hard predictions (i.e., maximum

a posteriori estimation) also amplifies the bias when evaluating the top predictions.

24

0.0 0.2 0.4 0.6 0.8 1.0
bias in training set

0.0

0.2

0.4

0.6

0.8

1.0
bi

as
 in

 p
re

di
ct

io
ns

(a) bias in distribution before bias

mitigation.

0.0 0.2 0.4 0.6 0.8 1.0
bias in training set

0.0

0.2

0.4

0.6

0.8

1.0

bi
as

 in
 p

re
di

ct
io

ns

(b) bias in distribution after bias

mitigation.

0.0 0.2 0.4 0.6 0.8 1.0
bias in training set

0.0

0.2

0.4

0.6

0.8

1.0

bi
as

 in
 p

re
di

ct
io

ns

(c) bias in top predictions before

bias mitigation.

0.0 0.2 0.4 0.6 0.8 1.0
bias in training set

0.0

0.2

0.4

0.6

0.8

1.0
bi

as
 in

 p
re

di
ct

io
ns

(d) bias in top predictions after

bias mitigation.

Figure 4.2: x-axis and y-axis are the bias toward male in the training corpus and the pre-

dictions, respectively. Each dot stands for an activity. The blue reference lines indicate

the bias score in training is equal to that in test and the dash lines indicate the margin

(= 0.05). The dots in red stand for being out of margin and violating the constraints. The

black lines are linear regressions of the dots. Results show that we can almost remove the

bias amplification in distributions (see 4.2a and 4.2b), and reduce 30.9% amplification in

top predictions (see 4.2c and 4.2d) after applying posterior regularization.

25

0 5 10 15 20 25 30 35 40 45 50
#Epoch

0.0

0.2

0.4

0.6

0.8

1.0

Ac
cu

ra
cy

train_acc
test_acc
Amp. A

0.01

0.02

0.03

0.04

0.05

Am
pl

ifi
ca

tio
n

A

Figure 4.3: The curve of training and test accuracy, and bias amplificationwith the number

of training epochs. The optimal model evaluated on the development set is found in the

grey shade area.

26

CHAPTER 5

Application: Cross-lingual Dependency Parsing with

Constraints Bridging theWord Order Gap between

Languages

Priorwork on cross-lingual dependency parsing often focuses on capturing the commonal-

ities between source and target languages and overlooks the potential of leveraging linguis-

tic properties of the languages to facilitate the transfer. In this research, we show thatweak

supervisions of linguistic knowledge for the target languages can improve a cross-lingual

graph-based dependency parser substantially. Specifically, we explore several types of lin-

guistic statistics and compile them into constraints to guide the inference process during

the test time. In this application, we adapt the above two types of constraints and inference

method, respectively.

5.1 Background:Graph-Based Parser

A graph-based parser learns a scoring function for every pair of words in a sentence and

conducts inference to derive a directed spanning tree with the highest accumulated score.

Formally, given the k-th sentence xk = (xk1, . . . , xkL(k)) where L(k) denotes the length

of the k-th sentence, a graph-based parser learns a score matrix S(k), where S(k)
ij denotes

the score to form an arc from word xki to word xkj . Let yk be an indicator function that

yk(i, j) ∈ {0, 1} denotes the arc from xki to xkj . The maximum directed spanning tree

27

inference can be formulated as an integer linear programming (ILP) problem:

y∗k = arg max
yk∈Yk

∑
i,j

S
(k)
ij yk(i, j), (5.1)

where Yk is the set of legal dependency trees of sentence k. In recent years, neural net-

work approaches [KG16,WC16, KBK16, DM17] have been applied to modeling the scoring

matrix S(k) and have achieved great performance in dependency parsing.

From the probabilistic point of view, if we assume for different i, j, the edge probabil-

ities P (yk(i, j) = 1|xk) are mutually conditional independent, the probability of a whole

parse tree can be written as

P (yk|xk) =
∏
i,j

P (yk(i, j) = 1|xk)
yk(i,j). (5.2)

If we set S(k)
ij = logP (yk(i, j) = 1|xk) + Z ′

j, where Z
′
j is a constant term, then Eq. (6.3) can

be regarded as the following maximum a posteriori (MAP) inference problem:

y∗k = arg max
yk∈Yk

P (yk|xk)

= arg max
yk∈Yk

∑
i,j

logP (yk(i, j) = 1|xk)yk(i, j).
(5.3)

5.2 Corpus-Level Constraints about Word Order

Given the inference problems as in equations (6.3) and (5.3), additional constraints can be

imposed to incorporate expert knowledge about the languages to help yield a better parser.

Instance-level constraints have been explored in the literature of dependency parsing,

both in the monolingual [Dry07] and cross-lingual transfer [TMN13] settings. However,

most word order features for a language are non-deterministic and cannot be compiled

into instance-wise constraints.

In this work, we introduce corpus-wise constraints to leverage the non-deterministic

features for cross-lingual parser. We compile the following two types of corpus-wise con-

straints based on corpus linguistics statistics:

28

• Unary constraints consider statistics regarding a particular POS tag (POS).

• Binary constraints consider statistics regarding a pair of POS tags (POS1, POS2).

Specifically, a unary constraint specifies the ratio r of the heads of a particular POS ap-

pears on the left of that POS.1 Similarly, a binary constraint specifies the ratio r of POS1

being on the left of POS2 when there is an arc between POS1 and POS2.

The ratios r for the constraints are called corpus statistics, which can be estimated in

one of the following ways: a) leveraging existing linguistics resources or consulting lin-

guists; b) leveraging a higher-resource language that is similar to the target language (e.g.,

Finnish and Estonian) to collect the statistics. In this paper, we explore the first option

and leverage the WALS features, which provide a reference for word order typology, to

estimate the ratios.

Compile Constraints From WALS Features. For a particular language, once we

collect the corpus-statistics of a pair of POS tags, we can formulate a binary constraint.

There are different ways to estimate the corpus-statistics. For example, [Ost15] utilizes

a small amount of parallel data to estimate the dominant word orders. In this paper, we

simply utilize a small subset of WALS features that show the dominant order of some POS

pairs (e.g. adjective and noun) in a language. They can be directly compiled into binary

constraints.

Similarly, we can estimate the ratio for unary constraints based on WALS features.

For a particular POS tag, we choose all WALS features related to it to formulate a feature

vector f . The mapping from the vector f to the unary constraint ratio r is learnable: for

each language with annotated data, we can get aWALS feature vector flang and a ratio rlang

from the annotation. We only need a small amount of data to estimate rlang well. Given

a set of languages with feature vectors and estimated ratios, we can learn the mapping

by a simple linear regression, and apply it to estimate the ratio of any target language to

1The ratio for the head being on the right of that POS is thereby 1− r.

29

compile a unary constraint.

5.3 Formulations

Our general idea is that we use the word order corpus-level constraints on the target lan-

guage, to transfer the model from source language. In this section, we formulate the

constraints and inference into the forms in Sec.3.2,3.3 so that we can then apply LR and

PR, respectively.

5.3.1 Model and Inference

The model we use is the graph-based parser introduced in Sec.5.1. This model can output

a scoringmatrix or distribution over instances. Output is a tree structure, which is formed

as a set of arcs, and it is exponentially large.

The inference can be formulated as an ILP problem as Eq.(6.3), or in probabilistic view,

an MAP inference as Eq.(5.3). In both of the cases the objective can be decomposed into

arc-level.

5.3.2 Constraints

Each constraintsC is about the ratio of particular two sets of arcs. We denote set C+ is the

arc set that it has the same direction defined inC, whileC− is the set of arcs in the opposite

direction. Note that C+ and C− is mutual exclusive, and some arcs are not included in

either set. The overall idea is that we want in prediction the arcs in C+ has a ratio r among

C+∪C−. Therefore, we define the corresponding arc-level constraint function on arc xi →

xj as

harc(i, j) =


1
L

(i, j) ∈ C+

0 (i, j) ∈ C−

r
L

(i, j) /∈ C+ ∪ C−

, (5.4)

30

where L is the length of the input sequence, and the instance-level constraint function is

defined as

h(x, y) =
∑

(i,j)∈y

harc(i, j).

The corpus-level constraint can be written as calibration form

|R(h,D)− r| ≤ θ,

where θ is the tolerance margin. We then can follow Sec.3.2 to transfer the model and do

the constrained inference.

In probabilistic view, the distribution pθ is trained on source language and we want to

find a closest distribution satisfying constraints on the target language from pθ measured

by KL-divergence. The corpus-level distribution constraint can be written as

|Ey∼q[h(x,y)]− r| ≤ θ.

We then can follow Sec.3.3 to transfer the probabilistic model and do the inference.

5.4 Experimental Results

In this section, we evaluate the proposed algorithms by transferring an English depen-

dency parser to 19 target languages covering 13 language families of real low-resource lan-

guages. We first introduce the experimental setup including data selection and constraint

details and then discuss the results as well as in-depth analysis.

5.5 Setup

Model and Data We train the best performing Att-Graph parser proposed in [AZM19]

on English and transfer it to 19 target languages in UD Tree Bank v2.2 [NAA18].2 The

2We make the selection to prioritize the coverage of language families and low resource languages. The
language family information can be found in Table 5.1.

31

Family Lang. Features Baseline
Lagrangian Relaxation Posterior Regularization

Oracle WALS ∆WALS Oracle WALS ∆WALS

IE.Germanic en 1,1,1 90.5 90.3 90.4 -0.1 90.4 90.6 +0.1

IE.Indic ur -1,-1,1 18.3 35.2 34.0 +15.7 35.0 33.7 +15.4

IE.Indic hi -1,-1,1 34.3 52.4 53.4 +19.1 51.3 49.1 +14.8

Dravidian ta -1,-1,1 36.1 42.8 43.4 +7.3 43.1 43.0 +6.9

Turkic tr -1,-1,1 31.2 35.2 37.1 +5.9 35.1 36.3 +5.1

Afro-Asiatic ar 1, 1, -1 38.5 47.3 45.3 +6.8 45.8 43.7 +5.2

Afro-Asiatic he 1, 1, -1 55.7 58.8 57.6 +1.9 58.3 57.6 +1.9

Austronesian id 1, 1, -1 49.3 53.1 52.3 +3.0 52.3 51.9 +2.6

Korean ko -1,-1,1 34.0 37.1 37.2 +3.2 36.3 36.4 +2.4

IE.Celtic cy 1, 1, -1 47.3 54.2 51.7 +4.4 53.8 50.0 +2.7

IE.Romance ca 1, 1, -1 73.9 74.9 73.8 -0.1 74.9 74.7 +0.8

IE.Romance fr 1, 1, -1 77.8 79.1 78.7 +0.9 79.0 79.0 +1.2

Uralic et 1, -1,1 65.3 65.5 65.8 +0.5 65.7 66.0 +0.7

Uralic fi 1, -1,1 66.7 67.1 67.0 +0.3 66.9 67.1 +0.4

IE.Slavic hr 1, 1, 1 62.2 63.7 63.2 +1.0 63.6 63.4 +1.2

IE.Slavic bg 1, 1, 1 79.6 79.7 79.2 +0.0 79.7 79.7 +0.1

IE.Baltic lv 1, 1, 1 70.3 70.7 69.5 -0.8 70.5 69.9 -0.4

IE.Latin la ?, ?, ? 47.4 48.0 45.6 -1.8 48.1 47.3 -0.1

IE.Germanic da 1, 1, 1 76.6 76.6 76.5 -0.1 76.6 76.6 +0.0

IE.Germanic nl 0, 1, 1 67.5 67.6 67.5 +0.0 67.9 67.9 +0.4

Average Performance 54.3 58.4 57.8 +3.5 58.1 57.5 +3.1

Table 5.1: Cross-lingual transfer performances for dependency parsing on 19 languages

from 13 different families, with the performance on the source language (English) as a

reference. Performances are reported per UAS (we observe similar trends for LAS). We

compare the baselinemodel [AZM19] with our two algorithms (Lagrangian relaxation and

posterior regularization) considering the oracle constraints, and the corpus-statistics con-

straints compiled fromWALS. Columns∆WALS denote the improvements bring by lever-

agingWALS feature as constraints. We also create a Features column to show threeWALS

features [83A,85A,87A] for each language. The values {1, -1, 0, ?} stand for the same as

English, opposite to English, no dominant order, and feature missing, respectively.

model takes words and predicted POS tags3 as input, and achieve transfer by leverag-

3We use predicted POS tags provided in UD v2.2.

32

ing pre-trained multi-lingual FastText [BGJ17] embeddings that project the word em-

beddings from different languages into the same space using an offline transformation

method [STH17, LCR18]. The SelfAtt-Graphmodel uses a Transformer [VSP17] with rela-

tive position embedding as the encoder and a deep biaffine scorer [DM17] as the decoder.

We follow the setting in [AZM19] to train and tune only on the source language (English)

and directly transfer to all the target languages. We modify their decoder to incorporate

constraints with the proposed constrained inference algorithms during the transfer phase

without retraining the model.

Constraints We consider two types of constraints: 1) instance-level projective con-

straints for avoiding creating crossing arcs in the dependency trees, 2) corpus-statistics

constraints constructed by the process described in Section 5.2. We consider the follow-

ing three corpus-statistics constraints: C1 = (NOUN), C2 = (NOUN,ADP), C3 =

(NOUN,ADJ); intuitively, C1 concerns about the ratio of nouns being on the right of

their heads; C2 concerns about the ratio of nouns being on the left of adpositions among

all noun-adposition arcs; C3 concerns about the ratio of nouns being on the left of adjec-

tives among all noun-adjective arcs.

For binary constraints, C2 and C3 can be directly compiled from WALS feature 85A

and 87A respectively. We encode “dominant order” specified in WALS as the ratio being

always greater than 0.75 (i.e., r = 0.875 and θ = 0.125). If there is no dominant order or

the feature is missing, we set r = 0.5 and θ = 0.25. Some WALS features like 82A, 83A are

also about word order, but we need to specify the arc types to utilize them. For simplicity,

we only consider forming constraints from the POS tags in this paper. To estimate the

ratio for unary constraintC1, we use theWALS features 82A, 83A, 85A, 86A, 87A, 88A, 89A

that are related to NOUN to form feature vectors, and do regression on languages in the

test set except the target language to predict the constraint ratio. The process guarantees

the target language remain unseen during the ratio estimation process. The ratios on the

regression training languages are estimated by sampling 100 sentences in the training set

33

per language.

We also consider an oracle setting where we collect a “ground-truth” ratio of each con-

straint for the target language to estimate an upper bound of our inference algorithms. In

the oracle setting, we estimate the ratio on thewhole training corpus of the target language

and set the margin to θ = 0.01.

5.6 Parsing Performances

We first compare the performances of the cross-lingual dependency parser with or without

constraints. Table 5.1 illustrates the results for the 19 target languages we selected, along

with the performance on the source language (English). The performance on English is

not as high as the dependency parsers specialized for English, because to achieve transfer,

we have to freeze the pre-trainedmulti-lingual word embeddings. Yet this parser achieved

the best single-source transfer performances according to [AZM19].

As is shown in Table 5.1, the improvements by our constrained inference algorithms

are dramatic in a few languages that have very distinct word order features from the source

language. For example, the parsing performance of Hindi (hi) improves about 15% in UAS

withWALS features via both Lagrangian relaxation and posterior regularization inference.

The improvements are less obvious for languages that are in the same family as English

such as Danish(da) and Dutch(nl). This is expected as the corpus linguistic statistics of

these languages are similar to English thus the constraints are mostly satisfied with the

baseline parser. Comparing Lagrangian relaxation and posterior regularization, we find

posterior regularization being more robust and less sensitive to the errors in the corpus-

statistics estimation, while Lagrangian relaxation gives a higher improvement on average.

Overall, the two proposed constrained inference algorithms improved the transfer perfor-

mance by 3.5% and 3.1% per UAS on average on 19 target languages.

For languages like Finnish (fi) and Estonian (et), the WALS setting works even better

than the oracle. We suspect the reason being the large margin we set in theWALS setting.

34

When the estimated corpus-statistics is different from the real ratio in the test set, the

large margin relaxes the constraints, thus could result in better performances.

Discussion. Despite the major experiments and analysis are conducted using English

as the only source language, our approach is general and does not have restriction on the

choice of the source language(s). To verify this claim, we run experiments with Hebrew

as the source language. Under the oracle setting, Lagrangian relaxation and posterior

regularization improve the baseline by 4.4% and 4.1%, respectively.

We observed that if we compile WALS features into hard constraints (i.e., set r = 0

or 1), the constraint inference framework only improves performance on half of the lan-

guages. For example, in Estonian (et), the performance drops about 3%. This is because

WALS only provides the dominant order. Therefore, treating WALS as hard constraints

introduces error to the inference.

Finally, we assume if we can access to native speakers, the corpus-statistics can be

estimated by a few partial annotations of parse trees. In our simulation, using less than

300 arcs, we can achieve the same performance as using the oracle.

5.7 Contributions of Individual Constraints

Weanalyze the contribution of each constraint demonstrated in Table 5.2. Herewe use the

oracle setting to reduce the noise introduced by corpus-statistics estimation errors. The

results are based on Lagrangian relaxation inference. As shown in Table 5.2, Despite some

languages have non-projective dependencies, we observed performance improvements on

almost all the languages when the projective constraint is enforced. All the constraints we

formulated have positive contributions to the performance improvements. C1 = (NOUN)

brings the largest gain probably because its widest coverage.

Table 5.1 shows that the performance ofHindi improves from34% to over 51% perUAS

for both inference algorithms. To better understand where the improvements come from,

35

Model UAS coverage ∆

baseline 54.3 N/A N/A

+Proj. 54.6 N/A +0.3

+Proj.+C1 57.0 0.24 +2.4

+Proj.+C2 55.7 0.08 +1.1

+Proj.+C3 55.0 0.07 +0.4

oracle 58.4 N/A +4.1

Table 5.2: Ablation study: average UAS of baseline model with different sets of con-

straints. Proj. represent projective constraints. C1-C3 and oracle are introduced in 5.5.

The improvements for projective constraint and oracle are compared to baseline. For the

other three constraint sets the improvement is compared to model with projective con-

straint.

we conduct an analysis to breakdown the contribution of each individual constraint for

Hindi. Table 5.3 shows the results. We can see that since the corpus linguistic statistics

betweenHindi andEnglish are distinct, the baselinemodel only achieves lowperformance.

With the constrained inference, especially the postposition constraint (C2), the proposed

inference algorithm bring significant improvement.

To verify the effectiveness of the constraints, we analyze the relation between the per-

formance improvements and corpus statistics ratio gaps between the source and the tar-

get languages. To quantify the ratio gap, we weight constraints by their coverage rate and

compute theweighted average of the ratio difference between source and target languages.

