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ABSTRACT Expression quantitative trait loci (eQTL) studies have typically used single-variant association analysis to identify genetic
variants correlated with gene expression. However, this approach has several drawbacks: causal variants cannot be distinguished from
nonfunctional variants in strong linkage disequilibrium, combined effects from multiple causal variants cannot be captured, and low-
frequency (,5% MAF) eQTL variants are difficult to identify. While these issues possibly could be overcome by using sparse polygenic
models, which associate multiple genetic variants with gene expression simultaneously, the predictive performance of these models for
eQTL studies has not been evaluated. Here, we assessed the ability of three sparse polygenic models (Lasso, Elastic Net, and BSLMM) to
identify causal variants, and compared their efficacy to single-variant association analysis and a fine-mapping model. Using simulated
data, we determined that, while these methods performed similarly when there was one causal SNP present at a gene, BSLMM
substantially outperformed single-variant association analysis for prioritizing causal eQTL variants when multiple causal eQTL variants
were present (1.6- to 5.2-fold higher recall at 20% precision), and identified up to 2.3-fold more low frequency variants as the top
eQTL SNP. Analysis of real RNA-seq and whole-genome sequencing data of 131 iPSC samples showed that the eQTL SNPs identified by
BSLMM had a higher functional enrichment in DHS sites and were more often low-frequency than those identified with single-variant
association analysis. Our study showed that BSLMM is a more effective approach than single-variant association analysis for prioritizing
multiple causal eQTL variants at a single gene.

KEYWORDS eQTLs; causal variants; sparse polygenic models

RECENT studies (Lappalainen et al. 2013; Battle et al.
2014; The GTEx Consortium 2015) have investigated

associations between gene expression and genetic variants
[expression quantitative trait loci (eQTLs)] by analyzing tis-
sue samples from hundreds of individuals. Through these
efforts, tens of thousands of eQTLs, some of which are tis-
sue-specific, have been associated with gene expression,
largely via single-variant association analysis in which multi-
ple SNPs are tested per gene independently, the most signif-
icantly associated SNP is identified, and a permutation-
adjusted P-value is used to control overall false discovery rate
(FDR) (The GTEx Consortium 2015). However, there are

several drawbacks to this approach: (1) noncausal eQTL var-
iants can show the strongest association at a gene due to
linkage disequilibrium (LD); (2) combined effects from mul-
tiple causal eQTL variants cannot be estimated, which is not
ideal when two or more regulatory variants jointly affect
gene expression (Tao et al. 2006; Corradin et al. 2014);
and (3) common variants tend to have higher P-values than
lower-frequency variants of equal effect size (Wakefield
2009). As rare noncoding variants can contribute to individ-
ual gene expression levels (Li et al. 2014), and aremore likely
to be deleterious than common variants (1000 Genomes Proj-
ect Consortium et al. 2012), it is important to be able to
identify rare causal eQTL variants. Thus, a robust approach
for identifying causal eQTL variants that overcomes these
drawbacks of single-variant association analysis is desirable.

Previous studies have attempted to overcome the limita-
tions of single-variant association analysis through the appli-
cation of fine-mapping methods (Servin and Stephens 2007;
Hormozdiari et al. 2014; Kichaev et al. 2014). Although these
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approaches have been shown to be more effective than sin-
gle-variant association analysis, they have two major draw-
backs: (1) they are computationally intensive as each
combination of variants must be tested for causality sepa-
rately, and, hence, to limit the number of variants examined
at a locus, the 100 highest ranked variants from a single-
variant association analysis are typically used as input
(Chiang et al. 2017); and (2) the number of causal eQTL
variants at a locus must be specified as a parameter a priori,
which results in the analysis being biased toward a defined
number of causal eQTL variants.

Recently, sparse polygenic modeling approaches, which
assumeonly a small fraction of genetic variants are causal for
altering gene expression levels, have been shown to have
higher power and better predictive performance over single-
variant association analysis in yeast eQTL studies (Lee et al.
2009; Cheng et al. 2016); however, their ability to identify
human eQTLs has yet to be studied in depth. Several of
these models’ properties suggest that they may better prior-
itize causal eQTL variants than single-variant association
analysis in human studies, the most important of which is
their ability to estimate the effect sizes of variants jointly,
rather than independently, thereby taking LD structure
into account as a correlation between variables. This joint
modeling suggests they possibly could identify multiple
causal eQTL variants per gene, and discriminate functional
variants from nonfunctional variants in LD. Furthermore, as
some of these models learn the number of causal eQTL var-
iants from the data, rather than using an a priori specified
parameter, more low-frequency variants possibly could be
identified.

In this paper, we compared three sparse polygenic
models for eQTL SNP discovery—Lasso (Tibshirani
1996), Elastic Net (Zou and Hastie 2005), and BSLMM
(Zhou et al. 2013)—to the BIMBAM fine mapping method
(Servin and Stephens 2007) and single-variant association
analysis. Through simulated analysis with varying scenar-
ios, we found that BSLMM consistently outperformed all
other methods at prioritizing multiple causal eQTL vari-
ants. We also applied all three sparse polygenic models
to RNA-seq and whole-genome sequencing (WGS) data
of 131 induced pluripotent stem cell (iPSC) samples, and
observed that variants prioritized by BSLMM were more
likely causal as they were highly enriched in iPSC DNase
I hypersensitive sites (DHSs); more deleterious on aver-
age; more likely to be low-frequency [minor allele frequen-
cies (MAF) ,5%]; and often plausibly regulatory as they
were located in functional elements. Finally, we compared
the efficacy of BSLMM and single-variant association anal-
ysis across the same metrics using SNP array data, and
found that BSLMM outperformed single-variant associa-
tion analysis for genes with multiple independent eQTL
SNPs. Overall, our results show that BSLMM outperforms
single-variant association analysis at prioritizing low fre-
quency variants, likely regulatory variants, and multiple
causal eQTL variants at the same gene.

