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This paper investigates flow and transport in a slender wavy-walled vertical channel
subject to a prescribed oscillatory pressure difference between its ends. When the ratio
ε of the stroke length of the pulsatile flow to the channel wavelength is small, the
resulting flow velocity, harmonic at leading order, is known to include a slow steady-
streaming component resulting from the effect of the convective acceleration, with as-
sociated characteristic speeds that are a factor ε smaller than those of the pulsating
flow. Our study considers the additional effect of gravitational forces in configurations
with a nonuniform density distribution. Specific attention is given to the slowly evolving
buoyancy-modulated flow emerging after the deposition of a finite amount of solute whose
density is different from that of the fluid contained in the channel, a relevant problem in
connection with drug dispersion in intrathecal drug delivery (ITDD) processes, involving
the injection of the drug into the cerebrospinal fluid that fills the spinal canal. It
is shown that when the Richardson number is of order unity, the relevant limit in
ITDD applications, the resulting buoyancy-induced velocities are comparable to those
of steady streaming. As a consequence, the slow time-averaged Lagrangian motion
of the fluid, involving the sum of the Stokes drift and the time-averaged Eulerian
velocity, is intimately coupled with the transport of the solute, resulting in a slowly
evolving problem that can be treated with two-time scale methods. The asymptotic
development leads to a time-averaged, nonlinear integro-differential transport equation
that describes the slow dispersion of the solute, thereby circumventing the need to
describe the small concentration fluctuations associated with the fast oscillatory motion.
The asymptotic predictions for ε ≪ 1 are shown to compare favorably with results of
numerical simulations for small finite values of ε, with the latter involving computational
times that are several orders of magnitude larger than those of the time-averaged
transport equation. The reduced equation is used to quantify buoyancy-enhanced solute
dispersion for different values of the controlling parameters. The ideas presented here can
find application in developing reduced models for future quantitative analyses of drug
dispersion in the spinal canal.
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1. Introduction

The steady Lagrangian drift generated in oscillatory viscous flows in pipes and channels
is known to play an important role in different heat and mass transport processes, in-
cluding those occurring in extracorporeal membrane oxygenators (Bellhouse et al. 1973),
pulmonary high-frequency ventilation devices (Grotberg 1994), compact heat exchangers
(Mackley & Stonestreet 1995), and drug dispersion in the spinal canal (Lawrence et al.

2019). For configurations with slowly varying cross-section, the lubrication approximation
can be used to derive insightful analytical results, with seminal analyses including
those of Hall (1974), who considered flow in a pipe subject to a harmonic pressure
difference, and Grotberg (1984), who investigated flow in a tapered channel subject to a
prescribed oscillating stroke volume. More recent analytical studies pertaining to channels
include those of Lo Jacono et al. (2005) and Guibert et al. (2010), involving three-
dimensional wavy-walled configurations, and that of Larrieu et al. (2009), who considered
an oscillating Couette flow over a wavy bottom. All of these analytical investigations of
oscillating slender flows addressed configurations with weak inertia, corresponding to
small values of the ratio ε of the stroke length to the characteristic longitudinal length,
with ε−1 ≫ 1 representing the relevant Strouhal number. The asymptotic analysis for
ε ≪ 1 reveals that the velocity, resulting from a balance between the local acceleration
and the pressure and viscous forces, is harmonic at leading order, with the small
corrections arising from the convective acceleration providing a small steady-streaming
component of order ε (Riley 2001). This steady streaming determines, together with
the Stokes drift associated with the leading-order harmonic flow, the Lagrangian drift
experienced by the fluid particles, with both contributions having in general comparable
orders of magnitude (Larrieu et al. 2009).
As discussed by Guibert et al. (2010), the fundamental pulsatile-flow investigations

mentioned above are relevant in connection with the motion of cerebrospinal fluid
(CSF) along the spinal subarachnoid space, a slender annular canal surrounding the
spinal cord, depicted in figure 1. The flow features an oscillatory velocity driven by the
pressure pulsations induced by the cardiac and respiratory cycles (Linninger et al. 2016).
The dynamics of this flow and its associated Lagrangian transport are fundamental in
understanding the role of CSF as a vehicle for metabolic-waste clearance (Klarica et al.

2019) and also to quantify drug dispersion in intrathecal drug delivery (ITDD) (Onofrio
et al. 1981; Lynch 2014; Fowler et al. 2020), a medical procedure used for treatment
of some cancers (Lee et al. 2017), infections (Remeš et al. 2013) and pain (Bottros &
Christo 2014). The standard ITDD protocol involves the placement of a small catheter
along the lumbar section of the spinal canal to continuously pump the drug or to release
a finite dose at selected times. The transport of the drug depends fundamentally on its
physical properties, including molecular diffusivities κ that are much smaller than the
kinematic viscosity ν of CSF.

The flow in the spinal canal has been investigated computationally in numerous studies
addressing different aspects of the problem, as summarized in a recent paper by Khani
et al. (2018), while corresponding theoretical analyses are more scarce. Exact solutions for
pulsatile viscous flow in a straight elliptic annulus have been proposed as a representation
for the oscillatory flow in the spinal canal (Gupta et al. 2008). More recent studies,
modeling the canal as a linearly elastic annular pipe of slowly varying section, have
employed the lubrication approximation in the asymptotic limit ε≪ 1 to quantify steady
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Figure 1. A schematic view of the spinal canal, showing the location of intrathecal drug
delivery (a), and of the two-dimensional channel flow investigated here (b and c).

streaming (Sánchez et al. 2018) and to investigate the dispersion of a solute (Lawrence
et al. 2019). For the large values of the Schmidt number ν/κ ∼ 1000 corresponding
to the molecular diffusivities of all ITDD drugs, the analysis of Lawrence et al. (2019)
showed that the Lagrangianmean flow is the key mechanism responsible for the dispersion
of the solute, while shear-enhanced Taylor dispersion has a negligibly small effect. An
important outcome of the asymptotic analysis is a time-averaged transport equation
that has been recently validated by means of comparisons with results of direct numerical
simulations (DNS) spanning hundreds of oscillation cycles (Gutiérrez-Montes et al. 2021),
as needed to generate significant dispersion of the solute. The comparisons demonstrate
the accuracy of the reduced description, which is seen to provide excellent fidelity at a
fraction of the computational cost involved in the DNS.
Our previous analysis of solute dispersion (Lawrence et al. 2019) assumed the density

of the solute ρs and the density of the carrier fluid ρ to be identical, thereby neglecting the
small density differences ρ−ρs found in ITDD applications, for which the values of ρ−ρs
typically range from positive values of order (ρ − ρs) ∼ ρ/1000 for drugs diluted with
water to negative values of order (ρ−ρs)/ ∼ −ρ/100 for drugs diluted with dextrose (Lui
et al. 1998; Nicol & Holdcroft 1992). These relative density differences (ρ − ρs)/ρ ≪ 1
between the drug and the CSF, although extremely small, are known by clinicians to
play an important role in the dispersion rate of ITDD drugs for patients in a sitting
position, when buoyancy forces are nearly aligned with the canal. It has been seen that
for a hyperbaric (dense) solution†, injection while the patient is seated for some time
before moving to a supine position leads to an initial restriction in the transport of the

† In spinal anaesthesia, baricity is the term used to refer to the density of the anaesthetic
relative to that of the CSF. Thus, an anaesthetic is said to be hyperbaric/hypobaric when its
density is higher/lower than that of the CSF, while the term isobaric describes anaesthetics
whose density matches exactly that of the CSF.
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anaesthesia (Mitchell et al. 1988; Povey et al. 1989; Veering et al. 2001). Conversely, for
a hypobaric (light) solution, the sitting injection position leads to more rapid cephalad
spread of the anaesthesia as compared to a lateral injection position (Richardson et al.