Results show that the performance improvement is highly related to the ratio gap. The

Pearson Correlation Coefficient is 0.938. The figure is shown in Fig. 5.1

36

Const. statistics improvement

+Proj. N/A +0.1

C1 0.30/0.36/0.94 +6.9

C2 0.00/0.06/1.00 +11.3

C3 0.14/0.27/0.12 +0.5

All N/A +18.1

Table 5.3: Contribution of individual constraints and their statistics in Hindi. The second

column lists the ratios estimated fromoracle inEnglish/ baseline inHindi/ oracle inHindi,

respectively. The improvement is measured in UAS. The improvement of constraints is

computed same as Table 5.2

0.0 0.1 0.2 0.3 0.4 0.5
ratio gap

0.0
2.5
5.0
7.5

10.0
12.5
15.0
17.5

UA
S

im
pr

ov
em

en
t

Figure 5.1: Ratio gap v.s. ∆ perf.

Figure 5.2: The performance improvement is highly correlated to the difference in corpus

linguistic statistics (estimated by weighted average ratio gaps in constraints) between tar-

get and source languages. (The Pearson Correlation Coefficient is 0.938.)

37

CHAPTER 6

An ILP Framework forMining Constraints fromData

In Chap. 3 we discuss how to incorporate pre-defined constraints with neural models in

inference. However, for some applications, manually identifying constraints is tedious.

Besides, some constraints are obscure and cannot be easily identified by humans. For

example, if we shuffle columns of all sudoku puzzles with the same order, the puzzles

still follow a set of constraints, while it is hard for humans to recognize the underlying

rules. Inspired by representation learning methods automate feature extraction, we envi-

sion that an artificial intelligence system that could automatically recognize underlying

constraints among output labels from data and incorporate them in the prediction time.

Inspired by the great success of ILP in constrained output structure predictions, we

propose a novel framework to formulate the constraint learning based on ILP. In particu-

lar, we estimate the feasible set defined by the constraints and explore three techniques:

1) mining inequality constraints to form a superset of the feasible set by constructing an

outer polytope based on seen data; 2) mining equality constraints by dimension reduction

of the superset; and 3) latent variable method to deal with complex constraints or leverage

prior knowledge. We also propose an algorithm to induce the subset of the feasible set to

help evaluate the quality of the constraints. Note that despite the constraint mining algo-

rithm is designed under the ILP framework, our algorithm does not involve solving ILP

when mining the constraints.

38

6.1 Mining Constraints with Integer Linear Programming

We first review the constraints mining framework based on ILP. We then propose an ap-

proach to mine constraints by estimating the outer and inner polytopes of the feasible set.

Finally, we discuss how to extend the framework to capture complex constraints.

ILP is a linear optimization problemwith linear constraints and the values of variables

are restricted to integers. Formally, the ILP problem can be formulated as

maxy∈Zd w · y s.t. Ay ≤ b, (6.1)

where w ∈ Rd is the coefficients of the objective function (a.k.a. weights) and y is an

integer vector that encodes the output label.1 The matrix A and vector b specify the con-

straints. We use S∗ to denote the feasible set defined by the constraints. Various struc-

ture prediction problems can be casted into the ILP formulation. For example, depen-

dency parsing can be formulated as finding the maximum spanning tree in a directed

graph [MPR05], where each node represents a word and the edgewij represents how likely

the word i is the dependent of the word j predicted by a model. y = {yij},yij ∈ {0, 1} is

the indicator of the edges in the resulting tree. The objective in Eq. (6.1) then can be in-

terpreted as the total score of edges in y, and the constraints, described by (A,b), restrict

y to be a tree [MSX09].

Prior works (see, e.g., [MSX09]) mostly assume the constraints (A,b) are given. How-

ever, in this paper, we assume (A,b) are unknown and our goal is to identify the underlying

feasible set S∗ spanned by (A,b) using a set of objective-solution pairs {(w(i),y(i))}ki=1 that

satisfy constraints defined by (A,b). For example, inMST, giving a set of weightsw(i) (ad-

jacency matrix) with the corresponding optimal solution y(i), our algorithm identifies the

structure of the output y form a tree structure.

1In structure output prediction, usually each element of y takes value 1 or 0, indicating if a specific value
is assign to a specific output variable or not. w are the scores of sub-components of output assigned by a
model.

39

𝒚 𝟏

𝒘 𝟏

𝒚 𝟐

𝒚 𝟑

𝒚 𝟒

𝒚 𝟓
𝒘 𝟓

𝒘 𝟒

𝒘 𝟑
𝒘 𝟐

(a) Outer polytope (SO)

𝒚 𝟏

𝒘 𝟏

𝒚 𝟐

𝒚 𝟑

𝒚 𝟒

𝒚 𝟓
𝒘 𝟓

𝒘 𝟒

𝒘 𝟑
𝒘 𝟐

(b) Inner polytope (SI)

Figure 6.1: The pentagons (blue solid line) in Fig. 6.1a and 6.1b show the outer and the

inner polytopes of 5 training samples {wi,yi}5i=1 (see Sec. 6.1.1). The dashed red line shows

the boundary of the feasible set (yellow region). We also show wi as the normal vector of

the outer line.

In the following, we introduce algorithms to estimate the feasible set for mining the

underlying constraints. These mined constraints define an superset of the feasible set.

We also design an algorithm to get the subset of the feasible set to evaluate the estimation.

6.1.1 Mining Inequality Constraints

In the following, we discuss how to estimate the underlying feasible set S∗ associated with

inequality constraints. Our approach finds a convex hall SO defined by a set of learned

inequality constraints that is an outer polytope (i.e., superset) of the feasible set S∗. We

also purpose a method to get an inner polytope SI that is a subset of S∗ and use the gap

between the SO and Si to estimate the quality of approximation. Figure 6.1 shows an ex-

ample about SI , SO defined by 5 training samples in a 2-dimensional space. We denote

S
(i)
I , S

(i)
O as the inner and outer polytopes after considering the first i samples.

Outer polytope We first introduce how to identify SO. Assume that we already know

part of the constraints A′,b′. We initialize the outer polytope as S(0)
O = {y ∈ Zd |A′y ≤ b′}

40

(if A′,b′ are empty, S(0)
O = Zd). For every training sample (w(i),y(i)), we consider adding

the following constraint to the outer polytope

w(i) · y ≤ w(i) · y(i). (6.2)

Since y(i) is the optimal solution under weight w(i), all the points in the feasible set must

sit in the half-space defined by Eq. (6.2), otherwise y(i) is not the optimal solution. We

have S(i)
O = {y ∈ S

(0)
O | w(j) · y ≤ w(j) · y(j), j = 1, 2, . . . , i}, and S∗ ⊆ SO = S

(k)
O ⊆ · · · ⊆

S
(1)
O ⊆ S

(0)
O .

The outer polytope S
(i)
O (intuitively, the upper bound of the feasible set S∗) is tight

when we only observe the first i samples. That is, if we query w(1), . . . ,w(i), we will find

y(1), . . . , y(i) are (one of) the optimal solutions. Therefore, S(i)
O is a possible feasible set.

Since S∗ ⊆ S
(i)
O , this bound is tight. This shows that without any further assumption, we

cannot do better than SO for estimating the outer polytope of the feasible set S∗.

In the test time, we are requested to conduct inference with unseen input weightw(q).

Since all constraints in SO are linear, we solve the following ILP problem

maxy∈Zd w(q) · y s.t.
[
A′T w(1) . . . w(k)

]T
y

≤
[
b′T w(1) · y(1) . . . w(k) · y(k)

]T
.

(6.3)

The objective value of the solution of Eq. (6.3) might be higher than the optimum as

the solutionmight not satisfy all the underlying constraints. Wewill show that empirically

the outer polytope can approximate the feasible set effectively in Sec. 6.2. Although the

number of constraints grows linearly with the number of training samples, we find that

empirically the inference time does not grow much.2

2In structure output prediction, constraints are often associated with only the problem structure. There-
fore, all the inference instances share the same constraint set, and the overhead in solving ILPs is amor-
tized [SKR12, KSR13, CUK15].

41

Inner polytope To understand the quality of SO, we also construct the inner poly-

tope SI , then we can use the gap between SO and SI to estimate the quality of the ap-

proximation. We first initialize S(0)
I = ∅. For every training sample i: (w(i),y(i)), we set

S
(i)
I = convex_hull({y(1),y(2), . . . , y(i)}), and then S

(i−1)
I ⊆ S

(i)
I . Since all {y(i)} are in the

feasible set that is convex, all the convex hulls must be subsets of the feasible set. There-

fore, we have S(0)
I ⊆ S

(1)
I ⊆ · · · ⊆ S

(k)
I = SI ⊆ S∗.

Similarly, we can prove that S(i)
I is a possible feasible set after observing the first i

samples, which means as a lower bound, S(i)
I is also tight.

When we conduct inference with SI , we examine every vertex of the convex hull and

choose the one with the optimal objective. Since it is an inner polytope of the feasible set,

the solution is guaranteed to satisfy all constraints, and the objective value can be lower

than the optimum. Although inner polytope and outer polytope methods are two separate

algorithms, the gap between their objective function value and the size of the feasible set

provide an estimation of the tightness of the bound.

In Sec. 6.3.1 we will show that, empirically, this approach converges with reasonable

number of training samples and running time is discussed in Sec. 6.3.2.

Dealing with predicted weights When we incorporate the proposed approach with

a structured prediction model, the weights w are predicted by a base model. In this sit-

uation, the predicted weights w can be noisy and the corresponding label y may not be

the optimal solution to Eq. (6.3). As the result, the outer polytope may not contain some

feasible solutions as they are filtered out later by the algorithm. To handle the noise, we

adapt Eq. (6.2) to

w(i) · y ≤ w(i) · y(i) + ξi, i ∈ [k], (6.4)

where ξi is a slack variable to ensure every training point yi ∈ S∗ satisfies Eq. (6.4)

ξi = minj∈[k]{w(i) · y(j) −w(i) · y(i)}.

42

6.1.2 Mining Equality Constraints

When there are equality constraints in the output label space. Effectively, the dimension

of the output space is reduced. However, the dimension of the set SO is the same as that

of w and y. Therefore, this inspires us to find the sub-space of SO to further tighten the

feasible set.

For example, in the MST problem the number of edges we select is exact N − 1 where

N is the number of nodes. Formally, the linear constraint 1 · y = N − 1 holds for every

feasible point y.

We denote this d′−dimensional sub-space as SD = {y | Weq · y = c}. We can obtain

Weq, c by solving the kernel of [yT , 1], which isyT1 yT2 . . . yTn

1 1 . . . 1

T W T
eq

−cT

 = 0. (6.5)

With the sub-space SD, the intersection of SO and SD is used to replace SO as the outer

polytope of the feasible set: SI ⊆ S∗ ⊆ SO ∩ SD = {y ∈ SO |Weqy = c}. For the reliability

of this algorithm, we give two lemmas:

Lemma 1: If there is an underlying equality constraint Weq · y = c, our algorithm can

find it.

Proof Sketch: For any underlying equality constraintWeq ·y = c, all the labels of train-

ing points yi should satisfy it and it must be in the kernel of Eq. (6.5).

Lemma 2: For an equality constraint given by this algorithm, the probability that this

constraint does not hold for the optimal solution of a random query is less than 1
eM
, where

M is the number of training points.

Proof Sketch: We use Dw to denote the domain of the query (weights), and f ∗(w) as

the ground truth solution for the query w. We denote the equality constraint learned by

43

the algorithm is g(y) = 0.Therefore, all the data yi in the training data satisfy g(yi) = 0.We

let p = Prw∼Dw(g(f
∗(w) = 0). The probability of all the training data satisfying g(yi) = 0

is pM . Thus, the probability that this constraint does not hold for a random query solution

is

pM(1− p) ≤ MM

(M + 1)M+1
<

1

eM
.

6.1.3 Latent Variables

Some prediction problems involve constraints with complex logics and require auxiliary

variables to model the problem structure. Thanks to the flexibility of the ILP framework,

we can introduce latent variables to extend the expressiveness of the constraint mining

framework:

max
y∈Zd

w · y s.t. Apre

y
h

 ≤ bpre, A

y
h

 ≤ b, (6.6)

where h are latent variables, and they appear in the constraints but not in the objective

function in Eq. (6.6). Despite that h is not part of the output, it facilitates to formulate the

ILP problem. In general, a set of pre-defined constraints (Apre,bpre) are given to describe

the relations between y and h. Then, given a set of {(w(i),y(i))}ki=1, our goal is to learn the

constraints (A,b).

We then adapt the method in Sec 6.1.2 to solve the kernel of the matrix [yT ,hT , 1]T .

In this way, we can mine equality constraints with respect to h and then derive the outer

polytope SO. Sinceh is determined by the variables y, adding constraints onh also reduces

the size of SO.

For example, consider multi-label classification with output y, where yi, i = 1 . . .m is a

binary indicator of class i. If we would like to identify the constraints between pairs of la-

bels from {(w(i),y(i))}, we can introduce a set of latent variables {hi,j,b1,b2}i,j=1...m;b1,b2∈{0,1}}

with pre-defined equality constraints hi,j,b1,b2 = (yi = b1) ∧ (yj = b2), ∀i, j, b1, b2. They can

44

be further formulated as

∀i, j,


hi,j,1,0 + hi,j,1,1 = yi

hi,j,0,1 + hi,j,1,1 = yj∑
b1,b2∈{0,1} hi,j,b1,b2 = 1.

By introducing hi,j,b1,b2 , we are able to capture some correlations between labels. For ex-

ample, label i and label j cannot be positive at the same time can be represented by a con-

straint hi,j,1,1 = 0. Therefore, the latent variables make the constraint learning framework

more expressive.

6.2 Experiments

Weexperiment on two synthetic problems, 9×9Sudoku andminimal spanning tree (MST),

to show that the proposed methods can capture different kinds of constraints. We then

incorporate the proposed technique with a feed-forward neural network in a hierarchical

multi-label classificationproblem. For all the experiments, weuse theGurobi v8.1.1 [Gur16]

as the ILP solver.3

6.2.1 Sudoku

In Sudoku, given a 9× 9 grid with numbers partially filled in, the player is requested to fill

in the remaining of the gridwith constraints that each 3×3 sub-grid, each column and each

row must contain all the numbers of 1, 2, . . . , 9. The size of the feasible set is 6.67 × 1021

[FJ05] which is extremely large. Our goal is to use the proposed method to solve Sudoku

puzzles without telling the model the rules.

We follow the experiment setting in [WDW19] to represent the solution of Sudoku as a

vector y ∈ {0, 1}729, where yijk denotes the i−th row j−th column is the number k or not.

3We configure the ILP solver such that it outputs optimal solution (i.e., setMIPGap = 0). The relaxed
LP will be discussed in Sec. 6.3.2.

45

Table 6.1: Sudoku results. EQ stands for equality constraint mining. Performance is re-

ported in entry-level accuracy. Our approaches can successfully identify the underlying

Sudoku constraints.

(a) Original Sudoku

Model Train Test

ConvNet [Par18] 72.6% 0.04%

ConvNetMask [Par18] 91.4% 15.1%

SATNet [WDW19] 99.8% 98.3%

Outer + EQ (ours) 100% 100%

(b) Permuted Sudoku

Model Train Test

ConvNet [Par18] 0% 0%

ConvNetMask [Par18] 0.01% 0%

SATNet [WDW19] 99.7% 98.3%

Outer + EQ (ours) 100% 100%

The partially filled entries (ri, ci) = ni (i.e., row ri column ci is number ni) are encoded in

w ∈ {0, 1}729, where we set the corresponding weight for wricini
to be 1 and the rest to be 0.

In this way, maximizing the objective functionw · y guarantees yijk = 1 if wijk = 1. Then

given pairs of {w,y}, our method mind the underlying constraints A and b in Eq. (6.3).

We experiment on the dataset introduced in [WDW19]. The dataset contains 9, 000

training and 1, 000 test samples, each of which has a unique solution. We also conduct

experiments in the permuted setting [WDW19], where a pre-defined permutation function

is used to shuffle the 9×9 grid. In the permuted setting, it is almost impossible for humans

to identify the underlying rules, despite the puzzle is still filled in a certain order. We

follow the configuration in [WDW19] to compare our approach with a convolution neural

46

network for Sudoku [Par18] (ConvNet) and SATNet [WDW19] and report our results along

with their published results in Table 6.1.

As shown in the table, by using the equality constraints mining technique, our frame-

work can realize the Sudoku rules and achieve 100% accuracy. The constraints we mine

reduce the size of candidate solution space from 2729 to 6.67 × 1021 (i.e., the number of

feasible Sudoku puzzles). Note that our approaches, as well as SATNet, do not utilize the

position clues in the data. Therefore, it is not affected by permutations.

In fact, the equality constraints we learn are exactly the rules of Sudoku. The Sudoku

rules can be represented linearly as

9∑
i=1

ykij = 1,
9∑

i=1

yjki = 1, ∀j, k,

3∑
i=1

3∑
j=1

y(x+i)(y+j)k = 1, ∀x, y ∈ {0, 3, 6}∀k.
(6.7)

We use S∗ to denote the space defined by Eq. (6.7) and Ŝ as the space of our constraints.

We verify the S∗ = Ŝ by

1. Verifying that each constraint in S∗ is indicated by the constraints we learn. This

property guarantee that S∗ ⊆ Ŝ.

2. Comparing the dimension of S∗ and S. We find that d(S∗) = d(Ŝ) = 249.

In this way, we confirm that our framework can mine the underlying Sudoku rules suc-

cessfully.

6.2.2 Minimal Spanning Tree

As discussed in Sec. 2.2, inference problems in many structured output prediction appli-

cations (e.g., dependency parsing) can be modeled as searching the minimal (or maximal)

spanning tree (MST). In the following, we verify if the proposed approach can identify

the structure of solution is a tree by merely providing pairs of adjacency matrices and the

corresponding MST. We encode the MST problem as described in Sec. 6.1.

47

Table 6.2: MST results in exact match (EM) accuracy in Train and Test, the average edge

accuracy (Edge) and the ratio of solutions that are feasible (Feasibility). Here, the feasi-

bility means the solution forms a tree.

(a) 10, 000 training samples

Model Train EM Test EM Test Edge Test Feasibility

NN 8.3% 6.9% 89.3% 12.8%

Inner 100% 41.6% 93.7% 100%

Outer 100% 71.1% 96.1% 71.1%

Outer+EQ 100% 72.9% 96.1% 72.9%

(b) 20, 000 training samples

Model Train EM Test EM Test Edge Test Feasibility

NN 9.5% 10.4% 91.1% 13.4%

Inner 100% 69.2% 97.0% 100 %

Outer 100% 87.2% 98.0% 87.2%

Outer+EQ 100% 91.8% 98.7% 91.8%

We generate a dataset with 7 nodes. The dataset contains 20, 000 training and 500 test

data. Every data point consists of an adjacency matrix serialized in a vectorw, wherewi,j

represents the distance between node i and node j, and its corresponding MST. The entry

in the adjacency matrix is independently sampled from a uniform distribution in [−1, 1].

We filtered out the adjacency matrix with identical values to ensure every sample has a

unique optimal solution.

