
UC Riverside
UC Riverside Electronic Theses and Dissertations

Title
Causal Inference Using Boosting in IV Regression Models

Permalink
https://escholarship.org/uc/item/5r4337zt

Author
Xu, Hao

Publication Date
2018
 
Peer reviewed|Thesis/dissertation

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/5r4337zt
https://escholarship.org
http://www.cdlib.org/


UNIVERSITY OF CALIFORNIA
RIVERSIDE

Causal Inference using Boosting in IV Regression Models

A Dissertation submitted in partial satisfaction
of the requirements for the degree of

Doctor of Philosophy

in

Economics

by

Hao Xu

June 2018

Dissertation Committee:

Dr. Tae-Hwy Lee, Chairperson
Dr. Michael Bates
Dr. Gloria Gonzalez-Rivera
Dr. Daniel Jeske
Dr. Aman Ullah



Copyright by
Hao Xu

2018



The Dissertation of Hao Xu is approved:

Committee Chairperson

University of California, Riverside



Acknowledgments

I would like to express my deepest gratitude to my advisor Professor Tae-Hwy

Lee for his excellent guidance, patience, and continuous support during my PhD study and

research. He is not only a knowledge advisor that leads my way of research, but also a great

mentor who show me how a good economist and responsible person should be.

For the rest of my committee members, I would like to thank Professor Aman Ullah

and Professor Gloria Gonzalez-Rivera, who help me built up the foundation of Econometrics

and give precious advise. I would like to thank Professor Daniel Jeske and Professor Michael

Bates for their insightful feedback on my research.

My sincere thanks also goes to Professor Marcelle Chauvet, Professor Jang-Ting

Guo, Professor David A. Malueg, and all my other instructors for their support and encour-

agement. I will not be able to reach this accomplishment without them. A special thanks

to Gary Kuzas for his unfailing support and assistance.

I would like to thank my friends and fellow graduate students for the nice mem-

ories we share together. I want to thank Zhen Yu, Yi Shao, and Jenny Gao for all the

encouragement and help they offered during my years as a PhD student.

Last but not the least, I would like to thank my family. The great examples that

my parents and my grandparents set up for me make who I am today. They are always my

strong support and inspire me to become a better person.

iv



To my grandparents.

v



ABSTRACT OF THE DISSERTATION

Causal Inference using Boosting in IV Regression Models

by

Hao Xu

Doctor of Philosophy, Graduate Program in Economics
University of California, Riverside, June 2018

Dr. Tae-Hwy Lee, Chairperson

This dissertation focuses on using the machine learning technique, boosting, for causal

inference in the instrumental variable (IV) regression models.

In Chapter 1, when endogenous variables are approximated by sieve functions of

observable instruments, the number of instruments increases rapidly and many may be

invalid or irrelevant. We introduce Double Boosting (DB) which consistently selects only

valid and relevant instruments even when there are more instruments than the sample size.

We estimate the parameter of interest using generalized method of moments (GMM) with

selected instruments. We refer this method as Double Boosting GMM (DB-GMM). We

show that DB does not select weakly relevant or weakly valid instruments. In Monte Carlo,

we compare DB-GMM with other methods such as GMM using Lasso penalty (penalized

GMM). In the application of estimating the BLP-type automobile demand function, where

price is endogenous and instruments are high dimensional functions of product characteris-

tics, we find the DB-GMM estimator of the price elasticity of demand is more elastic than

other estimators.
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Extending from Chapter 1, Chapter 2 combines the DB selection algorithm from

Chapter 1 with the multiple-layer neural networks (NN) for the first-stage IV estimation,

where high dimensional sieve instrument variables are the activation functions at the last

hidden layer of the neural networks.

Chapter 3 studies the panel data models with many instruments. When the regres-

sors are endogenous in the panel data models, we employed the 2SLS approach for the FE

estimator. We denote it as FE-2SLS. We find that the FE-2SLS estimator is sensitive to the

number of instruments, where it is inconsistent when the number of instruments increases.

We show that using the two regularization methods, SCAD and L2Boosting, for instrument

selection make the FE-2SLS estimator more robust and restore its consistency when there

are many instruments. Furthermore, we consider a Stein-like combined estimator of the

FE and FE-2SLS estimators and provide its asymptotic properties. A empirical study is

conducted for the economics of real house price using the US state level panel data.
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Chapter 1

Introduction

Using instruments is one of the solution for estimation when regressors are endoge-

nous. However, as discussed in Bekker (1994), the two-stage least squares (2SLS) estimation

is inconsistent if the number of instruments is relatively large compared to the number of

observations. Similar property is found in the generalized method of moments (GMM) by

Stock and Wright (2000). Hence, a regularization method is necessary in order to maintain

the consistency of the 2SLS (or GMM) estimation. Under the sparsity assumption, where

only a few instruments are relevant to the endogenous regressors, the least absolute shrink-

age and selection operator (Lasso) are commonly used for instruments selection. The use

of Lasso can easily extend to GMM estimation by including an L1 penalty to the objective

function.

Chapter 1 studies the case when the functional form of the endogenous regressors is

unknown. We apply the approximately sparse model, where a large set of sieve instruments

are generated through polynomials, to approximate the true functional form. We relax
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the assumptions on both the validity and relevancy of the instruments. An instrument is

said to be valid if there is not correlation between the instrument and the structural error,

and is said to be relevant if it is correlated with the endogenous regressors. Chapter 1

introduce a selection method, Double Boosting (DB), that will consistently select all the

valid and relevant instrument. We compare the result of DB-GMM with another penalized

GMM method, which includes a L1 penalty that checks the validity and relevancy of the

instruments. We find that DB-GMM is very robust even when the number of instruments

is smaller than the number of observations.

Chapter 2 extends the use of DB to the multiple-layer neural network framework.

When the approximately sparse model is used for approximating the nonlinear functional

form of the endogenous regressors, it requires a strong assumption on the function form of

the sieve instruments, where researchers need to choose the sieve functions that are closely

related to the true functional form. Instead using polynomial as suggested in Chapter 1,

the sieve instruments is generated through the last hidden layer of the multiple-hidden

layer neural network in Chapter 2. Then we use DB to select only the valid and relevant

instruments. Finally, we compute the first-stage IV estimation by neural network with

selected sieve instruments. We apply the same empirical example as in Chapter 1, but

different set of instruments are used.

Chapter 3 is a joint work with Bai Huang, Aman Ullah, and Tae-Hwy Lee. It

extends the use of selection methods to the panel data models. When the regressors are

endogenous due to simultaneity or measurement errors, the fixed effect (FE) estimator for

a panel data model is inconsistent. In such cases the 2SLS approach using instrumental

2



variables may be employed for the FE estimator, which we denote as FE-2SLS. However,

when the number of instrument is large, the inconsistency of 2SLS estimation discussed in

Bekker (1996) for cross-sectional data models has carried over to the panel data models as

well. Chapter 3 analytically shows that the FE-2SLS is inconsistent when the number of

instruments increases. We also show that using regularization methods such as SCAD and

L2Boosting for the selection of instruments makes the FE-2SLS estimator more robust and

restore its consistency when there are many instruments. Furthermore, extending Hansen

(2017) to the structural panel data models, we consider a Stein-like combined estimator

of the FE and FE-2SLS estimators and provide its asymptotic properties. We show that

the combined estimator has the asymptotic risk strictly smaller than that of the FE-2SLS

estimator when the FE-2SLS is consistent (which is ensured by the regularization of many

instruments). Our Monte Carlo analysis shows that the asymptotic theory carries over to

finite sample only when a small number of good instruments are carefully selected, while

otherwise the combined estimator can be worse than the FE-2SLS estimator from using

too many instruments. Guarded with these theoretical and numerical findings, a careful

empirical study is conducted for the economics of real house price using the US state level

panel data.
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Chapter 2

Double Boosting GMM for High

Dimensional IV Regression Models

2.1 Introduction

According to Berry, Levinsohn, and Pakes (1995, BLP henceforth), the two-stage

least squares (2SLS) estimators of the logit demand function are inconsistent with the profit

maximization behavior of firms because the estimated price elasticities of demand for a large

number of cars are too small to make sense. Later, Chernozhukov, Hansen, and Spindler

(2015) show that the inconsistency in the 2SLS estimation can be resolved by including high

order polynomials and interaction terms of the instruments and control variables. These

additional instruments and control variables help capturing the neglected nonlinearity.

However, the resulting high dimensionality of the instruments and control variables

may cause collinearity problem. In the generalized method of moments (GMM) estimation,
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highly correlated instruments can make a singular weighting matrix.

In addition, Bekker (1994) states that the 2SLS estimator is inconsistent because

the number of instruments is too many relative to the number of observations. Hence, the

consistency of 2SLS estimators fails if instruments are in high dimension.

Another challenge with high dimensional instruments is the possible existence of

weakly relevant instruments (weak instruments). According to Phillips (1989) and Staiger

and Stock (1997), when instruments are weakly correlated with the endogenous variable, the

2SLS estimator fails the consistency because the asymptotic distribution of the estimator

will be Cauchy-like (not normally distributed and has no moments), and the inference will

be invalid. Similar problem exists in GMM estimation, as shown in Stock and Wright

(2000), the asymptotic distribution of weakly identified parameters is not asymptotically

normal.

Hence, an instrument selection procedure is necessary in order to ensure the con-

sistency of these estimators, for which different approaches have been developed, such as the

least absolute shrinkage and selection operator (Lasso), multiple testing, and information

criteria.

While Lasso performs the variable selection, it produces bias in estimation. Belloni

and Chernozhukov (2013) suggested the Post-Lasso estimation which can reduce the bias.

Belloni, Chen, Chernozhukov, and Hansen (2012) apply Lasso and Post-Lasso for the first-

stage prediction and instrument selection in a high dimensional IV regression model. Later

in Chernozhukov, Hansen, and Spindler (2015), they apply Lasso and Post-Lasso to both the

first stage and the second stage of the 2SLS estimation when both instruments and control

5



variables are in high dimension. Gillen, Moon, and Shum (2014) and Gillen, Montero,

Moon, and Shum (2015) apply Lasso to select instruments and control variables for the

BLP-type model.

Caner (2009) , Caner and Zhang (2014) and Fan and Liao (2014) discuss the use

of penalty for moment selection in GMM. Donald, Imbens, and Newey (2009) suggest a

moment selection procedure by using an information criterion based on the asymptotic

mean square error (MSE).

Different than using a Lasso type approach or information criteria, Bajari, Nekipelov,

Ryan, and Yang (2015) , Hartford, et al. (2016) , and Chernozhukov, et al. (2016) apply

machine learning techniques to the IV regression model. In particular, Ng and Bai (2008)

consider L2Boosting for instrument selection. Bühlmann (2006) proves that L2Boosting

achieves a consistent estimation on the regression function even when the number of regres-

sors increases exponentially with the sample size. A simulation comparison between Lasso

and L2Boosting in Bühlmann (2006) shows that both methods share very similar proper-

ties, although, as discussed in Meinshausen (2007), Lasso may have poor performance on

variable selection in a high-dimensional linear model with many irrelevant regressors.

However, we note that majority of these papers assume that instruments are

“valid”, such that instruments are not correlated with the structural error, and thus do

not question the validity of instruments but only focus on the relevancy between instru-

ments and the corresponding endogenous variables.

Only a few recent papers have relaxed the validity assumption on the instruments.

DiTraglia (2016) allows highly relevant but somewhat invalid moments to be selected be-

6



cause of the benefit in reducing the MSE even at the cost of bias. That may be reasonable

for prediction but not for inference. To make correct statistical inference, the bias should

be the first priority before improving the overall efficiency measured by the MSE. Hence,

it is important to remove all invalid moments to avoid bias. By adding different types of

penalties to the GMM objective function, Liao (2013) illustrates how to perform moment se-

lection when some of the moments are invalid. Similarly, Caner, Han, and Lee (2017) extend

the adaptive elastic net GMM estimation by allowing many invalid moments. Cheng and

Liao (CL, 2015) introduce the “Penalized GMM (PGMM)” method with a cleverly mod-

ified Lasso and show that PGMM is asymptotically oracle in selecting valid and relevant

moments.

In this chapter, we propose another selection algorithm based on boosting, which

we call “Double-Boosting (DB)”. We show that DB is asymptotically oracle in selecting

valid and relevant instruments from a set of high dimensional instruments that may be

either (weakly) invalid or/and (weakly) irrelevant. DB is based on a new criterion, which

will check both the validity and the relevancy of each potential instrument. We prove that

DB consistently selects valid and relevant instruments simultaneously. More importantly, we

show that DB will not select weakly valid instruments or weakly relevant instruments (with

the extent of ‘weakness’ being defined for the local-to-zero asymptotics). Furthermore, in

proving the consistency of DB, we allow the endogenous variable to be an unknown nonlinear

function of instruments, which we approximate by a set of sieve functions, e.g., polynomials

of observable instruments as in Chernozhukov, Hansen, and Spindler (2015). Once DB

selects instruments, we compute the GMM estimator using the selected instruments. The

7



estimator will be called the “DB-GMM” estimator.

This chapter is organized as follows. In Section 2.2, we set up a structural model

for the high dimensional IV regression, then define weak/strong validity or relevancy of

instruments and classify them in several different categories. In Section 2.3, we review

the instrument selection procedure by L2Boosting in the literature. Since the estimator is

computed by GMM with the selected instruments, we refer to this method as “Boosting

GMM (BGMM)”. In Section 2.4, we propose a new instrument selection method, DB. In

Section 2.5, Monte Carlo studies are presented to compare DB-GMM with other methods.

Section 2.6 is the empirical application that follows the design in Berry, Levinsohn, and

Pakes (1995) and Chernozhukov, Hansen, and Spindles (2015) to demonstrate the merits

of using the Double-Boosting algorithm. Section 2.77 concludes. All proofs are gathered in

Appendix A.

2.2 Model

Consider an IV model as

yi = β′xi + ui (2.1)

xi = E(xi|wi) + vi. (2.2)

For i = 1, . . . , n, yi is the scalar dependent variable, xi is a k × 1 vector of endogenous

variables, and β is a k × 1 vector of parameters. The conditional mean E(xi|wi) is an

unknown function of observable instruments wi, where wi = (w1,i . . . wp,i)
′ is a p × 1

8



vector. The two error terms ui and vi have dimensions of 1× 1 and k × 1 respectively and

have the (k + 1)× (k + 1) variance-covariance matrix

Σ =

 σ2
1 Σ12

Σ21 Σ22

 . (2.3)

According to Belloni, Chen, Chernozhukov, and Hansen (2012), the exact sparse

model can be estimated by the “approximately sparse model” with an approximation error

ri. E(xi|wi) can be approximated by a linear combination of sieve functions h(wi) =

(h1(wi) . . . h`n(wi))
′ such that

E(xi|wi) =

`n∑
j=1

γjhj(wi) + ri, (2.4)

where the parameter γj is a k × 1 vector for each j = 1, . . . , `n, and ri = (r1,i . . . rk,i)
′ is

a k × 1 vector of the approximation error. Since the functional form of hj (·) is known, we

define a sieve instrument zj,i ≡ hj(wi) and

(z1,i . . . z`n,i)
′ ≡ (h1(wi) . . . h`n(wi))

′ . (2.5)

From Equations (2.2) and (2.4),

xi =

`n∑
j=1

γjzj,i + ri + vi. (2.6)

9



The validity and the relevancy of instruments are defined in a local asymptotic

framework. The moment function of each instrument zj,i for j = 1, . . . , `n is

g(zj,i, β) = zj,iui. (2.7)

The validity of each instrument depends on the moment condition,

E (g(zj,i, β)) = E (zj,iui) =
bj

nδj
. (2.8)

And the relevancy of each instrument depends on the parameter,

γj =
aj
nαj

. (2.9)

Let Zj = (zj,1 . . . zj,n)′ for j = 1, . . . , `n. We define deferent degrees of validity and rele-

vancy as stated below.

Definition 1 (Validity): The extent of validity depends on bj and δj as follows:

V1 = {j : bj = 0} ∪
{
j : bj 6= 0 and 1

2 < δj
}

, V2 =
{
j : bj 6= 0 and 0 < δj ≤ 1

2

}
, and

V3 = {j : bj 6= 0 and δj = 0}. Then, Zj is said to be a strongly valid instrument if j ∈ V1,

a weakly valid instrument if j ∈ V2, and Zj an invalid instrument if j ∈ V3.

10



Definition 2 (Relevancy): The extent of relevancy depends on aj and αj as follows:

R1 = {j : aj = 0} , R2 = {j : aj 6= 0 and αj > 0} , and R3 = {j : aj 6= 0 and αj = 0}.

Then, Zj is said to be an irrelevant instrument if j ∈ R1, a weakly relevant instrument

if j ∈ R2, and a strongly relevant instrument if j ∈ R3.

We partition the set of instruments into two subsets, S and D, following Cheng

and Liao (2015). The “sure” set S = {Z1, . . . , Z`S} includes the strongly valid and strongly

relevant instruments that are initially selected, and `S denotes the total number of instru-

ments in S. The “doubt” set D = {Z`S+1, . . . , Z`n} is the set of instruments that are not

in S, and we do not know the validity and relevancy of these instruments in D. Hence,

an instrument selection is needed for instruments in D. We further partition D into three

subsets, D = A ∪ B0 ∪ B1. The subset A is a set of strongly valid and strongly relevant

instruments that share the same properties as instruments in S. The subset B0 is a set

of strongly valid but irrelevant or weakly relevant instruments, and the subset B1 is a set

of invalid or weakly valid instruments that are not in A ∪ B0. Our goal is to select only

instruments in A but none from B ≡ B0 ∪ B1. Table 2.1 summarizes each subset of the

instruments according to Definitions 1 and 2.

2.3 Boosting GMM (BGMM)

Ng and Bai (2008) propose a two-stage procedure for the high dimensional IV

regression model, which we refer to as Boosting GMM (BGMM). At the first stage, instru-

ments are selected through L2Boosting. Then, with the selected instruments, the parameter

of interest β is estimated by GMM at the second stage.

11



Referring to the model described in Section 2, S includes all the strongly valid

and strongly relevant instruments that are initially selected. The instruments in D are

the potential instruments that will be selected by L2Boosting. At each step m = 1, . . . , M̄ ,

where M̄ is the maximum iteration of L2Boosting, we regress the “current residual” on each

instrument in D, and select the instrument that is most relevant to the “current residual”.