1996). As could be expected, the density of the drug is inconsequential when injection
occurs in the lateral position (Hallworth et al. 2005) and, similarly, positioning has no
effect on the spread rate when the solution density matches that of CSF (Wildsmith et al.

1981). Given the abundance of clinical evidence on the importance of buoyancy forces on
the drug dispersion rate, there is interest in developing a quantitative description; the
present paper, focused on a simplified geometry, is a necessary first step in that direction.
In looking for a simplified geometrical model, we follow Guibert et al. (2010) in noting

that the width ho ∼ 1 − 2 mm of the annular spinal canal is smaller than the spinal-
cord diameter ∼ 1 cm, with the consequence that a two-dimensional channel can be
used to describe many aspects of the flow. The channel is placed in a vertical position,
as is appropriate in describing buoyancy effects for a patient in a sitting position. As
indicated in figure 1, the quasi-periodic variation of the canal section, associated with
the presence of the vertebrae, will be modelled by including a wavy boundary whose
wavelength λ mimics the inter-vertebral distance. The channel will be assumed to be
slender in that λ ≫ ho, a good approximation in the spinal canal, where λ ∼ 2 − 4
cm and ho/λ ≃ 0.05. For simplicity, the total channel length is taken to be an integer
multiple of the wavelength, so that the channel contains a finite number of identical cells.
As in the seminal analysis of Hall (1974), an oscillating pressure difference with angular
frequency ω will be imposed between the channel ends, resulting in a pulsating flow. We
shall investigate the buoyancy-modulated dispersion of a bolus of solute released inside
the channel when the buoyancy-induced acceleration is comparable to the convective
acceleration of the pressure-driven flow, those being the conditions of interest in ITDD
applications, as explained later below equation (2.6).
The rest of the paper is organized as follows. The problem is formulated in dimen-

sionless form in § 2, which includes the identification of the relevant nondimensional
parameters and a discussion of the essential features of the subsequent asymptotic
analysis, including the existence of a long time scale ε−2ω−1 for solute dispersion,
additional to the much smaller oscillation time ω−1. The asymptotic description of the
velocity field is presented next in § 3, with the time-averaged Eulerian velocity including
the familiar steady-streaming contribution stemming from the convective acceleration
along with an additional buoyancy-induced component that depends on the distribution
of solute. This velocity field is used in § 4 to analyze solute dispersion with use of a
two-time scale asymptotic analysis, resulting in a time-averaged transport equation that
describes the evolution of the flow in the long-time scale ε−2ω−1. The reduced descrip-
tion stemming from the asymptotic analysis is validated in § 5 through comparisons
with direct numerical simulations. In addition, the model is used to quantify effects of
buoyancy-induced motion on the solute dispersion for different values of the controlling
parameters. Finally, concluding remarks are given in § 6.

2. Problem formulation

2.1. Governing equations

Consider a vertical wavy channel of average gap size ho filled with a Newtonian fluid of
density ρ and kinematic viscosity ν (for CSF, ρ ≃ 103 kg/m3 and ν ≃ 0.7× 10−6 m2/s).
The channel, open at both ends, is bounded by a flat surface and a wavy wall of wave
length λ ≫ ho, so that the resulting channel width is h = ho[1 + β cos(2πx∗/λ)], where
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x∗ is the longitudinal distance measured from the upper end and β < 1 is the relative
amplitude of the wall undulation. The total channel length is nλ, with n representing
a general integer number, so that the channel comprises n identical cells. The flow is
described using cartesian coordinates (x∗, y∗), with y∗ measured from the flat surface, and
corresponding velocity components v∗ = (u∗, v∗). The Navier-Stokes equations describing
the planar unsteady flow are written in the Boussinesq approximation

∇
∗ · v∗ = 0 (2.1)

∂v∗

∂t∗
+ v∗ ·∇∗v∗ = −1

ρ
∇

∗p∗ + ν∇∗2v∗ − ρ− ρs
ρ

g c ex (2.2)

∂c

∂t∗
+ v∗ ·∇∗c = κ∇∗2c, (2.3)

where p∗ is the sum of the pressure difference from the upper end and the constant-
density hydrostatic component−ρgx∗, c is the solute volume concentration, κ is the solute
diffusivity, ∇∗ = (∂/∂x∗, ∂/∂y∗), and ex is the unit vector aligned with the gravitational
acceleration.

A pressure difference n∆p cos(ωt∗) oscillating harmonically in time is prescribed
between the upper and lower ends of the canal, driving a periodic fluid motion with
angular frequency ω. The resulting slender flow is characterized by longitudinal velocities
of order uc = ∆p/(ρωλ), as follows from a balance between the local acceleration
∂u∗/∂t∗ ∼ ucω and the pressure gradient ρ−1∂p∗/∂x∗ ∼ ∆p/(λρ), and much smaller
transverse velocities of order vc = (ho/λ)uc ≪ uc, as follows from the continuity balance
∂u∗/∂x∗ ∼ ∂v∗/∂y∗.

2.2. Controlling parameters

The analysis assumes that the viscous time across the channel h2o/ν is comparable to
the characteristic oscillation time ω−1, resulting in Womersley numbers

α =

(

ωh2o
ν

)1/2

(2.4)

of order unity. The limit α ∼ 1 is instrumental in analyzing cardiac-driven CSF flow
(ω = 2π s−1) in the spinal canal, for which typical values of α are in the range 3 <∼ α <∼ 6,
as can be seen by evaluating the above expression with ho ≃ 1−2 mm and ν = 0.7×10−6

m2/s. In the lumbar region, the typical drug-delivery site in ITDD procedures, the average
CSF speeds are of order uc ∼ 1 cm/s, so that the associated stroke lengths uc/ω are much
smaller than the characteristic longitudinal distance λ ≃ 2− 4 cm. Their ratio

ε =
uc/ω

λ
, (2.5)

of order ε ≃ 0.05 for spinal CSF flow, defines the small parameter employed in the
following asymptotic description. As shown earlier (Hall 1974; Grotberg 1984), the
solution at leading order is determined by a balance between the pressure gradient, the
local acceleration and the viscous forces, with the convective acceleration introducing
small corrections of relative magnitude ε. While the leading-order motion is harmonic,
the velocity corrections include a nonzero steady-streaming component.