Materials and Methods

Linear additive model of gene expression

In our simulation data analysis, we assume a simple linear
additive model for gene expression

y ¼ Xbþ e (1)

where y = {yn} is an N3 1 vector of gene expression data, N
is the sample size, X = {xnm} is an N 3 M genotype matrix
normalized with mean zero and variance 1, b = {bm} is an
M3 1 vector of per-normalized-genotype effect size,M is the
number of causal eQTL variants, and e = {en} is an N 3 1
vector of random noise. For simplicity, we assume that
per-normalized-genotype effect sizes for variants are
drawn from the distribution

bm � Nð0; h2�MÞ (2)

where h2 (the narrow-sense heritability) is formally defined
as the ratio of expectation of the proportion of phenotypic
variances explained by genotypes, as previously described
(Guan and Stephens 2011). We also assume that X, b, and e
are mutually independent. Since columns of X are normalized
with mean and variance 1, the expected value of VðXbÞ can be
calculated as

E½VðXbÞ� ¼
XN
n¼1

XM
m¼1

b2
mx

2
nm ¼

XM
m¼1

VðbmÞ ¼ h2

and random noise is drawn from the distribution (3)

en � Nð0; 12 h2Þ: (4)

Under this polygenic model, where genotypes are normalized
to mean zero and variance 1, effect sizes are drawn indepen-
dently from distributions with variance proportional to
1 = ðfð12 f ÞÞ; where f is the MAF of the variants with the
assumption that rarer variants tend to have larger effect sizes
than common variants (Bulik-Sullivan et al. 2015).

Simulated data generation

We extracted biallelic single nucleotide polymorphisms
(SNPs) with MAF .1.0% segregating in the European pop-
ulation (503 individuals) in the 1000 Genomes Projects
Phase 3 data (Auton et al. 2015), following which a Hardy-
Weinberg Equilibrium test was conducted and SNPs with
P-values#1.03 1025 were filtered out. For each simulation,
we selected the number of causal variants per gene (1, 2, 5, or
10), the narrow-sense heritability for each gene (20% or
60%), and assumed that “true” causal eQTL variants were
located within 1 Mb of the gene’s transcription start site
(TSS). Within each simulation, for each gene, SNP positions
were randomly chosen so that the distance from TSS to
the causal eQTL variants followed an empirical distribu-
tion constructed from a previous large-scale eQTL study
(Lappalainen et al. 2013), SNP effect sizes were drawn
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independently from the distribution described by Equation
(2) such that per-normalized-genotype effect size was pro-
portionally distributed across causal eQTL variants for
each gene, and gene expression level was generated from
Equation (1).

Whole-genome sequence and RNA-seq data of
iPSC samples

WGS data of 215 individuals in the iPSCORE (iPSC Collection
for Omic Research) cohort (Panopoulos et al. 2017), and
RNA-seq data of the iPSC samples generated from the corre-
sponding individuals (DeBoever et al. 2017), were obtained.
All samples from the iPSCORE resource were obtained from
consented individuals under the approval of the Institutional
Review Boards of the University of California, San Diego. The
reads from WGS were aligned to human genome hg19 with
decoy sequences using BWA-MEM (Li and Durbin 2009) as
previously described (DeBoever et al. 2017). Briefly, dupli-
cate reads were marked in BAM format, variant calling was
performed using HaplotypeCaller, and the genotyping quality
of SNVs and indels were assessed using the Variant Quality
Score Recalibration (VQSR) approach implemented in GATK
(Van der Auwera et al. 2013).

Transcripts per million (TPM) were estimated with RSEM
(Li et al. 2010) from RNA-seq data of each sample, followed
by quantile normalization using normalize.quantiles in the
preprocessCore R package. Then, for each gene, the expres-
sion values were rank normalized to mean zero and variance
one. Finally, the top 15 PEER factors were regressed out from
the expression values, and the remaining residuals were used
for the eQTL analysis.

From the obtained genotypes of the 215 individuals, the
kinship coefficients were calculated by EPACTS (http://csg.
sph.umich.edu/kang/epacts/), and 131 unrelated individu-
als were selected such that the kinship coefficients
were ,0.05 for all pairs of individuals. We conducted a
Hardy-Weinberg Equilibrium test and obtained 10,111,635
biallelic SNPs with P-value #1.0 3 1025 and MAF .1%
with VCFtools (version 0.1.14) (Danecek et al. 2011), which
were used for eQTL SNP discovery.

eQTL discovery from gene expression and genotype data

We obtained 17,819 expressed autosomal genes, in
which $10 samples have TPM .1. Then, we extracted all
the biallelic SNPs located 61 Mb surrounding the transcrip-
tion start site (TSS), which resulted in 6215 SNPs per gene on
average. For single-variant association analysis, FastQTL
(Ongen et al. 2016) version 2.184 was used to obtain the
significance values for each eQTL SNP per gene at
FDR ,5%. First, nominal P-values were calculated with lin-
ear regressions between sample genotypes at each SNP and
expression level, and then corrected P-values were obtained
for the most significant eQTL SNPs by performing 1000 per-
mutations followed by b approximations (Ongen et al. 2016).
Then, from the set of all permutation P-values, FDR was

calculated to determine significant eQTL SNPs by Benjamini
and Hochberg correction.

For sparse polygenicmodeling approacheswith Elastic Net
and Lasso, genotypes were coded in 0, 1, or 2, after missing
genotypes in VCF format were converted to reference alleles.
Then, for each SNP site, coded genotypes of individuals were
normalized to mean zero and variance one. We assumed a
simple linear additivemodel for gene expression as in (1), and
the R package glmnet (Friedman et al. 2010) was used to
apply Lasso and Elastic Net for variable selection and joint
estimation of effect sizes. The tuning parameter lambda was
estimated by 10-fold cross validation for each gene, as imple-
mented in glmnet. As a result, per-normalized-genotype
effect sizes for variants were estimated and used in our anal-
ysis. The assumptions underlying the degree of polygenicity
for gene expression is another parameter that may affect pre-
diction performance with sparse polygenic modeling ap-
proaches. In Elastic Net, the mixing parameter a controls
polygenicity, ranging from a small number of variants when
a is close to one (the algorithm performs like Lasso), to all the
variants when a is close to zero (the algorithm performs like
Ridge), and can be set somewhere in between (0,a, 1)
(Zou and Hastie 2005). For Elastic Net, we use a ¼ 0:5 in
our data analyses, assuming that, for most genes, the number
of cis-regulatory variants affecting gene expression is sparse,
as previously suggested (Wheeler et al. 2016). For both Lasso
and Elastic Net, we ranked SNPs by the absolute values of
their effect sizes.