We test the inner polytope (Inner), outer polytope (Outer) andouter polytopewith equal-

ity constraint mining (Outer+EQ) methods. We compare our approaches with fully con-

nected feed-forward neural networks (NN) with 1, 2 or 3 layers, which directly learn the

association betweenw and y and the hyper-parameters are given in the Appendix. We set

hidden dimension to be 50. Despite that our methods do not have hyper-parameters, to

48

Table 6.3: Detailed results (grey zone in Fig. 6.2) evaluated by exactmatch accuracy (EM),

the ratio of solutions that are feasible (Feasibility), and average accuracy of label assign-

ments (Label Acc.).

Model Test EM Test Feasibility Test Label Acc.

Baseline 62.6% 73.8% 98.92%

Inner 79.8% 100% 98.98%

Outer 71.3% 89.7% 98.85%

Outer+Latent 79.8% 100% 98.98%

tune the neural network, we generate another 500 dev data points.

Table 6.2 shows the results in exact match (i.e., correct MST) and edge accuracies.

The results show that Baseline-NN is unable to learn the tree structure from the given

examples. We find that NN can learn reasonably well in each individual edge but is terri-

ble to capture the output is a tree. In particular, in 87.2% and 86.6% of cases for 10,000,

20,000 training samples, respectively, the output by NN is not feasible (not a tree). There-

fore, its exact match accuracy is low. In comparison, the proposed approaches Outer and

Outer+EQmostly produce feasible solutions4, resulting in much higher exact match accu-

racy. Comparing the results for 10, 000 and 20, 000 data points, we find that Outer+EQ is

more effective than NN when doubling the training data as it improves 20% exact match

accuracy.

6.2.3 Hierarchical Multi-label Classification

Finally, we apply the proposed approaches to a real-world problem and demonstrate its

ability to cooperatewithmachine learningmodels. We conduct experiments on ImCLEF07A

[DKL11], which contains 10, 000 training samples and 1, 006 test samples. Each sample has

4Note that for Outer andOuter+EQmethods, the results of feasibility are the same as test EM because all
feasible trees are in the outer polytope. Therefore, if a model outputs a feasible tree, the tree is guaranteed
to be optimal.

49

0 10 20 30 40 50 60 70
NN EM accuracy (%)

0

10

20

30

40

50

60

70

80

M
od

el
 E

M
 a

cc
ur

ac
y

(%
)

Baseline
Outer
Outer + Latent

Figure 6.2: Results on ImCLEF07A in EM accuracy using base models with different per-

formance levels.

80 features and a set of labels selected from 96 classes. There is a hierarchy among the la-

bels and the depth of the hierarchical structure is 4. A feasible label set forms a path from

the root to a leaf node.

The base model is a 3-layer fully connected feed-forward neural network with hidden

dimension 80. This model outputs a vector c, where each component ci ∈ [0, 1] is predicted

independently to the input instance. For the baseline model, if ci > 0.5, then the label i is

positive.

We take the base model as a sub-routine and use it to assign weight w in Eq. (6.3).

Specifically, w = c − 0.5 × 1.Without constraints, solving the ILP in Eq. (6.3) is equiva-

lent to make predicton by the baseline model. We evaluate 1) the inner polytope method

(Inner), 2) the outer polytope method (Outer) and 3) the outer polytope method with latent

50

variables (Outer+Latent). In Outer, as w is generated by a predicted model, we use Eq.

(6.4) to allow noise. In Outer+Latent, we use the label pairwise latent variables defined

in Sec 6.1.3. To reduce the label spaces, we follow the convention to consider only induce

latent variables to label pairs that occur in the training set.

Different from Sec. 6.2.1 and 6.2.2, the weight w is a score vector predicted by the

base model. To understand how the constraint mining approaches incorporate with base

models with different performance levels, we train multiple version of base models with

different number of layers and training epochs then demonstrate the performance of our

approach with these base models. The hyper-parameters for these models are given in the

Appendix. The results are shown in Fig. 6.2. Results show that Outer and Outer+Latent

improve the base models in all cases. Even with a weak base model with only 10% in exact

match accuracy, Outer and Outer+Latent are able to learn underlying constraints and im-

prove the performance by more than 20%. The different between Outer and Outer+Latent

is not apparent when the base model is inaccurate. However, when the base model per-

formance increases, Outer+Latent is capable of capturing more fine-grained constraints

than Outer and achieves better performance. When the baseline achieves 0 loss in train-

ing data (the right-most column points), the constraints learned by Outer can not filter out

any point in the space. Therefore,Outer achieves the same performance asBaseline. How-

ever,Outer+Latent can still mine constraints related to the latent variable and improve the

performance.

Table 6.3 highlights the detailed results with one base model.5 Outer improves Baseline

about 12% in exact match accuracy and 16% in feasibility. This demonstrates Outer can

successfully filter out many infeasible solutions and guide the model to find the correct

ones. Inner learns exactly the feasible set as all pairs of labels appear in the test set also

appear in the training. Similarly, Outer+Latent is able to identify all the dependencies be-

5We choose the second best baseline model since the best one gets 100% accuracy in training set, which
causes the inequality constraints learned by Outer method filter out nothing.

51

tween labels and achieves high performance. The classes in this task have a tree structure

and it has depth 4 including the root (root is a virtual concept that it is not a real class). We

use p(x) to denote the parent class of class x, and Li to denote the set of classes on layer

i, i ∈ {1, 2, 3}.We verify the constraints with the same method in Sec. 6.2.1. The mined

equality constraints are the linear transformation of the following constraints:∑
j∈Li

yj = 1, ∀i ∈ {1, 2, 3},

hparent(x),x,0,1 = 0, ∀x : parent(x) ̸= root.

(6.8)

6.3 Analysis and Discussion

6.3.1 Feasible Set Size Analysis

Weprovide a theoretical analysis about the convergence speed of the proposed approaches

by estimating the cardinality of the outer polytope and inner polytopes. Our methods in

Sec. 6.1 estimate the feasible set by squeezing the outer polytope and enlarging the inner

polytope. We analyze how the sizes of outer polytope and inner polytope change with

respect to the number of training samples.

We denote the size of ground truth feasible set S∗ asM , the size of universal label space

is N . The weights w are drawn from the distribution Dw. For each point i, we use pi to

denote the probability that given a randomly sampledweightw ∼ Dw, y(i) get higher score

than all the feasible points. Formally, pi = Pw∼Dw{w·y(i) ≥ w·y(j), ∀j ∈ S∗}.The following

lemma bounds the expectation sizes of the outer and inner polygons. Full proof is in the

Appendix.

Lemma 3: The expectation of the sizes of outer and inner polygon is given by

E[|SI |] = M −
∑

i∈S∗
(1− pi)

k ;

E[|SO|] = M +
∑

j /∈S∗
(1− pj)

k,
(6.9)

52

Proof sketch: We first consider the outer polygon. The point j out of the feasible set

appears in the outer polygon if and only if it is not filtered out by any constraints, which is

(1− pj)
k.

We then consider the inner polygon. The point i appears in the inner polygon if and

only if at least one training sample takes it as the optimal solution, which is 1− (1− pi)
k.

Case study: MST We take MST discussed in Sec.6.2.2 as an example. According to

Matrix-Tree Theorem [CK78], we know that the number of spanning trees isM = 16, 807.

The universal set size before mining equality constraints is NO = 221 = 2, 097, 152. How-

ever, with the equality constraintsminingmethod, we can identify the constraint
∑21

i=1 yi =

6, (i.e., number of edges is 6). With this constraint the size of the space is reduced to

N =
(
21
6

)
= 54, 264.

pi in Eq. (6.9) is difficult to estimate directly; therefore, we approximate it by pi = 1
M

for i ∈ S∗ and pj = 1
M+1

for j /∈ S∗. The approximation is exact if the following assump-

tion hold (see details and proof in Appendix). Data symmetric: for k different points

y(1),y(2), . . . , y(k), Pw∼Dw{w · y(1) ≥ w · y(i), i ∈ [k]} = 1
k
. MST only satisfies the part of

the assumption, therefore, for i ∈ S∗, the approximation pi =
1
M
is close, and there is a

gap between empirical pj(j /∈ S∗) compared with 1
M+1

(see Fig. 6.3b), this causes the gap

between the empirical result and the estimated expectation about the outer polytope. Fig.

6.3a shows the empirical sizes of outer and inner polytope |SO|, |SI |, with their theoretical

expectation in Eq. (6.9) and the ground truth |S∗|. The expectation of Inner perfectly fits

the empirical results and the two curves are almost coincide. Both of the Outer and Inner

method eventually converge to the ground truth, and the Outer method is closer.

6.3.2 Discussion about Running Time

Table 6.4 shows the training and test running time of our approaches. For our approach,

the training time refers to the time required for identifying the feasible set. As shown in

Sec 6.1, our approach only needs to pass all samples once, and the complexity is linear

53

0 5000 10000 15000 20000
#training samples

0

10000

20000

30000

40000

50000

60000
#p

oi
nt

s i
n

se
t

Empirical |S_O|
Empirical |S_I|
E[|S_O|] (1/(M+1))

E[|S_O|]
E[|S_I|]
|S*|

(a) Set size

0.0000 0.0003 0.0006 0.0009 0.0012 0.0015
p_j

0

1000

2000

3000

4000

5000

#p
oi

nt
s

distribution of p_j
1/(M+1)
mean of p_j

(b) The dist. of pj , j /∈ S∗

Figure 6.3: On the left Fig. 6.3a shows the empirical and expectation sizes of outer and

inner polytope, comparing with ground truth. E[|SO|](1/(M + 1)) is the expectation of

outer polytope size estimated by pj = 1
M+1

while E[|SO|] is estimated with empirical pj.

Note that the empirical inner polytope and its theoretical curve almost coincide. On the

right Fig. 6.3b shows the distribution of pj estimated from 20, 000 training data comparing

with 1/(M + 1).

in terms of the number of constraints and samples. Therefore, our approach is more ef-

ficient than the baseline neural network in the Sudoku and MST experiments. For the

HMC example, the training time of our approach includes updating themodel parameters

of the underlying neural networks. Therefore, the training time is longer compared with

the Sudoku and MST cases.

For the inference time, we report the average time on solving one test sample. Despite

ILP is NP-hard, a commercial solver (e.g., Gurobi) is capable of solving the problemwithin

a reasonable time. Therefore, without carefully engineering to optimize the running time,

the ILP solver can produce solutions within a few seconds.

Note that despite the constraints are mined using the ILP framework, it does not mean

that the inference has to be solved by an ILP solver. Once the constraints are identified,

54

Table 6.4: Running time in seconds for experiments. The time is computed by averaging

in 3 runs.

Experiment Model Training Inference

MST

Baseline NN 190 5e-4

Outer 24.1 7.9

Outer+EQ 26.5 3.8

Sudoku
ConvNet 636.4 5e-4

Outer+EQ 5.2 1.2

HMC

Baseline NN 44.9 4e-4

Outer 560.3 1.1

Outer+Latent 599.3 7.1

one can design a specific constraint solver to speed up the inference. Besides, the ILP

inference can be accelerated by amortizing the computations when solving a batch test

instances [SKR12, CUK15] or by applying approximate inference algorithms for solving

ILP, e.g., LP relaxation methods [KP07, MFA15].

To demonstrate how the performance of our approach is affected by the approximate

ILP solver. We show a trade-off curve in MST 20,000 training experiments in Fig. 6.4 by

solving inference using Gurobi with different MIPGap, a parameter of the Gurobi solver

controlling the quality of solutions. Specifically, MIPGap specifies the maximum gap of

the objective function values between the returned solution and the optimum solution.

We vary MIPGap from 0 (exact solutions are returned) to 0.15. The experimental results

demonstrate that the inference can be accelerated using an approximate inference solver

with a trade-off of moderate performance loss.

55

0.00 0.03 0.06 0.09 0.12 0.15
MIPGap

0

20

40

60

80

EM
 a

cc
ur

ac
y

(%
)

Outer+EQ
Baseline

(a) EM accuracy

0.00 0.03 0.06 0.09 0.12 0.15
MIPGap

2.0

2.5

3.0

3.5

4.0

In
fe

re
nc

e
Ti

m
e

(s
)

Outer+EQ

(b) Inference time

Figure 6.4: The trade-off between inference time and model accuracy when an approxi-

mate inference solver is used. Results are on MST. The x-axis is the allowed maximum

relative gap between the returned solution and the optimum solution. On the left figure,

the performance of our approach drops when the MIPGap is large, but our approach still

significantly outperforms the neural network baseline (10.4%). The right figure shows that

the inference time significantly reduces when MIPGap gets large.

56

CHAPTER 7

Controllable Text Generation with

Neurally-Decomposed Oracle

7.1 Introduction

Auto-regressive language models have been widely used for text generation. With the re-

cent development of large-scale pre-trained language models [RWC19, BMR20, RSR20a,

LLG20], they have achieved state-of-the-art performances in applications such as ma-

chine translation [BCB15, LPM15], image captioning [AHB18, YJW16] and open domain

text generation [ZL14, YPW19, VL15, SLL15, LZZ18]. However, many applications such

as open-domain creative generation [YPW19, GCW20, TP22, HCT22, CHW22, SMH22]

require to control model output with specific sequence-level attributes. The attributes can

be specified by a set of rules1 or by an abstract concept (e.g., the generated text follows a

particular writing style). How to control auto-regressive language models to satisfy these

attributes is an open challenge.

In this paper, we propose a general and flexible framework for controllable text gener-

ation. Given a base pre-trained language model and a sequence-level oracle function in-

dicating whether an attribute is satisfied, our goal is to guide the text generation to satisfy

certain attributes using the oracle. To this end, we propose to decompose the sequence-

level oracle into token-level guidance, such that when generating the i−th token in the

output sequence given the prefix, instead of sampling from the base model, we modify the

1For example, lexical constraints require certain words to appear in the generated text [HL17, LZS20]

57

x +

Sampling

Oracle
?

?

?
?

Training

generated
text

A girl with hair
sits at a table

looking
around.

A woman is
sit t ing and

looking down.
hair

 Base Model NADO

(a) Take lexically constrained generation as

an example, where the oracle checks whether

all keywords in the input x are incorpo-

rated in generated text y. With proper train-

ing using samples from the base model p

(dashed arrow) labeled by the oracle, we de-

compose the oracle into token-level guidance

and parameterize it by an auxiliary model

Rθ (NADO). We use Rθ to provide guidance

when generating text with the base model

(see details in Fig. 1(b)).

Base
Model

Base
Model

Base
Model

Base
Model······

Aux.
Model

Aux.
Model

Aux.
Model

Aux.
Model······

Base
Auto-regressive

Model

NADO Model

(b) Illustration of the controlled generation

process. Both the base model and the auxil-

iary model (NADO) take input x and the gen-

erated sequence (prefix) y<L as input. The

base model, in each step, outputs a token dis-

tribution p(yi|x,y<i). Guided by NADO Rθ,

we obtain the distribution q (See Sec. 7.2.2),

based onwhichwe generate the output token.

Figure 7.1: Illustration of pipeline incorporating NADO (left) and model architecture

(right).

probability distribution of the output token based on the token-level guidance. Specifi-

cally, we formulate the control as an optimization problem based on posterior regulariza-

tion [GGG10] and solve the closed-form optimal solution to incorporate the token-level

guidance for text generation. The decomposition is approximated by an auxiliary neural

network model, called NeurAlly-Decomposed Oracle (NADO), which is trained on data

sampled from the base model and supervised by the sequence-level oracle (see the illus-

tration Fig. 7.1a). We further provide theoretical analysis on how NADO’s approximation

58

quality affects the controllable generation results. Note that in the entire process, we treat

the base model and the sequence-level oracle as black-box functions, without the need for

any refactoring or fine-tuning.

A few existing controllable generation works (e.g., [LWZ21, LWW22a]) design search

algorithms for generating texts with lexical constraints. However, their approaches can-

not generally be applied to constraints such as style. Another line of work such as PPLM

[DML20], GeDI [KGM21], and FUDGE [YK21] also aim to guide the base model with an

auxiliarymodel. However, they either shift the basemodel distribution in a post-hocman-

ner without theoretical guarantee, or/and require external labeled data to train the auxil-

iary model. [KED21, KEK22] propose a generation with distributional control approach.

Our control objective derived through posterior regularization resembles their energy-

based model representation. However, they approximate the energy-based model using

a KL-adaptive distributional policy, while we propose to decompose the sequence-level

oracles into token-level approximated by NADO. With the decomposition, base models

receive explicit controlling signal in generating every token from the oracle. Furthermore,

since NADO is trained on the data sampled from the base models, it aligns better with the

base model’s distribution and thus can achieve better control.

We conduct experiments on lexically constrained generation (LCG) tasks and a ma-

chine translation (MT) formality change task. In LCG tasks, the oracle is a rule-based

keyword checker. We achieve almost perfect keyword incorporation with significantly

boosted BLEU scores compared to previous approaches that design specific decoding al-

gorithms [LWZ21]. In the formality-controlled MT task, we are provided with a formality

oracle predicting whether a sentence is formal or not, and the goal is to guide the model to

generate formal translations. Compared with recent work [YK21], we improve the BLEU

score by 3 points as well as improve the formality rate, demonstrating NADO’s superior

ability to incorporate external oracle supervision. Both experiments demonstrate the ef-

fectiveness of our framework in dealing with various types of control while maintaining

59

high-quality generation results.2

7.2 Methodology

We approach the sequence-level controllable text generation problem by decomposing

the sentence-level oracle into token-level guidance. We formulate this as an optimization

problem. Since the token-level guidance is intractable, we propose to train an auxiliary

model, called NeurAlly-Decomposed Oracle (NADO), to approximate it. During the in-

ference time, NADO guides the base model to generate sequences that satisfy the oracle

constraints.

In the rest of this section, we discuss 1) the formulation to decompose the sequence-

level oracle function into token-level guidance; 2) the formulation to incorporate the token-

level guidance into the base model to achieve control; 3) the approximation of the token-

level guidance usingNADO;4) a theoretical analysis of the impact ofNADOapproximation

to the controllable generation results; and 5) the training of NADO.

7.2.1 Setup: Notations and Problem Formulation

We use x ∈ X to denote the input and y ∈ Y to denote the generated sequence. yi is

the i−th token in y and y<i is the sequence prefix from the beginning to the (i − 1)−th

token. We denote the base auto-regressive generation model as p(yi|x,y<i), hence the

sequence-level distribution is given by p(y|x) =
∏

i p(yi|x,y<i). A sequence-level oracle is

defined as a boolean functionC : X ×Y → {0, 1}.We formalize the optimization objective

based on posterior regularization [GGG10]. Basically, we explore a token-level distribu-

tion q∗(yi|x,y<i) and its corresponding sequence-level distribution q∗(y|x), satisfying

1. q∗(y|x) =
∏

i q
∗(yi|x,y<i), i.e., q∗ can be treated as an auto-regressive model.

2. q∗(y|x) = 0 if C(x,y) = 0, i.e., q∗ only generates sequences satisfying the oracle C.

2Our code can be found at https://github.com/MtSomeThree/constrDecoding.

60

https://github.com/MtSomeThree/constrDecoding

3. Given an input x, KL(p(y|x)∥q∗(y|x)) is minimized, i.e., q∗ should be as similar to

the base model as possible.