The familiar periodic channel flow described above is altered by gravitational forces
when a solute of density ρs 6= ρ is introduced in the channel. The extent of the resulting
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buoyancy-induced motion can be measured by the associated Richardson number

Ri =
ρ− ρs
ρ

gλ

u2c
, (2.6)

which compares the order of magnitude of the effective gravitational acceleration g(ρ−
ρs)/ρ with that of the convective acceleration v∗ ·∇∗v∗ ∼ u2c/λ. Our analysis addresses
the limit Ri ∼ 1, which is relevant for drug dispersion in ITDD procedures, as can be
seen by evaluating (2.6) with λ ≃ 2 cm and uc ∼ 1 cm/s for density differences in the
range 10−3 <∼ |ρ− ρs|/ρ <∼ 10−2.
Also motivated by ITDD applications, we consider solutes with diffusivities κ much

smaller than the kinematic viscosity, that always being the case of diffusion in liquid
phase. Since ν/κ ∼ 1, 000 and ε ≃ 0.05 in ITDD applications, the following analysis of
solute dispersion will specifically address the distinguished limit κ/ν ∼ ε2, with solute
diffusion correspondingly characterized by the reduced Schmidt number

σ = ε2
ν

κ
, (2.7)

assumed to be of order unity.

2.3. Nondimensional formulation

We address the motion that follows from the deposition of the solute inside an
intermediate cell along the channel. The problem is nondimensionalized using the scales
identified above to give the dimensionless variables

t = ωt∗, x =
x∗

λ
, y =

y∗

ho
, u =

u∗

uc
, v =

v∗

vc
, p =

p∗

∆p
(2.8)

and associated conservation equations

∂u

∂x
+
∂v

∂y
= 0, (2.9)

∂u

∂t
+ εv ·∇u = − ∂p

∂x
+

1

α2

∂2u

∂y2
− εRi c, (2.10)

∂p

∂y
= 0, (2.11)

∂c

∂t
+ εv ·∇c =

ε2

α2σ

∂2c

∂y2
, (2.12)

where v = (u, v) and ∇ = (∂/∂x, ∂/∂y). In writing (2.9)–(2.12) from (2.1)–(2.3) we
have used the slender-flow approximation resulting from the limit ho ≪ λ. Thus, the
terms representing longitudinal diffusion of momentum and mass have been neglected
in (2.10) and (2.12), because they are a factor (ho/λ)

2 smaller than those associated
with transverse diffusion. At the same level of approximation, the transverse component
of the momentum equation takes the reduced form (2.11). The velocity and concentration
must satisfy the boundary conditions

u = v =
∂c

∂y
= 0 at

{

y = 0
y = H = 1 + β cos(2πx)

, (2.13)

corresponding to non-permeable no-slip surfaces, whereas the reduced pressure p(x, t),
independent of y, is identically zero at x = 0 and takes the value p = n cos t at the lower
end x = n.
In the absence of buoyancy (i.e. for Ri = 0), the solution for the velocity is periodic
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in time, including a steady component of order ε, and also periodic in space, so that the
velocity distribution found in each cell is identical. On the other hand, for Ri 6= 0 the
motion is coupled to the solute transport, albeit weakly, with the result that the velocity
necessarily evolves in time following the dispersion of the solute, which is driven partly by
the steady streaming motion, with characteristic velocities εuc. It can be anticipated that
the characteristic time for the slow evolution is that associated with the dispersion of the
solute inside the deposition cell λ/(εuc) = ε−2ω−1, much larger than the characteristic
oscillation time ω−1. These considerations suggest the introduction of a second time
variable τ = ε2t for describing the slow evolution, additional to the fast time-scale variable
t describing the oscillatory motion. In the two-time-scale formalism, the time derivatives
in (2.10) and (2.12) are replaced with ∂/∂t + ε2∂/∂τ and the different variables are
expressed in terms of the power expansions

u = u0(x, y, t, τ) + εu1(x, y, t, τ) + · · · (2.14)

v = v0(x, y, t, τ) + εv1(x, y, t, τ) + · · · (2.15)

p = p0(x, t, τ) + εp1(x, t, τ) + · · · (2.16)

c = c0(x, y, t, τ) + εc1(x, y, t, τ) + · · · , (2.17)

with all functions assumed to be 2π periodic in the fast time scale t. The asymptotic
procedure leads to a hierarchy of problems that can be solved sequentially, as shown
below.

3. Velocity description

We begin by describing the velocity field in the asymptotic limit ε ≪ 1, following
the procedure used in previous steady-streaming investigations of slender flows (Larrieu
et al. 2009; Guibert et al. 2010; Sánchez et al. 2018). The solution at leading order and
also the first-order corrections associated with convective acceleration are similar to those
found earlier in three-dimensional wavy-walled channels (Guibert et al. 2010) and annular
canals (Sánchez et al. 2018). These previous analyses did not address, however, effects
of buoyancy forces, which are investigated here for order-unity values of the Richardson
number Ri , leading to a velocity correction that will be seen to be expressible in terms
of integrals of the solute concentration.

3.1. Leading-order oscillatory flow

Convective acceleration and buoyancy are negligible at leading order, so that the
velocity v0 = (u0, v0) satisfies a linear problem that can be solved in terms of the reduced
variables

u0 = Re
(

ieitU
)

, v0 = Re
(

ieitV
)

, p0 = Re
(

eitP
)

, (3.1)

where the complex functions U(x, y), V (x, y), and P (x) satisfy

∂U

∂x
+
∂V

∂y
= 0 and − U = −dP

dx
+

i

α2

∂2U

∂y2
. (3.2)

The second equation above can be integrated with boundary conditions U = 0 at y = 0, H
to give

U =
dP

dx
G(x, y), (3.3)

where

G = 1− cosh[Λ(2y/H − 1)]

coshΛ
and Λ =

α

2

1 + i√
2
H(x). (3.4)
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The result can be used to integrate the first equation in (3.2) subject to V = 0 at y = 0,
yielding

V = − ∂

∂x

(
∫ y

0

Udŷ

)

= − ∂

∂x

(

dP

dx

∫ y

0

Gdŷ

)

, (3.5)

where
∫ y

0

Gdŷ = y − H

2Λ

{

sinh[Λ(2y/H − 1)] + sinhΛ

coshΛ

}

, (3.6)

with ŷ representing a dummy integration variable. Note that both velocity components
U and V are spatially periodic in x through the function H = 1 + β cos(2πx). The
determination of the longitudinal pressure gradient dP/dx that completes the solution
begins by using the condition V = 0 at y = H in the first equation of (3.5) to give

d

dx

(

∫ H

0

Udy

)

= 0, (3.7)

indicating that the reduced flow rate

Q =

∫ H

0

Udy =
dP

dx

∫ H

0

Gdy (3.8)

is constant. Further progress requires use of the conditions P (0) = P (n) − n = 0,
consistent with the boundary values p(0, t) = 0 and p(n, t) = n cos t stated below (2.13).

