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APECS: A Solution to the Sequential Learning Problem

I.P.L. M€Laren
Department of Psychology, University of Warwick, Coventry, CV4 7AL, UK.
Tel. 0203 523188, e-mail psrap@ warwick.csv

Abstract

This paper contains some modifications to Back
Propagation that aim to remove one of its failings
without sacrificing power. Adaptively Parametrised
Error Correcting Systems (APECS) are shown not
to suffer from the sequential learning problem, and
to be capable of solving EOR, higher order parity,
and negation problems. This opens the way to
development of connectionist models of associative
learning and memory that do not suffer from
"catastrophic interference”, and may shed light on
issues such as the episodic / semantic memory
distinction.

The development of novel connectionist
algorithms (Rumelhart, Hinton, and Williams,
1986; Ackley, Hinton, and Sejnowski, 1985)
capable of driving learning in multi-layer networks
was one of the major developments in cognitive
science in the nineteen eighties. One of these
algorithms, Back Propagation (Rumelhart, Hinton,
and Williams, 1986) uses gradient descent to find
mappings that capture input / output relationships,
typically instantiated in feed-forward architectures.
In so doing, it comes up against the sequential
learning problem identified by McCloskey and
Cohen (1989) and further analysed by Ratcliff
(1990).

A general statement of this problem is that if
a network employing Back Propagation is first
taught one set of input / output relations, and then

some other mapping is learnt whose input terms are
similar to those first used in training, then a near
complete loss of performance on the first mapping
is observed on test. The new learning wipes out the
old. This is not a necessary characteristic of the
feed-forward architecture, because if training
alternates between the two mappings, repeatedly
teaching first one and then the other, eventually a
solution is reached that captures both sets of input /
output relationships. Thus, this "catastrophic
interference”, when new learning erases old, is only
seen if the two mappings are learnt in sequence.
This does not mean that this property of the
learning algorithm can be ignored, however, as
learning (in humans and networks) often takes
place within a sequential format (eg see Ratcliff,
1990; Hinton and Plaut, 1987; Sejnowski and
Rosenberg, 1987).

As a simple example of this general type of
problem, consider modelling a paired-associate
experiment (Barnes and Underwood, 1959) in
which human subjects are required to learn a list
(list 1) of eight nonsense syllable - adjective pairs
to a criterion of 100%. That is, after some number
of training trials, the subject is able to provide the
correct adjectival response to each nonsense
syllable stimulus. After learning list 1, the subjects
learn list 2, which employs the same nonsense
syllables as the first, but new adjectives paired with
them. Training continues until subjects are near
perfect on this list (>90%). They are then asked to
recall the original list 1 adjectival responses for the

nonsense syllables plus context

list1 dax teg

P O O O O O O O O

@, ® @ O @ @ @ O
regal sleek

O O

adjective responses

list2

input
nodes
first layer of weights
hidden
units
second layer of weights
output
0 U O D 0O O
keen swift nodes

Figure 1. Each node in the input and output layers stands for some stimulus, context, or response;
signalling its presence via its activity. Learning proceeds by changing the values of the connection
strengths between nodes (called ‘'weights') so that the input nodes can transmit activation, via the

hidden units, to the output nodes.
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nonsense syllables. Performance drops to around
50% for this list, which is taken to be an instance of
retroactive interference (control groups suggest that
it is not simply the passage of time that is
responsible for this decline in performance).
Following McCloskey and Cohen this task
can be modelled in a feed-forward two layer
network running Back Propagation. The list
‘context' and the nonsense syllables (eg dax, teg)
are the input and the adjectives (eg regal, sleek) are
the output (see Figure 1). After cycling through the
list several times, activation of the input nodes
representing list context plus a nonsense syllable
results in the activation of the output nodes
corresponding to the correct adjective via the
pattern of connection strengths or weights
developed by the network. During learning of the
second list, nodes standing for the list 2 context are
used in conjunction with the old nonsense syllable
nodes, together with extra output nodes
representing the new adjectives (keen, swift).
Training proceeds until activation of nodes
representing list 2 + dax (for example) results in
activation of the 'keen’ node. Now, list 1 recall can
be tested by presenting list 1 + dax as input. The
result is - 'keen'. No sign of previously having
learnt ‘regal’ to this input is evident. McCloskey
and Cohen were able to show that even minimal
training on list 2 resulted in (at best) nearly
complete loss of list 1 on test, rather than the 50%
loss shown in humans (at worst). This result does
not depend on the local coding scheme employed
here, as they obtained the same outcome using

st dax leg ist2 Est1

regal shook keen swift "
Esl1+dax 90 52 50 50 sl1+dax 53
islisleg 51 90 50 50 isl1+log 52
Isl2+dax 90 52 50 50 ksl2+dax 50
isi2+leg 51 90 50 50 ksl2+leg 50

g

soeaf

distributed representations of contexts, stimuli and
responses as well. If, however, the network was
alternated on the two lists, then it could achieve
100% performance on each list.