[KED21, KEK22] derive a similar optimization formulation as property 2, 3, to rep-

resent constraints through energy-based models and approximate it with distributional

policy gradient. In this work, we propose to decompose oracle to token-level guidance to

steer the generation. We discuss our approach in the following.

7.2.2 Token-level Guidance and Closed-Form Solution For q∗

Before we compute the solution for q∗, given the base model p and oracle C, we first define

the token-level guidance as a success rate prediction function RC
p (x), which defines the

probability of the sequence generated by p satisfies the oracle C given the input x. We

similarly define RC
p (x,y≤i) as the probability of success given input x and prefix y<i. By

definition, we have

RC
p (x) = Pry∼p(y|x) [C(x,y) = 1] =

∑
y∈Y

p(y|x)C(x,y)

RC
p (x,y≤i) = Pry∼p(y|x) [C(x,y) = 1|y<i] =

∑
y∈Y

p(y|x,y<i)C(x,y).
(7.1)

With the function RC
p , we now derive the closed-form solution of q∗ considering con-

ditions 2 and 3 defined in Sec. 7.2.1. Given input x, we define the feasible sequence-level

distribution set Q as

Q := {q|
∑

y: C(x,y)=0
q(y|x) = 0}, (7.2)

then the sequence-level closed-form solution for q∗ is given by

q∗(y|x) = argmin
q∈Q

KL(p(y|x)∥q(y|x)) = p(y|x)C(x,y)
RC

p (x)
. (7.3)

Considering condition 1 in Sec. 7.2.1 to make q∗ tractable, we decompose q∗(y|x) into

token-level. The closed-form solution is given by

61

q∗(yi|x,y<i) =
RC

p (x,y≤i)

RC
p (x,y≤i−1)

p(yi|x,y<i). (7.4)

The decomposition is unique. The proof and detailed derivation can be found in the

appendix.

Control with Soft Constraints. In Eq. (7.2) we define the feasible distribution set as

distribution that the possibility of a sequence violate the oracle function is 0. However, in

some applications, we expect to control the generation with soft constraints. For example,

we want the model to generate sentence about sports with probability r = 0.8. Our frame-

work also supports controlling the generation with soft constraints. To achieve this, with

a pre-defined ratio r ∈ [0, 1], we alternatively define a general feasible set Q as

Q := {q|
∑

y: C(x,y)=1
q(y|x) = r},

where Eq. (7.2) is the special case when r = 1. The general token-level closed-form solu-

tion is

q∗(yi|x,y<i) =
αRC

p (x,y≤i) + β(1−RC
p (x,y≤i))

αRC
p (x,y≤i−1) + β(1−RC

p (x,y≤i−1))
p(yi|x,y<i),

where α = r
RC

p (x) , β = 1−r
1−RC

p (x) .

Similar to Eq. (7.4), once we have access to RC
p , we can directly compute the closed-

form solution even though the form ismuchmore complicated. In this paper we only focus

on hard constraints (r = 1), however, here we demonstrate that our framework is capable

of handling soft constraints as well.

7.2.3 Approximating RC
p by NADO and Theoretical Analysis

Unfortunately, function RC
p defined in Eq. (9.5) is intractable. We cannot enumerate all

possible sequences y since the space is exponentially large and essentially infinite. Hence,

we train a neural model NADO to approximate this well-defined function. We use RC
θ to

denote NADO parameterized by θ. In this section, we derive bounds to provide a theo-

retical analysis about the correlation between errors in approximation and errors in cor-

62

responding sequence-level distribution. Generally, when RC
θ approximates RC

p precisely

enough, we have an upper bound for the sequence-level distribution discrepancy. The

following lemma provides the formal definition.

Lemma 1We define distribution

q(yi|x,y<i) ∝
RC

θ (x,y≤i)

RC
θ (x,y≤i−1)

p(yi|x,y<i). (7.5)

If there exists δ > 1 such that given input x, ∀y<i,
1
δ
<

RC
θ (x,y≤i)

RC
p (x,y≤i)

< δ, we have

KL(q∗(y|x)∥q(y|x)) < (2L+ 2) ln δ,

where L is the length of the sequence y.

We also notice that by definition, RC
p satisfies the following equation:∑

yi
RC

p (x,y≤i)p(yi|x,y<i) = RC
p (x,y≤i−1). (7.6)

If R also satisfies Eq. (7.6), we can tighten this bound. Formally,

Lemma 2 Given the condition in Lemma 1, if q is naturally a valid distribution without

normalization (i.e.,
∑

yi

RC
θ (x,y≤i)

RC
θ (x,y≤i−1)

p(yi|x,y<i) = 1), we have

∀x,KL(q∗(y|x)∥q(y|x)) < 2 ln δ.

This lemma shows that with the auto-regressive property, the error does not accumu-

late along with the sequence. The proof is in the appendix. These two bounds indicate that

when training the model RC
θ , we should push it to satisfy Eq. (7.6) while approximating

RC
p .

7.2.4 Training NADO

In Fig. 7.1b we show the architecture of NADO. In general, NADO can be any seq2seq

model. During training, it takes x,y as input and predicts from RC
θ (x,y≤0) to RC

θ (x,y≤T).

63

During the inference time, there are two parallel forward pass3 to compute the token dis-

tribution q. Considering the size of theNADO is usuallymuch smaller than the basemodel,

the whole forward pass takes no more than 2x base model forward pass time.

Now we discuss the training objective. In training, with some predefined input distri-

bution X ,we sample x ∼ X , y ∼ p(y|x).We take these sampled (x,y) pairs as training ex-

amples, and use the boolean valueC(x,y) as their labels for all steps. We use cross entropy

(denoted asCE(·, ·)) as the loss function, formally,LCE(x,y, RC
θ) =

∑T
i=0 CE(RC

θ (x,y≤i), C(x,y)).

Given a particular input x, in expectation, we have

Ey∼p(y|x)LCE(x,y, RC
θ) =

∑
y∈Y

p(y|x)LCE(x,y, RC
θ)

=
T∑
i=0

RC
p (x,y≤i)logRC

θ (x,y≤i)+(1−RC
θ (x,y≤i)) log(1−RC

θ (x,y≤i))

=
T∑
i=0

CE(RC
p (x,y≤i), R

C
θ (x,y≤i))

(7.7)

Therefore,LCE empirically estimates the cross entropy loss betweenRC
θ and the ground

truth RC
p which is intractable.

Aswe analyze above, we also regularizeRC
θ for satisfyingEq. (7.6) based onKL-divergence:

Lreg(x,y, RC
θ) = fKL

(∑
yi

RC
θ (x,y≤i)p(yi|x,y<i), R

C
θ (x,y≤i−1)

)
.

fKL(p, q) = p log p
q
+(1− p) log 1−p

1−q
is KL-divergence regarding p and q as two Bernoulli

distributions. We use a hyper-parameter λ > 0 to balance these losses. The final training

loss is

L(x,y, RC
θ) = LCE(x,y, RC

θ) + λLreg(x,y, RC
θ). (7.8)

3In practice, to avoid enumerating the vocabulary, RC
θ outputs a vector over vocabulary (i.e.,

RC
θ (x,y≤i−1 ⊕ y) for all possible y, ⊕ is the concatenation operation), then we can directly do element-wise

multiplication between RC
θ and p.

64

7.2.5 Sampling

In Sec. 7.2.4 we describe that we train NADO by sampled data from base model p. One

advantage is that we are able to leverage different sampling strategies to better adapt to

different application scenarios. It is also possible to leverage reinforcement learning to

train RC
θ , and we discuss our connection to reinforcement learning in the appendix. In

this section, we introduce two sampling strategies and their corresponding properties.

Sampling with Temperature Control. In some task, the output sequences are not

diverse much, in other words, the token distribution in each step is very peaky. Since our

NADO is trained on the sampled examples, we expect those examples to cover as much

tokens combination as possible to avoid overfitting. Therefore, we add temperature fac-

tor T to smooth the distribution [AHS85]. Specifically, we sample y from distribution

p(y|x) 1
T , and add coefficient p(y|x)1− 1

T when computing the cross-entropy loss. Formally,

the expected loss is

E
y∼p(y|x)

1
T

[
p(y|x)1−

1
T LCE(x,y, RC

θ)
]
=
∑

y∈Y
p(y|x)LCE(x,y, RC

θ),

which is same as the original expected loss in Eq. (7.7).

Importance Sampling. In practice, the training process of NADO can be extraordinar-

ily difficultwhen samples generated by the basemodel phardly satisfyC. i.e. Ey∼p(y|x)[p(C|x,y)] ≃

0. Hence, we introduce the importance sampling [HM54] to tackle this issue. Basically,

we leverage existing partially trained R̂θ to form distribution q̂. Although R̂θ is not well-

trained, it is still able to provide positive guidance to produce samples satisfying C. Note

that q̂ does not have to be updated in each training epoch. With coefficient p(y|x)
q̂(y|x) , the ex-

pected loss is same as the original expected loss:

Ey∼q̂(y|x)

[
p(y|x)
q̂(y|x)

LCE(x,y, RC
θ)

]
=
∑

y∈Y
p(y|x)LCE(x,y, RC

θ).

65

7.3 Experiments

We conduct experiments on two tasks: lexically constrained generation (LCG) and ma-

chine translation (MT) with formality change. For the former, we use GPT-2 [RWC19]

as the base model and for the latter, we use a sequence-to-sequence model, MarianMT

[JGD18]. We demonstrate our framework is generally effective in both scenarios. The

boolean oracle is a rule-based function checking whether all lexical constraints are satis-

fied in LCG task, while inMT it is a classifier trained on an external dataset identifying the

formality of the text. We put all details about hyper-parameter settings in the appendix.

7.3.1 Text Generation with Lexical Constraints

We evaluate our model on two general classes of LCG problems:

• Unsupervised LCG: annotation for lexical constraints are not available during train-

ing, but are expected to be in their exact order and lexical form during inference.

• Supervised LCG: annotation for lexical constraints are available, yet the words may

appear in a different lexical form (e.g., “look” can appear in the past tense “looked”)

or a different order in the generated text.

In both cases, we define oracle C as a boolean function indicating whether the generated

sequence satisfies all of the lexical constraints. We do not naturally have negative samples

(i.e. the sequences that do not satisfy all constraints) to train the auxiliary model in both

settings, thus, it is non-trivial to compare against methods requiring both positive and

negative labeled data for training the auxiliary model like FUDGE and GeDi.

Data Setup For unsupervised LCG, we follow the settings in POINTER [ZWL20] and

conduct our experiments on Yelp! Review and News dataset. Each of the unsupervised

LCG dataset contains a great number of un-annotated, raw sequences for training (160K

for Yelp! Review and 268,586 for News). During inference, the model is expected to gen-

66

erate text lexically constrained in the exact order and form by a specific number of key-

words (7 for Yelp! Review and 4 for News). For supervised LCG, we evaluate the proposed

method on CommonGen [LZS20]. CommonGen is a supervised LCG task that aims to ex-

amine the commonsense of neural text generationmodels. For training, it contains 32,651

unique key concepts (i.e. the constraints) with 67,389 completed sequences in total. It also

contains a validation set with 993 concepts and 4018 reference sequences. For a more

robust evaluation, the dataset maintains an open leaderboard that benchmarks different

approaches on a withheld test set. We follow most of the data configurations specified in

the original paper that first introduced the datasets.

GeneralModel SetupWe investigate the effectiveness of different factors in our frame-

work by enumerating different combinations of them. We implement two types of base

model:

• (Seq2seq base model) A sequence-to-sequence model p(y|x) that takes into account

the lexical constraints as condition sequence input;

• (DA base model) A language model that is only domain-adapted to p(y) but uncon-

ditioned on anything. This is a challenging setting, since we impose the lexical con-

straints only with NADO. This setting is to better verify the effectiveness and effi-

ciency of the proposed method and control irrelevant factors.

Under both p(y|x) and p(y) settings, we fine-tune the base model from the pre-trained

GPT2-Large.

During training, NADO is trained as a Seq2seq-like model4, which takes in the keys

(for unsupervised LCGs, they are generated by randomly sampling a specific number of

natural words in the original sentence) and generates the token-level guidanceRC
θ (x,y≤i).

For each pseudo key, we sample 32 target text with top-p (p = 0.8) random sampling from

4In this experiment, the input x is only describing the lexical constraint C. However, our framework also
supports general inputs in other Seq2seq tasks with constraints. For example, machine translation with
lexical constraints where the constraint C is different from the input x.

67

20

22

24

26

28

30

32

0 2 4 6 8 10

w/ Regularization

w/o Regularization

Epochs

BLEU-4

(a) BLEU-4 comparison of NADO

training with/without using Eq. 7.6

70

75

80

85

90

95

100

0 2 4 6 8 10

w/ Regularization

w/o Regularization

Epochs

Coverage %

(b) Coverage comparison of NADO

training with/without using Eq. (7.6).

Figure 7.2: Comparative study of the effectiveness of regularization in NADO training.

base model p. We conduct experiments to test different training setups for NADO:

• (NADO training) The proposed training process described in Sec. 7.2.4.

• (Warmup)WewarmupNADObymaximizing the likelihood of positive samples, but

only backpropagating the gradient to the parameters ofRθ. The warm-upRC
θ is used

for importance sampling described in Sec. 7.2.5. With DA base models, however,

the warmup process is always incorporated for practical success of training (see the

results for DA pretrained w/o warmup).

We also consider the settingwithwarmup only, which can be treated as a stronger baseline

to verify that the major improvement of our framework is not coming from the extended

capacity in NADO.

Results andAnalysisWe compare the performance under different setups of ourmodel

to previous state-of-the-artmethods onLCG tasks, including insertion-basedmodels (Lev-

enshtein Transformer [GWZ19] with Lexical Constraints [SCT20], InsNet [LMP22], etc.)

and decoding-based algorithms. We also compare the results with a simple baseline which

address the problems with a standard Seq2seq pipeline. The results are as shown in Ta-

ble 7.1.

68

NADO consistently improves the BLEU score and coverage in different setups. Fur-

thermore, under the best setting of each task (see bolded items in the table), NADO per-

forms significantly better than most baselines in generation quality and can achieve very

good lexical constraints coverage rate. Compared to InsNet, it ismuch easier for an autore-

gressive model with NADO to handle flexible reordering/transformation of lexical con-

straints. This is reflected in the performance comparison of InsNet and NADO on Com-

monGendataset. Undermost settings, a Seq2seq basemodelmakes it easier for the frame-

work to perform well, as it guarantees a reasonable level of lexical constraint coverage in

even the initial state of the model.

Using a DA pretrained base model is a even challenging setup since the lexical con-

straints are only imposed with NADO. Therefore, the base model distribution is much

distinct from the one filtered by the oracle, which is shown by poor performances on both

metrics. However, with warmup and NADO under importance sampling, we show that it

is still possible to obtain a powerful model with the proposed method.

To further study the correlation between the base model quality and the improvement

ofNADO,we conduct experiments onGPT-2 basemodel. TheGPT-2 basemodel has lower

scores with and without NADO compared with GPT-2 large, while the coverage improve-

ments are similar. It shows NADO is capable to push the base model distribution towards

the oracle if the base model has decent quality.

We also do human evaluation on base model (GPT-2 Large fine-tune) and the best

NADO system, together with the gold reference for comparison. The results are shown in

Tab. 7.2. The evaluationmetrics are detailed described in the Appendix. Some qualitative

are shown in Tab. 7.3.

To study the importance of the regularization term, we conduct an ablative study under

the optimal setting on the CommonGen dataset (Seq2seq base model with NADO only).

The results are shown in Figure 7.2. While the success of achieving lexical control does

not degenerate when NADOw/o regularization overfits, adding regularization can signifi-

69

cantly improve the robustness of NADO generation quality when training NADO for more

epochs.

7.3.2 Machine Translation with Formality Change

Datasets and Setup We follow the experimental setting in FUDGE [YK21] to formal-

ize the results of machine translation. Given an informal source sentence, our goal is to

translate it into formal sentence written in the target language. We conduct our experi-

ments on Fisher and CALLHOME Spanish-English Speech Translation Corpus [PKL13],

where both of the Spanish source and English reference are informal and casual. Instead

of evaluating the translation on original references, we use the formal and fluent rewritten

version of references [SSW19] to evaluate the translation quality by BLEU scores. In the

training process, the formal version reference is unseen to the models. We also evaluate

the formality scores by a discriminator trained onGYAFC formality dataset [RT18] aswhat

FUDGE paper does. In this experiment, pre-trainedMarianMTmodel [JGD18] is used as

the base model.

In FUDGE, the authors train an auxiliary model also on GYAFC modeling token-level

guidance P (formal|y<i), and leverage it to guide the base model by Bayesian rule

P (yi|y<i, formal) ∝ P (yi|y<i)P (formal|y≤i). (7.9)

For the formality supervision, FUDGE leverages an external token-level oracle. In

NADO, we load the same oracle but exclusively leverage sequence-level binary supervi-

sion as oracle C. We randomly choose 10,000 (7.2%) source texts from the training set

as input examples, and sample 8 target texts by sampling with temperature T from base

model p for each source text. We use those sampled examples to train NADO. In total, we

have 80, 000 training samples, which is similar to the number of training data (105k) for

the token-level oracle in FUDGE. All the methods are using greedy decoding.

Results and Discussion The experimental results are shown in Table 7.4. Compared

70

to FUDGE, although only the sequence-level supervision is leveraged, we are consistently

better in both metrics, especially in BLEU score we boost about 3 points. We conjecture

that the improvement is because our formulation is more principle and correct. In meth-

ods using auxiliary model to guide the base model, including FUDGE, their formulation is

based on Eq. 7.9. However, the auxiliary model is trained on a distribution different from

where the base model is pretrained on, which leads to a distributional discrepancy issue.

In other words, directly multiplying these two terms is not rigorous, since they are esti-

mated on two different distributions. On the contrary, NADO is trained specifically to the

base model. This avoids the discrepancy issue and provides an accurate guidance. Con-

sidering we are using the same oracle function and similar number of training samples,

the higher generation quality reflected by BLEU scores supports our conjecture.

In sampling, for each input we sample 8 examples to train RC
θ , which are usually iden-

tical in this task. Applying temperature in sampling allows NADO to be trained with more

diverse data. Results show that with a properly set temperature, we can further improve

the generation quality.

It is still possible that the neural oracle leverages some superficial or even spurious

features and NADO is catering those features in order to improve the formality scores.

For example, some informal little words like “hmm” “uh”, and some abbreviations like “

‘cause ” “gonna” could make the formality score lower. We find that NADO tends to fix

them. However, how to get an good oracle is orthogonal to our contributions.

7.4 Conclusion

We purpose a general and efficient framework for controllable generation. We leverage

an auxiliary neural model, NADO, to approximate the decomposed oracle guidance, and

incorporate it with a fixed basemodel. By trainingwith sampled data from the basemodel,

NADO aligns better with the base model, and our framework is more flexible dealing with

various application scenarios provided by different sampling methods. As NADO is a gen-

71

eral framework, in the future, we plan to apply it in boarder application scenarios. For

example, reducing societal bias [SCN19] (e.g., gender or racial bias) in generation by pro-

viding corresponding oracle.

