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Abstract
Variant interpretation remains a central challenge for precision medicine. Missense variants are particularly difficult to 
understand as they change only a single amino acid in a protein sequence yet can have large and varied effects on protein 
activity. Numerous tools have been developed to identify missense variants with putative disease consequences from protein 
sequence and structure. However, biological function arises through higher order interactions among proteins and molecules 
within cells. We therefore sought to capture information about the potential of missense mutations to perturb protein interac-
tion networks by integrating protein structure and interaction data. We developed 16 network-based annotations for missense 
mutations that provide orthogonal information to features classically used to prioritize variants. We then evaluated them 
in the context of a proven machine-learning framework for variant effect prediction across multiple benchmark datasets to 
demonstrate their potential to improve variant classification. Interestingly, network features resulted in larger performance 
gains for classifying somatic mutations than for germline variants, possibly due to different constraints on what mutations 
are tolerated at the cellular versus organismal level. Our results suggest that modeling variant potential to perturb context-
specific interactome networks is a fruitful strategy to advance in silico variant effect prediction.

Introduction

Advances in high-throughput sequencing technologies have 
resulted in the rapid accumulation of genomic data and 
allowed profiling of patient genomes in clinical settings. 
Such studies frequently uncover previously unobserved and 
uncharacterized genetic variants of ambiguous relevance 
to health, making variant interpretation an important chal-
lenge in precision medicine (Fernald et al. 2011). Missense 
mutations are particularly challenging as they only change a 
single amino acid in a protein sequence yet can have effects 
spanning no difference to complete loss of function. Numer-
ous methods have been developed to prioritize functional 
missense variants (Adzhubei et al. 2010; Cooper and Shen-
dure 2011; Hecht et al. 2015; Ioannidis et al. 2016; Kircher 

et al. 2014; Liu et al. 2020; Ng and Henikoff 2003; Pejaver 
et al. 2020; Ponzoni et al. 2020). Typically, these tools rely 
on protein sequence/structure information to predict variant 
effects at the protein level, and the scores they provide tend 
to capture coarse grained estimates of impact (e.g., damag-
ing, benign, and tolerated).

Biological functions and cellular behaviors arise from 
interactions among proteins and other molecules within 
cells, and biological systems evolve to be robust to random 
error (Félix and Barkoulas 2015). Diseases are often associ-
ated with perturbations to protein interactions, and different 
perturbations can result in different phenotypes (Vidal et al. 
2011), and the level of impact caused by mutations to the 
underlying molecular interaction network may determine the 
likelihood of generating a phenotype (Capriotti et al. 2019). 
For example, loss-of-function mutations were more likely 
to be tolerated when they affected proteins at the periphery 
of the interactome (Khurana et al. 2013). Similarly, vari-
ants that otherwise were predicted to have little effect were 
more likely to be deleterious if they had a large number of 
interaction partners (Yates et al. 2014) and de novo mis-
sense variants in autism probands with functional Polyphen2 
predictions were enriched at protein interfaces of more cen-
tral proteins relative to similar mutations in control siblings 
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(Chen et al. 2018). Thus, a protein’s location within the sys-
tem provides biological context that may be important for 
understanding the effects of mutations (Ozturk et al. 2018).

Within proteins, different mutations may have different 
effects on protein functions (Sahni et al. 2013; Zhong et al. 
2009). While destabilizing mutations at the core of a protein 
are likely to interfere with all protein activities, mutations on 
the surface could potentially interfere with specific protein 
activities while preserving others (Zhong et al. 2009). In this 
way, different mutations targeting the same protein might 
perturb its interactions differently, affecting different path-
ways that the protein is involved in, and resulting in differ-
ent disease phenotypes (Engin et al. 2015). Indeed, analyses 
have demonstrated an unexpected enrichment of Mendelian 
mutations (David et al. 2012; Guo et al. 2013; Wang et al. 
2012) and somatic mutations (Engin et al. 2016; Kamburov 
et al. 2015; Porta-Pardo et al. 2015; Raimondi et al. 2016) 
at protein interaction interfaces. Although protein structure-
derived features have long been integral to variant classifi-
cation, some more recent features capturing 3D location of 
mutations within key protein regions including local density 
of mutation and location at interface regions have emerged 
(Iqbal et al. 2020; Laskowski et al. 2020; Tokheim et al. 
2016; Tokheim and Karchin 2019). While these features 
begin to capture information about the potential variants 
to affect distinct interactions, they do not incorporate con-
text about the importance of specific interactions within the 
larger interactome.

Based on the above, we sought to assess the potential for 
artificial intelligence-based methods for variant interpreta-
tion to derive new information from molecular interaction 
data. We first integrated structure and protein–protein inter-
action (PPI) networks to enable systematic annotation of 

proteins according to location and interactions (Fig. 1a). We 
mapped various germline variants and somatic mutations to 
network edges to describe their potential to impact biologi-
cal function (Fig. 1b). We then designed features capturing 
information about proteins and amino acids in the context 
of their importance to the network architecture and evalu-
ated them within a machine-learning variant classification 
framework (Fig. 1c). We found that network-based features 
capture orthogonal information to classical amino acid (AA) 
sequence/structure-based features and can improve variant 
classification, though they may be more informative for 
some variant classification tasks than others.

