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Nonparametric methods based on spectral factorization offer well
validated tools for estimating spectral measures of causality, called
Granger–Geweke Causality (GGC). In Pagnotta et al. (2018) [1] we
benchmarked nonparametric GGC methods using EEG data recor-
ded during unilateral whisker stimulations in ten rats; here, we
include detailed information about the benchmark dataset. In
addition, we provide codes for estimating nonparametric GGC and
a simulation framework to evaluate the effects on GGC analyses of
potential problems, such as the common reference problem,
signal-to-noise ratio (SNR) differences between channels, and the
presence of additive noise. We focus on nonparametric methods
here, but these issues also affect parametric methods, which can
be tested in our framework as well. Our examples allow showing
that time reversal testing for GGC (tr-GGC) mitigates the detri-
mental effects due to SNR imbalance and presence of mixed
additive noise, and illustrate that, when using a common refer-
ence, tr-GGC unambiguously detects the causal influence's domi-
nant spectral component, irrespective of the characteristics of the
common reference signal. Finally, one of our simulations provides
an example that nonparametric methods can overcome a pitfall
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associated with the implementation of conditional GGC in tradi-
tional parametric methods.

& 2018 The Authors. Published by Elsevier Inc. This is an open
access article under the CC BY license

(http://creativecommons.org/licenses/by/4.0/).
Specifications table
Subject area
 Neuroscience

ore specific subject area
 Granger-causal analysis

ype of data
 Benchmark dataset: rats epicranial EEG recordings

Simulation framework: numerical simulations

ow data was acquired
 Benchmark dataset: arrays of 16 stainless steel electrodes

ata format
 Benchmark dataset: MATLAB files (.mat)

Simulation framework: codes and functions (.m) implemented in
MATLABs (The MathWorks, Inc.)
xperimental factors
 Benchmark dataset: signals were sampled at 2 kHz and online filtered
1–500 Hz
xperimental features
 Benchmark dataset: multichannel somatosensory evoked potentials
(SEPs) recorded from ten p21 Wistar rats during unilateral whisker sti-
mulations; the animals were under light isoflurane anesthesia while
recording
ata source location
 Fribourg, Switzerland

ata accessibility
 Benchmark dataset, simulation framework and codes for estimating

nonparametric Granger causality are made available with this article.

elated research article
 M.F. Pagnotta, M. Dhamala, G. Plomp, Benchmarking nonparametric

Granger causality: robustness against downsampling and influence of
spectral decomposition parameters, NeuroImage. 183 (2018) 478–494.
https://doi.org/10.1016/j.neuroimage.2018.07.046
Value of the data

� Provides information about a benchmark dataset that allows to critically assessing the performance
of time-varying directed connectivity measures.

� The simulation framework enables the readers to evaluate the effects of common practical issues
associated with the application of GGC analyses.

� Makes available scripts that can be used for computing nonparametric GGC.
� Demonstrates that nonparametric methods overcome the issues due to model subset of

conditional GGC.
1. Data

The benchmark dataset includes multichannel epicranial somatosensory evoked potentials (SEPs)
recorded from ten rats during whisker stimulations. Since in this animal model both physiological
characteristics and structural pathways have been intensively investigated, reliable predictions can be
made about the dominant cortical driver, its preferential functional targets on the cortex, and the
timing off such directed interactions. For these reason, this dataset represents a valuable tool to
evaluate the performance of time-varying directed connectivity measures and compare different
algorithms for connectivity analysis.

https://doi.org/10.1016/j.neuroimage.2018.07.046
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Here, we also provide codes and functions to perform a series of simulations that can evaluate the
effects of some practical issues associated with the application of GGC analyses to real data.
2. Experimental design, materials, and methods