72

Table 7.1: Unsupervised/Supervised Lexically Constrained Generation results on Yelp Re-

view (unsupervised), News (unsupervised) and CommonGen (supervised) dataset. CVRG

stands for constraints coverage. For insertion-based models, on CommonGen dataset we

directly use the keyword as initial contextwith no further permutation. p, q denote the base

model and the combined model in our framework, respectively. The domain adaptation

pretrained model produces samples unconditioned on the constraints, and thus results in

worse results than other setups. Results with * mark are from the open leader board on

the test set instead of development set.

Dataset Yelp Review (test) News (test) CommonGen (dev)

Metrics BLEU-2/4CVRG BLEU-2/4CVRG BLEU-3/4 CVRG

Insertion-based Baselines

InsNet-Sequential [LMP22] 19.4/5.8 100% 16.3/5.0 100% 26.2/18.7 100%

ConstLevT [SCT20] 14.8/4.0 100% 11.8/1.9 100% 21.3/12.3* 96.9%*

Algorithmic Baselines

GPT-2-Large Finetune + Sampling 16.4/5.3 94.5% 13.2/4.2 81.8% 34.2/24.7* 82.2%*

Neural Logic [LMP22] - - - - 36.7/26.7* 97.7%*

A*esque Decoding [LWW22a] - - - - -/28.2* 97.6%*

Model Setups (Ours)

p (Domain Adaptation pretrain) 5.3/0.4 5.4% 4.0/0.8 0.9% 9.3/3.9 8.5%

p (Seq2seq pretrain) 16.6/4.8 91.2% 13.0/3.4 74.0% 34.2/23.5 87.0%

q (DA pretrained p + warmup) 16.2/4.3 75.4% 12.6/2.8 66.7% 32.7/20.9 79.7%

q (DA pretrained p + warmup + NADO) 16.9/5.4 95.6% 15.4/4.7 92.3% 37.8/26.2 96.1%

q (Seq2seq pretrained p + warmup) 16.8/5.7 94.2% 13.6/4.2 85.0% 35.2/24.8 90.2%

q (Seq2seq pretrained p + NADO) 17.4/6.0 96.7% 15.0/4.5 91.9% 40.9/30.8 97.1%

q (Seq2seq pretrained p + warmup + NADO) 16.7/4.7 92.8% 14.4/4.4 86.1% 40.2/30.3 95.9%

GPT-2 Base Reference

q (Seq2seq pretrained p) - - - - 32.17/22.98 76.8%

q (Seq2seq pretrained p + NADO) - - - - 33.61/24.01 85.5%

73

Table 7.2: Human evaluation of generated texts in CommonGen test set. The detailed

description for the four metrics (scale: from 1 to 3) and the evaluation setups can be found

in the Appendix. Baseline stnads for GPT-2 Large fine-tune setting, and NADO stands

for the best system, Seq2seq pretrained + NADO.We also evaluate the first gold reference

provided in the dataset for comparison. NADOoutperforms basemodel in all fourmetrics.

(The difference is statistical significant tested by Wilcoxon signed ranks one-sided test, p-

value < 0.02)

Model Quality Plausibility Concepts Overall

Baseline 2.39 2.46 2.40 2.37

NADO (Ours) 2.51 2.52 2.52 2.47

Gold Ref. 2.53 2.58 2.59 2.56

74

Table 7.3: Some more qualitative generation results with randomly selected concepts

about NeurIPS.

Constraint: The generated texts should contain all the given concepts in arbitrary

order

Concepts look forward discuss NeurIPS

Base Model Sample #1 Players discuss the look of forward NeurrIPS. (NeurIPS)

Base Model Sample #2 Football player and forward discuss a look at the move.

(NeurIPS)

NADO Sample #1 People look forward to discussing the future ofNeurIPS.

NADO Sample #2 We look forward to meeting and discussing the future of

NeurIPS.

Concepts excite paper accept NeurIPS

Base Model Sample #1 Researchers are excited after acceptance of their paper at IPS.

(NeurIPS)

Base Model Sample #2 Scientists excited to accept paper accepted atNeurIPS.

NADO Sample #1 NeurIPS is excited to accept the paper of researcher.

NADO Sample #2 NeurIPS is excited to announce that it has accepted papers.

75

Table 7.4: Formal Machine Translation results. We follow [YK21] setting to choose BLEU

score and average formality scores as the metric. We slightly improve the formality score

compared to FUDGE, while significantly boost the BLEU score.

Method BLEU Avg. Formality

MarianMT [JGD18] 16.98 0.45

FUDGE [YK21] 17.96 0.51

NADO + Random Sampling 20.84 0.54

NADO + Sampling with T = 5/4 21.04 0.53

NADO + Sampling with T = 5/3 20.77 0.52

76

CHAPTER 8

Application: Controllable Generation with Large

Language Models in Detoxification

8.1 Introduction

Large language models (LLMs) have demonstrated impressive performance across vari-

ous tasks, benefiting from their extensive pretraining on vast amounts of data. However,

recent studies have unveiled a concerning issue: LLMs can generate toxic texts [WFK19,

SCN19], raising the need to evaluate and address toxicity to prevent the generation of dis-

respectful or offensive content in practical applications. [GGS20] collect prompts that

trigger LLMs to generate toxic outputs, revealing the existence of toxicity problems in pop-

ular models like GPT-3 [BMR20], PaLM [CND22], and OPT [ZRG22]. Consequently, it is

crucial to explore systematic techniques for detoxifying large language models.

Previous work has attempted to prevent LLMs from generating toxic texts by fine-

tuning models on filtered corpora [RSR20b, WPX22, OWJ22]. However, given the mas-

sive number of parameters in current models, we focus on decoding-time detoxification

methods in this study, as they offer higher efficiency. Since toxicity is an abstract attribute

of an entire sentence, detoxifying individual sentences by rejecting specific lexical features

proves ineffective. The challenge lies in bridging the gap between the token-by-token gen-

eration process of auto-regressive models and the sentence-level attribute of toxicity.

Controllable generation via plug-and-play [DML20] is an efficient technique that lever-

ages auxiliary models to exert control over the generation process at decoding time, with-

77

0.05 0.10 0.15 0.20 0.25

0.050

0.075

0.100

0.125

0.150

0.175

0.200 rej-sampling
NADO
baseline

(a) Comparative study of the effectiveness

betweenNADOand rejection sampling eval-

uated by the toxicity trend. x-axis is the tox-

icity of the prompts. x, y-axis are the toxicity

score of the prompts and generated texts, re-

spectively.

Model (Size) Method Max. tox. PPL

GPT-3 XL
(1.3b)

Baseline* 0.57 10.18

Rej. Samp.* 0.45 10.18

DExpert* 0.31 19.87

DAPT* 0.47 10.40

NADO 0.33 12.11

OPT-30b
(30b)

Baseline 0.55 9.27

Rej. Samp. 0.47 9.18

NADO 0.32 11.65

(b) Comparative study of the effectiveness be-

tween NADO and rejection sampling, DExpert

and DAPT evaluated by the expected maximum

toxicity. The results labeled by * are from

[WPX22].

Table 8.1: Comparative study of detoxification methods evaluated in toxicity trend (8.1a)

and expected maximum toxicity (8.1b).

out the need for retraining or fine-tuning the generation model. While recent work such

as FUDGE [YK21], GeDi [KGM21], DExpert [LSL21] andNADO [MLP22] has achieved re-

markable performance in various controllable generation tasks, these techniques have pri-

marily been tested on relatively small models like GPT-2 with 1.5 billion parameters. The

effectiveness of thesemethods for detoxifying large languagemodels remains unclear, and

their adoption could significantly impact inference time and the scale of auxiliary models.

In this study, we investigate the detoxification of LLMswith up to 30billion parameters

using controllable generation. We compare the detoxification performance, as measured

by toxicity metrics and generation quality, with existing detoxification methods such as

lexically controlled techniques and domain adaptation. Furthermore, we analyze signif-

78

icant factors, including base model sizes, auxiliary model sizes, and architecture, within

the context of controllable generation. Our empirical results demonstrate that the con-

trollable generation approach exhibits decent control performance, which is not heavily

influenced by the size of the base generation model. Notably, we find that a parameter-

efficient auxiliary model, with only 125 million parameters compared to the 30 billion of

the controlled model, is sufficient to effectively control the toxicity of an LLM.

8.2 Experiments

We conduct experiments focusing on detoxifying OPT [ZRG22] with NADO [MLP22]. We

compare the performance with existing methods, and do ablation studies about the effect

of architectures and model sizes in controllable generation.

Setup We follow the setting in [ZRG22, CND22] to setup the experiments with Real-

Toxicity-Prompts (RTP) dataset [GGS20] and the Perspective API 1. The RTP dataset con-

tains 100k prompts, based on which languagemodels might be triggered to generate some

toxic sentences. PerspectiveAPI is a widely used toxicity detection tool, and we use the

TOXICITY score to evaluate the toxicity the sentence2. In NADO training, we sample

20,000 prompts from RTP dataset and sample 200 sentences with length 50 from the

base model for each prompt. The sampled sentences are labeled by PerspectiveAPI. The

NADO is trained on the 4 million sampled sentences. The detailed hyper-parameters are

shown in the Appendix. In testing, we sample another 10,000 prompts from RTP dataset,

and sample 25 sentences per prompt. For each sentence we evaluate the toxicity score by

PerspectiveAPI and the perplexity given by the base language models.

1https://github.com/conversationai/perspectiveapi

2In PerspectiveAPI, TOXICITY means a rude, disrespectful, or unreasonable comment; likely to make
people leave a discussion. The API is regularly updated. Our results are evaluated by October 2022.

79

8.2.1 Comparsion of Detoxification Methods

In our experiments, we begin by comparing different methods for controlling the gener-

ation of toxic texts, namely lexically control, domain adaptation, and auxiliary models.

The lexically control approach involves down-weighting specific tokens in beam search

to avoid generating toxic n-grams [SCN21, LWZ21, LWW22b]. Following the methodol-

ogy of [LJH18, SCN21], we employ salient scores to select toxic n-grams from the RTP

dataset. We use rejection sampling to generate sentences without these toxic n-grams,

simulating the lexically controlled beam search methods. To evaluate toxicity, we employ

twometrics: 1) toxicity trend analysis, where prompts are grouped into bins based on their

toxicity score, and we calculate the average generated toxicity for each bin, and 2) average

maximum toxicity score, where we sample 25 sentences for each prompt and calculate the

average maximum toxicity score. The results are presented in Table 8.1.

Compared to rejection sampling, our proposed NADO method consistently achieves

lower toxicity scores across prompts with different toxicity levels while maintaining good

generation quality. Compared to DExpert [LSL21] which also leverages auxiliary model

in decoding, NADO is much better in keeping the generation quality. Domain adaptive

training (DAPT) [GGS20] performs well in preserving generation quality but falls short in

toxicity control compared to controllable generation.

8.2.2 The Effect of Coupling Models

We conduct a comparative study on the NADO architecture proposed in [MLP22]. We

compare the coupling NADO, which shares the encoder of the OPT-30b model and uses a

350m decoder, with the independent NADO, where the NADO is an independent neural

model without encoder sharing. In the independent NADO, we fine-tune a pretrained

OPT-350mmodel as the architecture. We find that for promptswith low toxicity levels, the

two architectures perform similarly. However, for prompts with higher toxicity levels, the

independent NADO outperforms the coupling NADO. The independent NADO leverages

80

0.05 0.10 0.15 0.20 0.25
0.025

0.050

0.075

0.100

0.125

0.150

0.175

0.200 coupling
independent
baseline

Figure 8.1: Comparative study of the effect of coupling in NADO architecture. x, y-axis are

the toxicity score of the prompts and generated texts, respectively.

the pretrainedweightsmore effectively, leading to better performance despite comparable

perplexity scores. The results are shown in Figure 8.1.

8.2.3 The Effect of Base Model Size

Next, we analyze the impact of the basemodel size on the controllable generation. A larger

basemodel tends to provide a better next token distribution, but it can also result in amore

complex and challenging control task. In our study, we select three base model sizes:

125m, 350m, and 30b. We use opt-350m as the NADO model for control. The perfor-

mance results are presented in Table 8.2a.

Our findings reveal that the base model size does not significantly affect the toxicity

scores before and after control. This demonstrates that the performance of controllable

generation via auxiliary models is not highly sensitive to the base model size. Although we

observe a slightly larger perplexity increase in the larger controlled models compared to

the base models, the differences remain relatively narrow.

81

Base size Method Max. tox. PPL

125m
base 0.54 14.73

NADO 0.33 14.90

350m
base 0.55 12.97

NADO 0.33 13.06

30b
base 0.55 9.27

NADO 0.32 11.65

(a) Ablation study of base model size in

detoxification evaluated by maximum toxic-

ity. The auxiliarymodel (NADO) size is fixed

to be 350m.

0.05 0.10 0.15 0.20 0.25

0.050

0.075

0.100

0.125

0.150

0.175

0.200 30b-125m
30b-350m
30b-base

(b) Ablation study of auxiliary model (NADO)

size in detoxification.

Table 8.2: Ablation study of the base model and auxiliary model sizes in detoxification.

8.2.4 The Effect of Auxiliary Model Size

Lastly, we analyze the impact of the auxiliary model size on controlling the base model.

In this analysis, we use OPT-30b as the base model and investigate the following ques-

tion: How many parameters does the auxiliary model require to effectively control the

base model? We consider auxiliary model sizes of 125m and 350m, and the results are

depicted in Figure 8.2b.

The two curves for the 125m and 350m NADO models exhibit remarkable similarity.

This indicates that a 125m NADO model, which is only 1/240 the size of the 30b base

model, possesses sufficient capacity to learn the toxicity criteria and effectively control

the base model. Based on this observation, we infer that even for larger models such as

GPT-3 or OPT-175b, an auxiliary model with a considerably smaller size is still capable of

effectively controlling toxicity.

82

CHAPTER 9

Attribute Controlled Fine-tuning for Large Language

Models

9.1 Introduction

Large language models (LLMs) have demonstrated impressive performance across a va-

riety of tasks which has led to their widespread adoption for a multitude of generative

AI applications. However, they carry the risk of producing inappropriate, unsafe, unfair

outputs [WFK19, SCN19, GGS20, HSW24]

Ideally, LLMs should learn to comply with constraints and policies specified by users.

For example, in a user-facing application like a chatbot, LLMs should never generate toxic

or offensive responses, nor to divulge sensitive information. While there are several post

hoc methods to moderate LLMs’ outputs [MZA23], it lacks an efficient and principal ap-

proach to training LLMs to adhere to constraints.

Formally, we define a sequence-level oracle as a function that takes an LLM’s output

and returns whether it satisfies a predefined set of attribute constraints. In practice, the

oracle can be a rule-based, model-based, or mixed system (e.g., a classifier that decides

whether a sentence is toxic). Given a pre-trained LLM and the oracle, we aim to fine-tune

an LLM to achieve the following: 1) Attribute control: The LLM output passes the or-

acle with a high probability. 2)Utility preservation: The LLMmaintains performance

comparable to the original LLMon utility benchmarks. 3)Training efficiency: The cost

of fine-tuning with attribute control is similar to that of the original fine-tuning process.

83

While existing approaches can meet some of these criteria, achieving all of them is

challenging. For example, filtering training data with the oracle function before fine-

tuning is a simple and efficient method. However, this approach often results in util-

ity drops due to potentially excessive data volumes being removed and discarding data

containing information that was required for utility improvement. Another promising

approach is reinforcement learning (RL) considering controlling criteria in reward func-

tion [SKS23, MLG23]. However, RL setups tend to be inefficient and require significant

overhead in generating preference data compared to generic fine-tuning.

In this work, we propose a novel solution to training LLM with constraints. Inspired

by the classic idea of constraint-driven learning [CRR07] and posterior regularization

[GGG10], we incorporate constraints as a regularizer during the fine-tuningprocess. Specif-

ically, we estimate the closest distribution from the current model that satisfies the con-

straints, and penalize the gap from current model distribution to this estimated distribu-

tion to regularize the LLM during fine-tuning. We iterate through this process to push

the LLM closer to the feasible region of generations, making the estimation progressively

more accurate.

This iterative fine-tuning process updates the base LM and regularizer sequentially,

causing the running time significantly longer than original fine-tuning approach. Thus, we

parallelize our algorithm by updating the base LM and regularizer simultaneously based

on their status in last iteration. Empirically, the parallelization achieves same level per-

formance compared to sequential, and the time complexity is same as original fine-tuning

approach.

To verify the effectiveness of our proposed approach, we utilize toxicity as a control at-

tribute and conduct experiments on detoxification, multi-task scenario and toxicity classi-

fication. Generally, our approach achieve the best toxicity control and maintain the same

level of performance compared to the original model. Compared to related methods, we

can achieve the best trade-off between the model utilities and toxicity control.

84

We also conduct experiments on toxicity classification task. In this task, we have two

goals that are conflict in original fine-tuning approach: improving the model capability

in understanding toxicity, and decrease the toxicity in model generation. However, with

our approach, we successfully control the toxicity generation, while achieve same level

classification performance compared to original fine-tuning approach.

We summarize our contributions as follows:

• We provide an efficient and effective solution to the attribute controlled fine-tuning

problem.

• Empirically, we achieve the current best trade-off between attribute control (mea-

sured using toxicity) and utility performance against a suite of baselines.

• We show that our approach enables the model to retain knowledge of the concept of

a given attribute (tested via attribute classification tasks) and yet selectively choose

to avoid generating it. This can not be achieved via generic fine-tuning.

9.2 Methodology

In this section, we first formally define the problem of attribute controlled fine-tuning. We

then discuss our posterior regularization method and its approximation version with an

auxiliary model. Finally, we introduce an adaptive regularizer method to allow the model

to apply different constraints on different fine-tuning corpus.

9.2.1 Formalization and Algorithm Overview

Weuse pθ to denote theLLMand θ is its trainableweights, x is the input (e.g. prompts), and

y is the generation of the model. We denote y<i as the generation prefix (y0, y1, . . . , yi−1).

Cx,y : X × Y → {0, 1} denotes a black box oracle function which takes prompt x and

model output y as input, and predicts whether the generation satisfies the constraints.

85

For example, the oracle takes a user input x and the model response y as input, predicting

0 when the response is offensive, indicating that the response is not acceptable.

Given an LLM pθ, a black box oracle Cx,y, and a training dataset D = {xi,yi}Ni=1, our

goal is to fine-tune the LLM as pθ̃ so that in some evaluation input space X , the model

satisfies the constraint in expectation:

Ex∼X ,y∼pθ̃(y|x)[Cx,y] ≥ δ. (9.1)

Post fine-tuning, we also require that the fine-tuned model pθ̃ preserves the utility of

the original LLM pθ.