We denote Fm,i = Fm,i (zi) as the strong learner and fm,i = fm,i (zi) as the weak leaner for

i = 1, . . . , n. The relationship between the weak learner and the strong learner is

Fm,i = Fm−1,i + cmfm,i, (2.10)

where cm > 0 is a learning rate. For simplicity, we assume the dimension of xi to be k = 1

and σ2
2 = Σ22. If k > 1, we repeat L2Boosting for each variable in xi.

12



2.3.1 L2Boosting Algorithm

The detail description of L2Boosting is listed in Algorithm 1.

Algorithm 1 BGMM

1. When m = 0, the initial weak learner of X = (x1 . . . xn)′ using instruments in S is

F0,i = f0,i = γ̂0,initial +

`S∑
j=1

γ̂j,initialzj,i, (2.11)

where γ̂0,initial and γ̂j,initial are the OLS estimators.

2. For each step m = 1, . . . , M̄

(a) We compute the “current residual”, v̂m,i = xi − Fm−1,i.

(b) Next, we regress the current residual v̂m,i on each instrument zj,i, for j = `S +
1, . . . , `n. The estimators γ̂0 and γ̂j are solved as

{γ̂0,j , γ̂j} = min
γ0,γj

n∑
i=1

(v̂m,i − γ0 − γjzj,i)2 . (2.12)

We select the instrument that has the minimum sum of squared residuals, such
that

jm = arg min
j∈{`S+1,...,`n}

n∑
i=1

(v̂m,i − γ̂0,j − γ̂jzj,i)2 . (2.13)

(c) The weak learner is
fm,i = γ̂0,jm + γ̂jmzjm,i, (2.14)

where zjm,i is the instrument that is selected.

(d) The strong learner Fm,i is updated as

Fm,i = Fm−1,i + cmfm,i, (2.15)

with cm > 0.

3. We compute the GMM estimator using the selected instruments.

A stopping rule is necessary in L2Boosting in order to avoid over-fitting. The

optimal number of iteration M̂ is chosen by a version of AIC suggested in Bühlmann (2006).
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Let V̂m = (v̂m,1 . . . v̂m,n)′, fm = (fm,1 . . . fm,n)
′
, Fm = (Fm,1 . . . Fm,n)

′
, and 1 be an

n × 1 vector of ones. We define Zjm = [1 Zjm ] , and Pm = Zjm(Z′jmZjm)−1Z′jm to be an

n× n matrix. From Equation (4.33),

1γ̂0,jm + Zjm γ̂jm = PmV̂m

fm = Pm (X − Fm−1) . (2.16)

Let ZS = (Z1 . . . Z`S ) . When m = 0, Pj0 = ZS(Z′SZS)−1Z′S . Then the strong learner at

each step m is

Fm = Fm−1 + cmPm (X − Fm−1)

=

[
In×n −

m∏
a=0

(In×n − cjaPja)

]
X =: BmX.

AIC is computed as

AICc(m) = log(σ̂2
2,m) +

1 + trace(Bm)/n

1− (trace(Bm) + 2)/n
, (2.17)

where log(σ̂2
2,m) = 1

n

∑n
i=1 (v̂m,i − cmfm,i)2. Then M̂ = arg minm=1,...,M̄ AICc(m).

14



2.3.2 Consistency of L2Boosting

Consider the following assumptions from Bühlmann (2006).

Assumption 1: The dimension of instruments satisfies `n = O(exp(Cn1−η)), n→∞, for

some 0 < η < 1, 0 < C <∞.

Assumption 2: supn∈N
∑`n

j=1 |γj | <∞.

Assumption 3: sup1≤j≤`n,n∈N ||Zj ||∞ <∞, where ||Zj ||∞ = supω∈Ω |Zj(ω)| and Ω denotes

the underlying probability space.

Assumption 4: E|vi|s <∞ for some s > 4/η with η in Assumption 1.

In Assumption 1, the dimension of instruments is allowed to grow exponentially

with respect to the number of observations. So instruments can be in a high dimension.

Assumption 2 gives an L1-norm sparseness condition that the sum of the coefficient γj for all

j is bounded. Hence, only finite number of instruments are strongly relevant. In addition,

Assumption 2 can be generalized to
∑`n

j=1 |γj | → ∞ as n → ∞, but additional restriction

on `n is needed. In this case, all instruments may be relevant, but the contribution of very

large proportion of instruments is small. Hence weakly relevant instruments are allowed in

the model. Assumption 3 states that by restricting the growth rate of `n, the maximum

realization of random variable Zj under sample space Ω needs to be bounded. In Assumption

4, the existence of some higher moments of the error term vi is needed, and the number of

existing moments depends on η from Assumption 1. Thus the number of existing moments

and the growth rate of `n are related.

According to Bühlmann (2006 Theorem 1), the L2Boosting estimation converges

to the conditional mean of xi in quadratic mean under a linear model. We extend this
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result of Bühlmann (2006) to the case when E(xi|wi) is nonlinear and is approximated

by the approximately sparse model in Belloni, Chen, Chernozhukov, and Hansen (2012).

Recall Equation (2.6)

xi =

`n∑
j=1

γjzj,i + ri + vi,

where {zj,i} is a set of sieve instruments such as polynomials of instruments in wi, and ri

is the approximation error. Here we make an additional assumption to control the relative

size of the sparse approximation error ri with respect to the size of the error term vi and

number of sieve instruments `n.

Assumption 5: When E(xi|wi) =
∑`n

j=1 γjzj,i + ri is approximated by a linear function

of sieves {zj,i} , the sparse approximation error ri satisfies that E
(
r2
i |wi

)
≤ σ2

2

(
log `n
n

)
,

where σ2
2 = E(v2

i ).

Assumption 5 requires that the mean squared approximation error needs to be

bounded by the product of the variance of vi and log(`n)
n . We now state a theorem that

L2Boosting still works in the sense that Fmn,i converges to E(xi|wi) in quadratic mean.
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Theorem 1: Let E(xi|wi) =
∑`n

j=1 γjzj,i+ri be approximated by a linear function of sieves

{zj,i}. Under Assumptions 1-5, for some sequence (mn)n∈N with mn → ∞ sufficiently

slowly as n→∞, the L2Boosting estimation converges to the conditional mean of xi,

E

[
1

n

n∑
i=1

(Fmn,i − E(xi|wi))2

∣∣∣∣∣W
]

= op(1) as n→∞.

where W = (W1 . . . Wp).

Proof: Appendix A.

However, L2Boosting can only check for the relevancy of instruments but not the

validity of instruments. Theorem 1 may still hold with the existence of invalid instruments.

But a possible selection of weakly valid or invalid instruments by L2Boosting will cause the

BGMM estimators to be inconsistent for β. Hence, we develop a new boosting algorithm

to select only relevant and valid instruments, which we discuss next.

2.4 Double-Boosting GMM (DB-GMM)

We propose a new selection procedure, DB, that checks for both the relevancy and

the validity of instruments. After the selection, we use GMM to compute the estimators,

DB-GMM.

2.4.1 Double-Boosting Algorithm

The DB algorithm is described in Algorithm 2. The new selection algorithm

(Algorithm 2) is similar to L2Boosting (Algorithm 1) in the previous section, except Step
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2(b). The difference is the new objective function (2.24) replacing (2.13). We now doubly

minimize the invalidity (measured by (2.21)) and minimize the irrelevancy (measured by

the inverse of (2.25)) of an instrument in each iteration, as we describe in details below.

First, we measure the invalidity based on the usual Lagrange Muliplier (LM) test

statistic. It is now more convenient to use the correlation coefficient instead of using the

covariance between Zj and U as in the moment condition for Algorithm 1. Let

ρj =
E (zj,iui)√

E
(
z2
j,i

)√
E
(
u2
i

) =
dj

nδj
. (2.18)

where di =
bj√

E(z2j,i)
√
E(u2i )

and bj is defined in Equation (2.8).

We estimate ρj by using the initial 2SLS estimator β̂initial, which is computed using

the instruments in set S. Then the residual with the initial 2SLS estimators,

ûi ≡ yi − β̂initialxi, (2.19)

is used to obtain the sample correlation coefficient between Û and each Zj ∈ D, that is

ρ̂j =
1
n

∑n
i=1 zj,iûi√

1
n

∑n
i=1 z

2
j,i

√
1
n

∑n
i=1 û

2
i

. (2.20)

Then we define the LM statistic measure for invalidity of zj as

nR2
V,j = nρ̂2

j . (2.21)
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Similarly, we also define the LM statistic measure for relevancy of zj , nR
2
R,j , which

we describe in (2.25) inside Algorithm 2.

Algorithm 2 DB-GMM

1. When m = 0, the initial weak learner of X = (x1 . . . xn)′ using instruments in S is

F0,i = f0,i = γ̂0,initial +

`S∑
j=1

zj,iγ̂j,initial, (2.22)

where γ̂0,initial and γ̂j,initial are the OLS estimators.

2. For each step m = 1, . . . , M̄

(a) The “current residual” is defined as v̂m,i = xi − Fm−1,i.

(b) Next, we regress the current residual v̂m,i on each instrument zj,i, for j ∈
{`S + 1, . . . , `n}. The estimators γ̂0,j and γ̂j are solved as

{γ̂0,j , γ̂j} = min
γ0,γj

n∑
i=1

(v̂m,i − γ0 − γjzj,i)2 . (2.23)

We select the instrument zjm,i that gives the minimum ωj , i.e.,

jm = arg min
j∈{`S+1,...,`n}

ωj ≡

(
nR2
V,j

)r2(
nR2
R,j

)r1 , (2.24)

where

R2
R,j = 1−

∑n
i=1 (v̂m,i − γ̂0,j − γ̂jzj,i)2∑n

i=1 (v̂m,i − v̄m)2 , (2.25)

v̄m = 1
n

∑n
i=1 v̂m,i, and r1 and r2 are the user selected constants such that r1, r2 >

0.

(c) The weak learner is
fm,i = γ̂0,jm + γ̂jmzjm,i, (2.26)

where zjm,i is the instrument that is selected.

(d) The strong learner Fm,i is updated as,

Fm,i = Fm−1,i + cmfm,i, (2.27)

with cm > 0.

3. We compute the GMM estimator using the selected instruments.
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Remark 1: We introduce the selection criterion ωj to check the validity and relevancy of

each instrument Zj . The user selected constants r1 and r2 are used to control the penalty

on the validity and relevancy. With a higher value in r2, the invalid instrument will be

punished more with a higher numerator in ωj . On the other hand, a higher value in r1

will ensure the relevant instrument to obtain a higher denominator in ωj , which leads to a

smaller value in ωj . In simulation and application, we report the results using r1 = r2 = 1.

We have experimented by simulation with different values of r2 with fixing r1 = 1. (i) When

r1 > r2, the penalty on invalid instruments is weaker. The probability of selecting invalid

instruments will be higher. Then the DB-GMM estimation may become more biased. Our

simulation results confirm that the bias is larger when r1 > r2 than when r1 = r2. (ii)

When r1 < r2, the penalty on invalid instruments is stronger. The simulation results shows

that the bias and the mean squared error (MSE) when r1 < r2 are not significantly different

from the default setting with r1 = r2. This highlights the importance of removing invalid

instruments by choosing r2 such that r1 ≤ r2 , a feature of DB, that is absent in L2Boosting.

Remark 2: Our selection criterion ωj shares similar property as the information based

adjustment in PGMM of Cheng and Liao (2015). However, for each j, PGMM only adds

one Zj in D to S to check the relevancy of the corresponding instrument. In Double-

Boosting, we update the current residual v̂m,i at each DB iteration. Then the relevancy

criterion nR2
R,j is not only depended on S but also on all the previously selected instruments.

Remark 3: The stopping rule in DB is the same as in L2Boosting. As R2
V,j is computed

based on the 2SLS estimation using only instruments in S, nR2
V,j is fixed at any iter-

ation m = 1, . . . , M̄ . In addition, minimizing 1
nR2
R,j

is the same as maximizing nR2
R,j .
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According to the definition, the maximization of R2
R,j can be achieved by minimizing

the ratio
∑n
i=1(v̂m,i−γ̂0,j−γ̂jzj,i)2∑n

i=1(v̂m,i−v̄m)2
. Since

∑n
i=1 (v̂m,i − v̄m)2 is the same for all j at each m,

∑n
i=1(v̂m,i−γ̂0,j−γ̂jzj,i)2∑n

i=1(v̂m,i−v̄m)2
∝
∑n

i=1 (v̂m,i − γ̂0,j − γ̂jzj,i)2. Note that
∑n

i=1 (v̂m,i − γ̂0,j − γ̂jzj,i)2

is the criterion (2.13) for L2Boosting. Hence, the same stopping rule is applied to DB.

Next, in Theorem 2, we prove that DB will only select the strongly valid and

strongly relevant instruments in A, and will not select any instrument in B0 or B1, with

probability one asymptotically. In other words, DB will ensure that ωjm for all Zjm ∈ A

will be smaller than ωj for Zj ∈ B ≡ B0 ∪ B1, with probability approaching 1 (w.p.a.1) in

each iteration m.

Theorem 2: Under Assumptions 1-5, in each iteration m, the selected instrument Zjm is

strongly valid and strongly relevant w.p.a.1 as n→∞. That is,

Pr (ωjm < ωj)→ 1 for all Zj ∈ B, as n→∞,

and thus, the selected instrument Zjm ∈ A.

Proof: Appendix B.

2.5 Monte Carlo

To study the finite sample properties of different estimation methods under the

high dimensional IV regression model, we consider the following three data generating

processes (DGPs).
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DGP 1 (Linear):

yi = βxi + ui,

xi =

p∑
j=1

γjwj,i + vi =

`n∑
j=1

γjzj,i + vi, (2.28)

where the endogenous variable xi is a scaler (k = 1), and zj,i = wj,i. DGP 1 follows the

design of DGP in Cheng and Liao (2015). We set β = 0 as the true value, n ∈ {100, 250}, and

p = `n = 52. Let zS,i = (z1,i z2,i)
′ be the strongly valid and strongly relevant instruments in

S. Let zA,i = (z3,i z4,i)
′ , zB0,i = (z5,i . . . z28,i)

′ and zB1,i = (z29,i . . . z52,i)
′ be the “doubt”

instruments in D. We set γ1 = 0.1, γ2 = 0.3, γ3 = 0.5, γ4 ∈ {0.5, 0.01}, and γj = 0 for

any j ≥ 5. Then z4,i is a weakly relevant instrument if γ4 = 0.01. In order to compute

the invalid instrument zB1,i, we first need to generate a strongly valid instrument z∗B1,i. The

strongly valid instruments and error terms follow the normal distribution where

(zS,i zA,i zB0,i z
∗
B1,i) ∼ N(0,ΣZ) (2.29)

(ui vi) ∼ N(0,Σ), (2.30)

and Σ =

 0.5 0.6

0.6 1

 . For ΣZ , we consider two different cases. In the first case, it is

exactly the same as in Cheng and Liao (2015), where ΣZ = diag(ΣS∪A,ΣB). ΣS∪A is a

4×4 Toeplitz matrix that each (i, j) element equals to 0.2|i−j|, and ΣB is an (`n−4)×(`n−4)

identity matrix. We denote the first case as “CL”in Table 2.3. In the second case, ΣZ is

an `n × `n Toeplitz matrix, where each (i, j) element equals to a|i−j| with a ∈ {0.5, 0.9}.
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Lastly, following Cheng and Liao (2015), for j = 29, . . . , 52, the invalid instrument zj,i is

generated as

zj,i = z∗j,i + cjui, (2.31)

where z∗j,i is the strongly valid instrument in z∗B1,i, and

cj = c0 +
(j − 29)(c̄− c0)

`n/2− 2
. (2.32)

So cj increases from c0 to c̄ as j increases. We choose c0 = 0.2, c̄ = 2.4.

DGP 2 (Polynomials):

yi = βxi + ui

xi =

p∑
j=1

θj
(
wj,i + w2

j,i

)
+ vi, (2.33)

where xi is a scaler, β = 0, and n ∈ {100, 250} as in DGP 1. Let p = 5, then the observable

strongly valid instruments are generated as

(w1,i w2,i w3,i w4,i w
∗
5,i) ∼ N(0,ΣW ), (2.34)

where ΣW is a p×p Toeplitz matrix with each (i, j) element a|i−j| and a ∈ {0, 0.5, 0.9}. We

set θ1 = θ2 = 0.1, θ3 = 0.5, and θ4 = θ5 = 0. So only the first three observable instruments

are strongly relevant to xi. The error terms ui and vi are generated as

(ui vi) ∼ N(0,Σ), (2.35)
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where Σ =

 0.5 0.5

0.5 1

. To generate an invalid instrument, we contaminate w∗5,i, which

was constructed as a valid instrument in (3.20), by adding the structural error ui

w5,i = w∗5,i + ui. (2.36)

DGP 3 (Exponential): The generation of variables in DGP 3 is similar as in DGP 2.

The only difference is that xi is generated as an additively separable exponential function

of wi,

xi =

p∑
j=1

θj exp(wj,i) + vi. (2.37)

In DGP 1, as zj,i = wj,i, all instruments are observable and the functional form

of hj (·) in (2.4) is known. In DGP 2 and DGP 3, the functional form of xi is unknown.

We approximate xi using sieve instruments {zj,i}. We set zj,i = wj,i for j = 1, . . . , p, and

zj,i = hj(wi) for j = p+ 1, . . . , `n, where hj(wi) is the polynomial of each instrument in wi

up to 4th order. Let zS,i = (z1,i z2,i)
′ . We summarize the simulation results in Tables 2.3

to 2.5.

2.5.1 Simulation Results

We compare DB-GMM with six different methods that are OLS, 2SLSSD (2SLS

with all instruments in S ∪ D), 2SLSS (2SLS with only instruments in S), 2SLSSA (2SLS

with all strongly valid and strongly relevant instruments in S ∪ A), BGMM, and PGMM.
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2SLSSA gives the oracle result. We choose the learning rate for boosting to be cm = 0.01 for

all m. The user selected parameters in PGMM are the same as in Cheng and Liao (2015) .

For each result reported in Tables 2.3 to 2.5, the bias of the estimator β̂ is in the first row

and the root mean squared errors (RMSE) is in the second row.