2.1. Whisker-evoked SEPs

In the benchmark dataset, the multichannel epicranial SEPs have been previously obtained from
ten p21 Wistar rats [2,3]. Signals were recorded using an array of 16 stainless steel electrodes posi-
tioned on the cranium [3]. Among them, 15 electrodes acquired epicranial SEPs, and these were
referenced to a reference electrode (16th electrode), which was placed above the cerebellum, as
shown in Fig. 1A in [1]. Signals acquisition was performed at sampling rate of 2000 Hz and the signals
were filtered online with a bandpass filter (1–500Hz). During the experimental procedure the rats
were anesthetized using isoflurane in air mixture (oxygen/air: 20%/80%). The stimuli consisted of
unilateral whisker deflections of 500 μm, which were applied using a solenoid-based stimulator. For
each animal, 50 stimulations were applied to right whiskers and 50 to left whiskers, in two separate
blocks. Animal handling procedures were approved by the Office Vétérinaire Cantonal (Geneva,
Switzerland) in accordance with Swiss Federal Laws.

We successively defined trials considering the time interval between -100ms and þ200ms
around each stimulus onset. We then applied a semi-automatic approach to remove trials corrupted
by artifacts; more details about this approach and a comprehensive list of trials removed can be found
in [4] and its supporting information. Survived trials from the two blocks were then collected toge-
ther, by changing electrodes labels in the case of left-sided stimulations, so that electrodes from
1 to 7 were on the hemisphere ipsilateral to whisker stimulation and electrodes from 9 to 15 were on
the contralateral one for both blocks. The amount of survived trials for each animal was on average 65
(range: 34–80).

The dataset is made available with this article and comprises ten .mat files (one for each animal),
which were created using MATLABs (The MathWorks, Inc.). Each file contains a structure named RAT
with four fields: data, dimord, times, and Fs. The field data is a 3-dimensional matrix with the epi-
cranial SEPs, being the time-points on the first dimension, the channels on the second dimension, and
the trials on the third dimension. Dimensionality ordering is also specified by the field dimord, which
is a string. The field time contains a vector of time-points in milliseconds. Finally, the field Fs is a scalar
that reports the sampling rate in Hz.

Whisker-evoked SEPs are characterized by highly dynamic cortical activation pattern, which is
initially observable over contralateral primary sensory cortex (cS1), and then propagate over known
areas, following relatively well known structural pathways [5,6]. The latencies of this propagation are
also known, thank to studies that employed single-unit responses in cS1, e.g. [7]. The functional
characteristics expected in the cortical network of 15 nodes allow benchmarking time-varying
directed connectivity measures using three previously defined performance criteria [2], which eval-
uate the ability of a method to detect cS1 as main functional driver, and the contralateral parietal and
the frontal sensory-motor cortex as cS1's preferential targets. In the dataset, channel 12 identifies cS1,
while channels 10 and 14 identify the surrounding portions of cortex, which are expected to be cS1's
preferential targets. For a schematic representation of channels positions please refer to Fig. 1A in [1].
The initial driving from cS1 is expected at early latency after stimulus onset (5–20ms), and it should
be characterized by dominant spectral components in the gamma-band [8–10].

2.2. Simulation framework

Previous studies have highlighted a series of pitfalls and practical issues associated with the use of
causality analyses in real data. We here provide a simulation framework that enables the reader to
evaluate three of these issues: the common reference problem [11], the imbalance of signal-to-noise
ratio (SNR) between channels [12], and the effects of independent and mixed additive noise [13].
Moreover, we provide a numerical simulation that allows to address a recent claim of pitfall [14]
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associated with the use of conditional GGC [15,16]. All simulations employ nonparametric GGC
methods based on spectral factorization [17,18].

Our simulation framework comprises three scripts implemented in MATLABs (The MathWorks,
Inc.): i) sim_nonparGGC_CommonReference.m, which allows evaluating the common reference pro-
blem; ii) sim_nonparGGC_AdditiveNoise.m, which allows assessing the effects of SNR differences and
presence of additive noise; iii) sim_nonparGGC_StokesPurdon.m, which addresses the claim of pitfall of
conditional GGC.