Illustrated in Fig. 9.1, our algorithm starts from the base model pθ and a feasible dis-

tribution region Q. From the base model pθ, we estimate the closest distribution q∗ in Q

(Sec. 9.2.3, 9.2.4). We leverage q∗ as a reference distribution to regularize the fine-tuning

(Sec. 9.2.2). This process can be done iteratively (Sec. 9.2.5). To speed up the fine-tuning

process, we propose parallel fine-tuning (Sec. 9.2.6).

9.2.2 Fine-tuning LLMwith Posterior Regularization

Given a training data x,y, typically the objective we fine-tune the LLM pθ is defined as

LLM(pθ;x,y) =
∑

i
LCE(pθ(yi|x,y<i), 1),

where LCE is the cross-entropy loss. To achieve attribute control, we propose to add a

regularization term that penalizes the violation of constraints.

The general idea of our approach is to fine-tune LM with a regularizer penalize the

Following posterior regularization [GGG10], we define

Q := {q | Ex∼X ,y∼q(y|x)[Cx,y] ≥ δ}

DKL(pθ∥Q) := minq∈Q DKL(pθ∥q).

The feasible regionQ is the set of distributions that satisfy the constraint in Eq. (9.1). Illus-

trated by Fig. 9.1(a), the regularization termDKL is defined as the smallest distance from

86

Qmeasured by Kullback–Leibler (KL) divergence. The overall objective of fine-tuning is

L(pθ;x,y, Q) := LLM(pθ;x,y) + λDKL(pθ∥Q), (9.2)

where λ is the hyper-parameter balancing the two terms.

9.2.3 Optimal Distribution in Feasible Region

To compute the regularizer term in fine-tuning, we need to find the optimal distribution

q∗ as the reference distribution by solving the optimization problem

q∗ = argminq:Ey∼q(y|x)[Cx,y]=1 DKL(q∥p). (9.3)

[MLP22] shows the close-form solution can be derived as

q∗(yi|x,y<i) ∝ pθ(yi|x,y<i)R
p
C(x,y<i ⊕ yi), (9.4)

where ⊕ represents concatenation operation. Rp
C(x,y<i) is the probability that the LLM

will pass the oracle when the generation finishes given input x and prefix y<i, and is given

by

Rp
C(x,y<i) = Pry∼pθ(y|x,y<i)

[Cx,y = 1] (9.5)

Unfortunately, although the function Rp
C is well-defined, it is not tractable. To achieve

the optimal solution in Eq. (9.3), in this work, we estimate Rp
C from the training data and

the LLM, and update the two terms in Eq. (9.3) iteratively. In sections 9.2.4 and 9.2.5, we

describe how we estimate Rp
C from the data and the current model pθ, and how we update

the model pθ with the help of the estimated Rp
C .

Note that in fine-tuning objective Eq. (9.2), the reference distribution q is fixed and we

update pθ, so the regularizer isDKL(pθ∥q). However, here the model p is fixed and we seek

for optimal q, so we minimizeDKL(q∥pθ).

87

9.2.4 Estimating Rp
C from Training Data and LLM

To estimateRp
C , we train an auxiliarymodelRϕ from the training dataweighted by the base

LLM pθ. Formally, we first remove repetition inD to get D̃, and set the objective function

as

L(Rϕ;x,y) = pθ(y|x)
∑

i
LCE(Rϕ(x,y<i), C(x,y<i)). (9.6)

Considering the expectation on the empirical distribution D̃, we have

Ex,y∼D̃[pθ(y|x)LCE(Rϕ(x,y<i), Cx,y)]

=Ex∼D̃,y∼pθ(y|x)[LCE(Rϕ(x,y<i), R
p
C(x,y<i))],

Therefore, the global minimum of the objective function is Rϕ(x,y<i) = Rp
C(x,y<i).

In [MLP22] the auxiliary mode is trained by the data sampled from pθ without weight-

ing the data. The expected loss is the same. In our experiments we apply sampling to

train the auxiliary model, when there is no available training data. Hereafter in this work,

we follow [MLP22] and refer to this auxiliary model as the neurally-decomposed oracle

(NADO).

9.2.5 Iteratively Updating pθ by Regularized Fine-tuning

Once we estimateRC
p by NADORϕ,we are able to get the estimated optimal distribution q

fromEq. (9.3) by replacingRC
p withRϕ. We then plug in the estimated optimal distribution

to the fine-tuning objective in Eq. (9.2) as

L(pθ;x,y, q)

=LLM(pθ;x,y) + λDKL(pθ(y|x)∥q(y|x))

=
∑

i
log pθ(yi|x,y<i) + λDKL(pθ(yi|x,y<i)∥q(yi|x,y<i))

(9.7)

Intuitively, a model fine-tuned with the objective in Eq. (9.7) exhibits a trade-off be-

tween the model quality and the amount of control. Fine-tuned on this objective, the

model converges at some mid point between pθ and q.

88

Figure 9.1: A conceptually visualization of base LLM distribution pθ and optimal distribu-

tion q∗ in fine-tuning. The polygon is representing the feasible region Q where the con-

straints are satisfied. On (a) it shows the regularizer term is defined as the closest distance

from pθ to Q. Regularized by KL-divergence from q, on (b) we show the LLM distribution

pθ is gradually pushed towards the feasible region.

Nowwe are able to estimateRC
p byRϕ from the training data andmodel pθ (Sec. 9.2.4),

and fine-tune pθ with estimated optimal distribution q derived from Rϕ. It is straightfor-

ward to update both models iteratively, and we call this process as sequential fine-tuning.

Compared to a single round updating, e.g., decoding-time control, we gradually push the

base model distribution towards the feasible region, and the estimated optimal distribu-

tion can be more accurate. As shown in Fig. 9.2(a) and described in Sec. 9.2.1, we itera-

tively run the following three steps:

• Based on current LLM p
(i)
θ , sample or weight dataD

(i) labeled by the oracle.

• Train NADO R
(i)
ϕ using the dataD(i) initialized with R

(i−1)
ϕ .

• Fine-tune the LLM p
(i)
θ with theKL-divergence between p(i)θ and q(i) given byEq. (9.4).

The distribution of the base model can be conceptually visualized in Fig. 9.1(b) during

fine-tuning. As the base model p(i)θ getting closer to the feasible region, the estimated op-

timal distribution q(i) will be more accurate compared to the estimation from the original

base model distribution q(1).

89

Figure 9.2: An illustration of sequential and parallel fine tuning for three iterations. We

use T (time step) to indicate the time. Oracle, symbolizes the process of sampling data

from an LLM, labeling with an oracle and training the NADOmodel. On the left, we show

sequential execution with the grey arrows showing the direction of flow. On the right, we

show the parallelized execution. Note that in this case, all components (left to right) of

each iteration is run at the same time step (except in iteration 1). Note also, that the grey

dashed arrows (from iteration 2 onwards) do not flow across components within the same

iteration level, indicating the independence of each component from other components in

the same level. This allows them to be executed in parallel.

90

9.2.6 Parallel Fine-tuning

The iterative fine-tuning process outlined in Section 9.2.5 executes its steps sequentially

solving the optimization problem in Eq. (9.3) in each round. However, while accurate, it

is also inefficient. In this section, we propose a parallel fine-tuning method which works

to improve efficiency.

In parallel fine-tuning, we propose a set up that works to process the three steps out-

lined in Section 9.2.5 in parallel (see Fig. 9.2(b)). Given p
(i)
θ , D

(i) and q(i), the following

three steps are processed simultaneously:

• Based on current LLM p
(i)
θ , sample or weight dataD

(i+1) labeled by the oracle.

• Train NADO R
(i+1)
ϕ using dataD(i) initialized with R

(i)
ϕ .

• Fine-tune theLLM p
(i+1)
θ with theKL-divergence between p(i)θ and q(i) givenbyEq. (9.4).

After one round, we get p(i+1)
θ ,D(i+1) and q(i+1). The LLM keeps fine-tuning on the dataset

with a regularizer, and the regularizer is updated at every checkpoint. In sequential fine-

tuning, the fine-tune process will terminate at each checkpoint, waiting for the regularizer

to update with the data sampled or weighted by the LLM. Compared to a baseline which

fine-tunes without control, the extra time cost in ourmethod is only the extra computation

on the regularizer and the time cost in dumping checkpoints. The additional memory cost

for NADO is not significant, since it is relatively small compared to the base LLM.

9.2.7 Adaptive Regularizer

The data for fine-tuning a LLM usually consists of a mix of multiple sources. In prac-

tice, we may need to apply different constraints on different fine-tuning datasets. For

example, when fine-tuning on datasets that might inadvertently contain toxic content, we

would want themodel to learn not to generate toxic content. However, even with this con-

trol in place, we would like the model to not vary too much from the origin distribution

on a general dataset. In this case, we can apply a corresponding regularizer for different

91

constraints.

Formally, we denote the training dataset as D =
∪N

i=1 Di. For each subset Di, it has a

corresponding constraint oracle Ci. We use the base LLM to weight the subset, and Ci to

label them. According to Eq. (9.6), we train NADO Rϕi
for the constraint oracle Ci, and

compute the estimated optimal distribution qi. We use qi as the reference distribution in

the KL-divergence. Therefore, in different subsets, we use different regularizers. Specif-

ically, when we set qi as the original distribution, the regularizer is used to preserve the

distribution. We refer to this regularizer as the preserving regularizer.

In this work, we demonstrate performance in the single task of controlling the toxicity

of the LLMwhile preserve the same performance level as the original model. We apply the

toxicity regularizer when fine-tuning on toxicity-related datasets, while using preserving

regularizer to preserve the distribution on other datasets. Formally, we denote p0 as the

original LLM, q as the estimated optimal distribution under toxicity constraint oracle, and

DT ⊂ D as the toxicity-related training set. We adapt the fine-tuning objective in Eq. (9.2)

to

L(pθ;D, q) =
∑

x,y∈D
LLM(pθ;x,y)

+λ
∑

x,y∈DT

DKL(pθ(y|x)∥q(y|x)) + λ
∑

x,y/∈DT

DKL(pθ(y|x)∥p0(y|x))
(9.8)

9.3 Experiments

For our experiments, we choose toxicity as the controlled attribute. Toxicity, as discussed

in Section 9.1, is of significant importance as ametric for LLM evaluation [BMR20, TLI23,

CND22, TMS23]. In this context, we apply our fine-tuning schema in three different sce-

narios; (1)detoxification: testing the effectiveness of our proposed approach in attribute

control, (2)multi-task scenario: testing that the controlled model preserves the same

level performance on other tasks, and (3) toxicity classification: testing whether the

control affects the model performance on attributes related tasks. Detailed notes on data

92

Model API Toxicity ToxiGen

Llama baseline 0.315 23.0

Reinforcement Learning 0.269 12.3

NADO Decoding Control 0.289 14.4

Ours (sequential) 0.259 11.0

Ours (parallel) 0.261 10.9

Table 9.1: Toxicity scores of Llama-7B model with different detoxification methods.

pre-processing, hyper-parameter choice for model training and the architecture of auxil-

iary models can be found in the Appendix.

9.3.1 Detoxification

We first test the performance of our method on the detoxification task.

Setup We use Llama-7B [TLI23] as the base model. NADO has a similar architecture

but with only 8 layers. For our experiments, we use RealToxicPrompts (RTP) [GGS20]

and ToxiGen [HGP22] datasets. For each dataset, we sample 50k prompts for fine-tuning

and another 5k for evaluation. During the evaluation, we prompt themodel with each data

point from the evaluation set and generate 32 tokens. For the RTP dataset, we measure

the average toxicity across the generations by using PerspectiveAPI. For ToxiGen, we use

the pre-trained Toxigen (RoBERTa) classifier, which was released with the dataset, to cal-

culate the percentage of generated sentences that are toxic. We test three detoxification

methods, in addition to the Llama baseline:

• Reinforcement Learning: For each prompt in the evaluation set, we sample 32

generations. We utilize the PerspectiveAPI and ToxiGen classifier confidence scores

as reward for the two test sets, respectively. We then use the policy gradient [SMS99]

to update the base language model.

93

• NADO controlled decoding: For each prompt in the two test sets, we sample 32

sentences and obtain binary labels from PerspectiveAPI and the ToxiGen classifier,

respectively. When using PerspectiveAPI we set a threshold of toxicity score > 0.1

as toxic.

• Ours: We follow the NADO controlled decoding oracle setup. We split the 50k fine-

tuning set into 5 groups. We separately run iterative sequential fine-tuning and par-

allel fine-tuning for 5 rounds using these groups.

Results The results are shown in Tab. 9.1. We observe that on both datasets ourmethod

achieves the best detoxification (given the same amount of training data). We observe

that there is a significant performance improvement brought on by iterative fine-tuning

when compared to NADO controlled decoding, which shows that directly estimated the

optimal distribution is not optimal. The iterative process enables the gradual push of the

base model distribution towards the feasible region (Fig 9.1), and the estimated optimal

distribution improves in its accuracy. The sequential and parallel fine-tuning results show

comparable performance. Since parallel fine-tuning is more efficient, we focus on this

method from this point onward.

9.3.2 Multi-task Scenario

Herewe explore how our proposed controlmethod applied on the toxicity attribute, affects

model utility and performance on other tasks.

Setup We use Llama-7B [TLI23] and Falcon-7B [AAA23] as base models, and fine-tune

each of them on a mixture of ToxiGen andWikitext [MXB16] data in equal proportions.

We evaluate model performance on toxicity and utility by using the following metrics:

• ToxiGen (toxicity): Same set up as the detoxification experiment in Section 9.3.1.

• MMLU (utility): We do 5-shot evaluation on theMMLU benchmark [HBB21] and

report the average score.

94

Model ToxiGen MMLU(5-shot) Com. Reasoning (0-shot)

Llama-7B

Baseline 23.0 35.1 75.6

Filtering 21.9 34.6 75.1

RL 15.2 33.6 73.2

NADO decoding 16.8 31.1 71.4

Ours w/o Adaptive 13.6 30.4 71.9

Ours w/ Adaptive 14.2 33.9 73.6

Falcon-7B

Baseline 14.0 27.2 76.1

Filtering 13.6 26.4 74.9

RL 9.8 25.4 74.4

NADO decoding 7.3 23.6 72.5

Ours w/o Adaptive 7.1 23.1 71.8

Ours w/ Adaptive 7.3 26.1 74.5

Table 9.2: Benchmark performance of Llama-7B and Falcon-7B with toxicity control.

• Commonsense Reasoning (utility): We do 0-shot evaluation on 4 common-

sense reasoning benchmarks, BoolQ [CLC19], PIQA [BZB20], HellaSwag [ZHB19]

and WinoGrande [SBB20], and report the average score.

We test 5 different methods:

• Filtering: We filter out all the data labeled as toxic by the ToxiGen classifier.

• ReinforcementLearning:We take the confidence score provided by the ToxiGen

classifier as reward, and apply policy-gradient to minimize the toxicity.

• NADO controlled decoding: We train the auxiliary model on ToxiGen sampled

data, and control the model generation at decoding time.

• Ours (without Adaptive): We apply parallel fine-tuning on both datasets with

the auxiliary model trained on ToxiGen sampled data.

95

Win rate(top row) Base Filter RL Ours

Base N/A 44.3 45.1 51.4

Filter 55.7 N/A 53.4 61.6

RL 54.9 46.6 N/A 61.3

Ours 48.6 38.4 38.7 N/A

Table 9.3: Pairwise comparison by OPT-30B on ToxiGen sampling data.

• Ours (with Adaptive): We apply an adaptive regularizer as described in Eq. (9.8).

We use the regularizer with the original distribution as reference on Wikitext data,

while using the toxicity control regularizer on the ToxiGen sampled data.

Results The results are shown in Tab. 9.2. We observe that all detoxification methods

cause a performance drop on our utility metrics (i.e. MMLU and commonsense reason-

ing). Filtering is not effective for detoxification. Our method with the adaptive regularizer

achieves the best trade-off between toxicity control and model utility.

When usedwithout the adaptive regularizer, ourmethod achieves the best toxicity con-

trol. However, this comes at the cost of utility loss. This indicated that the toxicity regu-

larizer trained on ToxiGen sampled data does not perform well on the Wikitext data. The

adaptive regularizer helps preserve the model utility while fine-tuning on Wikitext data.

We note that Falcon-7B hasmuch lower toxicity when compared to Llama-7B. The con-

sistent performance trends observed in both base models, demonstrate that our method

is robust to different base models independent of its levels of toxicity.

We further analyze the generation quality of a larger model, OPT-30B [ZRG22], to do

pairwise comparison on model generations for ToxiGen prompts from 4 systems: (1) the

base Llama-7B model, (2) filtering, (3) RL and (4) ours with the adaptive regularizer. We

96

Model API Toxicity Classify ROC

baseline 0.315 0.910

SFT(LLM loss) 0.344 0.966

Ours(LLM loss) 0.288 0.959

SFT(classification) 0.314 0.972

Table 9.4: Jigsaw dataset performance of Llama-7B model with toxicity control.

do not consider NADO controlled decoding and ours without the adaptive regularizer, as

they are obviously worse in terms of model quality. The results are shown in Tab. 9.3. We

show that OPT-30B prefers our system (with the adaptive regularizer) the best, with slight

improvement over the base model.

9.3.3 Toxicity Classification

An interesting research question is whether the model actually understands what toxicity

is, or if it simply ignores toxicity-related contents and ignores those texts in both input

and generation. To answer this question, we design an experiment on learning knowledge

about toxicity while detoxifying language models. If the model simply ignores toxicity

related contents, it cannot perform well on the tasks about toxicity, and we will observe a

consistent trend between the task performance and toxicity in generation.

Setup We fine-tune the Llama-7B on the Jigsaw toxicity classification dataset [JVI22].

We compare the performance of models fine-tuned using our controlled method to ones

fine-tuned using uncontrolled fine-tuning. We use classification performance and gener-

ation toxicity (as evaluated by PerspectiveAPI) as metrics of comparison. Specifically, we

compare three methods:

• Supervised fine-tuning with LLM loss: We concatenate each question and an-

97

swer in the Jigsaw dataset, and fine-tune with a language modeling objective.

• Ourswith LLM loss: We train an auxiliarymodel on RTP sampled data labeled by

PerspectiveAPI, and fine-tune the language model same as above on Jigsaw dataset

with the toxicity regularizer.

• Supervised fine-tuning as classification: We treat each question in Jigsaw as

the prompt and only calculate loss on the answers. This is regarded the upper bound

of performance for this task.

Results The results are shown in Tab. 9.4. We observe that if we fine-tune the LLM on

the Jigsaw dataset without toxicity control, the generation toxicity increases significantly

(9.2%, from 0.315 to 0.344). The reason is that Jigsaw consists of toxic content and fine-

tuning on this shifts themodel out distribution to be toxic. In comparison, when using our

fine-tuning schemawhich leverages the toxicity regularizer, we achieve decreased toxicity.

Notably our method also improves classification performance, achieving almost similar

performance to uncontrolled fine-tuning, demonstrating our approach makes the model

understand the toxicity rather than simply make model ignore the toxicity contents in

training data.

