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Learning, Remembering, and Relating Sequences in the Hippocampus 

Annabelle C. Singer 

As a crossroads between sensory inputs and long term memories, the 

hippocampus turns a plethora of information into concise episodes for us to remember.  

The hippocampus can employ different strategies to achieve this transformation.  By 

selecting only notable experiences to transfer to long term memory storage, we can 

remember important experiences while forgetting the mundane.  By encoding common 

principles among several experiences, we can remember appropriate general responses 

and predict future similar experiences.  We considered ways the hippocampus might 

achieve these two possibilities by examining hippocampal activity while rats executed 

sequences for rewards. 

 Given that we must remember the experiences that lead to reward in order to 

exploit these rewards in the future, we asked if memory processes are enhanced by 

reward.  In particular we examined hippocampal sharp wave-ripples (SWRs) because 

reactivation of previous experiences during SWRs is thought to be essential for event 

memory storage. We found that SWR activity increases when animals receive reward.  

This reward related SWR activity is further enhanced when animals have to learn new 

path-reward associations.  Additionally, SWR activity reactivates neural patterns that 

occur as animals run to or from the reward.  Because SWRs are implicated in memory 

consolidation, this enhanced SWR reactivation could be a mechanism to preferentially 

remember experiences associated with reward. 

 Furthermore, when navigating environments with many repeated elements, 

generalizing across elements can be advantageous to efficiently encode appropriate 

responses.  Simultaneously, each element must also be differentiated from the others.  
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To study this, we then examined hippocampal activity as animals traversed 

environments with many repeated elements and had to distinguish between these 

elements to receive reward.  We found that some hippocampal cells fire very similarly on 

multiple repeated elements, while other cells encode the elements differently.  Cells that 

generalize across similar elements have correlated moment to moment activity, 

suggesting that they are part of functional ensembles.  Furthermore, this generalizing / 

path equivalent activity increases as animals learn new relationships between repeated 

elements.  This generalization across repeating elements could be a mechanism to 

extract general principles about related experiences.   
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Introduction 

 

We remember our lives in stories: episodes turn a jumble of information into 

sequences of places, events, actions, and outcomes.  We use these stories to 

understand, to learn, and to predict our world and ourselves in it.  The hippocampus is 

the brain‟s storyteller associating disparate information, like sounds, smells, 

expectations, actions, into episodes that can be later recalled (Squire, 1982).  Sitting at a 

crossroads between incoming sensory information and long term memories, the 

hippocampus is essential for both memory formation, forming associations between 

incoming information, and memory consolidation, transferring those memories to the 

cortex for long term storage (Squire and Alvarez, 1995;Squire and Zola, 1996).   

Not everything is remembered.  We preferentially remember the “important” or 

“exciting” stories (Cahill and McGaugh, 1998;LaBar and Cabeza, 2006).  While we can 

forget more mundane experiences, we remember what leads to positive or negative 

outcomes, like food or pain, presumably so that we can repeat or avoid these 

experiences in the future.  Essential to the transition from memory formation to memory 

consolidation, the hippocampus seems an ideal place to modulate which episodes are 

stored for the long term and which are discarded.  While much research has elucidated 

how we preferentially form conditioned responses to salient stimuli, like during fear 

conditioning, the mechanisms by which we preferentially remember some episodes over 

others is still unclear (Maren and Quirk, 2004).  Episodic memory modulation could take 

place at either the memory formation stage or the memory consolidation stage and we 

will examine these possibilities. 
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An episode does not stand alone; it is formed and recalled in relation to other 

episodes.  When similar experiences are formed into memories, we must separate them 

to remember each distinctly (Leutgeb et al., 2005c).  But we can also generalize across 

similarities in these experiences, extracting and remembering general principles instead 

of storing similar information about each experience redundantly (Eichenbaum, 2000).  

These general principles can then be applied to new experiences.  As a gateway 

through which all episodes must pass, the hippocampus is well situated to relate 

different episodes to each other.  Indeed, the hippocampus is thought to merge 

information from related experiences to apply to new experiences (Eichenbaum, 2000).  

We will examine how the hippocampus balances the drive to separate and generalize 

when faced with experiences with many similar repeated elements. 

 

Episodes and Sequences 

An episode is, in many ways, a sequence: events, places, people, and our 

perspective on these things ordered in time and space.  To grasp how we turn these 

distinct entities into episodes and episodic memories, we can examine how we learn and 

remember sequences.  While we don‟t know if animals form episodic memories (Does 

Pongo remember last Christmas when he ate the roast ham off the table?), they do learn 

sequences, like sequences of places, actions, and stimuli.  We can therefore investigate 

the neural mechanisms underlying sequence learning in animals to gain insight into the 

neural mechanisms of episodic memory formation and consolidation.  In the research 

presented here, we consider neural activity in rats as the animals learn to execute 

sequences of places to receive a reward. 
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Hippocampal Activity and Sequence Learning 

Several different types of hippocampal activity are thought to be involved in 

sequence learning and, perhaps, episodic memories.  When animals run, neurons 

reliably fire in particular locations in space, called place fields, and the local field 

potential (LFP) oscillates at about 8 Hz, or theta (O'Keefe and Dostrovsky, 

1971;McNaughton et al., 1983;O'Keefe, 1993).  Place field activity during theta is 

theorized to underlie memory formation.  Memory formation must occur rapidly, as we 

often form episodic memories from only a single experience, though additional 

experience can fortify memories.  Similarly, place fields form rapidly in a new 

environment then undergo additional refinement with more experience (Frank et al., 

2004;Karlsson and Frank, 2008) 

Place field activity during theta can form organized sequences.  As an animal 

runs from one location to another, a series of place cells fire such that individual spikes 

are ordered into sequences on short time scales.  As an animal runs through a cell‟s 

place field, the neuron is more likely to fire progressively earlier and earlier in the phase 

of theta as the animal progresses through the place field (Skaggs et al., 1996;Harris et 

al., 2002;Dragoi and Buzsaki, 2006).  Apply this principle to a population of neurons and, 

as the animal runs from one location to another, cells spike in precisely timed sequences 

(Figure 1).   

This sequential activity is thought to be important because it organized neurons 

to fire in specific patterns on the short time scales required for plasticity. If cells fire in a 

particular order within tens of milliseconds of each other, the connections between 

neurons with neighboring spikes and receptive fields should strengthen according to 
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Adapted from Dragoi and Buzsaki 2006 

Figure 1. Theta phase precession in the 

hippocampus.  As a rat (top) runs, he 

crosses different cells‟ place fields (P1 

through P7, middle).  At the center of a 

cell‟s place field, the cell is most likely to 

fire at the trough of theta (P4).  Theta is 

shown below and the probability of spiking 

during different phases of theta is 

represented by line thickness.  As the 

animal progresses through the place field, 

the cell fires at earlier and earlier phases 

of theta.  For cells with neighboring place 

fields, the spikes become ordered into 

precisely timed sequences.  

Hebbian mechanisms in which cells that fire together wire together (Hebb, 1949).  If the 

connections are strengthened enough, then activity in the first cell could set off firing off 

the entire sequence.  This, currently, is our best guess of how we encode sequences: 

neurons form receptive fields then form associations with each other creating long 

sequences.  In this case, an animal traverses a series of places and a sequence of place 

fields is tied together such that one place field links to the next.  We know that 

hippocampal neuronal can encode more general associations, not just places (Wiener et 

al., 1989;Young et al., 1994;Wirth et al., 2003).  Therefore, a series of places, events, 

objects, and other associations could also be encoded by sequences of hippocampal 

neurons that “link” together.    

 

 

 

\ 

 

 

 

These sequences of neural activity observed during theta are subsequently 

“replayed” during sharp-wave ripples (Fig. 2; (Buzsaki, 1986;Wilson and McNaughton, 

1994;Skaggs and McNaughton, 1996;Sutherland and McNaughton, 2000;Foster and 

Wilson, 2006;Karlsson and Frank, 2009a) .  Sharp wave ripples (SWR) are high 

frequency oscillations in the local field potential that correspond to bursts of population 

activity.   SWRs are the corresponding bursts of activity are hypothesized to be involved 
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Figure 2. SWR Replay.  During behavior, sequences of cells fire spike trains (red lines) as the 

animals run through each cells‟ place field (top diagram on the left side).  Cells are sorted in 

order of place field peak location, so that cells with earlier peaks are at the top.  During pauses 

in behavior the same sequences are replayed during SWRs (bottom diagram).  The blue line 

shows the LFP with a SWR (center), with simultaneously recorded spikes below.  In this SWR, 

the cells fire in approximately reverse order to that seen during running. 

Adapted from Foster and Wilson 2006 

C
el

l 

in memory consolidation.  Memory consolidation occurs more slowly than memory 

formation, but it requires coordination between different brain regions because memories 

rapidly formed within the hippocampus must be transferred to the cortex for long term 

storage (Squire and Alvarez, 1995).   

.   
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Accordingly, SWR replay continues long after an experience is complete (Wilson and 

McNaughton, 1994;Karlsson and Frank, 2009a) and is coordinated across many brain 

regions (Sutherland and McNaughton, 2000;Pennartz et al., 2004;Ji and Wilson, 

2007;Euston et al., 2007;Peyrache et al., 2009b).  Indeed, recent research has shown 

that interrupting SWRs during sleep just after a memory task impairs later performance 

on that task, implicating SWRs in learning and memory (Girardeau et al., 2009).   

SWRs occur not only during sleep, but also during pauses in behavior in waking 

and we will focus on the these SWRs during waking (Wilson and McNaughton, 

1994;Foster and Wilson, 2006).  During pauses in behavior, SWRs are enhanced in 

novel environments and by repeated passes through a familiar environment.  These 

results reveal that SWR activity can be modulated by a variety of factors (Jackson et al., 

2006;Cheng and Frank, 2008).  The exact mechanisms of producing and modulating 

SWR activity is unknown but SWR activity may be modulated according to the need for 

memory consolidation of specific experiences. 

 

Relating Different Sequences 

Place cells and SWRs may allow us to learn and remember particular 

sequences, but we must also distinguish between similar sequences and associate 

related sequences.  To distinguish between similar sequences, an entirely different set 

of place cells can encode each sequence.  But in some cases, sequences should be 

related but distinguished, for instance when animals are in the same place but some 

things have changed.  As animals run through the same location but come from or go to 

different destinations, place fields fire in the same place but at different rates (Figure 3, 

(Frank et al., 2000).  This activity, termed prospective or retrospective coding, is thought 
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Figure 3. Trajectory Coding. A single CA1 cells fires much more when the animal is in 

the same location but coming from or going to the left arm (top row of top figure) than the 

right arm (bottom row of top figure).  The top figure shows the linearized firing in hertz as a 

function of the animals position along the trajectory in centimeters.  The track and the 

animal‟s trajectories through it are shown below.  CP indicates the choice point, the point 

at the end of the middle arm where the animal had to select the next arm.   

Adapted from Frank, Brown, and Wilson 2000  

to encode not just the current location but the longer sequences of places the animal has 

or will traverse.  In this sense, a place cell firing in a single location but at a different rate 

can signal two different but related sequences of places.   

 

 

 

 

 

 

 

 

 

A similar pattern of activity has been observed if some cues in the environment 

change.  When animals are in the same place but in different enclosures (e.g. the same 

cues in the distance but different local cues), place fields fire in the same location but at 

different peak rates (Figure 4, (Lever et al., 2002;Wills et al., 2005;Leutgeb et al., 

2005a;Leutgeb et al., 2005b;Leutgeb et al., 2005c).  This activity is called rate 

remapping and stands in contrast to global remapping, in which cells fire in different 

locations in different environments (Leutgeb et al., 2005b).  In studies of rate remapping, 

animals foraged randomly through the environment so it is unknown how exact 

trajectories through space or trajectory coding affected firing rate.  Nonetheless, both 
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Figure 4. Rate Remapping and 

Global Remapping of Place Fields.  

In the same place, with a different 

enclosure, place cells in CA3 fire in 

the same place at different rates. (top 

figure).  Above are overhead views of 

the different enclosures and below are 

rate maps for a single CA3 cell for the 

period when animals foraged in the 

enclosure.  The left and center rate 

maps are scaled to a peak of 14 Hz, 

the peak rate in the left enclosure.  

The right rate map is scaled to 1.2 Hz, 

the peak rate in the right enclosure.  In 

the same enclosure in different rooms 

(rooms A and B), place cells fire in 

different places (bottom figure).   Adapted from Leutgeb et al 2005b  

Rate 

Remapping 

Global 

Remapping 

trajectory coding and rate remapping have been proposed to encode different episodes 

or sequences in the same place.   

 

 

 

 

 

 

 

 

Sequence Learning and CA3 

Place fields, SWRs, and rate remapping can be found in several different hippocampal 

areas, but CA3 is postulated to play a central role in sequence learning.  The 

hippocampus is often thought of as a single loop through a series of subregions, but it 

has a number of other connections (Figure 5).  In particular CA3‟s recurrent collaterals, 

in which CA3 excitatory neurons synapse onto other CA3 excitatory neurons, allow 

direct connections between place cells in the same subregion.  These recurrent 

connections may form the sequence activity that we think underlies memory formation.  

Furthermore, prior studies suggest that SWRs originate in CA3 (Csicsvari et al., 2000), 

perhaps also be due to these recurrent collaterals.  CA3 receives input within the 

hippocampus from the dentate gyrus, CA3, and the entorhinal cortex and it sends output 

to CA1.  CA3 also receives inputs from a number of regions outside the hippocampus: 
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the septum (shown to be involved in hippocampal theta oscillations), the VTA (implicated 

in reward encoding), the amygdala (engaged in processing emotions), the locus 

coeruleus (sends noradrenergic fibers to CA3), and the raphe nuclei (project 

serotonergic fibers to CA3; (Andersen et al., 2006).  Furthermore, monoamine inputs are 

generally stronger in CA3 than CA1 (Andersen et al., 2006).  Just upstream of CA3, the 

entorhinal cortex receives inputs from association cortices carrying a wide array of 

sensory information.  Just downstream of CA3, CA1 sends projections to the prefrontal 

cortex and this connection is thought to be involved in long term memory storage.  Given 

the central location of CA3 in the hippocampal network, its hypothesized role in 

sequence learning, and its strong modulatory inputs, we chose to examine CA3 activity 

as animal performed new and familiar sequences for reward.   

 

 

 

 

 

 

 

Many prior studies have examined hippocampal activity as animals searched for 

food randomly in an open field or as animals performed a well learned task but these 

approaches have a number of drawbacks for studying sequence learning.  Because 

animal behavior is highly variable in open fields, isolating specific paths or sequences of 

Figure 5.  Circuit diagram of the hippocampus showing hippocampal subregions: 

the dentate gyrus, CA3, and CA1, and the subiculum and the entorhinal cortex.  

Arrows indicate excitatory connections of pyramidal cells.  The entorhinal cortex 

receives inputs from and sends projections to parahippocampal and perirhinal cortices.   
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places is difficult.  In studies using well learned tasks in linear environments, animals 

produce stereotyped behaviors, making sequences easier to isolate.  But in these well 

learned tasks, sequence memories have already formed and undergone consolidation, 

so these memory processes cannot be observed in action.  Furthermore, in most 

hippocampal studies, animals navigate through simple environments.  While simplicity 

may be advantageous to answer some questions, in these simple environments there is 

limited opportunity to examine how similar or related sequences are encoded relative to 

each other.  

These drawbacks motivated our study design.  We examined hippocampal 

activity in CA3 as animals learned to perform new sequences in linear mazes that 

restricted the animals‟ path.  Animals had to traverse and distinguish between several 

similar paths to correctly perform the task.  Animals also had to learn to switch between 

sequences.  We thereby were able to assess hippocampal activity as animal performed 

controlled sequential behaviors, continued to learn from the situation, and distinguished 

between similar paths. 

 

Hypotheses 

Experiences that lead to salient outcomes, like a reward, are more readily stored 

in memory.  Although we might expect that rewarded outcomes would enhance memory 

storage, no neural mechanism has been found by which the outcome of an event 

enhances hippocampal memory formation for that event.  Previous studies examining 

hippocampal responses to different outcomes have focused on place field activity.  

These reports found that the presence of reward or differences in motivational state can 

alter the firing rate or location of hippocampal place fields (Breese et al., 1989;Kobayashi 
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et al., 1997;Fyhn et al., 2002;Tabuchi et al., 2003;Holscher et al., 2003;Kennedy and 

Shapiro, 2009).  Changes in visual cues have a similar effect on place cell firing 

(Hetherington and Shapiro, 1997), suggesting that reward can act like other sensory 

cues to alter the activity of place cells. Place field changes could signal the presence of 

something “interesting” when the animal is in the vicinity of the reward, but it is not clear 

how this activity would help the animal learn to navigate from distant locations to the 

reward.  

We reasoned that, to learn and remember what experiences or paths lead to 

reward, the network must be able to encode associations between the path and the later 

outcome.  While it is unclear how place fields might link a long path and an outcome, 

SWR reactivation is well suited to this task.  Long paths that an animal traverses can be 

reactivated during SWRs (Davidson et al., 2009) and SWR reactivation is likely involved 

in memory consolidation (Buzsaki et al., 1992;Girardeau et al., 2009).  We imagined that 

enhancing SWR reactivation in response to reward could be a mechanism to 

preferentially remember paths related to reward after the outcome of the path is known.  

Therefore, we hypothesized that reward would enhance SWR reactivation of paths 

related to that reward.  We will discuss our findings in detail in Chapter 1. 

While SWR reactivation may help us bind paths to their outcomes, understanding 

the general principles that predict reward could help animals navigate to new reward 

sites.  For instance, if we understand how cities are organized into blocks, then we can 

better predict how to find a taxi or coffee shop.  As described above, previous work has 

shown that in similar environments place cells rate remap (Lever et al., 2002;Wills et al., 

2005;Leutgeb et al., 2005a;Leutgeb et al., 2005b).  While some have argued that this 

rate remapping encodes different episodes in the same place, this sort of activity could 

reflect animal confusion.  We theorized that rate remapping actually reflects 

generalizations across similar experiences.   
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We examined rate remapping between distinct but related paths as animals 

performed novel and familiar sequences in an environment with many repeating 

elements.  Environments with many repeated elements carry both computational 

challenges, in distinguishing between similar elements, and advantages, in that the 

dimensions of one element predict the dimensions of another.  We hypothesized that 

some place cells would show path equivalence, firing in the same locations on many 

different repeated elements of the environment, and that this path equivalence would 

increase as animal learned relationships between similar elements.  We will discuss our 

findings in detail in Chapter 2.   
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Chapter 1 

Rewarded Outcomes Enhance Reactivation of Experience in the 

Hippocampus 

 

 

Abstract 

Remembering experiences that lead to reward is essential for survival. The 

hippocampus is required for forming and storing memories of events and places, but the 

mechanisms that associate specific experiences with rewarding outcomes are not 

understood. Event memory storage is thought to depend on the reactivation of previous 

experiences during hippocampal sharp wave-ripples (SWRs). We used a novel 

sequence switching task that allowed us to examine the interaction between SWRs and 

reward. We compared SWR activity after animals traversed spatial trajectories and 

either received or did not receive a reward. Here we show that rat hippocampal CA3 

principal cells are significantly more active during SWRs following receipt of reward. This 

SWR activity was further enhanced during learning and reactivated coherent elements of 

the paths associated with the reward location. This enhanced reactivation in response to 

reward could be a mechanism to bind rewarding outcomes to the experiences that 

precede them. 

 

Introduction 

How do we remember experiences that lead to reward? Although the 

hippocampus is required for storing memories of the places and events that make up 

these experiences (Squire, 1982), little is known about the mechanisms that associate 
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specific experiences with their outcomes. Studies in rodents examining hippocampal 

responses to different outcomes have generally focused on the presence or absence of 

a reward such as food or an escape platform in a watermaze. These reports analyzed 

place field activity, where hippocampal excitatory cells (“place cells”) fire in particular 

locations in space during active exploration. These studies found that the presence of 

reward or differences in motivational state can alter the firing rate or location of 

hippocampal place fields (Breese et al., 1989;Kobayashi et al., 1997;Fyhn et al., 

2002;Tabuchi et al., 2003;Holscher et al., 2003;Kennedy and Shapiro, 2009).  As the 

presence or absence of visual cues has a similar effect on place cell firing (Hetherington 

and Shapiro, 1997), these studies suggest that reward can act like other sensory cues to 

alter the activity of place cells. Place field changes could signal the presence of 

something “interesting” when the animals is in the vicinity of the reward, but it is not clear 

how this activity would help the animal learn to navigate from distant locations to the 

reward.  

Place cells are also active during high frequency network oscillations called 

sharp wave ripples (SWRs), in which sequences of cells activated during movement are 

reactivated (Skaggs and McNaughton, 1996;Lee and Wilson, 2002;Foster and Wilson, 

2006;Ji and Wilson, 2007;Diba and Buzsaki, 2007). SWRs occur largely during sleep 

and awake immobility (Buzsaki et al., 1983;O'Neill et al., 2006;Cheng and Frank, 2008) 

and are thought to be important for spatial learning and memory formation (Redish and 

Touretzky, 1998;Redish, 1999;Samsonovich and Ascoli, 2005;Nakashiba et al., 2008). 