In the first two scripts, both traditional and time-reversed definitions of GGC are considered,
because time reversal testing for causality analyses [19,20] has been shown to potentially reduce, or at
least alleviate, some of the detrimental effects associated with the mentioned practical issues. In this
procedure, time-reversed versions of the time series are used as surrogates for statistical testing.
Different definitions have been proposed for the time-reversed variant of GGC (tr-GGC), we here
choose by default the “difference-based” one, in which the spectral influence from channel j to
channel i tested with time-reversal (tr-GGCij) is defined as the difference between the net-GGCij
estimated on regular time series and the same measure estimated on time-reversed time series [21].
Each measure of net-GGCij is obtained in turn as difference between GGCij and GGCji. The net influ-
ence tr-GGCij is finally inferred only when larger than zero (see Eq. (6) in [1]). The alternative time-
reversed variants are also available in the scripts. As default settings for our simulations, time series
are simulated with 100 trials for each condition evaluated. Each trial has a length of 2 s, corre-
sponding to 400 samples at sampling frequency Fs ¼ 200 Hz. In all conditions nonparametric GGC is
computed with the approach based on multitaper method [22], by selecting the time-bandwidth
parameter NW ¼ 4 [23]; for further details see [1]. The spectral estimation is performed up to Nyquist
frequency.

The script sim_nonparGGC_StokesPurdon.m allows simulating the same MVAR(3) three-nodes
network used in [14], and successively applying the multitaper-based conditional GGC to the
simulated data.

2.2.1. Common reference problem
The common reference problem involves a situation where the signals from the nodes of the net-

work are recorded against a common reference, which is not electrically silent. This may have detri-
mental effects on functional connectivity measures. The script sim_nonparGGC_CommonReference.m
allows to consider three main scenarios, depending on the characteristics of the common reference
signal R(t): i) R(t) is simulated as uncorrelated white noise, as in [11]; ii) R(t) has an oscillatory com-
ponent in the same frequency range as the investigated nodes, which is similar to the situation con-
sidered in [12]; iii) R(t) has an oscillatory component in a different frequency range with respect to the
investigated nodes.

In order to simulate the model, we start considering a basic surrogate network that is composed
by two nodes with a causal influence between them (from node 1 to node 2). The unipolar signals of
the two nodes are obtained from a MVAR model with maximum lag of 2 time samples, using the
following equations:

x1 tð Þ ¼ 2r1 cos ðθ1Þx1 t�1ð Þ � r12x1 t�2ð Þ þ w1ðtÞ
x2 tð Þ ¼ 2r2 cos ðθ2Þx2 t�1ð Þ � r22x2 t�2ð Þ � 0:35x1 t�1ð Þ þ 0:7x1 t�2ð Þ þ w2ðtÞ

(
ð1Þ

As default, we set ri ¼ 0.8 for i ¼ 1,2. The parameter θi is defined as θi ¼ 2πfiΔt, where Δt is the
inverse of the sampling frequency and fi is the desired frequency of the oscillatory component. We set
fi ¼ 40 Hz for i ¼ 1,2, in this way the dominant oscillatory component of both nodes is around 40Hz
[24]. In Eq. (1), each term wi is a zero-mean uncorrelated white noise process, called innovation
process, which has an effect on the future samples of the signal xi trough the coefficients of the MVAR
model. This should not be confounded with the additive noise, which is sometimes also called
observation noise or measurement noise. The additive noise is in fact superimposed to the mea-
surement of the time series, i.e. the values simultaneously observed/recorded (see Sections 2.2.2–
2.2.3).
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In the first scenario, the signal R(t) consists of white noise with same variance as wi. In the second
and third scenarios, R(t) is defined by the following equation:

R tð Þ ¼ 2rR cos ðθRÞR t�1ð Þ � rR2R t�2ð Þ þ wRðtÞ ð2Þ
where rR ¼ 0.8 and θR ¼ 2πfRΔt. We use fR ¼ 40Hz, which is the same oscillatory component as the
two nodes, in order to simulate scenario ii). While for scenario iii), we use fR ¼ 20Hz and fR ¼ 70Hz,
which are respectively below and above the oscillatory component of the two nodes in the network
(40 Hz). In each simulated condition, the observed (measured) time series of each node is finally
obtained as follows:

x0i tð Þ ¼ ð1�αCRÞxiðtÞ � αCRR tð Þ; i¼ 1;2 ð3Þ
In this way the ratio αCR/(1–αCR) controls the proportion in the observed signals between common

reference and unipolar signals, i.e. how strong the influence of the common reference is. In the
simulation we vary αCR in the range [0.1, 0.9] with a resolution of 0.1 (9 levels in total).