DGP 1 is linear where all instruments are observable. Compared to the oracle

result in the column of 2SLSSA, the bias and the RMSE of the OLS estimation are large

because xi is endogenous. As the correlation between instruments becomes stronger, the

OLS estimation has slight improvement in its bias and RMSE. The estimation in 2SLSSD

is also inconsistent because of the existence of invalid and irrelevant instruments. The bias

and the RMSE are even higher in 2SLSSD than in OLS for most cases. 2SLSS is able to

maintain a low bias but a higher RMSE compared to 2SLSSA. The reason is that DGP

1 has only four strongly valid and strongly relevant instruments, and only two of them

are included in S. When the coefficient of the fourth instrument (Z4 ∈ A) reduces from

0.5 to 0.01, the bias of 2SLSS is similar to the case when γ4 = 0.5, but the RMSE is

slightly higher with the weak instrument (γ4 = 0.01). BGMM has similar problem as in

2SLSSD. Due to the inclusion of invalid instruments, BGMM has a higher bias and RMSE

than OLS in most of cases. The bias and RMSE of OLS, 2SLSSD, and BGMM become

significantly worse when γ4 reduces to 0.01. Both of the last two methods, PGMM and

DB-GMM, are able to check the validity and relevancy of the instruments. When γ4 = 0.5

(strong instrument), PGMM has a lower bias than DB-GMM, but the RMSE of DB-GMM

is always the smallest among all other methods (excluding the oracle 2SLSSA). When γ4

decreases to 0.01, PGMM still has a lower bias than DB-GMM. However, the RMSE of
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PGMM now is lower than the RMSE of DB-GMM in 3 out of 6 cases. In general, when

the correlation between instruments increases (a increases), the results of all methods are

improving. Especially when a = 0.9, the results of 2SLSS , PGMM, and DB-GMM are close

to the oracle result. This happens because when instruments are highly correlated, selecting

a few strongly valid and strongly relevant instruments will be as efficient as selecting all

instruments in S ∪ A.

In both DGP 2 and DGP 3, there are total of 125 sieve instruments. Because

the sieve instruments Z are generated from the polynomial of wi, high collinearity between

instruments exists even when there has not been correlation between wi (a = 0). In DGP

2, OLS has large bias and large RMSE because of the endogeneity. When `n > n, the

RMSE of 2SLSSD diverges, which confirms the theoretical result in Bekker (1994) . With

only instruments in S, 2SLSS has improvement in the result. But both the bias and RMSE

of 2SLSS remain high because 2SLSS fails to capture any nonlinearity in the endogenous

variable. The performance of BGMM is very stable across all cases even when `n > n.

PGMM fails for `n > n, where the weighting matrix is not invertible during the estimation.

It also fails when a = 0.9 and n = 250 because of the high collinearity among all sieve

instruments. These problems can be solved by replacing the weighting matrix with an

identity matrix. However, the RMSE of PGMM using the identity weighting matrix is

strictly higher than the RMSE of DG-GMM. DB-GMM has the lowest bias and RMSE for

most of the cases. The results in DGP 3 are very similar to DGP 2. Hence, we conclude

that DB-GMM has the best performance in the nonlinear cases as demonstrated in the

results of DGP 2 and DGP 3.

26



2.6 Estimation of Automobile Demand Function

We apply DB-GMM to estimate the automobile demand function of BLP (1995).

For simplicity, consider a homogeneous individual log utility function

ξit = δ(wit, xit, uit, β) + εit, (2.38)

where δ(wit, xit, uit, β) = δit is a function that includes all information on the product

characteristics of car i in year t. The subscription it together denotes one car. Let xit

denote the price of each car it, wit be a vector of the observable market level product

characteristics of a car it, uit be the unobservable product characteristics of a car it which

cause the endogeneity in the price, and β be the parameters in δ(·). Applying the simple

logit model, the market share sit for each car it is calculated as

sit =
exp(δit)

1 +
∑
∀it exp(δit)

. (2.39)

Suppose δit is linearized in all of its components. The demand equation in terms of market

share can be calculated as

yit = β0 + βpricexit + β′wwit + uit, (2.40)

where yit = log(sit) − log(s0t), and s0t is the outside option in year t. The outside option

refers to consumers’ choosing to buy a used car or to use alternative transportations.

Since price is endogenous, by applying the “approximately sparse model” in (2.4),
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we assume price is a linear combination of product characteristics and sieve functions of

product characteristics such that

xit = γ0 + γ′wwit + γ′1h1(wit) + γ′2h2(wit, t) + γ′3h3(wit) + vit, (2.41)

where h1(wit) is the set of quadratic and cubic terms of continuous variables in wit, and

h2(wit, t) is the set of the first order interactions of all variables in wit and time t. We

generate additional instruments in h3(wit) as follows: 1) the sum of each characteristics of

other cars that are produced by the same firm in the same year as car it, and the count of

these cars; 2) the sum of each characteristics of cars that are produced by other firms in

the same year as car it, and the count of these cars. It is necessary to include instruments

in h3(wit) because the product characteristics of competitive cars also influence the price.

The data used in BLP (1995) is obtained from annual issues of the Automotive

News Market Data Book from 1971 to 1990. The product characteristics in the data set are

weight, horsepower, length, width, miles per gallon ratio (MPG), and a dummy variable for

air condition as a standard equipment. Price is obtained from the listed retail price of the

base model in the unit of 1000 dollars of year 1983. In addition, the price of gasoline is also

included in the data. With the given information, we calculate miles per dollar (MP$) by

MPG divided by the price per gallon. With treating each model of a car in each year as one

car, there are total of 2217 cars included in the data set. Hence, the model in (2.40) and

(2.41) are estimated as if the data is cross-sectional (no time series) for it = 1, . . . , 2217.

We use the data set in Chernozhukov, Hansen, and Spindles (2015), who also

study the automobile application in BLP (1995). We include 4 control variables in the
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model - namely, the dummy variable of air conditioning (AC), horsepower/weight (HPW),

miles per dollar (MP$), and size of car (Size). We denote these control variables as wit =

(ACit HPWit MP$it Sizeit)
′. There are total 63 instruments, including the constant. Since

the first 4 instruments are control variables, we assume all these 4 variables are valid. We

select the constant and all four control variables for S. The rest of instruments are in D.

In order to be consistent with the profit maximization behavior of the firm, the number of

cars that have inelastic demand need to be small, because if the demand were inelastic to

price changes, firm would easily make higher revenue by increasing the price.

The estimation results are reported in Table 2.6. With S = {1, AC, HPW, MP$, Size},

the estimates of the constant term are ranged from −11.2749 to −9.3702 across different

methods. The estimators of HPW and AC using OLS and 2SLSSD are insignificant at

5% significant level. The other coefficient estimates are very significant regardless of the

estimation methods. The signs of the coefficient estimates for HPW, AC, and MP$ vary

across the methods due to the different instruments selected. However, the coefficient es-

timates of Size are positive from all estimation methods. Because of the endogeneity in

price, possible high collinearity and high dimensionality of instruments, estimators in OLS

and 2SLSSD may be inconsistent. On the other hand, 2SLSS fails to capture all strongly

valid and strongly relevant instruments among the nonlinear sieve instruments. Hence, the

estimators in 2SLSS may be inefficient.

When using PGMM, we re-estimate the coefficients using GMM with the selected

instruments. We refer to this method as Post-PGMM. It is just like Post-Lasso (Belloni

and Chernozhukov 2013) for estimation using the variables selected by Lasso. We denote
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Post-PGMM as PGMM∗ in Tables 2.6 and 2.7. PGMM selects only the linear instruments

and fails to select any nonlinear sieve instruments. Then the Post-PGMM estimators using

the selected instruments only in S are inefficient as in 2SLSS . The inefficiency of 2SLSS and

Post-GMM may lead to a wrong sign in the demand function as shown with their positive

coefficient estimates for Price.

In the mean time, BGMM selects too many instruments as it checks only for the

relevancy, with 16 additional instruments from D. And, among these 16 instruments, 6 of

them are in h1(wit) and h2(wit, t), and 10 of them are in h3(wit).

In comparison, we find that DB-GMM selects only one additional instrument from

h3(wit, t), which is the sum of the first order interaction between HPW and Size of all other

cars under the same firm. The estimator of price in DB-GMM is −0.2999, the smallest and

thus suggesting the most elastic demand to price changes.

With the estimator β̂price, the price elasticity of demand êit for car it is

êit =
%4sit
%4xit

=
∂sit/sit
∂xit/xit

=
xit
sit

∂sit
∂xit

= β̂price xit (1− sit). (2.42)

The price elasticity of demand using DB-GMM is ranged from −20.5731 to −1.0176. The

most elastic car is 1989 Nissan Maxima, and the least elastic car is 1990 Yugo GV Plus.

According to the histogram in Figure 2.1, the price elasticity of most of the cars is between

−7 and −1.
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With the demand being said to be inelastic when the price elasticity of demand is

larger than −1, i.e., êit > −1, we count how many cars have inelastic demand from

∑
∀it

1(êit > −1), (2.43)

and the counts are reported in Table 2.7. Out of 2217 cars, the OLS estimates suggests that

there are 1502 cars with inelastic demand. The 2SLS estimates indicates 1427 cars have

inelastic demand. However, as mentioned in BLP (1995), when the number of cars with

inelastic demand is large, the result does not make sense as it is inconsistent with pricing

strategy that maximizes profit. In DB-GMM, none of cars has inelastic demand. With

the standard error equals to 0.0328, the lower bound for the number of cars with inelastic

demand is 0, and the upper bound of the number of cars with inelastic demand is 7. Hence,

the price elasticity of demand estimated by DB-GMM is more elastic than that estimated

by other methods.

2.7 Conclusions

We propose the Double-Boosting algorithm that will consistently select strongly

valid and strongly relevant instruments in a high dimensional IV regression model. We

show that DB-GMM will give smaller MSE than PGMM in the simulations. In the appli-

cation from BLP (1995) where instruments are generated from polynomials of the product

characteristics, DB-GMM indicates that none of the cars have inelastic demand of price.

Comparing to the estimation results from other methods, the price elasticity of demand

estimated by DB-GMM is more elastic.
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Table 2.1: Categories of instruments

Strongly Valid Weakly Valid Invalid
V1 V2 V3

Irrelevant R1

Weakly Relevant R2 B0 B1

Strongly Relevant R3 S,A

Note: The notation for each subset of instruments follows Cheng and Liao (2015, p. 446,
Table 2.1). Instruments in S are sure to be valid and relevant. Instruments in A are valid
and relevant, those in B0 are valid but redundant, and those in B1 are invalid.

Table 2.2: Order of ωj for each category of instruments

Strongly Valid Weakly Valid Invalid
V1 V2 V3

Irrelevant R1

Weakly Relevant R2 B0 : ωj = op(n
r1(2αj−1)) B1 : ωj = Op (nr2−r1)

Strongly Relevant R3 A : ωj = op(n
−r1)
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Table 2.3: DGP 1

n `n a OLS 2SLSSD 2SLSS 2SLSSA BGMM PGMM DB-GMM

Panel A: strong instrument with γ4 = 0.5

100 52 CL 0.3363 0.3604 0.0020 0.0162 0.3706 0.0068 0.0288
0.3388 0.3632 0.1979 0.0786 0.3743 0.2980 0.1746

100 52 0.5 0.2816 0.2911 -0.0024 0.0088 0.2970 -0.0021 0.0116
0.2841 0.2941 0.1048 0.0686 0.3013 0.1045 0.0917

100 52 0.9 0.2172 0.2079 -0.0005 0.0076 0.2020 -0.0001 0.0057
0.2204 0.2118 0.0593 0.0535 0.2078 0.0598 0.0591

250 52 CL 0.3329 0.3736 -0.0002 0.0054 0.3777 0.0005 0.0121
0.3339 0.3748 0.1058 0.0493 0.3795 0.1044 0.0889

250 52 0.5 0.2804 0.2968 0.0014 0.0050 0.3003 0.0016 0.0064
0.2815 0.2983 0.0601 0.0425 0.3023 0.0603 0.0538

250 52 0.9 0.2166 0.2002 -0.0010 0.0019 0.1979 -0.0009 0.0017
0.2179 0.2020 0.0358 0.0329 0.2005 0.0358 0.0356

Panel B: weak instrument with γ4 = 0.01

100 52 CL 0.4210 0.4619 0.0026 0.0290 0.4780 0.0261 0.0348
0.4231 0.4643 0.1970 0.1110 0.4811 0.1573 0.1600

100 52 0.5 0.3846 0.4112 0.0015 0.0216 0.4256 0.0028 0.0164
0.3868 0.4138 0.1316 0.0990 0.4292 0.1267 0.1245

100 52 0.9 0.3405 0.3428 -0.0014 0.0135 0.3478 -0.0017 0.0136
0.3431 0.3460 0.0850 0.0799 0.3529 0.0865 0.1001

250 52 CL 0.4178 0.4890 -0.0004 0.0120 0.4952 0.0002 0.0144
0.4186 0.4901 0.1081 0.0654 0.4967 0.1083 0.0923

250 52 0.5 0.3842 0.4310 0.0009 0.0093 0.4370 0.0010 0.0087
0.3851 0.4322 0.0728 0.0575 0.4387 0.0729 0.0667

250 52 0.9 0.3392 0.3440 -0.0007 0.0061 0.3473 -0.0010 0.0079
0.3402 0.3456 0.0531 0.0505 0.3496 0.0533 0.0630

Note: For each different case, the first row is the bias of β̂, and the second row is the RMSE of β̂. 2SLSSD

denotes 2SLS with all instruments. 2SLSS denotes 2SLS with instruments in S. 2SLSSA denotes 2SLS
with instruments in S ∪ A, which demonstrates the oracle result. Column 3 indicates different
variance-covariance matrix of Z. When a = CL, ΣZ is the same as in Cheng and Liao (2015), where ΣZ =
diag(ΣS∪A,ΣB). ΣS∪A is a 4× 4 Toeplitz matrix that each (i, j) element equals to 0.2|i−j|, and ΣB is an
(`n − 4)× (`n − 4) identity matrix. When a ∈ {0.5, 0.9}, ΣZ is an `n × `n Toeplitz matrix, where each (i, j)
element equals to a|i−j|.
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Table 2.4: DGP 2

n `n a OLS 2SLSSD 2SLSS 2SLSSA BGMM PGMM DB-GMM

100 125 0 0.2854 0.1849 -0.1153 0.0152 0.2345 -0.0042 0.0548
0.2987 1.7392 3.7238 0.0901 0.2586 2.7515 0.1823

100 125 0.5 0.2696 0.2897 0.1021 0.0146 0.2346 0.0740 0.0284
0.2850 3.6019 0.7206 0.0886 0.2620 0.4368 0.1338

100 125 0.9 0.2295 0.1853 -0.0100 0.0154 0.2264 -0.0238 -0.0003
0.2427 0.8875 0.1855 0.0753 0.2481 0.1842 0.0906

250 125 0 0.2878 0.2409 0.0651 0.0115 0.2163 -0.0279 0.0011
0.2926 0.2471 0.5581 0.0662 0.2268 1.0748 0.1713

250 125 0.5 0.2535 0.2186 0.0110 0.0069 0.1937 0.0121 0.0192
0.2578 0.2241 0.1624 0.0527 0.2016 0.1638 0.0798

250 125 0.9 0.2206 0.2175 0.0214 0.0070 0.2208 0.0203 0.0122
0.2260 0.2238 0.1172 0.0517 0.2312 0.1196 0.0629

Table 2.5: DGP 3

n `n a OLS 2SLSSD 2SLSS 2SLSSA BGMM PGMM DB-GMM

100 125 0 0.1659 0.1329 0.3219 -0.0010 0.1197 0.5625 0.0070
0.1712 0.1388 2.1693 0.0366 0.1282 3.3374 0.0925

100 125 0.5 0.1611 0.1355 0.0155 0.0054 0.1222 0.0151 0.0135
0.1677 0.1434 0.0954 0.0387 0.1341 0.0960 0.0496

100 125 0.9 0.1372 0.1323 0.0100 0.0012 0.1396 0.0090 0.0069
0.1429 0.1385 0.0619 0.0329 0.1496 0.0618 0.0353

250 125 0 0.1740 0.1420 0.0409 0.0050 0.1282 0.3717 0.0149
0.1796 0.1484 0.3838 0.0426 0.1380 3.0727 0.0668

250 125 0.5 0.1536 0.1286 -0.0024 -0.0016 0.1156 -0.0001 0.0033
0.1588 0.1345 0.1074 0.0376 0.1258 0.1029 0.0504

250 125 0.9 0.1320 0.1273 -0.0078 -0.0052 0.1327 -0.0072 -0.0012
0.1404 0.1366 0.0681 0.0332 0.1471 0.0687 0.0398
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Table 2.6: Estimation of the Automobile Demand

OLS 2SLSSD 2SLSS BGMM PGMM∗ DB-GMM

constant -10.0716 -10.0438 -11.4900 -9.7926 -11.2749 -9.3702
(0.2576) (0.2608) (0.6114) (0.2642) (4.5630) (0.3800)

HPW -0.1243 0.1161 -12.3812 0.8962 -44.6293 5.9361
(0.2790) (0.3179) (0.5440) (0.3518) (2.7079) (1.0240)

AC -0.0343 0.0584 -4.7606 0.4778 3.7666 2.3026
(0.0710) (0.0880) (0.2894) (0.1139) (1.6090) (0.3631)

MP$ 0.2650 0.2484 1.1134 0.1730 -1.5585 -0.1544
(0.0425) (0.0433) (0.1048) (0.0443) (0.7671) (0.0833)

Size 2.3421 2.3331 2.8004 2.2783 2.6639 2.1155
(0.1246) (0.1265) (0.2623) (0.1283) (2.0612) (0.1770)

Price -0.0886 -0.0970 0.3387 -0.1277 0.3968 -0.2999
(0.0043) (0.0063) (0.0171) (0.0086) (0.1014) (0.0328)

Note: PGMM∗ is the Post-PGMM. The values inside the parentheses are the standard
error of the corresponding estimators.

Table 2.7: Number of Cars with Inelastic Demand

OLS 2SLSSD 2SLSS BGMM PGMM∗ DB-GMM

1502 1427 2217 868 2217 0
(1425,1626) (1230,1563) (2217,2217) (641,1207) (2217, 2217) (0, 7)

Note: The demand is said to be inelastic when the price elasticity of demand in (3.31) is
larger than −1. We count how many cars have inelastic demand by (2.43). The numbers
inside the parentheses in the second row are the 95% confidence interval following the
normal distribution. The upper bound and lower bound of price elasticity of demand are

calculated as
(
β̂price ± 1.96se(β̂price)

)
xit(1− sit).
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Figure 2.1: Price Elasticity of Cars by DB-GMM

Note: The empirical distribution of the estimated price elasticity of demand using
DB-GMM is shown. Demand for all cars are elastic with the estimated price elasticity of
demand lower than −1.
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Chapter 3

Double Boosting for Nonlinear IV

Regression using Neural Network

3.1 Introduction

A neural network is a nonlinear statistical model that can be applied to both

regression or classification. Unlike other estimation procedure, the neural network includes

a hidden layer, which is a set of activation functions with assigned weights on the input

variables. Following the idea, White (2006) introduces a nonlinear model in the neural

network architecture, where the activation functions are the logistic function with randomly

assigned coefficients. He refers this method as QuickNet. However, compared to other

forward-stagewise procedures such as boosting, neural networks have advantage neither in

computation nor in accuracy.
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With a significant improvement in the computation power, an innovation on the

neural network by increasing the number of hidden layers has been introduced after 2010.