Figure 2 gives simulation results for this

sequential learning task on a two item list using a
modified version of Back Propagation (used
throughout this paper). Despite these differences,
the results parallel McCloskey and Cohen's.
After training on list 1 until performance meets
their "within 0.1" criterion on test, ie activation of
an input pattern produces the correct response to
within 0.1 of each node's target activation level,
learning list 2 to the same criterion destroys list 1
performance. In fact, testing on list 1 now fails to
meet a "best match" criterion which requires that
the output be more similar to the target response
than to any of the other possible responses in the
lists. Analysis of these simulation results indicates
that the difficulty facing the network is that the
initial list 1 solution (ie the pattern of weights) is
not one that can survive learning list 2, because the
list 1 responses to the nonsense syllables have to be
suppressed in some fashion, and once this is done
they cannot be recovered. Only when the lists are
alternated can a list 1 solution that is protected
from the effects of list 2 learning be found.

The solution to the sequential learning
problem would hence seem relatively
straightforward. Modify Back Propagation so that
list 1 learning takes a form which survives list 2
learning by ensuring that list 1 responses do not
pose problems during the learning of the second

leg lisl 2

keen swift

N A3 st 1 + dax
12 9 ist1 +log
k] 52 sl 2 + dax
50 S0 ist2+leg

Figure 2. This shows the pattern of weights developed by the network after learning list 1 (left), then
after learning list 2 (middle), and finally after being altemated on both lists (right). Weights are shown
next to the appropriate link, and hidden unit bias (best interpreted as a weight from a unit that is
always on) is given inside the icon representing each unit. The activation values obtained on test are

shown underneath the output nodes and alongside the input pattern applied. A somewhat modified
version of standard Back Propagation was used; no bias was allowed for the output units, and their
target activation level when 'off' was taken as 0.5, corresponding to zero net input. Each list was
cycled through 250 times (left, middle) or 500 times (right), with 100 weight changes per leaming

episode involving a given list pair .
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list 1 dax

regal

A B

dax

list 1

dax

Figure 3. Three possible solutions to learning a list 1 item that would survive the learning of list 2.
Solid lines denote positive weights, dashed lines negative weights. Solution A requires a negative
bias on the hidden unit. In all cases, only if both input nodes are activated is there activation of the

output node.

list. Inspection of the rightmost set of weights in
Figure 2 indicates three simple list 1 solutions that
might work, shown in Figure 3.

All of A, B, and C in Figure 3 seem
plausible candidate solutions, in that none of them
will produce much in the way of a response to a
nonsense syllable input on its own. They each
require the conjunction of nonsense syllable and
list context to produce the appropriate adjective,
and thus should not be susceptible to unlearning of
list 1 during acquisition of list 2.

It is difficult to see how solutions B and C
would develop, however, and a stricter version of
the sequential learning problem poses difficulties
for them. If learning on each list is in strict
sequence, i€ a pair is learnt and then the next pair
and so on until the list is learnt without ever
returning to a pair, then it would seem that those
solutions which depend on cycling through a given
list could not develop. This is the case for solutions
using negative weights to hidden units that
themselves possess negative weights to output
units. They require the prior development of
positive weights from input to output (first pairing),
followed by negative weights from the hidden units
to the output units (suppression of the response
when inappropriate), and only then can negative
weights to the hidden unit(s) possessing negative
weights to the output units develop (on a second
pairing). It could be argued that learning each pair
involves alternating between context + stimulus -
response and context - no response, which will
enable this type of solution. This may be
appropriate in modelling human performance on
this task, though it seems unlikely that this has to
be the case for successful list learning. Note that
acquisition of pairs by sequentially learning context
plus stimulus - response and context - no response
(rather than alternating between them) will not
suffice to arrive at solution B or C, and this is also
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a plausible model for human performance when
learning a list in strict sequence (and the one used
in the simulation reported later). In any case it
would seem unwise to adopt solutions that suffered
from this restriction.

Hence solution A, which can be
characterised as an "AND" solution capturing the
need for both list 1 context and dax to be input to
give regal as an output, seems worthy of
investigation. Given this, the problem becomes one
of how to modify Back Propagation so as to
achieve solution A without losing the desirable
characteristics of this algorithm: in particular, the
power to solve problems such as EOR.

