
UC Berkeley
UC Berkeley Previously Published Works

Title
Fluid animation with dynamic meshes

Permalink
https://escholarship.org/uc/item/5r4821rb

Authors
Klingner, Bryan M
Feldman, Bryan E
Chentanez, Nuttapong
et al.

Publication Date
2006

DOI
10.1145/1179352.1141961

Supplemental Material
https://escholarship.org/uc/item/5r4821rb#supplemental

Peer reviewed

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/5r4821rb
https://escholarship.org/uc/item/5r4821rb#author
https://escholarship.org/uc/item/5r4821rb#supplemental
https://escholarship.org
http://www.cdlib.org/

Computer Graphics Proceedings, Annual Conference Series, 2006

Fluid Animation with Dynamic Meshes

Bryan M. Klingner Bryan E. Feldman Nuttapong Chentanez James F. O’Brien

University of California, Berkeley

Figure 1: Top: A paddle mixes smoke in a tank. Bottom: A cross-section of the simulation meshes used for each frame.

Abstract

This paper presents a method for animating fluid using un-
structured tetrahedral meshes that change at each time step.
We show that meshes that conform well to changing bound-
aries and that focus computation in the visually important
parts of the domain can be generated quickly and reliably
using existing techniques. We also describe a new approach
to two-way coupling of fluid and rigid bodies that, while gen-
eral, benefits from remeshing. Overall, the method provides
a flexible environment for creating complex scenes involving
fluid animation.

Keywords: Natural phenomena, physically based anima-
tion, computational fluid dynamics.

CR Categories: I.3.5 [Computer Graphics]: Computa-
tional Geometry and Object Modeling—Physically based
modeling; I.3.7 [Computer Graphics]: Three-Dimensional
Graphics and Realism—Animation; I.6.8 [Simulation and
Modeling]: Types of Simulation—Animation.

1 Introduction

Although systems for physically based fluid animation have
developed rapidly in recent years and can now reliably gen-
erate production-quality results, they still have some limi-
tations. Simulation domains can change substantially from
step to step because of deforming boundaries, moving obsta-
cles, and evolving fluid motion, yet current systems based on
fixed grids are not ideally suited to handle these situations.

E-mail: {klingner|feldman|nchentan|job}@eecs.berkeley.edu

From the ACM SIGGRAPH 2006 conference proceedings.
Permission to make digital or hard copies of all or part of this work for personal
or classroom use is granted without fee provided that copies are not made or
distributed for profit or commercial advantage and that copies bear this notice
and the full citation on the first page. To copy otherwise, to republish, to post
on servers or to redistribute to lists, requires prior specific permission and/or
a fee.
ACM SIGGRAPH 2006, Boston, MA
c© Copyright ACM 2006

We propose a method to simulate fluids with such rapidly
changing domains by generating a new tetrahedral simula-
tion mesh at each time step. When generating the mesh,
we use the position and shape of boundaries as well as cri-
teria based on the visually important parts of the fluid and
velocity field to construct a sizing field that dictates the de-
sired edge length for tetrahedra throughout the domain. We
then use an efficient and reliable meshing algorithm adapted
from [Alliez et al., 2005] to produce a mesh that is refined
according to this field. We use unstructured tetrahedral
meshes because they conform to curved and irregular bound-
aries better than axis-aligned grids with the same number
of grid elements and allow for precise control of refinement
throughout the domain.

We transfer the physical properties of the simulation from
the old mesh to the new mesh using a generalization of
the semi-Lagrangian velocity advection technique that in-
troduces no additional smoothing. We then perform a mass
conservation step that has been extended to allow a new,
single-step solution of two-way coupling between fluid and
rigid bodies.

Overall, this approach provides a flexible framework for
fluid simulation that opens the door to many features. We
have implemented the system and tested it in a variety of
scenarios such as the one shown in Figure 1. We have found
that the combination of unstructured tetrahedral domains
and dynamic remeshing creates a versatile environment for
the creation of complex and visually interesting fluid anima-
tions.

