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ABSTRACT OF THE DISSERTATION

An Efficient Algorithm

Combining Cell Multipole and Multigrid Methods

for Rapid Evaluation of Dipole Iteration

in Polarizable Force Fields

by

Thuy Linh Dinh-Truong

Doctor of Philosophy in Chemistry

University of California San Diego, 2007

J. Andrew McCammon, Chair

Gary Huber, Co-chair

There has been continuing effort to develop polarizable force fields for com-

putational studies of biological systems. Applications of polarizable models in

molecular dynamics simulations include liquid water, ionic systems, alcohols, sol-

vated proteins, interfacial systems and membrane systems. An overview of the

advances in development of these polarizable force fields to date is presented. Re-
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cent studies have shown that the dynamic response to inhomogeneous environment

represented by the explicit inclusion of polarization is necessary for more realistic

descriptions of biosystems. Explicitly including polarization effects in force fields

requires self-consistent iteration to evaluate induced dipole moments. However, the

demanding computational cost using traditional solvers limits the system sizes that

can be fully described with explicit polarization. To make this calculation more

tractable for large-scale systems, an efficient method for computation of polarizable

interactions is needed.

An algorithm combining hierarchical cell multipole (CMM) and multigrid

(MG) schemes is developed for fast computation of these interactions, using polar-

izable point dipoles. This scheme separates polarizable interactions into direct and

indirect components, where we derived the CMM electric field terms for dipolar

systems to handle long-range interactions. A fast multigrid solver is applied to

further increase computational efficiency in solving these induced dipolar calcu-

lations. Performance of various iterative solvers, Jacobi, Gauss-Seidel, successive

over-relaxation, conjugate gradient, and our newly developed multigrid-multipole

(MG-CMM) solver are compared for test cases of varying system sizes to demon-

strate the efficiency of this algorithm for a uniform distribution. The MG-CMM

algorithm achieves fast convergence with reasonable accuracy. A matrix version of

the cell multipole method is derived and extended to include polarizable dipoles.

xii



In order to extend MG-CMM to treat non-uniform distributions, we have casted

the cell multipole method in matrix form and introduce an algebraic multigrid and

matrix-based cell multipole (AMG-CMMm) scheme to reduce the number of iter-

ations to self-consistency. For further speedup, AMG-CMMm can be parallelized

and the sparse matrix storage can be optimized. An efficient implementation of

this technique will significantly reduce the number of dipole iterations for large po-

larizable systems and help enhance the ability of force field methods to accurately

describe biomolecular processes.
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Chapter 1

Introduction

Polarization is the change in charge distribution due to an external elec-

tric field, namely the environment surrounding a given molecule.1 Conventional

non-polarizable force fields account for electrostatic polarization implicitly, de-

scribing induction in an average way with enhanced charges.2, 3, 4 These fixed

atomic charges are parameterized to reproduce molecular dipole moments that

are roughly 10-20% larger than those observed in gas phase to compensate for

the missing induction.5, 6, 7, 8, 9 Treatment of polarization in an average way does

not allow models to dynamically respond to a wide range of conditions within

their environment. For example, non-polarizable models cannot simulate the vari-

ations in dielectric behavior in interfacial regions such as the liquid-vapor inter-

face of water10 or the area between proteins and solvent.11 However, polarizable

1
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models can capture the change in dipole moments seen by a molecule crossing

from gas phase to liquid phase.10, 12, 13 This response to environment is impor-

tant in inhomogeneous systems such as ion channels where the interactions be-

tween proteins, lipids, ions and water within the channel environment are differ-

ent from those in bulk environment.14 Recent studies have shown that polariza-

tion effects are important in modeling structure and energetics of many processes

involving ion solvation,15, 16, 17, 18, 19, 20, 21, 22 hydrogen-bond formation,23, 24, 25, 26

protein folding,65 enzyme catalysis,27 and ion permeation.28, 29, 30 In particular,

the proper treatment of these many-body effects are necessary in modeling highly

polar interactions20, 31, 32, 33, 34 and cation-π interactions,35, 36, 37 due to the sub-

stantial polarization contributions to the total energy. By explicitly incorporating

polarization effects, molecular mechanics force fields will have the added flexibility

needed to respond to a wide range of surroundings, making them more realistic

and transferable to different systems.38

The next section presents an overview of current models commonly used

in molecular dynamics simulations to account for polarization effects using point

dipoles, fluctuating charges, or classical Drude oscillators.
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1.1 Polarization Models

Common approaches to explicitly include polarization are the polarizable

point dipole model, classical Drude oscillator model, and fluctuating charge model.

1.1.1 Polarizable Point Dipole Model

Since the early seventies, the most widely used method to account for po-

larization is the polarizable point dipole (PD) model, also sometimes referred to

as the atom dipole interaction model.41, 42, 43, 44, 45, 46, 47, 15, 16, 48, 49 This model has

been applied to ions,50, 51, 20, 55, 52 liquid water,53, 54, 55, 56 liquid-vapor interfaces,10

surface tension studies,57 proteins,58, 59, 60, 61, 62 and DNA.63 In the PD model, po-

larization is treated by the interaction of atomic induced dipole moments created

by permanent charges and inducible dipoles. An induced dipole moment ~µi on an

atom i is given by:

~µind,i = αi
~Ei

= αi( ~Ei,perm + ~Ei,ind)

= αi[
∑

j=1;j 6=i

qj~rij

r3
ij︸ ︷︷ ︸

+
∑

j=1;j 6=i

Tij~µj,ind

︸ ︷︷ ︸
]

~Ei,perm
~Ei,ind

(1.1)

where αi is the isotropic atomic polarizability and ~Ei is the total electric field

at atom i. The total electric field is composed of the electric field produced by
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the permanent charges, ~Ei,perm, and the electric field due to the other surrounding

induced dipoles, ~Ei,ind. The interaction between induced dipoles is described by

the dipole tensor:

Tij =
1
r3
ij

(
3~rij~r

>
ij

r2
ij

− I

)
(1.2)

where rij is the distance between of atoms i and j and I is the identity matrix.

The energy of the induced dipoles,69, 23, 38 Uind, is given by:

Uind = Ustat + Uµµ + Upol (1.3)

where Ustat is the energy of the induced dipoles in the field of permanent charges

(charge-dipole interaction), Uµµ is the energy of the induced dipoles in the field

due to other induced dipoles (dipole-dipole interaction), and Upol is the polarization

energy cost to distort the electron distributions of the atoms and generate induced

dipoles. Components of Uind can be expressed as:70, 29, 38

Ustat = −
n∑

i=1

~µi · ~Ei,perm

Uµµ = −1

2

n∑
i=1

n∑

j=1;j 6=1

~µi ·Tij · ~µj

Upol =
1

2

n∑
i=1

~µi · ~Ei =
1

2

n∑
i=1

~µi · α−1 · ~µj =
n∑

i=1

~µ>i ~µi

2αi

(1.4)
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Combining all of the above terms for the energy of induced dipoles gives:

Uind = −
n∑
i

~µi · ~Ei,perm − 1

2

n∑
i

∑

j 6=i

~µi ·Tij · ~µj +
1

2

n∑
i

~µi · ~Ei

This equation can be simplified to the form commonly seen in literature

by making the following substitution (Ei = Ei,perm +
∑
j 6=i

Tij · µj):

Uind = −
n∑
i

~µi · ~Ei,perm − 1

2

n∑
i

∑

j 6=i

~µi ·Tij · ~µj +
1

2

n∑
i

~µi · ( ~Ei,perm +
∑

j 6=i

Tij · ~µj)

= −
n∑
i

~µi · ~Ei,perm − 1

2

n∑
i

∑

j 6=i

~µi ·Tij · ~µj

+
1

2

n∑
i

~µi · ~Ei,perm +
1

2

n∑
i

∑

j 6=i

~µi ·Tij · ~µj

= −1

2

n∑
i

~µi · Ei,perm

(1.5)

Therefore, if the induced dipoles ~µi are known, the energetics of the system of

permanent charges and polarizable dipoles can be computed.

Given a system of atoms, equation (1.1) can be rearranged to form a matrix

equation for the computation of induced dipoles:

~µind = M~q + N~µind (1.6)

where ~q and ~µind contain the charges and induced dipoles of the atoms, and the

sub-blocks for M and N are:

Mij =

{
αi~rij

r3
ij

, if ri 6= rj

0, if ri = rj

(1.7)
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and

Nij =





αi

(
3~rij~r

>
ij

r5
ij

− I
r3
ij

)
, if ri 6= rj

0, if ri = rj

(1.8)

This system of equations can be solved either by self-consistent iteration43, 44 or

direct matrix inversion,69 both of which are computationally expensive. Matrix

inversion of an n× n matrix gives the exact solution with the computational cost

scaling as O(n3). Due to this expensive calculation, matrix inversion must be

run in parallel to be feasible for large systems.69, 71 With current computational

resources, iterative solvers have been the common approach for computing induced

dipoles.72, 73, 10, 74

This iterative process begins with an initial guess for induced dipoles, which

is generally set to equal to ~µ = α~Eperm or the induced dipoles from the previous

time step from the molecular dynamics simulation can be used.43, 44 New induced

dipoles are then refined by adding the electric field due to these approximate

induced dipoles to the electric field from the permanent charges. This computation

continues until the induced dipoles converge.

A shortcoming found in this model is that if two inducible dipoles come

too close to each other, their mutual dipolar interaction approaches infinity. This

model does not contain damping effects for close-range interactions to prevent

this “polarization catastrophe.”41, 46 This is due to point charges being a poor ap-

proximation for electron distributions at small distances.41, 46, 68, 69 This limitation
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is generally eliminated by using screening functions to dampen the electric field

from the induced dipoles at short distances which more closely imitates the electron

clouds within a molecule.46, 75, 76 These screening functions have been incorporated

into some polarizable models,53, 77, 54, 16, 18, 78, 72, 79, 80, 10, 56, 69, 81, 83 while others do

not include any screening function.50, 51, 48, 20, 34, 55, 13

1.1.2 Classical Drude Oscillator Model

A variant of the polarizable point dipole model is the classical Drude os-

cillator (DO),84, 92, 86 also known as the charge-on-spring89 or shell model,32 which

utilizes dipoles of finite length to describe polarization. This scheme manipulates

the geometry of the charge distribution to induce dipole moments.70 The induced

dipole is represented by a fixed core charge at a given atomic site connected to a

free floating massless opposite charge by a harmonic spring. The movement of the

Drude charge creates an induced dipole which is defined as:

~µi = αi
~Ei = −qi

~di (1.9)

where αi is the polarizability of the isotropic Drude atom, ~di is the vector pointing

from the fixed charge qi to its floating Drude charge, and ~Ei is the total electric

field. By creating induced dipoles, the atomic charge is redistributed between the

fixed charge and the floating charge. The harmonic spring constant ki is related
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to the charge of the Drude atom and the polarizability:4, 84

ki =
q2
i,Drude

αi
. (1.10)

The Uind for the classical Drude approach (Uind = Ustat + Uµµ + Upol) includes

the interaction between induced dipoles and permanent charges Ustat, the interac-

tion between induced dipoles with other dipoles Uµµ, and the polarization energy

Upol from the harmonic spring separating the two charges which is defined by the

following equations:38

Ustat = −
n∑

i=1

qi[~ri · ~Ei,core − (~ri + ~di) · ~Ei,Drude]

Uµµ =
1

2

n∑
i=1

∑

j 6=i

qiqj

[
1

|rij| −
1

|rij − ~dj|
− 1

|rij + ~di|
+

1

|rij − ~dj + ~di|

]

Upol =
1

2

n∑
i=1

kid
2
i

(1.11)

where ~Ei,core is electric field at the core charge, ~ri, and ~Ei,Drude is the field at

the Drude charge, ~ri + ~di. Notice that the DO model avoids the dipole-dipole

calculation found in the PD model, by replacing this interaction with a sum of

charge-charge interactions corresponding to core-core, Drude-Drude, and Drude-

core charge contributions. This advantage has recently sparked interest in apply-

ing polarization based on this Drude oscillator formalism to simulations of liquid

water,87, 88, 89, 90, 4 ionic systems,32, 91, 93 alkanes,94 and liquid-alcohol mixtures.95
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1.1.3 Fluctuating Charge Model

An alternative method to account for polarization is the fluctuating charge

(FQ) model96, 32, 97, 98, 99, 100, 11, 101 which simulates polarizability by allowing the

atomic charges to fluctuate with environment according to the principle of elec-

tronegativity equalization.110 This has been a popular method due to its low com-

putational cost and has been used to study various ionic systems,32, 102 liquid

water,96, 103, 104, 105 organic liquids,106, 100, 107 alkanes,108 and proteins.11, 109 The ef-

ficiency of this model stems from the charge-charge interactions where the system

dynamically responds to its environment by distributing charge between atoms in

the system until the electronegativities of the atoms are all equal.96 The energy of

the charges is:38

Uq =
∑

i

(U0
i + χ0

i qi +
1
2
Jiiq

2
i ) +

∑

i

∑

j>i

Jij(rij)qiqj (1.12)

where U0
i is the ground state energy of atom i, qi is the partial charge on atom i, χ0

i

is Mulliken’s definition of electronegativity,111 Jii is the “hardness” of the atom,112

and Jij(rij) coefficient is dependent on the distance between two atoms, generally

being equal to 1/rij. To find the partial charges on each atom, the energy of the

system is minimized by moving charges between atomic sites within a molecule,

while keeping the total charge and configuration conserved.96
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1.1.4 Comparison of Polarizable Models

We have reviewed three different ways to account for polarization. The

fluctuating charge model describes the interaction between polarizable atoms by

only considering charge-charge interactions, whereas the classical Drude oscillator

model uses a sum of four charge-charge interactions. The polarizable point dipole

model considers dipole-dipole interactions that greatly increase the complexity of

code implementation.38 Therefore, the FQ method has the advantage of computa-

tional efficiency as its computational cost is only a factor of 1.1 of non-polarizable

models.96 FQ also includes charge transfer from one atomic site to another to model

charge redistribution, which is not modeled in either PD or DO models.

In recent work by Masia et al, the accuracy of all three polarizable models

were examined in the investigation of small molecules.113, 114 Their studies showed

that the PD model had the best performance overall, accurately predicting prop-

erties compared to ab initio calculations due to its flexibility in description. The

DO model yielded adequate results, and the FQ model gave poorer results. These

results can stem from the limitation of the description of the polarizability. The

molecular polarizability described by the DO method is limited to being isotropic,

even for nonspherical systems as shown by equation (1.10), which is independent

of direction of the electric field.113 In contrast, the PD technique has isotropic

atomic polarizabilities, but displays anisotropic molecular polarizabilities.41 Stud-
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ies by Berne and coworkers have shown that the fluctuating charge method can-

not describe out-of-plane polarization which has been found inadequate for atomic

ions32 and systems containing cation-π interactions and bifurcated hydrogen bonds

important for drug-protein interactions.98, 115 To eliminate this weakness, hybrid

models combining FQ and PD have been developed where point dipoles are added

to improve the performance.98, 116, 117, 118

Each of these polarizable models have their strengths and weaknesses con-

cerning computational efficiency and accuracy. Striking a balance between effi-

ciency and accuracy is a major factor in choosing the appropriate approach for a

given problem as well as considering the transferability and applicability of these

methods in different biosystems. These methods have been applied to many stud-

ies to explore the polarization effects in biological systems, as is discussed in the

following section.

1.2 Advances in the Development of Polarizable

Force Fields

Over the last decade, there has been a continuing effort to develop polar-

izable force fields for computational studies of biological systems. The purpose

of this section is to give an overview of the applications of polarizable models
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in molecular dynamics simulations ranging from small molecules such as water,

alcohols, and other organic functional groups to large membrane proteins.

1.2.1 Polarizable Models for Water

Since modeling water is essential for modeling biological systems, liquid

water has been the primary focus of polarizable simulations for many years. To

date, commonly used water models are non-polarizable and describe polarization

in an average way. Popular non-polarizable water models, such as SPC (single

point charge)8 and TIPnP (transferable interaction potential),129 are typically pa-

rameterized to reproduce bulk liquid properties. These non-polarizable models for

liquids are unable to accurately reproduce properties over a wide range of densities

and temperature, limiting their transferability to only simulate the environment for

which they were parameterized.80, 119 Extending these water models to explicitly

include polarization response to their environment is naturally the next step in im-

proving the quality and flexibility of these models. Including explicit polarization

should allow the models to perform well in varying environments and conditions

such as the liquid-vapor interface and surface solvation.10 Due to the increased in-

terest in polarization effects, many water models have been developed to validate

the various polarization approaches by reproducing structural and dynamic prop-

erties. Polarizable water models are based on the SPC or TIPnP geometry and
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account for polarization using polarizable point dipoles (PD), fluctuating charges

(FQ), or classical Drude oscillators (DO).

Polarizable water models that explicitly include polarization effects date

back to the 1970s with polarization being represented by partial charges and in-

ducible point dipoles.44, 53, 77, 120 Some models include atom-centered

polarizabilities.50, 15, 34 Other approaches place a single molecular polarizability

site on the oxygen atom or along the bisector of the H-O-H angle.20, 18 Caldwell

et al found that including atomic polarizabilities on all atoms rather than a single

center molecular polarizability leads to an improvement in modeling liquid wa-

ter and water-ion clusters,20 although it significantly increases the computational

expense with the additional number of interaction sites. RPOL, a 3-site polariz-

able dipole water model, reproduced bulk water properties that are comparable to

ab initio calculations and to experiment, but was not fully optimized for clusters

and interfaces.34, 121, 13 The addition of a fourth site and reparameterization led

to better performance in a wide range of different environments including cluster,

liquid and liquid/vapor interfacial regions. This revised potential is generally re-

ferred to as the Dang-Chang (DC) polarizable water model (Dang97). Two other

recently developed water models are the Brodholt-Sampoli-Valluri (BSV)79, 122, 123

and “Thole-type” model (TTM2).124 Both of these models are also based on the

TIP4P geometry like DC. TTM2 includes Thole’s polarization damping scheme
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to simulate smearing charge density for a better description of the molecular

charge cloud.74 To further improve the description of molecular properties, partic-

ularly dipoles and quadrupoles, Ren and Ponder’s water model based on inducible

dipoles, AMOEBA, uses atom-centered polarizable point multipoles in addition to

monopole charges on atoms.125 This greatly improves the description of polariza-

tion as shown by the excellent performance in yielding cluster and liquid phase

properties.125 However, including these atomic multipoles significantly increases

the complexity and cost of the calculations.

In order to avoid computationally expensive dipole-dipole calculations and

for easier incorporation into current force fields, polarizable water models based

on Drude oscillators have been developed. All the interactions in these models are

point charge interactions, rather than dipoles. This formulation maintains the sim-

plicity of charge-charge calculations, but utilizes pairs of point charges separated

by harmonic springs to describe polarization. Sprik and Klein modified the TIP4P

water model using Drude oscillator formalism to reproduce water structure and

binding energetics.54 More recent water models based on Drude oscillators include

the Charge-on-Spring (COS) model by Yu et al,90 the simple water model (4-site)

with Drude polarizability (SWM4-DP) developed by Lamoureux and coworkers4,

and shell water models (SW-FLEX).88

Another alternative to computing dipole interactions is accounting for po-
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larization with fluctuating charges based on the electronegativity equalization

principle.110 Recently, fluctuating charges have been incorporated into two of the

most commonly used water geometries to create SPC-FQ and TIP4P-FQ polariz-

able water models.96 These fluctuating charge models proved to perform remark-

ably well for predicting bulk liquid properties and the aqueous solvation of ions and

small molecules such as amides. These methods are highly efficient, only increas-

ing the computational cost by a factor of 1.1 times compared to non-polarizable

models.96 However, this point charge model is limited to describing polarization

on the molecular plane where charges are confined to the atomic positions, which

proves to be inadequate in treating bifurcated hydrogen bonds and aromatic-π

interactions.96 This shortcoming can be eliminated by incorporating polarizable

dipoles to form hybrid models that can describe both polarization and charge

transfer.117 This combined model has been applied to a 5-site model of water,

POL5, that has been reported to perform reasonably well away from ambient con-

ditions, reproducing a wide range of structural and thermodynamic properties.118

With all of the polarizable water models developed, it is important to de-

termine the relative accuracy of these models. Table 1.1 contains a summary of

reported liquid-state properties computed from current non-polarizable and polar-

izable water models compared to experimental data at ambient conditions. We

compare various properties of liquid water to assess whether commonly used po-
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larizable and non-polarizable models can provide a reasonable representation of

water. At room temperature, the density of water is 0.997 g/cm3 under 1 atm

pressure.138 Overall, the polarizable and non-polarizable water models shown in

Table 1.1 produce densities and potential energies of the liquid in ambient condi-

tions are in reasonable agreement with experiment.

Examination of computed radial distribution functions (RDFs), gOO(r),

gOH(r), and gHH(r), provide insight into the liquid structure of water. A com-

parative study of RDFs predicted by various polarizable and non-polarizable mod-

els was done by Sorenson and coworkers.127 They found that polarizable water

models generally provided a better description of ambient water structure com-

pared to non-polarizable models. An exception to this is TIP5P, which yielded the

closest radial distribution functions compared to experimental RDFs completed

by Sorenson et al.127 The non-polarizable TIP5P water model includes off-center

charges to better describe the directionality of hydrogen-bonding.5, 126 Since the

non-polarizable 5-site water model yielded the most accurate liquid structure, it

is apparent that other water potentials can be improved by considering lone pairs

or off-center charges. A general problem of all polarizable and non-polarizable

water models is that the first peak is predicted to be much higher than that of

experiment.127, 122, 4, 124, 90 However, due to the various methods that can be used

to extract RDFs from measured diffraction data, there is a large margin of exper-
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imental uncertainty in the peak height.128 The second and third peaks predicted

by most water models are also in fairly good agreement with experiment, with the

exception of the 3-site non-polarizable water models, SPC and TIP3P, that give

very little structure beyond the first peak with unpronounced peaks showing very

little definition.129 It is observed that polarizable water models such as BSV, CC,

and DC can show peak shifts to larger distances with increasing temperature and

decreasing density that non-polarizable models cannot capture.122

There has been some debate on the true value of the liquid-state molecular

dipole moment, as it is impossible to directly measure the dipole moment of an

individual water molecule in condensed phases.130, 118 Unfortunately, ab initio cal-

culations yield a wide range of values varying from 2.4-3.0 D for the average dipole

moment of liquid water depending on the partitioning of the molecular charge

density.131, 38 Ab initio calculations by Silvestrelli and Parinello predicted dipole

moments ranging from 2.95-3.00 D.133 Gubskaya and Kusalik reported the dipole

moment of liquid water at ambient conditions to be 2.95 D which was extracted

from the experimental refractive index data.131 This is also in close agreement with

results obtained by Batista et al from ab initio calculations.132 From Table 1.1,

the non-polarizable water models significantly underestimate the dipole moment,

giving values ranging from 2.1-2.4 D, while polarizable potentials yield dipole mo-

ments within the range (2.5-2.8 D). Studies have shown that water model must
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exhibit a dipole moment within the range of 2.4-2.6 D in order to reproduce the

experimental value of the dielectric constant ε.135 Subsequently, non-polarizable

models also generally underestimate ε while polarizable models tend to overesti-

mate ε, showing some correlation between the magnitude of the dipole moment

with the dielectric constant.122, 136 However, this guideline does not always prove

true, as the computed dipole moment from the RPOL water model34 falls within

the given range, but still fails at predicting the dielectric constant. In addition,

the AMOEBA water model125 yields a larger dipole moment outside of this given

range, but predicts a dielectric constant close to the experimental value of 78.0.125, 3

TIP4P-FQ,96 PPC141 and SWM4-DP4 accurately predict water’s dielectric con-

stant as well as yielding a dipole moment within the range of 2.4-2.6 D. Due to

the general trend of polarizable models overestimating ε, it has been suggested by

Alfredsson et al that the gas phase polarizabilities used in most methods are not

appropriate for predicting liquid phase properties.161 Rather, the polarizabilities

should be reparameterized for the liquid phase. Because fluctuating charge mod-

els are successful in reproducing the dielectric environment, it has been proposed

by Guillot that charge transfer needs to be included in the model for a more ac-

curate description.130 It is also speculated that most models do not predict the

correct dipole moment and dielectric constant due to inaccurate description of

molecular quadrupoles.4 AMOEBA includes high-order atomic multipoles in their
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model to improve the description of quadrupole moments.125 To go beyond the

point charge representation, diffuse charges can be used to properly simulate the

electron cloud character. This is being explored by Jeon and coworkers with the

Polarflex flexible (PFG) water model,159 as well as Paricaud et al with polarizable

smeared charges in the Gaussian charge polarizable model (GCPM).160 The newly

developed water potential, Gaussian smeared charge model, of Paricaud et al has

demonstrated excellent modeling of phase equilibrium properties over a wide range

of temperatures. It is beneficial to consider polarization methods because they can

qualitatively describe the dielectric environment. These polarizable models can

simulate the change in environment by capturing the change in water dipole mo-

ments near the liquid/vapor interface that non-polarizable methods cannot model.

It is shown by Dang and Chang that far from the interface, the average dipole

moments of these water molecules are about 2.75 D, reaching values of bulk solu-

tion. Approaching the interface, the dipole moments become smaller and approach

the gas-phase value of 1.85 D, due to the change in the electric field induced by

surrounding water molecules.10

The self-diffusion coefficient is a measure of the dynamic movement of

water molecules. A number of water models, including BSV,79 COS/G2,90 and

SWM4-DP,4 yield values closest to the experimental value139 of 2.3 x 10−5 cm2/s

while SPC/E,144 RPOL,121 TIP4P-FQ,96 DC,10 TTM2,286 PFG,159 AMOEBA,125
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TIP4P/2005,287 and GCPM160 give reasonable self-diffusion coefficients. SPC-FQ96

and POL5 underestimates the diffusivity by more than 0.4 cm2/s. These water

models (SPC96, TIP3P144, TIP4P96 and SW-FLEX88) have much higher diffusion

coefficients, resulting in faster mobility than real water. In general, the diffusion

coefficients from polarizable water models are smaller than the non-polarizable

water models, resulting in values much closer to experiment.

It is also important to examine the predictive power of these models in

showing the temperature dependence of water properties. After all, the primary

goal of any of these models is to be transferable, with the ability to accurately

predict the variation of different properties over a large range of changing tem-

peratures and densities well beyond ambient conditions. As the temperature in-

creases to 277K, water reaches its maximum density of 0.99995g/cm3.90 Available

data from reported simulation results for the temperature at maximum density

are compared to experiment in Table 1.1. Recent water models, including PPC,141

BSV,122 TIP4P-FQ,143 and TIP5P145 have been shown to have a density maxi-

mum close to 277 K. Non-polarizable water models, SPC,146 TIP3P,146 TIP4P,146

and SPC/E147 fail to reproduce the density maximum, predicting the density maxi-

mum at temperatures well below experimental value by at least 30K, while POL5118

overestimates the temperature at maximum density by about 15K. A general trend

observed in most polarizable models, including those that yield accurate TMD, is



21

that the densities decrease too quickly with increasing temperature compared to

experimental data.141, 122, 148, 123, 130, 90, 149 This excessively strong dependence on

temperature, in turn, results in poor reproduction of the vapor-liquid coexistence

properties.150, 104 Reported values in literature for these critical properties from

various models are given in Table 1.2. All of these reported water models un-

derestimate the critical temperature, TC , showing that polarizable models do not

perform better than non-polarizable models in the case of phase transferability.