Using (3.6) to evaluate the integral
∫ H

0
Gdy leads to the equation

Q =
dP

dx
H(1− Λ−1 tanhΛ), (3.9)

which can be integrated subject to P (0) = 0 to yield the pressure distribution

P = Q

∫ x

0

dx̂

H(1− Λ−1 tanhΛ)
. (3.10)

Using now the condition P (n) = n provides

Q = n

[
∫ n

0

dx

H(1− Λ−1 tanhΛ)

]

−1

. (3.11)

Because of the spatial periodicity of H and Λ it follows that
∫ n

0

dx

H(1− Λ−1 tanhΛ)
= n

∫ 1

0

dx

H(1− Λ−1 tanhΛ)
, (3.12)

thereby finally yielding

Q =

[
∫ 1

0

dx

H(1− Λ−1 tanhΛ)

]−1

(3.13)

and, from (3.9),

dP

dx
=

[

H(1− Λ−1 tanhΛ)

∫ 1

0

dx

H(1− Λ−1 tanhΛ)

]−1

, (3.14)

independent of n. It is worth pointing out that, since at this order the velocity is harmonic,

the associated time-averaged values 〈u0〉 and 〈v0〉 with 〈·〉 = 1

2π

∫ t+2π

t · dt are identically
zero, so that the steady bulk motion of the fluid occurs through the velocity corrections
at the following order.
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3.2. First-order corrections

Collecting terms of order ε in (2.9) and (2.10) yields

∂u1
∂x

+
∂v1
∂y

= 0, (3.15)

∂u1
∂t

+
∂

∂x
(u20) +

∂

∂y
(u0v0) = −∂p1

∂x
+

1

α2

∂2u1
∂y2

− Ri c0, (3.16)

to be integrated with boundary conditions u1 = v1 = 0 at y = 0, H and p1 = 0 at x =
0, n. There is interest in computing the corresponding time-averaged velocity correction
〈v1〉 = (〈u1〉, 〈v1〉). Taking the time average of (3.15) and (3.16) provides

∂〈u1〉
∂x

+
∂〈v1〉
∂y

= 0 and F (x, y) = −∂〈p1〉
∂x

+
1

α2

∂2〈u1〉
∂y2

− Ri c0, (3.17)

where the known function F = ∂〈u20〉/∂x+ ∂〈u0v0〉/∂y can be expressed in terms of the
complex velocities U and V defined above in the form

F =
1

2
Re

[

∂

∂x
(UŪ) +

∂

∂y
(V Ū)

]

, (3.18)

a result following from the identity 〈Re(ieitf1)Re(ieitf2)〉 = Re(f1f̄2)/2, which applies
to any generic time-independent complex functions f1 and f2, with the bar denoting
complex conjugates. In writing (3.17), we have anticipated that, at leading order, the
solute concentration is independent of the fast-time scale t, as follows from (2.12) when
ε ≪ 1, so that its time-averaged value 〈c0〉 reduces simply to 〈c0〉 = c0. Also of interest
is that, because of the symmetry of H(x), the periodic function F defined in (3.18) is
antisymmetric with respect to x = 1/2, so that F (x, y) = −F (1− x, y).
As can be concluded from (3.16), the velocity corrections arise partly owing to the

convective acceleration and partly owing to the buoyancy force. In computing the
corresponding time average, it is convenient to compute both contributions separately by
introducing 〈v1〉 = vSS + vB and 〈p1〉 = pSS + pB, where vSS(x, y) = (uSS, vSS) and pSS(x)
describe the familiar steady-streaming associated with the nonlinear convective terms,
which is independent of time and periodic in x, and vB(x, y, τ) = (uB, vB) and pB(x, τ)
describe the buoyancy-induced corrections, which evolve in the long time scale τ as the
solute spreads in the channel.

3.3. Steady streaming

The solution procedure needed to compute the velocity corrections parallels that fol-
lowed earlier at leading order. Thus, the longitudinal component of the steady-streaming
velocity

uSS

α2
= −dpSS

dx

1

2
(H − y)y + y

∫ y

0

F dŷ −
∫ y

0

F ŷ dŷ − y

∫ H

0

F
(

1− y

H

)

dy (3.19)

is determined by integrating the momentum equation (3.16) written for Ri = 0 subject
to the boundary conditions uSS = 0 at y = 0, H . The result can be substituted into (3.15)
to give

vSS

α2
=

∂

∂x

[

dpSS

dx

y2

2

(

H

2
− y

3

)

+
y2

2

∫ H

y

F

(

1− ŷ

H

)

dŷ

+ y
(

1− y

2H

)

∫ y

0

F ŷ dŷ − 1

2

∫ y

0

F ŷ2 dŷ

]

(3.20)
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upon integrating with vSS = 0 at y = 0. To determine the unknown pressure gradient
dpSS/dx we begin by using vSS = 0 at y = H in the above equation to give

d

dx

(

∫ H

0

uSS

α2
dy

)

=
d

dx

(

dpSS

dx

H3

12
+

1

2

∫ H

0

Fy(H − y) dy

)

= 0, (3.21)

which indicates that the flow rate

QSS =

∫ H

0

uSSdy = α2

[

dpSS

dx

H3

12
+

1

2

∫ H

0

Fy(H − y) dy

]

(3.22)

is constant. Its value can be determined by integrating a second time (3.22) subject to
pSS(n) = pSS(0) = 0 to yield

QSS =
α2
∫ 1

0
H−3

[

∫H

0
Fy(H − y)dy

]

dx

2
∫ 1

0
H−3dx

(3.23)

when account is taken of the spatial periodicity of H and F . Since H(x) is symmetric
about x = 1/2 while F (x, y) is antisymmetric, the double integral in the numerator of
the above equation is identically zero, so that

QSS =

∫ H

0

uSSdy = 0, (3.24)

in agreement with previous findings regarding steady streaming in tubes (Hall 1974)
and channels (Lo Jacono et al. 2005; Guibert et al. 2010). Using the condition QSS = 0
in (3.22) finally yields

dpSS

dx
= −6H−3

∫ H

0

Fy(H − y) dy, (3.25)

for the pressure gradient, thereby completing the solution.

3.4. Buoyancy-induced velocity

The corresponding solution for the buoyancy-induced velocity can be obtained by
simply replacing F (x, y) with Ri c0(x, y, τ) in (3.19) and (3.20), yielding

uB

α2Ri
= − 1

Ri

∂pB

∂x

1

2
(H − y)y + y

∫ y

0

c0 dŷ −
∫ y

0

c0ŷ dŷ − y

∫ H

0

c0

(

1− y

H

)

dy (3.26)

and

vB

α2Ri
=

∂

∂x

[

1

Ri

∂pB

∂x

y2

2

(

H

2
− y

3

)

+
y2

2

∫ H

y

c0

(

1− ŷ

H

)

dŷ

+ y
(

1− y

2H

)

∫ y

0

c0ŷ dŷ −
1

2

∫ y

0

c0ŷ
2 dŷ

]

. (3.27)

Using the condition vB = 0 at y = H in the above equation and integrating once gives

QB

α2Ri
=

1

Ri

∂pB

∂x

H3

12
+

1

2

∫ H

0

c0y(H − y) dy (3.28)
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for the buoyancy-induced flow rate QB =
∫H

0
uBdy. Integrating a second time with pB = 0

at x = 0, n to give

QB(τ) =
α2Ri

∫ n

0
H−3

[

∫ H

0
c0y(H − y)dy

]

dx

2n
∫ 1

0
H−3dx

(3.29)

finally determines the pressure gradient

1

Ri

∂pB

∂x
=

6

H3







∫ n

0
H−3

[

∫ H

0
c0y(H − y)dy

]

dx

n
∫ 1

0
H−3dx

−
∫ H

0

c0y(H − y) dy







, (3.30)

which can be used in (3.26) and (3.27) to complete the determination of the buoyancy-
induced velocity. Note that, since c0 is not spatially periodic, the solution carries a
dependence on the channel length n through the pressure gradient ∂pB/∂x.