2 Background
The animation of fluids through physical simulation has be-
come an important tool in the visual effects industry. One
approach that has been popular in recent years makes use of
a spatial discretization based on regular, fixed, hexahedral
grids. Some examples of this approach can be found in [Fos-
ter and Metaxas, 1996], [Foster and Metaxas, 1997], [Stam,
1999], [Yngve et al., 2000], [Fedkiw et al., 2001], [Foster and
Fedkiw, 2001], [Enright et al., 2002], [Carlson et al., 2002],
[Feldman et al., 2003], and [Goktekin et al., 2004]. The most

820

Computer Graphics Proceedings, Annual Conference Series, 2006

commonly used storage scheme for these approaches is the
“staggered grid” scheme. This method offsets storage of dif-
ferent quantities on the grid, and was first described by [Har-
low and Welch, 1965]. Efforts have been made to enhance
these methods to allow for better conformance to irregular
boundaries such as the free surface of liquids, complex obsta-
cles, or irregularly shaped domains. [Losasso et al., 2004] de-
scribed an octree-based method that retains many of the ad-
vantages of regular grids while allowing computational effort
to be focused in particular parts of the simulation domain;
this enables detailed tracking of moving boundaries such as
liquid surfaces. Both [Carlson et al., 2004] and [Guendel-
man et al., 2005] have demonstrated methods for two-way
coupling of obstacles to fluid.

Unstructured tetrahedra have also been used for fluid sim-
ulation within the graphics community. Two examples of
this are [Feldman et al., 2005a] and [Elcott et al., 2005].
The first method uses a velocity-based approach while the
second uses a vorticity-based formulation. It is a blend of
ideas from these two papers, along with a generalization of
the semi-Lagrangian velocity advection technique for mov-
ing meshes described in [Feldman et al., 2005b] that forms
the heart of our method.

The idea of moving meshes independent of a fixed or
particle-centric coordinate system is not a new one; arbi-
trary Lagrangian-Eulerian (ALE) methods were designed for
just this purpose. They have proven useful in the simula-
tion of highly deformable elastic materials. ALE was first
described in [Hirt et al., 1974], where it was used with fi-
nite differences to solve compressible fluid problems. [Donea
et al., 1977] went on to apply ALE in a finite element setting.
An excellent survey of the development of ALE methods ap-
pears in [Donea et al., 2004]. Examples within the graphics
literature that feature moving meshes without remeshing in-
clude [Shah et al., 2004] and [Rasmussen et al., 2004], both
of which translate the grid to follow the visually important
portion of the fluid.

Another approach to handling changing domains is to dis-
pense with the mesh altogether, instead using Lagrangian
particles for simulation of fluids. A few examples of this ap-
proach are [Terzopoulos et al., 1989], [Desbrun and Cani,
1996], [Cani and Desbrun, 1997], [Stora et al., 1999], [Müller
et al., 2003], [Premože et al., 2003], and [Müller et al.,
2004]. These meshless methods are particularly well suited
to changing domains because points can move freely without
concerns about mesh quality.

Because we regenerate a new simulation mesh at each time
step, the viability of our method hinges on fast, high-quality,
reliable tetrahedral mesh generation. While a history of un-
structured mesh generation is outside the scope of this pa-
per, [Owen, 1998] and [Teng and Wong, 2000] provide good
surveys of the field. For our mesh generator we selected the
approach described in [Alliez et al., 2005]. This innovative
method produces meshes which conform to domains of ar-
bitrary topology quickly and reliably. Also, it allows for the
local edge length of the tetrahedra to be specified arbitrarily
throughout space, which allows us to easily perform adaptive
mesh refinement from step to step. The meshes produced by
this technique are Delaunay, which provides improved gradi-
ent estimation and allows us to significantly simplify some of
the expressions that arise when interpolating velocity values
stored on the mesh.

3 Methods

The key contribution of our method is to demonstrate the
freedom granted by remeshing at each simulation time step.
The core of our system is based on the simple, efficient meth-
ods for discretizing the inviscid Euler equations on tetrahe-

dral meshes described in [Elcott et al., 2005] and [Feldman
et al., 2005a]. We have made a few modifications in order
to combine the best aspects of both approaches that are de-
scribed below.

Once we have a good discretization, we need a way to
propagate information from one mesh to the next. [Feldman
et al., 2005b] details a generalization of the standard semi-
Lagrangian velocity advection technique that allows simu-
lation state to be transferred between deforming domains
without incurring additional smoothing. We demonstrate
that their approach can easily be applied to transfer informa-
tion between two arbitrary, topologically unrelated meshes,
which is required to achieve more general evolution of the
simulation domain from step to step.