Results

Disease‑causing genes are central in PPI networks

The architectures of biological networks can provide impor-
tant information for understanding the pathogenesis of muta-
tions (Barabási et al. 2011; Ozturk et al. 2018). The scale-
free topology of PPI networks suggests that they are more 
tolerant to random failures, but variants affecting higher 
degree nodes are more likely to disrupt function (Albert 
et al. 2000). Indeed, when we compared disease genes using 
a high-confidence human PPI network of experimentally 
verified interactions from STRING (Szklarczyk et al. 2015), 
cancer driver (Vogelstein et al. 2013) and Mendelian disease 
genes (Amberger et al. 2015) score higher with various cen-
trality measures than other genes (Fig. 2). This suggests that 
the network niche of a gene provides information about the 
potential of an amino acid substitution to create deleterious 
phenotypes, a relationship that has proven robust to study 

Fig. 1  Overview of the method. 
a Constructing a structurally 
resolved PPI network. b Map-
ping mutations to perturbed 
network architectures. c Design-
ing protein-level and residue-
level network-based features 
and using a machine-learning 
framework to evaluate their 
potential for variant classifica-
tion alone and in combination 
with classic non-network amino 
acid features
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bias (Vinayagam et al. 2016); in our data, only node degree 
correlates weakly with the number of publications (Pearson 
r = 0.23, Fig. S1).

Creating a structurally resolved PPI network

While disease mutations target proteins more central in 
interaction networks (Fig. 2), protein-level descriptors of 
centrality are not capable of distinguishing the effects of 
different mutations within proteins. Investigation of residue-
specific network perturbations requires mapping of muta-
tions to 3D protein structures and interaction interfaces, so 
that we can model their potential to affect network edges 
(Fig. 1b). We constructed a structurally resolved PPI net-
work (called SRNet from here on) comprising 6230 proteins 
and 10,615 PPIs using 3D structures and homology models 
(Fig. 1a, Table S1). This network contains annotations for 
530,668 interface residues, defined here as the subset of 
amino acid residues that mediate physical contact between 
proteins. Otherwise, amino acids are annotated according 
to location at the surface or core based on relative solvent 
accessible surface area calculated from protein 3D structures 
(Materials and methods). SRNet is an updated and extended 
version of our previous structurally resolved PPI network 
(Engin et al. 2016).

Disease mutations frequently target interface 
or core residues

We further assessed the potential for SRNet to capture 
information about residue-based network-perturbation 
by analyzing location of mutations relative to core, sur-
face, or interface regions. Similar to the finding in Engin 
et al. (2016), SRNet supports that somatic missense muta-
tions in tumors (obtained from The Cancer Genome Atlas 
(TCGA) (Collins and Barker 2007)) target surface regions 
in oncogenes (OR 1.32, p = 1.4e−06) and other genes (OR 

1.15, p = 1.07e−59), but are relatively depleted at surface 
regions in tumor suppressor genes (OR 0.91, p < 0.1) due 
to a larger proportion of core mutations (Fig. 3a), consist-
ent with more loss-of-function mutations in tumor suppres-
sors. However, when focusing only on surface positions, 
somatic mutations are more likely to be found at interface 
regions of oncogenes (OR 1.11, p < 0.05) and tumor sup-
pressors (OR 1.30, p = 7.8e−07) relative to other genes 
(Fig. 3b). Analysis of pathogenic germline variants [Clin-
Var (Landrum et al. 2018)] versus neutral variants [EXAC 
(Lek et al. 2016), SwissVar (Mottaz et al. 2010), ClinVar 
(Landrum et al. 2018)] found similar trends. Pathogenic 
variants were relatively depleted at the surface (OR 0.56, 
p = 1.5e−42), suggesting that they were far more likely to 
affect core regions, whereas neutral variants were biased 
toward the surface (OR 1.69, p = 1e−19) (Fig. 3c). On pro-
tein surfaces, pathogenic variants were more often found at 
interface regions (OR 5.65, p = 2.2e−308), though neutral 
variants also showed increased odds of affecting an interface 
(OR 2.87, p = 2.6e−115) (Fig. 3d).

Network‑based features for variant classification

As the above analyses support that both protein and amino 
acid-level information derived from networks is informa-
tive about disease-association, we hypothesized that network 
information would be useful for machine-learning-based 
variant classification. We designed and analyzed 16 features 
describing network-level effects of mutations, including 7 
protein-level features (Fig. 4a) that estimate the significance 
of the target protein in the network, and 9 residue-level fea-
tures (Fig. 4b, c) quantifying the potential of individual 
amino acid positions on the protein to impact network archi-
tecture. The residue-level features are based on comparing 
network measures before and after removing edges in SRNet 
potentially affected by a mutation (Materials and methods). 
These 16 features show potential to distinguish between 
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Fig. 2  Disease genes are central in PPI networks. Boxplots showing distributions of a degree, b betweenness, c closeness, and d eigenvector cen-
tralities of cancer driver, Mendelian disease, and other genes (Mann–Whitney U test with Bonferroni correction; *p < 1e−04)
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different classes of variants (Fig. 4a–c) and are not strongly 
correlated with other classic non-network-based amino acid 
features used for variant classification, such as measures of 
site-specific conservation (Fig. 4d), suggesting that they add 
new and useful information (Fig. S2, Table S2).

Utility of network features for classifying cancer 
driver mutations

To evaluate the benefit of using network features for 
somatic mutation classification, we trained a Random 
Forest to predict driver or passenger class labels using 
different combinations of features. We separately evalu-
ated classifier performance when trained using all 16 net-
work-derived features, only the 7 protein-level features or 
the 9 residue-level features alone, or in combination with 
83 amino acid-level features obtained from the SNVBox 
database (Wong et al. 2011). As a training set, we used 
likely driver and likely passenger missense mutations 
from Tokheim et al., which they obtained from TCGA 
using a semi-supervised approach based on known can-
cer driver gene annotations and mutation rates with the 
goal of generating a more balanced training set consisting 
of both driver and passenger mutations in cancer genes 
(Tokheim and Karchin 2019). While passengers greatly 
outnumber drivers in practice, we constrained the ratio as 
1:4 driver vs. passenger mutations for classifier training 
(Materials and methods). Generalization error was esti-
mated using a fivefold cross-validation with gene hold out 
to prevent information leakage and consequent overfitting. 