Hippocampal reactivation allows events that are experienced relatively briefly to be 

replayed over and over again on a short timescale compatible with synaptic plasticity 

(Buzsaki, 1986;Wilson and McNaughton, 1994;Sutherland and McNaughton, 2000).  In 

particular, reactivation during pauses in waking behavior frequently results in the 

sequential activity of place cells active on paths to or from the animal‟s current location 
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(Foster and Wilson, 2006;Diba and Buzsaki, 2007;Davidson et al., 2009;Karlsson and 

Frank, 2009b). SWR reactivation can occur after traversing a path, potentially allowing 

the animal to learn the relationship between the path and its outcome (Johnson and 

Redish, 2005;Foster and Wilson, 2006;Diba and Buzsaki, 2007). 

Given that rewarded events are often well remembered, we would predict that 

rewarded outcomes would modulate memory storage mechanisms for the associated 

events. In particular, we would expect that a rewarding outcome would facilitate 

reactivation of the experience that led to that outcome. While a recent report 

documented outcome related activity in the primate hippocampus (Wirth et al., 2009), 

the relationship between reward and reactivation has not been investigated. We 

therefore asked whether receipt of reward affects reactivation of place cells in the 

hippocampus. 

 

 

Results 

SWR events generally originate in hippocampal area CA3 (Csicsvari et al., 

2000), so we focused our studies on this area. We recorded from principal neurons while 

animals learned to switch between two spatial sequences in response to changing 

reward contingencies (Fig. 1a,b). This sequence switching task allowed us to compare 

trials when the animals performed the same behavioral sequence and either did or did 

not receive reward (Fig. 1c). Animals first learned a spatial alternation sequence (S1) to 

criterion and then learned to switch between this sequence and a new sequence (S2). 

This task has four features that make it appropriate for examining the effect of reward on 

hippocampal memory processing. First, the rapid learning of the initial sequence 

requires the hippocampus (Kim and Frank, 2009) and the hippocampus is required for 

flexibly changing behavior in response to changing reward contingencies (Hsiao and 
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Isaacson, 1971;Hirsh et al., 1978;Ainge et al., 2007a). Second, because reward 

contingencies change during each run session, this task provides an adequate number 

of unrewarded trials to allow us to compare neural activity during rewarded and 

unrewarded trials. Third, the presence or absence of reward drives ongoing behavior. 

This is in contrast to tasks where reward is randomly omitted (Tabuchi et al., 2003) and 

animals must learn to behave continuously regardless of each trial‟s outcome. Fourth, in 

this task the animal learns to switch between sequences in a familiar environment, 

allowing us to control for the effects of spatial novelty on SWR activity (Cheng and 

Frank, 2008;Karlsson and Frank, 2008). 

All six arms were open in both sequences and animals received a liquid 

chocolate reward at the end of an arm if that arm was the next correct arm in the 

sequence. No experimenter delivered cues indicated whether a trial was or was not 

rewarded other than the presence or absence of the reward itself. Here, as in other 

studies of reward (Tremblay et al., 1998;Fiorillo et al., 2008), receipt of reward consists 

of the entire reward or lack of reward experience including sensation, consumption and 

the affective states induced by reward presence or absence. Our goal was to determine 

if this reward experience changed memory processing in the hippocampus. 

We focused our analysis on the sequence switching phase of the task. At the 

beginning of each session animals were placed in the home arm of the to-be-rewarded 

sequence. We distinguished between an accurate response, where the animal made a 

choice consistent with the rules of either S1 or S2, and a rewarded response where an 

animal made a choice consistent with the rules of the currently rewarded sequence. This 

allowed us to quantify the probability of an accurate response for both sequences on 

every trial (Fig. 1b).  We found that when animals were first placed in the home arm of 

S2 they immediately performed the previously rewarded S1. Thus, animals used 

environmental cues and a track-based reference frame to perform the task, rather than 
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remembering a series of right or left turns based on their body reference frame. After 

executing S1 for several trials animals changed their behavior and eventually learned to 

perform S2.  For the quantification of behavior used for our analyses we employed a 

dynamic state-space algorithm (Smith et al., 2004) to estimate the likelihood of an 

accurate response on each trial (Fig. S1). This algorithm allows us to compute 

confidence intervals which were essential for defining periods when one sequence was 

performed significantly more accurately than the other. 

We recorded from three animals during the sequence switching phase of the task 

(n = 270 single neurons, Fig. S2 for histology and LFP in CA3). To determine whether 

hippocampal SWR activity varies with receipt of reward, we examined SWR activity 

when animals stopped at the well and were either rewarded or not rewarded.  To identify 

SWRs, we filtered the local field potential from 150 - 250Hz, determined an envelope by 

Hilbert transform, and detected when the envelope amplitude exceeded 3 standard 

deviations from baseline for at least 15 msec (Cheng and Frank, 2008). We first 

restricted our analyses to putative excitatory neurons that were active in restricted 

spatial regions (place fields) on the track. 

 

SWR activity on rewarded and unrewarded trials 

We found that cells with place fields on the track (n = 107) were much more likely 

to be active during SWRs at the well (wSWRs) on rewarded trials than unrewarded trials 

(Fig. 2a, 2b, p < 10-10, Fig. S3; all statistical tests were rank sum tests and n = 107 for 

activation probability per pass or per wSWR unless otherwise noted). This enhanced 

activity was associated with two differences in neural responses between rewarded and 

unrewarded trials. First, there were more wSWRs per unit time on rewarded trials (Fig. 

2c, p < 10-10, n = 3945 rewarded trials, n = 709 unrewarded for SWR rate unless 

otherwise noted). Second, we examined each wSWR individually to control for the 
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greater rate of wSWRs and found that place cells were more likely to be active in any 

given wSWR on rewarded trials (Fig. 2d, S4a, p < 10-10). As expected given the greater 

activation probability per wSWR, the average number of spikes each neuron fired per 

wSWR, the mean firing rate in wSWRs and the proportion of cells active per wSWR 

were also larger in rewarded than unrewarded trials (Fig. 2e, 2f, and 2g, p‟s < 10-4, n = 

107 cells; prop. active n = 4427 SWRs following reward, n = 238 following no reward). 

The increase in wSWR rate and activation probability within individual wSWRs 

accounted for a four-fold increase in total activation probability on rewarded trials. There 

was an additional two-fold increase that resulted from longer time spent at the well on 

rewarded trials (p < 10-10, n = 3945 rewarded trials, n = 709 unrewarded). We controlled 

for this time difference by truncating the time on each rewarded trial to match the 

duration of immobility on a randomly selected unrewarded trial. Cells were still 

significantly more likely to be active on truncated rewarded trials than unrewarded trials 

(Fig. 2h, p < 10-10). Similarly, the differences in wSWR rate and activation probability per 

wSWR remained significantly higher on truncated rewarded trials (p < 10-10 and p < 0.01, 

respectively). 

 

SWR activity during learning of new reward contingencies 

If this enhanced reactivation is important for learning about experiences that lead 

to reward, we would expect stronger reactivation when the animal learns new path-

reward associations. Consistent with this prediction, we found that wSWR rate, 

activation probability per wSWR, and the proportion of cells active per wSWR were 

higher when animals were first exposed to S2. We examined rewarded trials during 

periods when animals performed the rewarded sequence significantly more that the 

unrewarded sequence. On the first day of exposure to S2, wSWR rate was higher on 

rewarded trials during the first session of S2 than during the rewarded trials in the 
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previous S1 session (Fig. 3a, p < 0.0005, n = 471 S1 trials, n = 140 S2 trials). Similarly, 

both activation probability and proportion of cells active per wSWR were significantly 

greater in S2 than S1 on day 1. (Fig. 3b,c; activation prob. p < 0.05, Student‟s paired t-

test, n = 14 cells; prop. active, p < 10-4, S1 n = 428 SWRs, S2 n = 147). The increase in 

activation probability and proportion of cells active per wSWR in S2 was above and 

beyond the overall increases in rewarded trials compared to unrewarded. 

Finally, as we would expect if these differences were related to learning a novel 

sequence, there were no significant differences by the third day of exposure to S2, when 

S2 was more familiar (Fig. 3b,c; p‟s > 0.1; SWR rate: S1 n = 353 trials, S2 n = 131; 

activation prob. n = 14 cells; prop. active S1 n = 455 SWRs, S2 n = 288). While these 

findings demonstrate clear differences between sessions and across days, the wSWR 

rate and the proportion of cells active per pass was relatively stable within individual 

sessions (Fig. S4b,c). Therefore this enhanced wSWR activity on S2 does not simply 

reflect sensitivity the changes in reward contingencies that occur at the beginning of 

each session. Furthermore, this increase in wSWR activity in S2 cannot be due to the 

presence of consumatory behaviors, as the animal consumed reward in both sequences. 

Taken together, these results demonstrate that reward related SWR activity is further 

enhanced when animal must learn new path-reward associations. 

 

Reactivation during SWRs on rewarded trials 

The increase in wSWR activity on rewarded trials was not simply encoding the 

presence of reward; instead wSWR activity reflected structured reactivation of neurons 

active on the paths associated with the rewarded location. Previous reports of 

reactivation during pauses in behavior have documented increased coordinated activity 

of pairs of CA1 place cells during SWRs (Kudrimoti et al., 1999;Cheng and Frank, 2008) 

as well as sequential replay of CA3 and CA1 place cells during SWRs (Foster and 
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Wilson, 2006;Diba and Buzsaki, 2007;Csicsvari et al., 2007;Davidson et al., 

2009;Karlsson and Frank, 2009b). We therefore asked whether the wSWR activity we 

saw was specific to particular place cells or pairs of cells active on the track. We 

computed the probability that a neuron active during a wSWR at the well was also active 

during the run period leading up to or away from that well. Those probabilities were both 

significantly higher than the probability that the neuron was active during a randomly 

selected run period (see methods, Fig. 4a, p < 10-10, n = 3945 trials). 

If wSWR activity resulting from reward specifically reactivates meaningful 

patterns of place cell activity, we would also expect greater reactivation of cells with 

place fields on the track. We clustered cells during both run and rest sessions, allowing 

us to identify neurons that were active in the rest box but did not have place fields on the 

track. We found that cells with place fields on the track were much more likely to be 

activated than cells without (Fig. 4b, ranksum test, p < 10-5). Further, the increase in 

activation probability per wSWR from unrewarded to rewarded trials was much larger for 

cells with place fields on the track, when measured as either the average across all cells 

(p < 10-5) or as the increase within individual cells (Fig. 4c, p < 10-10).  We confirmed 

these effects with a 2-way ANOVA and found main effects of reward (F(1,454) = 56.71, p 

< 10-5) and of the presence of a place field (F(1,454) = 94.55, p < 10-5). There was also a 

highly significant interaction (F(1,455) = 27.9, p < 10-5), due to a larger increase for cells 

with place fields.  See the Supplementary Methods for further discussion of the 

measurements. 

We then examined the place field locations of the cells active during wSWRs. 

One could imagine that SWRs preferentially reactivate cells that were most recently 

active on the run to the well. If so, we would expect cells that were active closest in 

space or time to the reward well would be more likely to fire during wSWRs. We found 

no such bias. Both the general population and cells that were active during wSWRs had 
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place field activity that congregated at the turns of the track. To visualize the spatial 

distribution of run period activity, we plotted firing rate maps constructed from all the 

spikes for every cell that was active during wSWRs at a particular well in a single 

session (Fig. 4d). The populations of cells that were active during wSWRs were active at 

multiple locations on the track and they tended to fire more during the turn leading to the 

reward well, consistent with previous reports that place fields congregate around 

relevant cues (Hetherington and Shapiro, 1997). We also noted that some cells had 

multiple place fields, perhaps accounting for the activity on more distant paths. 

 To quantify the spatial distribution of run period activity preceding wSWRs, we 

calculated the location of the peak of the occupancy normalized firing rate during the run 

period for all cells and only for cells that were active during wSWRs. The distributions for 

the entire population and for the cells that fired during wSWRs on rewarded trials were 

very similar (Fig. 4e and S5a,b; linear regression R2‟s > 0.6, p‟s < 10-4, n = 21 spatial 

bins). A complementary analysis examining the time between spiking and wSWR activity 

also failed to show a temporal bias for cells with place fields closer to the reward 

locations (Fig. S5c-f). 

If reward enhances the reactivation of experiences associated with reward, we 

would predict that cells that fired together during the run would also fire together during 

wSWRs on rewarded trials. We computed the coactivity across cells pairs and found that 

pairs of place cells were more than twice as likely to fire together during wSWRs on 

rewarded than unrewarded trials (Fig. 5a, p < 10-10, n = 498 pairs).  This coactivation 

probability per wSWR was higher for cells with greater overlap between their place fields 

(R2 = 0.1192, p < 10-10 for rewarded trials and R2 = 0.0213, p < 0.005 for unrewarded 

trials, n = 498 pairs). 

The coactivity of cells pairs on rewarded trials was greater than expected given 

the firing of the individual cells. We found a significant correlation between place field 
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overlap and the extent to which cells were more coactive per wSWR than expected by 

chance (Cheng and Frank, 2008);Fig. 5b, Fig. S6a,b, R2 = 0.0846, p < 10-5, n = 412 pairs 

on rewarded trials and R2 = 0.0335, p > 0.4, n = 20 pairs on unrewarded trials; note that 

the measure is only defined if each cell is active at least once in a wSWR). Increased 

coactivation was present only in SWRs: there was no significant difference in 

coactivation during the run up to the food well for rewarded and unrewarded trials (see 

methods, Fig. 5c, p > 0.34, 95% confidence intervals for unrewarded: 0, 0.0191 and 

rewarded: 0, 0.0186, n = 498 pairs).  We found similar results when we repeated these 

analyses by measuring the joint-surprise (Grun et al., 2002;Pazienti and Grun, 2006) of 

cell pairs‟ spiking (SFig. 6c, 6d) and by performing these analyses including only cells 

that were recorded from different tetrodes (SFig. 6e-h). Joint surprise also measures the 

extent to which two cells are more coactive than expected by chance based on the 

individual cells‟ firing, and has been used to help control for spike sorting errors. Taken 

together, these results confirm that SWR activity reactivated elements of an experience 

and that receipt of reward enhances this reactivation. 

Finally, we found that reactivation in CA3 was consistent with ordered replay of 

place cell sequences observed in previous studies (Foster and Wilson, 2006;Diba and 

Buzsaki, 2007;Csicsvari et al., 2007;Karlsson and Frank, 2009b). Ordered replay implies 

that for two cells, the further apart their place fields, the longer the time between their 

spikes during SWRs. We therefore took each pair of cells and measured the extent to 

which the distance between their place field peaks predicted the inter-cell interspike 

intervals during wSWRs (Karlsson and Frank, 2009b); see methods). Considering only 

rewarded trials, we found a highly significant relationship, consistent with ordered replay 

(Fig. 5d, R2 = 0.0913, p < 10-10, n = 426 ISIs). 

Previous reports of “reverse replay” argued that when cells were reactivated in 

an order opposite to that on the path to a reward, this pattern of activity could help the 
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animal learn the sequence of locations leading to the reward (Foster and Wilson, 

2006;Diba and Buzsaki, 2007). We therefore asked whether the reactivation we saw was 

consistent with reverse replay. We found that in 337 of 495 cases (68.1%) where two 

cells were active in a wSWR, the order of activity was opposite that seen during the run 

(proportion > 0.5, p < 10-10). At the same time, many cells were active at a given location 

in both directions of motion on the track, so these events are consistent with both replay 

of the path to the reward and “preplay” of paths from the reward. Nonetheless, these 

findings demonstrate that CA3 SWR activity following receipt of a reward reactivates 

coherent elements of the animal‟s path associated with the rewarded location. 

 

SWR activity and place field activity across behavioral conditions 

 Finally, we carried out a series of controls to determine whether increased 

wSWR activity on rewarded trials could be attributed to activity during the run to the well, 

the relative timing of rewarded and unrewarded trials, behavioral variability, the 

behavioral sequence the animals executed, reward expectation, or wSWR properties.  In 

no case were we able to identify a difference in these factors that could explain the 

differences between neural activity during wSWRs on rewarded and unrewarded trials. 

Here we discuss two of these controls; the rest can be found in the Supplementary 

Results, and SFig. 7 and 8. 

 We first asked whether the differences in rewarded trials could be explained by 

the specific spatial sequence the animal performed. We compared times when animals 

performed S1 when it either was or was not rewarded. For this analysis we took 

advantage of the fact that when reward contingencies changed to reward S2, animals 

continued to perform S1. We therefore compared periods when animals performed S1 

accurately when reward was either delivered (e.g. Fig. 1c far left box) or omitted (e.g. 

Fig. 1c middle left box). Here the behavioral sequence was identical and only the receipt 
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of reward varied.  Even when S1 was performed accurately, activation probability per 

wSWR was only elevated when animals received reward (Fig. 6a, Fig. S7i-l, p < 10-5, n = 

106 cells recorded when there were wSWRs following reward, n = 46 unrewarded). We 

found similar results if we truncated the time spent at the well on these rewarded trials to 

match the unrewarded trials (p < 10-4). This shows that the enhanced wSWR activity was 

due to the receipt of reward, not the behavioral demands of the task. 

These results also suggest that expectation of a reward did not lead to increased 

activation per wSWR on rewarded trials. Based on the history of rewards in S1, the 

animal would expect a reward for performing S1. If SWR activity was due to reward 

expectation, SWR activity would be higher when the animal performed S1 when it was 

no longer rewarded following a session where it was rewarded. However, SWR activity 

is higher on rewarded trials and lower on unrewarded trials regardless of the prior history 

of reward. 

We similarly found that in cases where a reward was delivered at a previously 

unrewarded location, the presence of reward rather than the history of reward was the 

best predictor of wSWR activity. We examined trials on the first exposure to S2 when the 

animal received a reward in arm E, a previously unrewarded arm (animal 1:15 trials; 

animal 2: 4 trials; animal 3: 19 trials). Reward on these trials on arm E was initially 

unexpected given the animals‟ previous experience with S1. The number of unexpected 

reward trials included was similar to that used in other studies of reward expectation 

(Fiorillo et al., 2008;Schultz et al., 1992;Tremblay et al., 1998). Neurons were 

significantly more active on these unexpectedly rewarded trials than unrewarded trials 

(Fig. 6b, p < 0.04, n = 14 cells). 
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Discussion 

We have shown that receipt of reward enhances SWR reactivation and this 

reactivation is further enhanced when new reward contingencies must be learned. The 

activation probability per SWR, the number of SWRs per time, the number of spikes per 

SWR, and the mean spike rate during SWRs were significantly higher at the end of 

rewarded trials than unrewarded trials. This increase in SWR activity only occurred after 

animals reached the reward well. Furthermore, on rewarded trials occurring when the 

animal was learning a new sequence (S2), the rate of SWRs and the probability that 

cells were active in each wSWR was even higher than during rewarded trials associated 

with the familiar S1. In this case the animal was receiving and consuming reward in both 

conditions, demonstrating that the increase in neural activity could not be explained 

solely as a result of the presence of consummatory behaviors. We also showed that 

spiking during wSWRs reactivates coherent elements of the experiences that are 

associated with the paths to and from the rewarded location. We performed an extensive 

series of control analyses examining differences in activity on the path to the reward, 

behavioral differences at the reward location and reward expectation. None of these 

potential confounds could explain the enhanced activation of CA3 neurons during 

wSWRs following receipt of reward, indicating that receipt of reward is a key determinant 

of wSWR rate and firing during wSWRs. 

Our results are distinct from previous demonstrations of an interaction between 

reward and hippocampal activity. Previous studies found that place fields can change in 

response to reward (Breese et al., 1989;Kobayashi et al., 1997;Tabuchi et al., 

2003;Holscher et al., 2003).  Our findings, in contrast, indicate that reward plays a 

special role in modulating the reactivation of cells associated with recent experiences. 

Similarly, the increase in reactivation we saw is distinct from observations of outcome 
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selectivity in primate hippocampus (Wirth et al., 2009). That paper reported that 

hippocampal neuronal activity between trials was related to whether the animal made a 

correct or incorrect choice on the previous trial, irrespective of the specific stimuli the 

animal experienced during that trial. Our findings suggest that in the rodent 

hippocampus, activity following a reward specifically relates to the sequence of locations 

the animal traversed on the way to the reward. Finally, the enhanced reactivation we 

report is also distinct from reward “signals” in which single cells encode aspects of 

reward like reward expectation or reward prediction error as observed in several other 

brain regions (Schultz, 2000). Instead, enhanced SWR reactivation following reward is 

better understood as reactivating patterns of activity that reflect experiences associated 

with the reward location. 

 

Mechanisms of SWR Reactivation 

Previous findings have suggested a simple model whereby reactivation merely 

reflects recent activity within the hippocampal network. These studies have shown that 

reactivation during sleep reflects the structure of previous awake experience (Wilson and 

McNaughton, 1994), and the amount that two cells fire together during SWRs in sleep 

depends on the amount that the two cells fire together during prior experience(O'Neill et 

al., 2008). Similarly, repeated and regular traversals of the same path lead to increases 

in SWR rate and reactivation in familiar environments(Jackson et al., 2006). 

Our results demonstrate that this simple model is not sufficient: we found an 

increase in SWR reactivation when animals are rewarded even though there is no 

increase in activity during the preceding run period.  In addition, there was no apparent 

bias in which cells along the trajectory to the well were reactivated, indicating that on 

short timescales, the timing of place cell firing relative to the SWR did not determine the 

strength of reactivation. Finally, pairs of cells were more coactive during SWRs at the 
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well on rewarded trials, but there was no difference in coactivity during the run period of 

rewarded and unrewarded trials. Thus, reactivation is not simply a reflection of recent 

activity. 