Finally, we need to quickly and reliably generate a new
tetrahedral mesh for each time step that suits the current
simulation conditions, such as conformance to boundaries
and obstacles as well as any desired refinement. Although
methods have long existed to mesh arbitrary domains, most
are relatively slow in comparison to simulation running times
or don’t reliably terminate under realistic conditions. The
availability of efficient, versatile meshing algorithms such as
[Alliez et al., 2005] has made the generation of a new mesh
at each time step practical.

Any changes that were required to make these pieces work
together harmoniously are discussed below. Also, we de-
scribe a new, single-step method to achieve two-way coupling
between obstacle and fluid motion.

3.1 Discretization
We use a staggered fluid state storage scheme that stores
pressures at tetrahedron circumcenters and “face-normal ve-
locities,” the component of velocity in the direction of the
face normal, at the face circumcenters. Similar schemes have
been used in [Botta and Hempel, 1996], [Elcott et al., 2005]
and [Feldman et al., 2005a]. These methods are a gener-
alization of the staggered grid scheme originally proposed
by [Harlow and Welch, 1965]. This staggered method is used
to discretize the inviscid Euler equations:

∂u

∂t
= − (u · ∇)u− ∇p

ρ
+

f

ρ
(1)

subject to the mass conservation constraint for incompress-
ible fluids: ∇ · u = 0 . (2)

In these equations, u is the fluid velocity, t time, p pressure,
ρ density, and f any external forces. The symbol ∇ denotes
the vector of differential operators ∇ = [∂/∂x, ∂/∂y, ∂/∂z]T.
We account for the changes in the mesh over a time step
directly during semi-Lagrangian advection (see Section 3.2).

3.1.1 Discrete Derivative Operators

Divergence and gradient operators are needed as part of the
mass conservation step. We make discrete estimates of these
derivatives following the formulation presented in [Losasso
et al., 2004] and [Elcott et al., 2005]. The divergence of
a tetrahedron is computed as an area weighted sum of the
tetrahedron’s face normal velocities. The gradient at a face
circumcenter in the direction of the face’s normal is com-
puted using finite differences. The difference in circum-
center pressures adjacent to a face is divided by the dis-
tance between these circumcenters. In Delaunay meshes,
the line connecting adjacent tetrahedra circumcenters passes
through the circumcenter of the face between them and is in
the direction of that face’s normal. This property of Delau-
nay meshes motivates our storage scheme at circumcenters
because the gradient estimate is equivalent to the gradient
of a piecewise linear function that interpolates the circum-
center values.

821

ACM SIGGRAPH 2006, Boston, MA, July 30–August 3, 2006

3.1.2 Velocity Interpolation

The staggered scheme stores only the component of velocity
in the face normal direction. For both the semi-Lagrangian
step and to advect smoke particles for rendering, a full veloc-
ity vector must be found at arbitrary positions in the mesh.
We interpolate velocity vectors from face normal velocities
using the two-step method developed in [Elcott et al., 2005].
First, a velocity vector, ut, is computed at each tetrahedron
circumcenter, then we interpolate within Voronoi cells using
ut values at the cell vertices.

Velocity ut for tetrahedron t is found by solving the small
linear system

Ntut = zt

where Nt is a matrix containing 4 rows of the face normals
of t and zt is a vector of the 4 face normal velocities as-
sociated with t. For a divergence-free field, this solution
has the remarkable property that interpolating back to the
face circumcenters exactly recovers the original face-normal
velocities. Thus interpolating the ut velocities also exactly
interpolates the face-normal velocity components, and does
not incur the error one would otherwise expect from a two-
step interpolation method.