We measured performance using the area under the ROC 
(auROC) and precision–recall curve (auPRC) metrics, sim-
ilar to prior variant effect prediction studies (Tokheim and 
Karchin 2019). We note that use of network features limits 
training and prediction to mutations that can be annotated 
by SRNet.

For driver classification, protein-level network features 
performed better than residue-specific features (Figs. 5a, 
S3a), though performance for residue-level features was 
better for the top scoring ~ 20% of drivers (left edge of 
ROC curve). We note that residue-level features alone 
classify all surface non-interface mutations as passengers, 
since their feature values should all be the same (there is 
no change to network centrality measures when no edges 
are affected). Combining residue-level features with more 
classic amino acid-level features significantly boosts per-
formance over residue-level features alone (Figs. 5b, S3b). 
Interestingly, network features alone slightly outperform 
amino acid-level features alone, pointing to the extreme 
centrality of driver genes. As residue-level features are 
likely to be most informative for mutations at interfaces, 
we further explored performance for interface mutations 
only (Figs. 5c, S3c). Here, we see that residue-specific 
network features perform considerably better as they are 
not hindered by misclassification of surface mutations 
(Figs. 5c, S3c). Overall, the combination of network-based 
and amino acid features displays the highest performance 
(Figs. 5b–c, S3b–c). Notably, precision–recall curves indi-
cate that incorporating both network and classic AA fea-
tures resulted in a significant drop in false-positive predic-
tions relative to either type of feature alone (Fig. S3a–c).
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Fig. 3  Analysis of structural location of missense disease mutations. 
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test are shown (*p < 0.05). Comparison of somatic mutations in onco-
genes (OG), tumor suppressor genes (TSG), and other genes located 
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interface residues. Comparison of pathogenic and neutral variants 
located at c core vs. surface residues, and d surface non-interface vs. 
surface interface residues. For a and c, an OR > 1 means that more 
mutations/variants were found at the surface. For b and d, an OR > 1 
means more mutations/variants were found at interfaces
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Incorporating in silico predicted interface residues

The restriction to analysis of mutations for which 3D 
structural information about interfaces is available is a 
problematic limitation. In silico prediction of interfaces 
can be used to augment interface coverage, as done for 
Interactome INSIDER (Meyer et al. 2018). To explore 
whether in silico predicted interfaces could boost muta-
tion coverage without loss of performance, we repeated 
our analysis on an extended network with both structure-
derived and predicted interfaces. This resulted in improved 
performance overall (Figs. 5d–f, S3d–f), suggesting that 
improvements to interface features and the ability to train 
on a larger set of mutations enabled by higher coverage 
in the expanded network outweigh the introduction of 
noise caused by interface prediction error. We also noted 
a larger gain in precision for network features relative to 
AA features when using expanding the network (Fig. S3e). 
A more stringent comparison considering only proteins 
shared between the original and the expanded network 
found similar results (auROC is 0.832 and 0.871 for SRNet 
and the extended network for the classifier with Network 
and AA features, respectively).

As we obtained our optimal performance using all fea-
tures with the extended network, we used this classifier to 
evaluate feature importances. In Random Forest classifiers, 
feature importances are determined as the mean decrease in 
impurity when using that feature to split training examples 
according to class label during classifier training (Breiman 
2001). Fourteen of the top 21 features were network derived, 
including the top 9 (Fig. S2, Table S2). Protein-level net-
work features were more informative than residue-level 
features, possibly reflecting the limitation of residue-level 
features to distinguish surface mutations. Simple 3D location 
annotating mutations to location at core, surface, or interface 
contributed less information, which may reflect its redun-
dancy with other network features.

We further investigated residue-level network features in 
the extended network by examining cases where the clas-
sifier was successful in differentiating between driver and 
passenger mutations occurring in the same proteins. Since 
residue-level features only vary within protein for interface 
mutations, we looked for cancer genes where both driver and 
passenger mutations at interfaces were correctly classified. 
We found seven cancer genes (EGFR, HRAS, KRAS, TP53, 
PIK3R1, CTNNB1, and PTEN) that contained both correctly 
classified interface driver and interface passenger mutations. 
Focusing on 212 correctly classified interface mutations in 
these genes, we observed a significant difference in distri-
bution of residue-level features for the driver and passenger 
classes (Fig. 6), further supporting that residue-level net-
work features provide information useful for within gene 
mutation classification.

Overall performance on benchmark datasets

We next sought to evaluate the improvement obtained from 
network features on independent studies of cancer muta-
tions. We used our highest performing classifier which is 
trained on cancer mutations that map to the extended net-
work and all network-based and classic amino acid features 
(Fig. 5e, Net and AA classifier with auROC = 0.880, Fig. 
S2, Table S2). Since no ‘gold standard’ dataset exists for 
cancer, we evaluated classifier performance relative to best-
in-class methods that do not use network-derived features on 
four external pan-cancer datasets constructed using different 
approaches: an in vivo screen: Kim et al. (2016), an in vitro 
assay: Ng et al. (2018), and two literature-derived datasets: 
MSK-IMPACT and CGC-recurrent, previously described in 
Tokheim and Karchin (2019). For each dataset, considering 
the mutations scored by all methods, classifier performance 
was evaluated using the area under the ROC (auROC) and 
PR curves (auPRC), accuracy, F1 score, and the Matthews 
correlation coefficient (MCC) (Table S3).