These vapor-liquid equilibrium properties have been shown to be highly sensitive

to changes in parameters by Kiyohara et al.150, 152 Chen et al implemented various

parameterizations and observed that either the structure or vapor-liquid equilib-

rium properties can be simulated accurately using current polarizable models, but

not simultaneously.104 It has been suggested by Jedlovszky and Richardi that repa-

rameterization to fit these properties would greatly improve performance under

varying conditions.122 Patel and Brooks have proposed that variation in molecular

polarizabilities across different phases is needed for improvement, as the molecular

polarizability of water in condensed phase is 18% lower than in gas phase.109, 155, 156

Although most of the research has mainly focused on polarizable water

models, there has been a move towards including explicit polarization to study

more complicated systems beyond water such as solvated ions and interfaces, small

molecules, proteins and DNA/RNA. Ongoing effort has extended into the parame-
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terization of these polarizable force fields using small molecules that possess similar

characteristics to protein backbone and side-chain groups for more accurate calcu-

lations of structural and dynamic properties of biomolecular systems under a wide

range of conditions.

1.2.2 Studies of Solvated Ions, Interfaces, Ion Channels

The interactions in ion solvation have received considerable attention be-

cause of the important roles of ions as signaling molecules as well as their transport

throughout proteins and lipid membranes. An early study by Lybrand and Koll-

man focused on the hydration of enthalpy for several ions.50 An investigation into

the solvation of sodium and chloride ions in water clusters was done by Berkowitz

and coworkers.162, 163, 164, 165 They found that polarization effects are an important

factor in the reproduction of the correct ion-water cluster structure. Dang et al

employed polarizable dipole models to study the solvation of various ions including

lithium, sodium, chloride and fluoride ions in water clusters.19, 34 They found that

both fluoride and chloride ions are solvated near the surface of the water cluster.

Stuart et al used the TIP4P-FQ96 water model in conjunction with a polarizable

Drude chloride ion to describe the hydration of chloride ions.32, 102 They also ob-

served that the chloride ion preferred to remain at the water cluster which was

not shown with non-polarizable models. Grossfield et al computed solvation free
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energies of chloride, potassium and sodium ions in liquid water and formamide

using the AMOEBA198 polarizable force field, giving values that suggested the

solvation process in water is much more favorable for anions than cations.31, 166

Comparison between the energetics and entropic calculations of ion-water clusters

from polarizable and non-polarizable models show that surface solvation is due to

polarization, ion size, and charge.167 Continuing studies on the solvation behavior

of ions are currently being explored, including work by Piquemal and coworkers52

using AMOEBA for calcium and magnesium divalent cations in water and Lam-

oureux et al using SWM4-DP for the hydration of alkali and halide ions.93

The next step is to extend ion solvation models to describe the behavior

of ions across liquid/vapor interface systems.168, 169, 171, 172, 173, 174, 175 Archontis et

al applied the polarizable force field based on classical Drude oscillators, SWM4-

DP for the solvation of sodium and iodide ions near the water surface (air-water

interface).91, 30 It was observed that the iodide ions prefer surface solvation, while

sodium ions formed an adjacent, interior layer. Further study of salt solutions,

acids and bases at the liquid-vapor interface showed that heavy halides and hy-

droxides had an affinity towards the surface, while smaller halides and cations were

repelled from the interface.176, 169, 177, 178, 179, 180, 181, 182, 183 Examination of the free

energies of solvation led to the understanding that large polarizable ions prefer the

water surface due to the free energy gain when moving towards the interface as



24

well as an increased polarization, providing stronger water-ion interactions.30 Using

polarizable models for extensive studies in ion-specificity and ion transport across

the liquid-vapor interfaces contribute to further understanding of the mechanisms

in membrane ion channels. These techniques allow one to differentiate between

the response of water molecules at the protein-solvent interface and that of other

water molecules in bulk solution.

Recent studies in biological ion channels such as the gramicidin A (gA) chan-

nel have suggested that explicit polarization is needed to properly describe the het-

erogenous environment encountered by the ion during transport and reproduce the

energetics accurately.40, 184, 185, 186, 187 The gA dimer in a dimyristoylphosphatidyl-

choline (DMPC) bilayer forms a narrow potassium ion channel that rejects anions

and binds to divalent cations.187 Particularly, non-polarizable models cannot show

that the water molecules closest to the ion are more polarized due to the electric

field of the ion.188 As with the water dipole moments, the backbone carbonyls on

the protein do not show the induced polarization from the ion in non-polarizable

models. Patel and coworkers have applied their polarizable protein force field11

with polarizable TIP4P-FQ water96 to study this hydrated protein system, while

the membrane itself is treated with the standard non-polarizable CHARMM force

field.109 In examining the different regions of the membrane, they reported that a

change in the average molecular dipole moment of water moving from the interior
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of the bilayer towards the bulk solution is observed. The water dipole moments ap-

proach the gas phase values in the lipid bilayer interior and increase to bulk values

away from the bilayer. The distribution of water dipole moments are also differ-

ent within the ion channel compared to the bulk solution, reflecting the change in

environment. Due to strong polarization between the gA dimer and water dipoles

inside the ion channel, the water density profiles showed slower dynamics and the

dipole moment distributions displayed a shift towards higher water dipole mo-

ments. Inspection of the dipole moments along the protein revealed a variation in

polarization between different residues with water molecules, demonstrating that

the polarizable force field is successful in describing the electrostatic interactions

with a heterogeneous environment.

1.2.3 Studies of Liquid Alcohols

Modeling liquid alcohols such as methanol and ethanol provide understand-

ing of hydrogen bonding behavior. These compounds possess amphiphilic charac-

ter which is important in studies of hydroxyl groups in amino acid side chains

such as serine, threonine, and tyrosine. One of the earliest contributions was

made by Caldwell and Kollman who developed a polarizable methanol model us-

ing polarizable dipoles to account for the induction effects.55 Gao et al studied

the polarization effects on a series of liquid alcohols including methanol, ethanol
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and propanol, observing that induction contributed about 10-20% to the total en-

ergy accompanied by a substantial increase in molecular dipole moment.189 It has

been demonstrated that the inclusion of explicit polarization is needed to capture

the change in dipole moment in interfacial systems, where the computed dipole

moments of alcohols approach gas phase values near the interface, and approach

bulk values far from the interface.172, 190 Dang and Chang’s polarizable model for

liquid methanol predicted values for structural properties, diffusion coefficient and

surface tension properties in close agreement with experimental data.172 Polariz-

able models can also reproduce the experimental dielectric constant of methanol,

whereas most non-polarizable models have failed to do so.95, 190 Additionally, po-

larizable models can capture the degree of hydrogen-bonding shown in the bimodal

shape of the molecular dipole distribution of methanol.175, 107 The small shoulder

of the distribution represents methanol molecules that do not accept hydrogen

bonds. Additional studies in liquid alcohols using polarizable models have exam-

ined different phases,191 pressure effects on structural and dynamical properties,175

computation of acidity constants,192 alcohol-water mixtures,193, 95 and liquid-vapor

equilibrium properties.107 Several groups have been involved in the development of

polarizable force fields for liquid alcohols including Patel et al107 using fluctuating

charges to account for induction effects, Noskov and coworkers193 using classical

Drude oscillators, the COS model by Yu et al,95 and the polarizable dipole DC
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model by Dang and coworkers.172, 175

1.2.4 Studies of Alkanes

A limited number of computational studies focusing on alkane compounds

using polarizable models have been reported in literature.84, 94, 108 Vorobyov and

coworkers have developed a polarizable alkane model based on classical Drude

oscillators.94 Parameterization of this alkane force field involved the use of model

compounds that could be transferable for long chain alkanes, important for accu-

rate treatment of lipid bilayers. Transferability of these parameters was tested on

simulations of heptane and decane. Computed properties are in reasonable agree-

ment with experiment, with the exception of the self-diffusion constants that un-

derestimate experimental values by about 5-10%. Patel et al studied hexane-water

interfacial properties using a polarizable force field based on fluctuating charges.108

They found that explicitly including polarization in computing the self-diffusion

constant improved the agreement with experiment. This polarizable hexane model

also properly describes the dielectric environment and shows the shift in dipole mo-

ment for the change from gas to condensed phase.
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1.2.5 Studies of Amines and Amides

Polarizable models have been applied to the study of structure, dynamics

and hydrogen-bonding behavior of amines and amides.55, 81, 194, 195 N-methylaceta-

mide (NMA) is a common model compound used in force field studies due to the

similarity of its structural and conformational characteristics to the peptide back-

bone of a protein.81 Rick et al explored the effects of conformational changes on

free energy calculations of solvated acetamide and N-methylacetamide using a po-

larizable model based on fluctuating charges.106 A shift towards increasing dipole

moment of water molecules near NMA is observed and NMA solvation free en-

ergies were closer to experiment than non-polarizable models. Similar studies in

the methylation of small amines and amides also showed that polarizable mod-

els substantially improve the solvation free energies compared to non-polarizable

models.81, 82 The polarization effects of hydrogen bonding between NMA dimers

was studied by Mannfors and coworkers.196 Polarization proved to be important

for transferability for more complex compounds and for the proper description

of hydrogen-bonding when the computed properties (electric potentials, dipole

moments, and polarizability) from polarizable models were compared to non-

polarizable models.
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1.2.6 Towards Studies of Macromolecular Systems

Some effort has been put forth towards producing a robust and reliable

polarizable force field for proteins and DNA. Kaminski et al have developed a

polarizable force field based on fluctuating bond-charge increments and atom-

centered inducible dipoles that has been tested on twenty amino acid dipeptides

in gas phase.197, 118, 117 Short molecular dynamics simulations of 1-picosecond were

performed on thirty-nine proteins in gas phase. This force field has since been

parameterized for condensed-phase simulations for small molecules that represent

functional groups found in organic compounds.157 This polarizable force field has

also been applied to bovine pancreatic trypsin inhibitor (BPTI) solvated in TIP4P-

FQ and RPOL polarizable water for a 2-nanosecond simulation.62 A fluctuating

charge force field by Patel, Mackerell and Brooks has been applied to six small

proteins in a polarizable TIP4P-FQ solvent.11, 100, 32, 96 They performed molecular

dynamics simulations on these proteins in solution, lasting for a few nanosec-

onds. Baucom and coworkers have carried out 25-nanosecond crystal simulations

of a double-stranded DNA decamer using the polarizable ff02 field in conjunction

with the POL3 polarizable water model.85 Anisimov et al have also run molec-

ular dynamic condensed-phase simulations for 1-nanosecond on a DNA octamer

in SWM4-DP polarizable water with sodium ions, using a polarizable force field

based on the classical Drude oscillator formalism.84 There is also an ongoing ef-
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fort to parameterize the AMOEBA force field for macromolecules.198, 31, 125, 149, 52

The fluctuating charge polarizable force field has also been recently applied to

the membrane protein, gramicidin A, by Patel and coworkers in a 5-nanosecond

simulation.109

Current work has demonstrated the feasibility for these force fields to run

stable simulations on small molecular systems on short timescales. Although there

is still no fully parameterized polarizable force field for macromolecular systems

that clearly eliminates all failures from non-polarizable force fields, polarizable

models successfully simulate the variation in dielectric environment with charge

redistribution and changing dipole moments that non-polarizable models cannot

describe. Polarizable models can also improve the description of dynamic prop-

erties. Further studies of polarization effects in large biomolecular systems is im-

peded by the demanding computational cost of explicitly including polarizable

interactions. The most expensive calculation is computing the induced dipoles

at each movement of the system. This computational cost of traditional solvers

limits the size of systems that can be fully described with the explicit inclusion of

polarization.
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1.3 Overview

The main objective of this study is to develop an efficient algorithm that ac-

celerates the computation of induced dipole moments for large-scale problems. Due

to all given limitations of the fluctuating charge and the Drude oscillator model,

this thesis will focus on incorporating polarizable point dipoles for the description

of the polarization. Since these dipole-dipole interactions are long-range, decay-

ing as r−3, an accurate and efficient treatment of long-range interactions needs

to be considered. In the next chapter, we will review current methods for long-

range electrostatic interactions including Ewald and multipole-based methods. We

will primarily focus on a multipole-based method, the cell multipole method, and

introduce our derivations for dipolar systems.

Including point dipoles when computing electrostatic interactions requires

substantial computational effort, so fast solvers are explored to accelerate these

calculations. Commonly used solvers such as the Jacobi, Gauss-Seidel, succes-

sive over-relaxation, conjugate gradient, and multigrid methods are described in

Chapter 3. These techniques are generally implemented to increase the rate of

convergence of brute force iterative calculations. We will concentrate on multigrid

methods because of their optimal scaling and potential for parallelization.

In Chapter 4, we will describe the development of an algorithm that com-

bines multigrid and cell multipole methods (MG-CMM) to accelerate the conver-
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gence in computing induced dipole moments. We also demonstrate its practical

implementation on a uniformly distributed one-dimensional model problem and

further examine the performance of this method. This algorithm is then extended

to include our matrix implementation of CMM with the algebraic multigrid method

for more general applicability and transferability. We conclude our work with a

summary of our algorithm development and perspectives for future work in Chap-

ter 5.
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Table 1.1: Density ρ in (g/cm3), total potential energy Upot in (kJ/mol), average
molecular dipole moment µmean in (D), dielectric constant ε, and self-diffusion
coefficient D(x10−5cm2/s), for the liquid-state water at ambient conditions as well
as the temperature Tρmax in (K) at the density maximum reported by various water
models from literature compared to experiment.

Model ρ Upot µmean ε D Tρmax

Non-Polarizable
SPC96, 146, 129 0.971 -41.9 2.27 68 3.3 228
TIP3P129 0.982 -41.1 2.35 82 5.19 182
TIP4P96, 146, 129 0.999 -42.3 2.18 53 3.6 253
SPC/E147, 2 0.998 -41.4 2.35 71 2.5 235
TIP5P144, 145 0.999 -41.3 2.29 82 2.62 277
TIP4P/2005287 0.998 – 2.31 60 2.08 278
Polarizable
RPOL34, 121 0.994 -41.6 2.62 106 2.4 –
SPC-FQ96 – -41.4 2.83 116 1.7 –
PPC141, 142 0.997 -41.4 2.51 77 2.6 277
TIP4P-FQ96, 143 0.998 -41.4 2.62 79 1.9 280
BSV79, 122 – -41.2 2.77 173.2 2.3 –
DC10 0.995 -41.9 2.75 – 2.1 –
SW-FLEX88 0.997 -41.7 2.69 116 3.66 –
POL5/TZ118 0.997 -41.5 2.71 98 1.81 293
TTM2-F286 1.046 -45.1 2.67 67.2 1.4 –
PRG159 – -41.9 2.59 101 2.44 –
AMOEBA125, 149 1.00 – 2.78 81 2.02 290
COS/G290 0.997 -41.3 2.59 87.8 2.3 –
SWM4-DP4 – -41.6 2.46 79 2.30 –
GCPM160 1.004 -44.8 2.72 84.3 2.26 260
Experiment
[Ref138, 90, 133, 149, 139, 140] 0.997 -41.5 2.9-3.0 78 2.30 277
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Table 1.2: Reported critical properties, liquid vapor temperature Tc in (K) and
critical density ρc in (g/cm3), of various water models compared to experiment.

Model Tc ρc

Non-Polarizable
SPC151 587 0.27
TIP4P152 580 0.33
SPC/E160 640 0.29
TIP5P152 538 0.29
TIP4P/2005153 640 0.31
Polarizable
SPC-FQ104 540 0.33
PPC151 606 0.30
TIP4P-FQ104 570 0.35
BSV151 615 0.28
DC170 565 0.28
GCPM160 642 0.33
Experiment
[Ref.285] 647 0.32



Chapter 2

Methods for Describing

Long-range Electrostatic

Interactions

Electrostatic interactions play an important role in the stability and func-

tion of biomolecular systems. In classical theory, electrostatic interactions are

governed by Coulomb’s law where the total electrostatic energy of the system is

derived as the pairwise summation of Coulomb interactions.1 For a charge distri-

bution, the electrostatic potential at a given point charge i is defined as:

V (~ri) =
n∑

j

qj

rij
. (2.1)

35
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Modeling long-range electrostatics has been a major challenge because of the high

computational cost for large-scale systems that is proportional to the square of

the number of particles. This chapter gives an overview of common methods for

computing long-range interactions in simulation of large biomolecules.

There are numerous ways of reducing the computational effort of repre-

senting these electrostatic interactions, depending on the efficiency and accuracy

needed for a given problem. The most efficient methods are cutoff schemes that

simply ignore long-range interactions completely, which eliminates the expensive

part of the calculation. This abrupt truncation has been shown to give rise to severe

inaccuracies, energetic instabilities, and artifacts in simulating liquids,199, 200, 201, 202

peptides/proteins,203, 204 and DNA.205 In order to overcome the limitations of these

cutoff methods, various Ewald summation and multipole-based methods have been

developed to treat electrostatic interactions.

2.1 Ewald Summation and

Other Lattice Summation Schemes

The Ewald summation method was first developed to study properties of

ionic crystals.206 This technique places all particles in a given system into a central

cell where each particle interacts with other particles in the system and all of their
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images in an infinite array of simulation cells.207, 208 Thus, a periodic system with

multiple images of each particle is created as shown in Figure 2.1. The total energy

Figure 2.1: Ewald system of a central cell and all of its images.

from the interactions inside the central cell and the interactions of the central cell

with all periodic images for a system of n atoms is:207

U =
1
2

n∑

i=1

n∑

j=1

∑

m∈Z3

qiqj

|rij + mL| (2.2)

where q is partial charge, rij = ~ri−~rj, m is the index for all periodic cells excluding

all self-interactions, and L is the length of the periodic cubic cell with dimensions

L × L × L. The summation in equation (2.2) can be converted into two fast
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converging series using the identity
(

1
r

= f(r)
r

+ 1−f(r)
r

)
to form:

1

ri,j,m

= (
1

ri,j,m

− erf(αri,j,m)

ri,j,m

)

︸ ︷︷ ︸
+

erf(αri,j,m)

ri,j,m︸ ︷︷ ︸

Real Space Reciprocal Space

(2.3)

where ri,j,m = |rij + mL| and the error function erf(r) = 2√
π

∫ r

0
e−x2

dx. This de-

composition divides the summation into short-range interactions represented by a

direct sum in real space and the long-range interactions described in the reciprocal

space by Fourier transforms. If the parameter α is chosen optimally, Ewald scales as

O(n3/2).224 To reduce the cost of computing the reciprocal part, fast Fourier trans-

form (FFT) methods can be applied. FFT requires the point charges to be replaced

with a mesh-based charge density. Two common mesh implementations209, 210 for

the Ewald sum are known as the particle-particle-particle-mesh (P3M) method

by Hockney and Eastwood211 and the particle mesh Ewald (PME) method by

Darden and coworkers.212 FFT-Ewald methods reduce the computational cost to

O(n log n).212, 213

2.2 Multipole-based Methods

Hierarchical methods were originally devised in astrophysics for simulat-

ing many-body interactions in gravitational problems.214, 215 The main strategy of

this method is to decompose a system into a hierarchy of cells, forming a tree
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structure with successive levels of refinement. A monopole center-of-mass approxi-

mation is used to compute the cell-cell interactions over large distances recursively

throughout the entire tree structure, reducing the computational cost to the order

of O(n log n) rather than O(n2). This scheme was extended to include higher-order

multipole expansions and conversion to local Taylor expansions to further speed

up the algorithm to form the fast multipole method (FMM) of order O(n).216, 217

The Cartesian version of this method, called the cell multipole method

(CMM), was devised in 1992 by Ding for large-scale molecular systems.218 CMM

can be more naturally incorporated into current molecular dynamics simulation

software typically set in Cartesian coordinates in comparison to the original fast

multipole methods described in spherical harmonics.219 The main advantage of

these multipole-based techniques is that they scale linearly with system size by

computing interactions in a hierarchical way. Recent improvements in the cell mul-

tipole method include the treatment of periodic systems220 and parallelization.221

There has been much debate about whether fast multipole methods or

Ewald methods are more efficient. FMM scales linearly with n, which is bet-

ter than the P3M method’s O(n log n) scaling. The particle mesh Ewald method is

generally faster than multipole-based methods on single processor machines.222 For

systems larger than 20,000 atoms, FMM has been shown to be the most efficient by

Figueirido.223 FMM’s efficiency for very large systems outweighs the cost of greater
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code complexity. FMM parallel implementations also scale better than P3M.224

This stems from problems in parallelizing FFT in the Ewald-FFT methods.222

Direct comparisons between Ewald summation and cell multipole methods have

shown CMM to perform dramatically faster with similar accuracy.225 The FMM ap-

proach is more efficient for highly non-uniform systems because of adaptive FMM

approaches,226, 227, 228 whereas the grid size grows dramatically faster as the system

size increases in P3M.224 In choosing the appropriate method, we have to strike a

balance between accuracy and efficiency to handle large-scale systems. Since our

goal is to develop an efficient method that can handle large systems, we will con-

centrate on multipole-based methods, specifically the cell multipole method that

scales linearly with the size of the system. The following sections will provide an

overview of the theory and implementation of CMM for long-range electrostatic

interactions.

2.2.1 Cell Multipole Method

CMM reduces the number of computations for long-range electrostatic Coulomb

interactions in large systems by representing groups of distant atoms with multi-

pole and Taylor series expansions. An advantage of this method is that it can be

easily implemented in parallel.221

System Decomposition. Consider a collection of particles is placed in
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a computational box, just large enough to enclose all of the atoms. This box of

particles is successively divided into cells, shown in Figure 2.2.

Figure 2.2: System decomposition, shown in two dimensions.

This hierarchy of cells forms a tree structure. This tree is a systematic way to

differentiate between nearby and distant atoms. At level 0 (root) of the tree struc-

ture, the computational box is a single cell containing the entire system of atoms.

At each level, each parent cell is subsequently divided into children cells. Accord-

ing to Ding, four atoms per cell achieves optimal accuracy in the calculations.218

Thus, the number of levels is:

Number of Levels = log8

(n
4

)
. (2.4)

At the deepest level of the tree structure, the number of cells is:

Number of Cells = 8numLevels (2.5)

with the size of each cell being:

Cell Size =
Size of Computational Box

Number of Cells
. (2.6)
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Cell Multipole Moments. After the system has been divided in a hi-

erarchical way, each cell can be represented by a single potential at the center of

the cell (~rA). The potential is divided into near field and far field contributions.

A cell’s near field includes itself and its nearest neighbors (any cell sharing its

boundary) whereas the far field refers to the rest of cells not included in the near

field at the same level. In the cell multipole method, an approximation is made for

the interactions between atoms in a given cell and other atoms more than one cell

away. Assuming that the far cells are significantly farther than the near particles,

this series expansion:70

1

|~R− ~ri|
=

1
R

[
1 +

~R · ~ri

R2
− 1

2

(ri

R

)2
+

3
2

(~R · ~ri)2

R4
− 3

2
(~R− ~ri)r2

i

R4
+

3
8

(ri

R

)4
− · · ·

]

(2.7)

where ~R = ~r − ~rA, is substituted in the Coulomb potential from equation (2.1).

These terms can be combined and rearranged in the form:

V (~r) = V (1)(~r) + V (2)(~r) + V (3)(~r) + · · · (2.8)

which yields the multipole expansion of the potential expressed in the form of an

infinite series of multipole moments, which is commonly truncated to four terms,

monopole (Z), dipole (µ), quadrupole (Q) and octopole (O):

V pole
A (r) =

Z

R
+

∑
α=x,y,z

µαRα

R3
+

∑
α=x,y,z

∑

β=x,y,z

QαβRαRβ

R5

+
∑

α=x,y,z

∑

β=x,y,z

∑
γ=x,y,z

OαβγRαRβRγ

R7
+ · · ·

(2.9)
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where ~R is equal to the difference between ~r and ~rA, ~r is the position vector of

any atom outside of cell A, ~rA is the center of cell A, and α, β, γ are any Cartesian

coordinates, x, y, or z. The monopole, dipole, quadrupole and octopole terms for

the deepest level are as follows:

Z =
∑

i

qi

µα =
∑

i

qiriα

Qαβ =
∑

i

qi

2

[
3riαriβ − δαβr2

i

]

Oαβγ =
∑

i

qi

2

[
5riαriβriγ − (riαδβγ + riβδγα + riγδαβ)r2

i

]

(2.10)

where riα is the α component of the position vector for atom i with respect to

the center of cell A. The multipole moments of each cell are computed at the

deepest level and translated to the higher levels. This is continued until the root

level is reached, where a multipole expansion representing the field created by all

atoms in the system is formed. In order to translate child cell moments to parent

cell moments, we must make the substitution: ~ri ← ~rik + ~Rk, to shift the cells.
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Therefore, the multipole moments of higher levels are given as:

Z(l−1) =
children∑

k=1

∑
i

qik =
children∑

k=1

Z
(l)
k

~µ(l−1) =
children∑

k=1

∑
i

qik(~rik + ~Rk) =
children∑

k=1

(~µ
(l)
k ) + Z

(l)
k

~Rk

Q
(l−1)
αβ =

children∑

k=1

∑
i

qik

2

[
3(riαk + Rαk)(riβk + Rβk)− δαβ|~rik + ~Rk|2

]

=
children∑

k=1

Q
(l)
αβk +

1

2

children∑

k=1

[
3(µ

(l)
αkRβk + µ

(l)
βkRαk)− 2δαβ(~µ

(l)
k · ~Rk)

]

+
1

2

children∑

k=1

Z
(l)
k

[
3RαkRβk − δαβ|~Rk|2

]

O
(l−1)
αβγ =

children∑

k=1

∑
i

qik

2
[5(riαk + Rαk)(riβk + Rβk)(riγk + Rγk)

− ((riαk + Rαk)δβγ + (riβk + Rβk)δγα + (riγk + Rγk)δαβ)]|~rik + ~Rk|2

=
children∑

k=1

O
(l)
αβγk −

2

3

children∑

k=1

∑

λ=x,y,z

(
δαβQ

(l)
γλk + δβγQ

(l)
αλk + δγαQ

(l)
βλk

)
Rλk

− 1

2

children∑

k=1

(δαβµ
(l)
γk + δβγµ

(l)
αk + δγαµ

(l)
βk)| ~Rk|2

−
children∑

k=1

((~µ
(l)
k · ~Rk)(δαβRγk + δβγRαk + δγαRβk))

+
15

6

children∑

k=1

(µ
(l)
αkRβkRγk + Rαkµ

(l)
βkRγk + RαkRβkµ

(l)
γk)

+
1

2

children∑

k=1

Z
(l)
k

[
5RαkRβkRγk − (δαβRγk + δβγRαk + δγαRβk)|~Rk|2

]

(2.11)

The general scheme for the upward pass is given in Algorithm 1.
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Algorithm 1 : Hierarchical CMM upward pass.

\* For the deepest level *\
do all cells at the deepest level

Compute cell multipole moments (Z, µ,Q, O)
end do
\* For the upper levels *\
do all remaining levels until root level is reached

do all cells at current level
Parent cell moments = translation & summation of child cell moments

end do
end do

Far Field Taylor Series Coefficients. Once the multipole moments

have been computed at all levels, the far field potential of all the atoms in a cell

A may be obtained by summing all the contributions from far cells. This far field

potential is represented by a Taylor series centered at the center of cell A. A

Taylor series expansion at each cell is constructed by a downward pass through

the tree structure. The root level and the next level down cannot be included in

the downward pass because they have no far field contributions. Subsequently, at

each cell in each level, Taylor series coefficients representing the distant cells are

computed, using the cell multipole moments from the upward pass. The Taylor

series expansion at each cell in the deepest level represents the weak, far field

interactions. Consider the first level as level A with a local Taylor series expansion
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being:

V T
A0

(~r) =
∑

A

V pole
A (~r − ~rA)

= V (0) +
∑

α

V (1)
α rα +

∑

αβ

V
(2)
αβ rαrβ + . . .

(2.12)

and the atom position ~r and cell position ~rA are with respect to the center of cell

C0 at the deepest level, V (0) is the sum of all constant terms,
∑
α

V
(1)
α is the sum of

all linear coefficients, and
∑
αβ

V
(2)
αβ is the sum of all second order coefficients. Then,

the Taylor series expansion of the child cell will consist of two terms. The first

term comes from shifting the parent’s Taylor series expansion to the center of the

corresponding child cell. The second term is the contribution from all far field

cells at the current level that were not included in the parent’s local expansion.