The script enables the reader to perform a simulation for each one of the three possible scenarios
with respect to the characteristics of the common reference signal, by simply varying the appropriate
flag-variable (i.e., flg_REFtype).

2.2.2. SNR imbalance between channels
Interpretational problems associated with causal estimates have been observed in the presence of

SNR differences across experimental conditions or between sources/channels [12,25]. The script
sim_nonparGGC_AdditiveNoise.m allows investigating SNR imbalance effects on nonparametric GGC,
when we set the flag-variable flg_Analysis to 'MIX'; this simulation enables to employ the same
2-nodes MVAR(2) model previously used in [12], which is defined as follows:

x1 tð Þ ¼ 0:5x1 t�1ð Þ � 0:8x1 t�2ð Þ þ w1ðtÞ
x2 tð Þ ¼ 0:5x2 t�1ð Þ � 0:8x2 t�2ð Þ þ 0:2x1 t�1ð Þ � 0:1x1 t�2ð Þ þ w2ðtÞ

(
ð4Þ

As in Eq. (1), the terms wi are zero-mean uncorrelated white noise processes. An additive noise
N1(t) is then simulated as zero-mean uncorrelated white noise with same variance as wi and added
only to the signal of node 1. We here extend the investigation provided in [12], by using an approach
similar to that implemented in Eq. (3). We vary in fact the amount of the additive noise term on the
measured signal from node 1, through the parameter αN in Eq. (5); the measured time series are then
obtained as follows:

x01 tð Þ ¼ 1�αNð Þx1 tð Þ þ αNN1 tð Þ
x02 tð Þ ¼ x2 tð Þ

(
ð5Þ

In this way, the SNR of node 1 is controlled by the ratio (1–αN)/αN. Differently, additive noise is not
present on node 2, meaning that the SNR on this node can be considered constant and equal to
infinity. We vary the parameter αN using the same values previously used for αCR (see Section 2.2.1) in
order to range the SNR imbalance between the two nodes in the network.

The simulation can be easily extended to the multivariate case, by varying in the script the vari-
ables that define the number of nodes in the network; in this case, the time series of each node is
defined by one of the two following equations:

xi tð Þ ¼ 0:5xi t�1ð Þ � 0:8xi t�2ð Þ þ wi tð Þ
or

xi tð Þ ¼ 0:5xi t�1ð Þ � 0:8xi t�2ð Þ þ 0:2xj t�1ð Þ � 0:1xj t�2ð Þ þ wiðtÞ
ð6Þ

Here the time series of node i (xi) is defined by the first expression in (6) when the node does not
receive any influence, whereas xi is simulated using the second expression in (6) when the node
receives a causal influence from node j. The user can control the simulated interactions and the list of
nodes where additive noise is superimposed, by changing in the script the corresponding variables
(i.e., sim_interact and addN_nodes, respectively).
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2.2.3. Independent or mixed additive noise
One of the most common concerns in the field of causality analyses is related to the presence of additive

noise and its effects on results interpretability [13,26,27]. We can distinguish situations in which additive
noise terms are independent from situations in which the additive noise terms are a linear mixture of
multiple noise sources. Both cases can be simulated from the same model [13,27], which is implemented in
the script sim_nonparGGC_AdditiveNoise.m. If we consider M channels (nodes) and S independent noise
sources, the additive noise model obtained with mixing can be expressed for each time instant t as:

E tð Þ ¼
e1ðtÞ
⋮

eMðtÞ

0
B@

1
CA¼ KηðtÞ ð7Þ

where ei(t) is the additive noise of node i, K is a linear mixing matrix of dimensionM-by-S, η(t) is a vector of
independent noise sources of length S. By default, in our simulation M ¼ 3 and we consider the case S¼3
for the additive noise model (Eq. (7)). We can then simulate independent additive noise by imposing
K¼ IMxM, which is the identity matrix of dimension M-by-M (when the flag-variable flg_Analysis is set to
'IND'). Differently, when we set the flag-variable flg_Analysis to 'MIX’, we simulate mixed additive noise by
defining K as random matrix with full rank, which allows for example to mix independent white noise
sources. Alternatively, the same simulation can also be performed considering white and pink noise sources
instead of purely white [27], by changing the appropriate variable in the script (i.e., flg_Ncolor). In every
simulation the observed time series with superimposed additive noise is then obtained as:

X0 tð Þ ¼
x01ðtÞ
⋮

x0MðtÞ

0
B@

1
CA¼ 1�αNð ÞX tð Þ þ αNE tð Þ ð8Þ

In such way, the SNR is proportional to the ratio (1–αN)/αN, and we vary the parameter αN as in the
previous simulations (see Sections 2.2.1–2.2.2).

2.2.4. Simulation of Stokes and Purdon's example
The script sim_nonparGGC_StokesPurdon.m implements the MVAR(3) three-nodes network previously

used in [14]; the explicit equation that defines the system can be found in the original work. In this
surrogate network node 2 is driven by node 1 and node 3 is driven by node 2. The three nodes resonate
at different frequencies: 40Hz, 10Hz and 50Hz, from node 1 to node 3, respectively. As in the original
work, we consider sampling frequency Fs ¼ 120Hz and simulate 1000 realizations with length of 500
samples each. We employ the multitaper-based approach to estimate nonparametric GGC, selecting
NW ¼ 4 by default. This simulation allows demonstrating that nonparametric methods can overcome
the pitfall associated with the implementation of conditional (full-multivariate) GGC in traditional
parametric methods, which originates from fitting separately full and reduced MVAR models.
3. Influence of practical issues on nonparametric GGC: some examples

3.1. Common reference problem

The script sim_nonparGGC_CommonReference.m allows evaluating the effects on causality mea-
sures of the use of a common reference. We first considered the case in which the common reference
signal is white noise and we observed a decrease in GGC estimates values for the true imposed
influence (from 1 to 2), in both traditional and time-reversed variants by increasing the parameter αCR
(Fig. 1). On the other hand, GGC12 estimates values tended to increase when increasing parameter αCR.
The latter were de facto spurious estimates. Differently, for tr-GGC12 we observed null estimates
around 40Hz irrespective of the level of the parameter αCR, and consequently we had unambiguous
detection of the directionality of the 40 Hz causal influence in this range; while, some spurious
estimates were obtained at lower and higher frequencies.



Fig. 1. Common reference problem: scenario where the common reference R(t) is an uncorrelated white noise.
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The situation where the common reference had the same oscillatory component as the two nodes
was less problematic (Fig. 2). As a matter of fact, despite increasing αCR produced a decrease in both
GGC21 and tr-GGC21 estimates values, we found almost null estimates for the causal influence from
2 to 1 in both GGC variants. This basically made the identification of the correct causal influence
directionality in the network unambiguous, even considering big values for the parameter αCR.

When the common reference was simulated with dominant oscillatory component in a different
frequency range with respect to the other nodes, we observed behaviors similar to those previously
obtained using white noise as common reference. In fact, only with tr-GGC we consistently obtained
unambiguous detection of the 40 Hz causal influence directionality for both the 20 Hz (Fig. 3) and the
70Hz common reference (Fig. 4). Spurious estimates were found for GGC12 and tr-GGC12; these were
prevalently localized at low frequencies for the 20 Hz R(t), and more biased towards high frequencies
when the common reference had 70Hz oscillatory component.
Fig. 2. Common reference problem: scenario where the common reference R(t) has the same oscillatory component of
the nodes.



Fig. 3. Common reference problem: scenario where the common reference R(t) has an oscillatory component around 20 Hz.

Fig. 4. Common reference problem: scenario where the common reference R(t) has an oscillatory component around 70Hz.
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Overall, our numerical simulation allows to demonstrate that, when two interacting nodes have
same dominant spectral component and the causal influence between them is unidirectional, the use
of tr-GGC guarantees unambiguous detection of the causal influence directionality on frequencies
around the dominant spectral component itself, regardless the characteristics of common reference
signal; while, spurious estimates may occur outside such frequency-range and with a preferential
frequency-space localization that depends on the spectral components of the common reference
signal.