For the sparse polygenic modeling approach BSLMM,
GEMMA software (http://www.xzlab.org/software/gemma-
0.94.1/gemma) was used (Zhou et al. 2013) to obtain the
posterior mean estimate of effect size. BSLMM assumes a lin-
ear mixed model with a random effect term:

y ¼ 1nmþ Xb~þ uþ e (5)

where y = {yn} is an N3 1 vector of gene expression data, N
is the sample size, 1n={1} is an N 3 1 vector of 1 s, m is a
scalar representing mean, X = {xnm} is an N 3 M genotype
matrix (coded as 0, 1, or 2, and then centered with
mean zero), M is the number of variants,ebi � pNð0;s2

at
21Þ þ ð12pÞd0 is an M 3 1 vector of sparse

effect size, u � MVNnð0;s2
bt

21KÞ is an N 3 1 vector of ran-
dom effects, K is an N 3 N kinship matrix, e = {en} is an
N 3 1 vector of random noise, and ðm; t;p;sa; and sbÞ are
unknown hyper-parameters. The main difference between
the generic mixed model (5) and the generic linear model
(1) is the additional random effect term u;which captures the
combined small effects of all markers, and, as it is modeled
as a multivariate-normal distribution, includes a covariance
term for each pair of samples. BSLMM assumes that a few
SNPs have large effect sizes, and that the other SNPs have
small effect sizes, to simultaneously estimate the effect sizes
of all cis-SNPs by estimating the posterior distribution of each
parameter with the MCMC algorithm based on a sparse re-
gression model (5). It is important to note that the use of the
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MCMC algorithm can produce uneven estimation of effect
sizes for variants in extreme LD, which results in a somewhat
random prioritization of such variants. After applying BSLMM,
the associated variants were ranked by absolute values of the
posterior mean of the estimated effect sizes.

For Bayesian fine-mapping, we utilized BIMBAM version
1.0 (http://www.haplotype.org/bimbam.html). To measure
the evidence for genetic association, a Bayes factor (BF) was
calculated for each variant by finding the likelihood ratio of
H1 (variant is causal) toH0 (variant is not causal) (Servin and
Stephens 2007). Given a prior distribution on the number of
causal eQTL variants, pðlÞ}0:5l; where l is the number of
causal variants, the BF of a particular SNP sm being causal
is calculated as:

BFðsmÞ ¼
XL
l¼1

pðlÞ 1�
N
l

� X
ðs1;...;slÞ2cðl;NÞ;sm2ðs1;...;slÞ

BFðs1; . . . ; slÞ

where L is the maximum number of causal eQTL variants
(to keep computation feasible, we used five), N is the total
number of cis-eQTL SNPs [to keep computation feasible, we
used the 100 highest ranked eQTL SNPs from single-variant
association analysis, as conducted previously (Chiang et al.
2017)], and cðl;NÞ denotes the ensemble of all possible
combinations of l SNPs. We ranked the eQTL SNPs based
on their BF in descending order.

Computational time for eQTL analysis with sparse
polygenic models

BSLMM required 959 sec (16 min), whereas single-variant
association analysis (FastQTL), Elastic Net, and Lasso, re-
quired 4, 17, and 18 sec, respectively, on average per gene
on a computer with an Intel E5-2640 processor (2.60 GHz)
with the CentOS release 6.6. Since BSLMM uses the Markov
Chain Monte Carlo (MCMC) algorithm to estimate the pos-
terior distributions of parameters, it gains prediction accu-
racy at the cost of computational time.

Annotation of DHSs and ChIP-seq peaks

Wedownloaded thenarrowpeakbedfilesofDHSs,H3K4me3,
H3K4me1, and H3K27ac ChIP-seq data of Homo sapiens iPS
DF 6.9 induced pluripotent stem cell line male newborn
(Roadmap Epigenomics et al. 2015) from the Roadmap Epi-
genomics Mapping Consortium web portal (http://egg2.
wustl.edu/roadmap/web_portal/processed_data.html). We
downloaded the narrow peak bed files of OCT4 and NANOG
ChIP-seq data of Homo sapiens H1-hESC stem cell male
embryo from the ENCODE Project website (https://www.
encodeproject.org/) (accession numbers ENCFF002CJF and
ENCFF002CJA, respectively).

Functional analysis of eQTL SNPs

To determine the enrichment of eQTL SNPs within DHSs,
we determined background frequency as follows: (1) we
obtained 3442 eQTL SNPs from single-variant association

analysis with FastQTL at 5% FDR; (2) for each eQTL SNP,
we extracted the surrounding 5 kb genomic region
(62.5 kb) excluding 6100 bp immediately surrounding
the SNP position; and (3) we measured the frequency of
DHSs within these genomic regions. To assess the delete-
riousness of eQTL SNPs, we downloaded Combined An-
notation Dependent Depletion (CADD) scores of all SNPs
in GRCh37/hg19 from (http://cadd.gs.washington.edu/
download).

Genotype imputation

To simulate Illumina Omni2.5 genotyping array (ftp://ftp.
illumina.com/Downloads/ProductFiles/HumanOmni25/
v1-1/HumanOmni2-5-8-v1-1-C.csv) data, we extracted the
genotypes at the corresponding SNP sites from the iPSCORE
WGS data. In total, 1,616,286 biallelic SNP sites were extracted
out of 10,111,635 biallelic SNP sites discovered from the
whole genome sequence data. From the extracted genotypes,
genotypes were imputed with IMPUTE2 (Howie et al. 2009)
using the 1000 Genomes Phase 3 reference panel (Auton
et al. 2015). Imputed variants with an INFO score.0.4 were
retained, and variants deviating from Hardy-Weinberg equi-
librium (P-value #1.0 3 1025) were filtered out.