Therefore, the local expansions in lower levels (level B, C...) are:

V T
B0

(~r) = V T
A0

(~r + ~r0) +
∑
B

V pole
B (~r − ~rB)

V T
C0

(~r) = V T
B0

(~r + ~r0) +
∑

C

V pole
C (~r − ~rC)

(2.13)

where V T
A0

(~r + ~r0), V T
B0

(~r + ~r0), and so on are substituted with:

V T (~r + ~r0) = V (0) + V (1)(~r + ~r0) + V (2)(~r + ~r0)2 + V (3)(~r + ~r0)3 (2.14)

which represents shifting the center to the center of the child cell. Expanding each

multipole term in ~r and taking the first four terms in each expansion gives the
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charge terms:

Z

|~r − ~rA| =
Z

rA
+

Z~rA

rA
· ~r +

∑

αβ

Z(3rA,αrA,β − δαβr2
A)

2r5
A

rαrβ

+
∑

αβγ

3Z(5rA,αrA,βrA,γ − (δαβrA,γ + δβγrA,α + δαγrA,β))
r7
A

rαrβrγ

(2.15)

the dipole terms:

~µ · (~r − ~rA)
|~r − ~rA|3 =

~µ · ~rA

r3
A

+
[

~µ

r3
A

− 3(~µ · ~rA)~rA

r5
A

]
· ~r

+
∑

αβ

[
3[(µαrA,β + µβrA,α) + δαβ(~µ · ~rA)]

2r5
A

− 15rA,αrA,β

2r7
A

]
rαrβ

+
∑

αβγ

[−(µαδβγ + µβδαγ + µγδαβ)
2

+
5(µαrA,βrA,γ + µβrA,αrA,γ + µγrA,αrA,β)

2r7
A

+
5(~µ · ~rA)(δαβrA,γ + δαγrA,β + δβγrA,α)

2r7
A

+
−35(~µ · ~rA)rA,αrA,βrA,γ

2r9
A

]
rαrβrγ

(2.16)
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the quadrupole terms:

Q · (~r − ~rA) · (~r − ~rA)
|~r − ~rA|5 =

∑
ρν

QρνrA,ρrA,ν

r5
A

+
∑
αρν

[−(QανrA,ν + QραrA,ρ)
r5
A

+
5QρνrA,ρrA,νrA,α

r7
A

]
rα

+
∑

αβ

[∑
ρν

( −5
2r7

A

[QρνrA,ρrA,νδαβ + QραrA,ρrA,β + QανrA,νrA,β + QρβrA,ρrA,α

+QβνrA,νrA,α] +
35QρνrA,ρrA,νrA,αrA,β

2r9
A

)
+

Qαβ

r5
A

]
rαrβ

+
∑

αβγ

[
5(QαβrA,γ + QβγrA,α + QαγrA,β)

3r7
A

+
∑

ρ

(
5(QαρrA,ρδβγ + QβρrA,ρδγα + QγρrA,ρδγα)

3r7
A

+
−35(QαρrA,ρrA,βrA,γ + QβρrA,ρrA,αrA,γ + QγρrA,ρrA,αrA,β)

3r9
A

)

+
∑
ρν

(−35QρνrA,ρrA,ν(δαβrA,γ + δαγrA,β + δβγrA,α)
3r9

A

+
315QρνrA,ρrA,νrA,αrA,βrA,γ

r11
A

)]
rαrβrγ

(2.17)
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and the octopole terms:

Oαβγ · (~r − ~rA) · (~r − ~rA) · (~r − ~rA)
|~r − ~rA|7 =

∑

ρνλ

−OρνλrA,ρrA,νrA,λ

r7
A

+
∑
α


∑

ρν

3OρναrA,ρrA,ν

r7
A

+
∑

ρνλ

−7OρνλrA,ρrA,νrA,λrA,α

r9
A


 rα

+
∑

αβ

[∑
ρ

−3OραβrA,ρ

r7
A

+
∑
ρν

21(OρναrA,ρrA,νrA,β + OρνβrA,ρrA,νrA,α)
2r9

A

+
∑

ρνλ

OρνλrA,ρrA,νrA,λ

(
δαβ

r9
A

− 9rA,αrA,β

r11
A

)
 rαrβ

+
∑

αβγ

[
Oαβγ

r7
A

+
∑

ρ

−7rA,ν(OραβrA,γ + OρβγrA,α + OργαrA,β)
r9
A

+
∑
ρν

−7rA,ρrA,ν(Oρναδβγ + Oρνβδαγ + Oρνγδαβ)
2r9

A

+
∑
ρν

63rA,ρrA,ν(OρναrA,βrA,γ + OρνβrA,αrA,γ + OρνγrA,αrA,β)
2r11

A

+
∑

ρνλ

21rA,ρrA,νrA,λOρνλ(δαβrA,γ + δβγrA,α + δγαrA,β)
2r11

A

+
∑

ρνλ

−231rA,ρrA,νrA,λOρνλrA,αrA,βrA,γ

2r13
A


 rαrβrγ

(2.18)

where the indices α, β, γ, ρ, ν, and λ all correspond to Cartesian coordinates x,

y, or z.

The Taylor coefficients are computed for each far cell by collecting all the

constant terms for V (0), linear coefficients of ~r for V (1), and so on. By expand-

ing each multipole term and collecting like terms, the Taylor coefficients can be

computed at each level, and translated to the centers of the children cells. This
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process is repeated for all far field cells that were not part of the far field at a higher

level of the tree, which is demonstrated in Algorithm 2. When the deepest level is

reached, the far field can be combined with the near field pairwise interactions to

find the total interaction between all atoms in the system.

Algorithm 2 : Hierarchical CMM downward pass.

\* For the most upper level with far field contributions*\
do all cells at this level

Compute Taylor series coefficients of far field cells (V (0), V (1), V (2)...)
end do
\* For lower levels *\
do all remaining levels until deepest level is reached

do all cells at current level
Child cell coefficients = shifting far field from parent to child & addition

of all far field interactions at the current level
that were not accounted for at the parent level

end do
end do

Near field pairwise interactions. The interactions between a cell and

its nearest neighbors are calculated directly by atomic pairwise interactions. The

charges and positions of atoms in each cell and its nearest neighbors are used to

calculate the near field potential at the deepest level.

Vnear(ri) =
∑

jεnear

qj

|~ri − ~rj | (2.19)

Combination of far field and near field effects. The ultimate goal is

to evaluate the potential of each particle in the system. Thus, the far field and near

field contributions are summed for each atom in order to find the total interaction
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between atoms in the system:

V (~ri) = Vnear(~ri) + Vfar(~ri) (2.20)

2.2.2 Matrix Version of the Cell Multipole Method

The standard cell multipole method involves a great deal of bookkeeping of

the interaction lists of near cells and far cells at all levels. Efficient implementa-

tion of this method involves complex coding. This can be avoided by implementing

CMM in a matrix framework. The same computations can be performed by a se-

ries of sparse matrices. This is a similar technique to the matrix FMM method.229

Casting CMM in matrix form simplifies the implementation by circumventing the

use of pointers to tree cells and creates a more automated process for computa-

tion. Also, setting this algorithm in matrix form involves matrix-vector operations,

which lends itself to being more parallelizable. The underlying matrix structure can

be exploited for further improvements in efficiency and accuracy, such as further

factorizations or simplifications using different matrix properties. In this section,

we describe our matrix implementation of the cell multipole method (CMMm).

The hierarchical cell multipole method can be described by the following

matrix operations to compute the CMM potential for a system of charges:

1. R is the charge-to-multipole matrix. The matrix-vector product R~q converts

the charges of the individual atoms into cell multipoles at the deepest level
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of the tree, where ~q is the vector containing all the atom charges.

2. U(l−1) is the lower-to-upper multipole translation matrix, representing the

CMM upward pass. The product U(l−1)(R~q) converts the level l cell multi-

poles into level l − 1 cell multipoles.

3. T(l−1) is the multipole to Taylor series conversion matrix. The product

T(l−1)(U(l−1)R~q) converts the level l−1 cell multipoles into level l−1 Taylor

series coefficients.

4. D(l−1) is the upper-to-lower Taylor series translation matrix, representing

the CMM downward pass. The product D(l−1)(T(l−1)U(l−1)R~q) converts the

level l − 1 Taylor series coefficients into level l Taylor series coefficients.

5. T(l) is the level l multipole to Taylor series matrix. The product T(l)(R~q)

converts the level l cell multipoles into level l Taylor series coefficients.

6. Adding D(l−1)T(l−1)U(l−1)R~q +T(l)R~q = (U(l−1)T(l−1)U(l−1) +T(l))R~q com-

bines the component of the far field calculated at level l − 1 with the com-

ponent calculated at level l.

7. R> is the transpose of the charge-to-multipole matrix, which is used to in-

corporate the locations of the target atoms into the Taylor series expan-

sions. Thus, the far-field component of the electric field can be written as

Vfar = R>(D(l−1)T(l−1)U(l−1) + T(l))R~q.
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8. For each additional level of the matrix, the higher level T(l−1) is replaced

with a nested computation of steps 2 through 6, for example:

Vfar = R> (
D(l−1)

(
D(l−2)T(l−2)U(l−2) + T(l−1)

)
U(l−1) + T(l)

)
R~q.

The series of matrix operations described above are implicitly included in a single

matrix.

Single-level CMMm in One Dimension

To demonstrate the structure of the single-level CMM matrix form, we will

consider the simplest case in 1-D that does not have a hierarchy: a system of

16 atoms, corresponding to 4 cells with 4 atoms per cell. The particle-particle

interactions of this system are represented as a matrix A, where each element Aij

is the electrostatic interaction between source atom j and target atom i. With a

system of 16 atoms, A is a 16x16 matrix. This can be divided into 4x4 blocks

where each block AIJ represents the interaction between two cells in the deepest

level of the tree structure: source cell J and target cell I.



54

This block matrix can be separated into near-field and far-field interactions

A = Anear + Afar

A =




near near far far

near near near far

far near near near

far far near near




where the near field of a target atom includes atoms within the same cell and

neighboring cells. Thus, the blocks of matrix A that correspond to the near field

are the diagonal blocks AI,I (interactions within the same cell) and the blocks

next to the diagonal AI,I−1 and AI,I+1 (interactions with neighboring cells). The

interactions within the near field are computed exactly, as in the standard CMM

approach.

Now we will focus on a particular block that corresponds to far-field inter-

actions. Block A1,4 represents the far-field interaction between source cell 4 and

target cell 1.

V1,4 =




A1,13 A1,14 A1,15 A1,16

A2,13 A2,14 A2,15 A2,16

A3,13 A3,14 A3,15 A3,16

A4,13 A4,14 A4,15 A4,16







q13

q14

q15

q16




In order to derive the matrix elements, we first examine the expression for

the far field component of the potential Vfar for an atom i in cell 1 due to all atoms
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in cell 4:

Vfar(~ri − ~rc4) = V (0) + V (1)ri + V (2)r2
i + V (3)r3

i ,

where

V (0) =
Z

|rc4|
+
−µrc4

|rc4|3
+

Qr2
A

|rc4|5
+
−Or3

c4

|rc4|7

V (1) =
Zrc4

|rc4|3
+
−2µ

|rc4|3
+

3Qrc4

|rc4|5
+
−4O

|rc4|5

V (2) =
2Z

|rc4|3
+
−6µrc4

|rc4|5
+

12Q

|rc4|5
+
−20Orc4

|rc4|7

V (3) =
6Zrc4

|rc4|5
+
−24µ

|rc4|5
+

60Qrc4

|rc4|7
+
−120O

|rc4|7
where rc4 is the center of the source cell 4. This can be rearranged into an expres-

sion in terms of the multipole moments Z, µ, Q, and O:

Vfar(~ri − ~rc4) =

(
1

|rc4|
+

rc4

|rc4|3
ri +

2

|rc4|3
r2
i +

6rc4

|rc4|5
r3
i

)
Z

+

(−rc4

|rc4|3
+

−2

|rc4|3
ri +

−6rc4

|rc4|5
r2
i +

−24

|rc4|5
r3
i

)
µ

+

(
r2
c4

|rc4|5
+

3rc4

|rc4|5
ri +

12

|rc4|5
r2
i +

60rc4

|rc4|7
r3
i

)
Q

+

(−r3
c4

|rc4|7
+

−4

|rc4|5
ri +

−20rc4

|rc4|7
r2
i +

−120

|rc4|7
r3
i

)
O

This can be rewritten in terms of the individual particle charges qj using the
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definitions of Z, µ, Q, and O:

Vfar(~ri − ~rc4) =

(
1

|rc4|
+

rc4

|rc4|3
ri +

2

|rc4|3
r2
i +

6rc4

|rc4|5
r3
i

) 16∑
j=13

qj

+

(−rc4

|rc4|3
+

−2

|rc4|3
ri +

−6rc4

|rc4|5
r2
i +

−24

|rc4|5
r3
i

) 16∑
j=13

qjrj

+

(
r2
c4

|rc4|5
+

3rc4

|rc4|5
ri +

12

|rc4|5
r2
i +

60rc4

|rc4|7
r3
i

) 16∑
j=13

qjr
2
j

+

(−r3
c4

|rc4|7
+

−4

|rc4|5
ri +

−20rc4

|rc4|7
r2
i +

−120

|rc4|7
r3
i

) 16∑
j=13

qjr
3
j

Then qj can be factored out of the equation giving a single summation.

Vfar(~ri − ~rc4) =
16∑

j=13

[(
1

|rc4|
+

rc4

|rc4|3
ri +

2

|rc4|3
r2
i +

6rc4

|rc4|5
r3
i

)

+

(−rc4

|rc4|3
+

−2

|rc4|3
ri +

−6rc4

|rc4|5
r2
i +

−24

|rc4|5
r3
i

)
rj

+

(
r2
c4

|rc4|5
+

3rc4

|rc4|5
ri +

12

|rc4|5
r2
i +

60rc4

|rc4|7
r3
i

)
r2
j

+

(−r3
c4

|rc4|7
+

−4

|rc4|5
ri +

−20rc4

|rc4|7
r2
i +

−120

|rc4|7
r3
i

)
r3
j

]
qj

Using this equation, block A1,4 is decomposed into a product of three ma-

trices in the following way:

A1,4 =




1 r1 r2
1 r3

1

1 r2 r2
2 r3

2

1 r3 r2
3 r3

3

1 r4 r2
4 r3

4







1
|rc4 |

−rc4

|rc4 |3
r2
c4

|rc4 |5
−r3

c4

|rc4 |7

rc4

|rc4 |3
−2
|rc4 |3

3rc4

|rc4 |5
−4
|rc4 |5

2
|rc4 |3

−6rc4

|rc4 |5
12

|rc4 |5
−20rc4

|rc4 |7

6rc4

|rc4 |5
−24
|rc4 |5

60rc4

|rc4 |7
−120
|rc4 |7







1 1 1 1

r13 r14 r15 r16

r2
13 r2

14 r2
15 r2

16

r3
13 r3

14 r3
15 r3

16




,

or A1,4 = R>
1 ∗ T4 ∗ R4, where R contains values of r for the atoms in a given

cell, T4 is the block of the multipole-to-Taylor series matrix corresponding to cell
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4, and R>
4 is the transpose of R4. Each block of A can be decomposed in a similar

manner. Since T4, or more precisely rc4, depends on the location of the cell center,

it can be computed once the size of the bounding box for the system is known. In

this case, each RI block is 4x4, but in general, the number of columns in RI is the

number of atoms in cell I.

The block decomposition of Afar for the four-cell case is:



R>
1 0 0 0

0 R>
2 0 0

0 0 R>
3 0

0 0 0 R>
4







0 0 T3 T4

0 0 0 T4

T1 0 0 0

T1 T2 0 0







R1 0 0 0

0 R2 0 0

0 0 R3 0

0 0 0 R4




=




0 0 R>
1 T3R3 R>

1 T4R4

0 0 0 R>
2 T4R4

R>
3 T1R1 0 0 0

R>
4 T1R1 R>

4 T2R2 0 0




(2.21)

The four-cell case gives a simplified version of the algorithm, involving only one

level of the tree structure.

Hierarchical CMMm in One Dimension

To illustrate the hierarchical algorithm with upward and downward passes,

we will now consider a system with 32 atoms, corresponding to 8 cells and four

atoms per cell. Instead of a simple decomposition into near and far fields at a
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single level, the far field interactions are further divided into levels (root, level 1,

level 2, and level 3 in this case). The multipoles for cell J at the deepest level

(level 3 in this case) are found by the following equation:

RJ · ~qJ =




ZJ

µJ

QJ

OJ




where ~qJ is the block of the original ~q vector corresponding to cell J , for example:

~q =




~q1

~q2

~q3

~q4

~q5

~q6

~q7

~q8




. (2.22)

As with the standard CMM, multipoles of higher levels are found by trans-
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lating and summing child cells:

Z l−1
parent cell =

∑

k∈children

Z l
k

µl−1
parent cell,x =

∑

k∈children

(µl
k,x + Z l

k
~Rk)

Qparent cell,xx =
∑

k∈children

(Ql
k + 2~Rkµ

l
k + ~R2

kZ
l
k)

Oparent cell,xxx =
∑

k∈children

(Ol
k + 3~RkQ

l
k + 3~R2

kµ
l
k + ~R3

kZ
l
k)

where ~Rk is the vector from the center of the higher-level cell to the center of the

lower-level cell, l is the lower level, and l − 1 is the higher level.

The transfer operator for the upward pass from level l to upper level l− 1,

U
(l−1)
J can be written as follows, where J is the index of the parent cell at level

l − 1:

U
(l−1)
J =




1 0 0 0 1 0 0 0

~R2J−1 1 0 0 ~R2J 1 0 0

~R2
2J−1 2~R2J−1 1 0 ~R2

2J 2~R2J 1 0

~R3
2J−1 3~R2

2J−1 3~R2J 1 ~R3
2J 3~R2

2J 3~R2J 1




.
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U
(l−1)
J operates in the following manner:

U
(l−1)
J ·




Z l
2J−1

µl
2J−1

Ql
2J−1

Ol
2J−1

Z l
2J

µl
2J

Ql
2J

Ol
2J




=




Z l−1
J

µl−1
J

Ql−1
J

Ol−1
J




.

The entire matrix U(l−1) is composed of the individual U
(l−1)
J blocks:

U(l−1) =




U(l−1)
1 0 0 0

0 U(l−1)
2 0 0

0 0 U(l−1)
3 0

0 0 0 U(l−1)
4




.

At the highest level with far field contributions (level 2), the multipole-to-

Taylor matrix has the same structure as in the four-cell example:

T(2) =




0 0 T
(2)
3 T

(2)
4

0 0 0 T
(2)
4

T
(2)
1 0 0 0

T
(2)
1 T

(2)
2 0 0




(2.23)
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The lower-level (level 3) multipole-to-Taylor matrix computes the interactions that

were not accounted for by the parent cells at level 2.

T(3) =




0 0 T
(3)
3 T

(3)
4 0 0 0 0

0 0 0 T
(3)
4 0 0 0 0

T
(3)
1 0 0 0 T

(3)
5 T

(3)
6 0 0

T
(3)
1 T

(3)
2 0 0 0 T

(3)
6 0 0

0 0 T
(3)
3 0 0 0 T

(3)
7 T

(3)
8

0 0 T
(3)
3 T

(3)
4 0 0 0 T

(3)
8

0 0 0 0 T
(3)
5 0 0 0

0 0 0 0 T
(3)
5 T

(3)
6 0 0




(2.24)

The matrix operator for the downward pass is defined similarly to the up-

ward pass. The following expression is used to shift the Taylor series by ~r0 from a

parent cell to a child cell:

V T
A0

(r + r0) = V (0) + V (1)(r + r0) + V (2)(r + r0)
2 + V (3)(r + r0)

3

Rearranging terms, the expression can be written as a polynomial in r:

V T
A0

(r + r0) =
(
V (0) + V (1)r0 + V (2)r2

0 + V (3)r3
0

)

+
(
V (1) + 2V (2)r0 + 3V (2)r2

0

)
r

+
(
V (2) + 3V (3)r0

)
r2

+ V (3)r3
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The coefficients on the powers of ~r can be stored in a matrix-vector product:




1 r0 r2
0 r3

0

0 1 2r0 3r2
0

0 0 1 3r0

0 0 0 1







V (0)

V (1)

V (2)

V (3)




=




V (0) + V (1)r0 + V (2)r2
0 + V (3)r3

0

V (1)r0 + 2V (2)r0 + 3V (3)r2
0

V (2) + 3V (3)r0

V (3)




The matrix on the left is denoted D
(l−1)
J , where l is the level of the child

cells, and J refers to a particular child cell. The entire matrix D(l−1) can be written

in the following block form:

D(2) =




D(2)
1 0 0 0

D(2)
2 0 0 0

0 D(2)
3 0 0

0 D(2)
4 0 0

0 0 D(2)
5 0

0 0 D(2)
6 0

0 0 0 D(2)
7

0 0 0 D(2)
8




The three-dimensional case can be defined similarly. To summarize, we have de-

rived a CMMm algorithm where a series of matrix operations is implicitly included
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in a single matrix as shown below.

V = V near +

[
R>

]([
D

]
·
[ ]

︸ ︷︷ ︸
·
[

U

]
+

[
T

])[
R

][
~q

]

([D] · [ ]︸︷︷︸ · [U] + [T])

([D] · [ ]︸︷︷︸ · [U] + [T])

. . .

2.2.3 Treatment of Polarizable Systems

Now we can focus our attention on dipolar systems, as this will be directly

applied to the dipole iteration problem. Kutteh and Nicholas give the CMM po-

tential terms for a dipolar system230, 219 which we will describe in this section. We

will then derive the field equations necessary for the dipole iteration problem at

hand using these potential terms. The total electric field at a particle i for a system

of charges and induced dipoles is:

~Ei =
n∑

j=1;j 6=i

(
qj~rij

r3
ij

+ Tij~µj) (2.25)

where

Tij =
1
r3
ij

(
3~rij~r

>
ij

r2
ij

− I

)
(2.26)

The cell multipole method generates a hierarchy of cells, where the interac-

tion of cells is divided into near field and far field contributions. A cell’s near field

includes itself and its nearest neighbors and is computed directly using equation
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(2.25). The far-field potential at a position ~r outside cell f due to all polarizable

dipoles inside the cell is:

V far
f (~r) =

∑
α

AαRα

R3
+

∑
αβ

Bαβ [3RαRβ − δαβR2]

R5

+
3

2

∑
αβγ

Cαβγ [5RαRβRγ − (Rαδβγ + Rβδαγ + Rγδαβ)R2]

R7
+ · · ·

(2.27)

with the corresponding multipole moments of the charges and dipoles at the deep-

est level:

Aα =
∑

i∈f

µiα

Bαβ =
∑

i∈f

µiαriβ

Cαβγ =
∑

i∈f

µiαriβriγ

(2.28)

and ~R = ~r − ~rf , ~rf is the center of cell f , R is the magnitude of ~R, and α, β, γ

are any Cartesian coordinates, x, y, or z. These lower cell multipole moments are

translated to upper cell multipole moments in the upward pass using the following

equations:

A(l−1)
α =

children∑

k=1

A
(l)
αk

B
(l−1)
αβ =

children∑

k=1

(
B

(l)
αβ + A(l)

α Rβk

)

C
(l−1)
αβγ =

children∑

k=1

(
C

(l)
αβγ + B

(l)
αβRγk + B(l)

αγRβk + A(l)
α RβkRγk

)

(2.29)

The multipole expansion can be rewritten as a Taylor series expansion in
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the following way:

V T
f (~r) = (Vf )0 +

∑
α

(
∂Vf

∂rα

)

0

rα +
1

2

∑

αβ

(
∂2Vf

∂rα∂rβ

)

0

rαrβ + · · ·

Given the Taylor series of the potential, the Taylor series coefficients for ~Efar
f (~r) can

be found by using the definition ~E = −~∇V , expanding the terms of the multipole

expansion as power series, and adding the corresponding terms together. Each

term of the multipole expansion is then expanded into a Taylor series at each cell.

Thus,

~Efar
f (~r) =




−∂V T
f

∂x

−∂V T
f

∂y

−∂V T
f

∂z




=




−
(

∂Vf

∂rx

)
0
−∑

α

(
∂2Vf

∂rα∂rx

)
0
rα − 1

2

∑
αβ

(
∂3Vf

∂rα∂rβ∂rx

)
0
rαrβ

−
(

∂Vf

∂ry

)
0
−∑

α

(
∂2Vf

∂rα∂ry

)
0
rα − 1

2

∑
αβ

(
∂3Vf

∂rα∂rβ∂ry

)
0
rαrβ

−
(

∂Vf

∂rz

)
0
−∑

α

(
∂2Vf

∂rα∂rz

)
0
rα − 1

2

∑
αβ

(
∂3Vf

∂rα∂rβ∂rz

)
0
rαrβ




Expanding the dipole term in terms of ~r yields:

V A
f =

∑
α

AαRα

R3
(2.30)

(
∂V A

f

∂rx

)

0

=
Ax

r3
f

− 3( ~A · ~rf )rf,x

r5
f(

∂2V A
f

∂rx∂ry

)

0

=
3rf,yAx

r5
f

+
3Ayrf,x

r5
f

− 15( ~A · ~rf )rf,xrf,y

r7
f(

∂2V A
f

∂rxrx

)

0

=
6Axrf,x

r5
f

− 12( ~A · ~rf )r
2
f,x

r7
f

(2.31)
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(
∂3V A

f

∂rx∂ry∂rz

)

0

=
15

r7
f

(Axrf,yrf,z + Ayrf,xrf,z + Azrf,xrf,y)− 105

r9
f

( ~A · ~rf )rf,xrf,yrf,z

(
∂3VA

∂rx∂ry∂ry

)

0

=
3

r7
f

(5Axrf,yrf,y + 5Ayrf,xrf,y + Ayrf,xrf,y − r2
fAx + 5( ~A · ~rf )rf,x)

+
105

r9
f

( ~A · ~rf )rf,x)− 105

r9
f

( ~A · ~rf )rf,xrf,yrf,z

(
∂3V A

f

∂rx∂rx∂rx

)

0

=
3

r7
f

(15Axr
2
f,x − 3Axr

2
f + 10( ~A · ~rf )rf,x) +

105

r9
f

( ~A · ~rf )r
3
f,x

(2.32)

All of these Taylor series coefficients will have the same form if any Cartesian

direction x, y, or z is substituted into the formula. They are also symmetric with

respect to the order of differentiation. The quadrupole and octopole terms can also

be expanded in the same way. Due to the length of these expressions, we include

them as well as their derivations in the appendix.

To compute the complete Taylor series coefficients, the A, B, and C terms

are added together, for example:

(
∂Vf

∂rx

)

0

=

(
∂V A

f

∂rx

)

0

+

(
∂V B

f

∂rx

)

0

+

(
∂V C

f

∂rx

)

0

In the downward pass, the Taylor series coefficients are shifted by ~r0 from

the parent cells to the child cells. These Taylor coefficients are then shifted to

deeper levels in the downward pass:
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~ET
f (~r + ~r0) =− ~∇V T

A0
(~r + ~r0)

=− ~∇V (0) +
∑

α

−~∇V (1)
α (rα + r0,α)

+
∑

αβ

−~∇V
(2)
αβ (rα + r0,α)(rβ + r0,β)

(2.33)

Each component of the electric field Eγ, where γ = x, y, or z can be

rewritten as a polynomial in terms of rx, ry, and rz:

ET
f,γ(~r + ~r0) =

(−∂Vf

∂rγ

)

0

+
∑

α

(−∂2Vf

∂rγ∂rα

)

0

(rα + r0,α)

+
∑

αβ

( −∂3Vf

∂rγ∂rα∂rβ

)

0

(rα + r0,α)(rβ + r0,β)

=

[(−∂Vf

∂rγ

)

0

+
∑

α

(−∂2Vf

∂rγ∂rα

)

0

r0,α +
∑

αβ

( −∂3Vf

∂rγ∂rα∂rβ

)

0

r0,αr0,β

]

+
∑

α

([(−∂2Vf

∂rγ∂rα

)

0

+ 2
∑

β

( −∂3Vf

∂rγ∂rα∂rβ

)

0

r0,β

]
rα

)

+
∑

αβ

([( −∂3V

∂rγ∂rα∂rβ

)

0

]
rαrβ

)

(2.34)

At the deepest level, the total interaction between atoms in the system is

the sum of far field and near field contributions for each atom: ~E = ~Enear + ~Efar.