Instead, our results argue for a more complex model where an event‟s outcome 

modulates the strength of reactivation. We found that cells both with and without place 

fields were more likely to be activated during wSWRs on rewarded than unrewarded 

trials. These observations indicate that reward increases the likelihood of reactivation for 

all cells. At the same time, cells with place fields were much more likely to be reactivated 

than cells without place fields, and cells active on paths associated with the reward 

location were most likely to be reactivated. Therefore, the specific spatial sequence the 

animal traversed may strongly influence which cells will be active during SWRs, while 

outcomes like reward may modulate the amount and strength of reactivation. 

 

Reward Enhanced Reactivation and Learning 

We found that the rate of SWRs and the likelihood that cells would be active 

within SWRs increased when animals had to learn new path-reward associations, 

suggesting that SWR reactivation contributes to learning. More specifically, SWR 

reactivation is well suited to help the animal learn the paths that lead to reward. Unlike 

place field activity on the path up to the reward, activity in SWRs can activate specific 

patterns of place cells after the outcome of traversing the path is known. We found 

evidence for sequential activation in pairs of neurons, and other reports have established 

that these reactivation events frequently involve replay of entire paths along the track 

(Foster and Wilson, 2006;Diba and Buzsaki, 2007;Davidson et al., 2009;Karlsson and 

Frank, 2009b). 

We propose two possible mechanisms by which this SWR reactivation could 

facilitate learning the paths that lead to reward. First, the enhanced reactivation of 
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rewarded paths could strengthen representations in neocortical areas of rewarded paths 

over unrewarded paths. Later, when animals are selecting between several possible 

paths, the rewarded paths could outcompete unrewarded paths in the decision process. 

Alternately, the enhanced SWR reactivation could facilitate an association between a 

path and the outcome of that path creating a set of path-outcome associations. Because 

SWR reactivation occurs after the path is complete and can be coherent with activity in 

neocortical and striatal areas (Chrobak and Buzsaki, 1996;Ji and Wilson, 

2007;Wierzynski et al., 2009;Lansink et al., 2009;Peyrache et al., 2009a), reactivation 

could help link a specific path with reward information encoded in other brain regions. As 

place fields were commonly found around turns when animals have to make arm 

choices, reactivation of place cells could lead to associations between reward outcome 

and the activity related to choices the animal made to reach the reward. 

In this latter case in which SWR activity facilitates the formation of path-outcome 

associations, we might wonder why reactivation occurs more on rewarded than 

unrewarded trials when a lack of reward is also informative. In our task, as in natural 

foraging, there are generally many more paths that do not lead to reward than paths that 

do lead to reward. Thus, it may be advantageous to preferentially encode the relatively 

small number of path-reward associations as compared to the large number of path-no 

reward associations. Indeed, when reward contingencies change and animals 

encountered no reward where they previously were rewarded, the lack of reward was 

not so significant that animals immediately changed their behavior.  Instead, they 

persisted in performing the unrewarded paths for many trials, indicating that the 

presence of reward on that path in the past may continue to influence behavior despite 

the current lack of reward. 
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Overall, our results demonstrate a new link between reward and the reactivation 

of recent experience. This reward-related reactivation may be a mechanism to learn and 

remember experiences that lead to reward. 

 

Methods 

Data Collection 

Male Long-Evans rats were handled and food deprived to 85-90% of baseline 

weight.  Animals were initially trained to run back and forth on a linear track for liquid 

chocolate reward delivered in food wells at the ends of the track. Linear track pretraining 

took place in a different room from the recording room. One of the animals was 

pretrained on S1 (Fig. 1a) in the recording room, while two animals were not exposed to 

the behavioral task until recording began. Following pretraining animals were implanted 

with a microdrive array containing 16 independently movable tetrodes targeting CA3 (-

3.6 mm AP; 3.4mm L) using previously described methods (Frank et al., 2004). Over the 

next 7 – 10 days tetrodes were lowered first to CA1 and then to CA3.  Details on data 

collection can be found in Karlsson and Frank (2008). CA3 was identified by depth and 

the characteristic EEG waveforms on each recording tetrode. Electrode positions were 

additionally confirmed by histology. For one animal, electrode lesions were made at the 

end of each tetrode and later confirmed to be in the CA3 pyramidal cell layer (Fig. S2a). 

For two animals, the microdrive fell off before lesions could be made. In these animals 

we were able to confirm that the implant site was over dorsal CA3 and that the depths 

were consistent with CA3 recordings (Fig. S2b,c). Furthermore the EEG signatures 

characteristic of CA3 were similar in all animals (Fig. S2d), although it is possible that a 

small number of cells were recorded from the dentate gyrus. For all animals a reference 

tetrode was positioned in the corpus callosum. All neural signals were recorded relative 

to that reference to eliminate muscle artifacts from the recordings. 
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Behavior 

 During recordings animals were rewarded with liquid chocolate for performing the 

behavioral paradigm shown in Figure 1. The track included 4 sequence arms, B C D and 

E, and one extra arm on each end (A and F). Arms were separated by vertical walls (0.6 

cm thick, 24 cm tall and 81 cm long). Distal cues were visible above these walls, at 

either end of each arm, and along the straight section connecting different arms. Circles 

indicate food wells where animals received reward in arms B through E. Colored arrows 

indicate trajectories included in S1 (blue) and S2 (red). 

The task consists of two rules. First, a visit to the home arm (arm C is S1 and 

arm D in S2) was rewarded when the animal came from any other arm (inbound 

trajectories). Second, a visit to an arm adjacent to the home arm was rewarded when the 

animal came from the home arm after having previously visited the opposite adjacent 

arm (outbound trajectories). Consecutive visits to the same food well were never 

rewarded. Together, these rules defined a correct cyclical sequence of food-well visits 

(Fig. 1a): right, center, left, center, right, center, left, center, etc (Frank et al., 2000;Kim 

and Frank, 2009). The inbound trajectories require the animal to return to a single 

rewarded location, the home arm, from any other arm. The outbound trajectories require 

the animal to remember which arm he just came from. For the first outbound trajectory at 

the start of each session, the animal was rewarded for visiting either home-adjacent arm. 

If the animal visited an arm not included in the rewarded sequence (e.g. arm A, E or F 

for S1), the animal was rewarded for returning to the home arm. On the following 

outbound trajectory the animal was rewarded for visiting either home-adjacent arm. We 

have shown that during the initial learning of the task, animals learn the inbound 

component first and then learn to alternate on outbound trajectories (Kim and Frank, 

2009). Therefore, once animals learn to perform the outbound trajectories with high 



31 

accuracy they are generally performing the entire sequence accurately. Note that we use 

the terms trajectory and path interchangeably throughout the manuscript. 

 During each run session the animal was placed in the home arm of the to-be-

rewarded sequence (arm C for Sequence 1 and arm D for Sequence 2). Each run 

session was between 20 and 30 minutes long; one animal performed two sessions and 

two animals performed three sessions per day. Thirty to forty minute rest sessions in a 

high walled box in the same room preceded and followed each run session.  Once the 

animal performed S1 with 80% accuracy, measured across a run session, or had 6 full 

days of training and was above 75% accurate, the sequence switching phase of the task 

commenced. 

On the first day of sequence switching animals first performed one session where 

S1 was rewarded. Then in the second session, reward contingencies changed such that 

S2 was rewarded. All subsequent sessions alternated between rewarding S1 and S2 

within each day (see Fig. S1 for details). Recording continued throughout the rest and 

run sessions. 

Reward was delivered via an air pressure / solenoid system and was triggered 

via key press on a keyboard. The experimenter‟s back was to the animal such that the 

experimenter was between the animal and the keyboard during the experiment. The 

experimenter triggered reward release before the animal reached the reward well, and 

on correct outbound trials from the center arm the experimenter generally triggered both 

the reward in the outer arm and the subsequent center arm (inbound) reward.  Thus the 

audible solenoid click occurred before the animal stopped at the well and there was no 

consistent temporal relationship between solenoid clicks and reward delivery. In rare 

cases reward was triggered just as the animal reached the well. Excluding these trials 

had no effect on the rewarded / unrewarded differences. 
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We distinguished between “accurate” responses that were consistent with the 

rules of S1 or S2, and rewarded responses. This allowed us to score behavior according 

to the rules of both sequences simultaneously. For Fig. 1 we used a 20 trial moving 

average applied to all trials to illustrate the behavior, but as this moving average does 

not provide confidence bounds, we also used a dynamic state-space smoothing 

algorithm (Smith et al., 2004;Smith et al., 2007) to estimate the animals‟ probability of an 

accurate response for each sequence on each trial and to compute confidence intervals 

for the estimated probability. For the algorithm we focused on outbound passes because 

an outbound trajectory could be correct for S1 or S2 but not both. We scored outbound 

trajectories from the home arm of a sequence as accurate or inaccurate separately for 

S1 and S2.  The estimated probability distribution produced by the algorithm was taken 

from the end of one run session and used as a starting value for the estimation of the 

next run session. This corresponds to the assumption that the animal began each 

session with some information from the previous session but also allows the learning 

state to “jump” if the animal behaves very differently at the beginning of the next session. 

 On the basis of these estimates we defined three stages of behavioral 

performance. First, animals performed the unrewarded sequence significantly more 

accurately than the rewarded sequence, as occurs when the reward contingences are 

first changed. In this period the mode of the estimated probability accurate response 

distribution for the newly unrewarded sequence is greater than the 95% confidence 

bounds of estimated probability accurate response of the rewarded sequence. Then, 

animals traversed a variety of spatial trajectories between food wells, and neither 

sequence was performed significantly more accurately than the other. In this the period 

neither mode is greater than the confidence bounds of the other sequence. Finally, 

animals performed the rewarded sequence significantly more accurately than the 

unrewarded sequence. In this period the mode for the rewarded sequence is greater 
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than the confidence bounds of the unrewarded sequence. We used these stages to 

compare accurate performance of S1 when S1 was rewarded to accurate performance 

of S1 when S2 was rewarded.  We also calculated behavioral entropy as described 

previously(Jackson et al., 2006) so that we could identify any differences in behavior 

between rewarded and unrewarded trials (see Supplementary Methods and Results). 

 

Data Processing 

 Only well isolated cells with tightly clustered spikes and clear refractory periods 

were included. Cells were clustered throughout run and rest periods, allowing us to 

identify cells that were active but did not have place fields on the track. As our results 

involved comparisons of spiking from the same clusters within a day, poor clustering 

cannot account for the effects we observed. We did not attempt to match cells across 

days, so in some cases the same cell may have been recorded across multiple days. All 

analyses were restricted to putative principal neurons (n = 100, 42, and 128 for animals 

1,2 and 3 respectively;(Fox and Ranck, 1981;Frank et al., 2001). To identify cells with 

place fields we calculated the „linearized‟ activity of each cell. Only times when animals 

were running forward at least 2 cm/sec were included. The behavioral data were 

separated into different spatial trajectories (e.g. A to B, B to A, B to C, …) and the 

animal‟s linear position was measured as the distance in cm along the track from the 

reward site on the start arm. We calculated occupancy normalized firing rate maps using 

2 cm spatial bins smoothed with a 4 cm standard deviation Gaussian curve with a total 

extent of 20 cm, excluding bins with less than 0.2 sec/bin occupancy. Cells with a mean 

rate greater than 0.1 Hz and a peak spatial rate greater than 3 Hz were considered to 

have a place field on the track. Place field overlap was calculated according to a 

previously established method (Battaglia et al., 2004). 
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 SWRs were identified as described previously (Cheng and Frank, 2008). Briefly, 

LFPs were recorded from one channel of each tetrode. On each day, the tetrode with the 

largest number of isolated neurons was used for SWR detection. The LFP signal was 

band pass filtered between 150-250 Hz and an envelope was determined by Hilbert 

transform. SWR events were detected if the envelope exceeded a threshold of mean + 3 

stdev for at least 15 ms. Events included times around the triggering event during which 

the envelope exceeded the mean. SWR amplitude was measured in standard deviations 

from baseline. 

  We defined when animals were stopped at a food well as times when the animal 

was within 10 cm of the well with a linear speed (e.g. speed along the long axis of the 

track) equal to zero. These times include only periods when the animal had arrived at 

the well and could consume reward if it was present.  SWRs that occur during these 

times are referred to as wSWRs. Linear speed was calculated as the change in linear 

distance per position samples divided by the time between samples (33 ms) and was not 

smoothed. We obtained essentially identical results when we used a two dimensional 

speed of zero, also not smoothed, to define periods of immobility. 

 We calculated a number of measures related to activity during SWRs. The 

activation probability per SWR was the number of SWRs in which a cell was active 

divided by the total number of SWRs. The mean rate during SWRs was the total number 

of spikes during SWRs divided by the total duration of SWRs. The proportion of cells 

active per SWR was the proportion of cells with place fields on the track that were active 

during the SWR. The proportion of cells active per SWR was calculated for each SWR; 

activation probability, mean rate, and number of spikes per SWR were per cell measures 

and SWR rate was measured per trial. 

 To control for differences in the timing of rewarded and unrewarded trials within 

the session we selected single pairs of adjacent rewarded and unrewarded trials. We 
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randomly selected the order of the pairs: rewarded followed by unrewarded or 

unrewarded followed by rewarded. We also controlled for differences in time spent at the 

well by truncating the time stopped at the well on rewarded trials to match that time 

spent on unrewarded trials. 

 We examined activity during the entire run period when animals were running at 

greater than 2 cm/sec and were more than 20 cm from the start or end well. For each 

cell we calculated peak firing rate and mean firing rate as described previously(Karlsson 

and Frank, 2008) for all rewarded or unrewarded trials.  We then examined the 

coactivation probability during the run to the well. Binning the run periods into 100 msec 

bins, for each pair of cells we calculated the probability that the two cells were active 

together in a bin.  We also computed two measures that quantified the extent to 

which the coordinated activity in SWRs was greater than that expected by chance, the 

coactivity z-score(Cheng and Frank, 2008), and joint surprise (Grun et al., 2002;Pazienti 

and Grun, 2006). Definitions of these measures are presented in the Supplementary 

Methods. 

We determined whether SWR activity during periods when the animal was 

stopped at the well was consistent with previous reports of reactivation using two 

complementary analyses. For all of these analyses we identified run periods during each 

trial as times when the animal was moving forward at greater than 2 cm/s and more than 

10 cm from the start or end well. We excluded cells with place fields within 10 cm of the 

wells at the beginning or end of the pass to focus on the cells with place fields active 

during running. 

First, we calculated the probabilities that a cell active on the run towards the well 

or on the subsequent run away from the well was also active during wSWRs. We 

compared those probabilities to the probability that the cell was active on a randomly 

chosen run between wells. Second, we used a pair-wise measure to determine whether 
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the spiking during wSWRs was consistent with the ordered replay seen in downstream 

CA1. This pair-wise measure was necessary because CA3 tends to be sparsely active 

(Leutgeb et al., 2004) and, as our goal was to record for many days, we did not 

maximize the number of simultaneously recorded cells on a single day.  The presence of 

coherent replay would predict that the time between spikes from different cells in a SWR 

should be related to the distance between the cells‟ place fields. For every pair of place 

cells active in a wSWR, we measured the absolute value of the time from each reference 

spike of one cell to all spikes from the other cell for each trial. We restricted the time axis 

to values between 0 and 500 ms and plotted each time between wSWR spikes from the 

pair of cells against the linear distance between the place field centers on the preceding 

run. We used the preceding run because some cells had multiple fields on the track, and 

we wished to focus on activity associated with the most recent run between food wells. 

We calculated the R2 value of a linear fit to the points in the plot, which measured the 

degree to which the distance between the cells‟ place fields predicts the time between 

their wSWR spikes. 

We characterized the run period activity of cells that fired during SWRs using 

three complementary analyses. We identified run periods during each trial as times 

when the animal was moving forward at greater than 2 cm/s and more than 10 cm from 

the start or end well. We excluded cells with place fields within 10 cm of the wells at the 

beginning or end of the pass to focus on the cells with place fields active during running.  

First, to visualize run period activity in the two dimensional track we collected all run 

period spikes from the cells that fired during wSWRs at  a given well, identified the firing 

location of each spike in two dimensions, and created occupancy normalized rate maps 

as though these spikes had come from a single neuron. 

Second, we computed the distribution of peak firing locations for all cells and 

cells that fired during wSWRs. For each trajectory for each cell, we computed the 
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location of the peak occupancy normalized firing rate and then created a distribution of 

peak locations from that set of cells. We computed these curves separately for rewarded 

and unrewarded trials. 

Finally, we examined the location and timing of spikes during the run period 

leading up to a wSWRs. For each cell that fired during wSWRs on a pass, we 

determined the time between the cell‟s spikes during the run periods and the wSWRs in 

which the cell fired. This time was also decomposed into the time between the spikes 

during the run and when the animal reached the reward well and the time between when 

the animal reached the well and when wSWRs occurred. 
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Figures 

 

 

Figure 1. Task design and behavioral performance. a, Overhead view of the 

behavioral apparatus with reward sequences indicated by colored arrows (Sequence 1 

(S1) in blue and Sequence 2 (S2) in red). Brown circles indicate the location of food 

wells; reward was delivered in arms B-E. Arms are 7.25 cm wide. Scale bar is 50 cm. b, 

Twenty trial moving average of correct responses for one animal when switching 

between performing S1 (blue) and S2 (red). Background color indicates which sequence 
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was rewarded. Black lines separate recording days. Top shows all sequence switching 

days, bottom shows first day of switching (day 6). Chance performance on this task is 

0.2 as there are 5 arms the animal can choose from when leaving an arm. c, Examples 

of specific trials at the end of session one when S1 was rewarded (far left), the beginning 

of session 2 just after the reward contingencies change to reward S2 (middle left), the 

middle of session 2 (middle right), and the end of session 2 (far right). The animal‟s path 

through space is shown in black and the rewarded sequence arms are highlighted (S1 in 

blue and S2 in red). The arrow indicates direction. A brown filled circle indicates that the 

animal received chocolate at the end of the trajectory while a “Ø” indicates no reward 

was delivered. In the first two columns the animal performed the same sequence of 

trajectories but was rewarded differently. In session 1 all of the trajectories shown were 

rewarded as they are the correct performance of S1 (far left). Then at the beginning of 

session 2 (middle left), the animal was placed in the center arm of the newly rewarded 

sequence (S2) but performed the previously rewarded sequence (S1). In this case, only 

the third trajectory was rewarded (it is a correct return to the home arm of S2) while the 

other trajectories were unrewarded. 
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Figure 2. Enhanced SWR activity following reward. a, Examples of a single 

unrewarded (left) and rewarded (right) trial including times at the well (black lines) and 

the preceding run period. Trials are from the same epoch and contain the same cells. 
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Spikes that occurred during SWRs (grey bars on raster plot) when animals were stopped 

at the well are shown in red, all other spikes are shown in black. SWRs were detected 

using the simultaneously recorded EEG filtered at 150-250Hz (dark grey traces above 

raster plot, top: unfiltered, bottom: filtered 150-250Hz).  The top traces show the SWR in 

unfiltered and filtered EEG at higher magnification.  Activation probability per trial (b), 

wSWR rate (c), and activation probability per wSWR (d) for cells with place fields on the 

track when animals were stopped at the well in rewarded and unrewarded trials. 

Cumulative distribution of the mean number of spikes per wSWR (e), the mean firing 

rate (f), and the proportion of cells active (g) during wSWRs on rewarded (green) and 

unrewarded trials (black). h, Activation probability per trial when rewarded trials were 

truncated to match the duration of immobility on unrewarded trials. Error bars represent 

standard errors. Bar graphs include only times when animals were stopped at the well. 

*** p < 10-4. 
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Figure 3. SWR activity following reward is further enhanced during learning. a, 

wSWR on rewarded trials before („pre‟) and after („post‟) reward contingencies changed 

for the first time (e.g. before and after the first exposure to S2). b, Activation probability 

per wSWR and c, proportion of cells active per wSWR in S1 (1st and 3rd bars) or S2 (2nd 

and 4th bars) on the first and third day of switching between sequences.  All data include 

only rewarded trials when animals were stopped at the well. Error bars represent 

standard errors. *** indicates p < 10-5, ** indicates p < 0.005, and * indicates p < 0.05. 
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Figure 4. Reactivation of single cells during SWRs following reward. a, Proportion 

of cells active during wSWRs that are also active on the preceding run to the well (past) 

or the subsequent run from the well (future). b, Activation probability per wSWR for cells 

with (blue) and without (grey) place fields on the track. c, Within cell differences in 

activation probability per wSWR between rewarded and unrewarded trials for cells with 

(blue) and without (grey) place fields on the track. Activation probability for one cell on 

unrewarded trials was subtracted from that on rewarded trials. Positive differences 

indicate that rewarded trials had a greater activation probability than unrewarded trials. 

d, Firing rate maps of run period firing of all cells that fired during wSWRs at the well 

indicated by the brown circle. Spikes from all simultaneously recorded cells are shown 

together for each of 3 different epochs, one from each animal. e, Location of peak 
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occupancy normalized firing rate during run periods of all cells (grey) and cells that fired 

in ripples at the end of the trajectory (black) on rewarded trials. The distributions of peak 

firing locations on each trajectory were averaged together.  Note that the two curves are 

almost entirely overlapping. Error bars represent standard errors.  *** indicates p < 10-5. 
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Figure 5. Structured reactivation of pairs of cells during SWRs following reward. a, 

Coactivation probability per wSWR on rewarded and unrewarded trials. b, Coactivity z-

score per wSWR versus place field overlap on rewarded trials. Coactivity z-score was 

binned according to the cell pairs‟ place field overlap: no overlap, greater than 0 but less 

than 0.2, 0.2 to 0.4, and 0.4 to 0.6 overlap.  Because many cells never fire in ripples on 

unrewarded trials, there were too few coactive pairs to perform this analysis on 

unrewarded trials. c, Coactivation among cell pairs per 100 msec bin during the run 

period of rewarded and unrewarded trials.  d, Scatter plot of distance between place field 

peaks versus inter-cell inter-spike interval (ISI) during wSWRs. Each point is one inter-

cell ISI during wSWR plotted against the distance between the cells‟ peaks on that pass. 