Data availability

All simulated data are available by request to the correspond-
ing author. Genotype calls from the whole genome sequence
data are available through NCBI dbGaP: phs001325.v1.p1.
The RNA sequencing data are available through dbGaP:
phs000924.v1.p1.

Results

Generation of simulated data for input to eQTL analyses

To investigate the ability of sparse polygenic modeling ap-
proaches to identify causal eQTL variants, we simulated gene
expressiondata forhypothetical samplesundera simple linear
model, basedon real genotypes fromtheEuropeanpopulation
in the 1000 Genomes Projects Phase 3 data (Auton et al.
2015). We simulated expression data with a combination of
various parameters including the number of causal eQTL var-
iants per gene (1, 2, 5, or 10), the number of samples (503 or
100), and narrow-sense heritability of gene expression data
(20% or 60%). These simulated expression levels and their
corresponding SNPs were used as input data for association
analyses performed with the three sparse polygenic models
and the single-variant association analysis; however, due
to computational constraints for BIMBAM, the highest 100
ranked SNPs by single-variant association analysis at each gene
were used as input.

Performance metrics of eQTL discovery

Toassess theability of eachmodel toaccurately identify causal
eQTL variants, we calculated the precision-recall (PR) curves
using the simulated datasets. To identify positively associated
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eQTL SNPs, we ranked the eQTL SNPs identified by each
method as follows, and selected the N highest ranked SNPs:
we ranked single-variant association analysis eQTL SNPs by
statistical significance (P-values) and effect size, Elastic Net
and Lasso eQTL SNPs by the absolute values of estimated
effect sizes, BSLMM eQTL SNPs by the absolute values of
posterior mean of effect size, and BIMBAM eQTL SNPs by
BF. For all simulated data sets, including those with multiple
causal eQTL variants per gene, we define precision as the
fraction of identified eQTL SNPs that are truly causal, and
recall as the fraction of truly causal eQTL variants that are
identified. For example, if we simulate two truly causal eQTL
SNPs per gene, and use the 20 highest ranked SNPs
(N = 20), there are a total of 2000 true eQTL SNPs across
the 1000 genes, and a total of 20,000 eQTL SNPs; therefore,
if we identify 1500 of the 2000 true eQTL SNPs, our precision
is 0.075 (1500/20,000) and recall is 0.75 (1500/2000).

To determine the range of the PR parameter to use in our
analyses (i.e., the number of N highest ranked eQTL SNPs
considered as positive associations), we measured the ability
of each model to identify at least one causal eQTL variant at a
gene when we simulated either 1, 2, 3, or 10 causal eQTL
variants at each gene (Supplemental Material, Figure S1 in
File S1). We noted that, for all numbers of simulated causal
eQTL variants, the curves plateaued at �20, indicating that
considering more than the 20 highest ranked eQTL SNPs
would result in a large loss of precision and only a small gain
in recall. We therefore parameterized the PR curves from the
highest ranked eQTL SNP (the top eQTL SNP), to the 20 high-
est ranked eQTL SNPs at each of the 1000 genes.

Comparing the performance of sparse polygenic models
to that of fine-mapping and single-variant
association analysis

Todetermine theabilityof eachassociationanalysis to identify
causal eQTL variants, we initially measured the precision and
recall of each method on 503 simulated samples with 60%
gene expression heritability and either 1, 2, 5, or 10 causal
eQTL variant(s) per gene. We examined the PR curves for
single-variant association analysis eQTL SNPs ranked by ei-
ther effect size or P-value, and observed a consistently higher
recall rate when ranking by P-value (Figure 1); we therefore
only compared the single-variant association analysis P-value
ranked eQTL SNPs with the sparse polygenic models and
BIMBAM.

We examined precision when only the top eQTL SNP
was considered: all models had precision of �50%
(range:43–49%; Figure 1A), likely due to noncausal variants
in LD with the causal variant showing association signals of
similar strength, a common problem in GWAS (Malo et al.
2008). We then examined the PR curves of each method with
a single simulated casual eQTL variant, considering the
20 highest ranked eQTL SNPs per gene. BSLMM, BIMBAM,
and single-variant association analysis identified �83% of
the causal eQTL variants across the 1000 genes; however,
Elastic Net and Lasso performed less well with 76% and

54% recall, respectively (Figure 1A), likely due to the two
models conducting shrinkage, thereby identifying a small
subset of eQTL SNPs at each gene on average (Elastic
Net:16.3; Lasso:2.3) (Tibshirani 1996).

We next examined the ability of each method to identify
either 2, 5, or 10 simulated causal eQTL variants at each gene.
As expected, for all numbers of causal eQTL variants, the
sparse polygenic models and BIMBAM all had higher recall
than single-variant association analysis for any value of pre-
cision (Figure 1, B–D), most likely due to the ability of these
models to associate multiple variants simultaneously, rather
than associating each variant individually as in single-variant
association analysis. Out of all five models, BSLMM consis-
tently achieved the highest precision and recall along all
points on the PR curve; for example, BSLMM outperformed
single-variant association analysis in recall by 1.6- to 5.2-fold
at 20% precision (Figure 1, B–D). Additionally, while BIMBAM
outperformed single-variant association analysis, it per-
formed worse than the three sparse polygenic models at
almost all points on the PR curve, most likely due to the need
to limit its input data to the 100 highest ranked eQTL SNPs
identified by single-variant association analysis for computa-
tional feasibility. Specifically, the 100 highest ranked single-
variant association analysis eQTL SNPs only contained
70.4%, 45.5%, and 32.5% of the truly causal eQTL variants
with 2, 5, or 10 simulated causal eQTL variants, respectively;
therefore, these values were an upper bound on the number
of causal eQTL variants that could be identified by BIMBAM.
Furthermore, the sparse polygenic models identify low-
frequency variants as the top eQTL SNP more often than
single-variant association analysis (Figure S2 in File S1).
Specifically, considering only the top eQTL SNP, BSLMM
identified 1.2-, 1.9-, and 2.3-fold more low frequency var-
iants than single-variant association analysis for 2, 5, or
10 causal variants, respectively. These data show that, be-
tween the three sparse polygenic models, BSLMM achieved
the best performance throughout its PR curve, followed by
Elastic Net, and then Lasso.