The electric field computed by the cell multipole method is then inserted into

equation (1.1) to compute the induced dipoles of the system.
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CMMm for Dipolar Systems

The matrix formulation for CMM field terms for dipolar systems is similar

to the matrix-based CMM for permanent charge systems in the previous section.

The following matrix operations are performed to calculate the CMM electric field

for a system of point dipoles:

1. R is the dipole-to-multipole matrix. The matrix-vector product R~µ converts

the charges of the individual atoms into cell multipoles at the deepest level

of the tree, where ~µ is the vector containing all the atom charges.

2. U(l−1) is the lower-to-upper multipole translation matrix, representing the

CMM upward pass. The product U(l−1)(R~µ) converts the level l cell multi-

poles into level l − 1 cell multipoles.

3. T(l−1) is the multipole to Taylor series matrix. The product T(l−1)(U(l−1)R~µ)

converts the level l−1 cell multipoles into level l−1 Taylor series coefficients.

4. D(l−1) is the upper-to-lower Taylor series translation matrix, representing

the CMM downward pass. The product D(l−1)(T(l−1)U(l−1)R~µ) converts the

level l − 1 Taylor series coefficients into level l Taylor series coefficients.

5. T(l) is the level l multipole to Taylor series matrix. The product T(l)(R~µ)

converts the level l cell multipoles into level l Taylor series coefficients.
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6. Adding D(l−1)T(l−1)U(l−1)R~µ+T(l)R~µ = (U(l−1)T(l−1)U(l−1)+T(l))R~µ com-

bines the component of the far field calculated at level l − 1 with the com-

ponent calculated at level l.

7. R> is the transpose of the charge-to-multipole matrix, which is used to

plug the locations of the target atoms into the Taylor series expansions.

Thus the far-field component of the electric field can be written as ~Efar =

R>(D(l−1)T(l−1)U(l−1) + T(l))R~µ.

8. For each additional level of the matrix, the higher level T(l−1) is replaced

with a nested computation of steps 2 through 6, for example:

~Efar = R> (
D(l−1)

(
D(l−2)T(l−2)U(l−2) + T(l−1)

)
U(l−1) + T(l)

)
R~µ.

Single-level CMMm for Dipolar Systems in One Dimension

We again demonstrate the structure for this system with a 1-D example

of 16 atoms, corresponding to 4 cells with 4 atoms per cell. The particle-particle

interactions of this system are represented in a 16×16 matrix A in this case, where

each element Aij is the electrostatic interaction between source atom j and target

atom i. This can be divided into 4x4 blocks where each block AIJ represents the

interaction between two cells in the deepest level of the tree structure: source cell

J and target cell I.

This block matrix is separated into near-field and far-field interactions A =
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Anear +Afar, where the near field of a target atom includes atoms within the same

cell and neighboring cells. Thus, the blocks of matrix A that correspond to the near

field are the diagonal blocks AI,I (interactions within the same cell) and the blocks

next to the diagonal AI,I−1 and AI,I+1 (interactions with neighboring cells). The

interactions within the near field are computed exactly, as in the standard CMM

approach.

Now we will focus on a particular block that corresponds to far-field inter-

actions. Block A1,4 represents the far-field interaction between source cell 4 and

target cell 1.

E1,4 =




A1,13 A1,14 A1,15 A1,16

A2,13 A2,14 A2,15 A2,16

A3,13 A3,14 A3,15 A3,16

A4,13 A4,14 A4,15 A4,16







µ13

µ14

µ15

µ16




The expression for E for an atom i in cell 1 due to all atoms in cell 4 is:

E(ri − rc4) =

(
2

|rc4|3
− 6rc4

|rc4|5
ri +

24

|rc4|5
r2
i

)
Ax

+

(−6rc4

|rc4|5
+

24

|rc4|5
ri − 120rc4

|rc4|7
r2
i

)
Bxx

+

(
12

|rc4|5
− 60rc4

|rc4|7
ri +

360

|rc4|7
r2
i

)
Cxxx.

where rc4 is the center of the source cell 4. This can be rewritten in terms of the
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individual particle dipoles µj using the definitions of A, B, and C:

E(ri − rc4) =

(
2

|rc4|3
− 6rc4

|rc4|5
ri +

24

|rc4|5
r2
i

) 16∑
j=13

µj

+

(−6rc4

|rc4|5
+

24

|rc4|5
ri − 120rc4

|rc4|7
r2
i

) 16∑
j=13

µjrj

+

(
12

|rc4|5
− 60rc4

|rc4|7
ri +

36

|rc4|7
r2
i

) 16∑
j=13

µjr
2
j .

Then µj can be factored out of the equation and it can be written as one summa-

tion.

E(ri − rc4) =
16∑

j=13

[(
2

|rc4|3
− 6rc4

|rc4|5
ri +

24

|rc4|5
r2
i

)

+

(−6rc4

|rc4|5
+

24

|rc4|5
ri − 120rc4

|rc4|7
r2
i

)
rj

+

(
12

|rc4|5
− 60rc4

|rc4|7
ri +

36

|rc4|7
r2
i

)
r2
j

]
µj.

Block A1,4 can be decomposed into a product of three matrices in the

following way:

A1,4 =




1 r1 r2
1

1 r2 r2
2

1 r3 r2
3

1 r4 r2
4







2
|rc4 |3

−6rc4

|rc4 |5
12

|rc4 |5

−6rc4

|rc4 |5
24

|rc4 |5
−60rc4

|rc4 |7

24
|rc4 |5

−120rc4

|rc4 |7
36

|rc4 |7







1 1 1 1

r13 r14 r15 r16

r2
13 r2

14 r2
15 r2

16




,

or A1,4 = R>
1 ∗ T4 ∗ R4, where R contains values of r for the atoms in a given

cell, T4 is block of the multipole-to-Taylor series matrix corresponding to cell 4,

and R>
4 is the transpose of R4. Each block of A can be decomposed in a similar

manner. T4, or more precisely rc4, depends on the location of the cell center, so
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it can be computed once the size of the bounding box for the system is known. In

this case, each RI block is 3x4, but in general, the number of columns in RI is the

number of atoms in cell I.

The block decomposition of Afar for the four-cell case is:




R>
1 0 0 0

0 R>
2 0 0

0 0 R>
3 0

0 0 0 R>
4







0 0 T3 T4

0 0 0 T4

T1 0 0 0

T1 T2 0 0







R1 0 0 0

0 R2 0 0

0 0 R3 0

0 0 0 R4




=




0 0 R>
1 T3R3 R>

1 T4R4

0 0 0 R>
2 T4R4

R>
3 T1R1 0 0 0

R>
4 T1R1 R>

4 T2R2 0 0




The four-cell case involves only one level of the tree structure.

Hierarchical CMMm for Dipolar Systems in One Dimension

To illustrate the hierarchical algorithm with upward and downward passes,

we will now consider a system with 32 atoms, corresponding to 8 cells and four

atoms per cell. The multipoles for cell J at the deepest level are found by the
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following equation:

RJ · ~µJ =




AJ,x

BJ,xx

CJ,xxx




where ~µJ is the block of the original ~µ vector corresponding to cell J . The entire

vector ~µ is decomposed as:

~µ =




µ1

µ2

µ3

µ4

µ5

µ6

µ7

µ8




The multipoles of higher levels are found by translating and adding child

cells, accordingly:

A
(l−1)
cell,x =

∑

k∈children

A
(l)
k ,

B
(l−1)
cell,xx =

∑

k∈children

B
(l)
k,xx + A

(l)
k Rk,

C
(l−1)
cell,xxx =

∑

k∈children

C
(l)
k,xxx + 2B

(l)
k Rk + A

(l)
k R2

k,

where Rk is the difference between the center of the higher-level cell to the center

of the lower-level cell, l is the lower level, and l − 1 is the higher level.
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The transfer operator for the upward pass from level l to upper level l− 1,

U
(l−1)
J can be written as follows, where J is the index of the parent cell at level

l − 1:

U
(l−1)
J =




1 0 0 1 0 0

~R2J−1 1 0 ~R2J 1 0

~R2
2J−1 2~R2J−1 1 ~R2

2J 2~R2J 1




.

U
(l−1)
J operates in the following manner:

U
(l−1)
J ·




Al
2J−1,x

Bl
2J−1,xx

C l
2J−1,xxx

Al
2J,x

Bl
2J,xx

C l
2J,xxx




=




Al−1
J,x

Bl−1
J,xx

C l−1
J,xxx




.

The entire matrix U(l−1) is composed of the individual U
(l−1)
J blocks:

U(l−1) =




U
(l−1)
1 0 0 0

0 U
(l−1)
2 0 0

0 0 U
(l−1)
3 0

0 0 0 U
(l−1)
4




.

At the highest level with far field contributions (level 2), the multipole-to-
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Taylor matrix is given as:

T(2) =




0 0 T
(2)
3 T

(2)
4

0 0 0 T
(2)
4

T
(2)
1 0 0 0

T
(2)
1 T

(2)
2 0 0




(2.35)

The lower-level (level 3) multipole-to-Taylor matrix computes the interactions that

were not accounted for by the parent cells at level 2.

T(3) =




0 0 T
(3)
3 T

(3)
4 0 0 0 0

0 0 0 T
(3)
4 0 0 0 0

T
(3)
1 0 0 0 T

(3)
5 T

(3)
6 0 0

T
(3)
1 T

(3)
2 0 0 0 T

(3)
6 0 0

0 0 T
(3)
3 0 0 0 T

(3)
7 T

(3)
8

0 0 T
(3)
3 T

(3)
4 0 0 0 T

(3)
8

0 0 0 0 T
(3)
5 0 0 0

0 0 0 0 T
(3)
5 T

(3)
6 0 0




(2.36)

In the downward pass, the Taylor series for the electric field is shifted from

parent cells to child cells:

ET
A0

(r + r0) = E(0) + E(1)(r + r0) + E(2)(r + r0)
2
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Rearranging terms, the expression can be written as a polynomial in ~r:

ET
A0

(r + r0) =
(
E(0) + E(1)r0 + E(2)r2

0

)

+
(
E(1) + 2E(2)r0

)
r

+ E(2)r2

The coefficients on the powers of ~r can be stored in a matrix-vector product in the

following way:



1 r0 r2
0

0 1 2r0

0 0 1







E(0)

E(1)

E(2)




=




E(0) + E(1)r0 + E(2)r2
0

E(1)r0 + 2E(2)r0

E(2)




The matrix on the left is denoted D
(l−1)
j , where l is the level of the child cells, and

j refers to a particular child cell. The entire matrix D(l−1) can be written in the

following block form:

D(2) =




D
(2)
1 0 0 0

D
(2)
2 0 0 0

0 D
(2)
3 0 0

0 D
(2)
4 0 0

0 0 D
(2)
5 0

0 0 D
(2)
6 0

0 0 0 D
(2)
7

0 0 0 D
(2)
8



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Hierarchical CMMm for Dipolar Systems in Three Dimensions

We can now imagine the system to be contained in a three-dimensional

cubic box. For simplicity, we will assume that the number of cells nc in the system

is a perfect cube (the system is 3
√

nc × 3
√

nc × 3
√

nc). We will further assume that

3
√

nc is a power of 2, so that the child cells will be evenly divided into parent cells

at each step of the upward and downward passes. Thus, the number of cells at

level l of the system is n
(l)
c = 8l.

Indexing cells. In three dimensions, it is not as easy to visualize the

matrix elements. These matrices remain sparse, but their structures are much

more complex. The way in which the cells are indexed plays a larger role in the

efficiency of implementation. There are many ways to index the cells. Here, each

cell is given an index number < i, j, k > starting with < 1, 1, 1 > at one corner of

the 3-D box and counting in the x, y, and z directions respectively. The following

would be the simplest ordering of the cells in the case of a system of 512 total cells:

< 1, 1, 1 >, < 1, 1, 2 >, < 1, 1, 3 >, < 1, 1, 4 >, < 1, 1, 5 >, < 1, 1, 6 >, < 1, 1, 7 >,

< 1, 1, 8 >, < 1, 2, 1 >, < 1, 2, 2 >, < 1, 2, 3 >, < 1, 2, 4 >, . . . < 1, 8, 7 >,

< 1, 8, 8 >, < 2, 1, 1 >, < 2, 1, 2 >, . . . , < 8, 8, 7 >, < 8, 8, 8 >. This ordering

was chosen for ease of determining which cell each atom belongs in. Further

formulation in the ordering of atoms to represent nearby cells in the hierarchy

will increase the efficiency of the data structure and enhance parallelizability. The
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child cells of cell < i, j, k > at level l are the following 8 cells at level l + 1:

< (2i− 1), (2j− 1), (2k− 1) >, < (2i− 1), (2j− 1), 2k >, < (2i− 1), 2j, (2k− 1) >,

< (2i−1), 2j, 2k >, < 2i, (2j−1), (2k−1) >, < 2i, (2j−1), 2k >, < 2i, 2j, (2k−1) >,

and < 2i, 2j, 2k >.

Upward Pass. The dimensions of the vector representing the cell multi-

poles of a cell I correspond to the following:

In 1-D, the vector is 3× 1: [AI,x, BI,xx, CI,xxx]
>.

In 2-D, the vector is 14 × 1: [AI,x, AI,y, BI,xx, BI,xy, BI,yx, BI,yy, CI,xxx,

CI,xxy, CI,xyx, CI,xyy, CI,yxx, CI,yxy, CI,yyx, CI,yyy]
>.

In 3-D case, the vector is 39× 1: [AI,x, AI,y, AI,z, BI,xx, BI,xy, BI,xz, BI,yx,

BI,yy, BI,yz, BI,zx, BI,zy, BI,zz, CI,xxx, CI,xxy, CI,xxz, CI,xyx, CI,xyy, CI,xyz, CI,xzx,

CI,xzy, CI,xzz, CI,yxx, CI,yxy, CI,yxz, CI,yyx, CI,yyy, CI,yyz, CI,yzx, CI,yzy, CI,yzz, CI,zxx,

CI,zxy, CI,zxz, CI,zyx, CI,zyy, CI,zyz, CI,zzx, CI,zzy, CI,zzz]
>.

This vector does not appear explicitly in the CMM matrix decomposition,

but is implicitly present as the product R~µ, where ~µ is the initial vector containing

the dipoles of all atoms in the system:

~µ =




~µ1

~µ2

...

~µn




and ~µi = [µi,x, µi,y, µi,z]
> is the point dipole of atom i. Like the one-dimensional
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version of the method, the dipole-to-multipole matrix R has one block per cell at

the deepest level. Thus, the matrix R is 39nc×3n, where nc is the number of cells

and n is the number of atoms. Assuming four atoms per cell, block R1 of R has

this structure:

R1 =

266666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666664

1 0 0 1 0 0 1 0 0 1 0 0

0 1 0 0 1 0 0 1 0 0 1 0

0 0 1 0 0 1 0 0 1 0 0 1

r1x 0 0 r2x 0 0 r3x 0 0 r4x 0 0

r1y 0 0 r2y 0 0 r3y 0 0 r4y 0 0

r1z 0 0 r2z 0 0 r3z 0 0 r4z 0 0

0 r1x 0 0 r2x 0 0 r3x 0 0 r4x 0

0 r1y 0 0 r2y 0 0 r3y 0 0 r4y 0

0 r1z 0 0 r2z 0 0 r3z 0 0 r4z 0

0 0 r1x 0 0 r2x 0 0 r3x 0 0 r4x

0 0 r1y 0 0 r2y 0 0 r3y 0 0 r4y

0 0 r1z 0 0 r2z 0 0 r3z 0 0 r4z

r1xr1x 0 0 r2xr2x 0 0 r3xr3x 0 0 r4xr4x 0 0

r1xr1y 0 0 r2xr2y 0 0 r3xr3y 0 0 r4xr4y 0 0

r1xr1z 0 0 r2xr2z 0 0 r3xr3z 0 0 r4xr4z 0 0

r1yr1x 0 0 r2yr2x 0 0 r3yr3x 0 0 r4yr4x 0 0

r1yr1y 0 0 r2yr2y 0 0 r3yr3y 0 0 r4yr4y 0 0

r1yr1z 0 0 r2yr2z 0 0 r3yr3z 0 0 r4yr4z 0 0

r1zr1x 0 0 r2zr2x 0 0 r3zr3x 0 0 r4zr4x 0 0

r1zr1y 0 0 r2zr2y 0 0 r3zr3y 0 0 r4zr4y 0 0

r1zr1z 0 0 r2zr2z 0 0 r3zr3z 0 0 r4zr4z 0 0

0 r1xr1x 0 0 r2xr2x 0 0 r3xr3x 0 0 r4xr4x 0

0 r1xr1y 0 0 r2xr2y 0 0 r3xr3y 0 0 r4xr4y 0

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

0 r1zr1z 0 0 r2zr2z 0 0 r3zr3z 0 0 r4zr4z 0

0 0 r1xr1x 0 0 r2xr2x 0 0 r3xr3x 0 0 r4xr4x

0 0 r1xr1y 0 0 r2xr2y 0 0 r3xr3y 0 0 r4xr4y

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

0 0 r1zr1z 0 0 r2zr2z 0 0 r3zr3z 0 0 r4zr4z

377777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777775
where riα is the α-component of the position of particle i (α = x, y, or z). Cell

< 1, 1, 1 > was chosen as an example to simplify the subscripts on the matrix
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elements, but all subblocks of R have the same structure. The first three rows

of R1 are used to compute the Aα multipoles, rows 4-12 correspond to the Bαβ

multipoles, and rows 13-39 correspond to the Cαβγ multipoles.

The sparse matrix U(l−1) that translates the level l (child) multipoles to

level l − 1 (parent) multipoles is (39n
(l−1)
c ) × (39n

(l)
c ), where n

(l)
c is the number of

cells at level l and n
(l−1)
c = n

(l)
c

8
. Since the rows of U(l−1) correspond to the parent

cells at level l−1, we can simplify the notation for the elements of the matrix U(l−1)

by denoting p
(l−1)
<i,j,k> = 39(k − 1) + 39(n

(l−1)
c )1/3(j − 1) + 39(n

(l−1)
c )2/3(i− 1). This

is a row index referring to the section of U(l−1) that corresponds to cell < i, j, k >.

Similarly, the columns of U(l−1) correspond to the child cells at level l. Therefore,

the following column indices correspond to the 8 level l child cells of the level l− 1
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parent cell < i, j, k >:

c
(l,1)
<i,j,k> = 39(2k − 2) + 39(n(l−1)

c )1/3(2j − 2) + 39(n(l−1)
c )2/3(2i− 2)

c
(l,2)
<i,j,k> = 39(2k − 2) + 39(n(l−1)

c )1/3(2j − 2) + 39(n(l−1)
c )2/3(2i− 1)

c
(l,3)
<i,j,k> = 39(2k − 2) + 39(n(l−1)

c )1/3(2j − 1) + 39(n(l−1)
c )2/3(2i− 2)

c
(l,4)
<i,j,k> = 39(2k − 2) + 39(n(l−1)

c )1/3(2j − 1) + 39(n(l−1)
c )2/3(2i− 1)

c
(l,5)
<i,j,k> = 39(2k − 1) + 39(n(l−1)

c )1/3(2j − 2) + 39(n(l−1)
c )2/3(2i− 2)

c
(l,6)
<i,j,k> = 39(2k − 1) + 39(n(l−1)

c )1/3(2j − 2) + 39(n(l−1)
c )2/3(2i− 1)

c
(l,7)
<i,j,k> = 39(2k − 1) + 39(n(l−1)

c )1/3(2j − 1) + 39(n(l−1)
c )2/3(2i− 2)

c
(l,8)
<i,j,k> = 39(2k − 1) + 39(n(l−1)

c )1/3(2j − 1) + 39(n(l−1)
c )2/3(2i− 1)

(2.37)

The nonzero elements of U(l−1) are defined using these indices. Using equation

2.29, lower multipoles are translated to upper multipoles. The matrix elements

used to compute the parent cell multipoles A
(l−1)
<i,j,k>,x, A

(l−1)
<i,j,k>,y and A

(l−1)
<i,j,k>,z are

as follows:

U(l−1)h
p
(l−1)
<i,j,k>+1

i
,
h
c
(l,m)
<i,j,k>+1

i = 1

U(l−1)h
p
(l−1)
<i,j,k>+2

i
,
h
c
(l,m)
<i,j,k>+2

i = 1

U(l−1)h
p
(l−1)
<i,j,k>+3

i
,
h
c
(l,m)
<i,j,k>+3

i = 1

(2.38)

where m = 1, 2, . . . 8.

These elements are multiplied by the multipole moments of the child cells

to generate the parent cell multipole moments. For the parent cell quadrupole

terms B
(l−1)
<i,j,k>,αβ, there are two matrix elements corresponding to each αβ pair:
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B
(l−1)
<i,j,k>,xx: U

(l−1)h
p
(l−1)
<i,j,k>

+4
i
,
h
c
(l,m)
<i,j,k>

+1
i = R

(l,m)
<i,j,k>,x

U
(l−1)h
p
(l−1)
<i,j,k>

+4
i
,
h
c
(l,m)
<i,j,k>

+4
i = 1

B
(l−1)
<i,j,k>,xy: U

(l−1)h
p
(l−1)
<i,j,k>

+5
i
,
h
c
(l,m)
<i,j,k>

+1
i = R

(l,m)
<i,j,k>,y

U
(l−1)h
p
(l−1)
<i,j,k>

+5
i
,
h
c
(l,m)
<i,j,k>

+5
i = 1

B
(l−1)
<i,j,k>,xz : U

(l−1)h
p
(l−1)
<i,j,k>

+6
i
,
h
c
(l,m)
<i,j,k>

+1
i = R

(l,m)
<i,j,k>,z

U
(l−1)h
p
(l−1)
<i,j,k>

+6
i
,
h
c
(l,m)
<i,j,k>

+6
i = 1

B
(l−1)
<i,j,k>,yx: U

(l−1)h
p
(l−1)
<i,j,k>

+7
i
,
h
c
(l,m)
<i,j,k>

+2
i = R

(l,m)
<i,j,k>,x

U
(l−1)h
p
(l−1)
<i,j,k>

+7
i
,
h
c
(l,m)
<i,j,k>

+7
i = 1

B
(l−1)
<i,j,k>,yy: U

(l−1)h
p
(l−1)
<i,j,k>

+8
i
,
h
c
(l,m)
<i,j,k>

+2
i = R

(l,m)
<i,j,k>,y

U
(l−1)h
p
(l−1)
<i,j,k>

+8
i
,
h
c
(l,m)
<i,j,k>

+8
i = 1

B
(l−1)
<i,j,k>,yz : U

(l−1)h
p
(l−1)
<i,j,k>

+9
i
,
h
c
(l,m)
<i,j,k>

+2
i = R

(l,m)
<i,j,k>,z

U
(l−1)h
p
(l−1)
<i,j,k>

+9
i
,
h
c
(l,m)
<i,j,k>

+9
i = 1

B
(l−1)
<i,j,k>,zx: U

(l−1)h
p
(l−1)
<i,j,k>

+10
i
,
h
c
(l,m)
<i,j,k>

+3
i = R

(l,m)
<i,j,k>,x

U
(l−1)h
p
(l−1)
<i,j,k>

+10
i
,
h
c
(l,m)
<i,j,k>

+10
i = 1

B
(l−1)
<i,j,k>,zy: U

(l−1)h
p
(l−1)
<i,j,k>

+11
i
,
h
c
(l,m)
<i,j,k>

+3
i = R

(l,m)
<i,j,k>,y

U
(l−1)h
p
(l−1)
<i,j,k>

+11
i
,
h
c
(l,m)
<i,j,k>

+11
i = 1

B
(l−1)
<i,j,k>,zz : U

(l−1)h
p
(l−1)
<i,j,k>

+12
i
,
h
c
(l,m)
<i,j,k>

+3
i = R

(l,m)
<i,j,k>,z

U
(l−1)h
p
(l−1)
<i,j,k>

+12
i
,
h
c
(l,m)
<i,j,k>

+12
i = 1

(2.39)

where m = 1, 2, . . . , 8, and R
(l,m)
<i,j,k> is the vector from the parent cell to the mth

child cell. The value of R
(l,m)
<i,j,k> is a property of the size of the cells and depends

only on l and m, so it only needs to be computed once per level for each value of

m.

For the parent cell octopole terms C
(l−1)
<i,j,k>,αβγ, there are four matrix ele-

ments for each choice of αβγ, or only three elements when β = γ. These matrix
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elements are as follows:

C
(l−1)
<i,j,k>,xxx: U

(l−1)h
p
(l−1)
<i,j,k>

+13
i
,
h
c
(l,m)
<i,j,k>

+1
i = R

(l,m)
<i,j,k>,xR

(l,m)
<i,j,k>,x

U
(l−1)h
p
(l−1)
<i,j,k>

+13
i
,
h
c
(l,m)
<i,j,k>

+4
i = 2R

(l,m)
<i,j,k>,x

U
(l−1)h
p
(l−1)
<i,j,k>

+13
i
,
h
c
(l,m)
<i,j,k>

+13
i = 1

C
(l−1)
<i,j,k>,xxy: U

(l−1)h
p
(l−1)
<i,j,k>

+14
i
,
h
c
(l,m)
<i,j,k>

+1
i = R

(l,m)
<i,j,k>,xR

(l,m)
<i,j,k>,y

U
(l−1)h
p
(l−1)
<i,j,k>

+14
i
,
h
c
(l,m)
<i,j,k>

+4
i = R

(l,m)
<i,j,k>,y

U
(l−1)h
p
(l−1)
<i,j,k>

+14
i
,
h
c
(l,m)
<i,j,k>

+5
i = R

(l,m)
<i,j,k>,x

U
(l−1)h
p
(l−1)
<i,j,k>

+14
i
,
h
c
(l,m)
<i,j,k>

+14
i = 1

C
(l−1)
<i,j,k>,xxz : U

(l−1)h
p
(l−1)
<i,j,k>

+15
i
,
h
c
(l,m)
<i,j,k>

+1
i = R

(l,m)
<i,j,k>,xR

(l,m)
<i,j,k>,z

U
(l−1)h
p
(l−1)
<i,j,k>

+15
i
,
h
c
(l,m)
<i,j,k>

+4
i = R

(l,m)
<i,j,k>,z

U
(l−1)h
p
(l−1)
<i,j,k>

+15
i
,
h
c
(l,m)
<i,j,k>

+6
i = R

(l,m)
<i,j,k>,x

U
(l−1)h
p
(l−1)
<i,j,k>

+15
i
,
h
c
(l,m)
<i,j,k>

+15
i = 1

C
(l−1)
<i,j,k>,xyx: U

(l−1)h
p
(l−1)
<i,j,k>

+16
i
,
h
c
(l,m)
<i,j,k>

+1
i = R

(l,m)
<i,j,k>,xR

(l,m)
<i,j,k>,z

U
(l−1)h
p
(l−1)
<i,j,k>

+16
i
,
h
c
(l,m)
<i,j,k>

+5
i = R

(l,m)
<i,j,k>,x

U
(l−1)h
p
(l−1)
<i,j,k>

+16
i
,
h
c
(l,m)
<i,j,k>

+4
i = R

(l,m)
<i,j,k>,y

U
(l−1)h
p
(l−1)
<i,j,k>

+16
i
,
h
c
(l,m)
<i,j,k>

+16
i = 1

.