We assessed the performance of our classifier relative to 
both cancer-specific: CHASM (Carter et al. 2009), ParsSNP 
(Kumar et al. 2016), TransFIC (Gonzalez-Perez et al. 2012), 
and CanDrA (Mao et al. 2013), and population-based meth-
ods: VEST (Carter et al. 2013), SIFT (P. C. Ng and Henikoff 
2003), PolyPhen (Adzhubei et al. 2010), CADD (Kircher 
et al. 2014), ClinPred (Alirezaie et al. 2018), DANN (Quang 
et al. 2015), DEOGEN2 (Raimondi et al. 2017), FATHMM 
(Shihab et al. 2013), LIST-S2 (Malhis et al. 2020), LRT 
(Chun and Fay 2009), M-CAP (Jagadeesh et  al. 2016), 
MPC (Samocha et al. 2017), MVP (Qi et al. 2021), MetaLR 
and MetaSVM (Dong et al. 2015), MutPred (Pejaver et al. 
2020), MutationAssessor (Reva et al. 2011), MutationTaster 
(Schwarz et al. 2014), PROVEAN (Choi et al. 2012), and 
REVEL (Ioannidis et al. 2016) (Fig. 7). Comparison was 
based on the set of benchmark mutations scored by all meth-
ods, and was on the basis of auROC, auPRC, accuracy, F1 
score, and Matthew’s correlation coefficient (MCC). We 
note the later three use discrete labels rather than continu-
ous scores. We used provided labels or recommended cutoffs 
for all methods as possible, and used a cutoff of 0.5 other-
wise (Materials and methods).

Our classifier performed well on all five metrics across 
the four benchmark sets relative to most other methods 
(Table S3). It had the highest auPRC (Fig. 7b), F1 score 
(Fig. 7d), and MCC (Fig. 7e), of all methods on the four 
benchmark sets, and also performed well on auROC and 
accuracy (Fig. 7a, c). In most cases, the difference in auROC 
relative to other methods was deemed significant by the 
DeLong test (Table S4). After our method, the next best-per-
forming method was ParsSNP, after which there was consid-
erable variation in what methods performed best by various 
measures. Overall, these results suggest that network-derived 
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features that capture abstract information about the role of 
proteins in networks and the potential of mutations to per-
turb this role are helpful for driver classification across a 
variety of settings, though the gains over methods trained 
on classic amino acid-based features are modest.

We separately compared our approach to two methods 
that incorporate interactome related features: SuSPect (Yates 
et al. 2014) and CHASMplus (Tokheim and Karchin 2019). 
SuSPect includes protein degree as a predictive feature, 
while CHASMplus now includes a feature indicating the 
number of interactions affected if a mutation occurs at a 
protein interaction interface, along with other improvements 
relative to the original method. Location at an interface was 
reported as the second most informative feature after a fea-
ture describing within protein clustering of observed muta-
tions (Tokheim and Karchin 2019). We noted improved per-
formance relative to SuSPect and comparable performance 
to CHASMplus (Fig S4). We note that both our method and 
CHASMplus derive classic AA features from the SNVbox 
database (Wong et al. 2011). We further analyzed mutations 
that were correctly classified by our method but misclassi-
fied by SuSPect or CHASMplus to see whether the network 
features implemented relative to these methods explained 
the difference. These mutations were significantly enriched 
at interface regions compared to surface or core (OR 3.78, 
p = 1.45e−11) and they had significantly different distri-
butions of all network features (Mann–Whitney U test, 
p < 0.05) apart from closeness change (p = 0.22), when com-
pared to mutations misclassified by our method but correctly 
classified by SuSPect or CHASMplus, suggesting that even 
though some shared features exist between the methods, our 
classifier better reflects the network rewiring by mutations.

However, it should also be considered that our network-
based approach is dependent on the inclusion of proteins in 
the network and availability of annotations mapping amino 
acid residues to core, surface, or interface residues. This 
generally results in a smaller training set than other methods, 
and an inability to score some fraction of mutations. For the 

benchmark sets evaluated here, 95.77% of Kim et al., 72.03% 
of Ng et al., 78.82% of MSK-IMPACT, and 74.11% of CGC-
recurrent dataset mutations could be scored, respectively. It 
is possible that better network and amino acid annotation 
coverage could further boost performance.

Utility of network features for classifying 
pathogenic germline variants

We next evaluated whether network features are also useful 
in the context of germline variation. We previously observed 
that inherited disease genes were less central than cancer 
genes and both pathogenic and neutral mutations were 
enriched at interface positions, though to different extents. 
We once again trained a Random Forest classifier to prior-
itize missense mutations that alter protein activity using the 
16 network-based features and 83 amino acid descriptors, 
using a training set composed of pathogenic and neutral vari-
ants (Materials and methods).