One answer is to proceed by allowing some
of the parameters of the Back Propagation learning
algorithm to vary in an adaptive fashion, an idea
borrowed from animal learning theory (eg
Mackintosh, 1975; Pearce and Hall, 1980;

MCLaren and Dickinson, 1990). Specifically, the
learning rate parameter applicable to a given
hidden unit in making changes in the weights from
it to any of the output units is brought under
adaptive control. Consider a hidden unit j which
has links to i output units of strength Wij- The
standard rule prescribing the change in a weight,
awi'. is...

1. awij = fAiaj

where f is the learning rate parameter, A; is an
error signal given by the difference between the
output units target activation and current activation
multiplied by the derivative of the activation
function with respect to input evaluated at the
current value of the input to that output unit, and 3;
is the hidden unit's activation. The proposed change
iss.

2. awij = finaj

so that each hidden unit has its own variable
learning rate parameter. To achieve solution A, we



need presentation of an input / output pair 0 result
in one (or a few) hidden units being selected to
mediate the positive weights from input to output
nodes. For arbitrary mappings such as those
modelled here there is little point in dedicating
more than one hidden unit to bind input to output,
and it simplifies the next stage, which is to protect
the mapping once it is established (the case of non-
arbitrary mappings possessing statistical structure
will be considered later). Protection is needed when
only a part of the input (eg context or stimulus
alone) is applied without concomitant application
of the output previously paired with it (which will
be termed "extinction" here), the weights formed in
the previous leaming episode(s) should not change
much, rather the hidden unit's bias should increase
§0 as to inactivate it. This means that the results of
previous learning episodes are not so much frozen
as taken out of circulation. This can be achieved if
determination of the f j is made competitive, so that
the hidden unit whose connections best meet the
demands imposed by current output activation is
selected by having its f set high and the other _fj set

near zero. The same mechanism can ensure that the
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f of this hidden unit is near zero during extinction,
by disqualifying units receiving an appreciable
negative error component from some output unit
from the selection process. To promote shifts in
bias, the parameters controlling changes in bias for
the hidden units should be high when the error term
is negative (ie during extinction), and low
otherwise. The parameters controlling weight
changes in the input to hidden layer should be high
when the hidden unit error is positive, but low
when negative, so that the mechanisms for raising
and damping hidden unit activity are equal in
strength. This gives three guiding principles to
follow in modifying Back Propagation. The first is
selection: picking out one (or a few) hidden unit(s)
to mediate a mapping. This facilitates
implementation of the second, protection:
preventing unlearning in the hidden to output layer
by reducing the learning rate parameter for that
hidden unit to near zero. The third is the
asymmetric parametrisation of learning in the input
to hidden layer and for the hidden unit thresholds,
SO that extinction is mainly accomplished by bias
changes rather than weight reduction in the input to
hidden layer. Figure 4 gives the algorithm used for
the APECS simulations reported here.

Figure 4. One possible algorithm for APECS.
Start by setting dh; = (Eajw]-i)(ai}ﬁ-ai)'where
aj is the activation of hidden unit i so that dh;
is the error for hidden unit i. Now ddh; =
200dh; if there is no significant negative term
(i,e. <-.01) in the sum of the raw errors
propagated back from the output layer, it's
zero otherwise; and sumdh = Yddh; ,where the
sum is over all hidden units (this initialises
sumdh). The ddh; compete to determine the f;
in an algorithm which is based on the idea of
all the ddh; inputting to a system which then
provides negative feedback. Only the largest
ddh; will result in a non-zero fj. The
competlition is done by setting a variable, Inh,
to gradually converge to within .0001 of sumdh
which itself is updated to equal Xfj. This
negative feedback system can then be used to
select the largest of the ddh; by updating the f;
to equal ddh; - 9Inh. Any f; that drops below
zero is set to zero during this procedure. The
system settles down to stable values for
sumdh and Inh and only the largest ddh; gives
rise to a positive fi. The final transform
ensures that fj changes rapidly over the range
that matters, and is constrained between 0
and 1. This is a convenient algorithm to use,
but no doubt there are many other methods of
arriving at the same end result. At the end, the
fi are used to determine the parameters for
learning between that hidden unit and the
output layer (0.25f;), for the bias (10(1-f})),
and the input layer to that hidden unit (15f;).
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Figure 5. Left is the pattern of weights and results on test after leaming list 1 (50 cycles through the
list with 200 weight changes per learning episode involving a given list pair.)using APECS, in the
middle are the results after leaming list 2 (50 cycles through the list) as well. On the extreme right are
shown the results for strictly sequential learning of both lists (8,000 iterations per list pair).

This Adaptively Parametrised Error
Correcting System (APECS) can now be run on the
sequential learning problem as defined by
McCloskey and Cohen, using exactly the same
procedures employed in the Back Propagation
simulations reported earlier. The results are
encouraging, and are shown in Figure 5.