9.4 Conclusion

Wepropose a novel approach to controlling LLMgenerations via fine-tuningwith attribute

control. Using toxicity as our attribute of choice, we showcase results on detoxification,

multi-task fine-tuning and toxicity classification. With negligible extra cost in time and

space compared to typical fine-tuning, our approach shows significant improvements with

respect to the baselines we use.

98

CHAPTER 10

Conclusion

With the rapid development of NLP models, we are aware that it is critical to control the

models. In this dissertation, in order to control the models, we propose to leverage con-

straints, and introduce multiple techniques in constrained inference and constrained de-

coding. The proposed methods are shown to be effective and also efficient in structure

prediction models and the popular large language models.

Existing literature lacks a throughout study about how to handle different kinds of con-

strains in different models. Usually, prior work forcus on a specific task, a specific con-

straint and a specific neural model. In this dissertation, we cover a great propotion of

scenarios. In Chap. 3 we introduce the constrained inference for instance-level, corpus-

level and distribution-level constraints in structure prediction models. In Chap. 4 and

Chap. 5 we introduce two of the applications. In Chap. 6 we introduce mining linear con-

straints and corresponding constrained inference. In Chap. 7 we introduce constrained

decoding in language model, and in Chap. 9 we introduce a fine-tuning approach with

attribute control based on constrained decoding.

Constraints encode human knowledge, and point out the difference or discrepency be-

tween the model output and human expectation. Leveraging constraints can also improve

align the model outputs to human if proper constraints are provided. Furthermore, con-

strained inference is also an approach to query large language models for specific knowl-

edge or generation. Thus, in my understanding, constraints encode the knowledge and

expectation of we human, and constrained inference and decoding is the bridge between

99

human and models.

Constrained inference is powerful. Its goal is to satisfy the pre-defined constraints.

Therefore, defining good constraints is the precondition to achieve good results via con-

strained inference. However, the constraints can be complicated and abstract. With the

development of NLP and large language models, the evaluation for NLP models is getting

complicated. In the past researchers in NLP focus more on some basic metrics including

classification accuracy, and other simplematching basedmetrics like BLEU. Later, we care

more about some abstract evaluation like fluency, consistency and the style of the output.

Human evaluation plays an important role in model or algorithm evaluation. Nowadays,

the alignment with human becomes a crucial metric for large language models. Hence,

the constraints we expect to inject also become complicated and abstract, which leads to

demanding of advanced techniques handling such constraints.

100

References

[AAA23] EbtesamAlmazrouei, Hamza Alobeidli, Abdulaziz Alshamsi, Alessandro Cap-

pelli, Ruxandra Cojocaru, Mérouane Debbah, Étienne Goffinet, Daniel Hess-

low, Julien Launay, Quentin Malartic, Daniele Mazzotta, Badreddine Noune,

Baptiste Pannier, and Guilherme Penedo. “The Falcon Series of Open Lan-

guage Models.” CoRR, abs/2311.16867, 2023.

[AHB18] Peter Anderson, Xiaodong He, Chris Buehler, Damien Teney, Mark Johnson,

Stephen Gould, and Lei Zhang. “Bottom-Up and Top-Down Attention for

Image Captioning and Visual Question Answering.” In CVPR, 2018.

[AHS85] David H Ackley, Geoffrey E Hinton, and Terrence J Sejnowski. “A learning

algorithm for Boltzmann machines.” Cognitive science, 9(1):147–169, 1985.

[AZM19] Wasi Uddin Ahmad, Zhisong Zhang, Xuezhe Ma, Eduard Hovy, Kai-Wei

Chang, and Nanyun Peng. “On Difficulties of Cross-Lingual Transfer with

Order Differences: A Case Study on Dependency Parsing.” In NAACL, 2019.

[BCB15] Dzmitry Bahdanau, Kyunghyun Cho, and Yoshua Bengio. “Neural Machine

Translation by Jointly Learning to Align and Translate.” In ICLR, 2015.

[BFL98] Collin F. Baker, Charles J. Fillmore, and John B. Lowe. “The Berkeley

FrameNet Project.” In COLING-ACL, 1998.

[BGJ17] Piotr Bojanowski, Edouard Grave, Armand Joulin, and Tomas Mikolov. “En-

riching Word Vectors with Subword Information.” Transactions of the Asso-

ciation for Computational Linguistics, 5:135–146, 2017.

[BMR20] Tom B. Brown, Benjamin Mann, Nick Ryder, Melanie Subbiah, Jared Ka-

plan, Prafulla Dhariwal, Arvind Neelakantan, Pranav Shyam, Girish Sastry,

Amanda Askell, Sandhini Agarwal, Ariel Herbert-Voss, Gretchen Krueger,

101

TomHenighan, Rewon Child, Aditya Ramesh, Daniel M. Ziegler, Jeffrey Wu,

ClemensWinter, Christopher Hesse, Mark Chen, Eric Sigler, Mateusz Litwin,

Scott Gray, Benjamin Chess, Jack Clark, Christopher Berner, Sam McCan-

dlish, Alec Radford, Ilya Sutskever, and Dario Amodei. “Language Models

are Few-Shot Learners.” In NeurIPS, 2020.

[BZB20] Yonatan Bisk, Rowan Zellers, Ronan Le Bras, Jianfeng Gao, and Yejin Choi.

“PIQA: Reasoning about Physical Commonsense in Natural Language.” In

AAAI, 2020.

[CC11] Yin-Wen Chang and Michael Collins. “Exact Decoding of Phrase-Based

Translation Models through Lagrangian Relaxation.” In EMNLP. ACL, 2011.

[CHW22] Hong Chen, Rujun Han, Te-Lin Wu, Hideki Nakayama, and Nanyun Peng.

“Character-Centric Story Visualization via Visual Planning and Token Align-

ment.” In EMNLP, 2022.

[CK78] Seth Chaiken and Daniel J Kleitman. “Matrix tree theorems.” Journal of

combinatorial theory, Series A, 24(3):377–381, 1978.

[CL65] Y. J. Chu and T. H. Liu. “On the shortest arborescence of a directed graph.”

Science Sinica, 14, 1965.

[CL08] James Clarke and Mirella Lapata. “Global Inference for Sentence Com-

pression: An Integer Linear Programming Approach.” J. Artif. Intell. Res.,

31:399–429, 2008.

[CLC19] Christopher Clark, Kenton Lee, Ming-Wei Chang, TomKwiatkowski, Michael

Collins, and Kristina Toutanova. “BoolQ: Exploring the Surprising Difficulty

of Natural Yes/No Questions.” In NAACL-HLT (1), 2019.

102

[CND22] Aakanksha Chowdhery, Sharan Narang, Jacob Devlin, Maarten Bosma, Gau-

rav Mishra, Adam Roberts, Paul Barham, Hyung Won Chung, Charles Sut-

ton, Sebastian Gehrmann, Parker Schuh, Kensen Shi, Sasha Tsvyashchenko,

Joshua Maynez, Abhishek Rao, Parker Barnes, Yi Tay, Noam Shazeer, Vin-

odkumar Prabhakaran, Emily Reif, Nan Du, Ben Hutchinson, Reiner Pope,

James Bradbury, Jacob Austin, Michael Isard, Guy Gur-Ari, Pengcheng

Yin, Toju Duke, Anselm Levskaya, Sanjay Ghemawat, Sunipa Dev, Henryk

Michalewski, Xavier Garcia, Vedant Misra, Kevin Robinson, Liam Fedus,

Denny Zhou, Daphne Ippolito, David Luan, Hyeontaek Lim, Barret Zoph,

Alexander Spiridonov, Ryan Sepassi, David Dohan, Shivani Agrawal, Mark

Omernick, Andrew M. Dai, Thanumalayan Sankaranarayana Pillai, Marie

Pellat, Aitor Lewkowycz, Erica Moreira, Rewon Child, Oleksandr Polozov,

Katherine Lee, Zongwei Zhou, Xuezhi Wang, Brennan Saeta, Mark Diaz,

Orhan Firat, Michele Catasta, Jason Wei, Kathy Meier-Hellstern, Douglas

Eck, Jeff Dean, Slav Petrov, andNoah Fiedel. “PaLM: Scaling LanguageMod-

eling with Pathways.” CoRR, abs/2204.02311, 2022.

[CRR07] Ming-Wei Chang, Lev-Arie Ratinov, and Dan Roth. “Guiding Semi-

Supervision with Constraint-Driven Learning.” In ACL. The Association for

Computational Linguistics, 2007.

[CSK13] Kai-Wei Chang, S. Sundararajan, and S. Sathiya Keerthi. “Tractable

Semi-supervised Learning of Complex Structured Prediction Models.” In

ECML/PKDD, 2013.

[CUK15] Kai-Wei Chang, ShyamUpadhyay, Gourab Kundu, andDanRoth. “Structural

Learning with Amortized Inference.” In AAAI, 2015.

[Dal15] Bhavana Bharat Dalvi. Constrained Semi-supervised Learning in the Pres-

ence of Unanticipated Classes. PhD thesis, Google Research, 2015.

103

[DCL18] JacobDevlin,Ming-Wei Chang, Kenton Lee, andKristina Toutanova. “BERT:

Pre-training of Deep Bidirectional Transformers for Language Understand-

ing.” arXiv preprint arXiv:1810.04805, 2018.

[DKL11] Ivica Dimitrovski, Dragi Kocev, Suzana Loskovska, and Sašo Džeroski. “Hi-

erarchical annotation of medical images.” Pattern Recognition, 44(10-

11):2436–2449, 2011.

[DM17] TimothyDozat and Christopher DManning. “Deep biaffine attention for neu-

ral dependency parsing.” Internation Conference on Learning Representa-

tions, 2017.

[DML20] Sumanth Dathathri, Andrea Madotto, Janice Lan, Jane Hung, Eric Frank,

Piero Molino, Jason Yosinski, and Rosanne Liu. “Plug and Play Language

Models: A Simple Approach to Controlled Text Generation.” In ICLR. Open-

Review.net, 2020.

[Dry07] Matthew S Dryer. “Word order.” Language typology and syntactic descrip-

tion, 1:61–131, 2007.

[Fel98] C Fellbaum. “Wordnet: An on-line lexical database.”, 1998.

[FG09] Menachem Fromer and Amir Globerson. “An LP View of the M-best MAP

problem.” In NIPS, 2009.

[FJ05] Bertram Felgenhauer and Frazer Jarvis. “Enumerating possible Su-

doku grids.” Preprint available at http://www. afjarvis. staff. shef. ac.

uk/sudoku/sudoku. pdf, 2005.

[FJ08] Thomas Finley and Thorsten Joachims. “Training structural SVMs when ex-

act inference is intractable.” In ICML, 2008.

104

[GCW20] Seraphina Goldfarb-Tarrant, Tuhin Chakrabarty, Ralph Weischedel, and

Nanyun Peng. “Content Planning for Neural Story Generation with Aris-

totelian Rescoring.” In EMNLP, 2020.

[GGG10] Kuzman Ganchev, João Graça, Jennifer Gillenwater, and Ben Taskar. “Poste-

rior Regularization for Structured Latent Variable Models.” J. Mach. Learn.

Res., 11:2001–2049, 2010.

[GGS20] Samuel Gehman, Suchin Gururangan, Maarten Sap, Yejin Choi, and Noah A.

Smith. “RealToxicityPrompts: Evaluating Neural Toxic Degeneration in Lan-

guage Models.” In EMNLP (Findings), volume EMNLP 2020 of Findings of

ACL, pp. 3356–3369. Association for Computational Linguistics, 2020.

[GPS17] Chuan Guo, Geoff Pleiss, Yu Sun, and Kilian Q. Weinberger. “On Calibration

of Modern Neural Networks.” In ICML, 2017.

[Gur16] Inc. Gurobi Optimization. “Gurobi Optimizer Reference Manual.”, 2016.

[GWZ19] Jiatao Gu, Changhan Wang, and Junbo Zhao. “Levenshtein transformer.”

NeurIPS, 32, 2019.

[HBB21] Dan Hendrycks, Collin Burns, Steven Basart, Andy Zou, Mantas Mazeika,

Dawn Song, and Jacob Steinhardt. “Measuring Massive Multitask Language

Understanding.” In ICLR, 2021.

[HCT22] Rujun Han, Hong Chen, Yufei Tian, and Nanyun Peng. “Go Back in Time:

Generating Flashbacks in Stories with Event Temporal Prompts.” InNAACL,

2022.

[HGP22] Thomas Hartvigsen, Saadia Gabriel, Hamid Palangi, Maarten Sap, Dipankar

Ray, and Ece Kamar. “ToxiGen: A Large-Scale Machine-Generated Dataset

for Adversarial and Implicit Hate Speech Detection.” In ACL (1), 2022.

105

[HL17] Chris Hokamp and Qun Liu. “Lexically Constrained Decoding for Sequence

Generation Using Grid Beam Search.” InACL (1), pp. 1535–1546. Association

for Computational Linguistics, 2017.

[HM54] JohnMHammersley andKWilliamMorton. “Poorman’smonte carlo.” Jour-

nal of the Royal Statistical Society: Series B (Methodological), 1954.

[HSW24] Yue Huang, Lichao Sun, Haoran Wang, Siyuan Wu, Qihui Zhang, Yuan Li,

Chujie Gao, Yixin Huang, Wenhan Lyu, Yixuan Zhang, Xiner Li, Hanchi Sun,

Zhengliang Liu, Yixin Liu, Yijue Wang, Zhikun Zhang, Bertie Vidgen, Bhavya

Kailkhura, Caiming Xiong, Chaowei Xiao, Chunyuan Li, Eric P. Xing, Furong

Huang, Hao Liu, Heng Ji, Hongyi Wang, Huan Zhang, Huaxiu Yao, Mano-

lis Kellis, Marinka Zitnik, Meng Jiang, Mohit Bansal, James Zou, Jian Pei,

Jian Liu, Jianfeng Gao, Jiawei Han, Jieyu Zhao, Jiliang Tang, JindongWang,

Joaquin Vanschoren, John Mitchell, Kai Shu, Kaidi Xu, Kai-Wei Chang, Li-

fang He, Lifu Huang, Michael Backes, Neil Zhenqiang Gong, Philip S. Yu,

Pin-Yu Chen, Quanquan Gu, Ran Xu, Rex Ying, Shuiwang Ji, Suman Jana,

Tianlong Chen, Tianming Liu, Tianyi Zhou, William Yang Wang, Xiang Li,

Xiangliang Zhang, Xiao Wang, Xing Xie, Xun Chen, Xuyu Wang, Yan Liu,

Yanfang Ye, Yinzhi Cao, Yong Chen, and Yue Zhao. “TrustLLM: Trustworthi-

ness in Large Language Models.” In Forty-first International Conference on

Machine Learning, 2024.

[JGD18] Marcin Junczys-Dowmunt, Roman Grundkiewicz, Tomasz Dwojak, Hieu

Hoang, Kenneth Heafield, Tom Neckermann, Frank Seide, Ulrich Germann,

Alham Fikri Aji, Nikolay Bogoychev, André F. T. Martins, and Alexandra

Birch. “Marian: Fast Neural Machine Translation in C++.” In ACL (4), pp.

116–121. Association for Computational Linguistics, 2018.

[JVI22] Naman Jain, Skanda Vaidyanath, Arun Shankar Iyer, Nagarajan Natarajan,

106

Suresh Parthasarathy, Sriram K. Rajamani, and Rahul Sharma. “Jigsaw:

Large Language Models meet Program Synthesis.” In ICSE, 2022.

[KB15] Diederik P. Kingma and Jimmy Ba. “Adam: A Method for Stochastic Opti-

mization.” In ICLR, 2015.

[KBK16] Adhiguna Kuncoro, Miguel Ballesteros, Lingpeng Kong, Chris Dyer, and

Noah A Smith. “Distilling an Ensemble of Greedy Dependency Parsers into

One MST Parser.” In EMNLP, 2016.

[KED21] Muhammad Khalifa, Hady Elsahar, and Marc Dymetman. “A Distributional

Approach to Controlled Text Generation.” In ICLR, 2021.

[KEK22] Tomasz Korbak, Hady Elsahar, Germán Kruszewski, and Marc Dymetman.

“Controlling Conditional LanguageModels without Catastrophic Forgetting.”

In ICML, 2022.

[KG16] Eliyahu Kiperwasser and Yoav Goldberg. “Simple and accurate dependency

parsing using bidirectional LSTM feature representations.” Transactions of

the Association for Computational Linguistics, 4:313–327, 2016.

[KGM21] Ben Krause, Akhilesh Deepak Gotmare, Bryan McCann, Nitish Shirish

Keskar, Shafiq R. Joty, Richard Socher, and Nazneen Fatema Rajani. “GeDi:

Generative Discriminator Guided Sequence Generation.” In EMNLP (Find-

ings), pp. 4929–4952. Association for Computational Linguistics, 2021.

[KP07] Alex Kulesza and Fernando Pereira. “Structured Learning with Approximate

Inference.” In NIPS, pp. 785–792, 2007.

[KSR13] Gourab Kundu, Vivek Srikumar, and Dan Roth. “Margin-based Decomposed

Amortized Inference.” In ACL, 2013.

107

[LCR18] Guillaume Lample, Alexis Conneau, Marc’Aurelio Ranzato, Ludovic Denoyer,

and Hervé Jégou. “Word translation without parallel data.” In ICLR, 2018.

[LJH18] Juncen Li, Robin Jia, He He, and Percy Liang. “Delete, Retrieve, Generate:

a Simple Approach to Sentiment and Style Transfer.” In NAACL-HLT, pp.

1865–1874. Association for Computational Linguistics, 2018.

[LLG20] Mike Lewis, Yinhan Liu, Naman Goyal, Marjan Ghazvininejad, Abdelrahman

Mohamed, Omer Levy, Veselin Stoyanov, and Luke Zettlemoyer. “BART:

Denoising Sequence-to-Sequence Pre-training for Natural Language Gener-

ation, Translation, and Comprehension.” In ACL, 2020.

[LMP22] Sidi Lu, Tao Meng, and Nanyun Peng. “InsNet: An Efficient, Flexible, and

Performant Insertion-based Text Generation Model.” In NeurIPS, 2022.

[LPM15] Thang Luong, Hieu Pham, and Christopher D. Manning. “Effective Ap-

proaches to Attention-based Neural Machine Translation.” In EMNLP, 2015.

[LSL21] Alisa Liu, Maarten Sap, Ximing Lu, Swabha Swayamdipta, Chandra Bhaga-

vatula, NoahA. Smith, andYejin Choi. “DExperts: Decoding-TimeControlled

Text Generation with Experts and Anti-Experts.” In ACL/IJCNLP (1), 2021.

[LWW22a] Ximing Lu, Sean Welleck, Peter West, Liwei Jiang, Jungo Kasai, Daniel

Khashabi, Ronan Le Bras, Lianhui Qin, Youngjae Yu, Rowan Zellers, Noah A.

Smith, and Yejin Choi. “NeuroLogic A*esque Decoding: Constrained Text

Generation with Lookahead Heuristics.” In NAACL-HLT, 2022.

[LWW22b] Ximing Lu, Sean Welleck, Peter West, Liwei Jiang, Jungo Kasai, Daniel

Khashabi, Ronan Le Bras, Lianhui Qin, Youngjae Yu, Rowan Zellers, Noah A.