To find a velocity at an arbitrary point we interpolate
within the Voronoi cell using the tetrahedra velocities as-
sociated with the cell. This interpolation is based on the
method of [Warren et al., 2004], which presents a way to
interpolate within a general convex polytope. They inter-
polate the value at the point x as a weighted sum of the
polytope’s node values where node t’s unnormalized weight
is computed as

wt(x) =
|Nt|∏

f∈σt
nf · x + df

. (3)

Here, σt is the set of polytope faces that intersect at node t.
The denominator is the product of distances from x to the
faces in σt computed using the face normals,nf , and plane
offsets, df . |Nt| is the determinant of a matrix of face nor-
mals in σ. Weights from all nodes are normalized to sum to
1 before use in the weighted sum. To simplify this computa-
tion we take advantage of two properties: 1) in a Delaunay
mesh, edges are in the direction of the Voronoi cell’s face
normals and 2) the volume of tetrahedron t is 1/6|Et| where
Et is a matrix formed from the three vectors of edges ema-
nating from a common node of t. After some manipulation,
which is omitted for brevity, Equation (3) applied to node
weights within a Voronoi cell can be simplified to

wt(x) =
6Vol(t)∏3

i=1
(pi − pv) · (ct − x)

(4)

where wt(x) is the weight associated with the node at tetra-
hedra t’s circumcenter, Vol(t) is the volume of tetrahedron
t, pv is the position of the node associated with the Voronoi
cell, pi are positions of the other nodes of t, ct the circum-
center of t, and x the interpolation position. A similar ob-
servation appears in [Ju et al., 2005], and we find that with
it the velocity interpolation is quite efficient. All quantities
appearing in Equation (4) are already stored for use in other
parts of the timestep, saving the need to compute the terms
in Equation (3). When advecting large numbers of particles,
velocities at nodes of tetrahedra can be first be found using
Equation (4) and then quickly interpolated in a linear fasion
over the tetrahedra to advect the particles.

3.2 Generalized Semi-Lagrangian Step
The simple and stable semi-Lagrangian method has become
the standard tool for advection of the velocity field for graph-
ical applications [Stam, 1999]. The basic idea of the method

y

x

x′
i

x(t)
i

Current step

Previous step

y

x

Figure 2: A two-dimensional representation of the gener-
alized semi-Lagrangian advection step. We trace back from
the position where a velocity is stored in the new mesh,
xi = (x, y), interpolate the velocity using the old mesh and
velocity field, and update the velocity in the new mesh.

is that we can find a velocity that will advect to a point
by tracing back from that point and interpolating the old
velocity field. This method does not rely on velocities be-
ing stored at any particular place, as long as the velocity
can be interpolated throughout space. We can extend this
technique naturally to meshes which change arbitrarily at
each time step as in [Feldman et al., 2005b]. This extension
does not incur any additional smoothing compared to using
semi-Lagrangian advection with static meshes.

Suppose at time t velocities are stored at locations x(t)

(in our case, the face circumcenters), and we want to find

the velocity at a particular face location x
(t)
i . We trace back

from x
(t)
i through the velocity field of the previous time step

to a point x′i, which has no necessary correspondence to any
feature of the old mesh. Then, we update the velocity at

x
(t)
i to the value interpolated from the old velocity field at

x′i. Because the velocities from the previous step are stored
on a different mesh, we have to trace back and interpolate
using this previous mesh (see Figure 2).

3.3 Remeshing
The domain boundaries, obstacles, and smoke are free to
move and change from step to step of the simulation. By re-
generating the mesh at each time step we can ensure that our
domain conforms well to boundaries and is refined in visu-
ally important areas. We accomplish this by using the vari-
ational tetrahedral meshing algorithm presented in [Alliez
et al., 2005]. This method allows for generation of tetrahe-
dral meshes that conform well to an arbitrary input surface
mesh, have no restrictions on topology (i.e., allow nested
voids), and allow for sizing of tetrahedra throughout the do-
main based on arbitrary criteria.

Our implementation differs from the original algorithm in
a couple of details. As in the original method, refinement of
the mesh is controlled by a sizing function µ(x) that, for any
point x in the simulation domain, returns the desired local
edge length of the tetrahedra. While the original algorithm
builds this sizing function by finding the minimum combina-
tion of local feature size and distance to a boundary point

822

Computer Graphics Proceedings, Annual Conference Series, 2006

Figure 3: Left: a visualization of the sizing field for a rect-
angular domain with an irregular obstacle at the top and a
plume of smoke at the bottom. Right: the resulting simula-
tion mesh. Obstacle faces are colored green.

from x, we instead formulate it as follows:

µ(x) = k0 + min (kdd(x), ks (1− s(x)) , kω (1− ω(x))) (5)

In this equation, k0 is an offset value that controls the mini-
mum value of the sizing field, and hence the minimum local
edge length of tetrahedra. d(x) is the distance to the clos-
est obstacle or boundary which demands refinement, s(x) is
a function of the density of smoke particles, and ω(x) is a
function of the vorticity of the velocity field. The parame-
ters kd, ks, and kω respectively control the weight each of
these functions has on the sizing field. These three factors
are the same as those used for octree refinement in [Losasso
et al., 2004]. The overall goal of the sizing field is to focus
computational effort in the most visually important parts of
the scene, that is, near closed boundaries, where the velocity
field varies most, and where smoke is visible. Figure 3 shows
an example of a sizing field and the resulting mesh. Figure 4
demonstrates the benefits of refinement near areas of high
vorticity and smoke density.