Overall, we found that the three sparse polygenic models
performed as well as, or, in most cases, better than, fine-
mapping and single-variant association analysis. This held
true even under the ideal case for single-variant association
analysis where there was only one causal eQTL variant per
gene; we therefore proceeded to only compare the three
polygenic models. The differences between the performance
of the three sparse polygenic models is partly due to the fact
that they handle the sparseness (polygenic) parameter dif-
ferently; BSLMM was flexible as it learned the degree of
polygenicity as a model parameter (Zhou et al. 2013),
whereas Elastic Net had a set parameter to describe polyge-
nicity and Lasso assumed a sparse model (Materials and
Methods). Lasso’s underperformance compared with Elastic
Net is not only due to strong shrinkage, but also due to it
selecting only one of multiple variants in strong LD; thus, if
there are two ormore truly causal eQTL variants in strong LD,
all but one will be missed during the variant selection process
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(Zou and Hastie 2005). Conversely, as BSLMM and Elastic
Net distribute effects across variants in LD, they can identify
multiple causal eQTL variants at a gene evenwhen they are in
strong LD.

Determining the similarity of eQTL SNPs identified by
each model

To quantify the similarity between the eQTL SNPs identified
by the different models, we found the overlap of the eQTL
SNPs identified by each sparse polygenic model with those
identified by single-variant association analysis when we
simulated either one or five causal eQTL variants (Figure
S3 and Figure S4 in File S1). When simulating a single causal

eQTL variant, and considering only the top eQTL SNP iden-
tified with each method, we found moderate overlap be-
tween single-variant association analysis, and each of the
three sparse polygenic models (BSLMM 588 SNPs; 58.8%;
Elastic Net 569 SNPs; 62.9%; Lasso 604 SNPs; 65.6%; Figure
S3A in File S1). Interestingly, the magnitude of overlap be-
tween the sparse polygenic models and single-variant associ-
ation analysis was larger than the recall of single-variant
association analysis (45%; Figure 1A), suggesting that the
models tend to choose the same incorrect eQTL SNPs. When
considering the 20 highest ranked eQTL SNPs identified by
each method, the percentage of overlapping eQTL SNPs with
single-variant association analysis decreased for BSLMM

Figure 1 Prediction performance for identifying causal eQTL variants from simulation data of 503 samples with 60% heritability. PR curves parametrized
by the number of highest ranked eQTL SNPs (ranging from 1 to 20) at 1000 randomly selected genes. (A) One causal eQTL variant per gene. (B) Two
causal eQTL variants per gene. (C) Five causal eQTL variants per gene. (D) Ten causal eQTL variants per gene.
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(7490 SNPs; 37.5%) and increased for Elastic Net
(7765 SNPs; 79.3%) and Lasso (1862 SNPs; 79.6%) (Figure
S3B in File S1). This decrease for BSLMM is likely due to it
jointly associating variants with gene expression, and these
increases for Elastic Net and Lasso are likely due to the
shrinkage performed by them. When identifying five simu-
lated causal eQTL variants, the eQTL SNPs identified by the
sparse polygenic models had relatively low overlap with
those identified by single-variant association analysis, re-
gardless of whether only the top eQTL SNP was considered
(range: 35.1–53.7%), or if the 20 highest ranked eQTL SNPs
were considered (range: 33.0–49.6%) (Figure S4 in File S1).
Overall, these analyses reveal that the eQTL SNP sets chosen
by the various models are substantially different.

BSLMM performs robustly under suboptimal conditions

We examined how well sparse polygenic models performed
compared to single-variant association analysis under sub-
optimal conditions. With either few samples (100) or low
heritability (20%), all methods performed similarly with one
simulated causal eQTL variant per gene; however, BSLMM
had the highest precision and recall as the number of simu-
lated causal eQTL variants increased (Figure S5 and Figure S6
in File S1). When simulating both few samples and low her-
itability, BSLMM and single-variant association analysis had
similar precision and recall regardless of the number of sim-
ulated causal eQTL variants (Figure S7 in File S1). These
results show that BSLMM performs equally well or better
than single-variant association analysis under suboptimal
experimental conditions.

Overall, using simulated data, BSLMM and single-variant
association analysis performed similarly when there was one
causal eQTL variant per gene, but BSLMM performed better
when there were multiple causal eQTL variants per gene,
likely due to it intrinsically capturing LD structure through
multiple regression, learning the degree of polygenicity from
the data, and identifying low-frequency eQTL SNPs.

eQTL SNP discovery from 131 iPSC samples

To assess the ability of sparse polygenic models to identify
causal eQTL variants in real data, we identified eQTL SNPs
from gene expression data from 131 iPSC samples and WGS
datagenerated fromthecorresponding individuals enrolled in
the iPSCORE cohort (DeBoever et al. 2017; Panopoulos et al.
2017) (Materials and Methods). With single-variant associa-
tion analysis, we identified 3442 out of 17,819 expressed
autosomal genes with at least one associated SNP within
1 MB of the TSS at 5% FDR. Among the 3442 eGenes,
2237 had a single eQTL SNP, and 205 had two independent
eQTL SNPs (identified by conditioning on the genotype of the
highest SNP at 5% FDR). For each of the three sparse poly-
genic models, we quantified how many eQTL SNPs were
identified for the 3442 eGenes identified by single-variant
association analysis, and measured the extent to which
each set of eQTL SNPs overlapped with those identified with
single-variant association analysis. As BSLMM gives weight

to the most likely SNP tested at each gene (22,095,885 SNP-
gene pairs in total), it identified at least one eQTL SNP for
each of the 3442 eGenes; elastic net identified 47,285 SNP-
gene pairs for 2728 (79%) of the eGenes, and Lasso identified
11,314 SNP-gene pairs for 2777 (81%) of the eGenes. Nota-
bly, due to shrinkage, Lasso and Elastic Net identified ,20
eQTL SNPs for each eGene on average (Elastic Net: 16.1;
Lasso; 3.7), similar to the simulation data. These results show
that the three sparse polygenic models identify eQTL SNPs
for the majority of the genes with significant associations
identified with single-variant association analysis.