Only spikes that occurred during wSWRs when animals stopped at the well were 

included in measures of wSWR inter-cell ISI.  A singer ISI could extend over multiple 
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SWRs, as previous work has shown coherent reactivation across SWRs (Davidson et 

al., 2009). Previous quantifications of replay have found replay in a subset of SWRs, and 

the R2 values seen here would be expected to reflect the combination of events with 

replay and events where replay was absent. Error bars represent standard errors. * 

indicated p < 0.01, ** indicates p < 0.0001, *** indicates p < 10-10. 
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Figure 6. Comparison of SWR activity across behavioral conditions. a, Activation 

probability for the same behavioral sequence with different rewards. Left: schematic of 

sequence rewarded (highlighted on track, S1 in blue and S2 in red) and sequence 

performed (arrows below track) for data shown at right. Right: activation probability per 

wSWR when animals accurately performed S1 and reward was omitted (S2 rewarded, 

S2r/S1p) or delivered (S1 rewarded, S1r/S1p). b, Activation probability per wSWR during 

the first rewarded exposure to S2, when reward was unexpected based on the previous 

history of rewards, and unrewarded trials in all arms. Only times when animals were 

stopped at the well were included. *** indicates p < 10-5. 
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Supplementary Figures 
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Supplementary Figure 1.  Behavioral performance on outbound and inbound 

trajectories for each animal.  a, Estimated probability of an accurate response across 

trials on outbound trajectories (trajectories starting in arm C in S1 or arm D in S2) for 

animal 1 during initial learning of S1 (left, solid line indicates mode, dashed lines indicate 

confidence bounds) and alternating between S1 and S2 (right, S1 in blue and S2 in red, 

background color indicates which sequence performance was rewarded).  For clarity, the 

alternation phase is shown with confidence bounds (above) and without (below) b, 

Estimated probability of an accurate response across trials on inbound trajectories for 

animal 1.  c-f, Estimated probability of an accurate response per trial on outbound (c,e) 

and inbound (d,f) trajectories for animal 2 and 3.  For clarity, the alternation phase is 

shown without confidence bounds on the far right.  All animals learned the initial S1 

sequence and then learned to switch between S1 and S2 within each day.  Black lines 

separate days. g, top: Modes and confidence bounds were used to separate the 

behavior into 3 periods (grey lines, see methods): when the animal performed the 

unrewarded sequence significantly more accurately than the rewarded sequence (to the 

left of the first grey line), when the animal performed neither sequence significantly more 

accurately than the other (between the grey lines), and when the animal performed the 

rewarded sequence significantly more accurately than the unrewarded sequence (to the 

right of the second grey line).  Bottom:  colored lines indicate the sequence of correct 

(blue for S1 and red for S2) or incorrect (black) trials that went into the estimates.  h, The 

number of trials required to switch between sequences after the reward contingencies 

changed.  The histogram shows the number of trials performed from the change in 

reward contingencies to when the animal performed the rewarded task significantly more 

than the unrewarded task.  Animals took an average of 36 trials to switch.  In 2 sessions 

it took more than 60 trials to switch and it never took more than 120 trials. 
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Supplementary Figure 2.  Lesions and EEG signatures from CA3 recordings. a, 

Lesions (arrows) were made at the end of recording in animal 1 (left 20x, right 40x, Nissl 

stain).  For animals without lesions (b: animal 3, 20x, Nissl stain, c: animal 2, 20x, NeuN 

stain), damage due to the drive implant and tetrodes were observed at the brain surface 

and tetrode tracks (arrows). Estimated areas of recording are outlined in white.  d, All 

animals showed characteristic EEG signatures (top 3 traces) with large amplitude theta 
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modulation.  For comparison, we included a recording from CA1(Karlsson and Frank, 

2008) (bottom trace) which is much smaller in amplitude with less prominent theta 

modulation.  Each trace is a total of one second, plotted on the same scale.  As we 

lowered our tetrodes to CA3, we noted several “landmarks:” the quiet lack of cells in 

corpus callosum, the increase in ripple amplitude as we approached CA1, the densely 

packed cell layer in CA1, then the EEG amplitude increase on the other side of the CA1 

cell layer, the relative quiet between CA1 and CA3, then again the increase in ripple 

amplitude again as we approached CA3 and finally the densely packed CA3 cell layer.  

Note that the larger size of the CA3 theta as compared to that seen in CA1 is likely to be 

due in whole or part to our use of a reference electrode that was in the corpus callosum 

above CA1. 
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Supplementary Figure 3. Enhanced SWR activity following reward. Additional 

examples of single unrewarded (left) or rewarded (right) trials including times at the well 

(horizontal black lines) and the preceding run period.  Trials in the same row are from 

the same run session and contain the same cells.  This figure illustrates both the 

reduced spiking at the well for unrewarded trials and the reduced likelihood of seeing a 

SWR, (e.g. there was no SWR for the top left unrewarded trial).  Spikes that occurred 

during SWRs when animals were stopped at the well (grey bars on raster plot) are 

shown in red, all other spikes are shown in black.  SWRs were detected using the 
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simultaneously recorded EEG filtered at 150-250 Hz (grey, above raster plot, top: 

unfiltered, bottom: filtered for 150-250Hz). The top traces show the SWR in unfiltered 

and filtered EEG at higher magnification.   
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Supplementary Figure 4.  SWR activity across animals and across trials for cells 

with place fields.  a, Activation probability per wSWR is higher in rewarded trials in 

each animal.  The graphs show cumulative distributions of activation probability per 

wSWR on rewarded (green) and unrewarded (black) trials for all animals (left, p < 10 -10) 

and each animal individually (right, Animal 1: p < 10-5; Animal 2: p < 0.05; Animal 3: p < 

10-10).  Overall, rewarded trials were associated with higher probabilities of activation and 

greater numbers of spikes than unrewarded trials.  Proportion of cells active (b) and 

SWR rate (c) across trials for all sequence switching days combined.  Mean and 
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standard error for each trial are shown above and 5 trial moving average is shown 

below.  If SWR activity was enhanced by generally surprising events like the change in 

reward contingencies that occurred at the beginning of each session, we would expect 

higher activity on early trials.  Instead, the overall proportion of cells active and SWR 

rates were stable or perhaps slightly increasing, indicating that any surprise related to 

changes in reward contingencies at the beginning of each session cannot explain our 

results.  We should also note that these across trials values were highly variable within 

individual sessions, and we were therefore unable to quantify any within day trends for 

S2.  
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Supplementary Figure 5. Location and timing of spiking activity preceding 

wSWRs.  Location of peak occupancy normalized firing rate during run periods for all 

cells (grey), for cells that fired in ripples at the end of that trajectory (black solid lines), 

and for cells that fired during wSWRs at the reward well and were active on the 

subsequent trajectory (black dashed lines) on unrewarded (a) and rewarded trials (b). 

Each row is one trajectory. We also examined the location and time of each spike on the 
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trial leading up to the reward well for cells that fired during wSWRs.  Again, we found 

that cells fired throughout the trajectory but more around the turns.  These results 

suggest there is little or no spatial bias for cells close to the reward location to fire more 

than cells farther away.  c, Location of spikes (distance from the start well of the 

trajectory) during the run period for cells that fired during wSWRs. d, Time between 

spikes during the run period and SWRs in which the cell fired.  e, Time between when 

spikes fired during the run period and when the animal reached the reward well. f, Time 

between when the animal reached the reward well and when wSWRs occurred.  The 

time between spikes during the run and wSWRs was a wide distribution with few cases 

when spiked occurred within 3 seconds or less and most cases greater than 5 seconds.  

This time between run and SWR spikes consisted of the time it took the animal to reach 

the well from the cells‟ place field area and the time from when the animal reached the 

well to when wSWRs occurred.  A simple model whereby activity within SWRs was 

related to a smoothly decaying function of time from place field activity cannot explain 

these patterns, as cells active 5 or more seconds before the wSWR were more likely to 

be active in the wSWR than cells active less than five seconds before the wSWR.    
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Supplementary Figure 6.  Comparison of coactivity within wSWRs.  a, Coactivity z-

score per wSWR versus place field overlap on unrewarded (left) and rewarded trials 

(right).  Each point is one pair of cells.  The regression was highly significant (R2 = 

0.0846, p < 10-5).  Coactivity z-score is undefined when a cell in the pair never fires in 

ripples or fires in all ripples.  Because many cells never fire in ripples on unrewarded 

trials, there are fewer cell pairs in unrewarded trials.  b, Coactivity z-score per wSWR 

versus place field overlap on rewarded trials for each animal.  Each point is one pair of 

cells.  The regression was highly significant for animals 1 and 3 (R2 = 0.1382, p < 10-5 

and R2 = 0.0346,  p < 0.01, respectively).   c, Coactivity z-score per wSWR versus place 

field overlap on rewarded trials only including cells recorded on different tetrodes.  

Coactivity z-score was binned according to the cell pairs‟ place field overlap: no overlap, 

greater than 0 but less than 0.2, 0.2 to 0.4, and 0.4 to 0.6 overlap.   Because many cells 

never fire in ripples on unrewarded trials, there were too few coactive pairs to perform 

this analysis on unrewarded trials.  Results were similar to those shown in Figure 4b.  d, 

Coactivity z-score per wSWR versus place field overlap on rewarded trials only including 

cells recorded on different tetrodes(R2 = 0.0272, p < 0.01).  Each point is one pair of 

cells. e, Coactivation probability per wSWR on rewarded and unrewarded trials only 

including cells recorded on different tetrodes.  Results were similar to those shown in 

Figure 4a.  Joint surprise (f) and proportion of cells pairs with significant joint surprise, or 

joint surprise corresponding to p < 0.05 (g), for rewarded and unrewarded trials.  The 

joint surprise between pairs of cells and the proportion of pairs with significant joint 

surprise was greater on rewarded than unrewarded trials.  We further controlled for 

potential spike sorting errors by repeating these analyses including only cells that were 

recorded from different tetrodes.  h, Joint surprise for rewarded and unrewarded trials 

only including cells recorded on different tetrodes (p < 10-10).   ** indicates p < 0.005.  *** 

indicates p < 10-10. 
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Supplementary Figure 7.  Controls for behavioral or SWR differences across 

conditions.  a, Activation probability per SWR when animals were more than 20 cm 

from the well on rewarded and unrewarded trials (p > 0.12).  b,  Cumulative distribution 
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of mean firing rate (top, p > 0.11) and peak firing rate (bottom, p > 0.18) during run 

periods.  c,  Activation probability per wSWR on rewarded trials from the first half of the 

session and unrewarded trials from the second half of the session.  Only the first session 

of each day was included.  d, Differences within cell in activation probability per wSWR 

between rewarded and unrewarded trials.  Activation probability for one cell on 

unrewarded trials was subtracted from that on rewarded trials.  Positive differences 

indicate that rewarded trials had a greater activation probability than unrewarded trials.  

The distribution was significantly different from zero (student‟s t-test, p < 10-5).  e, 

Activation probability per trial including only adjacent rewarded and unrewarded trials.   

Reward trials were also truncated to match the time since immobility onset and the 

duration of immobility on unrewarded trials (p < 0.001).  f, Behavioral entropy on 

rewarded and unrewarded trials.  g, Activation probability per wSWR (p < 10-10) and h, 

wSWR rate (p < 0.001) on rewarded and unrewarded trials when the animal was 

stopped at the well and the animal‟s two-dimensional speed was zero.  Therefore, 

detectable movements in two-dimensions do not explain differences in activation 

probability or SWR rate on rewarded and unrewarded trials.  i,  Activation probability for 

the same behavioral sequence with different rewards.  Schematic of sequence rewarded 

(highlighted on track, S1 in blue and S2 in red) and sequence performed (arrows below 

track, S1 in blue) for data shown in (j).  j, Cumulative distribution of activation probability 

per wSWR in unrewarded trials when S1 was performed but S2 was rewarded (black) 

and rewarded trials when S1 was performed and S1 was rewarded (green) for each 

animal (animal 1: solid lines, animal 2: dashed lines, animal 3: dotted lines).  

Unrewarded trials were associated with lower activation probabilities during wSWRs 

even when the animal was accurately performing a learned sequence.  k, To ensure that 

differences in wSWR activity were not associated with differences in behavior in this 

situation, we also measured the length of time required for the animal to complete each 
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pass from one food well to another.  The distributions were not different for animals 1 

and 2, but did differ for animal 3 (rank sum test, animal 1:  p > 0.15, animal 2: p > 0.05, 

animal 3: p < 10-5).  We therefore recalculated the overall activation probability for the 

comparison including only animals 1 and 2 (l) and found that activation during wSWRs 

on rewarded trials was still significantly greater than activity on unrewarded trials (p < 

0.0001).  ** indicates p < 0.001; *** indicates p < 10-5. 
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Supplementary Figure 8.  Comparison of wSWR amplitudes and durations across 

reward conditions.    a, wSWR amplitude (left) and duration (right) for rewarded trials 

and unrewarded trials.   b, Activation probability per wSWR when rewarded wSWRs 

were selected to match the amplitude of wSWRs in unrewarded trials (left) and when 

rewarded wSWRs were truncated to match the duration of wSWRs in unrewarded trials 

(right).  Error bars represent standard errors. * indicated p < 0.01, ** indicates p < 

0.0001, *** indicates p < 10-10.  The relationship between SWRs and the associated 

neural activity is likely to be complex and non-linear, but these results indicate that 

differences in amplitude or duration cannot explain our results.   
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Supplementary Methods. 

 

 For comparing activity of cells with and without place fields we measured the 

within cell change in activation probability.  This was calculated by subtracting the 

activation probability in unrewarded trials from that in rewarded trials for each cell.  

Therefore a positive change means the cell was more likely to be active in rewarded 

trials.  The significance of this change was evaluated using a student‟s t-test.  We 

measured the absolute increase as opposed to the increase multiplicatively for two 

reasons.  First, many cells were entirely inactive during unrewarded SWRs.  A single 

spike from one of these cells during an SWR on a rewarded trial would lead to an 

apparently infinite increase in activation, which means that the measure becomes very 

difficult to interpret.  Second, the absolute measure captures the fact that, on rewarded 

trials, cells with place fields are about four times more likely to be activated than cells 

without place fields.  

 The coactivity Z-score was calculated as follows.  Of a total of N  events, if 

neurons A and B are independently active during 
A
n  and 

B
n , respectively, the expected 

number of events during which both neurons were active, 
AB
n , follows a hypergeometric 

distribution (Sheskin, 2004) with mean  
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We can then compare expected and observed number of coincident events across 

neuron pairs with different activity levels with a z-score where we normalize the 

difference by the standard deviation:  
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 The joint surprise between cell pairs during rewarded and unrewarded trials was 

calculated as described previously (Grun et al., 2002;Pazienti and Grun, 2006).  The 

joint surprise is defined as 

log 1
js  

where the joint p-value  is computed from comparing the number of observed events, 

nemp, and the number of predicted events, npred, in which both neurons were active: 

0

|
!
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emp pred
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The number of predicted coactive events is based on the single cell activation probability 

per ripple, 
1
p  or 

2
p , during N  observed ripples:  

1 2pred
n p p N . 

If  was 1, as is the case when one or both neurons did not fire during SWRs, 

js was set to 0.   

 To ensure that there were no differences in overall behavior between rewarded 

and unrewarded trials we calculated the behavioral entropy as described 

previously(Jackson et al., 2006).  Briefly, for each session, we binned the two-

dimensional position data into 9.25 X 9.25 cm bins and positioned these bins to 
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encompass the 7 cm width of each arm, but the results were consistent across a range 

of bin sizes. The transition probability from each bin into every other bin was calculated 

for rewarded and unrewarded trials and all non-zero transitions were used to calculate 

the Shannon entropy: 

2

1 1

log

N N

ij ij

i j

H p p   

where pi,j is the time-independent probability of transition from bin j to bin i. More variable 

behaviors will have a higher entropy. 

  We also examined the relationship between SWR properties and activation 

probability.  To determine if differences in activation persisted when there was no 

significant difference in wSWR amplitude, we matched wSWRs in rewarded trials to the 

amplitude of wSWRs in unrewarded trials.  For each wSWR in unrewarded trials, we 

selected the wSWR from rewarded trials in the same epoch with the closest amplitude.  

The amplitude of wSWRs from unrewarded trials and the selected wSWRs from 

rewarded trials did not differ significantly (p > 0.12).  We then computed activation 

probability during wSWRs in unrewarded trials and during selected wSWRs in rewarded 

trials.   

  To control for differences in wSWR duration we truncated wSWRs in rewarded 

trials to match the duration of wSWRs in unrewarded trials.  For each wSWR in 

rewarded trials, we randomly selected a wSWR from unrewarded trials in the same 

epoch.  We truncated the wSWR in the rewarded trial to match that in the unrewarded 

trial.  If the rewarded SWR was shorter than the unrewarded SWR, neither SWR was 

truncated.  The duration of wSWRs from unrewarded trials and the selected wSWRs 

from rewarded trials did not differ significantly (p > 0.43).  We then computed activation 

probability during wSWRs in unrewarded trials and during truncated wSWRs in rewarded 

trials.   
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Supplementary Results 

 

SWR activity and place field activity across behavioral conditions 

 We performed a number of control analysis to determine whether factors other 

than reward could have lead to the differences we observed.  First, we asked whether 

greater activation in rewarded wSWRs could have been caused by differences present 

before the animal reached the reward, as might be expected if animals‟ level of attention 

differed between rewarded and unrewarded trials.  We isolated all SWRs that occurred 

when the animal was more than 20 cm from the well, thereby focusing on times where 

the presence or absence of reward was difficult or impossible for the animal to 

determine.  We found no significant differences in activation probability per SWR on 

correct trials preceding reward or incorrect trials preceding a lack of reward (Fig. S7a, p 

> 0.12, 95% confidence intervals for unrewarded: 0, 0.4667 and rewarded: 0, 0.5, n = 

107).  We also examined individual place cells throughout the run period, restricting the 

analyses to cells that were active on runs in both rewarded and unrewarded trials.  We 

found that neither their mean nor their peak firing rate during the run period differed 

significantly between rewarded and unrewarded trials (Fig. S7b, run mean rate p > 0.19, 

95% confidence intervals for unrewarded: 0.008, 3.138 Hz and rewarded: 0.002, 3.026 

Hz, run peak rate p > 0.20, 95% confidence intervals for unrewarded: 0.226, 38.61 and 

rewarded: 0.144, 49.75, n = 107).   

We then controlled for the timing of rewarded and unrewarded trials to determine 

if this could explain the increased wSWR activity.  Previous work has documented an 

increase in SWR activity over the course of the first ~20 trials in a familiar environment 

(Jackson et al., 2006).  Animals in our study tended to make more errors early in each 

session, so unrewarded trials came, on average, earlier than rewarded trials.  To ensure 

that increased wSWR activity was not due to this ordering, we compared rewarded trials 
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from the first half and unrewarded trials from the second half of the first session of each 

day.  We found that cells had significantly higher activation probabilities per wSWRs on 

these rewarded trials early in the session than unrewarded trials late in the session (Fig. 

S7c, p < 10-10) and the within cell increase in activation probability per wSWR from late 

unrewarded to early rewarded trials was significantly greater than zero (student‟s t-test p 

< 10-5; Fig. S7d).  We found similar results if we truncated the time spent at the well on 

these rewarded trials to match the unrewarded trials (p < 10-4).  We also controlled for 

the ordering of rewarded and unrewarded trials, the numbers of each trial type, and their 

timing within the session by selecting pairs of adjacent rewarded and unrewarded trials.  

Cells still had higher activation probabilities per trial on rewarded trials than unrewarded 

trials (see methods, Fig. S7e, p < 0.001).  Thus, SWR activity increases due to repeated 

behavioral experience could not explain the increased activation probability during 

wSWRs on rewarded trials. 

We then examined the animals‟ two-dimensional motion to determine if 

differences in the path to the well or behavior at the well could explain increased wSWR 

activity on rewarded trials.  We examined the behavioral entropy of the transitions 

between two-dimensional positions in rewarded and unrewarded trials (Jackson et al., 

2006).  We found no significant difference in behavioral entropy between rewarded and 

unrewarded trials (Fig. S7f, p > 0.08, 95% confidence intervals for unrewarded: 19.0552, 

93.1805 and rewarded: 21.3758, 100.9368, n = 43).  To control for small movements 

when the animal was stopped at the well, we also selected times when the animal was 

stopped at the well with a two-dimensional speed equal to zero.  We found that 

activation probability per wSWR and wSWR rate was still higher on rewarded than 

unrewarded trials when the animal was still (Fig. S7g,h, p < 10-10 and p < 0.001, 

respectively).  Thus, there was no evidence for behavioral differences that could explain 

our effects.   
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The initial learning of the task provides a period where the animal‟s behavior 

suggests imperfect ability to predict reward.  Nonetheless, wSWR activity was enhanced 

on rewarded trials before the animal reached the learning criterion.  We examined data 

from the initial period of S1 learning before the sequence switching phase of the task 

(days 1 through 5 or 6) using the same immobility criterion to identify times at the food 

wells.  We once again found that rewarded trials were associated with significantly 

greater wSWR activation per SWR of CA3 place cells (n = 84) than unrewarded trials (p 

< 10-10 for both activation probability per wSWR and per trial).  Collectively, these results 

show that increased wSWR activity when animals receive reward is highly unlikely to be 

caused by differences in activity during the run to the well, the relative timing of 

rewarded and unrewarded trials, behavioral variability, the behavioral sequence the 

animals executed, or reward expectation. 