This meshing method is iterative, so the mesh from the
previous simulation time step can be used as an initial guess
for the node placement in the mesh at the next simulation
time step. Because there is, in general, strong temporal
coherence between steps of the simulation, the sizing field
does not change too much and so the nodes from the previous
step are often a good initialization. Before the algorithm
proceeds, the initial node placement is corrected to match
the sizing field of the current step.

One other modification we made to the algorithm is that,
when optimizing the node positions, we move nodes to the
average of the barycenters of the surrounding tetrahedra in-
stead of the circumcenters. We have found that while this
tends to slightly decrease the average quality of tetrahedra
in the mesh, it often leads to substantial improvements in
the quality of the worst elements of the mesh, which are of
more concern for numerical simulation.

Of course, remeshing takes time, so it is important to con-
sider the impact it has on overall simulation performance.
The time spent generating meshes for each simulation step
varies, but generally accounts for less than a quarter of the
overall simulation time. In Section 4 we show timing infor-
mation for several examples.

3.4 Two-way Coupling and Mass Conservation
The motion of fluid and rigid bodies that mutually effect
each other can be complex and visually appealing. The in-
teraction occurs as a consequence of the conditions that:

1. The velocities in the normal direction are the same at
the interface of the fluid and the rigid body surface.

2. The fluid velocity is divergence free and the rigid body
velocity is rigid.

3. The linear and angular momentum of the combined sys-
tem is conserved.

In [Carlson et al., 2004] these conditions are enforced se-
quentially. While for many cases this produces results that
look very good, under some situations artifacts can be cre-
ated because enforcing one of the conditions in general will
break a previously enforced one. Examples of such arti-
facts might be fluid leaking through solid boundaries or poor
performance in piston-like situations. Our implementation
differs from [Carlson et al., 2004] in a couple of ways, but
most significantly we enforce these conditions simultaneously
within the mass conservation step.

In general, the mass conservation step solves for pres-
sures that accelerate the velocity field to be divergence free.
In previous works, including those with two-way coupling,
the mass conservation step treats faces to behave as fluid
or explicitly prescribes their velocities. For fluid faces, the
pressure accelerates the velocity proportional to the gradi-
ent of the pressure while for prescribed faces, the pressure
does not effect the fluid. For a more complete discussion
of fluid/prescribed-velocity mass conservation see [Fedkiw
et al., 2001].

We extend mass conservation to include a dynamic, rigid
body. To do so, we solve for acceleration of the fluid and the
rigid body, ignoring pressure for both. We then solve for a
pressure term that satisfies boundary and incompressibility
constraints to find the final accelerations. The rigid body
accelerations can be computed by creating a matrix R that is
multiplied by a vector of the pressures that surround a rigid
body. R can be formed by a series of matrix multiplications:

R =

 b1

...
bk

[
M−1 0

0 I−1

] [
A1b

T
1 · · · Akb

T
k

]
(6)

where bi =
[
nT

i | (ri × ni)
T
]
, ni is the normal of the ith

face, ri is the vector from the rigid objects center of mass to
position of the ith face, and Ai is the area of that face. The
rightmost matrix finds the net force-torque couple acting on
a rigid body by summing up the contribution due to pres-
sure forces acting on rigid body mesh faces. The force-torque
couple is converted to a linear and angular acceleration of

Figure 4: A comparison between uniform and selectively
refined simulation meshes. Left: a frame from a simula-
tion using approximately 43000 uniformly sized tetrahedra.
Right: the same frame using approximately 32000 tetrahe-
dra refined near areas of high vorticity and smoke density.
The refined mesh preserves the fine detail in the velocity field
and near the visible smoke, enhancing vortex action and nat-
ural movement. The runtimes of the two are equivalent.