After learning both lists, performance on test
is perfect by the best match criterion in the two pair
list simulation, and not far from meeting the .1
criterion. Though not shown in the figure,
performance is even better in the eight pair list
simulation, meeting the stringent .1 criterion in all
cases. The reason for this seems to be that the
longer list allows more complete extinction via bias
becoming increasingly negative, minimising the
contribution from other sources. In the two pair
lists, the presence of a given stimulus whenever the
other is not present introduces a strong negative
contingency that the system exploits, and negative
weights of some strength develop. In the eight pair
lists this contingency is much weaker and no longer
a significant factor. Performance in the two pair list
condition can be improved by allowing
presentations of the context for each list alone,
which also degrades this negative contingency.

Having had some success with the sequential
learning problem as defined by McCloskey and
Cohen (1989), the next simulation tackles the
strictly sequential version in which each input /
output pair is learnt in one episode and never
relearnt. The results are as shown in the rightmost
panel of Figure 5. Note that the weights have
developed appropriately but that the performance
on test is weak, though still meeting the best match
criterion. The output activations are attenuated
because the thresholds have shifted so as to almost
completely suppress hidden unit activity, even
when optimal input patterns of activation are
applied. This is a property of the activation

721

function employed here, which requires a
substantial change in bias during extinction,
outweighing the influence of the positive weights
developed during list pair learning. It cannot be
avoided by some choice of parameters, though
adopting a different activation function could help.
This route will not be explored here, as the problem
is one of performance rather than learning. The
weights are appropriate, allowing a retrieval
strategy, such as increasing input activation, to
enhance performance.

The modified algorithm seems to handle
sequential learning well, certainly a lot better than
standard Back Propagation. But at what cost? Can
APECS still solve problems that Back Propagation
solved well? A wide ranging investigation is in
progress, as one example the results for EOR will
be given here. This is a suitable test case, as it is a
standard problem requiring a multi-layer net that
might be expected to pose difficulties for an
algorithm that generates "AND" type solutions to
problems. In fact, APECS solves EOR very well as
is shown in Figure 6, where the solution produced
by Back Propagation is also shown.

The APECS algorithm has also proved
successful in solving Parity problems up to order 4,
the Negation problem (Rumelhart, Hinton, and
Williams, 1986), and several others that require the
extraction of structure in some input - output
mapping. Even if APECS could solve all the
problems that Back Propagation can, however, one
possible difficulty is that it might solve them in a
way that is undesirable, ie by developing local
representations at the hidden unit level. This is not
a drawback in the case of arbitrary associations
between input and output, APECS copes
witharbitrary associations efficiently and well, but
what of the case when distributed representation at
the level of the hidden units might be considered
appropriate?



B
AB

Figure 6. On the left is the solution to EOR
developed by APECS in 60 cycles through the
problem, with 200 weight changes per leaming
episode involving a given list pair. On the right
is the solution produced by modified Back
Propagation in 100 cycles, with 200 weight
changes per learning episode involving a
given list pair. Note that a unit has an
activation of 0.5 given zero input, and thus will
be somewhat 'on' unless tumed 'off'. The
bottom left shows which input nodes were
active on test with the output node's response
beneath the relevant solution. The *-* denotes

no applied input.

In fact, APECS will develop distributed
representations in some circumstances, though the
results will not be given here. Imagine that if node
A is active as input then node B is active as output,
but this relation is embedded in noise, hence the
input / output pairings are X1A-YB, X»A-Y,B
and so on, where the Xs and Ys denote other nodes
that are active. This models trying to learn a
reliable relation in a variety of different contexts.
Simulations show that the network develops a local
representation (at the hidden unit level) for each
learning episode in a different context, and as the
learning episodes increase and are distributed
across contexts, so the number of hidden units
mapping this relation increases so that it is
distributed across them. Each hidden unit
contributes weakly to this relation, as each has been
extinguished, and eventually the A-B relation
becomes context-independent.

Hence a fundamental property of the APECS
algorithm is an increase in the distributedness of
representations with experience, from associations
formed by a single context and 'episode’ to
associations accumulated over many such episodes,
each somewhat different. This property may hold
the key to understanding how one network may
learn and represent both "episodic" and "semantic"
knowledge (Tulving, 1972; 1983), and why the
former is more vulnerable both to interference from
other knowledge, and to neurological damage. It
may also be possible to explain differences in the
treatment of "rules" and "exceptions" in these terms
(eg in modelling word recognition, Seidenberg and
McClelland, 1989). Future publications will
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elaborate on these ideas as applied to both human
and animal learning. Meanwhile, the APECS
algorithm appears to evade the sequential learning
problem suffered by the conventional Back
Propagation algorithm.
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Abstract