Finally, we noted that confounds related to recording quality or clustering quality 

cannot explain our findings.  Each cell was defined with a single set of cluster bounds 

during run and rest periods.  Rewarded and unrewarded trials were intermixed during 

that period, so the same set of cluster bounds defined cells that were more active on 

rewarded trials and less active on unrewarded trials.  Moreover, poor clustering would be 

expected to lead to differences throughout a recording period, not differences that were 

present only after the animal received or did not receive reward.  The reward delivery 

system was also not a potential source of confounding signals, both because there were 

no electrical artifacts from this system and because the trigger for reward was issued 

before the animals stopped at the well. 

 

 

 

 



70 

Interaction between Reward and SWR Amplitude and Duration. 

Lastly, we examined the relationship between wSWR amplitude and duration and 

the greater activity on rewarded trials.  SWRs are recorded in the local field potential, 

which reflects the combined activity of single cells within several hundred microns of the 

recording tetrode.  Because SWR activity reflects single cell activity, SWR amplitude and 

duration are likely related to the amount of spiking within the SWR.  However the exact 

relation between SWR size and spiking within SWRs is unknown.  We found that the 

amplitude and duration of wSWRs was significantly larger in rewarded than unrewarded 

trials (see methods; Fig. S8a, p < 0.01 and p < 10-5 respectively, n = 4427).   This is not 

surprising given that more cells were active during wSWRs on rewarded trials.   

Nonetheless, the increased activity on rewarded trials was still present after we 

subsampled wSWRs in rewarded trials to match the amplitude in unrewarded trials (see 

Supplementary methods; Fig. S8b, p < 0.05).  Similarly, the increased activity on 

rewarded trials persisted when we truncated wSWRs on rewarded trials to match the 

duration of wSWRs on unrewarded trials (see Supplementary methods; Fig. S8b, p < 10-

10).  While significant differences activation probability per wSWR persisted when we 

controlled for wSWR amplitude and duration, the differences between rewarded and 

unrewarded trials were smaller, suggesting that the wSWR amplitude and duration did 

have an effect.   
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Chapter 2 

Coordinated hippocampal firing across related spatial locations 

develops with experience  

 

 

Abstract 

To learn we must identify and remember experiences uniquely but also generalize 

across experiences to extract common features.  Hippocampal place cells can show 

similar firing patterns across locations, but the functional significance of this activity and 

the role of experience and learning in generating it are not understood.  We therefore 

examined hippocampal place cell activity in the context of spatial tasks with multiple 

similar spatial trajectories.  We found that path equivalent firing, where individual 

neurons are active in multiple similar locations, develops with experience and task 

learning.  Furthermore, increased path equivalence was associated with increased 

moment-by-moment correlations between pairs of path equivalent neurons.  Our results 

suggest that path equivalent activity represents both geometrical and learned, task-

related similarities across distinct locations.  Path equivalent ensembles could encode 

similarities among repeating elements, providing a framework for associating specific 

behaviors with multiple locations, while neurons without this repetitive structure maintain 

a distinct population code.   

 

Introduction 

The world is full of repeating elements, like city blocks, rolling hills, or trees 

evenly spread through a forest.  However, we do not fully understand how neural 
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representations organize these spatial elements.  On the one hand, neurons may 

encode the similarities among these elements to extract general principles about the 

environment and to facilitate the application of learned information to new experiences.  

On the other hand, neurons might encode each element very differently to easily 

distinguish between them and form unique associations with each element.   

We know the hippocampus is required for spatial learning and separating 

between and generalizing across similar experiences (O'Keefe and Nadel, 1978;Morris 

et al., 1982;Nakazawa et al., 2002;McHugh et al., 2007).  Previous studies of separation 

and generalization in the hippocampus have usually examined neural activity as animals 

navigated similar but distinct environments.  In some cases, place cells have very 

different patterns of activity in similar environments (Muller and Kubie, 1987) and can 

even fire differently in visually identical places (Tanila, 1999).   These distinct firing 

patterns have been termed “global remapping” (Leutgeb et al., 2005b).  In other cases, 

place cells show “rate remapping” where they fire at comparable locations in each 

environment but at different peak rates (Lever et al., 2002;Leutgeb et al., 2004;Wills et 

al., 2005;Leutgeb et al., 2005b).  Cells can also show a mixture of rate and global 

remapping (Skaggs and McNaughton, 1998).  

Rate remapping appears to be very similar to a pattern of activity termed “path 

equivalence,” where neurons fire in similar locations within and across linear 

environments.  Frank et. al. (2000) reported that entorhinal but not CA1 neurons showed 

“path equivalent‟ activity in the context of a spatial alternation task.  In contrast, recent 

results from recordings made while animals moved through a hairpin maze made up of 

multiple, connected U-shaped elements reported this sort of activity in both the 

entorhinal cortex (EC) and within the hippocampus (Derdikman et al., 2009).  These 

authors further showed that this activity was associated with a resetting of the grid-cell 

map at the beginning of each segment of the maze.  
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  While the presence of these patterns of similar coding is well established, 

important questions remain.  First, it is not clear why these patterns appear in the 

hippocampus in some cases and not others.  Neither the Derdikman et al. nor the 

Leutgeb et al. studies provided a behavioral readout demonstrating that the animals 

could distinguish among the similarly encoded places, leaving open the possibility that 

the presence of path equivalence or rate remapping in the hippocampus reflect 

confusion.  Second, the functional significance of these patterns remains unknown.  

Frank et al. (2000) suggested that path equivalent activity represents similar behavioral 

demands across distinct locations.  In contrast, Derdikman et al. (Derdikman et al., 

2009) concluded that this type of activity could be entirely explained by the geometrical 

similarity of the locations and the associated grid cell inputs to the hippocampus, while 

Leutgeb et al. (2005b) suggested that similar coding in open field environments reflects 

the encoding of different episodes in the same place.  We hypothesized that these 

similar coding patterns reflect learned generalizations across different places and 

episodes.  To help distinguish among these possibilities we examined neural activity in 

CA3 and CA1 while animals performed tasks that required distinguishing among similar 

elements.  Our results indicate that path equivalence in the hippocampus does not 

reflect confusion but instead represents the learned relationships among locations in the 

animal‟s environment.   

 

Results 

Behavior 

Animals were trained to perform two alternation sequences in a 6 arm 

environment (Fig. 1).  This task requires the animals to distinguish between the elements 

(arms).  Therefore, when the animal correctly performs the task, similarities in neural 

coding between arms cannot be explained by a failure to distinguish among similar 
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locations.  Furthermore, rapid learning of the alternation task requires the hippocampus, 

therefore hippocampal activity is likely involved in performing the task (Kim and Frank, 

2009;Derdikman et al., 2009).  Animals first learned a spatial alternation sequence (S1) 

to criterion and then learned to switch between this sequence and a second alternation 

sequence (S2, see methods).  All six arms remained available for exploration.  Animals 

received a liquid chocolate reward at the end of an arm if they selected the correct arm 

in the sequence.  We initially focused our analysis on the sequence switching phase of 

the task where the entire environment was familiar. 

When animals switched between sequences, we found that they were using a 

place-centered strategy as opposed to a body-centered strategy.  At the beginning of 

each session animals were placed in the home arm of the to-be-rewarded sequence.  

We found that when animals were first placed in the home arm of S2 they immediately 

performed the previously rewarded S1 (n = 3 of 3 animals).  Thus, animals used 

environmental cues and an allocentric reference frame to perform the task, rather than 

remembering a series of right or left turns based on their body reference frame.  After 

executing S1 for several trials animals changed their behavior and eventually learned to 

perform S2 (Fig. 1d).   

 

Path equivalent coding in the 6 arm maze. 

 We first asked whether hippocampal path equivalence was present in the context 

of the sequence switching task where animals must accurately represent their location to 

receive reward.  We restricted our analysis to correct trials and found that many single 

cells fired in similar locations of multiple arms in the 6 arm environment.  We observed 

repetitive activity for single cells in both 2 dimensional and linearized firing (Fig. 2a, b).  

Repetitive firing in different arms and trajectories became more obvious when firing rate 

maps were scaled so that all firing above 3 Hz is shown in the same color or linearized 
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firing was scaled to the peak firing on each trajectory.  This scaling emphasizes firing 

location and disregards peak or total firing.  3 Hz was used for the firing rate maps 

because this criteria can be used to define the minimum peak firing rate for a place field 

(Karlsson and Frank, 2009b). 

We found that the repetitive activity has periodic structure reflecting the structure 

of the environment: many cells fired at regular spatial intervals of about the length of a 

single trajectory.  To quantify this activity for each cell (n = 107 cells with place fields on 

the track), we computed an autocorrelation of the cell‟s linearized firing rate.  We 

normalized the linearized firing rate on each trajectory by its area and then concatenated 

the linearized firing for trajectories in the same turn direction.  The resulting 

autocorrelations had peaks at zero and for many cells, at about the length of a single 

trajectory in the environment (~160 cm, Fig. 4c).  Cells fired at the same spatial interval 

even though they fired at many different locations in the track.  For instance, some cells 

fired at turns (Fig. 2a-c, left example), while other cells fired near reward wells (Fig. 2a-c, 

middle example) but in both cases these cells fired at ~160 cm intervals.   

 About half of the cells with place fields on the track had path equivalent activity.  

To determine the proportion of cells with significant peaks in the autocorrelation, we 

compared each cell‟s autocorrelation to 90% confidence bounds derived from the 

distribution of cross correlations between the linearized firing rates of different cells.   

Autocorrelations were computers separately for right turn and left turn trajectories.  We 

identified the peak of regions where the autocorrelation exceeded the upper 5% 

confidence bound and plotted a histogram of peak locations (Fig. 2d).  About half of the 

cells had significant peaks in either autocorrelogram at lags corresponding to the length 

of a single trajectory (140-180 cm) and we categorized them as “periodic” (Fig. 2e).  The 

rest of the cells were either aperiodic, having a significant peak in either autocorrelogram 

at lags greater than 60 cm but not near the length of a single trajectory, or single peak, 
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having no significant peaks in either autocorellogram at lags greater than 60 cm.  As a 

result we conclude that about half of the cells with place fields in the environment 

showed path equivalent coding.  This mixture of path equivalent and non path equivalent 

coding was present within each session on the track, indicating that cells with different 

firing patterns were present simultaneously (Fig. 2f).  Path equivalent activity persisted 

when we included all trials (not shown).  To determine the number of trajectories that 

demonstrated path equivalence for each cell, we examined all task relevant trajectories, 

both correct and incorrect (see methods).  Cells most often showed path equivalent 

coding in 2 or fewer trajectory pairs (Fig. 2g), indicating that individual cells were active 

in a subset of the possible path equivalent locations.   

Path equivalence was not due to general trends in place field locations (e.g. 

place fields from many cells congregating around features like turns).  We first noted that 

if path equivalent activity could be explained by general trends in place field locations, 

the cross correlation between different cells would also show peaks of activity at lags 

corresponding to the length of a trajectory which would have broadened the confidence 

bounds and therefore decreased the number of autocorrelation peaks near the length of 

a trajectory.  We also examined this issue by computing the normalized overlap between 

linearized firing rates for the same cell in two different trajectories and comparing that to 

the normalized overlap of different cells in two different trajectories.  Normalized overlap 

reflects the similarity of the firing location regardless of firing rate.  High normalized 

overlap occurs when cells fire in very similar locations, while low normalized overlap 

occurs when cells fire in very different locations.  Thus, normalized overlap measures 

the degree of overlap between place field locations and therefore the degree of path 

equivalence, as opposed to categorizing the cells as either path equivalent or not.  We 

found that normalized overlaps of linearized firing from the same cell between different 

trajectories was much higher than between different cells on different trajectories (Fig. 
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2h, p < 10-10, n = 210 same, 998 different trajectory pairs, medians = 0.5574, 0.1661 

from the same cell or different cells, respectively).  Hence, the presence of path 

equivalent firing could not be explained by the clustering of place fields around particular 

features or more generally by many different cells firing in similar locations in different 

trajectories.  Furthermore, these analyses also suggest that our results cannot be due to 

poor clustering.  While poor clustering could result in cells that fired in multiple locations 

it would not result in cells that fire in similar locations on multiple arms of the track.   

  

Path equivalence increases with experience  

 The presence of path equivalence in the context of a spatial alternation task in 

the 6 arm maze indicates that path equivalence does not imply confusion about location, 

but it is still unclear whether this pattern of firing is likely to serve a functional purpose.  

We therefore asked if the strength of path equivalence changed with experience, as 

would be expected if path equivalent activity reflects the encoding of common behavioral 

associations across related locations (Frank et al., 2000).  We found that path 

equivalence increased with experiences relating the paths. 

We first found that the prevalence of path equivalence increased with experience 

during the initial training on S1.  Because animals did not know the correct sequence 

and performed poorly, we included all task relevant arms and both incorrect and correct 

trials, comparing trajectories in the same turn direction.  On days 2 through 5, path 

equivalence for individual neurons, measured as the normalized overlaps of linearized 

firing across different trajectories increased as animals became more familiar with the 

environment and learned S1 (Fig. 3a, Kruskal-Wallis one way analysis of variance 

χ2(4,162) = 27.6921, p < 0.0001, medians = 0.2838, 0.3970, 0.5708, 0.5715 for days 2-

5;  day 2 was significantly smaller than days 4 and 5, p < 0.05 Tukey-Kramer post-hoc 

test).  Consequently, path equivalence increased as animals learned the initial 
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sequence.  Animals did not traverse the task arms enough on day 1 to compute 

linearized firing rates and normalized overlaps.   

 Similarly, the prevalence of path equivalence also increased when animals 

learned the new sequence (S2) in the now familiar environment.  We examined the 

same set of trajectory pairs on the first, second, and third day that S2 was rewarded (the 

first, second, and third days of the sequence switching phase of the task).  In S2, the 

entire environment and all of the task trajectories are familiar, as the animals fully 

explore the environment when initially learning S1.  However some of the task 

trajectories are specific to S2 and are never rewarded during the initial learning of S1 

(trajectories from arm D to E and E to D).  As a result these trajectories do not initially 

have the same task relevance during the initial learning as trajectories that are included 

in S1.  The distribution of normalized overlaps increased as the animal learned S2 and 

the new relationship between these trajectories and the task demands (Fig. 3b, Kruskal-

Wallis one way analysis of variance χ2(2,210) = 7.3580, p < 0.05, medians = 0.2932, 

0.2667, 0.4868 for days 1-3, day 2 was significantly smaller than day 3, p < 0.05 Tukey-

Kramer post-hoc test).  Thus, normalized overlap increases between related trajectories 

as animals learn each sequence.   

 

Ensembles of cells are recruited together in the path equivalent code 

 The generalization evident in path equivalent activity led us to wonder whether 

CA3 place cells that develop path equivalent firing are recruited independently or 

whether these cells arise as part of functional ensembles that generalize across 

locations.  We found that path equivalent cells that repeat together on multiple 

trajectories have correlated moment to moment activity, suggesting they are connected 

or receive similar inputs.  To identify elements of cell ensembles we examined 

correlations between pairs of cells‟ moment to moment variability.  High correlations 
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between cells‟ moment to moment variability suggest the cells receive similar inputs or 

are connected to each other either directly or indirectly (Lee et al., 1998;Shadlen and 

Newsome, 1998).  We calculated the difference between each cell‟s expected number of 

spikes (based on linearized firing rates and the animal‟s position) and the actual number 

of spikes in each time bin (see methods, Fig. 4a).  We then correlated these residuals 

between pairs of cells both in single trajectories and over the entire session when 

animals were running.   

If cells are part of a functional ensemble and receive similar inputs or are 

connected to each other, we would expect that they have both similar place field 

locations and correlated fluctuations in moment to moment activity.  Cells with only 

overlapping place field locations, however, may or may not be part of the same 

ensemble as they could have similar receptive fields by chance.  Furthermore, if path 

equivalent cells are part of functional ensembles, we would expect the cells to have 

similar place field locations across multiple paths.  Consistent with these expectations, 

we found that cell pairs with overlapping place fields and correlated moment to moment 

activity in one location are more likely to have overlapping place fields in another 

location.  We identified pairs of cells with overlap in one trajectory greater than 0.3 and 

peak firing rates in both trajectories of at least 0.5 Hz and found strong evidence for this 

sort of relationship (see Fig. 4b for examples of cell pairs with low and high correlations 

of residuals).   Across the population, we found that the residual correlation in the first 

trajectory was related to the overlap and normalized overlap in the other trajectory 

(Normalized overlap: Fig. 4c, rho = 0.3229, p > 0.001, robust fit slope = 0.24382, p < 

0.02; overlap: rho = 0.27873, p < 0.005, robust fit slope = 0.24196, p < 0.005, n = 174 

trajectory pairs).  Therefore cells with overlapping place fields that vary together in one 

trajectory are more likely to have overlapping fields in another trajectory.   
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 We also found that pairs of cells with highly correlated moment to moment 

variability throughout the session were more likely to have high overlap on multiple 

trajectories (see Fig. 6b for examples).  We examined the distributions of the correlations 

of residuals between all cell pairs and pairs with low or high overlap (Fig. 4d-f). Cell pairs 

with overlapping fields (overlap > 0.3) in at least 3 trajectories (high overlap) had higher 

residual correlations than cell pairs with low overlap (overlap < 0.2) in at least 3 

trajectories (p < 0.0005).  Additionally, cell pairs with larger numbers of trajectories with 

overlapping fields tended to have higher correlations of residuals for each cell pair (Fig 

4g, ANOVA: F(4,30) = 2.9704, p < 0.05, see methods).  Only cells with a minimum total 

overlap across all trajectories of at least 0.1 were included for these analyses; cell pairs 

could overlap on a single trajectory or on multiple trajectories.  While this excluded many 

cell pairs, it ensured that the cells that were included had some overlapping fields on at 

least one trajectory on which to compute residual correlation. 

Furthermore, cell pairs with stronger moment to moment correlations were more 

likely to show path equivalent firing.  If highly correlated pairs form coordinated, path 

equivalent ensembles, we would expect that cell pairs with positively correlated firing on 

a 500 ms time scale were likely to be made up of cells that both showed path equivalent 

firing.  Similarly, negatively correlated pairs would be made of cells where one or both 

did not show path equivalent activity.  Indeed, we found that approximately half of the 

cell pairs with positive residual correlations were pairs in which both cells were periodic, 

while only about one quarter of the cell pairs with negative residual correlations were 

such pairs (z test of proportions, z = 2.2054, p < 0.05, n = 40 cells with positive, 41 with 

negative residual correlations).  Thus, cells whose rates co-vary on a moment by 

moment basis tend to show path equivalent activity across multiple trajectories.  

 The link between path equivalence and correlated activity was further 

strengthened when we examined changes in correlated firing with experience.  Across 
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the population the correlation of residuals increased as animals gained more experience 

in S2.  Including all cell pairs with an overlap of at least 0.1 across all trajectories, we 

computed the correlation of residuals for the entire session when animals ran faster than 

3 cm/sec and performed S2 on the first two days of exposure to S2 or 3 or more days of 

exposure.  We grouped days to include more data in each group.  We also compared 

this to the last two days of exposure to S1 during the initial training on S1 before the 

sequence switching phase of the task began.  We found that the correlations of residuals 

were higher when animals had 3 or more days of exposure to the sequence than on 

days 1 and 2 (Fig. 4h ANOVA F(2,115): 5.9582, p < 0.005, medians = -0.1117, 0.0630, 

0.0348 for S2 days 1-2, days 3+, and S1 last 2 days preswitch, S2 days 1-2 significantly 

less than S2 days 3+ and S1 last 2 days preswitch, p < 0.05 Tukey-Kramer post-hoc 

test).  Because place fields form and fluctuate during the first few days of exposure to an 

environment (Wilson and McNaughton, 1993;Frank et al., 2004;Karlsson and Frank, 

2008) we did not examine residual correlations during the first few days of exposure to 

S1. 

We then performed three important control analyses.  First, the above results 

could not be explained by a simple relationship between place field overlap and 

correlated moment to moment activity in the same location.  We asked whether a high 

correlation of residuals was a general feature of overlapping place fields:  covariance 

among cells with overlapping fields could better explain the relationship between 

correlations of residuals in one trajectory and overlap in a different trajectory.  We found 

that this was not a likely explanation, as there was no significant relationship between 

the correlations of residuals and overlap in the same trajectory for cells with a peak firing 

rate of at least 0.5Hz in the trajectory (SFig. 1a, rho = 0.0456, p > 0.7, n = 729 

trajectories).  We also examined the relationship between overlap and correlation of 

residuals only in cases with overlap greater than 0.3, as we noticed that the distribution 
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of the residual correlation seemed qualitatively different at overlaps above and below 

0.3.  Again, we found no significant relationship between the correlation of residuals and 

overlap in the same trajectory (rho = 0.1273, p > 0.18, n = 174 trajectories).   These 

results indicate that there is no relationship between place field overlap and the 

correlation of residuals within a single trajectory.  Instead, this relationship is only evident 

when we examine path equivalent pairs across multiple trajectories.   