Fig. 5. SNR imbalance between channels (bivariate case): simulation where observation noise was added only to node 1
(driver), whereas no additive noise was present on node 2 (receiver).
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3.2. SNR imbalance between channels

The script sim_nonparGGC_AdditiveNoise.m allows to replicate the findings about SNR imbalance
from a previous study [12]. Using this simulation we also observed that increasing the parameter αN
produced a decrease in GGC21 estimates values and a contemporary increase in GGC12 estimates
values, which are spurious (Fig. 5). Differently, despite increasing αN produced a decrease in tr-GGC21
estimates values, the use of time reversal testing guaranteed unambiguous discrimination of the
correct directionality of driving in the network. The tr-GGC21 estimates were in fact consistently null
for frequencies around 40 Hz, and very close to zero elsewhere.

Our script permits to evaluate different situations. For example, if we still added noise only to node
1 but considered a reverse causal influence in the model, i.e. from 2 to 1 instead of from 1 to 2, the
SNR imbalance problem would be negligible and we would obtain correct identification of causal
directionality with both GGC and tr-GGC. Differently, if the causal influence was bidirectional with
same weights in the MVAR model, we would obtain net contributes close to zero only with tr-GGC
and a spurious net causal influence from node 2 to node 1 with GGC, as shown in [12].

As mentioned above, our script enables the reader to extend the simulation to the multivariate
case. In order to prove that, we considered a trivariate process in which nodes 2 and 3 received
driving from node 1, according to Eq. (6). Exactly as in the bivariate case (Eq. (4)), the additive noise
was superimposed only to the time series of node 1. We here employed the conditional GGC, which
takes advantage of the full multivariate recordings [15,16,28], by setting the variable doconditional
equal to 1 in the script. The simulation with the trivariate process confirmed that the use of tr-GGC
guaranteed unambiguous discrimination of the correct driving directionalities of in the network
(Fig. 6).

Conditions characterized by SNR imbalance between channels can be further complicated when
using the pairwise implementation of GGC, which consist of performing repeated bivariate analyses
for all combinations of channels pair. As example, we considered a trivariate process simulated using
Eq. (6), where the causal influences were imposed this time from node 1 to node 2, and from node
2 to node 3; differently from the previous simulation, the additive noise was present only on node 2.
We then employed the pairwise GGC for causality analysis, by setting the variable doconditional equal
to 0 in the script.

When we used the pairwise definition we obtained spurious estimates values for both GGC31 and
tr-GGC31 (Fig. 7), which is the typical influence due to the indirect path through node 2; interestingly



Fig. 6. SNR imbalance between channels (trivariate case): A) conditional GGC; B) conditional tr-GGC. In this simulation we
added observation noise only to node 1 (driver), whereas no additive noise was present on nodes 2 and 3 (receivers).
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Fig. 7. SNR imbalance between channels (trivariate case): A) pairwise GGC; B) pairwise tr-GGC. In this simulation we added
observation noise only to node 2 and interactions were imposed from node 1 to node 2 and from node 2 to node 3.
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these contributes were basically independent from the value of the parameter αN, which means that
even reducing the contribute of the noise we cannot reduce these spurious estimates. For the true
influences (1-42 and 2-43) the estimates values were reduced by increasing αN. As a consequence,
when αN Z 0.7 the spurious estimates values for the null causal influence (1-43) became com-
parable to those of the true influences, misleading results interpretability.

Differently, for the conditional definition we observed that GGC31 and tr-GGC31 were influenced by
variations in αN, in such way that estimates values were reduced when decreasing αN. This is definitely
a positive effect, because it means that reducing the noise we can suppress spurious estimates and
improve results interpretability. The true influences were unambiguously distinguished when
αN o 0.7, because in this range the influence due to indirect path was negligible for both GGC
implementations (Fig. 8). This confirm that conditional GGC should be preferred in practice over
pairwise GGC [16,17].