..
.
..

C
(l−1)
<i,j,k>,zzy: U

(l−1)h
p
(l−1)
<i,j,k>

+38
i
,
h
c
(l,m)
<i,j,k>

+3
i = R

(l,m)
<i,j,k>,zR

(l,m)
<i,j,k>,y

U
(l−1)h
p
(l−1)
<i,j,k>

+38
i
,
h
c
(l,m)
<i,j,k>

+12
i = R

(l,m)
<i,j,k>,y

U
(l−1)h
p
(l−1)
<i,j,k>

+38
i
,
h
c
(l,m)
<i,j,k>

+11
i = R

(l,m)
<i,j,k>,z

U
(l−1)h
p
(l−1)
<i,j,k>

+38
i
,
h
c
(l,m)
<i,j,k>

+38
i = 1

C
(l−1)
<i,j,k>,zzz : U

(l−1)h
p
(l−1)
<i,j,k>

+39
i
,
h
c
(l,m)
<i,j,k>

+3
i = R

(l,m)
<i,j,k>,zR

(l,m)
<i,j,k>,z

U
(l−1)h
p
(l−1)
<i,j,k>

+39
i
,
h
c
(l,m)
<i,j,k>

+12
i = 2R

(l,m)
<i,j,k>,z

U
(l−1)h
p
(l−1)
<i,j,k>

+39
i
,
h
c
(l,m)
<i,j,k>

+39
i = 1

(2.40)

where m = 1, 2, . . . , 8.
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The sparsity of this matrix can be examined by comparing the number of

nonzero elements to the entire size of the matrix. This will give the percentage

of elements that need to be stored. The sum of children multipole moments for a

given parent cell yields 960 nonzero elements in U(l−1). Since there are 8l−1 parent

cells at level l − 1, U(l−1) has a total of 960 · 8l−1 nonzero elements. With a total

of (39 · 8l−1)× (39 · 8l) = 1521 · 82l−1 elements in U(l−1), the proportion of nonzero

elements in the matrix is 320
507·8l . Therefore as the size of the system increases, the

matrices become substantially more sparse.

Conversion from multipole to Taylor expansion. Each subblock of

the multipole to Taylor series matrix T
(l−1)
f is 39 × 39, and corresponds to a cell

f at level l − 1. Each row represents one Taylor series coefficient and each col-

umn represents the contribution to the Taylor series coefficient by one multipole

moment. Each term of the multipole expansion is expanded in terms of ~r. The

first row of the block T
(l−1)
f is then the sum of these constant terms. Subsequently,

each row represents a Taylor coefficient. An example of this is given below:

 
∂V A

f

∂rx

!
0

=

 
1

r3
f

−
3r2

f,x

r5
f

!
Ax +

 
−3rf,xrf,y

r5
f

!
Ay +

 
−3rf,xrf,z

r5
f

!
Az (2.41)
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∂V B

f

∂rx

!
0

=

 
15r3

f,x

r7
f

+
−9rf,x

r5
f

!
Bxx +

 
15r2

f,xrf,y

r7
f

+
−3rf,y

r5
f

!
Bxy

+

 
15r2

f,xrf,z

r7
f

+
−3rf,z

r5
f

!
Bxz +

 
15r2

f,xrf,y

r7
f

+
−3rf,y

r5
f

!
Byx

+

 
15rf,xr2

f,y

r7
f

+
−3rf,x

r5
f

!
Byy +

 
15rf,xrf,yrf,z

r7
f

!
Byz

+

 
15r2

f,xrf,z

r7
f

+
−3rf,z

r5
f

!
Bzx +

 
15rf,xrf,yrf,z

r7
f

!
Bzy

+

 
15rf,xr2

f,z

r7
f

+
−3rf,x

r5
f

!
Bzz

(2.42)

 
∂V C

f

∂rx

!
0

=

 
−9

2r5
f

+
90r2

f,x

2r7
f

+
−105r4

f,x

r9
f

!
Cxxx +

 
45rf,xrf,y

2r7
f

+
−105r3

f,xrf,y

r9
f

!
Cxxy

+

 
45rf,xrf,z

2r7
f

+
−105r3

f,xrf,z

r9
f

!
Cxxz +

 
45rf,xrf,y

2r7
f

+
−105r3

f,xrf,y

r9
f

!
Cxyx

+

 
−9

2r5
f

+
15r2

f,x + 15r2
f,y

2r7
f

+
−105r2

f,xr2
f,y

r9
f

!
Cxyy

+

 
15rf,yrf,z

2r7
f

+
−105r2

f,xrf,yrf,z

r9
f

!
Cxyz +

 
45rf,xrf,z

2r7
f

+
−105r3

f,xrf,z

r9
f

!
Cxzx

+

 
15rf,yrf,z

2r7
f

+
−105r2

f,xrf,yrf,z

r9
f

!
Cxzy +

 
−9

2r5
f

+
15r2

f,x + 15r2
f,z

2r7
f

+
−105r2

f,xr2
f,z

r9
f

!
Cxzz

+

 
30rf,xrf,y

2r7
f

+
−105r3

f,xrf,y

r9
f

!
Cyxx +

 
−9

2r5
f

+
15r2

f,x + 15r2
f,y

2r7
f

+
−105r2

f,xr2
f,y

r9
f

!
Cyxy

+

 
15rf,yrf,z

2r7
f

+
−105r2

f,xrf,yrf,z

r9
f

!
Cyxz +

 
−9

2r5
f

+
15r2

f,x + 15r2
f,y

2r7
f

+
−105r2

f,xr2
f,y

r9
f

!
Cyyx

+

 
45rf,xrf,y +

−105rf,xr3
f,y

r9
f

!
Cyyy +

 
15rf,xrf,z

2r7
f

+
−105rf,xr2

f,yrf,z

r9
f

!
Cyyz

+

 
15rf,yrf,z

2r7
f

+
−105r2

f,xrf,yrf,z

r9
f

!
Cyzx +

 
15rf,xrf,z

2r7
f

+
−105rf,xr2

f,yrf,z

r9
f

!
Cyzy

+

 
15rf,xrf,y

2r7
f

+
−105rf,xrf,yr2

f,z

r9
f

!
Cyzz +

 
45rf,xrf,z

2r7
f

+
−105r3

f,xrf,z

r9
f

!
Czxx

+

 
15rf,yrf,z

2r7
f

+
−105r2

f,xrf,yrf,z

r9
f

!
Czxy +

 
−9

2r5
f

+
15r2

f,x + 15r2
f,z

2r7
f

+
−105r2

f,xr2
f,z

r9
f

!
Czxz

+

 
15rf,yrf,z

2r7
f

+
−105r2

f,xrf,yrf,z

r9
f

!
Czyx +

 
15rf,xrf,z

2r7
f

+
−105rf,xr2

f,yrf,z

r9
f

!
Czyy

+

 
15rf,xrf,y

2r7
f

+
−105rf,xrf,yr2

f,z

r9
f

!
Czyz +

 
−9

2r5
f

+
15r2

f,z

2r7
f

+
−105r2

f,xr2
f,z

r9
f

!
Czzx

+

 
15rf,xrf,y

2r7
f

+
−105rf,xrf,yr2

f,z

r9
f

!
Czzy +

 
45rf,xrf,z

2r7
f

+
−105rf,xr3

f,z

r9
f

!
Czzz

(2.43)



86

The elements in the first row of T
(l−1)
f are the 39 coefficients on the multipole

components in the expressions for
(

∂V A
f

∂rx

)
0
,
(

∂V B
f

∂rx

)
0
, and

(
∂V C

f

∂rx

)
0
. The other rows

of T
(l−1)
f are defined similarly. The equations for

(
∂V B

f

∂rx

)
0
, and

(
∂V C

f

∂rx

)
0

are given

in the appendix.

Downward pass. The matrix D(l−1) representing the downward pass is

defined in a similar way to the one-dimensional case. Equation (2.34) gives ET
f,γ(~r+

~r0) as a polynomial in rx, ry, and rz. For a given γ, the coefficients on the powers

of rx, ry, and rz can be stored in a matrix-vector product. The terms involving ~r0

are stored in the matrix block D
(l−1)
<i,j,k>,m,γ, where l is the level of the child cells,
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and m = 1, . . . , 8 refers to a particular child cell of parent cell < i, j, k >.




1 0 0

r0,x 1 0

r0,y 1 0

r0,z 1 0

r2
0,x 2r0,x r2

0,x

r0,xr0,y 2r0,y r0,xr0,y

r0,xr0,z 2r0,z r0,xr0,z

r0,yr0,x 2r0,x r0,yr0,x

r2
0,y 2r0,y r2

0,y

r0,yr0,z 2r0,z r0,yr0,z

r0,zr0,x 2r0,x r0,zr0,x

r0,zr0,y 2r0,y r0,zr0,y

r2
0,z 2r0,z r2

0,z




>

(2.44)

This gives a 3 × 1 matrix of the coefficients for ET
f,γ(~r + ~r0) when it is multiplied
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by the vector ~tf,γ of Taylor series coefficients for cell f :

~tf,γ =




(
−∂Vf

∂rγ

)
0(

−∂2Vf

∂rγ∂rx

)
0(

−∂2Vf

∂rγ∂ry

)
0(

−∂2Vf

∂rγ∂rz

)
0(

−∂3Vf

∂rγ∂rx∂rx

)
0(

−∂3Vf

∂rγ∂rx∂ry

)
0(

−∂3Vf

∂rγ∂rx∂rz

)
0(

−∂3Vf

∂rγ∂ry∂rx

)
0(

−∂3Vf

∂rγ∂ry∂ry

)
0(

−∂3Vf

∂rγ∂ry∂rz

)
0(

−∂3Vf

∂rγ∂rz∂rx

)
0(

−∂3Vf

∂rγ∂rz∂ry

)
0(

−∂3Vf

∂rγ∂rz∂rz

)
0




(2.45)

The vector ~t appears implicitly in the CMMm factorization as the result of T(l−1)

operating on the result of the upward pass. The vector ~tf,γ is the block of ~t

corresponding to ET
f,γ(~r + ~r0). Like the matrix U(l−1), the matrix D(l−1) is sparse.

The locations of the nonzero elements of D(l−1) can be indexed similarly to the

upward pass matrix. Since the columns of U(l−1) correspond to the parent cells

at level l − 1, let pp
(l−1)
<i,j,k> = 13(k − 1) + 13(n

(l−1)
c )1/3(j − 1) + 13(n

(l−1)
c )2/3(i− 1).
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This is a column index referring to the section of D(l−1) that corresponds to cell

< i, j, k >. Similarly, the columns of U(l−1) correspond to the child cells at level l.

The following row indices correspond to the 8 level l child cells of the level l − 1

parent cell < i, j, k >:

cc
(l,1)
<i,j,k> = 9(2k − 2) + 9(n(l−1)

c )1/3(2j − 2) + 9(n(l−1)
c )2/3(2i− 2)

cc
(l,2)
<i,j,k> = 9(2k − 2) + 9(n(l−1)

c )1/3(2j − 2) + 9(n(l−1)
c )2/3(2i− 1)

cc
(l,3)
<i,j,k> = 9(2k − 2) + 9(n(l−1)

c )1/3(2j − 1) + 9(n(l−1)
c )2/3(2i− 2)

cc
(l,4)
<i,j,k> = 9(2k − 2) + 9(n(l−1)

c )1/3(2j − 1) + 9(n(l−1)
c )2/3(2i− 1)

cc
(l,5)
<i,j,k> = 9(2k − 1) + 9(n(l−1)

c )1/3(2j − 2) + 9(n(l−1)
c )2/3(2i− 2)

cc
(l,6)
<i,j,k> = 9(2k − 1) + 9(n(l−1)

c )1/3(2j − 2) + 9(n(l−1)
c )2/3(2i− 1)

cc
(l,7)
<i,j,k> = 9(2k − 1) + 9(n(l−1)

c )1/3(2j − 1) + 9(n(l−1)
c )2/3(2i− 2)

cc
(l,8)
<i,j,k> = 9(2k − 1) + 9(n(l−1)

c )1/3(2j − 1) + 9(n(l−1)
c )2/3(2i− 1)

(2.46)

The symbols pp and cc are used for these indices to distinguish them from the

indices in the upward pass matrix U(l−1).

For the mth child cell of parent cell < i, j, k >, the upper left corners of the

blocks D
(l−1)
<i,j,k>,m,γ are located at the following row-column indices in the matrix

D(l−1):

D
(l−1)
<i,j,k>,m,x: (cc

(l,m)
<i,j,k> + 1, pp

(l−1)
<i,j,k> + 1)

D
(l−1)
<i,j,k>,m,y: (cc

(l,m)
<i,j,k> + 4, pp

(l−1)
<i,j,k> + 1)

D
(l−1)
<i,j,k>,m,z: (cc

(l,m)
<i,j,k> + 7, pp

(l−1)
<i,j,k> + 1)

(2.47)
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In summary, we have presented in detail a new matrix version of the cell

multipole method for a system of charges as well as for a system of point dipoles.

For a polarizable point dipole system, the CMMm scheme takes this form:

~E = ~Enear +

[
R>

]([
D

]
·
[ ]

︸ ︷︷ ︸
·
[

U

]
+

[
T

])[
R

][
~µ

]

([D] · [ ]︸︷︷︸ · [U] + [T])

([D] · [ ]︸︷︷︸ · [U] + [T])

. . .

where this is plugged into the equation ~µi = αi
~Ei.



Chapter 3

Standard Iterative Methods for

Solving Linear Equations

Systems of linear equations in the form A~x = ~b can be solved directly

or via iterative methods. Obtaining the exact solution can be a daunting task

for large systems since the computational cost is proportional to n3. Iterative

methods generally have a lower computational cost, making it possible to solve

very large systems that would have been intractable to compute directly. Starting

with an initial approximate solution, these techniques improve the accuracy of this

estimate by generating a sequence of better approximations until convergence is

achieved. In this section, we will give an overview of various iterative methods,

primarily focusing on the fast solvers using the multigrid formulation. An extensive

91
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survey of iterative solvers is given by Saad and van der Vorst231 and several useful

texts.232, 233, 234, 235, 236, 237, 238, 239, 240

3.1 Jacobi and Gauss-Seidel Iteration Methods

The simplest iterative schemes are the Jacobi and Gauss-Seidel methods.

The Jacobi iterative solver begins with an initial guess or approximation of the

solution vector ~x(0) in A~x = ~b. This is then substituted back into the system of

equations to generate new approximate solutions. This process is continued until

convergence is reached. An algorithm for the Jacobi iteration is as follows:234

Algorithm 3 : Jacobi Iteration.

Given: initial guess ~x(0) for the solution
\* aij=element in row i and column j of matrix A *\
\* xk

i =ith element of the approximate solution in kth iteration *\
do k=1,2,...until convergence is reached
for i=1 to n

xk+1
i =

bi−
i−1P
j=1

aijx
(k)
j −

nP
j=i+1

aijx
(k)
j

aii

end for
end do

To speed up the convergence, the rows of the starting matrix can be rear-

ranged so that the magnitudes of the diagonal elements are as large as possible rela-

tive to the other matrix elements in the row. This is because these schemes converge

more rapidly when the matrix A is diagonally dominant:232 |aii| >
n∑

j=1;j 6=i

|aij|

for i = 1, 2, . . . n.
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For faster convergence, this algorithm can be revised to use the most recent

estimates of the exact solution as soon as they are available, to obtain the Gauss-

Seidel iteration method:234

Algorithm 4 : Gauss-Seidel Iteration.

Given: initial guess x(0) for the solution
\* aij=element in row i and column j of matrix A *\
\* xk

i =ith element of the approximate solution in kth iteration *\
do k=1,2,...until convergence is reached
for i=1 to n

xk+1
i =

bi−
i−1P
j=1

aijx
(k+1)
j −

nP
j=i+1

aijx
(k)
j

aii

end for
end do

An advantage of using the most updated values as soon as they are com-

puted is to reduce the storage for the approximate vector to n locations which

becomes more important as the size of the system grows.232 When the most re-

cently updated values are used, the order in which the values are updated becomes

more important. An effective ordering strategy, known as the Red-Black Gauss-

Seidel (RBGS) method, involves first updating all of the even components of the

solution, then updating the odd components of the solution. This order of up-

dating lends itself to being parallelized.232 A common alternative is to modify the

Gauss-Seidel equation to: xk+1
i = ω

bi−
i−1P
j=1

aijx
(k+1)
j −

nP
j=i+1

aijx
(k)
j

aii
+ (1 − ω)x

(k)
i , with a

relaxation parameter ω. A proper choice of ω can speed up the convergence rate.

This modification is generally known as Successive Over-Relaxation (SOR).
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3.2 Conjugate Gradient Method

The conjugate gradient method is one of the most widely used methods for

solving large, symmetric positive definite linear systems.234 This iterative scheme

generates a succession of search directions ~p(i) in order to rapidly minimize the

error.232 When the exact solution is not known, the residual is used as a measure

of how close the approximate solution is to the exact solution, which is given by:

~d = ~b−A~xapprox. (3.1)

The starting value for the residual can be found using an initial approximation of

the solution vector ~x(0). CG computes improved approximations of the solutions

using a multiple αi of the search direction: ~x(i) = ~x(i−1) + αi~p
(i), and reduces the

residual recursively with ~d(i) = ~d(i−1) − αi~ω
(i) and ~ω(i) = A~p(i), until the residual

is smaller than a given tolerance. A conjugate gradient method234 is shown in

Algorithm 5.

The standard CG algorithm guarantees convergence for symmetric positive

definite systems. When a matrix is nonsymmetric, the simplest way to guarantee

convergence using CG is to find a transformation that can make the system sym-

metric positive definite. The simplest such transformation is the normal equations

A>A~x = A>~b. Then CG is used on the transformed system to enhance its nu-

merical stability. This scheme is generally referred to as the Conjugate Gradient

Normal Equations Residual method (CGNR). The drawback of doing this is that
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Algorithm 5 : Conjugate Gradient Method.

Given: initial guess x(0) for the solution
\* αi = step size in the search direction *\
\* ~p(i) = search direction *\
\* ~d = residual *\
k = 0
~d = ~b− A~x(0)

ρ0 = |~d|2
do until convergence is reached
k = k + 1
if k = 1

~p = ~d
else

βk = ρk−1/ρk−2

~p = ~d + βk~p
end if
~ω = A~p
αk = ρk−1

~p>~ω

~x = ~x + αk~p
~d = ~d− αk~ω

ρk = |~d|2
end do
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it will substantially slow the convergence rate. However, it is simple to code and

provides a regular pattern of convergence. More complex methods are described

by Barrett232 and Golub.234

3.3 Multigrid Methods

Another approach for solving large systems of equations comprises multi-

grid methods which use a succession of grids to represent the approximate solution

at different levels. The idea is to increase computational efficiency by reducing

the number of variables and solving a smaller problem for a better initial guess

of the solution. The error of this approximate solution is reduced and transferred

to the finest grid for a more refined solution. The first multigrid method can be

traced back to the 1960s where Fedorenko applied this formalism to solve Poisson’s

equation.241, 242 It was proven to be effective for solving partial differential equa-

tions by Brandt in 1977.243 Since then, it has been applied to numerous problems,

including eigenfunction problems,244, 245, 246, 247 wave propagation equations,248, 249

and fluid dynamics250, 251, 252 among others. Parallel implementations have also

been made available for numerous applications.253, 254
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3.3.1 Standard Multigrid Method

Consider a system of linear equations in matrix-vector form:

A~x = ~b

where the grid operator is A = (Aij)n×n, the solution vector is ~x = (x1, x2, ...xn)>,

and the right-hand side is ~b = (b1, b2, ...bn)>. The original problem A~x = ~b is

referred to as the fine-grid problem. From this fine grid, the multigrid method

generates a hierarchy of smaller structured grids to represent a series of smaller

approximate problems. The basic idea is to increase computational efficiency by

reducing the number of variables and solving a smaller problem for a better initial

guess of the solution.

This method is effective in computing a solution for a problem at the finest

grid by combining the strengths of relaxation methods and coarse grids to eliminate

the error. Through Fourier analysis, it can be seen that error consists of smooth

(low-frequency) and non-smooth (high-frequency) components. Relaxation meth-

ods are iterative methods that effectively reduce the high frequency modes, but

have little effect on low frequency modes. When the problem is brought to a coarse

grid, it is reduced to a simpler problem where the low-frequency components can

be effectively reduced. Repeating this process eventually results in a problem with

one unknown that can be solved directly. Then this solution can be brought back

to the finer grids, using additional relaxation to reduce any new error introduced
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during interpolation. Approximating the problem onto coarse grids allows cheaper

and much more effective relaxation on low frequency modes. Additional details on

the theory and convergence properties of multigrid methods can be found in these

texts.255, 256, 257, 258, 259 The basic components of multigrid (relaxation, intergrid

transfer operators, and coarse grid correction) are described below.

Relaxation Schemes

Relaxation methods effectively reduce high frequency error modes. The

most common smoother is Gauss-Seidel257 discussed in Section 3.1. Other robust

smoothers have been created, but Gauss-Seidel is generally used because of its sim-

plicity and low storage requirement. This relaxation method performs smoothing

using the most current estimate of the solution. In order for Gauss-Seidel compu-

tation to be valid at a given grid level, it is assumed that the diagonal elements

of the matrix A at that grid level must be nonzero. Updated solution grid points

are computed by taking a weighted average of the corresponding right-hand side

value and values at neighboring grid points. After each new x-value is computed,

it is used in the next step to determine the next x-value. Red-black Gauss-Seidel

(RBGS) decomposes the grid into two sets of points like a checkerboard to form a

different ordering of updates, rather than the sequential updates of standard Gauss-

Seidel. The grid points are updated in two sweeps, corresponding to sweeping all

of the red points and then all the black points, which is described in Algorithm 6.
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RBGS ordering generally converges faster than standard Gauss-Seidel and has the

capability of being parallelized.232

Algorithm 6 : Red-Black Gauss-Seidel Smoother

Given: initial guess x0 for the solution
\* Red sweep *\
for all red points

xnew
i =

bi−
i−1P
j=1

Aijxnew
j −

nP
j=i+1

Aijxold
j

Aii

end for
\* Black sweep *\
for all black points

xnew
i =

bi−
i−1P
j=1

Aijxnew
j −

nP
j=i+1

Aijxold
j

Aii

end for

Intergrid Transfer and Coarse-grid Operators

In order to move from one grid to another, transfer operators are used.

The prolongation operator (P), also known as the interpolation operator, maps a

vector from the coarse grid to the fine grid, whereas the restriction operator (R)

maps the vector from the fine grid to the coarse grid. The prolongation operator

is defined by linear interpolation demonstrated in Algorithm 7. In prolongation,

the coarse grid values are directly copied to the fine grid, and the points between

them are an average of the neighboring coarse grid points.
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Algorithm 7 : Prolongation.

\* Copies *\
for all coarse grid points

xfine
j = xcoarse

j

end for
\* All Others *\
for all fine grid points that are not directly copied from coarse grid

xfine
j = 1

2
xcoarse

j−1 + 1
2
xcoarse

j+1

end for

The restriction operator is defined by a full-weighted average shown in Algorithm 8.

In restriction, the boundary points are copied directly to the coarse grid while the

interior points of the coarse grid are weighted averages of fine grid points. The

prolongation operator is related to the restriction operator by: R = 1
2
P>.

Algorithm 8 : Restriction.

for all coarse grid points

xcoarse
j = 1

4
xfine

j−1 + 1
2
xfine

j + 1
4
xfine

j+1

end for

The coarse grid operator is found using the Galerkin coarse grid approxi-

mation (GCA) which is given by Acoarse = RAfineP. Specifically, the coarse grid

operator is computed using this equation:

Acoarse(i, n) =
∑

m∈SR

∑

k∈SA

R(i,m)Afine(2i + m, k)P∗(i + n,m + k − 2n) (3.2)

where (A~x)i =
∑

j∈ZA(i, j)xi+j, and SR and SA are the structures of R and A,

respectively. Extensive formulation and implementation of this approximation is

discussed in Wesseling’s text.259



101

Coarse Grid Correction Scheme

An important component of the multigrid method is the coarse grid correc-

tion. Relaxation methods alone are not the most effective way to find a solution

to a matrix equation. However, they can efficiently smooth the error, leaving the

error to be primarily composed of low-frequency error modes. These error modes

can be more easily approximated on a coarser grid. To take advantage of this, the

multigrid transfers the residual ~d of a solution to coarser grid levels, where the

low-frequency error is quickly reduced due to a smaller number of unknowns. In

the process of coarse grid correction, the residual is restricted to a coarser grid and

the problem A~v = ~d is solved for ~v, a correction used to improve the approximate

solution for ~xapprox. This ~v is interpolated to a finer grid to correct the fine grid

approximation. In our implementation, Cramer’s rule was used to find the coarse

grid solution. Cramer’s rule finds the solution ~x of A~x = ~b using the equation:

xi =
det Ai(~b)

det A
(3.3)

where i = 1,2...k, and Ai(~b) is the matrix A with its ith column replaced by ~b.260

For larger coarse grid systems, either Gaussian elimination or conjugate gradient

is generally used as the coarse grid solver.257, 234
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Cycling Algorithms

The multigrid method is an iterative scheme that utilizes all of these com-

ponents: relaxation, coarse grid generation, intergrid transfer operators, coarse

grid operators, and correction scheme. Given an initial guess on the finest grid,

the multigrid method generates a hierarchy of smaller structured grids to represent

a series of smaller approximations. The simplest multigrid cycle is the v-cycle261

described in Algorithm 9 and Figure 3.1. Using the initial guess, the residual

is computed and transferred to a coarser grid with the restriction operator. On

each coarser grid, the residual equation continues to be relaxed before being re-

stricted to the next coarser grid recursively until the coarsest grid is reached. At

the coarsest level, the direct solution of the residual is calculated, giving the error

that is then interpolated. This correction is used to improve the approximate so-

lution and relaxed. The interpolation operator successively brings this problem to

finer grids where the correction is added and refined with relaxation methods at

each grid level. Efficiency is improved by using nested v-cycles to achieve conver-

gence, providing the best approximation possible with these inexpensive v-cycle

computations. This nested iteration is called the full multigrid v-cycle265 which is

demonstrated in Algorithm 10 and Figure 3.2.
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Algorithm 9 : V-cycle

do until reach coarse grid
Presmoothing with relaxation method (~xnew = S~xold)

Compute residual ~d = ~b−A~x

Restrict residual to coarse grid (~dcoarse = R~dfine)
end do

Solve coarse grid problem (A~e = ~d)
do until reach finest grid

Interpolate coarse grid error to finer grid (~vfine = P~vcoarse)
Correct approximate solution (~xnew = ~xold + ~v)
Postsmoothing with relaxation method (~xnew = S~xold)

end do

Figure 3.1: V-cycle.
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Algorithm 10 : FMG V-cycle

if at coarsest grid
Compute direct solution

else
Restrict to coarsest grid
Initial solution on coarsest grid
do for all grids

Interpolate from coarse grid to next finer grid
Perform V-cycle (pre-smoothing, residual, restriction of residual,

coarse grid solution, correct solution, post-smoothing)
end do

end if

Figure 3.2: FMG V-cycle.