Overlap analysis of eQTL SNPs

We examined the similarity in the eQTL SNPs identified by
each of the three sparse polygenic models and single-variant

Figure 2 eQTL variant discovery from 131 iPSC samples with BSLMM,
Elastic Net, Lasso, and single-variant association analysis. MAF spectrum
of candidate eQTL SNPs identified with BSLMM, Elastic Net, Lasso, and
single-variant association analysis for (A) genes with only one eQTL, and
(B) genes with more than one independent eQTL. Enrichment of the
identified eQTL SNPs, with varying ranked thresholds (from 1 to 20 per
gene), in DHSs for (C) genes with only one eQTL, and (D) genes with more
than one independent eQTL. Deleteriousness of the identified eQTL var-
iants measured by CADD score for (E) genes with only one eQTL, and (F)
genes with more than one independent eQTL.
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association analysis. Considering only the top SNP at each of
the 3237 eGenes with one eQTL SNP, the three sparse poly-
genicmodels all showedmoderate overlapwith single-variant
association analysis (BSLMM 1684 SNPs; 52.2%; Elastic Net
1532 SNPs; 60.7%; Lasso 1684 SNPs; 65.5%; Figure S8A in
File S1). Considering the 20 highest-ranked eQTL SNPs, the
percentage of overlapping eQTL SNPs increases for BSLMM
(36,483 SNPs; 56.4%) and Elastic Net (18,966 SNPs;
71.6%), and stays approximately the same for Lasso
(5757 SNPs; 64.1%) (Figure S8B in File S1), similar to the
simulated data. For the 205 eGenes with more than one in-
dependent eQTL SNP, the top SNP identified with BSLMM
overlapped less (71 SNPs; 34.6%) with those identified by
single-variant association analysis compared to Elastic Net
(97 SNPs; 47.5%) and Lasso (128 SNPs; 62.4%) (Figure
S9A in File S1). When the 20 highest ranked variants are
considered, eQTL SNPs identified with BSLMM (1722 SNPs;
42.0%) and Elastic Net (1900 SNPs; 57.6%) are more over-
lapping, while those identified with Lasso (735 SNPs; 44.4%)
are less (Figure S9B in File S1). These results show that when
there is more than one independent eQTL SNP per gene, the
variants identified with each of the sparse polygenic models
have relatively low overlap with the variants identified with
single-variant association analysis (34.6–62.4%), similar to
the simulated data. This low level of overlap is expected, as
the sparse polygenic models can identify multiple causal
SNPs jointly per gene, whereas single-variant association
analysis cannot. These overlap analyses show that while
the three polygenic models identify eQTL SNPs for the ma-
jority of eGenes identified with single-variant association
analysis, many of the identified eQTL SNPs are different.

BSLMM identifies more eQTL SNPs with low MAF

To assess the ability of each method to identify low-frequency
eQTL SNPs,we compared theMAFof the eQTLSNPs identified
with single-variant association analysis to those identified by
the three sparse polygenic models. While both BSLMM and
single-variant association analysis identified an eQTL SNP at
each eGene, more BSLMM highest ranked eQTL SNPs (240,
7.6%) were low-frequency compared to single-variant associ-
ation analysis highest ranked eQTL SNPs (166, 5.1%; Figure
2A). On the other hand, Elastic Net and Lasso discovered eQTL
SNPs for�80% of the eGenes, and the MAF distribution of the
variants identified were similar to those identified by single-
variant association analysis (Figure 2, A and B). The difference
between the number of identified low frequency eQTL SNPs
with BSLMM and single-variant association analysis was more
pronounced at the 205 eGenes with more than one indepen-
dent eQTL: 30 (14.6%) of the highest ranked eQTL SNPs by
BSLMM were low frequency (MAF ,5%), compared to seven
(3.4%) identified with single-variant association analysis (Fig-
ure 2B). This difference is likely from prioritizing eQTL SNPs
from single-variant association analysis by P-value, which is
lower for high frequency variants (Wakefield 2009), and pri-
oritizing eQTL SNPs from BSLMM by effect size, which is less
likely to be affected by allele frequency.

Functional characterization of eQTL SNPs

Weevaluatedthepotential functional impactof identifiedeQTL
SNPs by examining how likely they were to affect gene regu-
lation by measuring overlap with iPSC DHSs (Degner et al.
2012), and their deleteriousness based on CADD score
(Kircher et al. 2014). At genes with a single eQTL SNP per