For germline variants, residue-specific features yielded 
similar (with SRNet) or higher performance (with extended 
network) than protein-level features for all mutations 
(Figs. 8a, S5a), and for interface mutations only (Figs. 8c, 
S5c). But overall, network features are outperformed by 
non-network amino acid features (Figs. 8b, S5b) which is 
the opposite of the case with cancer driver classifier. This 
is consistent with proteins targeted by pathogenic germline 
variants being less central than cancer driver genes. Since 
proteins harboring germline pathogenic variants have fewer 
interaction partners, pathogenic variants in the protein core 
or at interfaces tend not to result in as extreme values of res-
idue-level network features as driver mutations do (Fig. 4c), 
despite the observed enrichment for these variants in core 
and interface regions (Fig. 3c–d). The similar performance 
by network features in both SRNet and the extended net-
work (Fig. 8) suggests that either increased coverage does 
not improve performance as much, or the noise introduced 
by interface prediction error counteracts the performance 
gained by higher coverage in this setting. A stricter com-
parison considering only shared proteins between networks 
once again showed similar performance (auROC is 0.835 
and 0.849 for SRNet and the extended network for the clas-
sifier with Network and AA features, respectively). Preci-
sion–recall curves show similar results (Fig. S5).

Discussion

Understanding the functional consequences of protein cod-
ing variants remains a challenging task. Machine learning 
methods developed thus far to predict whether a mutation is 
likely to impair protein activity or cause a pathogenic pheno-
type have largely been protein-centric; however, a growing 

Fig. 4  Distribution of network-based features. Distribution of 
network-based features for driver vs. passenger mutations and 
pathogenic vs. neutral variants in SRNet (Mann–Whitney U test; 
*p < 1e−04). a Boxplots showing distribution of protein-level features 
(degree, betweenness, closeness, eigenvector, clustering coefficient, 
load, and pagerank), b a stacked bar plot showing percent distribution 
of 3D locations (core, interface, and surface) of mutations, and c box-
plots showing distribution of residue-level network features (degree 
change, betweenness change, closeness change, eigenvector change, 
clustering coefficient change, load change, pagerank change, and per-
cent degree change). d Heatmap displaying Pearson correlation coef-
ficients of network-based and classic non-network-based amino acid 
features. Only features that have at least one correlation coefficient 
higher than 0.3 and only values above 0.1 are shown. Classic amino 
acid features are ordered based on hierarchical clustering of correla-
tion values

◂
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tures. ROC curves using Net and AA features are bold. Performance 
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body of work points to perturbation of the interactome as a 
major determinant of pathogenicity (Chen et al. 2018; David 
et al. 2012; David and Sternberg 2015; Engin et al. 2016; 
Garcia-Alonso et al. 2014; Guo et al. 2013; IMEx Consor-
tium Curators et al. 2019; Kamburov et al. 2015; Nishi et al. 
2016; Piñero et al. 2016; Porta-Pardo et al. 2015; Raimondi 
et al. 2016; Sahni et al. 2013, 2015; Vidal et al. 2011; Wang 
et al. 2012; Wei et al. 2014; Yates et al. 2014). Such studies 
of variant distribution in biological systems have provided 
insights as to how molecular interaction networks evolve to 
ensure robustness or vulnerability to genetic variation (Cap-
riotti et al. 2019). It is increasingly apparent that the role of 
proteins within molecular networks is a key determinant of 
the potential of variants to exert deleterious effects (Chen 
et al. 2018; Khurana et al. 2013; Yates et al. 2014). Moti-
vated by these studies, we investigate here how network-
derived features can capture novel information about variant 
effects that is not already present in the classical amino acid 
features used by most variant classification methods, and 
show that combining both sets of features improves classi-
fier performance.

Our approach relies on a structurally resolved PPI network 
that allows variants to be characterized according to their 
potential to affect network architecture by mapping them to 
their location on protein structures and protein–interaction 
interfaces. These mappings are used to capture the poten-
tial of variant positions to perturb information flow through 
the network. We developed protein-level features to capture 
the relative importance of a protein within the network, and 
residue-level features to capture the potential of mutations 
to alter the architecture of the network. Though protein-level 
network features are shared by all variants in a protein, they 
nonetheless can interact with other amino acid-level features 
to support classification; in all cases, combining both protein 
and residue-level network features with classic amino acid 
features outperformed combining only residue-level network 
features with classic amino acid features. Residue-level fea-
tures were helpful for distinguishing between variants within 
proteins; however, because we designed them to capture the 
potential of mutations to alter the network architecture, all 
surface non-interface variants received the same value for 
these features. We also did not consider the possibility that 
surface mutations could generate a new edge in the network. 
Such mutations could be more common in cancer, where 
missense mutations have been reported to alter binding spe-
cificities for kinases and their substrates, thereby remodeling 
network architectures (Creixell et al. 2015).

Though network features show fairly different distri-
butions for different classes of variants (Fig. 4) and are 
orthogonal to the features typically used for variant clas-
sification, the best classifier combining both feature types 
shows only modest gains over classifiers that use only 

classic amino acid features. This may result from more 
limited availability of training set mutations due to the 
requirement for structure and interface information to 
estimate network feature values. This requirement also 
constrained the coverage of benchmark set mutations that 
could be classified, though the values remained generally 
high, and over 70% in the worst case. Performance gener-
ally improved when we included predicted protein inter-
actions from Interactome INSIDER (Meyer et al. 2018), 
suggesting that in silico approaches may be an effective 
strategy to boost performance until more complete experi-
mentally derived interaction maps are available.

Network features were more informative in the con-
text of somatic mutations than when classifying inherited 
variants, though performance gains were observed in both 
cases. This is perhaps expected, since inherited disease 
genes tended to be less central in PPI networks than can-
cer genes (Fig. 2), and location at an interface by itself 
was less discriminatory in the germline setting (Fig. 3d). 
We speculate that these differences may arise from differ-
ent selective pressures acting on somatic versus germline 
variation. Because development at the organismal level 
is likely dependent on the integrity of molecular interac-
tion networks, both pathogenic and neutral variants may 
be more constrained by network architecture; whereas 
in cancer, where selection operates at the cellular level 
and is predominantly positive, mutations may be better 
tolerated and be more advantageous in central network 
positions. We note also, however, that training sets for the 
driver versus passenger classification problems tend to be 
more gene-centric leading to concerns over whether cancer 
mutation classifiers distinguish primarily between genes 
(Raimondi et al. 2021). Although we made an effort to 
include both drivers and passengers in each driver gene to 
mitigate this, it may still be reflected in the higher utility 
of protein-level network features for driver classification.