When modeling strictly sequential experimental memory
tasks, such as serial list learning, connectionist networks
appear to experience excessive retroactive interference,
known as catastrophic interference (McCloskey &
Cohen, 1989; Ratcliff, 1990). The main cause of this
interference is overlap among representations at the
hidden unit layer (French, 1991; Hetherington, 1991,
Murre, 1992). This can be alleviated by constraining the
number of hidden units allocated to representing each
item, thus reducing overlap and interference (French,
1991; Kruschke, 1992). When human subjects perform a
laboratory memory experiment, they arrive with a wealth
of prior knowledge that is relevant to performing the task.
If a network is given the benefit of relevant prior
knowledge, the representation of new items is
constrained naturally, so that a sequential task involving
novel items can be performed with little interference.
Three laboratory memory experiments (ABA free recall,
serial list, and ABA paired-associate learning) are used to
show that little or no interference is found in networks
that have been pretrained with a simple and relevant
knowledge base. Thus, catastrophic interference is
eliminated when critical aspects of simulations are made
to be more analogous to the corresponding human
situation.

Introduction

Learning in standard, feed forward, back propagation
networks (hereafter, standard networks) is a result of
altering weights on connections between units via
feedback or experience. Because patterns are
represented in a distributed manner, many units and
weights participate in encoding an item, enabling hidden
units to capture meaningful relations among items.
Because items are superimposed during learning,
retroactive interference may occur; events occurring later
in the training regime result in poor performance on
previously-learned items (McCloskey & Cohen, 1989;
Ratcliff, 1990). Although this is also true for humans,
McCloskey and Cohen claim that interference in these
networks is "catastrophic"; learning on later trials results
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in grossly impaired performance on previously learned
1tems.

The sequential learning problem was demonstrated
by Ratcliff (1990) in an attempt to model serial list
learning in humans. In this task, a subject is sequentially
presented with a number of items and is asked to recall
them after the final item has been presented. In Ratcliff's
simulation, 16 items were trained individually and
sequentially. The network retained only the final item;
performance on items 1 to 15 was very poor.
Manipulations of various parameters, such as learning
rate and momentum, did not significantly improve
network performance. Similar failures to resolve the
sequential learning problem by manipulating network
parameters was reported by McCloskey and Cohen
(1989).

In this article, we outline the major cause of
catastrophic interference in standard networks, describe
recent approaches to the problem, and present a novel
approach. In contrast to previous work on the sequential
learning problem that has manipulated network
parameters and architecture (e.g., Hinton & Plaut, 1987;
Kortge, 1990; Kruschke, 1992; Lewandowsky, 1991;
Sloman & Rumelhart, 1992) we attempt to make the
simulation more similar to the human situation that is
being modeled. When this is done, catastrophic
interference is eliminated.

Overlap at the hidden unit layer

Standard networks tend to unlearn catastrophically
because there are too few constraints on hidden unit
representations when learning initial items (French, 1991;
Hetherington, 1991; Kruschke, 1992; Murre, 1992).
Even completely non-overlapping stimulus patterns can
overlap at the hidden unit layer (Hetherington, 1991).
Most or all hidden units encode initial items, so later
learning necessarily involves changing weights that
encode previous items. If, however, a network was
constrained to allocate a limited subset of hidden units to
encode initial items, then overlap between old and new
items would be reduced, decreasing interference.

There have recently been a number of proposals
advanced to impose limits on the number of hidden units
used to encode early items. In a standard network, the
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receptive field of a hidden unit includes all input units.
Thus, each hidden unit has equal probability of encoding
two input patterns, maximizing the potential for
interference. Kruschke (1992) used hidden units with
local receptive fields to reduce overlap among items at
the hidden unit layer. If a hidden unit is connected to
only a subset of the input units, then the probability that
two items are encoded by the same hidden unit
decreases. In a variation of Kruschke's (1992) approach,
French (1991) selectively “sharpened” a subset of the
hidden units so that some became more active than others
during initial learning, and fewer were used to encode
each early item. Interference was reduced when a subset
of hidden units were sharpened.

A natural solution

Catastrophic interference has been found in simulations
of strictly sequential verbal learning experiments.
Subjects in these experiments are typically college
students who enter into an experiment possessing a large
body of knowledge about words and their properties. If a
network is pretrained so that it also possesses a body of
knowledge prior to commencement of a sequential
learning simulation, the first item (or short list of items)
in a sequential learning task must be learned within the
constraints resulting from prior knowledge. Many of the
hidden units are already committed to representing only a
limited aspect of the input space by virtue of strong
weights from a limited number of input units. When a
second item (or short list) is trained, interference with the
first is decreased because the probability of overlap at the
hidden unit layer is reduced. Thus, in accord with
French’'s (1991) and Kruschke's (1992) ideas, our
proposal also focuses on the state of the hidden unit layer
at commencement of sequential training, but in contrast,
we take advantage of the fact that training on a corpus of
items naturally constrains hidden units' receptive fields
and sharpens their activations.