The multiple-layer neural network is mainly applied to the image recognition. At the same

time, with its capability on estimating the nonlinear function, the multiple-layer neural

network can help to estimate any model even when the true functional form of the model is

not observable. Thus, the application of the neural network can be easily extended to the

causal inference analysis in a high dimensional instrumental variable (IV) regression model.

Hartford, et al. (2016) and Chernozhukov, et al. (2016) apply the neural networks to

study the causal inference, where the endogenous regressors are computed by an unknown

nonlinear function. However, both papers assume that the instruments are not correlated

with the structure error. Hence, all instruments are valid.

In this chapter, we use the activation functions in the neuron network (NN) to form

the sieve instruments in the IV regression model. We relax the assumption on the validity

of the instruments and apply the Double-Boosting (DB) selection algorithm (Algorithm 2)

in Chapter 1 to check the validity and relevancy of the instruments. After the selection, we

apply the generalized method of moments (GMM) with selected instruments to estimate

the parameter of interest that examine the causal effect between the dependent variable

and the endogenous variable.

This chapter is organized as follows. In Section 3.2, we set up a structural model

for the IV regression, then we apply the definition of weak/strong validity or relevancy

of instruments as in Chapter 1. In Section 3.3, we propose the DB neural network (DB-

NN) procedure, where a set of sieve instruments is generated by a multiple-layer neural
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network. Then we select valid and relevant instruments through Double Boosting. The final

estimation is compute by two-stage least squares (2SLS), where the first stage estimation

on the endogenous regressors is computed by a single layer neural network with selected

instruments. In Section 3.4, Monte Carlo studies are presented to compare the new method

with other methods. In Section 3.5, we apply the empirical application in Chapter 1 that

follows the design in Berry, Levinsohn, and Pakes (1995). Section 3.6 concludes.

3.2 Model

Consider an IV model as

yi = β′xi + ui (3.1)

xi = E(xi|wi) + vi. (3.2)

For i = 1, . . . , n, yi is the scalar dependent variable, xi is a k × 1 vector of endogenous

variables, and β is a k × 1 vector of parameters. The conditional mean E(xi|wi) is an

unknown function of observable instruments wi, where wi = (w1,i . . . wp,i)
′ is a p × 1

vector. The two error terms ui and vi have dimensions of 1× 1 and k × 1 respectively and

have the (k + 1)× (k + 1) variance-covariance matrix

Σ =

 σ2
1 Σ12

Σ21 Σ22

 . (3.3)
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Let zj,i ≡ hj(wi) denotes the sieve instruments with a given functional form. The

validity and the relevancy of instruments are defined in a local asymptotic framework. The

moment function of each sieve instrument zj,i for j = 1, . . . , `n is

g(zj,i, β) = zj,iui. (3.4)

The validity of each sieve instrument depends on the moment condition,

E (g(zj,i, β)) = E (zj,iui) =
bj

nδj
. (3.5)

By Belloni, Chen, Chernozhukov, and Hansen (2012), the conditional mean of xi

can be approximated by the “approximately sparse model ”with an approximation error ri,

such that

E(xi|wi) =

`n∑
j=1

γjhj(wi) + ri =

`n∑
j=1

γjzj,i + ri. (3.6)

The relevancy of each sieve instruments is depended on the coefficient between the instru-

ment zj,i and the endogenous regressor xi,

γj =
aj
nαj

. (3.7)

Let Zj = (zj,1 . . . zj,n)′ for j = 1, . . . , `n. We follows the same definitions for

validity and relevancy as in Chapter 1.

Definition 1 (Validity): The extent of validity depends on bj and δj as follows:

V1 = {j : bj = 0} ∪
{
j : bj 6= 0 and 1

2 < δj
}

, V2 =
{
j : bj 6= 0 and 0 < δj ≤ 1

2

}
, and

40



V3 = {j : bj 6= 0 and δj = 0}. Then, Zj is said to be a strongly valid instrument if j ∈ V1,

a weakly valid instrument if j ∈ V2, and an invalid instrument if j ∈ V3.

Definition 2 (Relevancy): The extent of relevancy depends on aj and αj as follows: R1 =

{j : aj = 0} , R2 = {j : aj 6= 0 and αj > 0} , and R3 = {j : aj 6= 0 and αj = 0}. Then, zj,i

is said to be an irrelevant instrument if j ∈ R1, a weakly relevant instrument if j ∈ R2, and

a strongly relevant instrument if j ∈ R3.

3.3 Double-Boosting Neural Network (DB-NN)

Instead using high order polynomials as described in Chapter 1, we generate the

sieve instruments through the neural network procedure. Let `q denotes the number of

activation functions generated at the qth hidden layer. For j = 1, . . . , `1, the activation

function at the first hidden layer is generated as

z
(1)
j,i = hj(wi) = hj

γ(1)
j,0 +

p∑
j′=1

γ
(1)
j,j′wj′,i

 , (3.8)

where hj(·) is the given functional form of activation functions at each layer, γ
(1)
j,0 is the

constant intercept, and γ
(1)
j,j′ is the weight assigned to the instrument wj′,i. For the qth

hidden layer, where q > 1,

z
(q)
j,i = hj(z

q−1
i ) = hj

γ(q)
j,0 +

`q∑
j=1

γ
(q)
j,j′z

(q−1)
j′,i

 . (3.9)
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Let the maximum number of hidden layer is denoted as Q. We include the ac-

tivation functions at the Qth hidden layer, z
(Q)
i , together with the initial input variable,

wi, as an updated set of instruments, which include total `n = p + `Q instruments. The

new set of sieve instruments is an n× `n matrix denoted as Z =
(
W1 . . .Wp Z

(Q)
1 . . . Z

(Q)
`Q

)
.

We partition Z into two subsets, the “sure” set S and the “doubt” set D, following Cheng

and Liao (2015). Let `S denote the total number of instruments in S, the “sure” set

S = {z1,i, . . . , z`S ,i} includes the strongly valid and strongly relevant instruments that are

initially selected. The remaining instruments are in the “doubt” set D = {z`S+1,i, . . . , z`n,i},

where we do not know the validity and relevancy of these instruments in D. Hence, an in-

strument selection is needed for instruments in D. We further partition D into three subsets,

D = A∪B0 ∪B1. The subset A is a set of strongly valid and strongly relevant instruments

that share the same properties as instruments in S. The subset B0 is a set of strongly valid

but irrelevant or weakly relevant instruments, and the subset B1 is a set of invalid or weakly

valid instruments that are not in A ∪ B0. We summarizes each subset of the instruments

according to Definition 1 and 2 in Table 3.1.
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3.3.1 Instruments selection

In order to ensure only valid and relevant instruments are selected, we apply the

Double Boosting algorithm as introduced in Chapter 1. Let

ρj =
E (zj,iui)√

E
(
z2
j,i

)√
E
(
u2
i

) =
dj

nδj
. (3.10)

where di =
bj√

E(z2j,i)
√
E(u2i )

and bj defined in Equation (3.5).

We estimate ρj by using the initial 2SLS estimator β̂initial, which is computed using

the instruments in set S. Then the residual with the initial 2SLS estimators,

ûi ≡ yi − β̂initialxi, (3.11)

is used to obtain the sample correlation coefficient between Û and each Zj ∈ D, that is

ρ̂j =
1
n

∑n
i=1 zj,iûi√

1
n

∑n
i=1 z

2
j,i

√
1
n

∑n
i=1 û

2
i

. (3.12)

We define the LM statistic measure for invalidity of zj as

nR2
V,j = nρ̂2

j . (3.13)

Similarly, we also define the LM statistic measure for relevancy of zj , nR
2
R,j , which

we describe in (3.17) inside Double Boosting Algorithm.
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Algorithm 2 Double Boosting

1. When m = 0, the initial weak learner of X = (x1 . . . xn)′ using instruments in S is

F0,i = f0,i = γ̂0,initial +

`S∑
j=1

zj,iγ̂j,initial, (3.14)

where γ̂0,initial and γ̂j,initial are the OLS estimators.

2. For each step m = 1, . . . , M̄

(a) The “current residual” is defined as v̂m,i = xi − Fm−1,i.

(b) Next, we regress the current residual v̂m,i on each instrument zj,i, for j ∈
{`S + 1, . . . , `n}. The estimators γ̂0,j and γ̂j are solved as

{γ̂0,j , γ̂j} = min
γ0,γj

n∑
i=1

(v̂m,i − γ0 − γjzj,i)2 . (3.15)

We select the instrument zjm,i that gives the minimum ωj , i.e.,

jm = arg min
j∈{`S+1,...,`n}

ωj ≡

(
nR2
V,j

)r2(
nR2
R,j

)r1 , (3.16)

where

R2
R,j = 1−

∑n
i=1 (v̂m,i − γ̂0,j − γ̂jzj,i)2∑n

i=1 (v̂m,i − v̄m)2 , (3.17)

v̄m = 1
n

∑n
i=1 v̂m,i, and r1 and r2 are the user selected constants such that r1, r2 >

0.

(c) The weak learner is
fm,i = γ̂0,jm + γ̂jmzjm,i, (3.18)

where zjm,i is the instrument that is selected.

(d) The strong learner Fm,i is updated as,

Fm,i = Fm−1,i + cmfm,i, (3.19)

with cm > 0.

With the selected sieve instruments by Double Boosting, we estimate β by 2SLS,

where the first stage estimation is computed by a single layer neural network.
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3.4 Monte Carlo

To study the finite sample properties of different estimation methods under the

IV regression model, where the function form of the endogenous regressor is unknown, we

consider the three data generating processes (DGPs). For DGP 1, 2, and 3, let

yi = βxi + ui,

where xi is a scaler, β = 0, and n ∈ {250, 500}. Setting p = 5, we include 5 observable

instruments initially. The observable strongly valid instruments are generated as

(w1,i w2,i w3,i w4,i w
∗
5,i) ∼ N(0,ΣW ), (3.20)

where ΣW is a p × p Toeplitz matrix with each (i, j) element a|i−j| and a ∈ {0, 0.5, 0.9}.

The error terms ui and vi are generated as

(ui vi) ∼ N(0,Σ), (3.21)

where Σ =

 0.5 0.5

0.5 1

. To generate an invalid instrument, we contaminate w∗5,i, which

was constructed as a valid instrument in (3.20), by adding the structural error ui

w5,i = w∗5,i + ui. (3.22)
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DGP 1 (Polynomials):

xi = θ0 +

p∑
j=1

θj
(
wj,i + w2

j,i

)
+ vi, (3.23)

where θ1 = θ2 = 0.1, θ3 = 0.5, and θ0 = θ4 = θ5 = 0. So only the first three observable

instruments are strongly relevant to xi.

DGP 2 (Exponential): The setting of parameters are the same as in DGP 1. But xi is

generated differently,

xi = θ0 +

p∑
j=1

θj exp(wj,i) + vi, (3.24)

where θ1 = θ2 = 0.1, θ3 = 0.5, and θ0 = θ4 = θ5 = 0.

DGP 3 (Logistic):

xi =
exp

(
θ0 +

∑p
j=1 θjwj,i

)
1 + exp

(
θ0 +

∑p
j=1 θjwj,i

) + vi, (3.25)

where θ1 = θ2 = 0.1, θ3 = 0.5, and θ0 = θ4 = θ5 = 0.

Suppose the function forms of xi in all DGPs are unknown. Let S = {w1,i w2,i}

be initial selected. We compare the results when xi is approximated (1) using polynomial

up to 4th order, (2) using neural network with selected sieve instruments. We summarize

the simulation results in Tables 3.2 to 3.7.
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3.4.1 Simulation Results

We compare DB-NN with OLS and five other methods that use up to 4th order

polynomial as sieve instruments. These methods include 2SLSSD (2SLS with all instruments

by polynomial), 2SLSS (2SLS with only instruments in S), 2SLSSA (2SLS with all strongly

valid and strongly relevant instruments in S∪A), Penalized generalized method of moments

(PGMM), and Double-Boosting GMM (DB-GMM). For DGP 1 and 2, 2SLSSA gives the

oracle result. We choose the learning rate for boosting to be cm = 0.01 for all m. The user

selected parameters in PGMM are the same as in Cheng and Liao (2015) . For each result

reported in Tables 3.2, 3.4, and 3.6, the bias of the estimator β̂ is in the first row and the

root mean squared errors (RMSE) is in the second row.

The activation function used in DB-NN is the rectified linear unit (ReLU), where

hj(z
(q−1)
i ) = max

0, γ
(q)
j,0 +

`n∑
j=1

γ
(q)
j,j′z

(q−1)
j′,i

 . (3.26)

The number of hidden layer Q = 2, and the number of activation functions in the first

hidden layers is 10, and the number of activation functions in the second hidden layer is 30.

We select from total 35 instruments in the selection procedure of DB-NN. We also try the

simulation using different number of hidden layers in DB-NN.

DGP 1 and 2 are generated by additive separable functions of wi, where no inter-

action term between wi is involved. Then the sieve instruments with high order polynomials

are sufficient for the estimation. In DGP 1, the bias and root mean squared errors (RMSE)

of the OLS estimations for all cases are high because of the endogeneity. The results of

2SLS with all polynomial instruments (2SLSSD) are even worse when n = 100, where the
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number of instruments is larger than the number of observations. When n gets larger, the

bias and RMSE of 2SLSSD is slightly smaller than OLS, but still larger than other methods.

When only the instruments in S are selected for 2SLS, because the number of instruments

is much smaller than n, the bias and RMSE have significant improvement compared to

2SLSSD. However, as 2SLSS does not include all relevant instruments, its bias and RMSE

jump significantly when there is not correlation between the observable instrument (a = 0).

The estimations of 2SLSSA provide the oracle result since it includes all the instrument is

both S and A. The standard solution of PGMM fails when n = 100 or a = 0.9 because

the weighting matrix is not invertible. To solve these problem, we replace the weighting

matrix with an identity matrix. The RMSE of PGMM remains high when a = 0, where

all the observable instruments are uncorrelated with each others. As a and n increases, the

result of PGMM gets better, and in some cases, the bias of PGMM is even the smallest

among all other methods. DB-GMM gives the lowest RMSE in all the cases of DGP 1,

and its bias is very close to the oracle result as provided under 2SLSSA. Even though the

polynomial instruments are sufficient for DGP 1, the result of DB-NN is still very robust.

In most of the cases, the RMSE of DB-NN is the second lowest among all other methods.

When m = 500, the bias of DB-NN is smaller than the bias in DB-GMM for a ∈ {0.5, 0.9}.

Table 3.3 shows the summary of instrument selection by PGMM, DB-GMM, and

DB-NN in DGP 1. For each cases, the first row is the average number of the instruments

that are selected by each method. The second row is the standard deviation of the number

of selected instruments. The variation of selection in PGMM is very large. When a = 0,

the standard deviation on the number of selected instruments can be as high as 10.1740.
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When a = 0.9, PGMM only selected very few addition instruments other than the 2 instru-

ments that are initially selected by S. The standard deviation on the number of selected

instruments by DB-GMM are smoother compared to the PGMM. It ranges from 2.8093 to

4.8793. When a is the same, then umber of instruments that are selected by DB-GMM

are similar at different cases of n. On average, DB-NN selects 5 to 6 instruments out of 35

instruments for all cases. The standard deviation ranges from 1.3142 to 1.8722.

The result of DGP 2 is similar to the result of DGP 1. Even though the endogenous

variable xi in DGP 2 is generated by an additively separable exponential function of wi, the

polynomial instruments are still sufficient for the final estimation since there is not interac-

tion term within the exponential function. The selection summary of DGP 2 as reported

in Table 3.5 also has similar pattern as the selection summary of DGP 1. The number

of instrument selected is volatile in PGMM, and DB-NN selects around 6 instruments on

average for all cases.

In DGP 3, we introduce a logistic function, where the interaction of wi is included

inside the exponential term. We find that all the linear estimation methods have failed

under DGP 3, including 2SLSSA, which is used as oracle result in DGP 1 and 2. On the

other hand, DB-NN is able to remain a good estimation result that gives low bias. The

RMSE of DB-NN is higher than the RMSE reported in DGP 1 and DGP 2, but it is still

the lowest compared to other methods in DGP 3.
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3.5 Estimation of Automobile Demand Function

We apply the same empirical application on the automobile market as used in

Chapter 1. Consider a homogeneous individual log utility function

ξit = δ(wit, xit, uit, β) + εit, (3.27)

where δ(wit, xit, uit, β) = δit is a function that includes all information on the product

characteristics of car i in year t. Hence, each subscription it denotes a single observation. Let

xit be the price of car it, and it is endogenous because of the existence of some unobservable

product characteristics uit. The variable wit is a vector of the observable market level

product characteristics, and β is the parameters in δ(·). Applying the simple logit model,

the market share sit for each car it is calculated as

sit =
exp(δit)

1 +
∑
∀it exp(δit)

. (3.28)

Suppose δit can be linearized in all of its components. The demand equation in terms of

market share can be calculated as

yit = β0 + βpricexit + β′wwit + uit, (3.29)

where yit = log(sit) − log(s0t), and s0t is the outside option in year t. The outside option

includes the market share of those consumers who choose to buy a used car or to use

alternative transportations.
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Since price is endogenous, we assume price is a function of product characteristics

and 10 additional instruments that has been described in BLP,

xit = f
(
γ0 + γ′1h1(wit)

)
+ vit, (3.30)

where h1(wit) is generated as follows: 1) the sum of each characteristics of other cars that

are produced by the same firm in the same year as car it, and the count of these cars; 2)

the sum of each characteristics of cars that are produced by other firms in the same year

as car it, and the count of these cars. Instruments in h1(wit) should be included because

the product characteristics of competitive cars and other cars in the same firm may also

influence the price of the car.