In conclusion, our study suggests that information about 
molecular interaction networks can be incorporated into 
machine-learning-based variant interpretation frameworks. 
This opens future directions for the development of novel 
features capturing network information. Since networks 
can be constructed to model cell-type and condition speci-
ficity (Greene et al. 2015), it may be possible to build 
classifiers that can capture context-specific effects of 
variants. Furthermore, as studies have shown that differ-
ent interfaces are associated with different protein activi-
ties, network-based features could make it possible for 
machine-learning methods to provide more insight into 
the potential for mutations within a protein to have distinct 
functional consequences. We anticipate that such advances 
will boost the utility of variant classification tools for pre-
cision medicine applications.
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Materials and methods

Data and code are available at https:// github. com/ carte rcomp 
bio/ NetFe atures.

Source of protein interaction data

To analyze disease gene centrality, we obtained a human 
PPI network of 12,811 proteins that are involved in 97,376 
experimentally verified undirected interactions with a con-
fidence score higher than 0.4 from STRING v11.0 (Szklarc-
zyk et al. 2015).

Disease genes

A list of 125 high-confidence cancer genes consisting of 
54 oncogenes and 71 tumor suppressor genes was obtained 
from Vogelstein et al. (2013). We also obtained a list of 
4524 Mendelian genes from the OMIM database (Amberger 
et al. 2019). These genes were used to evaluate disease gene 
centrality (Fig. 2).

Collecting structural protein and protein interaction 
data

We obtained human protein interaction data (complete set) 
from Interactome3D (Mosca et al. 2013), which contains a 
collection of a highly reliable set of experimentally identi-
fied human PPIs. We collected experimental co-crystal 3D 
structures for 5865 of these interactions from the Protein 
Data Bank (PDB) (Berman et al. 2003) and homology mod-
els for 5768 additional interactions (Mosca et al. 2013) mak-
ing a total of 11,633 interactions between 6807 proteins with 
structural protein and interaction data.

Creating a structurally resolved PPI network

Amino acid residues were annotated as participating in 
a protein interaction interface based on KFC2 (Zhu and 
Mitchell 2011) scores, and we removed interactions con-
taining fewer than five interface residues on either partner. 
Additionally, we calculated relative solvent accessible sur-
face areas (RSA) using NACCESS (Hubbard and Thornton 
1993) for all residues in each protein structure. Residues 
with RSA < 5% and RSA > 15% were designated as core and 
surface residues, respectively. Residues with RSAs between 

these thresholds were excluded from further analysis due to 
ambiguity. When multiple PDB chains were available for the 
same protein, we used the consensus designation as the final 
label. The mapping of PDB residue positions onto UniProt 
residue positions was performed via PDBSWS web server 
(Martin 2005). After this mapping, we created a structur-
ally resolved PPI network (named SRNet) of 6230 proteins 
and 10,615 undirected protein–protein interactions with a 
total of 530,668 interface residues (Table S1). To extend 
coverage of the structurally resolved network, we defined an 
extended network based on the “High Confidence” dataset 
of Interactome INSIDER (Meyer et al. 2018), a human PPI 
network of 14,445 proteins with 110,206 undirected inter-
actions containing in silico interface residue predictions in 
addition to those derived from 3D structures.

Source of somatic mutation data

To investigate structural location of cancer mutations on 
proteins (Fig. 3), we mapped more than 1.4 million somatic 
missense mutations from TCGA (Collins and Barker 2007) 
onto the structurally resolved PPI network using structural 
annotations. Only mutations mapping to canonical pro-
teins were used. After this mapping, we identified a total of 
56,667 interface residues of 5005 proteins that are involved 
in 9235 interactions as mutated.

Training set for cancer mutation prediction

We collected a set of cancer missense mutations designated 
as likely driver (n = 2051) and likely passenger (n = 623,992) 
from Tokheim et al. (Tokheim and Karchin 2019). Of these, 
961 driver mutations from 32 genes and 28,043 passenger 
mutations from 2986 genes mapped to SRNet for a total 
of 29,004 mutations. All 32 genes with driver mutations 
also contain passenger mutations. To handle the driver vs. 
passenger mutation count imbalance in the training set by 
maintaining an approximate 1:4 driver vs. passenger muta-
tion ratio similar to Carter et al. (2009) while not overrepre-
senting particular genes, we limited the number of passen-
ger mutations for each gene to 16 (median per gene driver 
mutation count) and collected 4626 passenger mutations at 
random across all genes with passenger mutations. In the 
extended network, we mapped 1513 driver mutations from 
52 genes and 118,777 passenger mutations from 4478 genes 
for a total of 120,290 mutations. Thirty-eight of fifty-two 
genes with driver mutations also contain passenger muta-
tions. To maintain an approximate 1:4 driver vs. passenger 
ratio as described above, we limited the number of passen-
ger mutations for each gene to 17 (median per gene driver 
mutation count) and collected 6549 passenger mutations at 
random across all genes with passenger mutations.