4. Solute dispersion

The flow velocity is coupled with the solute concentration c through the dependence on
c0 present in vB = (uB, vB). The computation of c0 involves substitution of the expansion
c = c0+εc1+ε

2c2+· · · into (2.12) with the time derivative replaced by the two-time-scale
expression ∂c/∂t+ ε2∂c/∂τ . At leading order we find the result ∂c0/∂t = 0, anticipated
earlier when writing (3.17). Collecting terms of order ε yields

∂c1
∂t

+ v0 ·∇c0 = 0, (4.1)

which can be integrated to provide the concentration correction

c1 = 〈c1〉(x, y, τ) −
∫

v0dt ·∇c0, (4.2)

where
∫

v0dt = Re[eit(U, V )], as follows from (3.1). It is worth noting that, since the
solute solute diffusivity takes small values of order κ/ν ∼ ε2, effects of diffusion are
absent at the first two orders in the asymptotic analysis. These effects are present in the
equation that arises at the following order,

∂c2
∂t

+
∂c0
∂τ

+ v0 ·∇c1 + v1 ·∇c0 =
1

α2σ

∂2c0
∂y2

, (4.3)

which can be time-averaged to give

∂c0
∂τ

+

(〈
∫

v0dt ·∇v0

〉

+ 〈v1〉
)

·∇c0 =
1

α2σ

∂2c0
∂y2

. (4.4)

In deriving the second term in (4.4) from the third term in (4.3) use has been made
of (4.2). Since 〈c1〉 is independent of t and 〈v0〉 = 0, the contribution of the former to
the resulting time average 〈(v0 ·∇〈c1〉)〉 = 〈v0〉 ·∇〈c1〉 is identically zero. The leading-
order solute concentration c0 is also independent of t, so that the contribution arising
from the second term in (4.2) can be written in the form

−
〈

v0 ·∇
(
∫

v0dt ·∇c0

)〉

= −
〈

v0 ·
∫

∇u0dt

〉

∂c

∂x
−
〈

v0 ·
∫

∇v0dt

〉

∂c

∂y

−
〈

u0

∫

u0dt

〉

∂2c

∂x2
−
〈

v0

∫

u0dt+ u0

∫

v0dt

〉

∂2c

∂x∂y
−
〈

v0

∫

v0dt

〉

∂2c

∂y2
. (4.5)
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With the time averages of any two harmonic functions A and B satisfying 〈A(
∫

Bdt)〉 =
−〈(
∫

Adt)B〉 and 〈A(
∫

Adt)〉 = 〈B(
∫

Bdt)〉 = 0, it follows that the terms in the second
line of the above equation are identically zero, while the remaining two terms on the
right-hand side can be cast in the compact form shown in (4.4).

As seen in (4.4), convective transport in the long time scale relies on the time-averaged
Lagrangian velocity, given by the sum of the time-averaged Eulerian velocity 〈v1〉 =
vSS + vB and the Stokes drift vSD = (uSD, vSD) =

〈∫

v0dt ·∇v0

〉

(see, e.g., Larrieu et al.

(2009) for a discussion on Lagrangian transport in a similar wall-bounded flow). The
latter contribution can be evaluated in terms of the complex functions U and V with use
of the expressions

uSD =
1

2
Im

[

∂

∂x
(UŪ) +

∂

∂y
(V Ū)

]

and vSD =
1

2
Im

[

∂

∂x
(UV̄ ) +

∂

∂y
(V V̄ )

]

, (4.6)

which follow from the identity 〈Re(eitf1)Re(ieitf2)〉 = Im(f1f̄2)/2. The function uSD,
which is related to the function F defined earlier in (3.18), is identically zero at x =
0, 1/2, 1, 3/2, . . . , so that the associated constant volumetric flow rate is simply

QSD =

∫ H

0

uSDdy = 0. (4.7)

Since our asymptotic description is limited to the leading-order term in the asymptotic
expansion (2.17) for the solute concentration, to summarize the results of the asymptotic
analysis one may replace c0 with c when rewriting the final transport equation (4.4) in
the form

∂c

∂τ
+ (uSD + uSS + uB)

∂c

∂x
+ (vSD + vSS + vB)

∂c

∂y
=

1

α2σ

∂2c

∂y2
. (4.8)

The description of the solute dispersion following its deposition in the channel reduces
to the integration of the above equation with initial condition c = ci(x, y) at τ = 0 and
boundary conditions ∂c/∂y = 0 at y = 0, H . In the integration, the time-independent
Stokes-drift and steady-streaming velocities are computed with use of (4.6) and of (3.19),
(3.20), and (3.25), respectively, while the time-varying buoyancy-induced velocity is eval-
uated in terms of the solute concentration through the integral expressions (3.26), (3.27),
and (3.30) with c0 = c. Observation of (4.8) reveals that gravitational forces modify the
character of the solution in a nontrivial way. Because of the dependence of uB and vB on
the concentration distribution c, the time-averaged transport equation that governs the
dispersion of the solute, which for Ri = 0 reduces to a linear partial-differential equation
with time-independent coefficients, turns into a complicated nonlinear integro-differential
equation in the presence of buoyancy.

It is worth noting that, while the volumetric flow rates QSS =
∫ H

0
uSSdy and QSD =

∫ H

0
uSDdy associated with steady streaming and Stokes drift are identically zero, as

discussed above, that induced by buoyancy is in general nonzero, its value QB =
∫H

0
uBdy

evolving in time according to (3.29). Note that writing (4.8) in conservative form and
integrating across the channel with use of ∂c/∂y = 0 and vSD = vSS = vB = 0 at y = 0, H
yields the relation

∂C

∂τ
+
∂φ

∂x
= 0 (4.9)

between the amount of solute per unit channel length C(x, τ) =
∫ H

0
c dy and the solute

flux φ(x, τ) =
∫H

0
(uSD + uSS + uB)c dy, while a second integral between x = 0 and x = 1
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gives

∂

∂τ

(
∫ 1

0

Cdx

)

+ φ(1, τ) − φ(0, τ) = 0, (4.10)

which naturally reduces to the expected conservation law

∫ 1

0

(

∫ H

0

c dy

)

dx =

∫ 1

0

(

∫ H

0

ci dy

)

dx (4.11)

when the solute flux at the two ends is zero.
An important aspect of the reduced description developed above is that the nonlinear

integro-differential equation (4.8) targets directly the evolution of the flow in the long-
time scale τ ∼ 1, relevant for solute dispersion over distances of order λ (i.e. dimensionless
distances x of order unity), thereby circumventing the need to describe the small con-
centration fluctuations occurring in the short time scale t = ε−2τ . As a consequence, the
model predictions involve computational times that can be expected to be a factor ε2

smaller than those required in direct numerical simulations, because to describe solute
dispersion the DNS must track the flow over a large number of cycles ∼ ε−2, larger for
smaller ε.