The data used in BLP (1995) is obtained from annual issues of the Automotive

News Market Data Book from 1971 to 1990. We use the data set given in Chernozhukov,

Hansen, and Spindles (2015), who study the same automobile application as in BLP (1995).

We include 4 observable market level product characteristics in the model, that are the

dummy variable of air conditioning (AC), horsepower/weight (HPW), miles per dollar

(MP$), and size of car (Size). Hence, wit = (ACit HPWit MP$it Sizeit)
′. Price is ob-

tained from the listed retail price of the base model of each car in the unit of 1000 US

dollars of year 1983. Given the price of gasoline, we calculate miles per dollar (MP$) by

miles per gallon (MPG) divided by the price per gallon. With treating each model of a car

in each year as one car, there are total of 2217 cars included in the data set. Hence, the

model in (3.29) and (3.30) are estimated as if the data is cross-sectional (no time series) for

it = 1, . . . , 2217.
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We assume the 4 observable product characteristics in wit are valid. We select

the constant and all variables in wit for S, where S = {1, AC, HPW, MP$, Size}. The

number of cars with inelastic demand should be small in order to be consistent with the

profit maximization behavior of the firm. If the demand of a car is inelastic, firm would

easily achieve a higher revenue by increasing the price.

The estimation results are reported in Table 3.8. We compare the result of DB-

NN with 5 different methods as reported in Chapter 1. Other than OLS, the remaining 4

estimation methods use 63 sieve instruments, which include the quadratic and cubic terms

of continuous variables in wit, and the first order interactions of all variables in wit and time

t. The result of these 5 methods are the same as Table 2.6 in Chapter 1. For the result of

DB-NN, all estimators are significant. DB-NN has different sign on the coefficients of HPW

and MP$ than DB-GMM because different number of instruments are selected. DB-NN

only selects two additional instruments from the 35 potential sieve instruments that are

generated at the last hidden layer. Its estimator of price is −0.4987, which implies that

even more cars have elastic demand to price changes than the result in DB-GMM.

With the estimator β̂price, the price elasticity of demand êit for car it is

êit =
%4sit
%4xit

=
∂sit/sit
∂xit/xit

=
xit
sit

∂sit
∂xit

= β̂price xit (1− sit). (3.31)

The price elasticity of demand using DB-NN ranges from −34.2084 to −1.6921 compared

to the range of −20.5731 to −1.0176 in DB-GMM. The most elastic car is 1989 Porsche

911c, and the least elastic car is 1990 Yugo GV Plus. According to the histogram in Figure

3.1, the price elasticity of most of the cars is around −5.
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A car is said to have an inelastic demand when its price elasticity of demand is

larger than −1. We report the number of cars with inelastic demand in Table 3.9 by

∑
∀it

1(êit > −1). (3.32)

Out of 2217 cars, the OLS estimates suggests that there are 1502 cars with inelastic demand.

The 2SLS estimates indicates 1427 cars have inelastic demand. Both of these two results

are too large because they are inconsistent with pricing strategy that maximizes profit.

In DB-GMM, none of cars has inelastic demand. Similarly, in DB-NN, none of cars has

inelastic demand. With the standard error equals to 0.1112 in DB-NN, the lower bound for

the number of cars with inelastic demand is 0 and the upper bound is 5.

3.6 Conclusions

We extend DB-GMM in Chapter 1 to the neural network, where Double Boosting

is used to select the sieve instruments that are generated at the last hidden layers of the

neural network procedure. Then we perform the two-stage least squares, where the first

stage estimation is computed by using a single layer neural network with selected sieve

instruments. Given the property of Double Boosting, we can consistently select strongly

valid and strongly relevant sieve instrument. We show that DB-NN gives robust results when

X is generated by an additive separable functions. And it will outperform all other linear

estimation methods when X is generated by a non-separable function. In the application

from BLP (1995) where instruments are the same as in the original BLP paper, none of the

cars have inelastic demand of price by using DB-NN. Hence, DB-NN can fully capture the
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nonlinearity in the model and select only the valid and relevant sieve instruments that are

provided by the neural network.
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Table 3.1: Categories of instruments

Strongly Valid Weakly Valid Invalid
V1 V2 V3

Irrelevant R1

Weakly Relevant R2 B0 B1

Strongly Relevant R3 S,A

Note: The notation for each subset of instruments follows Cheng and Liao (2015, p. 446,
Table 2.1). Instruments in S are sure to be valid and relevant. Instruments in A are valid
and relevant, those in B0 are valid but redundant, and those in B1 are invalid.
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Table 3.2: DGP 1

`n = 125 `n = 35

n a OLS 2SLSSD 2SLSS 2SLSSA PGMM DB-GMM DB-NN

100 0 0.3007 1.6007 0.2014 0.0284 0.2114 0.0400 0.0799
0.3130 11.1710 0.6846 0.1033 0.6257 0.1319 0.1940

100 0.5 0.2681 0.9357 0.0286 0.0262 0.0145 0.0318 0.0624
0.2786 8.1831 0.6526 0.0777 0.5919 0.1041 0.1507

100 0.9 0.2207 0.2051 -0.0187 0.0051 -0.0181 0.0185 0.0466
0.2341 1.9076 0.2006 0.0769 0.1847 0.1107 0.1235

250 0 0.2901 0.2449 0.1440 0.0128 0.1289 0.0160 0.0209
0.2948 0.2510 0.8158 0.0569 1.1071 0.0744 0.1062

250 0.5 0.2548 0.2182 -0.0071 0.0026 -0.0062 0.0057 0.0344
0.2604 0.2250 0.1609 0.0488 0.1495 0.0619 0.0989

250 0.9 0.2396 0.2370 0.0132 0.0150 0.0140 0.0329 0.0512
0.2450 0.2431 0.1221 0.0551 0.1203 0.0934 0.1062

500 0 0.2797 0.2084 -0.0236 0.0055 0.0133 0.0057 0.0033
0.2824 0.2121 0.3426 0.0321 0.3265 0.0418 0.0909

500 0.5 0.2518 0.1975 -0.0151 -0.0050 -0.0150 -0.0059 0.0034
0.2548 0.2018 0.1076 0.0406 0.1071 0.0548 0.0808

500 0.9 0.2143 0.2085 0.0071 -0.0032 0.0062 0.0111 0.0242
0.2170 0.2118 0.0694 0.0336 0.0703 0.0580 0.0917

Note: For each different case, the first row is the bias of β̂, and the second row is the
RMSE of β̂. 2SLSSD denotes 2SLS with all instruments. When `n = 125, instruments are
generated by 4th order polynomials. 2SLSS denotes 2SLS with instruments in S. When
`n = 35, the instruments are the 5 observable instruments together with the 30 activation
functions at the last layer of DNN. 2SLSSA denotes 2SLS with instruments in S ∪ A,
which demonstrates the oracle results in DGPs 1 and 2.
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Table 3.3: Instrument Selection (DGP 1)

`n = 125 `n = 35

n a PGMM DB-GMM DB-NN

100 0 8.8300 12.4600 5.7600
4.7843 4.5135 1.7004

100 0.5 4.4100 11.1800 5.9200
3.0521 4.4116 1.4473

100 0.9 2.2800 7.3700 5.4900
2.2878 2.8093 1.4177

250 0 16.6200 14.0800 6.4100
10.1740 4.3268 1.6943

250 0.5 5.6500 11.5900 6.5100
3.3616 3.9647 1.8722

250 0.9 3.3100 8.4300 5.6600
3.2340 3.6272 1.4370

500 0 14.6500 14.5100 6.0100
7.4663 4.8793 1.3142

500 0.5 6.9400 11.1500 5.7800
3.7788 3.1475 1.4112

500 0.9 4.3800 8.4100 5.4300
4.0546 3.3001 1.3799
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Table 3.4: DGP 2

`n = 125 `n = 35

n a OLS 2SLSSD 2SLSS 2SLSSA PGMM DB-GMM DB-NN

100 0 0.1723 0.2091 0.0969 -0.0032 0.0906 0.0152 0.0106
0.1841 1.4646 0.7989 0.0630 0.6899 0.0990 0.1065

100 0.5 0.1621 0.1029 -0.0066 0.0104 -0.0154 0.0116 0.0227
0.1820 1.3411 0.2081 0.0651 0.2109 0.0991 0.0982

100 0.9 0.1552 0.2393 0.0144 0.0131 0.0094 0.0280 0.0326
0.1669 1.3275 0.0973 0.0565 0.0941 0.0751 0.0742

250 0 0.1659 0.1345 -0.0520 -0.0040 -0.0272 0.0052 0.0052
0.1743 0.1444 0.3858 0.0413 0.3029 0.0474 0.0547

250 0.5 0.1527 0.1282 0.0076 0.0047 0.0074 0.0067 0.0144
0.1600 0.1365 0.1082 0.0397 0.1116 0.0480 0.0622

250 0.9 0.1333 0.1285 -0.0172 -0.0038 -0.0185 0.0028 0.0145
0.1408 0.1368 0.0657 0.0354 0.0667 0.0458 0.0734

500 0 0.1629 0.1129 0.0154 -0.0016 0.0271 0.0023 0.0001
0.1656 0.1162 0.2258 0.0263 0.2080 0.0306 0.0474

500 0.5 0.1494 0.1118 -0.0031 0.0002 -0.0034 0.0009 0.0061
0.1527 0.1161 0.0706 0.0243 0.0715 0.0271 0.0363

500 0.9 0.1313 0.1238 0.0025 -0.0027 0.0022 0.0040 0.0038
0.1353 0.1284 0.0407 0.0263 0.0406 0.0409 0.0376
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Table 3.5: Instrument Selection (DGP 2)

`n = 125 `n = 35

n a PGMM DB-GMM DB-NN

100 0 7.4900 12.2500 6.0500
5.1591 4.4955 1.6291

100 0.5 3.8100 10.2400 6.2100
2.6882 3.6157 1.7191

100 0.9 2.3300 7.9500 5.7500
2.4784 3.3526 1.6167

250 0 13.2600 14.3900 5.5000
8.1694 4.6945 1.5008

250 0.5 4.7500 11.0200 5.3700
2.7206 3.4640 1.5219

250 0.9 3.2200 7.8000 5.6000
2.6877 3.2998 1.3999

500 0 11.0200 14.6700 5.9200
5.3352 4.5860 1.4749

500 0.5 6.2000 11.7100 5.6400
3.3090 3.3853 1.4875

500 0.9 5.6100 7.9600 5.3200
4.8198 2.9471 1.1090
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Table 3.6: DGP 3

`n = 125 `n = 35

n a OLS 2SLSSD 2SLSS 2SLSSA PGMM DB-GMM DB-NN

100 0 0.6641 10.8145 0.8487 0.4367 0.7685 0.4502 0.1060
0.6707 99.5346 2.6133 0.8046 1.5034 1.0764 0.3538

100 0.5 0.6537 0.6757 0.4540 0.2861 0.5533 0.3959 0.1418
0.6581 0.8887 2.1114 0.7634 2.8928 1.7859 0.3084

100 0.9 0.6352 0.0738 0.0933 0.2505 0.0731 0.2475 0.1296
0.6427 3.7400 0.9054 0.6080 0.9165 0.6307 0.2505

250 0 0.6444 0.6509 0.5659 0.1867 0.5690 0.2580 0.0852
0.6470 0.6548 1.2254 0.5536 3.2049 0.6288 0.4178

250 0.5 0.6430 0.6674 0.2225 0.0620 0.2289 0.1626 0.0593
0.6453 0.6713 0.8011 0.4944 1.2008 0.5499 0.2061

250 0.9 0.6556 0.7585 -0.0395 0.0388 -0.4151 0.1197 0.0633
0.6584 0.7619 0.6839 0.5093 2.6467 0.6702 0.1980

500 0 0.6552 0.6709 0.3782 0.0525 0.2207 0.1255 0.0550
0.6564 0.6733 1.0108 0.3612 2.1402 0.4655 0.1370

500 0.5 0.6527 0.7103 0.0702 0.0572 0.1171 0.0788 0.0246
0.6538 0.7126 0.5253 0.3814 0.6540 0.3170 0.1110

500 0.9 0.6519 0.8272 0.0083 0.0357 0.1099 0.1662 0.0292
0.6529 0.8285 0.3715 0.3216 0.8053 0.5199 0.1333
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Table 3.7: Instrument Selection (DGP 3)

`n = 125 `n = 35

n a PGMM DB-GMM DB-NN

100 0 12.9600 4.2800 6.9300
6.3832 3.1337 2.5634

100 0.5 10.9300 3.5500 6.8000
6.2672 2.7721 2.4163

100 0.9 6.8600 3.7900 6.6600
5.1070 3.3674 2.5907

250 0 28.0300 6.4100 7.7800
11.1251 5.3938 2.2454

250 0.5 19.2900 4.7100 8.0300
10.2082 4.0956 2.7467

250 0.9 9.3300 4.0100 7.9000
7.4888 3.6529 2.5643

500 0 31.0100 9.2100 8.0400
9.9071 5.7758 2.4159

500 0.5 15.3600 7.0800 8.2800
9.4607 5.7624 2.7637

500 0.9 8.2500 4.5800 7.8800
6.4766 4.4294 2.4915
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Table 3.8: Estimation of the Automobile Demand

`n = 125 `n = 35

OLS 2SLSSD 2SLSS PGMM∗ DB-GMM DB-NN

constant -10.0716 -10.0438 -11.4900 -11.2749 -9.3702 -5.3996
(0.2576) (0.2608) (0.6114) (4.5630) (0.3800) (1.1150)

HPW -0.1243 0.1161 -12.3812 -44.6293 5.9361 -2.2784
(0.2790) (0.3179) (0.5440) (2.7079) (1.0240) (0.2984)

AC -0.0343 0.0584 -4.7606 3.7666 2.3026 1.5013
(0.0710) (0.0880) (0.2894) (1.6090) (0.3631) (0.5648)

MP$ 0.2650 0.2484 1.1134 -1.5585 -0.1544 0.4495
(0.0425) (0.0433) (0.1048) (0.7671) (0.0833) (0.0468)

Size 2.3421 2.3331 2.8004 2.6639 2.1155 2.4900
(0.1246) (0.1265) (0.2623) (2.0612) (0.1770) (0.1336)

Price -0.0886 -0.0970 0.3387 0.3968 -0.2999 -0.4987
(0.0043) (0.0063) (0.0171) (0.1014) (0.0328) (0.1112)

Note: PGMM∗ is the Post-PGMM. The values inside the parentheses are the standard
error of the corresponding estimators.

Table 3.9: Number of Cars with Inelastic Demand

`n = 125 `n = 35

OLS 2SLSSD 2SLSS PGMM∗ DB-GMM DB-NN

1502 1427 2217 2217 0 0
(1425,1626) (1230,1563) (2217,2217) (2217, 2217) (0, 7) (0,5)

Note: The demand is said to be inelastic when the price elasticity of demand in (3.31) is
larger than −1. We count how many cars have inelastic demand by (3.32). The numbers
inside the parentheses in the second row are the 95% confidence interval following the
normal distribution. The upper bound and lower bound of price elasticity of demand are

calculated as
(
β̂price ± 1.96se(β̂price)

)
xit(1− sit).
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Figure 3.1: Price Elasticity of Cars by DB-NN

Note: The empirical distribution of the estimated price elasticity of demand using DB-NN
is shown. Demand for all cars are elastic with the estimated price elasticity of demand
lower than −1.
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Chapter 4

Estimation of Panel Data Models

for US State Level House Price

with Many Instruments

4.1 Introduction

When the regressors are endogenous due to simultaneity or measurement errors,

the fixed effect (FE) estimator for a panel data model is inconsistent. We apply the 2SLS

estimation approach to the FE estimator using instrumental variables (which will be called

FE-2SLS) to analyze the US house prices using state level panel data. However, we find

that the FE-2SLS estimator is very sensitive to the number of selected instruments when

there are many available instruments. An example is shown as in the house price panel

data model, where the instruments are taken from the lagged endogenous regressors.
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We have conducted an extensive theoretical, numerical and empirical analysis of

the FE-2SLS estimators and demonstrate the needs and benefits of using regularization

methods such as SCAD and L2Boosting for the selection of relevant instruments when

there are many instruments. The regularization makes the 2SLS estimator more robust in

using many instruments.

Also, extending Hansen (2017) to the structural panel data models, we propose

a combined (model averaging) estimator of the FE and FE-2SLS estimators and provide

the asymptotic properties of these estimators. It is shown that the combined estimator has

the asymptotic risk strictly smaller than that of the FE-2SLS estimator when FE-2SLS is

consistent. While our Monte Carlo simulation confirms the asymptotic theory, it also shows

the asymptotic theory carries over to finite sample only when the small number of good

instruments are carefully selected. Using too many instruments, FE-2SLS can be as bad

as FE even when endogeneity is strong, and the combined estimator can be worse than

FE-2SLS. Guarded with these theoretical and numerical findings, a careful empirical study

is conducted for the economics of real house price using the US state level panel data.

This chapter is organized as follows. In Section 4.2, we first present the asymptotic

properties of FE, FE-2SLS, and the combined estimator of FE and FE-2SLS in the panel

data regression model with endogenous regressors. In Section 4.3, we examine issues that

FE-2SLS can go bad if too many instruments are used, and regularization methods are called

for to guard FE-2SLS against the problem. We extend the two regularization methods,

SCAD by Fan and Li (2001) and L2Boosting by Bhlmann (2006), to the panel data model.

We modify the stopping rule of L2Boosting to ensure the consistency of the estimator for
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the panel data models. Section 4.4 presents Monte Carlo simulation to demonstrate how the

FE-2SLS and combined estimators are affected by the number of selected instruments, and

how the FE-2SLS estimator can be regularized. Section 4.5 presents the empirical analysis

of the US house price using the state level panel data of Holly, Pesaran, and Yamagata

(2010). Concluding remarks are given in Section 4.6. All proofs are collected in Appendix.

4.2 Estimation of Panel Data Regression Models

4.2.1 FE, FE-2SLS, and Combined estimators

In a panel data model, the fixed effects estimator helps us to resolve the endo-

geneity issues that arise because of the correlated unobserved effects. Endogeneity issues

may also arise due to a nonzero correlation between explanatory variables and idiosyncratic

errors. In the presence of such correlations, both fixed effects (FE) and random effects (RE)

estimators yield biased and inconsistent estimates of the parameter. The resulting biases

can not be removed via differencing estimation. The traditional technique to overcome this

problem is to find instruments for those explanatory variables which are potentially cor-

related with idiosyncratic errors. For example see Hausman and Taylor (1981), Amemiya

and MaCurdy (1986) and Breusch et al (1989). These papers consider the application of

instrumental-variable procedures to estimate the parameters of the model with endogenous

regressors, with the error structure implied by random effects. See Baltagi (2008) for the

commonly used fixed effects 2SLS estimator.