823

ACM SIGGRAPH 2006, Boston, MA, July 30–August 3, 2006

Figure 5: Red particles are transfered from the left tank to the right by squeezing and releasing the central bulb. The blue
valves are coupled to the fluid simulation and prevent backflow.

the body by the middle (6×6) block matrix. M is a diagonal
matrix with the mass of the rigid body on the diagonals and
I is the inertia matrix. The leftmost matrix in the multipli-
cation returns the acceleration of the fluid-rigid faces in the
direction of the face normal due to the linear and angular ac-
celeration of the rigid body. By construction, accelerations
generated by this matrix behave rigidly.

Computing pressure accelerations of both the fluid and
fluid-rigid faces can be expressed as a matrix A multiplied
by a vector of all the pressures. A row of A that corresponds
to a face with fluid on both sides contains the same entries
as the standard gradient matrix multiplied by −1/ρ. A row
of A that belongs to a face at the fluid-rigid interface has
element values obtained from the corresponding row of R.
The elements of this row are placed at columns correspond-
ing to the pressures that surround the rigid-body. With A
built, mass conservation including two way coupling pro-
ceeds much in the same way as in the all-fluid case, with A
replacing the role of the discrete gradient matrix. For a given
vector of pressures, p, the intermediate velocity field, z∗, is
accelerated to the end-of-step velocity, z, by z = z∗+∆tAp.
For the fluid faces, z∗ is found by applying all terms of Equa-
tion (1) except the pressure term. For the fluid-rigid faces,
z∗ is found using a rigid body simulator without pressure
forces applied. To find a particular pressure that accelerates
z∗ such that z is divergence free we solve the linear system

∆tDAp = −Dz∗. (7)

This linear system can be solved efficiently using PCG since
the the matrix DA, which replaces the discrete Laplacian
from the all fluid case, is also a positive-definite symmetric
matrix.

Using the same machinery, we can also interact with con-
strained rigid bodies. This simply requires finding an R ma-
trix that correctly computes face accelerations due to pres-
sure. For example, one could easily alter R such that the
body was constrained to just rotate about the origin by re-
placing bi in Equation (6) with b′i =

[
(ri × ni)

T
]

and using

only the I−1 block for the center matrix. This idea could be
extended further to include even articulated bodies.

4 Results and Discussion
We implemented the method described above in matlab1

and C, making use of Pyramid [Jonathan Shewchuck, per-
sonal communication] for Delaunay triangulation and pixie2

for all renderings. Typical simulation times for meshes with
100,000 tetrahedra were about 1 minute per frame. Table 1
compares remeshing and simulation times for several of the
examples presented in this paper.

The images in Figure 1 show smoke in a tank mixed by the
scripted motion of a paddle. Refinement of the simulation
mesh near the paddle ensures good conformance to its curved
surfaces that produce interesting vortex effects in the smoke.

1http://www.mathworks.com
2http://sourceforge.net/projects/pixie

Remeshing time Total time Percent
per frame (mean) per frame (mean) remeshing

Figure 1 13.2 sec 64.8 sec 20.3%
Figure 5 8.33 sec 44.5 sec 18.7%
Figure 6 5.76 sec 35.8 sec 16.1%
Figure 7 313 sec 796 sec 39.3%

Table 1: A comparison of remeshing and simulation time
for selected examples.

In Figure 5, a pump transfers particles from the left tank
to the right tank as the bulb in the middle is squeezed and
released. The blue valves on either side of the bulb pre-
vent backflow. The motion of these valves is not scripted.
Instead, they are modeled as rigid bodies constrained to ro-
tate about an axis and their motion is caused by two-way
interaction with the fluid.

Figure 6 demonstrates the two-way interaction of the
Stanford bunny with smoke cannons. On the left is a lighter
bunny which is tossed about by the force of the cannons
and also affects the motion of the smoke. On the right is a
heavier bunny that drops quickly to the ground.

In Figure 7, smoke moves through an array of obstacles in
a higher resolution mesh of over 500,000 tetradra. Although
quality of the mesh elements does not suffer at this level of
refinement, the proportion of time spent meshing increases
to 39.3%. The motion of the smoke at the higher resolution
is more lively and exhibits more fine-scale detail. A vorticity
enhancement method, such as those in [Fedkiw et al., 2001]
and [Selle et al., 2005] could be used to further enhance the
fluid motion but we do not find such enhancement necessary
and so have not implemented it.