5. Selected numerical results

The reduced flow description is to be utilized to investigate the influence of buoyancy
on solute dispersion. To facilitate the computation, the conservation equation (4.8) was
written in terms of the normalized coordinate η = y/H(x), so that the integration domain
becomes 0 < x < n and 0 < η < 1. The numerical scheme utilizes a fourth-order compact
centered finite-difference approximation for the spatial discretizations of the viscous terms
and a second-order upwind scheme for the non-linear terms. A third-order TVD Runge-
Kutta scheme is used for the time marching, while the integral expressions (3.26), (3.27),
and (3.30) are evaluated with a simple trapezoidal rule.
The accuracy of the model predictions, derived in the asymptotic limit ε ≪ 1 for a

slender channel with ho/λ ≪ 1, is tested through comparisons with two-dimensional,
unsteady simulations of the fluid motion and solute dispersion for small but finite
values of ho/λ and ε. The DNS, involving the complete equations (2.1)–(2.3) written
in dimensionless form, span thousands of oscillation cycles, as needed to generate sig-
nificant dispersion of the solute. The numerical integration was performed with the
finite-volume solver Ansys Fluent (Release 20.2), assuring second-order accuracy in
time and in space. Computations employing upwind and central-differencing schemes
for the convective terms were found to yield virtually indistinguishable results, with the
former discretization used in generating the figures shown below. A coupled algorithm
was used for the pressure–velocity coupling. Besides the boundary conditions used in
integrating the slender-flow equations (2.9)–(2.12), additional conditions of developed
flow ∂u/∂x = ∂c/∂x = 0 at the upper and lower open boundaries are incorporated in
integrating (2.1)–(2.3). The computations shown below correspond to a canal of total
length n = 3 and aspect ratio ho/λ = 1/20 with the imposed pressure difference yielding
a dimensionless stroke length ε = 0.02. The time-periodic DNS results were averaged

in time to determine the mean Eulerian velocity 〈v〉 = 1

2π

∫ t+2π

t v dt, of order ε, to be
compared with the steady-streaming velocity vSS, as explained below. In addition, tracer
particles are used to compute the Lagrangian velocity vL by following their displacement
over a cycle, i.e. if the particle located at (x, y) at time tmoves to occupy the new location
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(x+δx, y+δy) at time t+2π, then the Lagrangian velocity at (x, y) and time t is defined
as vL = (δx, δy)/(2π).

5.1. Buoyancy-free flow

As previously mentioned, in the absence of buoyancy, the flow induced by the imposed
pressure gradient is periodic in time and space. The steady Lagrangian motion for ε≪ 1
is given in this case by the sum of the steady streaming velocity vSS and the Stokes-
drift velocity vSD. These two contributions as well as their sum are shown in figure 2 for
β = 0.4 and two different values of α. Since the flow in each cell is identical, it suffices to
show the solution for 0 6 x 6 1, symmetric with respect to the center line x = 0.5. For
each value of α, streamlines are plotted using a fixed increment δψ of the streamfunction
ψ, defined in the usual way (e.g. ∂ψ/∂y = uSS and ∂ψ/∂x = −vSS for steady streaming)
with ψ = 0 along the wall, so that the interline spacing provides a measure of the
local velocity. To further quantify the motion, color contours are used to represent the
associated vorticity Ω = (ho/λ)

2∂v/∂x − ∂u/∂y, which reduces to Ω = −∂u/∂y in the
slender flow approximation.

The spatially periodic, time-independent, steady-streaming velocity computed
with (3.19) and (3.20) supplemented with (3.25) is shown in the second column of
figure 2. The results are qualitatively similar to those presented in Guibert et al. (2010).
For α = 4, the flow structure of each half cell exhibits two counter-rotating vortices,
whereas for α = 16 the flow develops an additional, much weaker vortex, located near
the section with largest width. As expected, the vorticity, having peak values of order
unity for α = 4, increases with increasing flow frequency as a result of augmented wall
production to reach peak values exceeding Ω = 40 for α = 16.

The steady-streaming results are compared with time-averaged velocity fields obtained
in direct numerical simulations with ε = 0.02. In the comparison, the time-averaged
DNS velocity is expressed in the rescaled form 〈v〉/ε ∼ 1, consistent with the scaling
employed in defining vSS. The two functions vSS and 〈v〉/ε are seen to be almost identical,
thereby giving additional confidence in the mathematical development. For instance, the
peak values of the stream function and vorticity corresponding to the time-averaged
DNS velocity 〈v〉/ε are ψPEAK = ±(0.0115, 0.1680) and ΩPEAK = ±(1.4465, 40.786) for
α = (4, 16), while the corresponding values for the steady-streaming motion are ψPEAK =
±(0.0115, 0.1699) and ΩPEAK = ±(1.4474, 40.787). The small relative differences remain
below about 1%, as is consistent with the order of the asymptotic development.

The third column in figure 2 displays the Stokes-drift velocity field evaluated with (4.6).
As it is clear from a quantitative comparison with the corresponding steady-streaming
results, both bulk-flow velocities have comparable magnitude for α = 4, whereas for α =
16 the Stokes drift provides a much smaller relative contribution to the Lagrangian drift.
The dominant role of steady streaming in flows at high Womersley numbers is found also
away from the wall in oscillating flow over circular cylinders (Holtsmark et al. 1954; Raney
et al. 1954), for example. The mean Lagrangian velocity vSS + vSD corresponding to the
asymptotic limit ε≪ 1 compares favorably with the velocity vL/ε obtained numerically
by following tracer particles in the DNS computation for ε = 0.02, shown in the last
column of figure 2, although the relative errors are somewhat larger than those of the
Eulerian velocity. For instance, the peak values of the stream function and vorticity
corresponding to vL/ε are ψPEAK = ±(0.0235, 0.1674) and ΩPEAK = ±(2.0454, 45.9497)
for α = (4, 16), while the corresponding values for vSS+vSD are ψPEAK = ±(0.0235, 0.1491)
and ΩPEAK = ±(1.9906, 40.787).
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Figure 2. Streamlines and color contours of vorticity corresponding to the steady-streaming
velocity vSS, Stokes-drift velocity vSD and steady mean Lagrangian velocity vSS+vSD in a canal
with β = 0.4 for α = 4 (a) and α = 16 (b). Results of direct numerical simulations (DNS) of
a nonbuoyant flow (i.e. Ri = 0) with ho/λ = 1/20 and ε = 1/50 are also shown, including the
rescaled time-averaged Eulerian velocity field 〈v〉/ε (first column) and the rescaled Lagrangian
velocity vL/ε (fifth column), the latter determined by following tracer particles, as explained
in the text. To facilitate the comparisons, fixed constant streamline spacings δψ = 0.003 and
δψ = 0.03 are used for the upper and lower plots, respectively.
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Figure 3. Snapshots of solute concentration for Ri = 0, β = 0.2, α = 4, and σ = 1 as obtained
at five different instants of time from the reduced model and from direct numerical simulations
for ho/λ = 1/20 and ε = 0.02. Besides colour contours of local concentration, the figure shows

distributions of solute per unit channel length
∫

H

0
cdy for the model (solid curve) and for the

DNS (dot-dashed curves), with the initial distribution
∫

H

0
cidy shown as a dotted curve. For

reference, the figure shows streamlines with constant spacing δψ = 0.003 for the Lagrangian
mean drift, which is characterized using the asymptotic prediction vSS + vSD for the model
results and the value of vL/ε determined numerically for the DNS results.