Figure 3 Identification of genes with heritable expression levels. Genes ranked based on the significance level of the highest ranked eQTL SNP. The
x-axis shows the ranking of genes, and the y-axis shows the narrow-sense heritability estimated with BSLMM. Genes with more than one independent
eQTL (orange squares) tend to have higher heritability than those with only one eQTL (black circles).
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eGene,when considering only the highest ranked eQTL SNPper
eGene, similar DHS enrichment (range: 1.78- to 1.89-fold) and
mean CADD scores (range: 4.73–4.81) were observed across all
models. When considering the 20 highest ranked eQTL SNPs,
Elastic Net and Lasso identified eQTL SNPs with higher DHS
enrichment (Figure 2C) and mean CADD scores (Figure 2E)
than those identified with single-variant association analysis
and BSLMM. These observations are most likely due to the
shrinkage Elastic Net and Lasso perform, and suggest that they
tend to only identify the most strongly associated eQTL SNPs,
which, in turn, are expected to have higher DHS enrichment
and mean CADD scores (Figure 2, C and E). At the 205 eGenes
with more than one independent eQTL SNP, BSLMM identified
substantially more variants overlapping DHSs than all other
methods when considering the single highest ranked eQTL
SNP (BSLMM 33, single-variant association analysis 22; Figure
2D), and had the highest mean CADD scores (Figure 2F). In-
terestingly, 33% of the highest ranked BSLMM eQTL SNPs in
DHS peaks had a MAF ,10%, compared to 18% from single-
variant association analysis. When considering the 20 highest
ranked variants, variants identified by the three sparse poly-
genic models had higher overlap with DHSs and higher mean
CADD scores (Figure 2, D and F); across most of the ranked
thresholds, BSLMM eQTL SNPs showed the highest CADD
scores. BSLMM’s superior performance is most likely due to
ability to capture LD, and the shrinkage performed by Elastic
Net and Lasso; we therefore primarily focused on comparison
between single-variant association analysis and BSLMM for the
following analyses.

Gene expression heritability analysis

One of the important purposes of an eQTL study is to charac-
terize the heritability of gene expression levels. BSLMM can
estimate narrow-sense heritability of genes by estimating the
proportion of variance in phenotypes explained (PVE) (Zhou
et al. 2013); we therefore examined the heritability of expres-
sion for each of the 17,819 expressed autosomal genes with
BSLMM using the genotypes of the cis-SNPs within 1 Mb of
each gene’s TSS. Out of the 17,819 genes, 2264 had a
heritability .0.2, and 2168 (95.8%) of these were also identi-
fied as eGenes at FDR ,5%. In general, we observed a high
correlation between the BSLMM estimated heritability of gene
expression and the significance of eQTL SNPs from single-
variant association analysis (Spearman’s rank correlation: 20.73,
P-value ,1.0 3 1023, Figure 3), suggesting highly heritable
genes are likely to be identified with single-variant association
analysis as eGenes, and vice versa. Interestingly, we found that
genes with more than one independent eQTL SNP had larger
heritibilities on average (0.51) than eGenes with one eQTL SNP
(0.26), suggesting that BSLMM may be able to identify a larger
number of highly heritable genes.

Prioritization of eQTL SNPs associated with pluripotency
marker gene expression

To further investigate how BSLMM performed compared to
single-variant association analysis, we examined intervals

encoding nine previously identified pluripotency marker
genes (Tsankov et al. 2015) known to be functionally impor-
tant in human pluripotent stem cells. Single-variant associa-
tion analysis identified eQTL SNPs for five of the genes that
had relatively high heritability estimates with BSLMM: OCT4
(heritability = 0.442), CXCL5 (heritability = 0.444), IDO1
(heritability = 0.293), HESX1 (heritability = 0.084), and
SOX2 (heritability = 0.117). The other four genes, DNMT3B
(heritability = 0.039), LCK (heritability = 0.046), TRIM22
(heritability = 0.0898), and NANOG (heritability = 0.069),
did not have significant eQTL SNPs at FDR ,5%.

We ranked candidate eQTL SNPs with both BSLMM and
single-variant association analysis at the interval encoding
OCT4, a factor used in the reprogramming iPS cells (Takahashi
et al. 2007); Figure 4A and B). The highest ranked BSLMMeQTL
SNP at chr6:31139490 had a relatively high effect size (0.312),
andwas in relatively low LDwith the second highest ranked SNP
at chr6:31133509 that had amuch lower effect size (,0.20).We
examined the functional annotations of the interval and found
that the highest ranked SNP was located in an interval overlap-
ping an iPSC DHS site, and was near multiple NANOG binding
sites, suggesting thatOCT4has at least one, andmaybe two (with
one in each LDgroup), independent eQTL SNP(s). Single-variant

Figure 4 eQTL variants identified associated with OCT4 expression. Var-
iants are color-coded based on the strength of LD with the most highly
associated eQTL (purple diamond). (A) BSLMM ranked eQTL SNPs with
varying effect sizes as candidate eQTL variants including chr6:31139490
and chr6:31133509. (B) Single-variant association analysis identified a
SNP located on chr6:31132649 as the most significantly associated eQTL
SNP, whereas the eQTL SNP located on chr6:31139490 was identified as
the sixth significantly associated variant. (C) Genomic regions annotated
with H1-hESC OCT4 and NANOG binding site, iPSC histone marks
(H3K4me3, H3K4me1, and H3K27ac), and iPSC DHSs. (D) Genomic co-
ordinates of OCT4 and surrounding genes in hg19.
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association analysis (Figure 4B) identified a different SNP,
chr6:31132649, as the most significantly associated variant
(P-value = 1.83 3 10214); notably, there were three other
variants that were in high LD with chr6:31132649 and had sim-
ilar P-values. For IDO1, BSLMM identified two candidate eQTL
SNPs in strong LD. The variant with the second largest effect size
(chr8:39807281) overlapped both an iPSC DHS and H1 hESC
OCT4 binding site (Figure S10 in File S1), and was also identi-
fied as the highest ranked SNP with single-variant associa-
tion analysis. For CXCL5, single-variant association analysis
identified four variants tied with the lowest P-value (1.68 3
10215)—chr4:74857970, chr4:74858051, chr4:74858300, and
chr4:74858488—and identified two variants—chr4:74864687
and chr4:74863997—tied with the second lowest P-value
(4.70 3 10215). BSLMM identified the same set of candidate
eQTL SNPs at CXCL5, though the exact ranking of the six SNPs
was slightly different (chr4:7485488, chr4:74858300, chr4:74857970,
chr4:74864687,chr4:74858051,andchr4:74863997)due to the ran-
dom sampling that occurs in the MCMC algorithm that BSLMM
uses (Materials and Methods). Although all candidate SNPs were
in strong LD, and had relatively large effect sizes, two of them
(chr4:74863997 and chr4:74864687) were located in an iPSC

DHS site (Figure 5). While neither method precisely pinpointed
the causal eQTL variant in the CXCL5 interval, BSLMM provided
a much narrower candidate list based on effect size for further
validation.