Fig. 7  Comparison of classifier performance on benchmark datasets 
relative to established methods. Bar plots depict a the area under the 
ROC (auROC) and b the area under the PR curve (auPRC) scores, 
c accuracy, d F1 score, and e the Matthews correlation coefficient 
(MCC) results for each method. Mean category displays the mean of 
scores of each method across datasets. Methods are ordered based on 
their mean scores. All panels use the same color scheme

◂

https://github.com/cartercompbio/NetFeatures
https://github.com/cartercompbio/NetFeatures
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Training set for pathogenic variant prediction

We collected 5608 ‘pathogenic’ variants from ClinVar 
(Landrum et al. 2018), and 3418 neutral variants includ-
ing ‘common’ variants (allele frequency > 1%) from EXAC 
(Lek et al. 2016), variants with ‘polymorphism’ classifica-
tion from SwissVar (Mottaz et al. 2010), and ‘benign’ vari-
ants from ClinVar (Landrum et al. 2018), that map to SRNet, 
totaling 9026 missense variants. We also collected 21,819 
pathogenic and 35,522 neutral variants from the same data-
bases that map to the extended network, totaling 57,341 mis-
sense variants.

Features

We designed 16 network-based features to quantify the 
potential impact of a mutation to the underlying network 
architecture, comprising 7 protein-level and 9 residue-level 
features. The 7 protein-level features are degree, between-
ness, closeness, eigenvector and load centralities, cluster-
ing coefficient, and pagerank of the proteins within the PPI 
network. They are computed using the NetworkX pack-
age of Python and they aim to characterize the centrality 
of a protein in the network based on measures such as the 
number of nodes it is directly connected to (degree), the 
amount of shortest paths it is involved in (betweenness and 
load), the overall closeness to all other nodes (closeness), 
its embeddedness (clustering coefficient), and the centrality 
of its neighbors (eigenvector and pagerank). Nine residue-
level features describe mutation 3D location (core, interface, 
and surface) on the protein and changes in centrality of the 
protein within the PPI network resulting from mapping the 
mutation to network edges. Core mutations are assumed to 
affect all edges in the network, while interface mutations 
are mapped to corresponding edges in the network, and 
surface mutations retain all edges. Each interface mutation 

causes the removal of all edges that they are mapped to. 
The remaining eight residue-level features are based on this 
description of how the mutation perturbs the network by 
capturing degree change, betweenness change, closeness 
change, eigenvector change, clustering coefficient change, 
load change, pagerank change, and percent degree change. 
Non-network-related amino acid-based features (n = 83) 
obtained from the SNVBox database (Wong et al. 2011) 
describe substitution effects on amino acid biophysical 
properties, evolutionary conservation of variant sites, local 
sequence biases, and site-specific functional annotations. 
Pearson correlation coefficient was used to evaluate feature 
correlations. Our proposed classifier (used in Fig. 7) uses a 
total of 99 features consisting of all 16 network-based fea-
tures (7 protein-level and 9 residue-level features) and 83 
non-network-related amino acid-based features. The impor-
tance of each feature is computed as the normalized total 
reduction of the criterion brought by that feature (mean 
decrease in impurity), also known as the Gini importance 
(Figure S2, Table S2).

The number of PubMed studies featuring each gene was 
obtained from the NCBI database (https:// ftp. ncbi. nih. gov/ 
gene/ DATA/ gene2 pubmed. gz) for all genes in SRNet with 
NCBI (Entrez) gene IDs. This was used to assess the poten-
tial for protein-level features to be affected by study bias.

Classifier training

We trained a Random Forest classifier (n_estimators = 1000, 
max_features = 'sqrt') on the training set using the scikit-
learn Python package. To avoid classifier overfitting, we 
performed prediction using a fivefold gene hold out cross-
validation by dividing the training set into 5 random folds 
for cross-validation while ensuring a balanced number of 
disease and neutral mutations across the folds. All mutations 
occurring in the same gene were kept within the same fold. 
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Fig. 8  Classifier performances for predicting pathogenic vs. neu-
tral variants using SRNet vs. the extended network (ExtNet). ROC 
curves for identifying variants with a protein-level network features 
(Prot), residue-level network features (Res), and all network features 
(Net = Prot + Res); with b all network features, amino acid features 

(AA), residue-level network and amino acid features (Res and AA), 
and all network and amino acid (Net and AA) features. c ROC curves 
for identifying variants targeting interface residues only using all 
above-mentioned features. ROC curves using Net and AA features are 
bold. Performance is measured using auROC scores
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The classifier score represents the percentage of decision 
trees that classify a mutation as a disease mutation (driver 
or pathogenic). Receiver Operator Characteristic (ROC) and 
precision–recall curves were constructed from the classi-
fier scores and the AUC statistic was used as a measure of 
classifier performance. To compare the performance of dif-
ferent features for identifying disease mutations, we trained 
different classifiers on different sets of features: all 16 net-
work-based features (Net), dividing network-based features 
into 7 protein-level features (Prot) and 9 residue-level fea-
tures (Res), 83 non-network amino acid (AA) features, 83 
amino acid features combined with 9 residue-level features 
(Res and AA), or 83 amino acid features combined with all 
16 network features (Net and AA). Training our proposed 
classifier (used in Fig. 7) on 8062 cancer mutations (1513 
driver and 6549 passenger mutations mapping to ExtNet) 
using all 99 features takes ~ 5.15 s using a Jupyter Notebook 
on a quad Intel Xeon E5-4650 v4 cpu with a total of 56/112 
cores/threads and 512 GB of RAM. Prediction of 100,000 
mutations takes ~ 2.27 s.