3.3.2 Algebraic Multigrid Method

Standard multigrid methods are geometry-dependent in nature, which are

designed only for structured problems with regular meshes. They are sometimes re-

ferred to as geometric multigrid methods (GMG). Algebraic multigrid methods are
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matrix-based methods that extend the scope of these techniques to solve unstruc-

tured linear systems.262, 263, 264, 265 The algebraic multigrid method (AMG) was

proposed by Ruge and Stüben in 1987.263 Since then, AMG has been applied to var-

ious problems such as fluid dynamics,264, 266, 267 electromagnetics,268, 269 and eigen-

value problems.270, 271 A number of parallel versions have also been derived.272, 274, 275

AMG is designed for a more general class of problems than GMG, which

has the same fundamental components (sequence of grids, intergrid transfer opera-

tors, smoother, coarse-grid operators, coarse-grid solver). The advantage of AMG

methods is that grid generation and solution computations are solely based on the

variables from the given matrix equation A~x = ~b, rather than requiring any geo-

metric information about the problem.276 Therefore, the grids generated by AMG

are defined by the matrix entries, rather than a geometric grid where the locations

of grid points and their connections are known. However, the added flexibility of

AMG comes with a price of some overhead for the setup phase. The set up phase is

necessary to generate the coarse grids and operators, prior to applying the multi-

grid cycles in the solution phase. In the following section, we will focus on the

coarsening process and determination of intergrid transfer operators. Smoothing

and coarse-grid operators are previously covered in the standard geometric multi-

grid methods in Section 3.3.1, as Gauss-Seidel iteration is the commonly used

relaxation method and the Galerkin method is used for the coarse-grid operator.
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Coarsening

In the coarse-grid generation,263 the grid points are partitioned into C-

points (coarse-grid variables) and F-points (variables not on the coarse grid) based

on the concept of strong matrix connections between all grids. The strength of

these connections is defined as:

Given a threshold of 0 < θ < 1, grid point i strongly depends on j or j

strongly influences i if:

−aij ≥ θ max
k 6=i

(−aik).

where the matrix coefficient aij is compared to the largest off-diagonal coefficient

in the ith equation. This definition plays an important role in determining the

coarse grid-points. Let us then define the following sets:265

Si : set of points in which point i strongly depends on

ST
i : set of points j that are influenced by i

Ni : (neighborhood of i) set of all points j 6= i and aij 6= 0

Ci : coarse interpolatory set that includes the neighboring C-points that

are strongly connected to i

Ds
i : neighboring F-points that strongly influence i

Dw
i : weakly connected neighbors that include points that do not strongly

influence i



107

Two heuristic criteria are also imposed in this coarsening scheme:263, 265

C1: Given an F-point i, for all j that i strongly depends on, each of

these j should either be included in Ci or strongly depend on some

point in Ci.

C2: Set of C-points needs to form an optimal subset of all the

given grid points with no two C-points strongly connected.

In order to insure proper description of the matrix problem on the coarse grid,

the first criterion is enforced. This criterion implies that strong connections are

important in accurately representing the relationship between neighboring grid

points. Therefore, if one grid point does not strongly influence another, it is

not important in the construction of the coarse grid or interpolation operator.

The second criterion is implemented to avoid creating relatively large coarse grids

that may slow down the convergence rate. Using these guidelines, the coarsening

procedure is formulated in two passes:

First Pass: We first measure each point’s number of “influences”

which is the number of points that are strongly influenced by point i.

This measure is denoted by λi. The point with the most

“influences” (largest λ) is assigned to be a C-point, and all of

the points that strongly depend on this C-point then become F-points.

The λj of all the other j points that strongly influence these
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F-points are incremented because they are more likely to be

important as C-points. This process is repeated until all the points

are partitioned into F-points and C-points.

Second Pass: To insure that all of the criteria are enforced, an additional

pass searches through all of the pairs of F-points that do not meet

this requirement and changes one of them into a C-point.

The coarsening algorithm is further described in Algorithm 11.

Algorithm 11 : AMG Coarse Grid Generation257

\* First Pass *\
Find Si and ST

i for all points i on grid
Find λi for all points i on grid
for i=1,2...until all points are either designated as a C-point or F-point

Pick i with maximal λi and this becomes a C-point
For all j in ST

i that strongly depend on this C-point becomes an F-point
Increase λj for all other j that strongly influence these F-points

end for
\* Second Pass *\
for all points i on grid in F

for all j in DS
i for current i

if
j does not strongly depend on a point in Ci and
all other j in DS

i depend strongly on points in Ci

then
j becomes a C-point

end if
end for

end for
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Defining Intergrid Operators and Coarse-grid Operators

In AMG, the interpolation operator is characterized by the set of C-points

and F-points found in the coarsening scheme. The components of the interpo-

lation operator that interpolates the error at the F-point is then defined by this

interpolation formula:

Pij =





wij if j ∈ Ci

0 otherwise
(3.4)

where wij is the interpolation weight and Ci is the subset of C-points whose values

are used to interpolate a value at i. The interpolation weight is:

wij = −
aij +

∑
mεDs

i

(
aimamjP
kεCi

amk

)

aii +
∑

nεDw
i

ain
(3.5)

From the interpolation operator, the restriction operator is found using the prop-

erty R = P> and the coarse-grid operator is constructed from the Galerkin method

that imposes the condition: Acoarse = RAfineP .263

Algorithm 12 : AMG Interpolation Operator Generation265

for all ifine on fine grid
for all jfine in C

if ifine = jfine

then Pi,fine jcoarse=1
else if ifine is in F and jfine is in Ci,fine

then Pi,fine jcoarse=wi,fine ∗ jcoarse

else
Pi,fine jcoarse=0

end if
end for

end for
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AMG algorithm

Using the components defined in the previous sections, the algebraic multi-

grid algorithm given below can be formulated to include a setup phase for construc-

tion of coarse grids, intergrid operators and coarse-grid operators, and a solution

phase that includes multigrid cycle. For further detailed discussion on algebraic

multigrid methods, we refer to texts by Trottenberg257 and Briggs.265

Algorithm 13 : Algebraic Multigrid Method.

\* Setup phase: *\
for k=1, 2...until all coarse grids have been constructed

Partition grid into C and F sets to find coarse grid-points (Coarsening)
Construct interpolation operator
Set R = P> and Ac = RAfP to construct restriction, coarse-grid operators

end for
\* Solution phase: *\
\* Same process as standard MG, assumed as FMG V-cycle here *\
If at coarsest grid

Compute direct solution
Else

Restrict to coarsest grid
Initial solution on coarsest grid
Do for all grids

Interpolate from coarse grid to next finer grid
Do V-cycle (pre-smoothing, residual, restriction of residual,

coarse grid solution, correct solution, post-smoothing)
End Do

End If
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3.4 Comparison of Iterative Solvers

All of these iterative methods have their strengths and weaknesses. Ta-

ble 3.4 shows the storage requirement and complexity of various iterative solvers

discussed in this chapter. The scaling of the multigrid methods are optimal com-

pared to other iterative methods. Jacobi and Gauss-Seidel methods are easy to

use and the storage required for these methods is minimal, but convergence is

generally very slow compared to conjugate gradient or multigrid methods.232 One

way to reduce the computational cost is through parallel implementation. Jacobi

iteration can be parallelized because each matrix-vector product is independent

of ordering and can be done simultaneously.234 Gauss-Seidel can also be run in

parallel if a multi-color ordering of unknowns is used.232 Variants of the conju-

gate gradient method have been parallelized as well.280 As mentioned in Section

3.3, multigrid methods are well-suited for parallelization. If sufficient storage is

available, multigrid methods may be the best candidates for further exploration

because of their optimal scaling and potential for parallelism.

Table 3.1: Comparison of Iterative Solvers.

Iterative Solver Storage Requirement Complexity
Jacobi232, 233 n2 + 3n O(n2)
Gauss-Seidel,SOR232, 233 n2 + 2n O(n2)
Conjugate Gradient232, 255 n2 + 6n O(n3/2)

Multigrid265 2nd

1−2−d , d = 1, 2, 3 O(n)



Chapter 4

Multipole & Multigrid Methods

for Computing Polarizable

Interactions

We have described different methods for accounting for polarization in

Chapter 1, methods for the treatment of long-range electrostatic interactions in

Chapter 2, and fast solvers in Chapter 3. With this foundation, we can now focus

our efforts towards eliminating the bottleneck in computing polarizable interac-

tions. In this study, we will describe polarization using polarizable point dipoles

due to the flexibility of this representation. This widely-used model has been

shown to yield accurate properties in many applications.125, 149 Because of their
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optimal scaling, the cell multipole and multigrid techniques described in Chapter

2 and 3 are combined to form a new algorithm to solve the dipole iteration found

in polarizable point dipole force fields.125, 31, 172, 198 In this chapter, we will present

these algorithms to accelerate the rate of convergence for this computation.

4.1 MG-CMM:

A Multigrid-Multipole Based Algorithm

4.1.1 Formulation

Given a collection of particles’ positions, charges, and polarizabilities (de-

rived by Thole46), the induced dipoles of this system can be computed using this

system of equations:

~µind = M~q + N~µind (4.1)

where ~q and ~µind contain the charges and induced dipoles of the atoms, M is

the induction-from-charges operator and N is the induction-from-dipoles operator.

The matrix sub-blocks for M and N are:

Mij =

{
αi~rij

r3
ij

, if ri 6= rj

0, if ri = rj

(4.2)

and

Nij =





αi

(
3~rij~r

>
ij

r5
ij

− I
r3
ij

)
, if ri 6= rj

0, if ri = rj

(4.3)
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This equation is solved iteratively until convergence is reached. The MG-

CMM algorithm288, 289 was formulated to speed up the convergence rate for large

systems. We applied the MG-CMM algorithm on one-dimensional model systems

where all the particles are uniformly distributed. Although these systems are

not directly related to any physical applications, it serves as a useful model to

demonstrate the acceleration in convergence compared to other standard iterative

solvers. This algorithm separates polarizable particle interactions into direct and

indirect components, where the cell multipole method is used to approximate the

indirect component. The overall interaction is then evaluated by a multigrid solver.

For our multigrid method, we use RBGS smoothing, linear interpolation and full-

weighting restriction. The atoms are assumed to be far enough apart to avoid the

“polarization catastrophe”,41, 46, 75 as this does not occur at physically reasonable

distances. Thus, no screening function is used. For further simplification, the

term approximated by CMM is included on the right-hand side of the matrix

equation to reduce the cost per iteration by eliminating the need to reevaluate the

CMM field terms at each iteration. This is a reasonable approximation as it was

observed by Kutteh and Nicholas that the dipole moments and the Taylor series

coefficients varied slowly between iterations.219 Since the contributions from the

far field of the induced dipoles are much smaller than the near field contribution,

they reduced the number of far field updates to decrease the computational cost
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and also showed that less frequent updates did not affect the accuracy. Therefore,

to utilize the CMM far field scheme, we modified equation (4.1) by dividing the

induction matrix N into direct and indirect interactions:

~µind = M~q + (Ndirect + Nindirect)~µind (4.4)

Subsequently, this can be rearranged to form a matrix-vector equation:

(I−Ndirect)︸ ︷︷ ︸ ~µind

︸︷︷︸ = M~q + Nindirect~µind

︸ ︷︷ ︸

A ~x = ~b

(4.5)

In this matrix equation, A will be referred to as the grid operator, ~x as the solution,

and ~b as the right-hand side. The right-hand side includes M~q and the indirect

interactions computed by the cell multipole method multiplied by each atom’s po-

larizability. CMM equations in terms of the potential for dipolar systems were

formulated by Kutteh and Nicholas.219 We have derived the CMM field terms for

dipolar systems, as discussed in Section 2.2.1. The resulting one-dimensional equa-

tions that include polarizable dipoles are given below for the multipole moments

at the deepest level:

µ
(l)
cell,x =

∑
i

µi

Q
(l)
cell,xx =

∑
i

µirix

O
(l)
cell,xxx =

∑
i

µir
2
ix

(4.6)

and translation and summation of the child cell multipole moments yields the
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higher level moments:

µ
(l−1)
cell,x =

children∑

k=1

µ
(l)
k,x

Q
(l−1)
cell,xx =

children∑

k=1

Q
(l)
k,xx + µ

(l)
k,xRk

O
(l−1)
cell,xxx =

children∑

k=1

O
(l)
k,xxx + 2Q

(l)
k,xxRk + µ

(l)
k,xR

2
k

(4.7)

The electric field expansion for the far field used in the downward pass is given by:

~Ei,far = E(0) + E(1)r + E(2)r2 (4.8)

where,

E0 =
2µ

|rA|3 +
−6QrA

|rA|5 +
12O

|rA|5

E1 =
−6µrA

|rA|5 +
24Q

|rA|5 +
−60OrA

|rA|7

E2 =
24µ

|rA|5 +
−120QrA

|rA|7 +
360O

|rA|7

and the following expression for the near dipolar field:

Enear =
∑

i

2µi

r3
. (4.9)

The steps of the MG-CMM scheme are summarized in Algorithm 14.

4.1.2 Data Structures

The data structure used to compute the indirect interaction from CMM

includes a doubly-linked list storing each atom’s position, induced dipole, and near



117

Algorithm 14 : MG-CMM Method.

Given: Particle positions, charges, polarizabilities
Initial guess: µi ≈ (Mq)i

MG setup

CMM field computation for indirect interactions:(Nindirect~µind)i = αi
~ECMM,i

System decomposition
Cell multipole moments:µ, Q, O
Far field Taylor series Coefficients:ET

A0
, ET

B0
, ET

C0

Grid operator coarsening of A at all levels using GCA (Acoarse = RAfineP)
FMG solution cycles : (I−Ndirect)~µind = M~q + Nindirect~µind

and far field contributions of the CMM field. This interaction list is connected to

a binary tree where pointers allow easy access to each tree node. Each node of

the tree structure holds the cell’s multipole moments and Taylor coefficients. All

the matrices used in the multigrid method are stored in dynamically allocated

multidimensional arrays. Further improvement in code efficiency would include

sparse matrix storage schemes for faster computations, an indexing system instead

of an explicit binary tree, and parallel implementation to reduce the run-time.

4.1.3 Performance

MG-CMM was applied to several test problems of varying sizes ranging

from about 100 to 4000 particles. These results are compared to various itera-

tive solvers (Jacobi, Gauss-Seidel, successive over-relaxation, conjugate gradient

normal residual equation) and the matrix inversion method. The Jacobi-based

methods, Jacobi, GS, and SOR are the traditional iterative solvers used for the
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dipole iteration. Figure 4.1 shows the number of iterations needed for convergence

of the Jacobi, GS, SOR, CGNR, and MG-CMM methods with various system sizes,

evaluated with a convergence limit of 10−5D. For the dipole iteration, the common

choice of overrelaxation parameter, ω = 0.75 was used for SOR.6 The number

of iterations slowly increased with increasing system size for Jacobi, GS, SOR,

CGNR, whereas the number of iterations necessary for convergence for MG-CMM

remained constant and independent of system size. MG-CMM has the lowest iter-

ation count with only four FMG-cycles being sufficient to reach convergence in all

test systems. The best results for the multigrid-multipole method were obtained

with 2-pre and 2-post smoothing steps. In terms of iteration counts, the MG-CMM

outperforms other commonly used iterative approaches, showing that MG-CMM

successfully accelerates the convergence rate. It must also be mentioned that the

number of iterations depend on the choices of iteration parameters and the type

of smoother used. Further optimization of these factors can substantially increase

efficiency.
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Figure 4.1: Number of iterations necessary for convergence for various iterative
solvers.

The computed induced dipole moments from these iterative solvers are com-

pared to the exact solution given by the matrix inversion. Figures 4.2-4.6 show

the maximum absolute error for all methods at each iteration. The maximum ab-

solute error is defined as: ∆~xmax = max
i
|xcomputed

i − xexact
i |. This plot also shows

the relative speed at which each solver converges. Similar results were found with

all system sizes. In the Jacobi iteration and its variants GS and SOR, the error

between iterations slowly converged to give small error compared to the exact solu-

tion. The error of the Jacobi, GS, and SOR ranged from 3.5×10−5D to 3.4×10−4D,

2.9 × 10−5D to 6.5 × 10−5D, and 5.4 × 10−5D to 6.5 × 10−5D, respectively. The

conjugate gradient method steadily reduced the error, giving a substantial error
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ranging from 3.7×10−1D to 5.3×10−1D. The MG-CMM method yielded reasonable

results with errors within the range 5.0× 10−3D to 1.0× 10−2D.

In summary, MG-CMM substantially accelerated the convergence rate of

the dipole iteration compared to other iterative approaches. The Jacobi-based

methods had slow convergence rates, but converged with very small error. CGNR

was slow to converge and yielded the least accurate values for the induced dipole

compared to other iterative solvers. With all iterative problems, the initial guess

can greatly dictate the convergence rate. After the first step of the MG-CMM,

the error was quickly reduced by about two orders of magnitude and then declined

slowly compared to the first step. This is probably because one FMG-cycle pro-

vided an excellent approximation to the exact solution. Since the initial guess in

our algorithm included the CMM long-range interactions, it is expected to provide

a more accurate starting approximation to the solution that can lead to faster

convergence. MG-CMM has the fastest convergence rate with the most reduction

in iterations and gave reasonable values for the induced dipole moments.
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Figure 4.2: Comparison of Maximum Error of Iterative Solvers for System of 128
atoms.
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Figure 4.3: Comparison of Maximum Error of Iterative Solvers for System of 512
atoms.
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Figure 4.4: Comparison of Maximum Error of Iterative Solvers for System of 1024
atoms.
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Figure 4.5: Comparison of Maximum Error of Iterative Solvers for System of 2048
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Figure 4.6: Comparison of Maximum Error of Iterative Solvers for System of 4096
atoms.

4.2 Matrix Framework for AMG-CMMm Algo-

rithm

Extension of this MG-CMM method is necessary to treat non-uniform dis-

tributions by implementing an algebraic multigrid to replace the geometric multi-

grid component of the algorithm. This scheme follows the same concepts of multi-

grid techniques without the dependence on the physical location of the grid points

and includes an automated coarsening procedure for unstructured grids (see Refer-

ence 263 for review). In Section 2.2.2, we have also casted the cell multipole method
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for induced dipolar interactions in matrix form representing a series of operations

that condensed into a single matrix. The combination of this matrix version of the

cell multipole method and the algebraic multigrid method provides a matrix-based

algorithm that encompasses the benefits of MG-CMM with further flexibility and

automated computations. The CMMm matrix implicitly contains all of the cell

multipole method operations. Using the CMMm matrix within the induced dipolar

matrix equation for the far field component, the algebraic multigrid method is used

to coarsen, smooth, and refine the solution with matrix operations. Therefore, the

algebraic multigrid and cell multipole components are simultaneously solved for

the induced dipole moments.
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The framework of this algorithm AMG-CMMm is summarized in the fol-

lowing diagram.

Algebraic

Multigrid

Evaluation








I− (Nnear + Nfar)︸ ︷︷ ︸



·




~µ




=




~b




⇓ N decomposition using CMMm
[

Nnear

]
+

[
R>

]([
D

]
·
[ ]

︸ ︷︷ ︸
·
[

U

]
+

[
T

])[
R

]

([D] · [ ]︸︷︷︸ · [U] + [T])

([D] · [ ]︸︷︷︸ · [U] + [T])

. . .



Chapter 5

Concluding Remarks and

Perspectives for the Future

The drive for the development of polarizable force fields for biomolecular

systems has been facilitated by the need for more flexible methods that can handle

inhomogeneous environments.23, 277, 278, 279 Chapter 1 presents an overview of the

advances made towards a polarizable force field for large biosystems. Most of the

early polarizable force fields primarily focused on water models. The push towards

modeling macromolecular systems is the central focus of current polarizable force

field development. However, improvements to current algorithms are needed to

make large-scale systems more tractable.

Using cell multipole and multigrid methods reviewed in Chapter 2 and 3,
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we have developed an efficient algorithm to accelerate the rate of convergence in

computing induced dipolar interactions. This scheme separates polarizable inter-

actions into direct and indirect components. The cell multipole method is used to

approximate the indirect component, where our derivations for the CMM field for

dipolar systems,219 described by Kutteh and Nicholas are used. CMM speeds up

long-range electrostatic calculations by approximating the distant particles with

multipole and Taylor expansions. The overall interaction is then evaluated by a

multigrid solver where multigrid methods further speed up the convergence by

using successive grids and relaxation methods to provide a better approximate so-

lution. Another advantage of using these methods is that they both scale linearly

with the size of the system.

The performance of this new algorithm, MG-CMM, has been investigated

on uniformly-distributed one-dimensional systems of varying sizes and compared

to other popular iterative solvers. MG-CMM showed a speed-up of the convergence

rate by substantially reducing the number of iterations necessary for convergence,

as well as showing that its rate of convergence was independent of system size. This

formulation was then extended to an algorithm utilizing matrix-based cell multi-

pole method with an algebraic multigrid (AMG-CMMm) for added flexibility in the

treatment of 3-D non-uniform systems. This was accomplished by deriving a ma-

trix form of the cell multipole method and modifying it for the treatment of dipolar
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interactions. This matrix formalism is better suited to be parallelized for further

efficiency. We can use parallel processing to generate the induced dipolar interac-

tions for large polarizable systems. Parallel codes have already been implemented

for both FMM281, 282 and CMM,221 as well as various multigrid applications.253, 254

Future improvements to AMG-CMMm include optimized coarsening scheme,

parallel implementation, optimized data structure and efficient sparse matrix stor-

age as this algorithm is primarily composed of matrix-vector products. The coars-

ening scheme used in the standard classical algebraic multigrid presented in Chap-

ter 3 is sequential coarsening and cannot be parallelized. However, a modification

of this coarsening scheme can be explored to allow parallel implementation such

as the CLJP or Falgout coarsening methods.273, 274 CLJP coarsening scheme adds

random numbers between 0 and 1 to each measure, making the points distinct

from one another.273 Falgout coarsening is a hybrid of RS and CLJP coarsen-

ing strategies.274 Further examination in the performance of other parallelizable

coarsening methods in AMG is needed to find the optimal coarsening scheme for

our matrix problem.265 It is crucial to optimize the coarsening, as it greatly dic-

tates the speed of the setup phase as well as determining the accuracy of the

approximation. This algorithm involves a series of matrix operations that may

be parallelized by subdividing the matrix operations among many processors to

speed up calculations. Parallel implementation will further improve the efficiency
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of computation. Additionally, sparse matrix storage schemes should be explored

for optimal efficiency in the multiplication of nonzero matrix elements, rather than

dense matrix operations, to minimize memory requirements and to avoid wasted

storage of zeroes.283, 284

Extending our approach to include charge transfer via fluctuating charges

as well as polarizable dipoles will give a better description of the system. Hy-

brid PD-FQ models have been shown to accurately predict the energetics of small

molecule systems.117, 118 With improved accuracy and efficiency, this approach will

have general applicability in polarizable force fields for large-scale systems. The ac-

celeration in evaluating induced dipoles found in this work is a crucial step towards

the explicit inclusion of polarization in force fields of macromolecular systems, and

improving the understanding of biological processes such as ion permeation, pro-

tein folding, DNA-protein interactions, and drug-protein interactions.



Appendix A

Derivations for Taylor series

expansion of CMM dipole

equations

All these Taylor series coefficients will have the same form if any Cartesian

direction x, y, or z is substituted into the formula. They are also symmetric with

respect to the order of differentiation.

For the dipole term,

V A
f =

∑
α

AαRα

R3
=

Ax(rx − rf,x) + Ay(ry − rf,y) + Az(rz − rf,z)
((rx − rf,x)2 + (ry − rf,y)2 + (rz − rf,z)2)1/2

(A.1)
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∂V A
f

∂rx
=

R3Ax − ( ~A · ~R)( 3
2 )R(2(rx − rf,x))

R6

=
R2Ax − 3− ( ~A · ~R)(rx − rf,x)

R5(
∂V A

f

∂rx

)

0

=
6Axrf,x

r5
f

− 12( ~A · ~r)r2
f,x

r7
f

(A.2)

(
∂2V A

f

∂rx∂ry

)
=

1
R10

[R5(2(ry − rf,y)Ax − 3Ay(rx − rf,x))

− (R2Ax − 3( ~A · ~R)(rx − rf,x))
5
2
R32(ry − rf,y)]

=
1

R7
[R2[(2(ry − rf,y)− 5(ry − rf,y))]Ax − 3R2Ay(rx − rf,x)

+ 15( ~A · ~R)(rx − rf,x)(ry − rf,x)]
(

∂2V A
f

∂rx∂ry

)

0

=
3rf,yAx

r5
f

+
3Ayrf,x

r5
f

− 15( ~A · ~rf )rf,xrf,y

r7
f

(A.3)

(
∂2V A

f

∂rx∂rx

)
=

1
R10

[R5(2(rx − rf,x)Ax − 3Ax(rx − rf,x))− 3( ~A · ~R))

− (R2Ax − 3( ~A · ~R)(rx − rf,x))
5
2
R32(rx − rf,x)]

=
1

R7
[R2[−3(rx − rf,x)Ax)− 3AxR2(rx − rf,x)− 3( ~A · ~R)R2

+ 15( ~A · ~R)(rx − rf,x)(rx − rf,x)]
(

∂2V A
f

∂rxrx

)

0

=
6Axrf,x

r5
f

− 12( ~A · ~r)r2
f,x

r7
f

(A.4)
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∂3V A
f

∂rx∂ry∂rz
=

∂

∂rz

(
1

R7
[−3R2(ry − rf,y)Ax − 3R2(rx − rf,x)Ay

+15( ~A · ~R)(rx − rf,x)(ry − rf,y)]
)

=
1

R14
[R7(−3× 2(rz − rf,z)(ry − rf,y)Ax − 3× 2(rz − rf,z)(rx − rf,x)Ay

+ 15Az(rx − rf,x)(ry − rf,y))− (−3R2(ry − rf,y)Ax − 3R2(rx − rf,x)Ay

+ 15( ~A · ~R)(rx − rf,x)(ry − rf,y))
7
2
R5 × 2(rz − rf,z)]

=
1

R9
[R2(15(rz − rf,z)(ry − rf,y) + 15(rz − rf,z)(rx − rf,x)Ay

+ 15Az(rx − rf,x)(ry − rf,y))]− 105
R9

( ~A · ~R)(rx − rf,x)(ry − rf,y)(rz − rf,z)
(

∂3V A
f

∂rx∂ry∂rz

)

0

=
15
r7
f

(Axrf,yrf,z + Ayrf,xrf,z + Azrf,xrf,y)− 105
r9
f

( ~A · ~rf )rf,xrf,yrf,z

(A.5)

∂3VA

∂rx∂ry∂ry
=

1
R14

[R7(−3× 2(ry − rf,y)2Ax − 3R2Ax − 3× 2(ry − rf,y)(rx − rf,x)Ay

+ 15Ay(rx − rf,x)(ry − rf,y) + 15( ~A · ~R)(rx − rf,x)− (−3R2(ry − rf,y)Ax

− 3R2(rx − rf,x)Ay + 15( ~A · ~R)(rx − rf,x)(ry − rf,y))
7
2
R5 × 2(ry − rf,y)]

=
1

R9
[R2(15(ry − rf,y)(ry − rf,y)Ax + 15(ry − rf,y)(rx − rf,x)Ay

+ 15(rx − rf,x)(ry − rf,y)Ay − 3R2Ax + 15( ~A · ~R)(rx − rf,x))]−
109
R9

( ~A · ~R)(rx − rf,x)(ry − rf,y)(ry − rf,y)
(

∂3VA

∂rx∂ry∂ry

)

0

=
3
r7
f

(5Axrf,yrf,y + 5Ayrf,xrf,y + Ayrf,xrf,y − r2
fAx + 5( ~A · ~rf )rf,x)

+
105
r9
f

( ~A · ~rf )rf,x)− 105
r9
f

( ~A · ~rf )rf,xrf,yrf,z

(A.6)
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∂3V A
f

∂rx∂rx∂rx
=

∂

∂rx

(
−6AxR2(rx − rf,x)− 3( ~A · ~R)R2 + 15( ~A · ~R)(rx − rf,x)

R7

)

=
1

R14
[R7(−6Ax × 2(rx − rf,x)2 − 6AxR2 − 3( ~A · ~R)× 2(rx − rf,x)

+ 15Ax(rx − rf,x)2 + 15( ~A · ~R)2(rx − rf,x))− (−6Ax2(rx − rf,x)

− 3( ~A · ~R)R2 + 15( ~A · ~R)(rx − rf,x)2)
7
2
R5 × 2(rx − rf,x)]