Overall, the use of tr-GGC helped reducing the spurious estimates on the remaining three edges
with null connections, i.e. 2-41, 3-41, and 3-42, with respect to when using GGC, for both pairwise
(Fig. 7) and conditional (Fig. 8) definitions.

3.3. Additive noise

We employed the script sim_nonparGGC_AdditiveNoise.m to evaluate the influence of independent
additive noise on nonparametric GGC. Here, time series were simulated using the same trivariate
process previously used to evaluate the difference between pairwise and conditional GGC (Section
3.2, Figs. 7–8). Causal influences were imposed from node 1 to node 2 and from node 2 to node 3,
using the expressions from Eq. (6).

While we observed an overall reduction in estimates values for the true causal influences when
reducing SNR, we obtained also a reliable identification of the correct directions in the network
(Fig. 9), confirming that the presence of independent white noise do not strongly influence the
interpretability of the results obtained with causality analyses [13,21].

In a different way, the presence of mixed noise can produce detrimental effects on results inter-
pretability. In the example here considered, we observed in fact an increase in estimates values for
null influences using GGC (Fig. 10A). Such increase in spurious estimates came also with increased
estimates variability, especially when we considered the case of mixed white and pink noise sources
(Fig. 11A). In general, time reversal testing helped mitigating these negative effects (Figs. 10B-11B).

The highest amount of spurious causal estimates was obtained for intermediate level of the
parameter αN, i.e. when the amount of mixed noise was similar to the amount of the unipolar signal in
the measured time series, as in [13,21]. Furthermore, when the mixed noise dominated (high αN), we
observed a reduction in estimates for both GGC and tr-GGC, as shown in [21]. Finally, this simulation
confirmed the positive effects associated with the use of time reversal testing to reduce spurious
estimates due to the presence of additive noise [13,20,21].

3.4. Application of nonparametric GGC to Stokes and Purdon's example

We used the script sim_nonparGGC_StokesPurdon.m considering the case of nonparametric GGC
(multitaper-based). This allows to address a recent claim of pitfall associated with the use of condi-
tional GGC [14]. The problem originates from fitting separately full and reduced MVAR models, which
introduces a bias-variance trade-off in the estimates that further depends on the model order. This
problem has been already recognized in previous studies [16,29], and several methods have been
proposed as a solution [29–32]. Nevertheless, since this pitfall hit the news in the field of causality
analyses yet again, we used our script to provide a simple demonstration that the nonparametric
methods based on spectral factorization can overcome this problem.



Fig. 8. SNR imbalance between channels (trivariate case): A) conditional GGC; B) conditional tr-GGC. In this simulation we
added observation noise only to node 2 and interactions were imposed from node 1 to node 2 and from node 2 to node 3 (same
as in Fig. 7).
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Fig. 9. Independent white noise: A) conditional GGC; B) conditional tr-GGC. In this simulation we added independent
uncorrelated white noise to both nodes.
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Fig. 10. Mixed white noise: A) conditional GGC; B) conditional tr-GGC. Here the additive noise was simulated as mixing of
white noise sources.
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Fig. 11. Mixed white and pink noise: A) conditional GGC; B) conditional tr-GGC. Here the additive noise was simulated as
mixing of pink and white noise sources.
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Fig. 12. Conditional GGC and Power Spectral Densities (PSD) obtained with nonparametric multitaper-based method for the
MVAR(3) three-nodes model, defined in [8]. Subplots on the diagonal show the PSD for each node (black line on purple
background). The other subplots report true imposed GGC (red line), median GGC estimates across 1000 simulations (grey line)
with corresponding 5th-95th percentiles (grey shading), and GGC estimates obtained by using all the realizations in the
estimation (blue line), for each interaction from driver to receiver in the network.
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We clearly observed unambiguous identification of the interactions imposed in the network from
node 1 to node 2 and from node 2 to node 3, with respect to the estimates on edges with null
interactions (Fig. 12). In particular by using all the realizations together in the estimation, the
resulting GGC estimates reproduced very well the spectral profiles of true imposed values, confirming
that the nonparametric (spectral factorization-based) method for GGC estimation [17,18] recovers the
underlying true network interactions, differently with respect to the parametric method used in [14].
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