A small, naive model

The first simulation is a simple demonstration of the
effect of pretraining on the number of hidden units used
to encode a pattern. An encoder network was used, with
8 input and output units, and 5 hidden units. Six
distributed patterns were used. The first pattern was
represented by turning on the first three units and setting
the rest to zero, /11100000/, the second pattern by the
next successive three units, /01110000/, and so forth.
The initial weights were randomly selected from a
uniform distribution, within the range + 0.5. Training
involved repeatedly presenting the fourth pattern until
error fell below 0.01, at which point hidden unit
activations were recorded. Figure 1 shows a typical run
in which, after training pattern 4, each hidden unit
contributed approximately equally to the output. Hence,
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as suggested above, without constraints on hidden unit
activations, a standard network encodes a pattern across a
large subset of its hidden units.

3
Hidden Unit

Figure 1. Representation of a single pattern across
the hidden unit layer in a small, naive network. The
pattern is distributed across all hidden units.

A small, pretrained model

The network was configured as in the previous
simulation. Pretraining consisted of training all patterns
except pattern 4 until mean error fell below 0.01. Pattern
4 was then trained to the same criterion. Figure 2 shows
that only three hidden units participated in its encoding.
Thus, like the constraints introduced by French (1991)
and Kruschke (1992), pretraining reduced the number of
hidden units used to encode an item.

1 2 3 4 5

Hidden Unit

Activation
o
»

o
o
el S [ it

Figure 2: Representation of a single pattern across
the hidden unit layer in a small, pretrained network.
The pattern was encoded using only 3 of 5 hidden
units.

This demonstration implies that if a network is
constrained by pretraining it, then hidden units respond
selectively to new input. Suppose that a network is made
more analogous to adult humans by providing it with
previous knowledge before subjecting it to a strictly
sequential training regime associated with a recognition
memory or serial list learning experiment. Given the
demonstration above, previous training may enable a
network to perform with little interference in strictly



sequential learning tasks. To test this prediction, larger
simulations of free recall, serial-list learning, and paired-
associate memory tasks were conducted, and are
presented below. These simulations were not intended as
detailed and accurate models of human memory
experiments, but as simple models of different memory
tasks, demonstrating that the effect of pretraining
generalizes across tasks.

Pretraining a larger network

For three memory tasks (ABA free-recall, ABA paired-
associate,  serial-list), performance of naive and
pretrained networks was compared. Networks were
pretrained either on the orthographic representations of
the set of 2897 English monosyllabic words used in the
Seidenberg and McClelland (1989) model of naming, or
on 1448 orthographic stimulus-response  pairs
constructed from words in that corpus. The input and
output  patterns  were  400-unit  wickelgraph
representations of orthography (see Seidenberg &
McClelland). = A wickelgraph representation is a
distributed representation of word spelling that encodes
letter order and item similarity. For the free-recall and
serial-list learning tasks, an encoder network was used;
hence, input and output patterns were identical.
Pretraining on the 2897 words continued for 44 epochs,
until mean error fell below 10. At this point, the network
correctly reproduced all words; the output for a word
matched itself better than any of the other 2896. For the
pattern associator, stimuli consisted of every second
word (alphabetically) from the Seidenberg and
McClelland corpus. A response was chosen randomly
from among the 2897 items, with the constraint that no
response occurred greater than three times. The network
was pretrained for 40 epochs, at which point mean error
was below 13 and it computed the correct response to
each of the 1448 stimuli. In summary, in each
simulation, a pretrained network that possessed
knowledge of English orthography was compared to a
naive network that was a tabula rasa.

For each simulation, the degree of hidden unit
overlap is reported, followed by network performance on
the list learning task. We compared the degree of hidden
unit overlap between pairs of CVCs using a measure of
percentage overlap ([1 - sum of absolute differences/sum
of total activation] x 100). According to this measure,
identical representations score 100, and non-overlapping
representations  score 0. Analyses of network
performance will be described in each section.

Free-recall ABA

In an ABA free-recall memory task, a subject memorizes
a list of items, such as consonant-vowel-consonant
strings (list A), followed by a second list (list B). She is
then asked to recall first list items in any order. An
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encoder network (400 input/output, 150 hidden units)
was used to simulate this task.

The stimuli were consonant-vowel-consonant
trigrams (CVCs) that were medium similarity items taken
from a typical verbal learning experiment (Underwood,
1952). None of them were words from the pretraining
corpus. The CVCs were randomly mixed to create five
replications of A and B lists, each containing eight
CVCs. During CVC training in this and the following
two simulations, the momentum parameter in the
McClelland and Rumelhart (1988) simulation software
package, was set to zero. The first list was trained until
mean error fell to approximately 18. At this point in
training, the output for each pattern was closer to the
target CVC than any of the other 2204 (21 x 5 x 20)
possible CVCs. However, they were not as well learned
as the pretrained words; CVCs learned in an experiment
would not be as ingrained as a college student's
knowledge of common English words.