Second, we determined that the relationship between overlap and correlation of 

residuals was not due to more time bins available for analyses in cells with high overlap.  

The larger the overlap between linearized firing curves, the greater the number of time 

bins in which we could compute a meaningful residual correlation.  If cell pairs with little 

overlap had lower residual correlation simply because of fewer available time bins, we 

would expect a positive relationship between the number of time bins and the residual 

correlation value.  Again we only examined cell pairs with an overlap of at least 0.1 

across all trajectories, though we found similar results if we included all cell pairs.  As we 

would expect to see this relationship with few time bins, we examined this relationship 

for cases with 20 (the minimum allowed number of time bins) to 100 time bins.  We 

found no significant relationship between the number of time bins and the residuals 

correlation (SFig 1b, rho = 0.12102, p > 0.37, n = 97 cells).  We conclude that correlation 

in a cell pairs‟ moment to moment variability was not due to measurement error or bias 

but is instead reflects the short time scale covariation of path equivalent cell pairs.   

 Finally, to control for possible contamination due to clustering errors (Quirk and 

Wilson, 1999), we repeated all of these residual correlation analyses for cells recorded 

on different tetrodes.  We found similar results for all of the analyses, although one result 

was no longer significant.  The relationship between cell pairs with larger numbers of 

trajectories with overlapping fields still tended to have higher correlations of residuals for 

each cell pair but the results were no longer significant (ANOVA: F(4,13) = 0.66, p = 
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0.6298).  This is not surprising as restricting to cells on different tetrodes reduces the 

amount of data substantially.  These correlations in moment to moment firing of path 

equivalent cells indicate that these cells may be part of functional ensembles. 

 

Differences in firing rate and population coding associated with path equivalence 

 The above analyses suggest that path equivalence could encode similarities 

across distinct locations, providing a framework to form common behavioral associations 

with multiple places.  However, animals would still need to distinguish among these 

places to perform spatial tasks.  We found that the population as a whole could 

distinguish the arms of the six arm environment from one another despite the path 

equivalent coding of individual cells.  We first noted that while many cells fired in very 

similar locations in different trajectories in a repetitive environment, they fired at different 

peak rates, similar to reports of rate remapping.  We compared peak linearized firing 

rates between two trajectories when the firing on those trajectories was in similar 

locations (normalized overlap greater than 0.3, see methods).  We took a ratio of the 

smaller peak divided by the larger peak firing rate.  We found the peak rate ratio 

between different trajectories with overlapping firing locations was lower than if we 

compared the peak firing on the same trajectory in different run epochs on the same day 

(Fig. 5a, p < 0.02, medians = 0.3695, 0.6072, n = 150, 197 trajectory pairs for diff 

trajectories in the same epoch or the same trajectory in different epochs, respectively).  

We found similar results if we used a higher normalized overlap requirement to select 

cells with similar firing locations in different trajectories.  Thus cells that fire in similar 

locations in different trajectories fire at different peak rates.   

 Additionally, cells with path equivalent coding but differences in peak firing rate 

and cells without path equivalent coding generate distinct population codes in each 

trajectory.  To test this, we compared population activity in different trajectories by 
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computing a population vector of firing rates of multiple single cells in each 10 cm of bin 

of each trajectory.  We then correlated vectors of corresponding bins from trajectories in 

the same turn direction and averaged the correlations for each trajectory.  We found the 

resulting population vector correlations were significantly lower than if we compared the 

same trajectory in different epochs (Fig. 5b, p < 0.02, n = 10 averaged trajectory pairs), 

revealing significant differences between trajectories in the population code.  The 

population vector correlations were also higher than if the cell identity was shuffled, 

revealing that the repetitive coding structure in some cells does result in higher 

correlation in the population activity (Fig 5b, p < 0.0001, n = 10 averaged trajectory 

pairs).  This suggests that a population with both path equivalent (rate remapping) and 

non-path equivalent coding may simultaneously generalize and separate. 

 

Path equivalence is less common in the 3 arm maze  

 If similar coding patterns reflect learned generalizations, then repetitive coding 

would be less common in a simpler, less repetitive environment.  Indeed, a previous 

report has indicated that path equivalence was not prevalent in CA1 cells recorded while 

animals performed a spatial alternation task on a 3 arm or “W-track” maze (Frank et al., 

2000).  The environment in that study was highly familiar and no CA3 cells were 

sampled, however, and previous studies have reported differences in pattern completion 

and separation CA3 and CA1 (Leutgeb et al., 2004).  Consequently we wondered if path 

equivalent activity is absent in a 3 arm maze or if it only occurs in CA3 or during learning 

in such a maze.  We therefore examined 3 arm maze data from both CA3 and CA1 cells 

(Karlsson and Frank, 2008;Karlsson and Frank, 2009b).  The alternation task in the 

three arm maze was the same as S1 or S2 in the six arm maze, however there were 

fewer arms and none of the arms were exactly geometrically identical (SFig. 2).  In 

particular, in the six arm maze, all the arms end in a T junction, while in the 3 arm maze 
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the middle arm ends in a T, and the left and right arms end in right turn only or left turn 

only L shapes.   

 We found that most cells had single place fields in the 3 arm environment (Fig. 

6a,b, left and right examples), though some had multiple fields in somewhat similar 

locations in different arms (Fig. 6a,b, middle example).  Cells that had a single place field 

could fire in a single trajectory (Fig. 6a,b, left example) or multiple trajectories as the 

animal traversed the same location in multiple trajectories (Fig. 6a,b, middle and right 

examples).  However, these cells generally did not have peaks in the autocorrelogram at 

the length of a single trajectory (average 180 cm), as we would expect if the cells‟ firing 

was periodic (Fig. 6c).  Across the population, both CA3 and CA1 cells with multiple 

place fields had some tendency to be active at lags of ~180 cm (Fig. 7a,d), but the 

overall proportion of periodic cells (160-200cm) was lower than in the six arm maze (Fig. 

7b, e; p < 0.05 χ2 test for both CA3 and CA1 cells from the three arm maze compared to 

CA3 cells in the six arm maze). 

Similarly, in the 3 arm maze, the spatial locations of firing from the same cell on 

different trajectories were more similar to firing from different cells on different 

trajectories.  Unlike in the six arm maze, the distribution of normalized overlaps was not 

bimodal, instead generally decreasing from 0 to 1 (Fig. 7c,f).  The same vs. different cell 

distributions did have slightly different medians (CA3: medians = 0.1697, 0.1211, n = 

260, 1692 same cell and different cell distributions, respectively, p < 0.05; CA1: medians 

= 0.1557, 0.1129, n = 309, 2659 same cell and different cell distributions, respectively, p 

< 0.005), but the CA3 same cell distribution from the 3 arm maze had a much lower 

normalized overlap than that from the 6 arm maze (median = 0.5574 for 6 arm maze 

same cell, p < 10-5).  We conclude that path equivalent coding in CA3 and CA1 is 

present, but much less common in the 3 arm maze as compared to the six arm maze 
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even though the animals were executing the same alternation task.  There were no 

differences in the prevalence of path equivalent coding between CA3 and CA1.   

Furthermore in the 3 arm maze, normalized overlap did not change with 

experience.  We examined normalized overlap of CA3 cells between trajectory pairs in 

track 2 (T2) in the 3 arm maze, from the animals first exposure to T2 to 5 days of 

exposure.  We found no significant change in normalized overlap across days or 

between the first day of T2 exposure and exposures to the familiar track, track 1 (Fig. 7g, 

Kruskal-Wallis one way analysis of variance χ2(4,108) = 7.8749, p > 0.09, medians = 

0.3454, 0.3146, 0.2682, 0.2333, 0.1636 for days 1-5 on T2, no significant differences 

between days 1-5 on T1, p > 0.05 Tukey-Kramer post-hoc test).  In fact, the distributions 

of normalized overlap values for the highly familiar T2 was similar to those of the novel 

6-arm maze (SFig. 3), indicating that both environments began with comparable 

overlaps across trajectories, but while the overlaps remained stable in the 3 arm maze, 

they evolved with experience in the 6 arm maze.   

 

Path equivalence in CA1 in Multiple-U Environment  

Finally, to better understand the role of geometrical versus local cue based 

similarity in path equivalent activity, we examined CA1 neurons in two animals traversing 

a multiple-U environment where each U had different local visual and olfactory cues 

(SFig. 4).  We examined these parameters because previous studies have shown that 

subtle environmental manipulations can lead to distinct patterns of rate and global 

remapping (Skaggs and McNaughton, 1998;Lever et al., 2002;Leutgeb et al., 

2004;Leutgeb et al., 2005a;Leutgeb et al., 2005b).  In the multiple-U environment the 

local sensory cues differed substantially across each U (see methods) but despite these 

differences, path equivalent coding was common.   We found many single cells fired in 

similar locations in the different U‟s that make up the track, while others only fired in a 
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single location (Fig. 8a,b, left and right example, respectively).   The normalized overlap 

between linearized firing from the same cell on different trajectories was significantly 

higher than firing from different cells, though only 24 cells reached the criteria for 

inclusion in analysis (Fig 8c., p < 0.001).  Because of the low number of simultaneously 

recorded cells, we did not perform the periodicity analysis as confidence bounds would 

be too noisy with so few cells.  Nonetheless, these results establish that path 

equivalence also occurs in CA1, is not due to the specifics of the 6 arm paradigm, and, 

as each U had very different visual and olfactory cues, is not likely to be due solely to 

similarity of local sensory cues.   

 

Discussion 

 We have shown that hippocampal neurons fire in multiple similar locations in 

repetitive environments even when animals must behaviorally distinguish among the 

arms.  This path equivalent coding increases as animals learn the rewarded sequence 

and the relationships between paths and similar behaviors.  Furthermore, path 

equivalent firing is not simply due to single cells acting independently.  Rather pairs of 

cells that vary together from moment to moment repeat together in multiple segments, 

suggesting that ensembles of cells are repeatedly recruited together.  These correlations 

also increased with experience, pointing to a role for learning in the development of path 

equivalent coding.  While path equivalence is common in the two environments with 

repeating elements that we examined, cells that fire in multiple similar locations in an 

environment fire at different peak rates in different locations.  Given a subpopulation of 

cells that continued to fire differently across different trajectories, our results argue that 

path equivalence could provide important information about the similarity across different 

locations while, at the population level, the system could still distinguish among those 

locations.  
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 These patterns of activity cannot be explained by confusion, lack of 

distinguishing sensory cues or clustering errors.  First, correct behavioral performance in 

the six arm task requires that the animal make different choices depending on current 

and past locations.  While it is conceivable that the animal could make these choices 

without an accurate hippocampal representation of location, our behavioral data and 

previous results suggest that the hippocampus is involved in learning this task.  When 

animals were first placed in the home arm of S2 they immediately moved to the adjacent 

arm and performed the previously rewarded S1.  This indicates that the animals were 

using an allocentric strategy associated with hippocampal dependence (Packard and 

McGaugh, 1996).  In addition, this task is based on a the simpler W-track alternation 

task where the hippocampus is required for rapid learning (Kim and Frank, 2009).  

Further the six arm task requires flexible changes in behavior in response to changing 

reward contingencies.  Because  this sort of flexibility generally requires the 

hippocampus (Hsiao and Isaacson, 1971;Hirsh et al., 1978;Ainge et al., 2007b), 

hippocampal activity is likely to be important for learning to switch between sequences.  

Thus there is good reason to believe that the hippocampus was engaged during the 

performance of the 6-arm task and that animals distinguished among the arms of the 

environment. 

 Second, the prevalence of path equivalent activity in the multiple-U track argues 

that this activity is not solely due to a lack of distinguishing sensory cues.  Each U of that 

environment was bordered by walls with highly distinctive visual patterns and was 

scented uniquely.  Given that animals can use local visual and odor cues to distinguish 

among locations (Anderson and Jeffery, 2003), it is unlikely that path equivalent activity 

in the hippocampus was due solely to sensory similarity.   

Finally, there is no reason to suspect that errors in clustering could have led to 

our findings.  Clustering errors would lead to errors such that a single clustered “unit” 
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would have multiple place fields corresponding to the place fields of the single cells that 

were erroneously combined.  However  fields from different single cells erroneously 

clustered as one cell would not tend to show path equivalence as there is little or no 

topographic organization of spatial receptive fields in the hippocampus (Redish et al., 

2001). 

 While these cells fire in similar locations in multiple trajectories, they fire at 

different peak rates.  This is consistent with the phenomenon of rate remapping  

(Leutgeb et al., 2005b;Leutgeb et al., 2005c;Leutgeb et al., 2006).  We suggest that 

these two patterns of neural activity are manifestations of the same basic phenomenon 

where individual cells fire in related locations within and across environments.  At the 

same time, we found a mixture of path equivalent, rate remapping activity as well as 

cells that fired in different location or not at all on different trajectories.  It is not clear 

whether the same mixture of path equivalence and global remapping was seen in 

hippocampal neurons recorded in the context of the hairpin maze (Derdikman et al., 

2009), as that study did not classify neurons individually. 

 Overall, our results provide new insights into both the generation and the 

functional significance of path equivalent activity.   Derdikman (Derdikman et al., 2009) 

demonstrated that path equivalent activity in the hippocampus was associated with 

resets of the EC grid pattern across each geometrical element of the environment.  Our 

observation of both path equivalence and global remapping across trajectories raises the 

interesting possibility that some elements of the entorhinal network may remain coherent 

across trajectories while other elements might shift.  Our results also indicate that both 

the geometry of the environment and experience contribute to path equivalence.  In the 

three arm maze, path equivalent activity in CA3 and CA1 was relatively uncommon, 

despite its prevalence in the EC in the same task (Frank et al., 2000).  Thus, path 

equivalent activity does not always propagate from the EC to the hippocampus.  Instead, 
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our results are consistent with the notion that the number of repeating elements 

determines whether this sort of similar activity across paths is seen in the hippocampus. 

Further, our finding that path equivalence increases with experience, and in 

particular that it increased as animals learned the novel Sequence 2 in the familiar six 

arm maze, demonstrates that path equivalence in the hippocampus depends on 

experiences relating the paths. Given that the animals had full access to the geometrical 

structure of the environment for at least five days prior to their first exposure to S2, the 

change in path equivalence with experience is more closely aligned to changes in the 

behavioral significance of individual trajectories than to their stable geometrical 

character.   Therefore path equivalence increased as animals learned relationships 

between paths and executed similar behaviors across paths, whether the environment 

was novel or familiar.   

 Our results also indicate that hippocampal cells with similar activity across 

locations are more correlated with one another, suggesting that experience drives the 

formation of path equivalent ensembles.  We found that for a given pair of cells with 

overlapping place fields in one trajectory, higher correlated residual rates were 

associated with higher overlaps in another trajectory.  Similarly, pairs of cells with 

overlapping, path equivalent fields across trajectories tended to have high overall short-

time scale correlations of residuals.  So while the similarity of cells‟ receptive fields in a 

single location was not predictive of moment to moment correlations, similarities over 

multiple locations were.  To our knowledge, this is the first demonstration that 1) the 

firing properties of two place cells in one location can predict their patterns of spatial 

activity in another location and 2) that correlations in moment to moment activity is 

related to cells firing similarly over multiple locations but not a single location.  High 

correlations of residuals restricted to a subset of cells are suggestive of common input or 
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direct synaptic connectivity, and thus our results raise the interesting possibility that 

hippocampal pairs with high residual correlations are part of specific neural ensembles.   

Given the clear increases in path equivalence and correlation with experience, 

our data argue that the expression of path equivalence in CA3 is experience dependent.  

Thus, in environments with many repeating elements, a subset of CA3 neurons evolves 

with experience to represent general features of the environment.  These findings 

suggest that this path equivalent activity could be a mechanism to generalize across 

related experiences in the hippocampus.  General information about related experiences 

could then be used to encode appropriate behaviors across experiences or to predict 

new experiences.  

 Finally, as most path equivalent cells were active at different rates across a 

subset of the related locations and as about half of the cells we recorded fired in only 

one place or in unrelated locations, each location was still associated with a distinct 

population pattern of activity.  In principle animals could therefore extract both a relative 

location within each trajectory in the environment as well as a global location from the 

ensemble of active place cells (Fenton et al., 2008).  From this perspective, path 

equivalence or rate remapping would presumably reflect a sense of similarity across 

locations that could, in the context of specific behavioral demands, allow the animal to 

generalize across different elements.  

 

 

 

Methods 

We combined data from three different studies to examine remapping in linear 

environments.  These studies varied the behavioral task, the geometry of the 
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environment and the recording location, allowing us to determine which factors 

influenced place cell activity.  

 

Six-arm maze: Pretraining and data collection 

Three male Long-Evans rats were handled and food deprived to 85-90% of 

baseline weight.  Animals were initially trained to run back and forth on a linear track 

between food wells where liquid chocolate reward was delivered.  Pretraining took place 

in a different room from the recording room.  One of the animals was then pretrained on 

S1 in the recording room, while two animals were not exposed to the behavioral task 

until recording began (Fig. 1a, see Supp Table 1 for details).  Following pretraining 

animals were implanted with a microdrive array containing 16 independently movable 

tetrodes targeting CA3 (-3.6 mm AP; 3.4mm L) using previously described methods 

(Karlsson and Frank, 2008).  Over the next 7 – 10 days tetrodes were lowered first to 

CA1 and then to CA3.  CA3 was identified by depth and the characteristic EEG 

waveforms on each recording tetrode.  Tetrodes were then lowered to the expected 

depth of CA3 until the cell layer was reached.  Ripples and theta were detected in CA3.  

For all animals a reference tetrode was positioned in the corpus callosum.  All neural 

signals were recorded relative to that reference to eliminate muscle artifacts from the 

recordings.   

Electrode positions were confirmed by histology (Fig. 1b).  For one animal, 

electrode lesions were made at the end of each tetrode and later confirmed to be in the 

CA3 pyramidal cell layer.  For two animals, the microdrive fell off before lesions could be 

made.  In these animals we were able to confirm that the implant site was over dorsal 

CA3 and that the depths were consistent with CA3 recordings.  Furthermore the EEG 

signatures characteristic during adjusting of passing through CA1 then traveling to CA3 
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were similar in all animals.  In particular, as tetrodes traveled to the ventral side of the 

CA1 layer, the EEG amplitude greatly increased (Fig. 1c).   

 

Six-arm maze: Behavior 

 These animals learned to perform a sequence switching task in a six arm maze 

(Fig. 1a).   This task requires that the animal remember and select a correct arm out of a 

set of geometrically similar, although visually distinct arms.  Therefore if the animal 

correctly performs the task, we can conclude that the animal can distinguish between 

these arms.  Animals were rewarded for correct trajectories with liquid chocolate in 

reward wells at the end of the arm by an electrically triggered solenoid delivery system.  

The track included 4 sequence arms, B C D and E, and one extra arm on each end, A 

and F.  Arms were separated by vertical walls (0.6 cm thick, 24 cm tall and 81 cm long).  

Distal cues were visible above these walls, at either end of each arm and along the 

straight section connecting different arms.  Circles indicate food wells where animals 

received liquid chocolate reward in arms B through E.  Colored arrows indicate 

trajectories included in Sequence 1 (purple) and Sequence 2 (orange).   

The task consists of two rules.  First, a visit to the home arm (arm C in S1 and 

arm D in S2) was rewarded when the animal came from any other arm (inbound 

trajectories). Second, a visit to an arm adjacent to the home arm was rewarded when the 

animal came from the center arm after having previously visited the opposite adjacent 

arm (outbound alternation).  Consecutive repeat visits to the same food well were never 

rewarded. Together, these rules defined a correct cyclical sequence of food-well visits 

(Fig. 1a): right, center, left, center, right, center, left, center, etc (Frank et al., 2000;Kim 

and Frank, 2009). If the animal visited an arm not included in the rewarded sequence 

(e.g. arm A, E or F for S1), the animal was rewarded upon returning to the home arm. 

During the initial learning of the task, animals learn the inbound component first and then 
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learn to alternate on outbound trajectories.  As a result, once animals learn to perform 

the outbound trajectories with high accuracy they are generally performing the entire 

sequence accurately.  Rapid learning of the alternation task depends on an intact 

hippocampus (Kim and Frank, 2009), as does the ability to flexibly alternate among 

reward contingencies (Hsiao and Isaacson, 1971;Hirsh et al., 1978;Ainge et al., 2007).  

Thus, hippocampal activity is likely to be important for correct behavior in this task.   

 During each run session the animal was placed in the home arm of the to-be-

rewarded sequence (arm C for Sequence 1 and arm D for Sequence 2) but no cues 

indicated which sequence was rewarded other than the presence or absence of reward 

at the food wells.  Each run session was between 20 and 30 minutes long; one animal 

performed two sessions and two animals performed three sessions per day.  Rest 

sessions in a high walled box preceded and followed each run session.  Once the animal 

performed S1 with 80% accuracy, measured across a run session, or had 6 full days of 

training and was above 75% accurate, the sequence switching phase of the task 

commenced.  On the first day of sequence switching animals first performed one session 

where S1 was rewarded.  Then in the second session, reward contingencies changed 

such that S2 was rewarded.  All subsequent sessions alternated between rewarding S1 

and S2 within each day.   