=
R2(45Ax(rx − rf,x)2 − 9AxR2 + 30( ~A · ~R)(rx − rf,x))− 105( ~A · ~R)(rx − rf,x)3

R9(
∂3V A

f

∂rx∂rx∂rx

)

0

=
3
r7
f

(15Axr2
f,x − 3Axr2

f + 10( ~A · ~rf )rf,x) +
105
r9
f

( ~A · ~rf )r3
f,x

(A.7)

For the quadrupole term,

V B
f =

∑
αβ

3BαβRαRβ −
∑
α

BααR2

R5

(A.8)

∂V B
f

∂rx
=

1
R10

[R5(6BxxRx + 3BxyRy + 3BxzRz + 3ByxRy + 3BzxRz − 2BxxRx − 2ByyRz

+ 2BzzRx)− (3
∑

αβ

BαβRαRβ − (Bxx + Byy + Bzz)R2)
5
2
R3 · 2Rx]

(
∂V B

f

∂rx

)

0

=
−3
r5
f

(3Bxxrf,x + Byyrf,x + Bzzrf,x + (Bxy + Byx)rf,y + (Bxz + Bzx)rf,z)

+
15
r7
f

(
∑

αβ

Bαβrf,αrf,β)rf,x

(A.9)



134

∂2V B
f

∂rx∂ry
=

1
R9

(R2[−45BxxRxRy − 45ByyRxRy − 15BzzRxRy + 3R2(Bxy + Byx)

− 15(Bxy + Byx)R2
x − 15(Bxy + Byx)R2

y − 15(Byz + Bzy)RxRz

− 15(Bxz + Bzx)RyRz] + 105(
∑

αβ

BαβRαRβ)RxRy)

(
∂2V B

f

∂rx∂ry

)

0

=
−3
r7
f

(15Bxxrf,xrf,y + 5Byyrf,xrf,y + 5Bzzrf,xrf,y − r2
f (Bxy + Byx)

+ 5(Bxy + Byx)r2
f,x + 5(Bxy + Byx)r2

f,y + 5(Byz + Bzy)rf,xrf,z

+ 5(Bxz + Bzx)rf,yrf,z) +
105
r9
f

(
∑

αβ

Bαβrf,αrf,β)rf,xrf,y

(A.10)

∂2V B
f

∂rx∂rx
=

1
R9

(R2[R2(9Bxx + 3Byy + 3Bzz)− 75BxxR2
x − 15BzzR

2
x

− 30(Bxy + Byx)RxRy − 30(Bxz + Bzx)RxRz − 15(
∑

αβ

BαβRαRβ)R2
x)]

+ 105(
∑

ij

BαβRαRβ)R2
x)

(
∂2V B

f

∂rx∂rx

)

0

=
−3
r7
f

(30Bxxr2
f,x + 5Byyr2

f,x + 5Bzzr
2
f,x + 5(Bxy + Byx)rf,xrf,y

+ 5(Bxz + Bzx)rf,xrf,z − r2
f (3Bxx + Byy + Bzz)− 5Bxxr2

f,x

− 5(
∑

αβ

Bαβrf,αrf,β)rx) +
105
r9
f

(
∑

αβ

Bαβrf,αrf,β)r2
f,x

(A.11)
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∂3V B
f

∂rx∂ry∂rz
=

1
R11

(R2[315BxxRxRyRz + 315ByyRxRyRz + 315BzzRxRyRz

+ 105(Bxy + Byx)R2
xRz + 105(Bxy + Byx)R2

yRz + 105(Byz + Bzy)RxR2
z

+ 105(Bxz + Bzx)RyR2
z + 105(Bxz + Bzx)R2

xRy + 105(Byz + Bzy)RxR2
y

− 15R2(Bxy + Byx)Rz − 15R2(Byz + Bzy)Rx − 15R2(Bxz + Bzx)Ry]

− 945(
∑

αβ

BαβRαRβ)RxRyRz)

(
∂3V B

f

∂rx∂ry∂rz

)

0

=
15
r9
f

(−21(Bxx + Byy + Bzz)rf,xrf,yrf,z − 7(Bxy + Byx)r2
f,xrf,z

− 7(Bxy + Byx)r2
f,yrf,z − 7(Byz + Bzy)rf,xr2

f,z − 7(Bxz + Bzx)rf,yr2
f,z

− 7(Bxz + Bzx)r2
f,xrf,y − 7(Byz + Bzy)rf,xr2

f,y + r2
f (Bxy + Byx)rf,z

+ r2
f (Byz + Bzy)rf,x + r2

f (Bxz + Bzx)rf,y) +
945
r11
f

(
∑

αβ

Bαβrf,αrf,β)rf,xrf,yrf,z

(A.12)
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∂3V B
f

∂rx∂ry∂ry
=

1
R11

(R2[315BxxRxR2
y + 315ByyRxR2

y + 210ByyRxR2
y + 105BzzRxR2

y

+ 210(Bxy + Byx)R2
xRy + 105(Bxy + Byx)R3

y + 210(Byz + Bzy)RxRyRz

+ 105(Bxz + Bzx)R2
yRz − 21R2(Bxy + Byx)Ry − 45R2BxxRx − 45R2ByyRx

− 45R2BzzRx − 24R2(Bxy + Byx)Ry − 15R2(Bxz + Bzx)Rz]

− 945(
∑

αβ

BαβRαRβ)RxR2
y)

(
∂3V B

f

∂rx∂ry∂ry

)

0

=
3
r9
f

(−105Bxxrf,xr2
f,y − 105Byyrf,xr2

f,y − 70Byyrf,xr2
f,y − 35Bzzrf,xr2

f,y

− 70(Bxy + Byx)r2
f,xrf,y − 35(Bxy + Byx)r3

f,x − 70(Byz + Bzy)rf,xrf,yrz

+ 105(Bxz + Bzx)R2
yRz − 21R2(Bxy + Byx)Ry − 45R2BxxRx

− 45R2ByyRx − 45R2BzzRx − 24R2(Bxy + Byx)Ry − 15R2(Bxz + Bzx)Rz)

+
945
r11
f

(
∑

αβ

Bαβrf,αrf,β)rf,xr2
f,y)

(A.13)
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∂3V B
f

∂rx∂rx∂rx
=

1
R11

(R2[−5R2Rx(9Bxx + 3Byy + 3Bzz)−R2Rx(150Bxx + 30Byy + 30Bzz)

− 30R2(Bxy + Byx)Ry − 30R2(Bxz + Bzx)Rz − 15R2(
∑

αβ

BαβRαRβ)

− 15R2(6BxxR2
x + 3(Bxy + Byx)RxRy + 3(Bxz + Bzx)RxRz) + 1155BxxR3

x

+ 105ByyR3
x + 525(Bxy + Byx)R2

xRy + 525(Bxz + Bzx)R2
xRz

+ 105(
∑

αβ

BαβRαRβ)R2
x + 210(

∑

αβ

BαβRαRβ)Rx]− 945(
∑

αβ

BαβRαRβ)R3
x)

(
∂3V B

f

∂rx∂rx∂rx

)

0

=
3
r9
f

[(65Bxx + 15Byy + 15Bzz)r2
frf,x + 10r2

f (Bxy + Byx)rf,y

+ 10r2
f (Bxz + Bzx)rf,z − 5r2

f (
∑

αβ

Bαβrf,αrf,β)− 5r2
f (6Bxxr2

f,x

+ 3(Bxy + Byx)rf,xrf,y + 3(Bxz + Bzx)rf,xrf,z)− 385Bxxr3
f,x

− 35Byyr3
f,x − 175(Bxy + Byx)r2

f,xrf,y − 175(Bxz + Bzx)r2
f,xrf,z

+ (
∑

αβ

Bαβrf,αrf,β)(35r2
f,x − 70rf,x)] +

945
r11
f

(
∑

αβ

Bαβrf,αrf,β)r3
f,x)

(A.14)

For the octopole term,

V C
f =

3
∑
αβγ

Cαβγ

[
5RαRβRγ − (Rαδβγ + Rβδαγ + Rγδαβ)R2

]

2R7

(A.15)

When this summation is fully expanded, there are a total of 48 terms. In

order to express this more compactly, we will define the following coefficients:
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Dx =5Cxxx

Dy =5Cyyy

Dz =5Czzz

Dxx =− [3Cxxx + Cxyy + Cxzz + Cyxy + Cyyx + Czxz + Czzx]

Dyy =− [3Cyyy + Cxxy + Cxyx + Cyxx + Cyzz + Czyz + Czzy]

Dzz =− [3Czzz + Cxxz + Cxzx + Cyyz + Cyzy + Czxx + Czyy]

Dxxy =5(Cxxy + Cxyx + Cyxx)

Dxxz =5(Cxxz + Cxzx + Czxx)

Dyyx =5(Cxyy + Cyxy + Cyyx)

Dyyz =5(Czyy + Cyzy + Cyyz)

Dzzx =5(Cxzz + Czxz + Czzx)

Dzzy =5(Cyzz + Czyz + Czzy)

Dxyz =5(Cxyz + Cxzy + Cyxz + Cyzx + Czxy + Czyx)

(A.16)

With these substitutions,

V C
f =

3
2R7

[DxR3
x + DyR3

y + DzR
3
z + DxxRxR2 + DyyRyR2 + DzzRzR

2

+ DxxyR2
xRy + DxxzR

2
xRz + DyyxR2

yRx + DyyzR
2
yRz

+ DzzxR2
zRx + DzzyR2

zRy + DxyzRxRyRz]

(A.17)

(
∂V C

f

∂rx

)

0

=
3

2r7
f

[(3Dx − 5Dxx)r2
f,x + (2Dxxy − 5Dyy)rf,xrf,y

+ (2Dxxz − 5Dzz)rf,xrf,z + Dyyxr2
f,y + Dzzxr2

f,z + Dxyzrf,yrf,z

+ Dxxr2
f ]− 105

r9
f

(
∑

αβγ

Cαβγrf,αrf,βrf,γ)rf,x

(A.18)
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(
∂2V C

f

∂rx∂ry

)

0

=
3

2r9
f

[(21Dx − 35Dxx + 14Dyyx)r2
f,xrf,y + (21Dy − 35Dyy + 14Dxxy)rf,xr2

f,y

+ (14Dxxz + 14Dyyz − 35Dzz)rf,xrf,yrf,z + 7Dyyxr3
f,y + 7Dxyzr

2
f,yrf,z

+ 7Dzzxrf,yr2
f,z + 7Dxxyr3

f,x + 7Dzzyrf,xr2
f,z + 7Dxyzr

2
f,xrf,z

+ r2((5Dxx − 2Dyyx)rf,y + (5Dyy − 2Dxxy)rf,x −Dxyzrf,z)]

− 945
2r11

(
∑

αβγ

Cαβγrf,αrf,βrf,γ)rf,xrf,y

(A.19)

(
∂2V C

f

∂rx∂rx

)

0

=
3

2r9
f

[(42Dx − 35Dxx)r3
f,x + (28Dxxy − 35Dyy)r2

f,xrf,y

+ (28Dxxz − 35Dzz)r2
f,xrf,z + 14Dyyxrf,xr2

f,y + 14Dzzxrf,xr2
f,z

+ 14Dxyzrf,xrf,yrf,z + 35(
∑

αβγ

Cαβγrf,αrf,βrf,γ) + r2
f ((15Dxx − 6Dx)rf,x

+ (5Dyy − 2Dxxy)rf,y(5Dzz − 2Dxxz)rf,z)]− 945
2r11

(
∑

αβγ

Cαβγrf,αrf,βrf,γ)r2
f,x

(A.20)
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(
∂3V C

f

∂rx∂ry∂rz

)

0

=
3

2r11
f

[(189Dx − 315Dxx + 126Dyyx + 126Dzzx)r2
f,xrf,yrf,z

+ (189Dy − 315Dyy + 126Dxxy + 126Dzzy)rf,xr2
f,yrf,z

+ (189Dz − 315Dzz + 126Dxxz + 126Dyyz)rf,xrf,yr2
f,z

+ 63Dxxzr
3
f,xrf,y + 63Dyyzr

3
f,xrf,z + 63Dyyxr3

f,yrf,z + 63Dyyzrf,xr3
f,y

+ 63Dzzyrf,xr3
f,z + 63Dzzxrf,yr3

f,z + 63Dxyzr
2
f,xr2

f,y + 63Dxyzr
2
f,xr2

f,z

+ 63Dxyzr
2
f,yr2

f,z + r2
f ((35Dzz − 14Dxxz − 14Dyyz)rf,xrf,y

+ (35Dyy − 14Dxxy − 14Dzzz)rf,xrf,z + (35Dxx − 14Dzzx − 14Dyyx)rf,yrf,z

− 7Dxyz(r2
f,x + r2

f,y + r2
f,z) + Dxyzr

2
f )]

− 10395
2r13

f

(
∑

αβγ

Cαβγrf,αrf,βrf,γ)rf,xrf,yrf,z

(A.21)

(
∂3V C

f

∂rx∂ry∂ry

)

0

=
3

2r11
f

[(189Dx − 315Dxx + 252Dyyx)r2
f,xr2

f,y

+ (378Dy − 315Dyy + 126Dxxy)rf,xr3
f,y

+ (315Dzz + 126Dxxz + 252Dyyz)rf,xr2
f,yrf,z

+ 63Dyyxr4
f,y + 63Dxyzr

3
f,yrf,z + 63Dzzxr2

f,yr2
f,z + 126Dxxyr3

f,xrf,y

+ 126Dzzyrf,xrf,yr2
f,z + 126Dxyzr

2
f,xrf,yrf,z

+ r2
f ((−21Dx + 35Dxx − 14Dyyx)r2

f,x + (35Dxx − 35Dyyx)r2
f,y

− 7Dzzxr2
z + (−42Dy + 535Dyy − 42Dxxy)rf,xrf,y − 21Dxyzrf,yrf,z

+ (35Dzz − 14Dxxz − 14Dyyz)rf,xrf,z + (2Dyyx − 5Dxx)r2
f

+ 315(
∑

αβγ

Cαβγrf,αrf,βrf,γ)rf,x)]− 10395
2r13

f

(
∑

αβγ

Cαβγrf,αrf,βrf,γ)rf,xr2
f,y

(A.22)
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(
∂3V C

f

∂rx∂rx∂rx

)

0

=
3

2r11
f

[(567Dx − 315Dxx)r4
f,x + (−315Dyy + 378Dxxy)r3

f,xrf,y

+ (−315Dzz + 378Dxxz)r2
f,xrf,z + 189Dyyxr2

f,xr2
f,y + 189Dzzxr2

f,xr2
f,z

+ 63Dxyzr
2
f,xrf,yrf,z − 945(

∑

αβγ

Cαβγrf,αrf,βrf,γ)rf,x

+ r2
f ((−189Dx + 210Dxx)r2

f,x + (105Dyy − 84Dxxy)rf,xrf,y

+ (105Dzz − 84Dxxz)rf,xrf,z − 21Dyyxr2
f,y

− 21Dzzxr2
f,z + r2

f (6Dx − 15Dxx))]− 10395
2r13

f

(
∑

αβγ

Cαβγrf,αrf,βrf,γ)r3
f,x

(A.23)
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[75] Jensen, L.; Åstrand, P.-O.; Osted, A.; Kongsted, J.; Mikkelsen, K.V. Polarizability
of molecular clusters as calculated by a dipole interaction model. J. Chem. Phys.,
2002, 116, 4001-4010.



148

[76] Gresh, N. Development, validation, and applications of anisotropic polarizable
molecular mechanics to study ligand and drug-receptor interactions. Current Phar-
maceutical Design, 2006, 12(17), 2121-2158.

[77] Barnes, P.; Finney, J.L.; Nicholas, J.D.; Quinn, J.E. Cooperative Effects in Simu-
lated Water. Nature, 1979, 282(5738), 459-464.

[78] Kozack, R.E.; Jordan, P.C. Polarizability effects in a 4-charge model for water. J.
Chem. Phys., 1992, 96(4), 3120-3130.

[79] Brodholt, J,; Sampoli, M.; Vallauri, R. Parameterizing a polarizable intermolecular
potential for water. Mol. Phys., 1995, 86(1), 149-158.

[80] Chialvo, A.A.; Cummings, P.T. Engineering a simple polarizable model for the
molecular simulation of water applicable over wide ranges of state conditions. J.
Chem. Phys, 1996, 105(18), 8274-8281.

[81] Ding, Y.B.; Bernardo, D.N., Kroghjespersen, K.; Levy, R.M. Solvation Free ener-
gies of small amides and amines from molecular dynamics free energy perturbation
simulations using pairwise additive and many-body polarizable potentials. J. Phys.
Chem., 1995, 99(29), 11575-11583.

[82] Meng, E.C.; Caldwell, J.W.; Kollman, P.A. Investigating the anomalous solvation
free energies of amines with a polarizable potential. J. Phys. Chem., 1996, 100(6),
2367-2371.

[83] Sakharov, D.V.; Lim, C. Zn protein simulations including charge transfer and local
polarization effects. J. Am. Chem. Soc., 2005, 127(13), 4921-4929.

[84] Anisimov, V.M.; Lamoureux, G.; Vorobyov, I.V.; Huang, N.; Roux, B.; MacKerell,
A.D. Determination of electrostatic parameters for a polarizable force field based
on the classical Drude oscillator. J. Chem. Theory Comput., 2005, 1(1), 153-168.

[85] Baucom, J.; Transue, T.; Fuentes-Cabrera, M.; Krahn, J.M.; Darden, T.A.; Sagui,
C. Molecular dynamics simulations of the d(CCAACGTTGG)(2) decamer in crystal
environment: Comparison of atomic point-charge, extra-point, and polarizable force
fields. J. Chem. Phys., 2004, 121(14), 6998-7008.

[86] Lamoureux, G.; Harder, E.; Vorobyov, I.V.; Roux, B.; MacKerell, A.D. A polar-
izable model of water for molecular dynamics simulations of biomolecules. Chem.
Phys. Lett., 2006, 418(1-3), 245-249.

[87] de Leeuw N.H.; Parker, S.C. Molecular dynamics simulation of MgO surfaces in
liquid water using a shell model potential for water. Phys. Rev. B, 1998, 58(20),
13901-13908.



149

[88] van Maaren, P.J.; van der Spoel, D. Molecular dynamics simulations of water with
novel shell-model potentials. J. Phys. Chem. B, 2001, 105(13), 2618-2626.

[89] Yu, H.B.; Hansson, T.; van Gunsteren, W.F. Development of a simple, self-
consistent polarizable model for liquid water. J. Chem. Phys., 2003, 118(1), 221-
234.

[90] Yu, H.B.; van Gunsteren, W.F. Charge-on-spring polarizable water models revis-
ited: From water clusters to liquid water to ice. J. Chem. Phys., 2004, 121(19),
9549-9564.

[91] Archontis, G.; Leontidis, E.; Andreou, G. Attraction of iodide ions by the free
water surface, revealed by simulations with a polarizable force field based on drude
oscillators. J. Phys. Chem. B, 2005, 109(38), 17957-17966.

[92] Lamoureux, G.; Roux, B. Modeling induced polarization with classical Drude os-
cillators: Theory and molecular dynamics simulation algorithm. J. Chem. Phys.,
2003, 119(6), 3025-3039.

[93] Lamoureux, G.; Roux, B. Absolute hydration free energy scale for alkali and halide
ions established from simulations with a polarizable force field. J. Chem. Phys. B,
2006, 110(7), 3308-3322.

[94] Vorobyov, I.V.; Anisimov, V.M.; MacKerell, A.D. Polarizable empirical force field
for alkanes based on the classical drude oscillator model. J. Phys. Chem. B, 2005,
109(40), 18988-18999.

[95] Yu, H.B.; Geerke, D.P.; Liu, H.Y.; van Gunsteren, W.E. Molecular dynamics sim-
ulations of liquid methanol and methanol-water mixtures with polarizable models.
J. Comput. Chem., 2006, 27(13), 1494-1504.

[96] Rick, S.W.; Stuart, S.J.; Berne, B.J. Dynamical Fluctuating Charge Force-Fields -
Application to Liquid Water. J. Chem. Phys., 1994, 101(7), 6141-6156.

[97] Rick, S.W.; Berne, B.J. Free energy of the hydrophobic interaction from molecular
dynamics simulations: The effects of solute and solvent polarizability. J. Phys.
Chem. B, 1997, 101(49), 10488-10493.

[98] Banks, J.L.; Kaminski, G.A.; Zhou, R.H.; Mainz, D.T.; Berne, B.J.; Friesner, R.A.
Parametrizing a polarizable force field from ab initio data. I. The fluctuating point
charge model. J. Chem. Phys., 1999, 110(2), 741-754.

[99] Rappe, A.K.; Goddard, W.A. Charge Equilibration for Molecular Dynamics Sim-
ulations. J. Phy. Chem., 1991, 95(8), 3358-3363.



150

[100] Patel, S.; Brooks, C.L. CHARMM fluctuating charge force field for proteins: I
parameterization and application to bulk organic liquid simulations. J. Comput.
Chem., 2004, 25(1), 1-15.

[101] Ando, K. A stable fluctuating-charge polarizable model for molecular dynamics
simulations: Application to aqueous electron transfers. J. Chem. Phys., 2001,
115(11), 5228-5237.

[102] Stuart, S.J.; Berne, B.J. Surface curvature effects in the aqueous ionic solvation
of the chloride ion. J. Phys. Chem. A, 1999, 103(49), 10300-10307.

[103] Chen, B.; Potoff, J.J.; Siepmann, J.I. Adiabatic nuclear and electronic sampling
Monte Carlo simulations in the Gibbs ensemble: Application to polarizable force
fields for water. J. Phys. Chem. B, 2000, 104(10), 2378-2390.

[104] Chen, B.; Xing, J.H.; Siepmann, J.I. Development of polarizable water force fields
for phase equilibrium calculations. J. Phys. Chem. B, 2000, 104(10), 2391-2401.

[105] Krishnan, M.; Verma, A.; Balasubramanian, S. Computer simulation study of
water using a fluctuating charge model. Proc. Indian Acad. Sci. Chem. Sci., 2001,
113(5-6), 579-590.

[106] Rick, S.W.; Berne, B.J. Dynamical fluctuating charge force fields: The aqueous
solvation of amides. J. Am. Chem. Soc., 1996, 118(3), 672-679.

[107] Patel, S.; Brooks, C.L. Structure, thermodynamics, and liquid-vapor equilibrium
of ethanol from molecular dynamics simulations using nonadditive interactions. J.
Chem. Phys., 2005, 123(16), Art. No. 164502.

[108] Patel, S.A.; Brooks, C.L. Revisiting the hexane-water interface via molecular
dynamics simulations using nonadditive alkane-water potentials. J. Chem. Phys.,
2006, 124(20), Art. No. 204706.

[109] Patel, S.; Brooks, C.L. Fluctuating charge force fields: Recent developments and
applications from small molecules to macromolecular biological systems. Molecular
Simulation, 2006, 32(3-4), 231-249.

[110] Sanderson, R.T. An Interpretation of Bond Lengths and a Classification of Bonds.
Science, 1951, 114, 670.

[111] Mulliken, R.S. A New Electronegativity Scale: Together with Data on Valence
States and an Ionization Potential and Electron Affinities. J. Chem. Phys., 1934,
2, 782-793.

[112] Parr, R.G.; Pearson, R.G. Absolute Hardness: Companion Parameter to Absolute
Electronegativity. J. Am. Chem. Soc., 1983, 105, 7512-7516.



151

[113] Masia, M.; Probst, M.; Rey, R. On the performance of molecular polarization
methods. I. Water and carbon tetrachloride close to a point charge. J. Chem.
Phys., 2004, 121(15), 7362-7378.

[114] Masia, M.; Probst, M.; Rey, R. On the performance of molecular polarization
methods close to a point charge. Comp. Phys. Comm., 2005, 169(1-3), 331-334.

[115] Banks, J.L.; Beard, H.S.; Cao, Y.X.; Cho, A.E.; Damm, W.; Farid, R.; Felts, A.K.;
Halgren, T.A.; Mainz, D.T.; Maple, J.R.; Murphy, R.; Philipp, D.M.; Repasky,
M.P.; Zhang, L.Y.; Berne, B.J.; Friesner, R.A.; Gallicchio, E.; Levy, R.M. Inte-
grated modeling program, applied chemical theory (IMPACT). J. Comp. Chem.,
2005, 26(16), 1752-1780.

[116] Field, M.J. Hybrid quantum mechanical molecular mechanical fluctuating charge
models for condensed phase simulations. Mol. Phys., 1997, 91(5), 835-845.

[117] Stern, H.A.; Kaminski, G.A.; Banks, J.L.; Zhou, R.H.; Berne, B.J.; Friesner, R.A.
Fluctuating charge, polarizable dipole, and combined models: Parameterization
from ab initio quantum chemistry. J. Phys. Chem. B, 1999, 103(22), 4730-4737.

[118] Stern, H.A.; Rittner, F.; Berne, B.J.; Friesner, R.A. Combined fluctuating charge
and polarizable dipole models: Application to a five-site water potential function.
J. Chem. Phys., 2001, 115(5), 2237-2251.

[119] Chialvo, A.A.; Cummings, P.T. Microstructure of ambient and supercritical water.
Direct comparison between simulation and neutron scattering experiments. J. Phys.
Chem., 1996, 100(4), 1309-1316.

[120] Warshel, A. Calculations of chemical processes in solutions. J. Phys. Chem., 1979,
83(12), 1640-1652.

[121] Smith, D.E.; Dang, L.X. Computer Simulations of NaCl association in polarizable
water. J. Chem. Phys., 1994, 100(5), 3757-3766.

[122] Jedlovszky, P.; Richardi, J. Comparison of different water models from ambient to
supercritical conditions: A Monte Carlo simulation and molecular Ornstein-Zernike
study. J. Chem. Phys., 1999, 110(16), 8019-8031.

[123] Jedlovszky, P.; Vallauri, R. Thermodynamic and structural properties of liquid
water around the temperature of maximum density in a wide range of pressures:
A computer simulation study with a polarizable potential model. J. Chem. Phys.,
2001, 115(8), 3750-3762.

[124] Burnham, C.J.; Xantheas, S.S. Development of transferable interaction models
for water. III. Reparametrization of an all-atom polarizable rigid model (TTM2-R)
from first principles. J. Chem. Phys., 2002, 116(4), 1500-1510.



152

[125] Ren, P.Y.; Ponder, J.W. Polarizable atomic multipole water model for molecular
mechanics simulation. J. Phys. Chem. B, 2003, 107(24), 5933-5947.

[126] Dixon, R.W.; Kollman, P.A. Advancing beyond the atom-centered model in addi-
tive and nonadditive molecular mechanics. J. Comp. Chem., 1997, 18(13), 1632-
1646.

[127] Sorenson, J.M.; Hura, G.; Glaeser, R.M.; Head-Gordon, T. What can x-ray scat-
tering tell us about the radial distribution functions of water? J. Chem. Phys.,
2000, 113(20), 9149-9161.

[128] Soper, A.K. The radial distribution functions of water and ice from 220 to 673 K
and at pressures up to 400 MPa. Chem. Phys., 2000, 258(2-3), 121-137.

[129] Jorgensen, W.L.; Chandrasekhar, J.; Madura, J.D.; Impey, R.W.; Klein, M.L.
Comparison of Simple Potential Functions for Simulating Liquid Water. J. Chem.
Phys., 1983, 79(2), 926-935.

[130] Guillot, B. A reappraisal of what we have learnt during three decades of computer
simulations on water. J. Mol. Liq., 2002, 101(1-3), 219-260.

[131] Gubskaya, A.V.; Kusalik, P.G. The total molecular dipole moment for liquid water.
J. Chem. Phys., 2002, 117(11), 5290-5302.

[132] Batista, E.R.; Xantheas, S.S.; Jonsson, H. Molecular multipole moments of water
molecules in ice Ih. J. Chem. Phys., 1998, 109(11), 4546-4551.