Overlap

Similar to the smal simulations, the distributions of
hidden unit activations were compared for sets of CVCs
in the naive and pretrained networks. Figure 3 shows a
histogram of hidden unit activations for YUG after it was
trained to criterion along with seven other CVCs (list A).
Note that the representation of YUG in the naive network
was distributed fairly evenly across all hidden units. In
contrast, in the pretrained network, almost all were
inactive, with 38 of 150 fully activated. Thus, the naive
network spread the representation of YUG across its
hidden units, but the pretrained network used only a
small subset. These results were not unique to YUG: the
distribution of hidden unit activations averaged across
CVCs was approximately uniform in the naive network,
but bimodal in the pretrained case.

B Naive
5 ke @ Pretrained

- b= L, | «! - L ] « "~ =

Hidden Unit Activation Range

Figure 3. Distribution of hidden unit activation in
representation of YUG in naive versus pretrained
networks. Almost all hidden units encoded YUG in
the naive network, but only a small minority in the
pretrained network.



In the naive network, percentage overlap between
JEP and YUG was 58%, and 82% between JEP and
ZEP. In contrast, in the pretrained model, percentage
overlap between JEP and YUG was 24%, and 58%
between JEP and ZEP. The mean hidden unit overlap
between pairs of CVCs in the naive model (65%, SD =
6%) was significantly greater than in the pretrained
model (36%, SD = 8%), #(27) = 34.34, p < .0001. Note,
also, that as well as reducing overlap, pretraining
preserved similarity information (i.e., the hidden unit
representation of JEP was more similar to ZEP than to
YUG).

Interference

Given that a network with encoded knowledge of English
represented CVCs with less overlap, interference in a
free-recall ABA simulation should be drastically
reduced. After the first list of 8 CVCs was trained, error
was recorded for each pattern in both lists as a second 8-
item list was trained (list B). Because the second list was
learned at different rates in the naive and pretrained
networks, it was inappropriate to directly contrast amount
of interference at each recorded epoch. The first list
could have been unlearned faster because second list
learning was faster. To compare interference in the naive
and pretrained networks, we required a measure of
interference on first-list items given the degree to which
second-list items had been learned. Therefore, linear
regression analyses were conducted in which total error
for second-list items was used to predict total error for
first-list items. The slope of the regression line indicates
the rate at which first-list error increased relative to the
decrease in second-list error (i.e., first-list interference in
terms of second-list learning). In both the naive and
pretrained cases, second-list error predicted first-list error
(naive: r2 = 97; pretrained: r2 = 91). Critically,
significantly less interference obtained when a network
possessed knowledge of English orthography. The 95%
confidence intervals for the slope of the function relating
second-list learning to first-list retention were computed
(naive: -.34 to -.26; pretrained: -.10 to -.06). The slope
for the naive network was significantly steeper, and the
confidence intervals were non overlapping. In other
words, for each increment in second-list learning, first-list
error increased significantly more in a naive network.
Interference can also be compared at the point at which
output for second-list items was closer to the true
response than to any other CVC. At the point where the
second list was learned, total error had risen 69.43 (a
47% increase) for the first-list items in the naive network,
but only 0.21 (a 0% increase) for those same items in the
pretrained network. In summary, when an encoder
network possessed knowledge of English orthography
prior to an ABA freerecall simulation, catastrophic
interference was eliminated.
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Serial-list learning

The identical network and stimuli were used to simulate
serial-list learning. In a free-recall serial-list learning
task, subjects are presented with a number of items
sequentially, and are asked to recall them in any order.

Overlap

Analogous to the previous simulation, YUG, when
trained individually until its error fell below 18, was
represented over the hidden units in an approximately
uniform manner in the naive network, but by only 38
units in the pretrained network. Mean overlap between
CVC pairs was significantly greater in the naive (65%,
SD = 3%) than in the pretrained network (37%, SD =
9%), 1(119) = 35.03, p < .0001. For example, when
YUG was learned, followed by NOL, their
representations overlapped by 60% in the naive network,
compared to 29% in its pretrained counterpart. Thus, in
terms of retention of YUG, there was greater potential for
interference in the naive network.  Interestingly,
pretraining also preserved the role of item similarity in
modulating interference. To illustrate, FAX and FAH,
two highly similar CVCs, overlapped 68% in the naive
network, barely above mean overlap (65%). In contrast,
they overlapped 71% in the pretrained network, well
above the mean (37%). Thus, although similarity
between items plays little or no role in a network with an
unconstrained hidden unit layer (see Hetherington,
1991), it plays a role when new information must be
incorporated into an existing knowledge base. Thus,
while the potential for interference has almost been
eliminated, generalization has not (see Ratcliff, 1990).