We have presented a system for performing fluid anima-
tion using unstructured tetrahedral domains that can change
arbitrarily at each time step. Although our current imple-
mentation models completely fluid-filled domains, we believe
it would be well-suited for use with surface tracking tech-
niques for liquid simulation.

Acknowledgments
We thank the other members of the Berkeley Graphics
Group for their helpful criticism and comments. This work
was supported in part by California MICRO 04-066 and
05-044, and by generous support from Apple Computer,
Pixar Animation Studios, Autodesk, Intel Corporation, Sony
Computer Entertainment America, and the Alfred P. Sloan
Foundation. Klingner and Feldman were supported by NSF
Graduate Fellowships.

References
Alliez, P., Cohen-Steiner, D., Yvinec, M., and Desbrun, M. 2005.

Variational tetrahedral meshing. In the Proceedings of ACM SIG-
GRAPH 2005, 617–625.

Botta, N., and Hempel, D. 1996. A finite volume projection method
for the numerical solution of the incompressible navier-stokes equa-
tions on triangular grids. First International Symposium on Fi-
nite Volumes for Complex Applications, 15–18 (July), 355–363.

824

http://www.mathworks.com
http://sourceforge.net/projects/pixie

Computer Graphics Proceedings, Annual Conference Series, 2006

Figure 6: Cannons fire smoke at a light (left) and heavy (right) bunny.

Figure 7: A high-resolution simulation of a jet of smoke
moving through a set of obstacles.

Cani, M.-P., and Desbrun, M. 1997. Animation of deformable models
using implicit surfaces. IEEE Transactions on Visualization and
Computer Graphics 3, 1 (Jan.), 39–50.

Carlson, M., Mucha, P. J., Van Horn III, R. B., and Turk, G. 2002.
Melting and flowing. In the ACM SIGGRAPH 2002 Symposium
on Computer Animation, 167–174.

Carlson, M., Mucha, P. J., and Turk, G. 2004. Rigid fluid: animating
the interplay between rigid bodies and fluid. In the Proceedings of
ACM SIGGRAPH 2004, 377–384.

Desbrun, M., and Cani, M.-P. 1996. Smoothed particles: A new
paradigm for animating highly deformable bodies. In Computer
Animation and Simulation 1996, 61–76.

Donea, J., Fasoli-Stella, P., and Giuliani, S. 1977. Lagrangian
and eulerian finite element techniques for transient fluid-structure
interaction problems. In Trans. 4th SMIRT Conf.

Donea, J., Huerta, A., Ponthot, J.-P., and Rodŕıguez-Ferran, A.
2004. The Encyclopedia of Computational Mechanics. John Wiley
& Sons Inc., New York.

Elcott, S., Tong, Y., Kanso, E., Schröder, P., and Desbrun, M.
2005. Discrete, circulation-preserving, and stable simplicial fluids.
Preprint, Caltech.

Enright, D. P., Marschner, S. R., and Fedkiw, R. P. 2002. Animation
and rendering of complex water surfaces. In the Proceedings of
ACM SIGGRAPH 2002, 736–744.

Fedkiw, R., Stam, J., and Jensen, H. W. 2001. Visual simulation of
smoke. In the Proceedings of ACM SIGGRAPH 2001, 15–22.

Feldman, B. E., O’Brien, J. F., and Arikan, O. 2003. Animating
suspended particle explosions. In the Proceedings of ACM SIG-
GRAPH 2003, 708–715.

Feldman, B. E., O’Brien, J. F., and Klingner, B. M. 2005. Animating
gases with hybrid meshes. In Proceedings of ACM SIGGRAPH
2005.

Feldman, B. E., O’Brien, J. F., Klingner, B. M., and Gok-
tekin, T. G. 2005. Fluids in deforming meshes. In ACM
SIGGRAPH/Eurographics Symposium on Computer Animation
2005.

Foster, N., and Fedkiw, R. 2001. Practical animation of liquids. In
the Proceedings of ACM SIGGRAPH 2001, 23–30.

Foster, N., and Metaxas, D. 1996. Realistic animation of liquids. In
Graphics Interface 1996, 204–212.