5.2. Buoyancy-free solute dispersion

The reduced transport equation (4.8) resulting from the two-time scale asymptotic
analysis indicates that the solute relies on the Lagrangian drift for longitudinal dispersion.
As a consequence, the existence of the closed recirculating vortices displayed in figure 2
implies that in oscillatory buoyancy-free channel flow a solute released in a given cell
would be unable to reach their neighboring cells, thereby precluding its progression along
the canal. To illustrate this important feature of the flow, we show in figure 3 the temporal
evolution of a bolus of solute with reduced Schmidt number σ = 1 released at the initial
instant of time in the central cell of a three-cell canal. The initial concentration is given
by the truncated Gaussian distribution

ci = min

{

1,
3

2
exp

[

−16

(

x− x0
δ

)2
]}

, (5.1)

which represents a band of solute with characteristic width δ centered at xo having
a saturated core flanked by thin layers across which the concentration decays to zero.
Results obtained by integration of (4.8) for x0 = 1.75 and δ = 0.2 are compared in
figure 3 at different instants of time in the interval 0 6 τ 6 8 with DNS computations.
Note that, with τ = ε2t, for the value ε = 0.02 used in the DNS, this interval of time
corresponds to 0 6 t 6 20, 000 (i.e. about 20, 000/2π ≃ 3, 200 oscillatory cycles).
As seen in figure 3 the model accurately reproduces the DNS results. To facilitate the

quantitative comparisons, besides color contours showing the solute concentration, the

figure includes side plots for the amount of solute per unit channel length C =
∫H

0
c dy

at different instants of time, with the initial distribution Ci = H(x)ci(x) included for
reference as a dotted curve. The model predictions lie very close to the DNS results, in
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that the normalized value of the integrated departure (
∫ n

0
|CDNS−CMODEL|dx)/(

∫ n

0
Cidx),

which provides a metric for the accuracy of the model, remains below 0.003 over the entire
range of times considered in the figure.

For the buoyancy-free conditions considered in figure 3, the steady Lagrangian motion
is seen to stir the solute about the deposition location, uniformizing its concentration
within the recirculating cell. The effect of longitudinal diffusion, present in the DNS
results, is found to be rather limited, in that, even at the latest instant of time considered,
the presence of the solute in the adjacent cells is negligibly small. This tendency of the
solute to remain trapped inside Lagrangian vortices has potential implications concerning
the drug-dispersion rate in ITDD procedures. Although the Lagrangian flow in the spinal
canal does not exhibit the spatial periodicity of the canonical configuration investigated
here, closed recirculating vortices, associated with the changes in the eccentricity of the
spinal cord along the canal, have been found to characterize the CSF bulk motion (Coenen
et al. 2019). Typically, there are three main vortices, extending along the cervical,
thoracic, and lumbar regions. Since ITDD injection occurs in the lumbar region, the
buoyancy-free results in figure 3 seem to indicate that, when the density of the drug
matches exactly the CSF density, the drug is bound to linger in the lumbar vortex near
the injection site without reaching the thoracic region. This could be advantageous in
applications involving pain medication, which is meant to be delivered to the spinal cord,
but not in applications involving anticancer drugs targeting brain tumors, for example.
As seen below, buoyancy-induced motion has the potential to drastically change the
associated transport rate, in accordance with clinical observations (Mitchell et al. 1988;
Povey et al. 1989; Richardson et al. 1996; Veering et al. 2001).

5.3. Slowly varying buoyancy-induced motion

As previously reasoned, buoyancy forces, acting on solutes with density ρs 6= ρ, alter
the steady Lagrangian drift by adding an additional component that varies slowly in
the long time scale τ following the solute dispersion, so that the flow and the solute
transport are intimately coupled, as described by (4.8) supplemented with (3.26), (3.27),
and (3.30). The corresponding behavior is characterized in figure 4 for a light solute
with Ri = 1 spreading upwards. Note that, because of the problem symmetry, results
corresponding to a heavy solute with Ri = −1 can be generated by simply reversing the
direction of the gravity vector; i.e. by rotating the figure one hundred and eighty degrees.

As in the buoyancy-free flow depicted in figure 3, the solution in figure 4 includes
Lagrangian streamlines, color contours of solute concentration, and streamwise distribu-

tions of integrated solute concentration C =
∫H

0
c dy along the canal. Buoyancy has a

dramatic effect on the dispersion of the solute, as is apparent by comparing the results
in both figures. Gravitational forces acting on the light solute induce a longitudinal
pressure gradient that modifies drastically the resulting Lagrangian drift, as can be seen
by comparing the streamlines in figure 3 with those in figure 4. The pattern of symmetric
recirculating cells with unconnected streamlines existing for Ri = 0 is replaced for Ri = 1
by a more complicated streamline pattern featuring a net upward flow rate QB(τ) (see
the solid curves in figure 5, to be discussed later). As can be seen, although the flow
rate and the associated streamline pattern vary slowly in time, the observed changes are
not very pronounced. Also of interest is that the quantitative agreement between the
streamlines predicted by the model and the DNS results is again remarkable, thereby
giving additional confidence in our development.

The changes in the Lagrangian motion have a dramatic reflection in the solute dis-
persion. As seen in figure 4, the solute is transported upwards following the Lagrangian



18 Alaminos-Quesada et al.

0 0.5 1

0.8

1

1.2

1.4

1.6

1.8

2
0 0.5 1

0 0.5 1
Initial condition DNS Model

Figure 4. Snapshots of solute concentration for Ri = 1, β = 0.2, α = 4, and σ = 1 as obtained
at five different instants of time from the reduced model and from direct numerical simulations
for ho/λ = 1/20 and ε = 0.02. Besides colour contours of local concentration, the figure shows

distributions of solute per unit channel length
∫

H

0
cdy for the model (solid curve) and for the

DNS (dot-dashed curves), with the initial distribution
∫

H

0
cidy shown as a dotted curve. The

plots include streamlines with constant spacing δψ = 0.003 for the varying Lagrangian mean
drift, which is evaluated with use of vSS + vSD + vB (model results) and from the displacement
of the tracer particles (DNS results).

streamlines connecting the cells, enabling its upward progression. The bolus of solute
is distorted by the recirculating flow as it travels upwards, driven by the buoyancy-
induced draft. The variation with time of the concentration distribution predicted with
the model is in excellent agreement with the DNS results. The model is seen to predict
not only the mean location of the bolus but also its shape and elongation. The relative
departures, measured by (

∫ n

0
|CDNS − CMODEL|dx)/(

∫ n

0
Cidx), remain below 0.009 over

the entire range of times shown in the figure. In assessing the potential benefits of the
time-averaged formulation, it is important to emphasize that, while the integration of
the integro-differential equation (4.8) over times τ ∼ 1 can be completed in a few hours
using a laptop computer, generating the DNS results shown in figure 4, spanning over
3,000 cardiac cycles, required 10 days in a computational cluster using a total of 72 cores.