BSLMM outperforms single-variant association analysis
using SNP array data

Given that most eQTL studies conducted to date used SNP
array data instead of WGS data, we evaluated the ability of
BSLMM to prioritize eQTL SNPs using imputed genotypes
from a SNP array (The GTEx Consortium 2015). We gener-
ated a synthetic array data set in which genotypes at SNP
sites on the Illumina Omni2.5 genotyping array were extract-
ed from the genotype data generated from the WGS data of
the 131 individuals, and subsequently imputed genotypes
from the haplotypes of the individuals in the 1000 Genomes

Figure 5 eQTL variants identified as associated with CXCL5 expression.
Variants are color-coded based on the strength of LD with the most highly
associated eQTL (purple diamond). (A) BSLMM prioritized six eQTL SNPs,
including chr4:74863997, and chr4:74864687 which are in a DHS. (B)
Single-variant association analysis identified the eQTL SNP located on
chr4:74857970 as the most significantly associated variant. (C) Genomic
regions annotated with iPSC histone marks (H3K4me3 and H3K4me1),
and iPSC DHSs. (D) Genomic coordinates of CXCL5 and surrounding
genes in hg19.

Figure 6 Comparison of eQTL variant discovery from WGS with simu-
lated SNP array data. MAF spectrum of candidate eQTL SNPs identified
with BSLMM or single-variant association analysis, from either from WGS
or synthetic SNP array data, for: (A) genes with only one eQTL, and (B)
genes with more than one independent eQTL. Enrichment of ranked
eQTL variants in DHSs for (C) genes with only one eQTL, and for (D) genes
with more than one independent eQTL. Deleteriousness of the identified
eQTL variants measured by CADD score for (E) genes with only one eQTL,
and for (F) genes with more than one independent eQTL.
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Project Phase 3 data (Materials and Methods) with IMPUTE2
(Howie et al. 2009). As expected, at the 3442 eGenes identi-
fied by single-variant association analysis with WGS data, there
were fewer low-frequency (MAF ,5%) eQTL SNPs identified
with the array data, likely due to known difficulties with imputing
low frequency variants (Zheng et al. 2015) (Figure 6, A and B).
We found BSLMM and single-variant association analysis eQTL
SNPs from theWGSdata showed substantially higher enrichment
in iPSC DHSs and higher CADD scores compared to those iden-
tified with the synthetic Omni2.5 imputed SNPs (Figure 6, C–E).
Nevertheless, the candidate eQTL SNPs identified with BSLMM
using the synthetic Omni2.5 imputed SNP set were more
enriched in iPSC DHSs than those identified with single-variant
association analysis using synthetic Omni2.5 imputed genotype
data sets. These results demonstrate that BSLMM performs bet-
ter than single-variant association analysis using SNParray data,
but using a comprehensive set of variants identified via WGS is
substantially better for identifying causal eQTL variants than
using SNP array data.

Discussion

We evaluated three sparse polygenic models for prioritizing
causal eQTL variants through simulated data analyses, and
demonstrated the superiority of these methods over conven-
tional single-variant association analysis. When there are mul-
tiple causal variants per gene, sparse polygenic models,
especiallyBSLMM,were found tobemoreeffectiveand robust at
prioritizing causal eQTL variants than single-variant association
analysis and BIMBAM—a Bayesian fine-mapping method.
These findings are possibly due to the fact that BSLMMemploys
the MCMC method to estimate the effects of each variant at a
locus simultaneously, and, at the same time, learns the number
of causal eQTL variants from the data in a computationally
tractable manner. We also applied three sparse polygenic mod-
eling approaches to real RNA-seq andmatchingWGS data from
131 iPSC samples, and found that BSLMM identified more low-
frequency variants (MAF ,5%) than single-variant association
analysis. This higher number of prioritized low frequency vari-
ants is beneficial, as rare noncoding variants are more likely to
be deleterious and have larger effect sizes (1000 Genomes Proj-
ect Consortium et al. 2012).

By examining the intervals encoding three pluripotency
marker genes, we showed that putative regulatory variants
associated with gene expression levels are more readily iden-
tifiedwith BSLMM than single-variant association analysis.We
estimated narrow-sense heritability (h2) of expression for all
autosomal genes with BSLMM, and showed that estimated h2

of gene expression is well-correlated with single-variant asso-
ciation analysis P-value. While the computational cost of the
MCMC algorithm makes it challenging to obtain statistical
significance levels with BSLMM, the top eQTL SNP discovered
with single-variant association analysis is often not the causal
eQTL variant; itwould therefore be beneficial to use BSLMM in
conjunctionwith single-variant association analysis in order to
discover the best candidate list of causal eQTL variants.

There are several interesting ways in which sparse mod-
eling approaches can be applied to gain further insights into
regulationofgeneexpression.For instance, it couldbepossible to
incorporate other types of variants, such as insertions, deletions,
and copy number variations under the same analytic framework
for eQTL SNP discovery. Trans-eQTL SNPs (i.e., variants on
different chromosomes) could also be analyzed, but this may
be challenging given the small sample sizes currently available
(Wheeler et al. 2016). In our real data analysis, in order to
handle outliers of gene expression levels, we first conducted
quantile-normalization across samples, and then rank-normali-
zation at each gene. Although this is a standard procedure for
most eQTL studies conducted to date (The GTEx Consortium
2015), further investigation into whether this is an optimal
approach when applying BSLMM is needed, because BSLMM
assumes Gaussian noise for gene expression levels. Other types
of molecular phenotypes, such as methylation quantitative trait
loci (meQTL), histone quantitative trait loci (hQTL) (Grubert
et al. 2015) and chromatin accessibility quantitative trait loci
(caQTL) (Kumasaka et al. 2016) can be analyzed through a
similar sparse polygenic modeling approach.
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