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Abstract

Scattering studies of correlated metal phases in iridium and ruthenium oxides

by

Zach Porter

In the diverse catalog of ‘quantum materials’ one of the most beguiling parameters

is the spin-orbit coupling. This dissertation is concerned with how spin-orbit coupling

effects exotic physics in correlated transition metal oxides. The materials described

herein are all assembled from corner-sharing octahedra (Ir,Ru)O6, and are hole-doped

from the d5 configuration, yet they contain a diversity of electronic and magnetic phases.

A combination of resonant X-ray scattering and neutron scattering were employed to try

to unravel the nature of the order and fluctuations in these materials.

First we examine the unusual Lifshitz transition in metallic Sr2IrxRu1−xO4, where we

unveil a transition from itinerant to local moment behavior that might speak to quantum

criticality. Second we explore the closely related compound Sr3(Ir1−xRux)2O7, where the

antiferromagnetism persists to remarkably high Ru content. Third is Sr3Ir2O7F2, which is

like a fully hole-doped and distorted analog to Sr3Ir2O7; there the spin-orbit excitons are

thoroughly compared to theory. Last is (CaxNd1−x)2Ir2O7, a tunable magnetic semimetal

with potential for interesting topological states.

x
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Chapter 1

Introduction

The Coulomb potential is a basic concept that is key to condensed matter physics. Elec-

trons repel each other with a long-range force that goes as the inverse distance 1/r. But

how do we reconcile this idea with materials that conduct electricity? Metals can host an

enormous density of delocalized electrons of up to ∼1029/m3. Why doesn’t the Coulomb

repulsion make every delocalized electron in the ’Fermi sea’ of a metal stay maximally

far apart, forming a ‘Wigner’ crystal? The boiled-down answer is that positive ions and

delocalized electrons screen one another, with the result that electrons only feel Coulomb

repulsion at very short distances.1 The Coulomb potential is most consequential within

each electronic orbital, where it generates an energy cost to electrons that hop into a

half-filled valence orbital. These ‘correlation’ effects can be significant enough to cause

would-be metals to become electrical insulators, as we will soon explore in some depth.

Correlated electron physics is a subset of a rich body of work on electron localization

in condensed matter physics. The broader fundamental question about localization goes:

why are some materials insulators when they ought to be metals due to a partially-filled

valence band? And conversely, under what conditions do such materials remain metallic?

Localization is deeply interconnected with some of the organizing principles of condensed

1This result is developed in the Lindhard theory, and the specific concept I am invoking is the
Thomas-Fermi screening [1].
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matter physics like spontaneous symmetry breaking and emergence.2

In the first part of this introductory chapter I provide an overview of localization

via electronic correlations. The first work on this idea was in 1937 by Nevill Mott,

who was motivated by Rudolph Peierls’s remarks on NiO [2]. While the foundations of

correlated electron physics were developed in the 20th century, the sub-topic of strong

spin-orbit coupling has risen much more recently. This is an exciting arena for theorists

and experimentalists alike, where quantum effects directly inform the rich physics. In

the second and third parts of the introduction, I more tightly focus on the intersection

of these concepts most relevant to the materials described in later chapters.

1.1 Hubbard Model of Correlated Electrons

The Hubbard model is an important way of describing how electronic correlations can

lead to insulating behavior and favor certain kinds of magnetism. This is a simple model

that captures rich physics, and is still not completely understood. It was developed by

John Hubbard in the 1960s and unifies an understanding of both itinerant ferromagnetism

and localized antiferromagnetism that is applicable to many important materials families,

including the high-Tc superconductors. This topic is well-established so I draw from

textbooks; my favorites on the topic are D.I. Khomskii’s Basic Aspects of the Quantum

Theory of Solids and Transition Metal Compounds [3, 4]. I assume the reader has some

familiarity with condensed matter physics and with the second quantization formalism

of quantum mechanics.

The essential idea of the model is that when electron-electron correlations get to be

comparable to the kinetic energy of the valence band, the valence charge carriers (either

electrons or holes) tend to localize. Here ‘correlations’ refers generally to the Coulomb

2I thank Prof. Paul McEuen for introducing me to the broad topic of localization in his class and
inspiring my interest in these sorts of materials puzzles.
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repulsion - the reason we do not come out and state this explicitly is because this energy

scale is not intuitively encoded in models.