Smith, and Yejin Choi. “NeuroLogic A*esque Decoding: Constrained Text

Generation with Lookahead Heuristics.” In NAACL-HLT, pp. 780–799. As-

sociation for Computational Linguistics, 2022.

108

[LWZ21] Ximing Lu, PeterWest, Rowan Zellers, Ronan Le Bras, Chandra Bhagavatula,

and Yejin Choi. “NeuroLogic Decoding: (Un)supervised Neural Text Gener-

ation with Predicate Logic Constraints.” In NAACL-HLT, 2021.

[LZS20] Bill Yuchen Lin, Wangchunshu Zhou, Ming Shen, Pei Zhou, Chandra Bha-

gavatula, Yejin Choi, and Xiang Ren. “CommonGen: A Constrained Text

Generation Challenge for Generative Commonsense Reasoning.” Findings

of EMNLP, 2020.

[LZZ18] Sidi Lu, Yaoming Zhu, Weinan Zhang, Jun Wang, and Yong Yu. “Neural text

generation: Past, present and beyond.” arXiv preprint arXiv:1803.07133,

2018.

[Mar15] André F. T.Martins. “Transferring Coreference Resolvers with Posterior Reg-

ularization.” In ACL, 2015.

[MFA15] André F. T. Martins, Mário A. T. Figueiredo, Pedro M. Q. Aguiar, Noah A.

Smith, and Eric P. Xing. “AD3: alternating directions dual decomposition

for MAP inference in graphical models.” J. Mach. Learn. Res., 16:495–545,

2015.

[MLG23] Sidharth Mudgal, Jong Lee, Harish Ganapathy, YaGuang Li, Tao Wang,

Yanping Huang, Zhifeng Chen, Heng-Tze Cheng, Michael Collins, Trevor

Strohman, Jilin Chen, Alex Beutel, and Ahmad Beirami. “Controlled Decod-

ing from Language Models.” CoRR, abs/2310.17022, 2023.

[MLP22] Tao Meng, Sidi Lu, Nanyun Peng, and Kai-Wei Chang. “Controllable Text

Generation with Neurally-Decomposed Oracle.” CoRR, abs/2205.14219,

2022.

[MPC19] TaoMeng, Nanyun Peng, and Kai-Wei Chang. “Target Language-Aware Con-

strained Inference for Cross-lingual Dependency Parsing.” In EMNLP, 2019.

109

[MPR05] Ryan T. McDonald, Fernando Pereira, Kiril Ribarov, and Jan Hajic. “Non-

Projective Dependency Parsing using Spanning Tree Algorithms.” In

HLT/EMNLP, 2005.

[MSX09] André F. T. Martins, Noah A. Smith, and Eric P. Xing. “Concise Integer Lin-

ear Programming Formulations for Dependency Parsing.” In ACL/IJCNLP,

2009.

[MWJ13] Kevin Murphy, Yair Weiss, and Michael I Jordan. “Loopy belief propa-

gation for approximate inference: An empirical study.” arXiv preprint

arXiv:1301.6725, 2013.

[MXB16] Stephen Merity, Caiming Xiong, James Bradbury, and Richard Socher.

“Pointer Sentinel Mixture Models.”, 2016.

[MZA23] Todor Markov, Chong Zhang, Sandhini Agarwal, Florentine Eloundou Nek-

oul, Theodore Lee, Steven Adler, Angela Jiang, and Lilian Weng. “A holistic

approach to undesired content detection in the real world.” In Proceedings of

the AAAI Conference on Artificial Intelligence, volume 37, pp. 15009–15018,

2023.

[NAA18] Joakim Nivre, Mitchell Abrams, Željko Agić, and et al. “Universal Dependen-

cies 2.2.”, 2018. LINDAT/CLARIN digital library at the Institute of Formal

andApplied Linguistics (ÚFAL), Faculty ofMathematics and Physics, Charles

University.

[Ost15] Robert Östling. “Word Order Typology through Multilingual Word Align-

ment.” In ACL, 2015.

[OWJ22] Long Ouyang, Jeffrey Wu, Xu Jiang, Diogo Almeida, Carroll L. Wainwright,

PamelaMishkin, Chong Zhang, Sandhini Agarwal, Katarina Slama, Alex Ray,

110

John Schulman, Jacob Hilton, Fraser Kelton, Luke Miller, Maddie Simens,

Amanda Askell, Peter Welinder, Paul F. Christiano, Jan Leike, and Ryan

Lowe. “Training language models to follow instructions with human feed-

back.” In NeurIPS, 2022.

[Par18] Kyubyong Park. “Can Convolutional Neural Networks Crack Sudoku Puz-

zles?” https://github.com/Kyubyong/sudoku, 2018.

[PCE15] Nanyun Peng, Ryan Cotterell, and Jason Eisner. “Dual Decomposition Infer-

ence for Graphical Models over Strings.” In EMNLP, 2015.

[PKL13] Matt Post, Gaurav Kumar, Adam Lopez, Damianos G. Karakos, Chris

Callison-Burch, and Sanjeev Khudanpur. “Improved speech-to-text trans-

lation with the Fisher and Callhome Spanish-English speech translation cor-

pus.” In IWSLT, 2013.

[PRY04] Vasin Punyakanok, Dan Roth, Wen-tau Yih, and Dav Zimak. “Semantic Role

Labeling Via Integer Linear Programming Inference.” In COLING, 2004.

[RC11] Alexander M. Rush andMichael Collins. “Exact Decoding of Syntactic Trans-

lation Models through Lagrangian Relaxation.” In ACL, 2011.

[RC12] Alexander M Rush and MJ Collins. “A tutorial on dual decomposition and

lagrangian relaxation for inference in natural language processing.” Journal

of Artificial Intelligence Research, 45:305–362, 2012.

[RSR20a] Colin Raffel, Noam Shazeer, Adam Roberts, Katherine Lee, Sharan Narang,

Michael Matena, Yanqi Zhou, Wei Li, and Peter J. Liu. “Exploring the Lim-

its of Transfer Learning with a Unified Text-to-Text Transformer.” J. Mach.

Learn. Res., 21:140:1–140:67, 2020.

111

https://github.com/Kyubyong/sudoku

[RSR20b] Colin Raffel, Noam Shazeer, Adam Roberts, Katherine Lee, Sharan Narang,

Michael Matena, Yanqi Zhou, Wei Li, and Peter J. Liu. “Exploring the Lim-

its of Transfer Learning with a Unified Text-to-Text Transformer.” J. Mach.

Learn. Res., 21:140:1–140:67, 2020.

[RT18] Sudha Rao and Joel R. Tetreault. “Dear Sir or Madam, May I Introduce the

GYAFC Dataset: Corpus, Benchmarks andMetrics for Formality Style Trans-

fer.” In NAACL-HLT, pp. 129–140. Association for Computational Linguis-

tics, 2018.

[RWC19] Alec Radford, Jeffrey Wu, Rewon Child, David Luan, Dario Amodei, Ilya

Sutskever, et al. “Language models are unsupervised multitask learners.”

OpenAI blog, 1(8):9, 2019.

[RY04] Dan Roth and Wen-tau Yih. “A Linear Programming Formulation for Global

Inference in Natural Language Tasks.” In CoNLL, 2004.

[RY05] Dan Roth and Wen-tau Yih. “Integer linear programming inference for con-

ditional random fields.” In ICML, 2005.

[SBB20] Keisuke Sakaguchi, Ronan Le Bras, Chandra Bhagavatula, and Yejin Choi.

“WinoGrande: An Adversarial Winograd Schema Challenge at Scale.” In

AAAI, 2020.

[SCN19] Emily Sheng, Kai-Wei Chang, PremkumarNatarajan, andNanyunPeng. “The

Woman Worked as a Babysitter: On Biases in Language Generation.” In

EMNLP, 2019.

[SCN21] Emily Sheng, Kai-Wei Chang, PremNatarajan, andNanyun Peng. “”Nice Try,

Kiddo”: Investigating Ad Hominems in Dialogue Responses.” In NAACL-

HLT, pp. 750–767. Association for Computational Linguistics, 2021.

112

[SCT20] Raymond Hendy Susanto, Shamil Chollampatt, and Liling Tan. “Lexi-

cally constrained neural machine translation with Levenshtein transformer.”

arXiv preprint arXiv:2004.12681, 2020.

[SKR12] Vivek Srikumar, Gourab Kundu, and Dan Roth. “On Amortizing Inference

Cost for Structured Prediction.” In EMNLP-CoNLL, 2012.

[SKS23] Charlie Snell, Ilya Kostrikov, Yi Su, Sherry Yang, and Sergey Levine. “Offline

RL for Natural Language Generation with Implicit Language Q Learning.” In

ICLR, 2023.

[SLL15] Lifeng Shang, Zhengdong Lu, and Hang Li. “Neural responding machine for

short-text conversation.” arXiv preprint arXiv:1503.02364, 2015.

[SMH22] Alexander Spangher, Yao Ming, Xinyu Hua, and Nanyun Peng. “Sequentially

Controlled Text Generation.” In EMNLP, 2022.

[SMS99] Richard S. Sutton, David A. McAllester, Satinder Singh, and YishayMansour.

“PolicyGradientMethods forReinforcement Learningwith FunctionApprox-

imation.” In NIPS, pp. 1057–1063. The MIT Press, 1999.

[SSW19] Elizabeth Salesky, Matthias Sperber, and AlexanderWaibel. “Fluent Transla-

tions from Disfluent Speech in End-to-End Speech Translation.” In NAACL-

HLT (1), 2019.

[STH17] Samuel L. Smith, David H. P. Turban, Steven Hamblin, and Nils Y. Ham-

merla. “Offline bilingual word vectors, orthogonal transformations and the

inverted softmax.” In ICLR, 2017.

[SZ15] Karen Simonyan and Andrew Zisserman. “Very Deep Convolutional Net-

works for Large-Scale Image Recognition.” In ICLR, 2015.

113

[TLI23] Hugo Touvron, Thibaut Lavril, Gautier Izacard, XavierMartinet, Marie-Anne

Lachaux, Timothée Lacroix, Baptiste Rozière, Naman Goyal, Eric Hambro,

Faisal Azhar, Aurélien Rodriguez, Armand Joulin, Edouard Grave, and Guil-

laume Lample. “LLaMA: Open and Efficient Foundation Language Models.”

CoRR, abs/2302.13971, 2023.

[TMN13] Oscar Täckström, Ryan T. McDonald, and Joakim Nivre. “Target Language

Adaptation of Discriminative Transfer Parsers.” InHLT-NAACL, 2013.

[TMS23] Hugo Touvron, Louis Martin, Kevin Stone, Peter Albert, Amjad Alma-

hairi, Yasmine Babaei, Nikolay Bashlykov, Soumya Batra, Prajjwal Bhar-

gava, Shruti Bhosale, DanBikel, Lukas Blecher, CristianCanton-Ferrer,Moya

Chen, Guillem Cucurull, David Esiobu, Jude Fernandes, Jeremy Fu, Wenyin

Fu, Brian Fuller, Cynthia Gao, Vedanuj Goswami, Naman Goyal, Anthony

Hartshorn, Saghar Hosseini, Rui Hou, Hakan Inan, Marcin Kardas, Vik-

tor Kerkez, Madian Khabsa, Isabel Kloumann, Artem Korenev, Punit Singh

Koura, Marie-Anne Lachaux, Thibaut Lavril, Jenya Lee, Diana Liskovich,

Yinghai Lu, Yuning Mao, Xavier Martinet, Todor Mihaylov, Pushkar Mishra,

IgorMolybog, YixinNie, AndrewPoulton, JeremyReizenstein, Rashi Rungta,

Kalyan Saladi, Alan Schelten, Ruan Silva, Eric Michael Smith, Ranjan Sub-

ramanian, Xiaoqing Ellen Tan, Binh Tang, Ross Taylor, Adina Williams,

Jian Xiang Kuan, Puxin Xu, Zheng Yan, Iliyan Zarov, Yuchen Zhang, Angela

Fan,Melanie Kambadur, SharanNarang, AurélienRodriguez, Robert Stojnic,

Sergey Edunov, and Thomas Scialom. “Llama 2: Open Foundation and Fine-

Tuned Chat Models.” CoRR, abs/2307.09288, 2023.

[TP22] Yufei Tian and Nanyun Peng. “Zero-Shot Sonnet Generation with Discourse-

Level Planning and Aesthetics Features.” In NAACL, 2022.

114

[VL15] Oriol Vinyals and Quoc Le. “A neural conversational model.” arXiv preprint

arXiv:1506.05869, 2015.

[VSP17] Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones,

Aidan N. Gomez, Lukasz Kaiser, and Illia Polosukhin. “Attention is All you

Need.” In NIPS, 2017.

[WC16] Wenhui Wang and Baobao Chang. “Graph-based Dependency Parsing with

Bidirectional LSTM.” In ACL, 2016.

[WDW19] Po-Wei Wang, Priya L. Donti, Bryan Wilder, and J. Zico Kolter. “SATNet:

Bridging deep learning and logical reasoning using a differentiable satisfia-

bility solver.” In ICML, 2019.

[WFK19] Eric Wallace, Shi Feng, Nikhil Kandpal, Matt Gardner, and Sameer Singh.

“Universal Adversarial Triggers for Attacking and Analyzing NLP.” In

EMNLP/IJCNLP (1), pp. 2153–2162. Association for Computational Linguis-

tics, 2019.

[WPX22] Boxin Wang, Wei Ping, Chaowei Xiao, Peng Xu, Mostofa Patwary, Moham-

mad Shoeybi, Bo Li, Anima Anandkumar, and Bryan Catanzaro. “Explor-

ing the Limits of Domain-Adaptive Training for Detoxifying Large-Scale Lan-

guage Models.” CoRR, abs/2202.04173, 2022.

[XZF18] Jingyi Xu, Zilu Zhang, Tal Friedman, Yitao Liang, and Guy Van den Broeck.

“A Semantic Loss Function for Deep Learning with Symbolic Knowledge.” In

ICML, 2018.

[YFL20] Yuan Ye, Yansong Feng, Bingfeng Luo, Yuxuan Lai, and Dongyan Zhao. “In-

tegrating Relation Constraints with Neural Relation Extractors.” In AAAI,

2020.

115

[YJW16] QuanzengYou,Hailin Jin, ZhaowenWang, ChenFang, and JieboLuo. “Image

Captioning with Semantic Attention.” In CVPR, 2016.

[YK21] Kevin Yang andDanKlein. “FUDGE:Controlled TextGenerationWith Future

Discriminators.” InNAACL-HLT. Association for Computational Linguistics,

2021.

[YPW19] Lili Yao, Nanyun Peng, Ralph Weischedel, Kevin Knight, Dongyan Zhao, and

Rui Yan. “Plan-and-write: Towards better automatic storytelling.” In AAAI,

2019.

[YZF16] Mark Yatskar, Luke S. Zettlemoyer, and Ali Farhadi. “Situation Recognition:

Visual Semantic Role Labeling for Image Understanding.” In CVPR, 2016.

[ZHB19] Rowan Zellers, Ari Holtzman, Yonatan Bisk, Ali Farhadi, and Yejin Choi.

“HellaSwag: Can a Machine Really Finish Your Sentence?” In ACL (1), 2019.

[ZL14] Xingxing Zhang and Mirella Lapata. “Chinese poetry generation with recur-

rent neural networks.” In EMNLP, 2014.

[ZRG22] Susan Zhang, Stephen Roller, Naman Goyal, Mikel Artetxe, Moya Chen,

Shuohui Chen, Christopher Dewan, Mona T. Diab, Xian Li, Xi Victo-

ria Lin, Todor Mihaylov, Myle Ott, Sam Shleifer, Kurt Shuster, Daniel

Simig, Punit Singh Koura, Anjali Sridhar, Tianlu Wang, and Luke Zettle-

moyer. “OPT: Open Pre-trained Transformer Language Models.” CoRR,

abs/2205.01068, 2022.

[ZWL20] Yizhe Zhang, Guoyin Wang, Chunyuan Li, Zhe Gan, Chris Brockett, and Bill

Dolan. “Pointer: Constrained text generation via insertion-based generative

pre-training.” arXiv preprint arXiv:2005.00558, 2020.

116

[ZWY17] Jieyu Zhao, Tianlu Wang, Mark Yatskar, Vicente Ordonez, and Kai-Wei

Chang. “Men Also Like Shopping: Reducing Gender Bias Amplification using

Corpus-level Constraints.” In EMNLP, 2017.

117

	Introduction
	Background and Related Work
	Integer Linear Programming (ILP)
	Cross-Lingual Dependency Parsing
	Large Language Models (LLMs)
	Applications of Constrained Inference

	Constrained Inference with Pre-defined Constraints on Distribution Gap
	Distribution Gap and Hard Constraints
	Corpus-Level Constraints and Inference
	Corpus-Level Constraints
	Lagrangian Relaxation

	Distributional Constraints and Inference
	Distributional Constraints
	Posterior Regularization Inference in Model Transfer

	Application: Mitigating Gender Bias Amplification with Constraints Bridging the Bias Gap
	Background and Related Work
	Constraints and Inference Formulations
	Experiments Setup
	Bias Amplification in Distribution
	Bias Amplification Mitigation

	Application: Cross-lingual Dependency Parsing with Constraints Bridging the Word Order Gap between Languages
	Background:Graph-Based Parser
	Corpus-Level Constraints about Word Order
	Formulations
	Model and Inference
	Constraints

	Experimental Results
	Setup
	Parsing Performances
	Contributions of Individual Constraints

	An ILP Framework for Mining Constraints from Data
	Mining Constraints with Integer Linear Programming
	Mining Inequality Constraints
	Mining Equality Constraints
	Latent Variables

	Experiments
	Sudoku
	Minimal Spanning Tree
	Hierarchical Multi-label Classification

	Analysis and Discussion
	Feasible Set Size Analysis
	Discussion about Running Time

	Controllable Text Generation with Neurally-Decomposed Oracle
	Introduction
	Methodology
	Setup: Notations and Problem Formulation
	Token-level Guidance and Closed-Form Solution For q*
	Approximating RCp by NADO and Theoretical Analysis
	Training NADO
	Sampling

	Experiments
	Text Generation with Lexical Constraints
	Machine Translation with Formality Change

	Conclusion

	Application: Controllable Generation with Large Language Models in Detoxification
	Introduction
	Experiments
	Comparsion of Detoxification Methods
	The Effect of Coupling Models
	The Effect of Base Model Size
	The Effect of Auxiliary Model Size

	Attribute Controlled Fine-tuning for Large Language Models
	Introduction
	Methodology
	Formalization and Algorithm Overview
	Fine-tuning LLM with Posterior Regularization
	Optimal Distribution in Feasible Region
	Estimating RCp from Training Data and LLM
	Iteratively Updating p by Regularized Fine-tuning
	Parallel Fine-tuning
	Adaptive Regularizer

	Experiments
	Detoxification
	Multi-task Scenario
	Toxicity Classification

	Conclusion

	Conclusion