 We distinguished between “accurate” responses that were consistent with the 

rules of S1 or S2, and correct (rewarded) responses.  This allowed us to score behavior 

according to the rules of both sequences simultaneously.  To illustrate the behavior, we 

plotted a 20 trial moving average applied to all (Fig. 1d).     

 

3-arm maze: Pretraining and data collection 

 The data for the 3-arm maze was data recorded from animals 5, 6, and 7 of 

Karlsson and Frank (2008).  Briefly, three male Long-Evans rats (500-600g) were food 
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deprived to 85 – 90% of their baseline weight and trained to run on a linear track with 

one reward well at each end of the track.  Linear track pre-training was performed in a 

different room from the recording experiments.  After the animals were accustomed to 

behaving for liquid reward (sweetened condensed milk), they were implanted with a 

microdrive array containing 30 independently movable tetrodes.  After 5-6 days of 

recovery, animals were once again food deprived to 85% of their baseline weight.  The 

tetrodes were arranged bilaterally in two 15 tetrode groups centered at AP -3.7 mm, ML 

±3.7 mm.  Each group was located inside an oval cannula whose major axis was 

oriented at a 45 degree angle to the midline with the more posterior tip of the oval closer 

to the midline.  Tetrodes in the anterior and lateral portion of each group targeted lateral 

CA3 while more posterior and medial tetrodes targeted CA1.   

 

3-arm maze: Behavior 

Each recording day consisted of two or three 15-minute run sessions in W-

shaped tracks, with rest sessions in a black box before and after each run.  The two 

tracks were geometrically identical but visually distinct and were open to the room but 

separated from one another by a black barrier (Fig. 2).  The tracks had one reward well 

at the end of each arm, and animals learned to perform a continuous alternation task 

where, starting from the center arm, they alternated visits to each outer arm for liquid 

reward (center-left-center-right, and so on (Frank et al., 2000;Frank et al., 2004;Kim and 

Frank, 2009)).  The correct alternation sequence in the 3-arm maze was therefore 

identical to S1 or S2 in the 6-arm maze.  Errors were not rewarded, and following an 

incorrect choice of an outer arm no rewards were given until the animal returned to the 

center arm.  Animals were pretrained on track 1 (T1) for six days and then ran on both 

T1 and track 2 (T2) from days 7 onward.  Recordings began on day 7.  These animals‟ 
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familiarity with T1 was similar to the animals on the 6 arm maze‟s familiarity with that 

track and T2 was initially novel.   

 

Multiple-U maze: Pretraining and data collection 

Two male Long-Evans rats were handled and food deprived to 85-90% of 

baseline weight and trained to run on an exposed tabletop for liquid chocolate reward.  

Pretraining took place in the same room used for recording.  After the animals were 

accustomed to behaving for liquid reward on the exposed tabletop, they were trained on 

the multiple-U (Fig. 3). Based on our experience, the multiple-U task is quite difficult for 

animals to learn quickly.  We therefore introduced the animals to a very short multiple-U 

(50 cm long, not shown) and then expanded the environment in two stages.  We trained 

the animals according to a 12-day protocol, and on each day the animal ran for either 

two or three 20-minute sessions on the track, and rested in a black box before and after 

each run session.  Days 1-4 of training consisted of two 20-minute runs on the shortest 

version of the multiple-U (50 cm long).  Days 5-8 consisted of one session on the 

shortest configuration of the multiple-U, a second session on the medium-length 

configuration (100 cm long), and a final session on the shortest configuration.  On days 

9-12 the animals ran the first session on the medium-length configuration, the second 

session on the longest configuration (150 cm long), and the final session on the medium 

length (Fig. 3).   

Following pretraining animals were implanted with a microdrive array containing 

16 independently movable tetrodes targeting CA1 (AV -3.6, L 2.2) using previously 

described methods (Karlsson and Frank, 2008). Over the next 7-10 days the tetrodes 

were lowered to CA1.  7 days after the electrodes were implanted, the animals were run 

on the open table for liquid chocolate reward until they would eat continuously for 2 5-

minute sessions.  We began the experiment after the animals reached this behavioral 
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criterion and the electrodes reached the cell layer.  Tetrode positions were adjusted after 

daily recording sessions for all tetrodes that had poor unit recordings.  On rare occasions 

some tetrodes were moved before recording sessions, but never within 4 h of recording.   

 

Multiple-U track: Behavior 

On each recording day the animals ran for 3 20-minute sessions in the medium – 

long – medium configuration (Fig. 3).  The first session was the medium-length 

configuration, the second was the longest configuration, and the third was the medium 

length.  All data included for analysis were from the long configuration.  The animals 

were allowed to rest in a black box for 20 minutes before and after each session and we 

recorded continuously through the rest and behavioral sessions.   

 

Data Collection and Processing 

All data were collected using the NSpike data acquisition system (L. Frank, J. 

MacArthur). The animal‟s position was tracked with an infrared diode array attached to 

the animal‟s preamplifier and was reconstructed using a semi-automated analysis of 

digital video of the experiment with custom-written software.  Spike data were sampled 

at 30 KHz, digitally filtered between 600 and 6 KHz (2 pole Bessel for high and low pass) 

and threshold crossing events were saved to disk.  Continuous LFP data from all 

tetrodes was sampled at 1.5 KHz, digitally filtered between 0.5 and 400 Hz and saved to 

disk. 

 SWRs were identified as described previously (Karlsson and Frank, 2009b). 

Briefly, LFPs were recorded from one channel of each tetrode. The LFP signal was band 

pass filtered between 150-250 Hz and an envelope was determined by Hilbert transform. 

SWR events were detected if the envelope exceeded a threshold of mean + 3 stdev for 

at least 15 ms. Events included times around the triggering event during which the 



98 

envelope exceeded the mean. SWR amplitude was measured in standard deviations 

from baseline. 

After neural data was collected, individual units were identified by clustering 

spikes using peak amplitude and spike width as variables.  All spike sorting was done 

using custom software (MatClust, M. Karlsson).   It was generally possible to use a 

single set of cluster bounds defined in amplitude and width space to isolate units across 

an entire recording session.  In the minority of cases where there was a slight shift in 

amplitudes across time, units (putative single neurons) were clustered only when that 

shift was coherent across multiple clusters and where plots of amplitude vs. time showed 

a smooth shift.  Only well isolated cells with tightly clustered spikes and clear refractory 

periods were included.  We did not attempt to match cells across days, so in some cases 

the same cell may have been recorded across multiple days.  All analyses were 

restricted to putative principal neurons identified using standard criteria (Fox and Ranck, 

1981;Frank et al., 2001).  The total number of cells recorded was as follows: for 6 arm 

maze during the switching phase of the task n = 100, 42, and 128 for animals 1, 2 and 3 

respectively, during initial learning of sequence 1, n = 92 and 160 for animals 2 and 3 

respectively; for 3 arm maze n = 407, 607, and 33 cells for animals 5, 6, and 7 

respectively, for multiple-U track n = 22, 13 cells for animals MU1 and MU2. 

To visualize neural activity across the environments, two-dimensional 

occupancy-normalized spatial rate maps were constructed with 1-cm square bins of 

spike count and occupancy, both smoothed with a two-dimensional Gaussian (1.5 cm 

s.d.).  These maps include times when the animal traveled in both directions in each arm 

and were used for visualization only. 

 For analysis of place field activity, we calculated the „linearized‟ activity of each 

cell.  Only times when animals were running forward at least 3 cm/sec were included.  

The behavioral data were separated into different spatial trajectories (e.g. A to B, B to A, 
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B to C, …) and the animal‟s linear position was measured as the distance in cm along 

the track from the reward site on the start arm. All the trials when the animal was on that 

trajectory were included to calculate occupancy normalized firing rate maps.  We used 2 

cm spatial bins and smoothed with a 4 cm standard deviation Gaussian curve with a 

total extent of 20 cm. Bins with an occupancy less than 0.1 seconds were excluded. 

Cells with a peak spatial rate greater than 3 Hz were considered to have a place field on 

the track and included in further analyses (cells with place fields: n = 107 cells in the 6 

arm maze during the switching phase of the task, n = 108 cells in the 6 arm maze during 

initial learning of sequence 1, n = 130 cells in T1 in the 3 arm maze, n = 131 cells in T2 

in the 3 arm maze, n = 24 cells in the multiple-U maze). 

 We performed a number of analyses to compare single cells‟ firing in different 

trajectories.  For the 3 and 6 arm mazes only correct trials were included.  Results were 

similar if all trials were included.  For all mazes only trajectories in the same turn 

direction were compared (e.g. right turn trajectories or left turn trajectories) as these are 

the most similar.  This also eliminates the problem of comparing trajectories where the 

animal crosses the same place in the same direction for one of the arms in the 

trajectories, as is the case for trajectories that either both start or both terminate in the 

center arm of the sequence. 

 To determine if place fields occurred in similar locations in multiple trajectories, 

we computed the spatial autocorrelation of each cell‟s linearized firing.  Linearized firing 

of each trajectory was normalized by its area so that firing on each trajectory had a total 

area of one.  This allowed us to detect similarities in firing location regardless of firing 

rate.  Trajectories in the same turn direction were concatenated, and the autocorrelation 

was calculated.  Each correlation was scaled such that the autocorrelation at zero was 

one.  For comparison, we computed the cross correlation between the concatenated 

normalized linearized firing rate of different cells recorded in the same session.  If 
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trajectories had excluded bins in the linearized firing due to low occupancy, they were 

excluded from the analysis.  We computed the mean and 90% confidence bounds for 

the cross correlations at each spatial lag.  To determine if cells had peaks in the 

autocorrelation away from zero, we determined which spatial lags had autocorrelation 

values above the confidence bounds of the cross correlations.  By definition, a place cell 

will have a peak in the autocorrelation at lags near 0, so we identified significant lags 

greater than 60 cm or less than -60 cm to detect peaks not due to autocorrelation near 0 

lag for each cell. For each cell two autocorrelations were computed, one for right turn 

trajectories and one for left turn trajectories. Significant lags were identified on both 

autocorrelations to ensure that periodic cells that had directional firing were properly 

identified as periodic.  Cells with peaks that occurred at lags within ± 20 cm of the length 

of a trajectory (140-180 cm in the 6 arm maze and 150-190 cm in the 3 arm maze) in 

either of the two autocorrelations (left turn or right turn trajectories) were considered 

“periodic” because these cells had firing peaks at distances similar to the length of 

trajectories in the environment.  Cells with significant peaks greater than 60 cm but 

outside of the periodic range were deemed “aperiodic”, while cells with no significant 

peak greater than 60 cm in both autocorrelations were categorized as “single peak” 

cells.  When computing the proportion of periodic cells per session, only sessions with at 

least 5 isolated cells with place fields on the track were included and all session per day 

per included. 

 To determine the number of significantly path equivalent trajectory pairs per cell 

in the six arm maze, we included firing on all task relevant trajectories (trajectories from 

arm B to C, C to B, C to D, D to C, D to E, and E to D).  We compared trajectories in the 

same turn direction, creating a total of 6 trajectory pairs.  For each pair, the 

autocorrelations were computed as described above.  Pairs with a significant peak in the 

periodic range were considered path equivalent.    
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 We also computed the normalized overlap and peak rate ratio between 

trajectories in the same turn direction.  For normalized overlap, each cell‟s linearized 

firing on each trajectory was normalized by its area and the overlap between trajectories 

in the same turn direction was computed.  Overlap was calculated according to a 

previously established method (Battaglia et al., 2004).  This revealed similarities in firing 

location in related trajectories regardless of firing rate.  Normalized overlap values close 

to one indicated very similar firing locations while values close to zero indicated very 

different firing locations.  To define cases when firing on two trajectories was in similar 

locations, we examined cases when the normalized overlap was greater than 0.3.  We 

selected this criterion because the distributions of normalized overlaps of linearized firing 

rate from the same cell and different cells cross at this point (see Fig. 5d), but our results 

were similar for other cutoff values.  To examine differences in firing rate, we computed 

the peak firing rate of the linearized firing of each trajectory.  The smaller firing rate was 

divided by the larger firing rate to create a peak firing rate ratio.  Ratios close to one had 

very similar peak firing rates while ratios close to zero had very different peak firing rates 

in the compared trajectories. 

 We also examined moment-by-moment variability in pairs of cells to determine 

whether there was evidence for sets of path equivalent cells firing together in organized 

ensembles.  To determine if neurons‟ trial by trial variability was correlated, we adapted 

an approach from Schoppik et al. (Schoppik et al., 2008)  where we examined the 

“noise” correlations defined as the correlations of firing rate residuals.  The residuals 

were calculated as the difference, in each 500 ms window, between the predicted 

number of spikes from the linearized place field and the actual number of spikes 

recorded (see below). This approach has a number of advantages over standard cross-

correlation techniques.  In particular, by examining the correlations of the residuals, we 

avoid misclassifying increases in overall firing rate due to place field shape as correlated 
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firing.  Instead, measuring the correlation of the residuals of firing asks whether the 

fluctuations of each neuron about its mean rate are related, as would be the case if the 

neurons are part of a functional ensemble that receives common inputs.  

 We divided each recording session into 500 ms bins and for each cell we 

calculated the expected number of spikes in each bin.  The expected number of spikes 

was calculated by computing the expected firing rate in 33 ms bins based on the 

animal‟s location and the linearized firing curves and integrating that rate across each 

500 ms bin.  The 500 ms bin size was chosen to be large enough to effectively average 

over variability due to short time scale bursting and the modulation of the ~8 Hz theta 

rhythm.   

 We then calculated the residuals: the difference between the expected number of 

spikes and the actual number of spikes recorded in each time bin.  Only bins where the 

expected firing rate exceeded 0.5 Hz were included.  This cutoff was chosen to avoid 

floor effects associated with locations where few spikes occurred.   We computed the 

correlation between residuals of cell pairs for each trajectory or for the entire session (all 

trajectories) when animals were running at greater than 3 cm/sec and no sharp wave 

ripples were detected on any tetrode in CA3.  Correlations were only computed if there 

were at least 10 seconds of data to correlate, e.g. ≥ 20 bins in which both cells expected 

firing rate was greater than 0.5 Hz.  Residual correlations were compared to the overlap 

between cells in each trajectory.  We also determined if there was a relationship 

between the residual correlation for the entire session and the number of trajectories in 

which 2 cells overlapped.  To compute the number of trajectories in which the cells 

overlapped, we counted that number of trajectories with overlap greater than 0.3.  In all 

other trajectories that were not deemed overlapping (e.g. did not have overlap > 0.3), 

overlap had to be low: less than 0.1.  Cells that had trajectories with overlaps in between 

these criteria (0.1-0.2) were excluded for this analysis to allow us to classify cell pairs as 
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having either high or low overlap on each trajectory.  Finally, to control for possible 

contamination due to clustering errors, we repeated all of these residual correlation 

analyses for cells recorded on different tetrodes.  We found similar results with these 

more restricted data.   

 The autocorrelation analysis provides a measure for assigned cells to path 

equivalent (periodic) or non-path equivalent (non-periodic) classes, but it does not 

provide an obvious way to measure changes in strength of path equivalent coding over 

time.  We therefore used the normalized overlap measure to examine path equivalence 

during the initial training on sequence 1 (S1) and the first days of exposure to sequence 

2 (S2) in the six arm maze.  For two animals we recorded neural activity when the 

animals initially learned S1 from their first exposure to the track until they reached 

criterion before the sequence switching phase of the task.  During this initial learning 

period animals did not know the correct sequence and performed poorly.  We therefore 

included all task relevant arms and both incorrect and correct trials.  We also examine 

the distributions of normalized overlap for the first days of exposure to T2 in the three 

arm maze.  In both cases we compared trajectories in the same turn direction.  

 We determined the extent to which the hippocampal representation of space 

preserved information about the uniqueness of each trajectory using population vector 

correlations (Leutgeb et al., 2005b;Derdikman et al., 2009).  Each trajectory was divided 

into 10 cm spatial bins and a population vector of the linearized firing rate for all cells 

was created.  For each animal, recording days were grouped into pairs of consecutive 

days.  Cells from each pair of days in that group were concatenated in the same vector 

to include more data to compute the correlation.  Population vectors from corresponding 

spatial bins in different trajectories were correlated.  Only trajectories in the same turn 

direction were compared (e.g. trajectory B-C was compared to C-D and C-B was 

compared to D-C for S1).  The resulting correlations from all bins in a pair of trajectories 
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were averaged.  We compared these correlations to cases when the cell identity in the 

population vector was shuffled or the same trajectory was compared across sessions.  

Only correct trials were included, though results were similar if all trials were included 

 

Statistics 

 The measures discussed above tend to produce non-gaussian distributions, so 

rank sum tests were used for pairwise statistical tests unless otherwise noted.  Similarly, 

the non-parametric Spearman‟s correlation was used for all correlation analyses unless 

otherwise noted.  Standard analyses of variance was used when the distribution of the 

data was not different than a Gaussian (Lillie test, p > 0.05); otherwise a Kruskal-Wallis 

one way non parametric anova was used.       
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Figures 
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Figure 1.  Task design and behavioral performance.  a. Overhead view of the 

behavioral apparatus with rewarded sequences indicated by colored arrows (Sequence 

1 or S1 in purple and Sequence 2 or S2 in orange). Brown circles indicate the location of 

food wells; reward was delivered in arms B-E.  Dashed lines indicate walls.  b. Histology. 

Arrow indicates lesion at the end of a tetrode and the tetrode tracks.  White box circles 

estimated recording area.  c.  All animals showed characteristic EEG signatures (top 3 

traces) with large amplitude theta modulation.  For comparison, we included a recording 

from CA1 from the 3 arm maze (bottom trace) which is much smaller in amplitude with 

less prominent theta modulation.  Each trace is a total of one second plotted on the 

same vertical scale.  d. Twenty trial moving average of correct responses for one animal 

when switching between performing S1 (purple) and S2 (orange).  Background color 

indicates which sequence was rewarded. Dark black lines separate recording days.  Top 

graph shows all sequence switching days, bottom graph shows the first day of switching.  

Chance performance on this task was assumed to be 0.2 because there are 5 arms the 

animal can choose from when leaving one arm. 
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Figure 2. Path equivalent coding in the six arm maze. a. Spatial firing rate maps of 

three cells scaled to the cells‟ peak firing rate (above) or scaled so that all firing greater 

than 3Hz is red (below).  The cells shown on the left and in the center have path 

equivalent firing patterns while the cell shown on the right does not.  Only times when 
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the animal is running more than 3 cm/s are included.  b. Occupancy normalized firing 

rates on each linearized trajectory for the same three cells shown in (a).  All trials when 

the animal traveled on each trajectory are included together to create the linearized firing 

rates.  c. Autocorrelation of the linearized firing for the same three single cells shown in 

a and b (red) and the mean cross correlation of the linearized firing between different 

cells and their confidence bounds (blue. mean, solid line. 90% confidence bounds, 

dashed line).  Occupancy normalized firing rates on trajectories in the same turn 

direction were concatenated.  Top shows right turns as the animal moves from the left to 

the right and bottom shows left turns as the animal moves from the right to the left.  d. 

Histogram of significant peaks at lags greater than 60 cm for each cell‟s linearized firing 

autocorrelation.  The region between the dotted lines corresponds to lags that are within 

20 cm of the length of a single trajectory and were therefore classified as periodic.  

Autocorrelations and significant peaks were computed separately for trajectories in each 

turn direction.  e. Proportion of cells that had periodic or aperiodic activity or had no 

significant peak at lags greater than 60 cm (single peak).  Periodic cells had significant 

lags at 150-170 cm in either autocorrelogram.  Single peak cells had no significant lags 

greater than 60 cm in either autocorrelogram.  Aperiodic cells had significant lags 

greater than 60 cm and outside of 150-170 cm.  f. Proportion of cells that had periodic 

activity in each session, including all sessions per day.  g.  Number of periodic trajectory 

pairs per cell for periodic cells.  h. Distribution of normalized overlaps between the 

linearized firing of the same cell (black) on two different trajectories or different cells 

(light grey) on two different trajectories.  The median for single cells was larger than for 

different cells (p < 10-10, all tests of significance are rank sum tests unless otherwise 

noted).   Only correct trials were included and only trajectories with the same turn 

direction were compared.  Results were similar if all trials were included.   
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Figure 3.  Path equivalence increases with experience.  a. Normalized overlaps per 

trajectory pair during initial training on Sequence 1 (S1) in the 6 arm maze across days 

2-5. The median normalized overlap increased for S1 in the six arm maze from day 2 to 

day 5 (Kruskal-Wallis one way analysis of variance Chi2(4,162) = 27.6921, p < 0.0001, 

day 2 was significantly less than day 4 and 5, p < 0.05 Tukey-Kramer post-hoc test).  

There was insufficient data to compute the normalized overlap on day 1.  b. Normalized 

overlaps during the first three days of training on Sequence 2 (S2) after initial training on 

S1 during the switching phase of the task in the 6 arm maze.  The median normalized 

overlap increased for S2 in the six arm maze from day 1 to day 3 (Kruskal-Wallis one 

way analysis of variance Chi2(2,210) = 7.3580, p < 0.05, day 2 was significantly smaller 

than day 3, p < 0.05 Tukey-Kramer post-hoc test) even though the animal had had many 
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days of experience on the track.   Three days are shown because one animal had only 

three days of exposure to S2.   
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Figure 4. Ensembles of cells with overlapping place fields are correlated. a. The 

linearized firing rate on a trajectory (top) was used to compute the expected number of 

spikes (blue. middle and bottom graphs) in each time bin.  The expected (black) and 

actual (light grey) number of spikes in each time bin for a single pass through the 

trajectory (middle graph) and through three passes (bottom graph).  The residuals are 

the difference between the expected and actual number of spikes. b. Examples of 

linearized firing curves on all task trajectories for different pairs of cells.  The cell pair on 

the left has a negative residual correlation of -0.21921 and has low overlap in most 

trajectories.  The cell pair on the right has positive residual correlation of 0.13771 and 
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has high overlap in most trajectories.  c. The cell pairs‟ residual correlation in one 

trajectory was related to the normalized overlap of linearized firing in a different 

trajectory (rho = 0.3229, p < 0.001, all Spearman‟s correlation unless otherwise noted).  