Benchmark datasets

We obtained 4 pan-cancer benchmark sets of missense muta-
tions consisting of an in vivo screen: Kim et al. (2016), an 
in vitro assay: Ng et al. (2018), and 2 literature-derived data-
sets: MSK-IMPACT and CGC-recurrent from Tokheim and 
Karchin (2019). The in vivo screen contains 71 mutations 
selected based on their presence in sequenced human tumors 
and screened in mice to assess oncogenicity and then labeled 
as ‘functional’ or ‘neutral’ based on their abundance (Kim 
et al. 2016). The in vitro assay consists of 747 mutations 
from a growth factor dependent cell viability assay annotated 
as ‘activating’ for increased cell viability, or as ‘neutral’ for 
the remaining, with the assumption that a mutation yielding 
higher cell viability indicates driverness (Ng et al. 2018). 
The MSK-IMPACT dataset is composed of mutations from 
approximately 10,000 tumors (Zehir et al. 2017) on 414 
cancer-related genes (MSK-IMPACT gene panel) labeled 
as positive class if annotated as ‘oncogenic’ or ‘likely onco-
genic’ in OncoKB (Chakravarty et al. 2017), or as negative 
class if not. The CGC-recurrent dataset consists of TCGA 
mutations annotated as positive class if recurrent in a set of 
curated likely driver genes from the Cancer Gene Census 
(Forbes et al. 2017), or as negative class if not.

Comparison to other methods

Performance was compared to 24 state-of-the-art meth-
ods that do not use network-based information, 4 can-
cer-focused methods: CHASM (Carter et  al. 2009), 
ParsSNP (Kumar et  al. 2016), TransFIC (Gonzalez-
Perez et al. 2012), and CanDrA (Mao et al. 2013), and 

20 population-based methods: VEST (Carter et al. 2013), 
SIFT (Ng and Henikoff 2003), PolyPhen (Adzhubei et al. 
2010), CADD (Kircher et al. 2014), ClinPred (Alirezaie 
et al. 2018), DANN (Quang et al. 2015), DEOGEN2 (Rai-
mondi et al. 2017), FATHMM (inherited disease version) 
(Shihab et al. 2013), LIST-S2 (Malhis et al. 2020), LRT 
(Chun and Fay 2009), M-CAP (Jagadeesh et al. 2016), 
MPC (Samocha et al. 2017), MVP (Qi et al. 2021), Met-
aLR and MetaSVM (Dong et al. 2015), MutPred (Pejaver 
et al. 2020), MutationAssessor (Reva et al. 2011), Muta-
tionTaster (Schwarz et al. 2014), PROVEAN (Choi et al. 
2012), and REVEL (Ioannidis et al. 2016). We obtained 
prediction scores for the mutations in the 4 benchmark sets 
described above for 20 of the methods (VEST, SIFT, Poly-
Phen, CADD, ClinPred, DANN, DEOGEN2, FATHMM, 
LIST-S2, LRT, M-CAP, MPC, MVP, MetaLR, MetaSVM, 
MutPred, MutationAssessor, MutationTaster, PROVEAN, 
and REVEL) from the dbNSFP database (version 4.1a) 
(Liu et al. 2020) via the Ensembl Variant Effect Predictor 
(VEP) (McLaren et al. 2016), and for 4 additional meth-
ods (CHASM, ParsSNP, CanDrA, and TransFIC) from 
Tokheim et  al. (Tokheim and Karchin 2019). We also 
obtained scores on benchmark datasets for two additional 
methods that use network features: SuSPect (Yates et al. 
2014) from (http:// www. sbg. bio. ic. ac. uk/ suspe ct) and 
CHASMplus from Tokheim and Karchin (2019) (Fig. S4).

Classifier performance was compared using the area 
under the ROC (auROC) and PR curves (auPRC), accuracy, 
F1 score, and the Matthews correlation coefficient (MCC) 
(Table S3). Only the mutations scored by all methods were 
considered for comparison. Significance of difference of 
auROC measures is evaluated by DeLong test (Table S4). 
auROC and auPRC values were computed using the pre-
dicted scores; while accuracy, F1 score, and MCC were 
estimated based on the predicted labels (positive vs. nega-
tive). For label assignments, we used the provided labels 
from dbNSFP for SIFT, PolyPhen, ClinPred, DEOGEN2, 
FATHMM, LIST-S2, LRT, M-CAP, MetaLR, MetaSVM, 
MutationAssessor, MutationTaster, and PROVEAN. Meth-
ods that did not provide labels directly typically provided 
a score between 0 and 1 (except CADD and MPC), and 
we ensured that a higher score indicated a more damag-
ing mutation. Where specified we used recommended score 
cutoffs (0.1 for ParsSNP, 0.7 for MVP, and 50 for SuSPect) 
for label assignments when evaluating F1 score, accuracy, 
and MCC results. When no threshold was suggested (or if 
the suggestion was 0.5), we used a cutoff of 0.5 (our clas-
sifier Network&AA, CHASM, VEST, CanDrA, TransFIC, 
CADD, DANN, MPC, MutPred, REVEL, and CHASMplus). 
It is important to note that while auROC and auPRC results 
are independent of the predicted class labels; accuracy, F1 
score, and MCC results are dependent on the labels and the 
threshold used for their assignment; therefore assuming a 

http://www.sbg.bio.ic.ac.uk/suspect
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cutoff of 0.5 could underestimate accuracy, F1, and MCC 
for some methods.

Statistical analysis

Distributions are compared using a Mann–Whitney U test. 
Correlations are evaluated using the Pearson correlation 
coefficient. Odds ratios are calculated using Fisher’s exact 
test. auROC scores are compared using the DeLong test.
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