[133] Silvestrelli, P.L.; Parrinello, M. Water molecule dipole in the gas and in the liquid
phase. Phys. Rev. Lett., 1999, 82(16), 3308-3311.

[134] Batista, E.R.; Xantheas, S.S.; Jonsson, H. Multipole moments of water molecules
in clusters and ice Ih from first principles calculations. J. Chem. Phys., 1999,
111(13), 6011-6015.

[135] Sprik, M. Hydrogen bonding and the static dielectric constant in liquid water. J.
Chem. Phys., 1991, 95(9), 6762-6769.

[136] Soetens, J.C.; Costa, M.T.C.M.; Millot, C. Static dielectric constant of the polar-
izable NCC water model. Mol. Phys., 1998, 94(3), 577-579.

[137] Guissani, Y.; Guillot, B. A Ccomputer Simulation Study of the Liquid-vapor
coexistence curve of water. J. Chem. Phys, 1993, 98(10), 8221-8235.

[138] Kell, G.S. Precise representation of volume properties of water at 1 atmosphere J.
Chem. Eng. Data, 1967, 12(1), 66-69.



153

[139] Krynicki, K.; Green, C.D.; SAWYER, D.W. Pressure and temperature dependence
of self-diffusion in water. Faraday Discussions, 1978, 66, 199-208.

[140] Kaatze, U. Complex permittivity of water as a function of frequency and temper-
ature. J. Chem. Eng. Data, 1989, 34(4), 371-374.

[141] Svishchev, I.M.; Kusalik, P.G.; Wang, J.; Boyd, R.J. Polarizable point-charge
model for water: Results under normal and extreme conditions. J. Chem. Phys.,
1996, 105(11), 4742-4750.

[142] Kusalik, P.G.; Svishchev, I.M. The spatial structure in liquid water. Science,
1994, 265(5176), 1219-1221.

[143] Rick, S.W. Simulations of ice and liquid water over a range of temperatures using
the fluctuating charge model. J. Chem. Phys., 2001, 114(5), 2276-2283.

[144] Mahoney, M.W.; Jorgensen, W.L. Diffusion constant of the TIP5P model of liquid
water. J. Chem. Phys., 2001, 114(1), 363-366.

[145] Mahoney, M.W.; Jorgensen, W.L. A five-site model for liquid water and the
reproduction of the density anomaly by rigid, nonpolarizable potential functions.
J. Chem. Phys., 2000, 112(20), 8910-8922.

[146] Vega, C.; Abascal, J.L.F. Relation between the melting temperature and the
temperature of maximum density for the most common models of water. J. Chem.
Phys., 2005, 123(14), Art. No. 144504.

[147] Baez, L.A.; Clancy, P. Existence of a density maximum in extended simple point
charge water. J. Chem. Phys., 1994, 101(11), 9837-9840.

[148] Jedlovszky, P.; Mezei, M.; Vallauri, R. A molecular level explanation of the density
maximum of liquid water from computer simulations with a polarizable potential
model. Chem. Phys. Lett., 2000, 318(1-3), 155-160.

[149] Ren, P.Y.; Ponder, J.W. Temperature and pressure dependence of the AMOEBA
water model. J. Phys. Chem. B, 2004, 108(35), 13427-13437.

[150] Kiyohara, K.; Gubbins, K.E.; Panagiotopoulos, A.Z. Phase coexistence properties
of polarizable water models. Mol. Phys., 1998, 94(5), 803-808.

[151] Jedlovszky, P.; Vallauri, R. Liquid-vapor and liquid-liquid phase equilibria of the
Brodholt-Sampoli-Vallauri polarizable water model. J. Chem. Phys., 2005, 122(8),
Art. No. 081101.

[152] Brovchenko, I; Geiger, A; Oleinikova, A; Liquid-liquid phase transitions in super-
cooled water studied by computer simulations of various water models. J. Chem.
Phys., 2005, 123(4), Art. No. 044515.



154

[153] Vega, C.; Abascal, J.L.F.; Nezbeda, I. Vapor-liquid equilibria from the triple point
up to the critical point for the new generation of TIP4P-like models: TIP4P/Ew,
TIP4P/2005, and TIP4P/ice. J. Chem. Phys., 2006, 125(3), Art. No. 034503.

[154] Panhuis, M.I.H.; Popelier, P.L.A.; Munn, R.W.; Angyan, J.G. Distributed polariz-
ability of the water dimer: Field-induced charge transfer along the hydrogen bond.
J. Chem. Phys., 2001, 114(18), 7951-7961.

[155] Morita, A. Water polarizability in condensed phase: Ab initio evaluation by cluster
approach. J. Comp. Chem., 2002, 23(15), 1466-1471.

[156] Morita, A.; Kato, S. An ab initio analysis of medium perturbation on molecular
polarizabilities. J. Chem. Phys., 1999, 110, 11987.

[157] Kaminski, G.A.; Stern, H.A.; Berne, B.J.; Friesner, R.A. Development of an accu-
rate and robust polarizable molecular mechanics force field from ab initio quantum
chemistry. J. Phys. Chem. A, 2004, 108(4), 621-627.

[158] Giese, T.J.; York, D.M. Many-body force field models based solely on pair-
wise Coulomb screening do not simultaneously reproduce correct gas-phase and
condensed-phase polarizability limits. J. Chem. Phys., 2004, 120(21), 9903-9906.

[159] Jeon, J.; Lefohn, A.E.; Voth, G.A. An improved Polarflex water model. J. Chem.
Phys., 2003, 118(16), 7504-7518.

[160] Paricaud, P.; Predota, M.; Chialvo, A.A.; Cummings, P.T. From dimer to con-
densed phases at extreme conditions: Accurate predictions of the properties of
water by a Gaussian charge polarizable model. J. Chem. Phys., 2005, 122(24),
Art. No. 244511.

[161] Alfredsson, M.; Brodholt, J.P.; Hermanson, K.; Vallauri, R. The use of a point
polarizable dipole in intermolecular potentials for water. Mol. Phys., 1998, 94(5),
873-876.

[162] Perera, L.; Berkowitz, M.L. Many body effects in molecular dynamics simulations
of NA+(H2O)N and CL-(H2O)N clusters. J. Chem. Phys., 1991, 95(3), 1954-1963.

[163] Perera, L.; Berkowitz, M.L. Structure and dynamics of CL-(H2O)20 clusters - The
effect of the polarizability and the charge of the ion J. Chem. Phys., 1992, 96(11),
8288-8294.

[164] Perera, L.; Berkowitz, M.L. Stabilization energies of CL-, BR-, and I- ions in water
clusters. J. Chem. Phys., 1993, 99(5), 4222-4224.3

[165] Perera, L.; Berkowitz, M.L. Structures of CL-(H2O)(N) and F-(H2O)(N)
(N=2,3,...,15) clusters - Molecular dynamics computer simulations. J. Chem. Phys.,
1994, 100(4), 3085-3093.



155

[166] Grossfield, A. Dependence of ion hydration on the sign of the ion’s charge. J.
Chem. Phys., 2005, 122(2), Art. No. 024506.

[167] Herce, D.H.; Perera, L.; Darden, T.A.; Sagui, C. Surface solvation for an ion in a
water cluster. J. Chem. Phys., 2005, 122(2), Art. No. 024513.

[168] Marrink, S.J.; Berendsen, H.J.C. Simulation of water transport through a lipid-
membrane. J. Phys. Chem., 1994, 98(15), 4155-4168.

[169] Dang, L.X. Computational study of ion binding to the liquid interface of water.
J. Phys. Chem. B, 2002, 106(40), 10388-10394.

[170] Dang, L.X.; Chang, T.M.; Panagiotopoulos, A.Z. Gibbs ensemble Monte Carlo
simulations of coexistence properties of a polarizable potential model of water. J.
Chem. Phys., 2002, 117(7), 3522-3523.

[171] Dang, L.X.; Chang, T.M. Molecular mechanism of ion binding to the liquid/vapor
interface of water. J. Phys. Chem. B, 2002, 106(2), 235-238.

[172] Dang, L.X.; Chang, T.M. Many-body interactions in liquid methanol and its liq-
uid/vapor interface: A molecular dynamics study. J. Chem. Phys., 2003, 119(18),
9851-9857.

[173] Paul, S.; Chandra, A. Dynamics of water molecules at liquid-vapour interfaces
of aqueous ionic solutions: effects of ion concentration. Chem. Phys. Lett., 2003,
373(1-2), 87-93.

[174] Liu, P.; Harder, E.; Berne, B.J. On the calculation of diffusion coefficients in
confined fluids and interfaces with an application to the liquid-vapor interface of
water. J. Phys. Chem. B, 2004, 108(21), 6595-6602.

[175] Wick, C.D.; Dang, L.X. Investigating pressure effects on structural and dynamical
properties of liquid methanol with many-body interactions. J. Chem. Phys., 2005,
123(18), Art. No. 184503.

[176] Jungwirth, P.; Tobias, D.J. Molecular structure of salt solutions: A new view of
the interface with implications for heterogeneous atmospheric chemistry. J. Phys.
Chem. B, 2001, 105(43), 10468-10472.

[177] Jungwirth, P.; Tobias, D.J. Ions at the air/water interface. J. Phys. Chem B,
2002, 106(25), 6361-6373.

[178] Vrbka, L.; Mucha, M.; Minofar, B.; Jungwirth, P.; Brown, E.C.; Tobias, D.J.
Propensity of soft ions for the air/water interface. Current opinion in colloid &
interface science, 2004, 9(1-2), 67-73.



156

[179] Brown, E.C.; Mucha, M.; Jungwirth, P.; Tobias, D.J. Structure and vibrational
spectroscopy of salt water/air interfaces: Predictions from classical molecular dy-
namics simulations. J. Phys. Chem. B, 2005, 109(16), 7934-7940.

[180] Gopalakrishnan, S.; Jungwirth, P.; Tobias, D.J.; Allen, H.C. Air-liquid interfaces of
aqueous solutions containing ammonium and sulfate: Spectroscopic and molecular
dynamics studies. J. Phys. Chem. B, 2005, 109(18), 8861-8872.

[181] Jungwirth, P.; Tobias, D.J. Surface effects on aqueous ionic solvation: A molecular
dynamics simulation study of NaCl at the air/water interface from infinite dilution
to saturation. J. Phys. Chem. B, 2000, 104(32), 7702-7706.

[182] Salvador, P.; Curtis, J.E.; Tobias, D.J.; Jungwirth, P. Polarizability of the nitrate
anion and its solvation at the air/water interface. Phys. Chem. Chem. Phys., 2003,
5(17), 3752-3757.

[183] Tuma, L.; Jenicek, D.; Jungwirth, P. Propensity of heavier halides for the wa-
ter/vapor interface revisited using the Amoeba force field. Chem. Phys. Lett., 2005,
411(1-3), 70-74.

[184] Bastug, T.; Kuyucak, S. Test of molecular dynamics force fields in gramicidin A.
European Biophysics Journal with Biophysics Letters, 2005, 34(5), 377-382.

[185] Allen, T.W.; Andersen, O.S.; Roux, B. Energetics of ion conduction through the
gramicidin channel. Proc. Natl. Acad. Sci. U.S.A., 2004, 101(1), 117-122.

[186] Allen, T.W.; Bastug, T.; Kuyucak, S.; Chung, S.H. Gramicidin A channel as a test
ground for molecular dynamics force fields. Biophys. J., 2003, 84(4), 2159-2168.

[187] Edwards, S.; Corry, B.; Kuyucak, S.; Chung, S.H. Continuum electrostatics fails
to describe ion permeation in the gramicidin channel. Biophys. J., 2002, 83(3),
1348-1360.

[188] Duca, K.A.; Jordan, P.C. Comparison of selectively polarizable force fields for
ion-water-peptide interactions: Ion translocation in a gramicidin-like channel. J.
Phys. Chem. B, 1998, 102(45), 9127-9138.

[189] Gao, J.L.; Habibollazadeh, D.; Shao, L. A Polarizable Intermolecular Potential
Function for Simulation of Liquid Alcohols. J. Phys. Chem., 1995, 99(44), 16460-
16467.

[190] Patel, S.; Brooks, C.L. A nonadditive methanol force field: Bulk liquid and liquid-
vapor interfacial properties via molecular dynamics simulations using a fluctuating
charge model. J. Chem. Phys., 2005, 122(2), Art. No. 024508.



157

[191] Gonzalez, M.A.; Enciso, E.; Bermejo, F.J.; Bee, M. Ethanol force fields: A molec-
ular dynamics study of polarization effects on different phases. J. Chem. Phys.,
1999, 110(16), 8045-8059.

[192] Kaminski, G.A. Accurate prediction of absolute acidity constants in water with
a polarizable force field: Substituted phenols, methanol, and imidazole. J. Phys.
Chem. B, 2005, 109(12), 5884-5890.

[193] Noskov, S.Y.; Lamoureux, G.; Roux, B. Molecular dynamics study of hydration
in ethanol-water mixtures using a polarizable force field. J. Phys. Chem. B, 2005,
109(14), 6705-6713.

[194] Iuchi, S.; Morita, A.; Kato, S. Molecular dynamics simulation with the charge
response kernel: Vibrational spectra of liquid water and N-methylacetamide in
aqueous solution. J. Phys. Chem. B, 2002, 106(13), 3466-3476.

[195] Kaminski, G.A.; Friesner, R.A.; Zhou, R.H. A computationally inexpensive modifi-
cation of the point dipole electrostatic polarization model for molecular simulations.
J. Comp. Chem., 2003, 24(3), 267-276.

[196] Mannfors, B.; Mirkin, N.G.; Palmo, K.; Krimm, S. A polarizable electrostatic
model of the N-methylacetamide dimer. J. Comp. Chem., 2001, 22(16), 1933-1943.

[197] Kaminski, G.A.; Stern, H.A.; Berne, B.J.; Friesner, R.A.; Cao, Y.X.X.; Murphy,
R.B.; Zhou, R.H.; Halgren, T.A. Development of a polarizable force field for proteins
via ab initio quantum chemistry: First generation model and gas phase tests. J.
Comput. Chem., 2002, 23(16), 1515-1531.

[198] Ren, P.Y.; Ponder, J.W. Consistent treatment of inter- and intramolecular po-
larization in molecular mechanics calculations. J. Comput. Chem., 2002, 23(16),
1497-1506.

[199] Mark, P.; Nilsson, L. Structure and dynamics of liquid water with different long-
range interaction truncation and temperature control methods in molecular dynam-
ics simulations. J. Comp. Chem., 2002, 23(13), 1211-1219.

[200] van der Spoel, D.; van Maaren, P.J.; Berendsen, H.J.C. A systematic study of
water models for molecular simulation: Derivation of water models optimized for
use with a reaction field. J. Chem. Phys., 1998, 108(24), 10220-10230.

[201] Feller, S.E.; Pastor, R.W.; Rojnuckarin, A.; Bogusz, S.; Brooks, B.R. Effect of
electrostatic force truncation on interfacial and transport properties of water. J.
Phys. Chem, 1996, 100(42), 17011-17020.

[202] Roberts, J.E.; Schnitker, J. Boundary-conditions in Simulations of Aqueous Ionic-
Solutions - A Systematic Study. J. Phys. Chem., 1995, 99(4), 1322-1331.



158

[203] Schreiber, H.; Steinhauser, O. Molecular Dynamics Studies of Solvated Polypep-
tides - Why the Cutoff Scheme does not work. Chem. Phys., 1992, 168(1), 75-89.

[204] Saito, M. Molecular Dynamics Simulations of Proteins in solution - Artifacts
caused by the cutoff approximation. J. Chem. Phys., 1994, 101(5), 4055-4061.

[205] Norberg, J.; Nilsson, L. On the truncation of long-range electrostatic interactions
in DNA. Biophys. J., 2000, 79(3), 1537-1553.

[206] Ewald, P.P. Die Berechnung optischer und elektrostatischer Gitterpotentiale. Ann.
Phys., 1921, 64, 253-287.

[207] Koehl, P. Electrostatics calculations: latest methodological advances. Curr. Opin.
Struct. Biol., 2006, 16(2), 142-151.

[208] Frenkel, D.; Smit, B. Understanding Molecular Simulation, Academic Press: San
Diego, 2001.

[209] Deserno, M.; Holm, C. How to mesh up Ewald sums. I. A theoretical and numerical
comparison of various particle mesh routines. Journal of Chemical Physics, 1998,
109(18), 7678-7693.

[210] Deserno, M.; Holm, C. How to mesh up Ewald sums. II. An accurate error esti-
mate for the particle-particle-particle-mesh algorithm. Journal of Chemical Physics,
1998, 109(18), 7694-7701.

[211] Hockney, R.W.; Eastwood, J.W. Computer Simulation using Particles, Institute
of Physics Publishing: Bristol, UK, 1988.

[212] Darden, T., York, D., Pedersen, L. Particle Mesh Ewald - An N.Log(N) Method
for Ewald Sums in Large Systems. J. Chem. Phys., 1993, 98(12), 10089-10092.

[213] Toukmaji, A.; Sagui, C.; Board, J.; Darden, T., Efficient particle-mesh Ewald
based approach to fixed and induced dipolar interactions. J. Chem. Phys., 2000,
113, 10913.

[214] Appel, A. An efficient program for many-body simulation. SIAM J. Sci. Stat.
Comput., 1985, 6(1), 85-103.

[215] Barnes, J.; HUT, P. A hierarchical O(N-LOG-N) force calculation algorithm.
Nature, 1986, 324(6096), 446-449.

[216] Greengard, L.; Rokhlin, V. A fast algorithm for particle simulations. J. Comp.
Phys., 1987, 73, 325-348

[217] Greengard, L. Fast algorithms for classical physics. Science, 1994, 265(5174),
909-914.



159

[218] Ding, H.-Q.; Karasawa, N.; Goddard, W. A. Atomic level simulations on a million
particles: The cell multipole method for Coulomb and London nonbond interac-
tions. J. Chem. Phys., 1992, 97, 4309-4315.

[219] Kutteh, R.; Nicholas, J. B. Implementing the cell multipole method for dipolar
and charged dipolar systems. Comput. Phys. Commun., 1995, 86, 236-254.

[220] Ding, H.-Q.; Karasawa, N.; Goddard, W. A. The reduced cell multipole method
for Coulomb interactions in periodic systems with million-atom unit cells. Chem.
Phys. Lett., 1992, 196, 6-13.

[221] Lim, K.-T.; Brunett, S.; Iotov, M.; McClurg, R.B.; Vaidehi, N.; Dasgupta, S.; Tay-
lor, S.; Goddard, W. A. Molecular Dynamics for Very Large Systems on Massively
Parallel Computers: The MPSim Program. J. Comput. Chem., 1997, 18, 501-521.

[222] Pollock, E.L.; Glosli, J. Comments on P(3)M, FMM, and the Ewald method for
large periodic coulombic systems Comp. Phys. Comm., 1996, 95(2-3), 93-110.

[223] Figueirido, F.; Levy, R.M.; Zhou, R.H.; Berne, B.J. Large scale simulation of
macromolecules in solution: Combining the periodic fast multipole method with
multiple time step integrators. J. Chem. Phys., 1997, 106(23), 9835-9849.

[224] Sagui, C.; Darden, T.A. Molecular dynamics simulations of biomolecules: Long-
range electrostatic effects, Annual Review of Biophysics and Biomolecular Struc-
ture, 1999, 28, 155-179.

[225] Ennari, J.; Neelov, I.; Sundholm, F. Simulation of a PEO based solid polyelec-
trolyte, comparison of the CMM and the Ewald summation method. Polymer,
2000, 41(6), 2149-2155.

[226] Carrier, J.; Greengard, L.; Rokhlin, V. A fast adaptive multipole algorithm for
particle simulations. SIAM J. Sci. Stat. Comput., 1988, 9(4), 669-686.

[227] Esselink, K. A comparison of algorithms for long range interactions. Comp. Phys.
Comm., 1995, 87(3), 375-395.

[228] Fenley, M.O.; Olson, W.K.; Chua, K.; Boschitsch, A.H. Fast adaptive multipole
method for computation of electrostatic energy in simulations of polyelectrolyte
DNA. J. Comp. Chem., 1996, 17(8), 976-991.

[229] Sun, X.B.; Pitsianis, N.P. A matrix version of the fast multipole method. SIAM
Review, 2001, 43(2), 289-300.

[230] Kutteh, R.; Nicholas, J.B. Efficient dipole iteration in polarizable charged systems
using the cell multipole method and application to polarizable water. Comp. Phys.
Comm., 1995, 86(3), 227-235.



160

[231] Saad, Y.; van der Vorst, H.A. Iterative solution of linear systems in the 20-th
century J. Comput. Appl. Math. , 2000, 123, 1-33.

[232] Barrett, R.; Berry, M.; Chan, T.F.; Demmel, J.; Donato,J.M.; Dongarra, J.; Ei-
jkhout, V.; Pozo, R.; Romine, C.; van der Vorst,H.A. Templates for the Solution of
Linear Systems: Building Blocks for Iterative Methods, SIAM: Philadalphia, 1994.

[233] Sewell, G. Computational methods of linear algebra, Wiley-Interscience: Hoboken,
2005.

[234] Golub,G.H.; Van Loan, C.F. Matrix Computations, The Johns Hopkins University
Press, 3rd edition, 1996.

[235] Golub, G.H.; Ortega, J.M. Scientific Computing And Differential Equations : An
Introduction To Numerical Methods, Academic Press:Boston, 1992.

[236] Saad, Y. Iterative Methods for Sparse Linear Systems, SIAM, Second edition,
2003.

[237] Kumar, V.; Grama, A.; Gupta, A.; Karypis, G. Introduction to Parallel Comput-
ing: Design and Analysis of Algorithms, Benjamin/Cumming Publishing Company:
Redwood City, 1994.

[238] Axelsson, O. Iterative Solution Methods, Cambridge University Press: New York,
1994.

[239] Hackbusch, W. Iterative solution of large sparse systems of equations, Springer
Verlag: New York, 1994.

[240] Greenbaum, A. Iterative Methods for Solving Linear Systems, SIAM: Philedelphia,
1997.

[241] Fedorenko, R.P. A relaxation method for solving elliptic difference equations.
USSR Comput. Math. math. Phys., 1961, 1, 1092-1096.

[242] Fedorenko, R.P. The speed of convergence of one iterative process. USSR Comput.
Math. math. Phys., 1965, 4, 227-235.

[243] Brandt, A. Multi-Level Adaptive Solutions to Boundary-Value Problems. Math.
Comp., 1977, 31, 333-390.

[244] Beck, T.L. Real-space multigrid solution of electrostatics problems and the Kohn-
Sham equations. Int. J. Quant. Chem., 1997, 65(5), 477-486.

[245] Heiskanen, M.; Torsti, T.; Puska, M.J.; Nieminen, R.M. Multigrid method for
electronic structure calculations. Phys. Rev. B , 2001, 63(24), Art. No. 245106.



161

[246] Torsti, T.; Heiskanen, M.; Puska, M.J.; Nieminen, R.M. MIKA: Multigrid-based
program package for electronic structure calculations. Int. J. Quant. Chem., 2003,
91(2), 171-176.

[247] Kummel, S. Damped gradient iteration and multigrid relaxation: tools for elec-
tronic structure calculations using orbital density-functionals. J. Comp. Phys.,
2004, 201(1), 333-343.

[248] Livshits, I.; Brandt, A. Accuracy properties of the wave-ray multigrid algorithm
for Helmholtz equations. SIAM J. Sci. Comp., 2006 , 28 (4) , 1228-1251 .

[249] Weiss, B.; Biro, O.; Caldera, P.; Hollaus, K.; Paoli, G.; Preis, K. A multigrid
solver for time harmonic three-dimensional electromagnetic wave problems. IEEE
Trans. Mag., 2006 , 42 (4) , 639-642 .

[250] Mavriplis, D.J. Exploring alternative approaches to computational fluid dynamics.
International Journal of Computational Fluid Dynamics, 2005, 19 (8) , 613-620.

[251] Caughey, D.A. Symmetric Gauss-Seidel multigrid solution of the Euler equations
on structured and unstructured grids. International Journal of Computational Fluid
Dynamics, 2005 , 19 (8) , 605-612.

[252] Hafez, M.; Wahba, E. Multigrid acceleration for transonic aerodynamic flow sim-
ulations based on a hierarchical formulation. International Journal for Numerical
methods in fluids, 2005 , 47 (6-7) , 517-541.

[253] Dolean, V.; Lanteri, S. Parallel multigrid methods for the calculation of unsteady
flows on unstructured grids: algorithmic aspects and parallel performances on clus-
ters of PCs. Parallel Computing, 2004, 30(4), 503-525.

[254] Izaguirre, J.A.; Hampton, S.S.; Matthey, T. Parallel multigrid summation for
the N-body problem. Journal of Parallel and Distributed Computing, 2005, 65(8),
949-962.

[255] Demmel, J.A. Applied Numerical Linear Algebra, Society for Industrial and Ap-
plied Mathematics: Philadelphia, 1997.

[256] Press, W.H.; Teukolsky, S.A.; Vetterling, W.T.; Flannery, B.P. Numerical Recipes
in C++, Cambridge University Press: Cambridge, 2002.

[257] Trottenberg, U.; Oosterlee, C.; Schüller, A. Multigrid, Academic Press: San Diego,
2001.

[258] Briggs, W.L.; Henson, V.E.; McCormick, S.F. A Multigrid Tutorial, Society for
Industrial and Applied Mathematics: Philadelphia, 2000.



162

[259] Wesseling., P. An Introduction to Multigrid Methods, John Wiley & Sons: Chich-
ester, 1992.

[260] Lay, D.C. Linear Algebra and Its Applications, Pearson Addison Wesley: Reading,
1998.

[261] Yavneh, I. Why Multigrid Methods Are So Efficient. Computing in Science &
Engineering, textbf2006, 8(6), 12-22.

[262] Brandt,A.; McCormick,S.F.; Ruge, J.W. Algebraic Multigrid(AMG) for Automatic
Multigrid Solutions with Application to Geodetic Computations, Report, Inst. For
Computational studies, fort Collins, CO, 1982.
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[264] Stüben, K. Algebraic multigrid (AMG): An introduction with applications, in
Multigrid, U Trottenberg, C. Ooosterlee, and A. Schuller, eds, Academic Press,
San Diego, 2000.

[265] Briggs, W.L.; Henson. V.E.; McCormick, S.F. A Multigrid Tutorial, 2nd ed.,
SIAM, Philedelphia, 2000.

[266] Okusanya, T.; Darmofal, D.L.; Peraire, J. Algebraic multigrid for stabilized finite
element discretizations of the Navier-Stokes equations. Computer methods in applied
mechanics and engineering, 2004, 193(33-35), 3667-3686.

[267] Cleary, A.J.; Falgout, R.D.; Henson, V.E.; Jones, J.E.; Manteufeel, T.A.; Ro-
bustness and scalability of algebraic multigrid. SIAM J. Sci. Comput., 2000, 21,
1886-1908.

[268] Steinmetz, T.; Helias, M.; Wimmer, G.; Fichte, L.O.; Clemens, M. Electro-
quasistatic field simulations based on a discrete electromagnetism formulation.
IEEE Trans. Mag., 2006, 42(4), 755-758.

[269] Liu, Y.Q.; Yuan, J.S. A finite element domain decomposition combined with
algebraic multigrid method for large-scale electromagnetic field computation. IEEE
Trans. Mag., 2006, 42(4), 655-658.

[270] Arbenz, P.; Hetmaniuk, U.L.; Lehoucq, R.B.; Tuminaro, R.S. A comparison of
eigensolvers for large-scale 3D modal analysis using AMG-preconditioned itera-
tive methods. International Journal for Numerical Methods in Engineering, 2005,
64(2), 204-236.

[271] Borzi, A.; Borzi, G. Algebraic multigrid methods for solving generalized eigenvalue
problems. International Journal for Numerical Methods in Engineering, 2006, 65
(8): 1186-1196 FEB 19 2006



163
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