It is well known that the finite sample properties of the 2SLS estimator are often

problematic. Thus, most of the justification for the use of 2SLS estimator is asymptotic. Its
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performance in small samples may be poor. In the presence of weak instruments, the loss

of precision will be severe, and 2SLS estimates may be no improvement over the individual

effects estimators.

Consider the following panel regression model with fixed effects:

yit = x′itβ + αi + uit, i = 1, . . . , n, t = 1, . . . , T, (4.1)

where xit is q× 1, and β is a q× 1 vector of unknown parameters. αi’s are fixed effects and

uit’s are the random disturbances. In matrix notation, Eq (4.1) can be written as

y = Xβ +Dα+ u, (4.2)

D ≡ In ⊗ ιT is nT × n where ιT is a vector of ones, α is n × 1, and u ∼
(
0, σ2

uInT
)
.

Pre-multiplying the model (4.2) by Q ≡ InT −D (D′D)−1D′ and performing OLS on the

resulting transformed model:

Qy = QXβ +QDα+Qu, (4.3)

where QD = 0. Noting that Q is idempotent, the β̂FE can be obtained as

β̂FE =
(
X ′QX

)−1
X ′Qy. (4.4)
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The asymptotic distribution of β̂FE is

√
n
(
β̂FE − β

)
d→ N (0, V1) , (4.5)

where V1 = σ2
u

(
plimX′QX

n

)−1
.

The endogeneity occurs due to the (i) correlation of αi with xit or (ii) correlation

of uit with xit. We consider the latter case here for which the FE estimator becomes incon-

sistent. With uit and xit correlated, the vector xit is endogenous. Performing 2SLS on (4.3)

with QZ as the set of instruments

Z ′QQy = Z ′QQXβ + Z ′QQu, (4.6)

one gets the FE-2SLS estimator

β̂FE-2SLS =
(
X ′HZX

)−1
X ′HZy, (4.7)

where HZ = QZ (Z ′QZ)−1 Z ′Q. The asymptotic distribution of β̂FE-2SLS follows

√
n
(
β̂FE-2SLS − β

)
d→ N (0, V2) , (4.8)

where V2 = σ2
u

(
plimX′HZX

n

)−1
.

The FE-2SLS estimator is preferred to the FE estimator as it is consistent under

endogeneity, while the FE estimator is inconsistent. However in small samples, FE-2SLS

can have much larger variance so FE can have better MSE precision especially when the
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extent of endogeneity is not severe. To consider this scenario, the endogeneity is set to

be local to zero as explained below, and we propose the following combined estimators β̂c,

which is weighted average of FE and FE-2SLS estimators with the weights depending on

the Hausman (1978) statistic

β̂c = wβ̂FE + (1− w)β̂FE-2SLS, (4.9)

where

w =


τ
Hn

if Hn ≥ τ

1 if Hn < τ

, (4.10)

Hn = (β̂FE-2SLS − β̂FE)′
(
V̂2 − V̂1

)−1
(β̂FE-2SLS − β̂FE), (4.11)

and τ is a shrinkage parameter. The degree of shrinkage depends on the ratio τ/Hn.

4.2.2 Asymptotic properties of FE, FE-2SLS, and Combined estimators

Write the reduced form equation for the endogenous variable xit as

xit = Π′zit + vit (4.12)

with E (zitvit) = 0. Instruments zit is ` × 1 and Π is ` × q. Next, we write the structural

equation error uit as a linear function of the reduced form error vit and an orthogonal error

εit

uit = vitρ+ εit (4.13)
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with E (vitεit) = 0. The variable xit is exogenous if uit and vit are uncorrelated, or equiva-

lently that the coefficient ρ is zero. We use the local asymptotic approach. For fixed T , ρ

is local to zero

ρ =
1√
n
δ (4.14)

δ is a q × 1 localizing parameter, which indexes the degree of correlation between uit and

eit. When δ = 0, xit are exogenous. When δ 6= 0, xit are endogenous in finite sample. δ

(and thus ρ) controls the degree of endogeneity.

We make the following assumptions:

Assumption 1. (xi, αi, ui) are i.i.d. over i, uit is i.i.d. over t; E
(
u4
it|xit, αi

)
< ∞, and

E (εit|vit)4 <∞.

Assumption 2. E ‖xit‖2+k <∞ and E |uit|2+k <∞ for some k > 0.

Assumption 3. E ‖xit‖4 < ∞, E ‖zit‖4 < ∞, E ‖eit‖4 < ∞; σ2
u

(
plimn→∞

1
nX
′QX

)−1
=

V1,

σ2
u

(
plimn→∞

1
nX
′HZX

)−1
= V2.

Assumption 4. σ̂2
u = σ2

u + op (1) .

Assumption 5. rank(Π) = q.

Assumptions 1-3 specify that the variables have finite fourth moments so that a

central limit theory applies. Assumption 5 is the rank condition on Π to ensure that the

coefficient β is identified. Denote Σ = E (vitv
′
it) .
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Theorem 1: Under Assumptions 1-5,

√
n

(
β̂FE − β

β̂FE-2SLS − β

)
d→ h+ ξ, (4.15)

where

h =

(
σ−2
u V1tr (QΣ) δ

0

)
, (4.16)

ξ ∼ N(0, V ), (4.17)

V =

 V1 V1

V1 V2

 . (4.18)

Furthermore,

Hn
d→ (h+ ξ)′B(h+ ξ), (4.19)

√
n
(
β̂c − β

)
d→ Ψ = G′2ξ −

(
τ

(h+ ξ)′B(h+ ξ)

)
1

G′ (h+ ξ) , (4.20)

where B = G (V2 − V1)−1G′, G =

(
−I I

)′
, G2 =

(
0 I

)′
, and (a)1 = min [1, a] .

The theorem is similar to Theorem 1 in Hansen (2017) except for the expressions

of h, V1, and V2, and its proof is straightforward and thus omitted. This theorem gives ex-

pression for the joint asymptotic distribution of β̂FE and β̂FE-2SLS estimators, the Hausman

statistic, and the combined estimators under the local exogeneity assumption in (4.14). The

joint asymptotic distributions are normal. β̂FE has asymptotic bias when δ 6= 0 but not

the β̂FE-2SLS estimator. The Hausman statistic controls the weight and thus the degree of

shrinkage. It is an asymptotic non-central chi-square random variable with non-centrality

parameter depending on the local endogeneity parameter δ. The asymptotic distribution of
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the combined estimator is nonlinear functions of the normal random vector and functions

of the non-centrality parameter. The asymptotic distribution of β̂c in (4.9) is written as a

random weighted average of the asymptotic distributions of β̂FE and β̂FE-2SLS.

These alternative estimators are compared in the asymptotic risk. The asymptotic

risk of any sequence of estimators βn of β is defined as

R (βn, β,W ) = lim
n→∞

E
[
n (βn − β)′W (βn − β)

]
= R (βn) , (4.21)

so long as the estimator has an asymptotic distribution

√
n (βn − β)

d→ ψ, (4.22)

for some random variable ψ. The asymptotic risk of the estimator βn can be calculated

using

R (βn) = E
(
ψ′Wψ

)
= tr

(
WE

(
ψψ′

))
. (4.23)

Denote the largest eigenvalue λ1 ≡ λmax (W (V2 − V1)) of the matrix W (V2 − V1) and the

ratio d ≡ tr(W (V2 − V1)) /λ1. The following theorem is an extension of Theorem 2 of Hansen

(2017) for the panel data model.
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Theorem 2: Under Assumptions 1-5, if

d > 2 and 0 < τ ≤ 2 (d− 2) , (4.24)

then

R
(
β̂FE-2SLS

)
= tr (WV2) ,

R
(
β̂c

)
< R

(
β̂FE-2SLS

)
− τλ1 (2 (d− 2)− τ)

σ−4
u δ′tr (QΣ)V1 (V2 − V1)−1 V1tr (QΣ) δ + q

. (4.25)

Its proof is provided in Appendix B.1. Equation (4.25) shows that the asymptotic

risk of the combined FE and FE-2SLS estimator is strictly less than that of the FE-2SLS es-

timator, so long as the shrinkage parameter τ satisfies the condition (4.24). The assumption

d > 2 is necessary in order for the right-hand-side of the inequality equation in (4.24) to be

positive, which is necessary for the existence of τ . τ appears in the risk bound (4.25) as a

quadratic expression, so there is an optimal choice τopt = tr(W (V2−V1))
λ1

− 2 which minimizes

this bound. In the special case W = (V2 − V1)−1 , we find that condition (4.24) simplifies

to q > 2 and 0 < τ ≤ 2 (q − 2). The assumption q > 2 is Stein’s (1956) classic condition

for shrinkage. Stein (1956) shows that the shrinkage dimension must exceed 2 in order for

shrinkage to achieve global reductions in risk relative to unrestricted estimation.

73



Corollary 3: If d > 2 and 0 < τ ≤ 2 (d− 2) , R
(
β̂c

)
−R

(
β̂FE-2SLS

)
< 0.

The following two corollaries are obtained with W = (V2 − V1)−1.

Corollary 4: Under the local exogeneity assumption,

R
(
β̂FE

)
= tr (WV1) + σ−4

u δ′tr (QΣ)V1WV1tr (QΣ) δ,

and 
R
(
β̂FE

)
≤ R

(
β̂FE-2SLS

)
if σ−4

u δ′tr (QΣ)V1WV1tr (QΣ) δ ≤ q

R
(
β̂FE

)
> R

(
β̂FE-2SLS

)
otherwise.

Corollary 4 indicates that when endogeneity is weak (ρ and hence δ is close to

zero) the FE estimator may perform better than the FE-2SLS estimator.

Corollary 5: If q < σ−4
u δ′tr(QΣ)V1WV1tr(QΣ) δ, d > 2, 0 < τ ≤ 2 (d− 2) , then R

(
β̂c

)
−

R
(
β̂FE

)
< 0.

Corollary 5 indicates that when endogeneity is strong, d > 2, 0 < τ ≤ 2 (d− 2) ,

the combined estimator performs better than both the FE and FE-2SLS estimators.

Remark 1: If a subset of regressors is treated as endogenous, consider the following

structural equation of a panel data model:

y = Xβ +Dα+ u (4.26)

where X = (X1 Z1) and β = (β1 β2) . Let X1 be q1 endogenous variables, Z1 be `1 included
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exogenous variables, and q = q1 + `1. Let Z = (Z1 Z2) be the set of ` (= `1 + `2) exogenous

variables (instrumental variables). This equation is identified if `2 ≥ q1. In this case, one

can use QZ as the set of instruments to get the FE-2SLS estimator as

β̂FE-2SLS =
(
Z ′HZZ

)−1
Z ′HZy

with HZ = QZ (Z ′QZ)−1 Z ′Q.

4.3 Estimation of Panel Data Regression Models with Many

Instruments

Under the cross-sectional data, Bekker (1994) has shown that OLS will be in-

consistent when there exists an endogenous variables, and 2SLS will be inconsistent when

the number of instruments is large. Then selecting proper instruments is important for a

consistent result in the IV model. When there is a large set of potential instruments and

only a small subset of the instruments are relevant, an instrument selection procedure is

needed to reduce the dimension of instruments and obtain a consistent estimation. Given

its capability to shrink some of the estimators toward zero, the least absolute shrinkage

and selection operator (Lasso) has been applied widely for variable selection. In Belloni,

Chen, Chernozhukov, and Hansen (2012) and Belloni and Chernozhukov (2013), Lasso is

used for the instrument selection. Caner (2009), Fan and Liao (2014), Liao (2013) and

Cheng and Liao (2015) extend the penalized least square estimation to GMM. In addition,

other penalized estimation methods include adaptive elastic net and smoothly clipped ab-
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solute deviation penalty (SCAD). Instead of these regularized (penalized) methods, Ng and

Bai (2008) and Chapter 1 use boosting for variable selection. Donald, Imbens, and Newey

(2009) use information criteria for moment selection.

According to Bekker (1994), the 2SLS estimator is inconsistent when the number

of instruments ` is large, i.e., the 2SLS is inconsistent unless `
n → 0. We extend the Bekker

results for the fixed effect panel data model. By replacing X with X∗ = QX and Z with

Z∗ = QZ, the Bekker theorem on the inconsistency result of the 2SLS estimator can be

extended to the FE-2SLS estimators using large number of instruments in the panel data

models. While β̂FE is inconsistent due to the endogeneity, β̂FE-2SLS may also be inconsistent

due to the large number of instruments (see Appendix B.2).

In order to ensure the consistency of the FE-2SLS estimator, we extend the two

regularization methods, SCAD by Fan and Li (2001) and L2Boosting by Bhlmann (2006),

to the panel data model. Let X∗ = (X∗1 . . . X
∗
q ), Z∗ = (Z∗1 . . . Z

∗
` ), and Πk (k = 1, . . . , q)

be the kth column of Π. If some elements in Π are zeros, only a subset of zit is relevant

to xit. Then we use SCAD and L2Boosting to select only the relevant instruments and

compute the FE-2SLS estimator based on the selected instruments. We call the estimator

using SCAD as FE-2SLS-SCAD, and the estimator using L2Boosting as FE-2SLS-Boosting.

With the regularized FE-2SLS estimators, we call the combined estimator of the FE and

FE-2SLS-SCAD estimators as Combined-SCAD, and the combined estimator of the FE and

FE-2SLS-Boosting as Combined-Boosting.

Since both SCAD and L2Boosting are able to shrink some elements of the coef-

ficient matrix Π̂ to zero corresponding to weak instruments, the subsequent application of
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2SLS will consider those removed instruments as irrelevant to the endogenous variables.

Once the instruments are selected, we use the selected instruments to compute the regular-

ized FE-2SLS estimators (i.e., FE-2SLS-SCAD and FE-2SLS-Boosting).

4.3.1 SCAD

SCAD is used to ensure only relevant instruments will enter the estimation proce-

dure. For k = 1, . . . , q and j = 1, . . . , `, consider an objective function

Π̂k = min
Πk

 1

2nT

n∑
i=1

T∑
t=1

(x∗it,k −Π′kz
∗
it)

2 + λk
∑̀
j=1

pj (Πkj)

 , (4.27)

where pj (·) is the penalty function for j = 1, . . . , `. For simplicity, let the penalty function

be the same for each j, then pλk (·) = λkpj (Πkj) with tuning parameter λk. The objective

function of SCAD uses a penalty function that is continuously differentiable, and it is able

to assign different penalty to different instruments. Hence,

λkpj (Πkj) =



λk |Πkj | if |Πkj | ≤ λk

−|Πkj|
2−2aλk|Πkj|
2(a−1) if λk < |Πkj | ≤ aλk

(a+1)λ2k
2 if |Πkj | > aλk

, (4.28)

where a = 3.7. To optimize the objective function, Fan and Li (2001) derive the first order

derivative of SCAD penalty function with respect to Πk as

p′λk (Πkj) = λk

{
1 (Πkj ≤ λk) +

(aλk −Πkj)+

(a− 1)λk
1 (Πkj > λk)

}
. (4.29)
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So the estimator Π̂kj can be solved as

Π̂kj =



sign
(

Π̃kj

) ∣∣∣Π̃kj − λk
∣∣∣ if

∣∣∣Π̃kj

∣∣∣ ≤ 2λk

− (a−1)|Π̃kj|−sign(Π̃kj)aλk
a−2 if 2λk <

∣∣∣Π̃kj

∣∣∣ ≤ aλk
Π̃kj if

∣∣∣Π̃kj

∣∣∣ > aλk

,

where Π̃kj is the OLS estimator of x∗it,k regressing on instruments z∗it. The optimal tunning

parameter λk for SCAD is estimated using the 10-fold cross-validated mean squared errors.

4.3.2 Boosting

Let m denotes the mth iteration in the boosting procedure, and M̄ denotes the

maximum number of iteration. L2Boosting performs an instrument selection for each X∗k

using the following procedure.

1. When m = 0, the initial weak learner for x∗it,k is

F0,it = f0,it =
1

nT

n∑
i=1

T∑
t=1

x∗it,k (4.30)

2. For each step m = 1, . . . , M̄

(a) We compute the “current residual”, v̂m,it = x∗it,k − Fm−1,it.

(b) Next, we regress the current residual v̂m,i on each instrument z∗j,it, for j = 1, . . . , `.

The estimators Π̂k0 and Π̂kj are solved as

{
Π̂k0,j , Π̂kj

}
= min

Πk0,Πkj

n∑
i=1

T∑
t=1

(
v̂m,it −Πk0 −Πkjz

∗
j,it

)2
. (4.31)
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We select the instrument that has the minimum sum of squared residuals, such

that

jm = arg min
j∈{`S+1,...,`n}

n∑
i=1

T∑
t=1

(
v̂m,it − Π̂k0,j − Π̂kjz

∗
j,it

)2
. (4.32)

(c) The weak learner is

fm,i = Π̂k0,jm + Π̂kjmz
∗
jm,it, (4.33)

where z∗jm,it is the instrument that is selected.

(d) The strong learner Fm,i is updated as

Fm,it = Fm−1,it + cmfm,it, (4.34)

with cm > 0.

3. We repeat 1 and 2 for k = 1, . . . , q.

A stopping rule is necessary in L2Boosting in order to avoid over-fitting. In

Bhlmann (2006), the optimal number of iteration M̂ is chosen by a suggested version of

AIC, denoted as AICc, in a cross-sectional data model. Let V̂m = (v̂m,11 . . . v̂m,nT )′,

fm = (fm,11 . . . fm,nT )
′
, Fm = (Fm,11 . . . Fm,nT )

′
, and 1 be an nT × 1 vector of ones. We

define QZjm = (1 QZjm) , and Pm = QZjm(Z′jmQZjm)−1Z′jmQ to be an nT × nT matrix.

From Equation (4.33),

1Π̂k0,jm +QZjmΠ̂kjm = PmV̂m

fm = Pm (X∗k − Fm−1) . (4.35)
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When m = 0, Pj0 is an nT × nT matrix of 1
nT . Then the strong learner at each step m is

Fm = Fm−1 + cmPm (X∗k − Fm−1)

=

[
InT×nT −

m∏
a=0

(In×n − cjaPja)

]
X∗ =: BmX

∗
k .