Foster, N., and Metaxas, D. 1997. Modeling the motion of a hot,
turbulent gas. In the Proceedings of ACM SIGGRAPH 97, 181–
188.

Goktekin, T. G., Bargteil, A. W., and O’Brien, J. F. 2004. A method
for animating viscoelastic fluids. In the Proceedings of ACM SIG-
GRAPH 2004, 463–468.

Guendelman, E., Selle, A., Losasso, F., and Fedkiw, R. 2005. Cou-
pling water and smoke to thin deformable and rigid shells. In the
Proceedings of ACM SIGGRAPH 2005, 973–981.

Harlow, F., and Welch, J. 1965. Numerical calculation of time-
dependent viscous incompressible flow of fluid with a free surface.
The Physics of Fluids 8 , 2182–2189.

Hirt, C., Amsden, A., and Cook, J. 1974. An arbitrary lagrangian-
eulerian computing method for all flow speeds. Journal of Com-
putational Physics 14 , 227–253.

Ju, T., Schaefer, S., Warren, J., and Desbrun, M. 2005. A geometric
construction of coordinates for convex polyhedra using polar duals.
In Eurographics Symposium on Geometry Processing 2005, 181 –
186.

Losasso, F., Gibou, F., and Fedkiw, R. 2004. Simulating water and
smoke with an octree data structure. In the Proceedings of ACM
SIGGRAPH 2004, 457–462.

Müller, M., Charypar, D., and Gross, M. 2003. Particle-based fluid
simulation for interactive applications. In the ACM SIGGRAPH
2003 Symposium on Computer Animation, 154–159.

Müller, M., Keiser, R., Nealen, A., Pauly, M., Gross, M., and
Alexa, M. 2004. Point based animation of elastic, plastic and
melting objects. In the ACM SIGGRAPH 2004 Symposium on
Computer Animation, 141–151.

Owen, S. J. 1998. A survey of unstructured mesh generation technol-
ogy. In the 7th International Meshing Roundtable, 239–267.

Premože, S., Tasdizen, T., Bigler, J., Lefohn, A., and Whitaker,
R. 2003. Particle-based simulation of fluids. Computer Graphics
Forum 22, 3 (Sept.), 401–410.

Rasmussen, N., Enright, D., Nguyen, D., Marino, S., Sumner, N.,
Geiger, W., Hoon, S., and Fedkiw, R. 2004. Directable photo-
realistic liquids. In the ACM SIGGRAPH 2004 Symposium on
Computer Animation, 193–202.

Selle, A., Rasmussen, N., and Fedkiw, R. 2005. A vortex particle
method for smoke, water, and explosions. In the Proceedings of
ACM SIGGRAPH 2005, 910–914.

Shah, M., Cohen, J., Patel, S., Lee, P., and Pighin, F. 2004. Ex-
tended galilean invariance for adaptive fluid simulation. In 2004
ACM SIGGRAPH / Eurographics Symposium on Computer An-
imation, 13 – 221.

Stam, J. 1999. Stable fluids. In the Proceedings of ACM SIGGRAPH
99, 121–128.

Stora, D., Agliati, P.-O., Cani, M.-P., Neyret, F., and Gascuel, J.-
D. 1999. Animating lava flows. In Graphics Interface 99, 203–210.

Teng, S.-H., and Wong, C. W. 2000. Unstructured mesh genera-
tion: Theory, practice, and perspectives. International journal of
computational geometry applications 10, 3, 227–266.

Terzopoulos, D., Platt, J., and Fleischer, K. 1989. Heating and
melting deformable models (from goop to glop). In Graphics In-
terface 1989, 219–226.

Warren, J., Schaefer, S., Hirani, A. N., and Desbrun, M. 2004.
Barycentric coordinates for convex sets. To appear in Advances in
Computational and Applied Mathematics.

Yngve, G. D., O’Brien, J. F., and Hodgins, J. K. 2000. Animating
explosions. In the Proceedings of ACM SIGGRAPH 2000, 29–36.

825

	1 Introduction
	2 Background
	3 Methods
	3.1 Discretization
	3.1.1 Discrete Derivative Operators
	3.1.2 Velocity Interpolation

	3.2 Generalized Semi-Lagrangian Step
	3.3 Remeshing
	3.4 Two-way Coupling and Mass Conservation

	4 Results and Discussion