Interference

To simulate serial list learning, five orders of the 16
CVCs were prepared. For each replication, they were
sequentially trained to criterion (error less than 18).
Following training on the final pattern, all CVCs were
tested for retention. Error by serial position, averaged
across the five replications, is displayed in Figure 4.
With the naive network, a replication of Ratcliff's (1990)
results obtained; retention was very poor for all but the
final item. In contrast, all patterns were well retained
when pretraining was provided. The performance of the
naive and pretrained networks was compared using a t-
test. Across serial position, interference in the pretrained
network was significantly less than in the naive network,
1(15) = 13.08, p < .0001. In fact, it may be that
performance of the pretrained network was too good;
there was less interference than is typically found in
human serial-list learning experiments.
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Figure 4. Mean performance of naive versus

pretrained networks in the serial list-learning task.
The upper (naive) and lower (pretrained) lines
represent performance after all items were trained.

Paired-associate learning

In an ABA paired-associated task, a subject learns a list
of stimulus-response pairs (list A), followed by a second
list (list B), and then is asked to recall the first list. The
importance of conducting both free-recall and paired-
associate simulations was illustrated by Hetherington
(1990, 1991). A factor such as item similarity that
decreases interference in the simulation of one task may
increase it in another. Thus, the ABA pattern association
task was simulated to demonstrate that the effect of
pretraining on reduction of interference is independent of
task (i.e., type of network).

The paired-associate ABA simulation was conducted
in the same manner as its free-recall counterpart.
However, because the network learned arbitrary
associations, a greater number of hidden units were
required; 600 hidden units were used to encode 1448
word pairs. Sixteen random CVC-CVC stimulus-
response pairs were created for the ABA simulation.
They were randomly mixed to create five pairs of A and
B lists, each containing eight patterns. For each
replication, the first list was trained until mean error fell
to approximately 18.

Overlap

The distributions of hidden unit activations for items in
this simulation were approximately uniform in the naive
networks, but bimodal in the pretrained network. BAB-
BIX, for example, activated only nine hidden units
greater than .9 in the pretrained network. Mean overlap
between CVC pairs was significantly greater in the naive
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(62%, SD = 2%) than in the pretrained network (19%,
SD = 6%), 427) = 35.90, p < .0001.

Interference

During second-list training, error was recorded for
patterns in both lists. As in the free-recall ABA
simulation, in both the naive and pretrained networks,
second-list error predicted first-list error (naive: 2= 91;
pretrained: r2 = .86). Interference was significantly
reduced when a network was pretrained. The 95%
confidence intervals for the slope of the function relating
second-list learning to first-list retention were computed
(naive: -.24 to -.15; pretrained: -.08 to -.04). The slope
for the naive network was significantly steeper, and the
confidence intervals were non overlapping. That is, in a
pretrained network, for each increment in second-list
learning, first-list error rose significantly less.
Interference was also compared at the point at which the
output for all second-list items was closer to the target
response than to any other CVC. At the point where the
second list was learned, error had risen 120.71 (an 82%
increase) for the 8 items in the naive network, but only
14.15 (a 9% increase) in the pretrained case. Thus, when
a standard network possessed knowledge of English
orthography prior to a paired-associate ABA simulation,
interference was drastically reduced. Again, interference
may been reduced to below what is found with humans in
paired associate ABA experiments.

Summary and conclusion

The three previous simulations demonstrated that
interference was drastically reduced in simulations of
verbal learning experiments using a simple and
principled manipulation. College students typically serve
as subjects in these experiments, and enter the
experimental situation possessing an impressive body of
knowledge that can be used to perform a task. When
networks were given the benefit of prior relevant
knowledge, catastrophic interference disappeared.
Despite the absence of interference, similar items still
overlapped at the hidden unit layer, so generalization
should still occur. However, there was less interference
in the pretrained networks than is typically found with
humans in analogous verbal learning experiments.

The simulations reported here are not sophisticated
models of human memory experiments; in fact, they are
insufficient implementations of each task. Our purpose
was not to capture the variety of behavioral effects seen
in these tasks, but merely to use the simulations to
demonstrate that catastrophic interference in standard
networks can be alleviated using a simple and principled
manipulation. The choice of specific networks and
procedures was primarily motivated by a desire to
deviate little from the simulations of McCloskey and
Cohen (1989) and Ratcliff (1990). It is left for future



work to produce more sophisticated and realistic
simulations of ABA free-recall, ABA paired-associate,
and serial-list learning tasks.
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