AIC is computed as

AICc(m) = log(σ̂2
k,m) +

1 + trace(Bm)/nT

1− (trace(Bm) + 2)/nT
, (4.36)

where log(σ̂2
k,m) = 1

nT

∑n
i=1

∑T
t=1 (v̂m,i − cmfm,it)2. Then M̂ = arg minm=1,...,M̄ AICc(m).

However, AICc in Bhlmann (2006) does not provide a proper penalty in the panel data

model. Hence, we propose a new stopping rule based on the modified AICc, denoted as

BICc, following Bai (2003) that is

BICc(m) = log(σ̂2
k,m) +

1 + trace(Bm) log( nT
n+T )/ nT

n+T

1− (trace(Bm) + 2) log( nT
n+T )/ nT

n+T

. (4.37)

Remark 2: In the simulation (not reported) using the same DGP as in the next section,

we have compared the above two stopping rules in (4.36) and (4.37). We find that AICc in

(2.17) selects too many instruments while BICc in (4.37) provides a good stopping rule for

L2Boosting in the panel data models to select only the relevant instruments.
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4.4 Monte Carlo

We consider the following data generating progress (DGP)

yit = x′itβ + αi + uit (4.38a)

xit = θ vit−1 + vit (4.38b)

uit =
ρ
√
q
vit +

√
1− ρ2εit (4.38c)

Recall that xit is an q×1 vector. The εit and all elements of vit are i.i.d N (0, 1) across i, t,

for each elements of errors uit and vit having covariance ρ√
q , but all other correlation zero.

αi are i.i.d. N (0, 1) independent of {xit, uit}. The parameter ρ controls the extent of

endogeneity of xit. The endogenous variable vector xit follows an invertible vector moving

average process of order 1, VMA(1). For simplicity we consider the case when all elements

of the q × 1 vector MA parameter θ are the same and set at the value 0.3. The results are

not quantitatively sensitive to the value of β so we set β to be zero.

Our goal is the consistent and efficient estimation of the structural parameter

β. In the DGP, the variable xit is endogenous following a VMA(1) process in (4.38b),

which we approximate by the VAR(p) model of order p ∈ {1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12} .

We consider the lagged variables of xit as instruments, i.e., zit ≡ (xi,t−1 . . . xi,t−p). The

parameter θ controls the strength of the instruments zit as they are taken from the lagged

xit. The number of instruments equals to ` = q× p. To mimic the situation in the empirical

application for estimation of the US house prices using three endogenous variables in 49

states over 29 years in 1975-2003, we consider n = 49, T = 29, q = 3. We consider a range of
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ρ on a 20-point grid on [0, 0.975] . We generated 2, 000 samples on each calculated β̂FE-2SLS,

β̂FE, β̂c. To compare these three estimators, we calculate the median squared error of each

estimator

R
(
β̂
)

= median

((
β̂ − β

)′ (
β̂ − β

))
. (4.39)

We present the results graphically. The same length of period (t = 1, . . . , 17) is

used for each subfigure in Figure 4.1. In Figure 4.1: (a) plots R
(
β̂
)

for p = 1, ` = 3.

This context is with just-identified instruments. Figure 4.1(a) shows that the combined

estimator has lower R
(
β̂
)

than FE-2SLS, regardless of the degree of endogeneity. It also

shows that the classical 2SLS estimator problem that its moments do not exist for the

just-identified case, cf. Sawa (1969, 1972). Observe that R
(
β̂
)

of FE-2SLS in plot (a) is

quite large compared to that in plot (b) for all degrees of endogeneity ρ. It shows that the

number of instruments in (a) is too small and it would be important to increase the number

of instruments. (b) plots the MSE for p = 2, ` = 6. Now the model is over-identified and

FE-2SLS is well behaved. Figure 4.1(b) shows that the combined estimator has similar

R
(
β̂
)

to FE for the small values of ρ where FE has small R
(
β̂
)

. The reduction in risk

achieved by combined estimator is large unless ρ is large. (c) plots the R
(
β̂
)

for p = 3,

` = 9. (d) plots the R
(
β̂
)

for p = 4, ` = 12. (e) plots the median squared error for p = 5,

` = 15. The four plots in (b), (c), (d), (e) look similar. The combined estimator achieves

some reduction in R
(
β̂
)

relative to FE-2SLS for small values of ρ. However, when the

number of instruments becomes larger in plot (f) with p = 6, ` = 18, it starts to show that

for large ρ FE-2SLS becomes biased towards FE. It becomes more apparent as ` becomes

even larger as shown in the subsequent plots. Continuing to plot (g) for p = 7, ` = 21, plot
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(h) for p = 8, ` = 24, plot (i) for p = 9, ` = 27, plot (j) for p = 10, ` = 30, plot (k) p = 11,

` = 33, and plot (l) for p = 12, ` = 36, it is easy to see that the FE-2SLS is biased and the

bias in FE-2SLS tends to get worse as more instruments are used.

To fix this bias problem in FE-2SLS, we use the SCAD 1 and L2Boosting for the

selection of instruments, which makes the FE-2SLS estimator and the combined estimator

more robust and restore its consistency when there are many instruments. To demonstrate

this, we consider the setup in the last plot of Figure 4.1 with p = 12, ` = 36. It is the

most apparent case for the inconsistency due to using too many instrument variables. In

Figure 4.2 we zoom in the plot (l) of Figure 4.1 and add two SCAD regularized estimators

(FE-2SLS-SCAD and Combined-SCAD), and in Figure 4.3, we add two boosting regularized

estimators (FE-2SLS-Boosting and Combined-Boosting). Notice the vertical scale of Figure

4.2 and Figure 4.3 are between 0 and 0.2. By using the SCAD to regularize a panel data

model with many instruments, the FE-2SLS-SCAD estimator restores its consistency. The

FE-2SLS-SCAD is the post-selection FE-2SLS estimator. The Combined-SCAD estimator is

the combined estimator of FE and FE-2SLS-SCAD estimators. The risk of FE-2SLS-SCAD

estimator and the Combined-SCAD estimator are significantly reduced when compared to

the risk of the FE-2SLS estimator. When the endogeneity is weak (small values of ρ),

the Combined-SCAD estimator (cyan-colored long-dashed) dominates the FE-2SLS-SCAD

(green-colored dotted). As the endogeneity gets stronger, the combining weight in the

Combined-SCAD goes toward to the FE-2SLS-SCAD.

1A third party MATLAB toolbox by Zhou, Armagan and Dunson (2012) and Zhou and Gaines (2017) is
used for SCAD.
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Similar pattern also shows for the FE-2SLS-Boosting estimator and Combined-

Boosting estimator in Figure 4.3. The risk of both estimators are significantly reduced

when compared to the risk of the estimators without instrument selection. The Combined-

Boosting estimator dominates the FE-2SLS-Boosting estimator when the endogeneity is

week. However, the weight in the Combined-Boosting goes toward to the FE-2SLS-Boosting

as the endogeneity gets stronger.

Remark 3: In the presence of many instruments, the combined estimator may behave

poorly, and Theorem 2 may not hold for moderate to large values of ρ. Theorem 2 says the

combined estimator is always better than the FE-2SLS estimator in the asymptotic risk.

Figures 4.1(g)-(l), Figure 4.2, and Figure 4.3 show, however, that the theorem does not hold

when p is large. This is because Theorem 2 holds only when FE-2SLS is consistent. When p

is large, ` is large, FE-2SLS is inconsistent and therefore Theorem 2 does not hold when there

are many instruments. After selecting instruments through SCAD or L2Boosting, we reduce

the dimension of instruments, and we only use relevant instruments to estimate the FE-2SLS

estimator. This will restore Theorem 2 and ensure the consistency of the FE-2SLS-SCAD

(FE-2SLS-Boosting) and the Combined-SCAD (Combined-Boosting) estimators even with

many instruments.

Remark 4: Since the endogenous variables xit are generated following a VMA(1) process

in (4.38b), the relevancy of instruments to xit is dependent on the strength of the parameter

θ. When the value of θ is very low (say, θ = 0.1), the relevancy of all instruments becomes

weak. Thus, the FE-2SLS, FE-2SLS-SCAD and FE-2SLS-Boosting are inconsistent because

of the weak instruments. On the other hand, if the value of θ is very high (say, θ = 0.5),
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all instruments from the lagged xit are strongly relevant. Then the sparsity assumption

required for SCAD and L2Boosting may not hold. Thus, SCAD and L2Boosting may fail

to ‘select’ the relevant instruments since all instruments are relevant.

4.5 Estimation of House Price Panel Data Model in US States

Real house prices can vary between States because real incomes differ, they can

also differ because of scarcity of other idiosyncratic factors. The effects of common shocks on

house prices such as changes in interest rates, could also differ across States. Holly, Pesaran,

and Yamagata (HPY 2010) examine the extent to which real house prices at the State level

are driven by fundamentals such as real per capita disposable income, as well as by common

shocks. Baltagi and Li (2014) replicate the results of HPY, using a slightly different data

set. They extend the period of study to 2011, incorporating the information reflected by the

housing market crash in 2007. Using housing price indexes for 381 metropolitan statistical

areas and over the period 1975–2011, they find that the HPY results are fairly robust. As

noted in Baltagi and Li (2014, p. 515), “The US housing price indexes, published by the

Federal Housing Finance Agency (FHFA), ran up by almost 40 percent from January 2003

to June 2006, followed by a 28 percent drop, unprecedented in US history”, the extended

period from 2004-2011 covers quite unusual housing market data of boom, crash, and slow

recovery. Therefore in this chapter, we will use the original HPY data for 1975-2003. In this

section, we use the panel of 49 states over the 29 year period of 1975–2003. We consider
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the following panel data model for US States

pit = β0 + βyyit + βggit + βccit + αi + uit (4.40)

where i = 1, . . . , 49, t = 1, . . . , 29, pit is the logarithm of the real price of housing in the

ith State during year t, and yit is the logarithm of the real per capita personal disposable

income. The net cost of borrowing defined by cit = rit−∆pit, where rit represents the long-

term real interest rate and git represents the population growth rate. The state-specific

effects can be treated as the endowment of climate, location and culture. A more detailed

description can be found in HPY. We would expect a rise in cit to be associated with a fall

in the price income ratio, and hence a negative coefficient for cit. The effect of population

growth on real house prices is expected to be positive.

Let xit ≡ (yit git cit)
′ . We consider the lagged variables of xit as instruments, i.e.,

zit ≡ (xi,t−1 . . . xi,t−p). Hence we write an VAR(p) model for xit in State i as

xit = Π′zit + vit (4.41)

xit = A1xi,t−1 + · · ·+Apxi,t−p + vit,

where Π′ = (A1 . . . Ap) and zit = (xi,t−1 . . . xi,t−p) . Note that if the lag order p = 6 in

VAR(p) is used, the number of instruments is ` = q × p = 18. In Table 4.1, for all values

of p = 1, . . . , 6, we discard the first 6 years of the sample of 1975-1980 and the panel data

model is estimated for the remaining 23 years for 1981-2003, so that the parameter estimates
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using different lags in VAR(p) model are estimated over the same sample period and the

results can be comparable. SCAD and L2Boosting are used for p = 6.

Table 4.1 shows that the income elasticity of real house prices for the combined

estimator is significant and positive but widely changing in the range from 0.24 to 0.52

depending on the number of instruments used. The estimates of the coefficients on the

population growth and the net cost of borrowing also exhibit wild variation over different

lag orders p and different number of instruments `. By computing the Hausman statistics

with different lag orders p, we find there is strong endogeneity in all variables of xit. The

Hausman statistics ranges from 127.0993 (p = 1) to 29.4676 (p = 5), so exogeneity is

rejected at one percent significant level for different value of p. Due to the presence of

severe endogeneity in the model, the FE estimator is different from the FE-2SLS, FE-2SLS-

SCAD, and FE-2SLS-Boosting estimators. In addition, because of the large value in the

Hausman statistics, the combined estimators are weighted heavily toward to the FE-2SLS

estimators. Hence, the FE-2SLS and combined estimators are similar in all cases.

The standard error of estimators are computed using bootstrap. As the order p

increases, the standard error of estimators is decreasing. Although both FE-2SLS, FE-

2SLS-SCAD and FE-2SLS-Boosting estimators are using lags up to 6, we find that FE-

2SLS-SCAD estimators are having smaller standard error than FE-2SLS estimators on the

coefficients of the population growth and the net cost of borrowing, and larger standard

error on the income elasticity of real house price. But FE-2SLS-Boosting estimators are

having larger standard error than FE-2SLS estimators on the coefficients of the population

growth and the net cost of borrowing, and smaller standard error on the income elasticity
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of real house price. In addition, when p = 6, R
(
β̂
)

for FE-2SLS estimators is 0.1607,

and for combined estimators is 0.1569. After applying SCAD, R
(
β̂
)

has been reduced

to 0.1334 for FE-2SLS-SCAD estimators and 0.1265 for Combined-SCAD estimators. The

better performance of SCAD estimators implies that the instrument variable selection is

necessary when the number of instruments is large.

It is interesting to note that the combined estimates have smaller standard errors

than FE-2SLS although the difference is often small. It is due to the combination with FE

which is biased but has smaller variance. The gains from the combined estimator arise from

this bias and variance trade-off.

4.6 Conclusions

When the regressors are endogenous due to simultaneity or measurement errors,

the fixed effect estimator is inconsistent and FE-2SLS can be used. However the FE-2SLS

estimator is very sensitive to the number of selected instruments and can be inconsistent

when many instruments are used even when all the instruments are relevant and valid.

In this chapter, we have examined the regularized FE-2SLS estimator and the regularized

combined estimator under the presence of many instruments. It is clearly demonstrated

that the selection of relevant instruments using regularization methods is important, which

restores the consistency of the FE-2SLS estimator and the robustness of the combined

estimator.
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(f) p = 6

Figure 4.1: Median Squared Error of FE, FE-2SLS and Combined Estimators, n = 49,
T = 29, q = 3.
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(e) p = 11
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Figure 4.1: Median Squared Error of FE, FE-2SLS and Combined Estimators, n = 49,
T = 29, q = 3.
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Figure 4.2: Median Squared Error of FE, FE-2SLS, Combined, F2SLS-SCAD and Combined
SCAD Estimators, n = 49, T = 29, q = 3, p = 12.
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Figure 4.3: Median Squared Error of FE, FE-2SLS, Combined, F2SLS-Boosting and Com-
bined Boosting Estimators, n = 49, T = 29, q = 3, p = 12.
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Table 4.1: Table 1. Economics of Real House Prices for 49 U.S. States, 1975–2003

p β̂y β̂g β̂c
(a) FE 0.4726 0.1520 -0.2286

(0.0286) (0.4156) (0.0694)

FE-2SLS 1 0.2435 2.5257 -1.0777
(b) (0.0416) (0.6214) (0.1462)

Combined 1 0.2453 2.5070 -1.1071
(0.0414) (0.6184) (0.1456)

FE-2SLS 2 0.3178 0.6890 -0.8590
(c) (0.0420) (0.6903) (0.1219)

Combined 2 0.3204 0.6802 -0.8488
(0.0416) (0.6821) (0.1216)

FE-2SLS 3 0.4144 1.4687 -0.4588
(d) (0.0361) (0.6471) (0.1132)

Combined 3 0.4157 1.4379 -0.4534
(0.0356) (0.6443) (0.1103)

FE-2SLS 4 0.4546 1.1599 -0.3319
(e) (0.0370) (0.5442) (0.1075)

Combined 4 0.4552 1.1257 -0.3284
(0.0363) (0.5413) (0.1062)

FE-2SLS 5 0.4826 1.1627 -0.2445
(f) (0.0316) (0.5217) (0.0961)

Combined 5 0.4823 1.1290 -0.2440
(0.0305) (0.5119) (0.0912)

FE-2SLS 6 0.5037 1.1994 -0.1795
(g) (0.0307) (0.5512) (0.1112)

Combined 6 0.5028 1.1681 -0.1809
(0.0302) (0.5429) (0.1086)

FE-2SLS-SCAD 6 0.5055 1.2125 -0.1733
(h) (0.0364) (0.4990) (0.1044)

Combined SCAD 6 0.5045 1.1807 -0.1750
(0.0357) (0.4850) (0.1008)

FE-2SLS-Boosting 6 0.5180 2.2028 -0.0924
(i) (0.0357) (0.5330) (0.1183)

Combined Boosting 6 0.5170 2.1564 -0.0955
(0.0344) (0.5309) (0.1130)

Note: Standard errors are in parentheses. “p” is the order of VAR(p) for the reduced form
equation. (a) reports FE, (b) to (g) reports FE-2SLS and the Combined estimator of FE
and FE-2SLS when lag p = 1, . . . , 6, (h) reports FE-2SLS-SCAD estimator which is the
post-selection FE-2SLS estimator using the instruments selected by SCAD, and Combined
SCAD combines FE and FE-2SLS-SCAD when lag p = 6, and (i) reports
FE-2SLS-Boosting estimator which is the post-selection FE-2SLS estimator using the
instruments selected by L2Boosting, and Combined Boosting combines FE and
FE-2SLS-Boosting when lag p = 6.
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Chapter 5

Conclusions

When the number of instruments is large relative to the number of observations,

a regularization method need to be imposed for both cross-sectional data and panel data.

Under the cross-sectional data, we relax both the validity and relevancy assumption on the

instruments. We propose Double Boosting (DB) selection that will consistently select both

valid and relevant instruments. In Chapter 1, we show that DB-GMM will give smaller bias

and MSE especially when the function form is unknown and nonlinear. In Chapter 2, we

found that the robustness of DB-GMM is highly correlated with the sieve functions that are

used to approximate the true functional form of the endogenous regressors. By applying the

multiple-layer neural network, we find that DB-NN, where sieve instruments are generated

through the neural network, is robust even when the true functional form of the endogenous

regressors are very complicate. In the empirical application of the automobile market, the

price elasticity of demand estimated by both DB-GMM (in Chapter 1) and DB-NN (in

Chapter 2) are very elastic.
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In Chapter 3, we extend the stein-like combined estimator by Hansen (2017) to

the panel data models, where the regressors are endogenous. We have proved that the

asymptotic risk of the combined estimator is strictly smaller than FE-2SLS when FE-2SLS

is consistent. Both the analytic and simulation results show that FE-2SLS is inconsistent

when the number of instruments is large. We extend the two regularization methods under

cross-section data models, SCAD and L2Boosting, to the panel data models. We also

propose an new stopping rule for L2Boosting to ensure the consistency of the FE-2SLS

estimator. The simulation results confirm that by applying the regularization methods,

FE-2SLS is consistent even when the number of instruments is large. Thus the asymptotic

property of the combined estimator carries over to the finite sample case even when there

are many instruments.
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Appendix A

Appendix for Chapter 1

A.1 Proof of Theorem 1

Under the approximately sparse model in (2.4), the conditional quadratic mean of

regression error using L2Boosting is,
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by Minkowski’s inequality. By Bühlmann (2006) Theorem 1, the first term is op(1). By

Assumptions 1 and 5, the second term is

E

(
1

n

n∑
i=1

r2
i

)
≤ σ2

2

(
log `n
n

)
= Op

(
Cn−η

)
= op(1).