The line shows a robust fit (slope = 0.24382, p < 0.02).  d. Histogram of residual 

correlation for the entire session for all cell pairs. e. Histogram of residuals‟ correlation 

coefficient for the entire session for cell pairs with low overlap (less than 0.2) in at least 3 

trajectories.  f. Histogram of residuals‟ correlation coefficient for the entire session for 

cell pairs with high overlap (greater than 0.3) in at least 3 trajectories. The median of the 

correlation of correlation for high overlap pairs is significantly higher than the medians of 

the other groups (from all pairs, p < 0.05, from pairs with low overlap, p < 0.0005).  g. 

The number of trajectories with high overlap (overlap greater than 0.3) versus the 

correlation coefficient of the residuals for all cell pairs (ANOVA p < 0.05, F = 2.9704).  

Bars show mean and standard error.  When comparing different trajectories, only 

trajectories in the same turn direction were compared.  h. Correlation of residuals during 

the first two days of training on S2 (left bar), during three or more days of training on S2 

(middle bar) after initial training on S1 during the switching phase of the task in the 6 arm 

maze and during the last two days of training on S1 before the switching phase 

commenced (right bar).  Correlations increased from days 1-2 to days 3 or more 

(ANOVA F(2,115): 5.9582, p < 0.005, S2 days 1-2 was significantly smaller than S3 days 

3+ and S1 2 days preswitch, p < 0.05 Tukey-Kramer post-hoc test).  Only cell pairs with 

an overlap of at least 0.1 across all trajectories were included.   Bars show mean and 

standard error.   
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Figure 5.  Firing rate differences create distinct population code. a. Histogram of 

peak rate ratio of cell pairs‟ linearized firing different trajectories with similar firing 

locations in the same run epoch (black; defined as normalized overlap greater than 0.3) 

and the same trajectory in different run epochs within a day (medium grey).  The 

medians of the two distributions were significantly different (p < 10-5).  b. Histogram of 

population vector correlation of different trajectories in the same epoch (black), the same 

trajectory in different epochs (medium grey) and different trajectories in the same epoch 

with shuffled cell identity (light grey).  The median population vector correlation across 

different trajectories in the same epoch was larger than that for the shuffled cell identities 

(p < 0.0001) but smaller than that for the same trajectory across epochs (p < 0.02).  Only 

correct trials were included and when comparing different trajectories only trajectories in 

the same turn direction were compared.   
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Figure 6.  Path equivalent coding is less common in the three arm maze.  a.  

Spatial firing rate maps of three cells scaled to the cells‟ peak firing rate (above) or 

scaled so that all firing greater than 3Hz is red (below).  The cells shown on the left and 

center were recorded in CA3 and the cell shown on the right was recorded in CA1. The 

cell shown in the center fires in several arms in some similar locations, while the others 

have place fields limited to a single arm. Only times when the animal is running more 

than 3 cm/s are included.  b. Occupancy normalized firing rates on each linearized 

trajectory for the same three cells shown in a.  c. Autocorrelation of the linearized firing 

for the same three single cells shown in a and b (red) and the mean cross correlation of 

the linearized firing between different cells (blue. mean, solid line. 90% confidence 

bounds, dashed line).  Occupancy normalized firing rates on trajectories in the same turn 
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direction were concatenated.  Top shows right turns as the animal moves from the left to 

the right and bottom shows left turns as the animal moves from the right to the left.   
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Figure 7. Quantification of path equivalent activity in the three arm maze.  a.  

Histogram of significant peaks at lags greater than 60 cm for each cell‟s linearized firing 

autocorrelation (right) in CA3.  b.  Proportion of cells with periodic or aperiodic activity, or 

no significant peaks at lags greater than 60 cm in CA3 (single peak). c.  Distribution of 

normalized overlaps between the linearized firing of the same cell (black) on two 

different trajectories or different cells (light grey) on two different trajectories in CA3.  The 

median values were significantly different (p < 0.05) but were similar in magnitude 
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(medians = 0.1697 same cell, 0.1211 different cell).  d-f.  The same as a, b, and c. for 

CA1.  Once again, the median normalized overlap values were significantly different (p < 

0.005) but were similar is magnitude (medians = 0.1557 same cell, 0.1129 different cell).  

Only correct trials were included and only trajectories with same turn direction were 

compared.  Results were similar if all trials were included.  g.  Normalized overlap in the 

initially novel 3 arm maze (Track 2) and from Track 1.  There were no significant 

changes in the distributions across days (Kruskal-Wallis one way analysis of variance 

Chi2(4,108) = 7.8749, p > 0.09, the days were not significantly different p > 0.05 Tukey-

Kramer post-hoc test).   
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Figure 8.  Path equivalent activity in CA1 neurons active on the multiple U track.  

a. Spatial firing rate maps of two CA1 cells scaled to the cells‟ peak firing rate (above) or 
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scaled so that all firing greater than 3Hz is red (below).  The cell on the left shows 

repetitive firing patterns while the cell on the right does not.  Only times when the animal 

is running more than 3 cm/s are included.  b. Occupancy normalized firing rates on each 

linearized trajectory for the same cells shown in a).  c. Normalized overlap between the 

occupancy normalized firing rate of single cells (black) or different cells (light grey) on 

two different trajectories (p < 0.001).   Only trajectories with the same turn direction were 

compared.   
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Supplementary Figures 

 

 

 

Supplementary Figure 1.  Correlation of residuals not explained by overlap in the 

same trajectory time bins available for analysis.  a. The cell pairs‟ correlation of 

residuals was not significantly related to overlap of linearized firing in the same trajectory 

(rho = 0.0456, p > 0.7).  b. The number of time bins included to compute the residual 

correlation was not significantly related to the residual correlation for cases with less 

than 100 time bins (rho = 0.12102, p > 0.3s).   
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Supplementary Figure 2.  Three arm maze.  The overhead view of the two three arm 

W-tracks.   Brown circles denote the location of food wells.  Grey arrows indicate 

trajectories in the rewarded sequence.  The animals were rewarded for performing the 

same continuous alternation task as in the 6 arm maze, which involved the following 

sequences of arms: center, left, center, right, center, and so on.   
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Supplementary Figure 3.  Similar initial levels of overlap across trajectory pairs in the 

six and three arm mazes.  Overlap per trajectory pair for days 1 to 3 in six arm maze 

sequence 1 (S1, dark grey, from Fig 8a), sequence 2 (S2, light grey, from Fig. 8b) in the 

6 arm maze and T2 in the 3 arm maze (black, from Fig. 12a) for direct comparison.  The 

similarities in the overlaps suggests that CA3 cells start out with more dissimilar firing 

across trajectories, but that as the animal learns the task in the six arm maze, the coding 

for these trajectories becomes more similar.   Bars show mean and standard error.   
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Supplementary Figure 4.  Multiple U-track.  The overhead view shows the medium and 

long configurations of the multiple-U track.  Animals ran first on the medium 

configuration, then on the long configuration and then on the medium configuration with 

20-30 minute rest sessions in between.  The arms of each U were separated by a 

unique divider and each U was scented uniquely to ensure that the animals could 

distinguish between them.  Brown circles denote the location of food wells.  Grey arrows 

indicate trajectories in the rewarded sequence.    
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A Recording Day 

 1 2 3 4 5 6 7 8 9 10 11+ 

1 
S
1 

   
S
1 

S
2 

                

2                             

3                                

 

Supplementary Table 1.  Recording schedule for each animal (A) organized by 

recording day.  Each square is one recording session when the animal was rewarded for 

performing either Sequence 1 (S1, grey) or Sequence 2 (S2, white).  Recording sessions 

were flanked by rest sessions (not shown).  Light grey squares indicate initial training on 

S1.  Dark grey squares indicate S1 and white squares indicate S2 during the sequence 

switching phase of the task when the animal was exposed to S2 and sessions alternated 

between rewarding S1 and S2.  Black indicates no recording.  Note: Animal 1 was 

pretrained on S1 before recording began and recording for animal 1 continued 

alternating between S1 and S2 up to recording day 18.  Animal 2 and 3 had never been 

exposed to S1 or the behavioral track before recording began.  All animals were 

pretrained on a linear track in a different room from the recording room. 
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Conclusion 

 

As a crossroads between sensory inputs and long term memories, the 

hippocampus must turn a plethora of information into concise stories.  The hippocampus 

can use several different strategies to achieve this transformation.  By selecting only 

more “important” episodes to transfer to long term memory storage, we can remember 

important experiences while forgetting the mundane.  By encoding general or common 

principles among several experiences, we can remember appropriate general responses 

or outcomes and predict responses and outcomes of future similar experiences.  We 

considered ways the hippocampus might achieve both of these possibilities. 

 First, we examined hippocampal activity in response to reward.  We must 

remember the experiences that lead to reward to exploit these rewards in the future.  

Because SWR reactivation is thought to be important for memory consolidation, we 

asked if reactivation is enhanced by reward.  We found that SWR activity increases 

when animals receive reward.  And this reward related SWR activity is further enhanced 

when animals have to learn new path-reward associations.  Spiking during SWRs when 

animals are rewarded reactivates neural patterns that occur as animals run to or from 

the reward.  Because SWRs are implicated in memory consolidation, we think this 

enhanced SWR reactivation could be a mechanism to preferentially remember 

experiences associated with reward. 

 Next, we examined hippocampal activity when animals navigate through an 

environment with many repeated elements.  In environments with repeated elements, 

generalizing across elements can be advantageous to encode generally appropriate 
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responses.  But each element must also be differentiated from the others, in particular in 

our task animals had to distinguish between similar trajectories to receive reward.  We 

found that some hippocampal cells fire very similarly on multiple repeated elements, 

while other cells encode the elements differently.  Cells that generalize across similar 

elements have correlated moment to moment activity, suggesting that they are part of 

functional ensemble.  Furthermore, this generalizing / path equivalent activity increases 

as animals learn new relationships between repeated elements.  We think this 

generalization across repeating elements could be a mechanism to extract general 

principles about related experiences, perhaps for more efficient memory encoding and 

later predictions.   

 

Caveats 

 In interpreting these results, there are a number of caveats we should keep in 

mind.  First, the evidence that SWRs are important for memory consolidation is strong 

but mostly circumstantial.  SWRs have long been theorized to contribute to memory 

consolidation.  During SWRs the same patterns of activity seen during behavior are 

reactivated on the short times scales required for plasticity (Buzsaki, 1986;Wilson and 

McNaughton, 1994;Sutherland and McNaughton, 2000).  Furthermore, this activity is 

coherent across multiple brain regions (Sutherland and McNaughton, 2000;Pennartz et 

al., 2004;Ji and Wilson, 2007;Euston et al., 2007;Peyrache et al., 2009b), potentially 

allowing information to be transferred and coordinated between regions for memory 

consolidation.  Recently, new evidence has suggested a causal link between SWRs and 

learning and memory.  Girardeau et al. showed that disrupting SWRs during sleep after 

animals learn a memory task hinders subsequent task performance (Girardeau et al., 
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2009).  While this study presents a significant breakthrough, it is still unclear how 

specific the effects of SWR interruption were: was performance impaired on other tasks 

that did not involve memory or had been learned before SWR interruption?  Did SWR 

interruption damage the hippocampus?  Furthermore, no one has shown that SWR 

activity during waking contributes to learning or memory.  Instead, our results agree with 

and provide further corroborating evidence for the theory that SWR activity during 

pauses in behavior is important for memory consolidation. 

 Second, correlations in moment to moment activity are thought to reveal common 

inputs or connections between neurons, however the evidence is indirect.  Spiking 

activity is noisy and correlations in moment to moment activity are often called “noise 

correlations” as they are thought to represent covariance in activity not due to “signal” or 

the cells‟ receptive fields.  Noise in spiking is thought to be transferred from one neuron 

to another, but the network is able to detect signal by averaging across many neurons 

with similar signal but different noise (Maynard et al., 1999;Carmena et al., 2005).  

Therefore by detecting covariation in activity not due cells‟ receptive fields, we could 

detect connections between neurons or common inputs as this noise travels from one 

neuron to the next but does not propagate across the entire population (Lee et al., 

1998;Shadlen and Newsome, 1998).  While this theory is likely to be correct, there has 

been no direct demonstration of it so far.  Previous studies have shown that neurons in 

the same cortical column have correlated moment to moment activity (Lee et al., 1998).  

While neurons in the same cortical column tend to have similar inputs, previous studies 

have not shown the neurons with common input have correlated moment to moment 

activity while neurons without common inputs do not.  Even with this caveat in mind, our 

results are still interesting.  We have shown that cells that have similar receptive fields 

across multiple similar elements have more correlated moment to moment activity.  
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Whether these correlations are due to common inputs, common connections, or 

common sensitivity to some sensory stimulus, these results still suggest that these 

neurons have some common properties different from other neurons in the same region. 

 Third, an underlying assumption of many studies, including ours, is that 

averaging across many trials is equivalent to recording from many more neurons in only 

a single trial.  Averaging both across many trials and across many neurons reduces 

noise.  Since we cannot record from a significant portion of the cells in a region (even 

with large scale recordings), we compensate by averaging across trials.  This issue is 

relevant to both our findings that (1) there is a relationship between SWR coactivity and 

place field overlap and (2) that even with path equivalent coding the population can 

distinguish between different elements of the environment.  A superior analysis in both 

cases would be to examine these relationships trial by trial.  For the SWR activity, we 

would ask if relationships between cells during SWRs reflect relationships between cells 

on the previous pass only, not the place fields‟ overlap which includes activity from the 

entire session.  For the population activity, we would ask if the neural activity on each 

pass distinguishes between similar trajectories.  We could perhaps answer these 

questions using a decoding analysis (Davidson et al., 2009;Karlsson and Frank, 2009a), 

however we do not have enough simultaneously recorded cells.  Indeed, these particular 

analyses have not been successfully performed before.  So instead, we have used place 

field activity averaged over the entire session and we must be careful in interpreting how 

these findings apply to a single SWR or a single pass. 
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Further Questions 

 Understanding how the hippocampus filters vast amounts of sensory information 

into succinct memories will require more study.  And our findings have opened up a 

number of questions for further investigation. 

 We have shown that SWR reactivation is enhanced when animal are rewarded 

and further enhanced when animal must learn new path-reward contingencies.  Previous 

work has shown that SWRs are also enhanced by novelty, when learning and memory 

consolidation may also be advantageous (Cheng and Frank, 2008).  We then speculate 

that increased SWR reactivation could be a mechanism to preferentially remember some 

memories over others.  This leads to the interesting possibility that SWR activity is 

enhanced by punishment or negative outcomes, as we can also learn what to avoid from 

negative experiences. 

 Further, we would like to understand the mechanisms that modulate increases 

and decreases in SWR reactivation.  How SWRs occur is not known, but they are 

generally thought to occur when the inhibitory tone in the network decreases, permitting 

a burst of excitatory cell activity (Buzsaki, 1986).  The burst of activity then shuts down 

because the excitatory cells activate inhibitory interneurons, which tamp down the 

network.  Because SWR activity is enhanced by novelty and reward, we hypothesize 

that neuromodulators that have been implicated in reward and novelty signaling, like 

dopamine or norephinephrine, may modulate SWR activity (Harley, 2004;Schultz, 

2007;Sara, 2009).  Indeed the VTA and the locus coeruleus project to CA3, where 

SWRs are thought to originate (Andersen et al., 2006).  Dopamine or norepinephrine, 

when released into the hippocampus, may change the network state to be more 

permissive to SWRs and bursts of population activity, perhaps by changing inhibitory aor 
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excitatory tone.  These hypothesized mechanisms by which SWR activity is produce and 

modulated have yet to be proven.   

 We also wonder how SWR activity in the hippocampus influences and interacts 

with other brain regions.  Activity during SWRs has been shown to be coherent across 

brain regions, including areas that are involved in decision making and reward 

processing (Pennartz et al., 2004;Lansink et al., 2008;Lansink et al., 2009;Peyrache et 

al., 2009b).  As we discussed in Chapter 2, enhanced SWR reactivation during reward 

could enhance representations of rewarded paths over unrewarded or enhance 

associations between paths and outcome for later decision making.  Exactly which of 

these possibilities is unclear as we do not understand how SWR reactivation is used in 

other brain regions. 

 We have shown that, when faced with experiences with repeating elements, 

some ensembles of hippocampal neurons encode these elements similarly while other 

cells differentiate between elements.  Neurons with path equivalent activity on multiple 

elements had more correlated moment to moment activity, suggesting that they were 

part of functional ensembles. These results raise the interesting question: from where 

does this correlated moment to moment activity arise?  These cells may have similar 

inputs from the entorhinal cortex or they may be directly connected to each other via 

CA3‟s recurrent collaterals.  Alternately, they could be similarly receiving or sensitive to 

neuromodulators. 

We also found that as animals learn relationships between elements, this 

generalizing, path equivalent activity and correlations in moment to moment activity 

increase.  These findings have made us wonder, how do these ensembles form and 

create groups of cells that repeat together in multiple similar elements.  We suggest two 
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possibilities.  If correlated moment to moment activity between two cells indicates that 

they are connected or receive similar inputs then these common inputs may drive the 

cells to develop similar receptive fields across repeated elements.  Or perhaps cells that 

have similar receptive fields in multiple elements fire together repeatedly, more than 

other cells that overlap in just one element, and therefore these cells are more likely to 

wire together (or wire more strongly to similar inputs) and develop correlated moment to 

moment activity.   

Furthermore, if activity that generalized across elements is important for 

encoding response that are appropriate across situations as we suggest, we would 

expect this activity to be utilized in brain regions involved in behavioral responses and 

decision making.  Indeed, the path equivalent activity that we observed is more similar to 

activity in regions like the striatum and prefrontal cortex (Jung et al., 1998;Mizumori et 

al., 2004).  The striatum is involved in habit formation and encodes, among other things, 

behavioral responses like turning left or right (Mizumori et al., 2004;Graybiel, 2005).  The 

prefrontal cortex is essential for behavioral flexibility and complex decision making and it 

encodes stimuli, responses, outcomes, and associations between these (Miller, 1999).  

Both of these regions receive projections from the hippocampus and have correlations in 

theta oscillations or theta phase locking with the hippocampus during task performance 

(Siapas et al., 2005;Jones and Wilson, 2005a;Jones and Wilson, 2005b;Andersen et al., 

2006;DeCoteau et al., 2007).  Accordingly, we would find it informative to know if path 

equivalent activity in the hippocampus is correlated with similar activity in these other 

regions. 

Finally, we ask: what role might these processes, modulation of SWR 

reactivation and generalization across repetitive experiences, play in disease?  If we 

remember every detail of every experience, we would soon be incapacitated by sensory 
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overload.  Selectively remembering “important” episodes and generalizing across similar 

episodes, are essential to distilling a potential overload of information into a manageable 

amount of data to be stored for the long term.   The failure of these processes could 

contribute to a variety of neurological and psychiatric diseases.  While many studies 

have implicated the hippocampus is different psychiatric or neurological diseases, little is 

known about how hippocampal neural activity goes awry in these diseases (Burt et al., 

1995;Sheline et al., 2002;Leppanen, 2006).   

Recent work has shown that in a mouse model of Alzheimer‟s diseases, 

mutant/diseased animals have subthreshold seizures (Palop et al., 2007).  This 

breakthrough, if true in humans, suggests a potential explanation for fluctuations in 

cognitive function of those with Alzheimer‟s: they may be having undetected seizures 

during periods when they are most cognitively impaired.  This finding also suggests a 

new therapeutic approach: anti-epilectic drugs. 

Unfortunately, such discoveries have been lacking in many other psychiatric and 

cognitive diseases because there are few good animal models of these diseases.  

Therefore, we are left to speculate how these hippocampal neural processes go awry in 

disease.  For instance, post traumatic stress disorder (PTSD) could involve an 

overgeneralization across experiences such that a situation similar to a negative 

experience evokes a fear response even when that response is inappropriate.  The 

hippocampus has also been implicated in depression, though its exact role is unknown 

(Burt et al., 1995;Sheline et al., 2002;Leppanen, 2006).  Depression could also involve 

overgeneralization of negative experiences to neutral experiences.  Or depression could 

be exacerbated by preferential storage of negative experiences in the hippocampus.  

Indeed, studies in humans have shown that depressed people tend to attend to and 

remember negative experiences more than controls (Leppanen, 2006).  While the role of 
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the hippocampus in neurological and psychiatric disease is beyond the scope of this 

thesis, understanding different processes that contribute to hippocampal memory 

formation and consolidation may guide more pointed questions about what goes awry in 

these diseases.  

 

In sum, understanding how we preferentially encode the significant experiences 

of our lives and relate these experiences to each other is essential for understanding 

how we form the stories that make up ourselves and our lives.  To grapple with many 

unsolved neurological and psychiatric diseases, we will have to understand these 

different processes that make, relate, and store these stories.   
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