5.4. Parametric dependence of the results

The case shown in figure 4, corresponding to β = 0.2, α = 4, σ = Ri = 1, is used
in figures 5 and 6 as a basis to investigate the influence of the different parameters on
the dispersion of a buoyant solute. To that end, results are generated with use of (4.8)
by modifying one of the four controlling parameters at a time, while keeping the other
three fixed at the values selected earlier. Figure 5 shows the variation with time of the
buoyancy-induced flow rate QB, while figure 6 shows instantaneous solute-concentration
distribution and associated Lagrangian streamlines at a fixed time, namely, τ = (6, 6, 6, 2)
for figures 6(a, b, c, d), with corresponding results for the base case at these times shown
in two of the subpanels of figure 4.
We begin by discussing the effect of the channel geometry. As seen in figure 6(a),

increasing the undulation of the channel from β = 0.1 to β = 0.4 tends to increase
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Figure 5. The influence of the contraction ratio β (a), reduced Schmidt number σ (b),
Richardson number Ri (c), and Womersley number α (d) on the temporal evolution of the
buoyancy-induced flow rate QB. The values of the parameters in each case are: (a) α = 4,
σ = Ri = 1; (b) α = 4, Ri = 1 and β = 0.2; (c) α = 4, σ = 1 and β = 0.2; (d) σ = Ri = 1 and
β = 0.2.

the magnitude of the buoyancy-induced longitudinal velocity in the region of minimum
cross-sectional area, where streamlines are closely spaced together for larger β, but
these changes result in only moderately small variations of the flow rate QB, as seen
in figure 5(a). As a result, the bolus of solute becomes more elongated as β increases, but
advances upward at approximately the same rate, so that the maximum concentration
occupies approximately the same location at τ = 6, as seen in figure 6(a).
The effect of the Schmidt number σ, entering in the formulation only through the factor

affecting the transverse diffusion rate on the right-hand side of (4.8), is investigated in
figures 5(b) and 6(b). The changes observed in streamline pattern and flow rate when
changing the Schmidt number from σ = 0.25 to σ = 8 are not very significant, so that
the differences in solute evolution in figure 6(b) are attributable to the direct effect of
transverse diffusion (or lack thereof). The snapshot corresponding to σ = 8 displays
the behavior expected at large Schmidt numbers, for which fluid particles maintain a
nearly constant concentration in their slow Lagrangian evolution, as described by the
limiting form of (4.8) for σ ≫ 1. In the opposite limit σ ≪ 1, solute diffusion leads to
a rapid uniformization of the concentration, as can be seen by integrating ∂2c/∂y2 = 0
(i.e. the reduced form of (4.8) when σ ≪ 1) subject to the non-permeability condition
∂c/∂y = 0 at y = 0, H to give c = c(x, τ). As a result, the bolus remains relatively
compact as it moves along the channel with a velocity determined by the flow rate. The
reduced transport equation governing the transport of solutes with σ ≪ 1 can be derived

from (4.9) by noting that in this limit the integrated solute concentration C =
∫H

0
c dy

becomes C = H(x)c(x, τ) while the solute flux φ(x, τ) =
∫H

0
(uSD + uSS +uB)c dy reduces
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Figure 6. The influence of the contraction ratio β (a), reduced Schmidt number σ (b),
Richardson numberRi (c), andWomersley number α (d) on the solute-concentration distribution
and associated Lagrangian streamlines. The snapshots are taken at τ = 6 for subfigures (a, b, c)
and at τ = 2 for subfigure (d). The values of the parameters in each case are: (a) α = 4,
σ = Ri = 1; (b) α = 4, Ri = 1 and β = 0.2; (c) α = 4, σ = 1 and β = 0.2; (d) σ = Ri = 1
and β = 0.2. The streamline spacing for the mean Lagrangian velocity is δψ = 0.003 for
subfigures (a, b, c) and δψ = 0.005 for subfigure (d).

to φ = QBc. Substituting these simplified expressions into (4.9) and using (3.29) to
evaluate QB finally yields

∂c

∂τ
+

α2Ri
∫ n

0
cdx

12nH
∫ 1

0
H−3dx

∂c

∂x
= 0 (5.2)

as the limiting form of (4.8) for σ ≪ 1.
As is to be expected from the velocity expressions derived in § 3.4, the Richardson

number and the Womersley number have a pronounced effect on the mean Lagrangian
motion. As seen in figures 5(c) and 5(d), the flow rate exhibits dependences on Ri and
α that are approximately linear and approximately quadratic, respectively, consistent
with (3.29). These dependences have a reflection on the evolution of the solute bolus
shown in figures 6(c) and 6(d). With limited updraft for Ri = 0.25, the bolus is seen to
spread about the injection location, without significant upward progression at the instant
of time τ = 6 considered in the figure. An increase in Ri promotes the displacement of the
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bolus, but its longitudinal extent remains approximately equal in all three cases. By way
of contrast, an increase in α increases the upward displacement and also enhances bolus
distortion. The reason for the latter is that larger values of α hinder transverse diffusion,
as can be inferred from (4.8), with the result that fluid particles travel following the
Lagrangian recirculating paths with a nearly constant concentration, rapidly deforming
the compact concentration distribution of the initial bolus.

6. Conclusions

Solute dispersion in a wavy-walled vertical channel subject to an oscillating pressure
gradient has been used as a canonical model to investigate the effect of buoyancy on
the transport of ITDD drugs, characterized by large values of the Schmidt number and
order-unity values of the Richardson number. The mean Lagrangian velocity determined
in the asymptotic limit of small stroke lengths, responsible for the convective transport
of the solute, displays a buoyancy component whose local value depends on the solute
concentration through integral expressions, resulting in a nonlinear integro-differential
transport equation. The predictive capabilities of the reduced description are tested
through comparisons with DNS computations involving thousands of oscillating cycles.
The validation exercise reveals that the model provides accurate predictions of solute
dispersion at a fraction of the computational cost involved in the DNS. Contrary to the
motion observed in the buoyancy-free case investigated in figures 2 and 3, characterized
by the existence of a series of closed Lagrangian vortices distributed periodically along
the channel, the buoyancy-modulated mean Lagrangian flow shown in figures 4 includes a
streamwise draft connecting neighboring cells that promotes the longitudinal dispersion of
the solute. The buoyancy-enhanced transport rate revealed in our channel computations
is consistent with previous clinical observations pertaining to dispersion of light drugs
for patients in a sitting injection position (Richardson et al. 1996).

The simple canonical flow considered here has served to unveil some of the key aspects
of the solute-dispersion problem, including the enhanced transport associated with the
buoyancy-modulated mean Lagrangian velocity. Future work should consider application
of the two-time scale asymptotic analysis delineated above to the description of ITDD
processes, with account taken of the three-dimensional morphology of the spinal canal,
possibly including the effect of microanatomical features such as arachnoid trabeculae,
which are thin strands of connective tissue that form a web-like structure stretching
across the spinal canal. The presence of these fine anatomical structures, which has been
shown to have an important effect on pressure loss (Tangen et al. 2015), can be accounted
for by treating the spinal subarachnoid space as a Brinkman porous medium, as done in
previous investigations (Gupta et al. 2009; Kurtcuoglu et al. 2019; Salerno et al. 2020;
Sincomb et al. 2022).

The future developments envisioned here can potentially provide a reduced transport
equation, possibly similar to equation (4.8), to be used in combination with magnetic
resonance imaging characterizations of the canal anatomy (Coenen et al. 2019) to describe
the transport of the drug in the relevant dispersion time scale. The ultimate goal of such
efforts is the development of computationally effective subject-specific predictive tools for
drug delivery to a target site from injection by a lumbar puncture with account taken of
the specific anatomy and physiological conditions of the individual patient as well as for
the molecular characteristics and injection rate of the drug, as needed in guiding clinical
treatments.
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