Hence,

E
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n

n∑
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(Fmn,i − E(xi|wi))2

∣∣∣∣∣W
]

= op(1).

�

A.2 Proof of Theorem 2

Lemma 1: Under Assumptions 3 and 4, R2
R,j = Op

(
γ̂2
j

)
.

Proof: Denote v̂∗m,i = v̂m,i − v̄m, and z∗j,i = zj,i − z̄j . Then

R2
R,j = 1−

∑n
i=1

(
v̂∗m,i − γ̂jz∗j,i

)2∑n
i=1 v̂

∗2
m,i

=

∑n
i=1 v̂

∗2
m,i −

∑n
i=1

(
v̂∗m,i − γ̂jz∗j,i

)2∑n
i=1 v̂

∗2
m,i

=

∑n
i=1

(
2v̂∗m,iγ̂jz

∗
j,i − γ̂2

j z
∗2
j,i

)
∑n

i=1 v̂
∗2
m,i

= 2γ̂j

∑n
i=1 v̂

∗
m,iz

∗
j,i∑n

i=1 v̂
∗2
m,i

− γ̂2
j

∑n
i=1 z

∗2
j,i∑n

i=1 v̂
∗2
m,i

= 2γ̂2
j

( ∑n
i=1 z

∗2
j,i∑n

i=1 v̂
∗
m,iz

∗
j,i

)∑n
i=1 v̂

∗
m,iz

∗
j,i∑n

i=1 v̂
∗2
m,i

− γ̂2
j

∑n
i=1 z

∗2
j,i∑n

i=1 v̂
∗2
m,i

= γ̂2
j

∑n
i=1 z

∗2
j,i∑n

i=1 v̂
∗2
m,i

.
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Under Assumptions 3 and 4, 1
n

∑n
i=1 z

∗2
j,i = Op (1) and 1

n

∑n
i=1 v̂

∗2
m,i = Op (1) . Then,

∑n
i=1 z

∗2
j,i∑n

i=1 v̂
∗2
m,i

=

Op (1) . Hence, R2
R,j = Op

(
γ̂2
j

)
. �

Lemma 2: Under Assumption 3, 1
n

∑n
i=1 zj,iûi

p→ E(zj,iui).

Proof:

1

n

n∑
i=1

zj,iûi =
1

n

n∑
i=1

zj,i

(
yi − xiβ̂2SLS

)
=

1

n

n∑
i=1

zj,i

[
(yi − xi

(
x′izS,i

(
z′S,izS,i

)−1
z′S,ixi

)−1 (
x′izS,i

(
z′S,izS,i

)−1
z′S,iyi

)]

=
1

n

n∑
i=1

zj,i

[
(yi − xiβ − xi

(
x′izS,i

(
z′S,izS,i

)−1
z′S,ixi

)−1 (
x′izS,i

(
z′S,izS,i

)−1
z′S,iui

)]

=
1

n

n∑
i=1

zj,i

[
ui − xi

(
x′izS,i

(
z′S,izS,i

)−1
z′S,ixi

)−1 (
x′izS,i

(
z′S,izS,i

)−1
z′S,iui

)]

=
1

n

n∑
i=1

zj,iui −
1

n

n∑
i=1

zj,ixi

(
x′izS,i

(
z′S,izS,i

)−1
z′S,ixi

)−1 (
x′izS,i

(
z′S,izS,i

)−1
z′S,iui

)
=

1

n

n∑
i=1

zj,iui + op(1)
p→ E(zj,iui). �

Lemma 3: Under Assumptions 1 to 5, 1
n

∑n
i=1 zj,iv̂m,i

p→ E(zj,ivi).

Proof: First, we rewrite 1
n

∑n
i=1 zj,iv̂m,i in terms of the strong learner Fm−1,i and the error
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term vi. We obtain,

1

n

n∑
i=1

zj,iv̂m,i =
1

n

n∑
i=1

zj,i (xi − Fm−1,i)

=
1

n

n∑
i=1

zj,i

xi − `n∑
j=1

γjzj,i +

`n∑
j=1

γjzj,i − Fm−1,i


=

1

n

n∑
i=1

zj,i

vi +

`n∑
j=1

γjzj,i − Fm−1,i


=

1

n

n∑
i=1

zj,ivi −
1

n

n∑
i=1

zj,i

Fm−1,i −
`n∑
j=1

γjzj,i



By Theorem 1, Fm−1,i
q.m.→

∑`n
j=1 γjzj,i implies Fm−1,i

p→
∑`n

j=1 γjzj,i. Hence

1

n

n∑
i=1

zj,iv̂m,i =
1

n

n∑
i=1

zj,ivi + op (1)
p→ E (zj,ivi) . �

Proof of Theorem 2:

For validity, ρj ∝ bj

nδj
. By Lemma 2,

√
n

(
1

n

n∑
i=1

zj,iûi

)
=



Op(bjn
1
2
−δj ) = op(1) if δj >

1
2

Op(bjn
0) = Op(1) if δj = 1

2

Op(bjn
1
2
−δj ) = Op(n

1
2
−δj ) if δj <

1
2 .
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Then

nR2
V,j = nρ̂2

j

=

(
1√
n

∑n
i=1 zj,iûi

)2(
1
n

∑n
i=1 z

2
j,i

) (
1
n

∑n
i=1 û

2
i

)

=



op (1) if bj = 0 (V1)

op (1) if bj 6= 0 or δj >
1
2 (V1)

Op (1) if bj 6= 0 and δj = 1
2 (V2)

Op
(
n1−2δj

)
if bj 6= 0 and 0 < δj <

1
2 (V2)

Op (n) if bj 6= 0 and δj = 0 (V3).

For relevancy, γj =
aj
nαj

, and nR2
R,j = Op

(
nγ̂2

j

)
by Lemma 1. From Lemma 3,

√
n

(
1

n

n∑
i=1

zj,iv̂m,i

)
=



Op(ajn
1
2
−αj ) = op(1) if αj >

1
2

Op(ajn
0) = Op(1) if αj = 1

2

Op(ajn
1
2
−αj ) = Op(n

1
2
−αj ) if αj <

1
2 .

As v̂∗m,i = v̂m,i − v̄m and z∗j,i = zj,i − z̄j , v̂∗m,i, and z∗j,i will have the same order as v̂m,i and
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zj,i. Then

nR2
R,j ∝ nγ̂2

j

=

( 1√
n

∑n
i=1 z

∗
j,iv̂
∗
m,i

1
n

∑n
i=1 z

∗2
j,i

)2

=



op (1) if aj = 0 (R1)

op (1) if aj 6= 0 and αj >
1
2 (R2)

Op (1) if aj 6= 0 and αj = 1
2 (R2)

Op
(
n1−2αj

)
if aj 6= 0 and 0 < αj <

1
2 (R2)

Op (n) if aj 6= 0 and αj = 0 (R3).

Notice that A = V1 ∩ R3 is the set of strongly valid and strongly relevant instru-

ments, B0 = V1 ∩ (R1 ∪R2) is the set of strongly valid and weakly relevant or irrelevant

instruments, and B1 = (V2 ∪ V3) ∩ (R1 ∪R2 ∪R3) is the set of weakly valid or invalid in-

struments that are not in A ∪ B0. For instrument in each of A, B0, and B1, ωj has the

following orders in probability:

ωj =

(
nR2
V,j

)r2(
nR2
R,j

)r1 =
op(1)

Op(nr1)
= op(n

−r1), Zj ∈ A,

ωj =

(
nR2
V,j

)r2(
nR2
R,j

)r1 =
op(1)

Op
(
nr1(1−2αj)

) = op(n
r1(2αj−1)), Zj ∈ B0,

ωj =

(
nR2
V,j

)r2(
nR2
R,j

)r1 =
Op(n

r2)

Op(nr1)
= Op

(
nr2−r1

)
, Zj ∈ B1.

We summarize the above results in Table 2, which adds the orders of ωj to Table

1. Because αj > 0 for Zj ∈ B0, we have op(n
r1(2αj−1)) ≤ min

{
op(n

r1(2αj−1)), Op (nr2−r1)
}

.
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Therefore, for any selected instrument Zjm by the DB algorithm,

Pr (ωjm < ωj)→ 1 for all Zj ∈ B0 ∪ B1, as n→∞,

so that Zj ∈ B0∪B1 will not be selected w.p.a.1. �
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Appendix B

Appendix for Chapter 3

B.1 Proof of Theorem 2:

Noting that
√
n
(
β̂FE-2SLS − β

)
d→ G′2ξ ∼ N (0, V2) , then

R
(
β̂FE-2SLS

)
= E

(
ξ′G′2WG′2ξ

)
= tr (WV2) .

Define Ψ∗ as a random variable without positive part trimming

Ψ∗ = G′2ξ −
(

τ

(h+ ξ)′B(h+ ξ)

)
G′ (h+ ξ) .

Then using the fact that the pointwise quadric risk of Ψ is strictly smaller than that of Ψ∗,

then we have

R
(
β̂c

)
= E

(
Ψ′WΨ

)
< E

(
Ψ∗′WΨ∗

)
.
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We can calculate that

E
(
Ψ∗′WΨ∗

)
= R

(
β̂FE-2SLS

)
+ τ2E

(
(h+ ξ)′GWG′(h+ ξ)(

(h+ ξ)′B(h+ ξ)
)2
)
− 2τE

(
(h+ ξ)′GWG′2ξ

(h+ ξ)′B(h+ ξ)

)
.

If Z ∼ N(0, V ) is q × 1, K is q × q, and η (x) is absolutely continuous, then by Stein’s

Lemma

E
(
η (Z + h)′KZ

)
= E tr

(
∂

∂x
η (Z + h)′KV

)
,

η (x) = x/ (x′Bx) , and

∂

∂x
η (x) =

1

x′Bx
I − 2

(x′Bx)2Bxx
′.

Therefore,

E

(
(h+ ξ)′GWG′2ξ

(h+ ξ)′B(h+ ξ)

)
= Etr

(
GWG′2V

(h+ ξ)′B(h+ ξ)
− 2GWG′2V(

(h+ ξ)′B(h+ ξ)
)2B(h+ ξ)(h+ ξ)′

)

= E

(
tr (GWG′2V )

(h+ ξ)′B(h+ ξ)

)
− 2Etr

(
GWG′2V(

(h+ ξ)′B(h+ ξ)
)2B(h+ ξ)(h+ ξ)′

)
.

Since

GWG′2V = WG′2V G = W (V2 − V1) ,

GWG′2V B = GWG′2V G (V2 − V1)−1G′ = GWG′,
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we have

Etr

(
GWG′2V(

(h+ ξ)′B(h+ ξ)
)2B(h+ ξ)(h+ ξ)′

)
= Etr

(
(h+ ξ)′GWG′(h+ ξ)(

(h+ ξ)′B(h+ ξ)
)2
)
.

Thus

E
(
ψ∗′Wψ∗

)
= R

(
β̂FE-2SLS

)
+ τ2E

(
(h+ ξ)′GWG′(h+ ξ)(

(h+ ξ)′B(h+ ξ)
)2
)

+ 4τEtr

(
(h+ ξ)′GWG′(h+ ξ)(

(h+ ξ)′B(h+ ξ)
)2
)
− 2τEtr

(
(W (V2 − V1))

(h+ ξ)′B(h+ ξ)

)
.

Define

B1 = (V2 − V1)−
1
2 G′

A∗ = (V2 − V1)
1
2 W (V2 − V1)

1
2 .

Note that GWG′2V P = GWG′ = B′1A
∗B1, B

′
1B1 = B.

Using the inequality b′ab ≤ (b′b)λmax (a) for symmetric a, and let

λmax (a) = λmax (W (V2 − V1)) = λ1.

Then

tr
(
B(h+ ξ)(h+ ξ)′GWG′2V

)
= (h+ ξ)′B′1A

∗B1(h+ ξ) (B.1)

≤ (h+ ξ)′B(h+ ξ)λ1.
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Using equation (B.1) and Jensen’s inequality, we have

E
(
ψ∗′Wψ∗

)
≤ R

(
β̂FE-2SLS

)
+
(
τ2 + 4τ

)
E

(
λ1

(h+ ξ)′B(h+ ξ)

)
− 2τEtr

(
(W (V2 − V1))

(h+ ξ)′B(h+ ξ)

)
= R

(
β̂FE-2SLS

)
− E

(
τ (2 (tr (W (V2 − V1))− 2λ1)− τλ1)

(h+ ξ)′B(h+ ξ)

)
≤ R

(
β̂FE-2SLS

)
− τ (2 (tr (W (V2 − V1))− 2λ1)− τλ1)

E
(
(h+ ξ)′B(h+ ξ)

) . (B.2)

Since tr(BV ) = tr
(
G (V2 − V1)−1G′V

)
= q, we have

E
(
(h+ ξ)′B(h+ ξ)

)
= h′Bh+ tr (BV )

= σ−4
u δ′tr (QΣ)V1 (V2 − V1)−1 V1tr (QΣ) δ + q.

Substituted into (B.2) we have

R
(
β̂c

)
< R

(
β̂FE-2SLS

)
− τ (2 (tr (W (V2 − V1))− 2λ1)− τλ1)

σ−4
u δ′tr (QΣ)V1 (V2 − V1)−1 V1tr (QΣ) δ + q

= R
(
β̂FE-2SLS

)
− τλ1 (2 (d− 2)− τ)

σ−4
u δ′tr (QΣ)V1 (V2 − V1)−1 V1tr (QΣ) δ + q

with 0 < τ ≤ 2
(

tr(W (V2−V1))
λ1

− 2
)
.

B.2 Proof of the inconsistency of FE-2SLS

In this appendix we show the inconsistency of the FE and the FE-2SLS estimators

in the panel data models.
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First, consider the FE estimator under endogeneity. From eq (4.4), the β̂FE is

obtained as

β̂FE =
(
X ′QX

)−1
X ′Qy = β +

(
X ′QX

)−1
X ′Qu,

Premultiplying X by Q,

QX = QZΠ +Qv. (B.3)

Let y∗ = Qy, X∗ = QX, Z∗ = QZ, u∗ = Qu, and v∗ = Qv, the β̂FE can be rewritten as

β̂FE = β +
(
X∗′X∗

)−1
X∗′u∗.

Define ξ = [Qu,Qv], and the variance-covariance matrix of ξ is

Ω =

 Ωu Ωuv

Ωvu Ωv

 . (B.4)

Then

E

(
1

n
X ′Qu

)
=

1

n
E
(
Π′Z∗′u∗ + v∗′u∗

)
=

1

n
E
(
v∗′u∗

)
= Ωuv,
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and

E

[
1

n
X ′QX

]
=

1

n
E
[
(ZΠ + v)′Q (ZΠ + v)

]
=

1

n
E
[
Π′Z∗′Z∗Π + Π′Z∗′v∗ + v∗′Z∗Π + v∗′v∗

]
=

1

n
Π′E

(
Z∗′Z∗

)
Π + Ωv.

If X is endogenous, Ωuv 6= 0. Then the OLS estimator β̂FE is inconsistent because

β̂FE − β
p→
[

1

n
Π′E

(
Z∗′Z∗

)
Π + Ωv

]−1

Ωuv 6= 0. (B.5)

Next, we show that the FE-2SLS estimator is inconsistent when there are too many instru-

ments. From (4.7), the β̂FE-2SLS is

β̂FE-2SLS =
(
X ′HZX

)−1
X ′HZy = β +

(
X∗′HZX

∗)−1
X∗′HZu

∗, (B.6)

where HZ = QZ (Z ′QZ)−1 Z ′Q = Z∗ (Z∗′Z∗)−1 Z∗′. Let the idempotent matrix HZ decom-

pose into HZ = ΨΛΨ, where Λ = diag(I`, 0nT−`), and Ψ is a nT × nT matrix that has

orthonormal properties. There exist an nT × (q + 1) matrix R = Ψ′ξΩ−1/2 that satisfies

E(R′R) = E(Ω−1/2ξ′ΨΨ′ξΩ−1/2) = E(Ω−1/2ξ′ξΩ−1/2) = Ik+1. (B.7)
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We partition R = [r1, r2]′, where r1 is `× q + 1. Then,

E

(
1

n
ξ′HZξ

)
=

1

n
E
(
ξ′ΨΛΨξ

)
(B.8)

=
1

n
Ω1/2E

(
Ω−1/2ξ′ΨΛΨξΩ−1/2

)
Ω1/2

=
1

n
Ω1/2E

(
R′ΛR

)
Ω1/2

=
1

n
Ω1/2E

[r′1, r
′
2]

 I` 0

0 0nT−`


 r1

r2


Ω1/2

=
1

n
Ω1/2E

(
r′1r1

)
Ω1/2

=
`

n
Ω,

which implies that E
(

1
nv
′HZv

)
= `

nΩv and E
(

1
nv
′HZu

)
= `

nΩvu. So,

E

(
1

n
X∗′HZX

∗
)

=
1

n
E
(
(Z∗Π + v∗)′HZ(Z∗Π + v∗)

)
(B.9)

=
1

n
E
(
Π′Z∗′HZZ

∗Π + Π′Z∗′HZv
∗ + v∗′HZZ

∗Π + v∗′HZv
∗)

=
1

n
E
(
Π′Z∗′Z∗Π

)
+

1

n
E
(
v∗′HZv

∗)
=

1

n
E
(
Π′Z∗′Z∗Π

)
+
`

n
Ωv,

and

E

(
1

n
X∗′HZu

∗
)

=
1

n
E
(
(Z∗Π + v∗)′HZu

∗) (B.10)

=
1

n
E
(
v′HZu

)
=
`

n
Ωvu.
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Hence,

β̂FE-2SLS − β
p→ `

n

[
1

n
Π′E

(
Z∗′Z∗

)
Π +

`

n
Ωv

]−1

Ωuv 6= 0, (B.11)

and β̂FE-2SLS is inconsistent unless `
n → 0.

112