Now to build up to the Hubbard model. Let us start with the band theory of solids.

Consider a simplified tight binding Hamiltonian that only considers one valence orbital

per lattice site, ĤTB. We will consider only the matrix element for arbitrary sites i and

j indexed from 1, 2, . . . , N in one dimension:

〈j|ĤTB|i〉 = εδi,j − tδi,j±1 (1.1)

Here, ε is an all-encompassing self-energy term, and t is the hopping term, which

parameterizes the overlap between orbitals and thus the likelihood for an electron to hop

from one site to another. The shorthand within the subscripts for the Dirac delta func-

tions indicates that only nearest-neighbor hopping is allowed; sometimes this is denoted

as 〈ij〉. While I only wrote the tight binding Hamiltonian explicitly in one dimension,

the form is similar for dimensions d>1. There are several relevant features of the tight

binding theory for our purposes. The full bandwidth of the band we are describing is

W ≡ 2zt, with z the number of nearest neighbors. As long as it is not filled, this valence

band describes a metal.

Now let us introduce ‘correlations’ into the tight binding framework. The correlations

are parameterized by U > 0, a rough approximation of a repulsive Coulomb energy. This

‘Hubbard U ’ penalizes two electrons occupying the same real-space orbital site i (from

Pauli exclusion these necessarily have opposite spin states). Correlations compete with

the kinetic energy, which is minimized when the Fermi energy is low − that is, when

electrons double occupy an orbital.

3
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Figure 1.1: Progression of density of states ρ(ε) of a half-filled valence band upon
increasing effective correlations U/t. A simple metal turns into a gapped Hubbard
insulator. From [4]. Copyright 2014 Daniel I. Khomskii.

The Hubbard interaction ĤHubbard is the last term in the following Hamiltonian:

Ĥ = ĤTB + U
∑
i

ni,↑ni,↓

= −t
∑
〈ij〉,σ

c†i,σcj,σ +
∑
i

ε+ U
∑
i

ni,↑ni,↓

(1.2)

where these equations are in the second-quantization form, with creation(annihilation)

operators c†(c) that explicitly account for the z projection of the spin operator indexed

by σ. Recall that the number operator is defined as ni,σ ≡ c†i,σci,σ and can be 0 or 1.

In this Hamiltonian there are two consequential parameters: the relative interaction

strength U/t, and the band filling n ≡ N/Nsites with N either the number of electrons

Ne or holes Nh such that n=1 describes a half-filled band. Whenever U/t� 1 we are in

the weakly-correlated regime where the Fermi-liquid picture is valid in d=3. However,

when U/t� 1, we are in the strongly-correlated regime. If we consider the scenario with

half-filling (n=1), it costs energy U in order to hop because this necessitates an electron

doubly-occupying an orbital. When this energy cost outweighs the hopping energy gain,

the correlations open a gap in the excitation spectrum and we find a Mott-Hubbard

insulator.3

3Physicists generically call any insulating phase related to correlation effects a Mott insulator. Calling
something a Mott-Hubbard insulator is invoking only the transition metal ions’ bands as the starting
point [2]. Another Mott insulator is the charge-transfer insulator, a model that directly accounts for
hybridized ligand bands.
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Section 1.1 Hubbard Model of Correlated Electrons

Figure 1.2: In the Hubbard model, due to second-order perturbations, antiferromag-
netic couplings are favored over ferromagnetic ones at half-filling. From [4]. Copyright
2014 Daniel I. Khomskii.

Now we may ask, how do the spins align for these fully localized electrons? If electrons

cannot hop, they still can make a virtual hop to a neighboring site in the second-order

perturbation theory. On a square lattice, close to n=1, such a virtual hop can only

happen for anti-aligned spins, in keeping with the Pauli exclusion principle. This virtual

hop can be treated as a second-order perturbation of the tight-binding Hamiltonian on

the Hubbard Hamiltonian:

Ĥeff(square, n=1) = ĤTB
1

E0 − ĤHubbard

ĤTB

. . . =
2t2

U

∑
〈ij〉

Si · Sj + constants
(1.3)

where the result after simplification on the second line is the Heisenberg spin Hamiltonian,

which is minimized when the dot product between neighboring spin operators Si ·Sj=−1.

The energy gain from anti-aligned spins compared to aligned spins is 2t2/U = J , where

J is the exchange interaction.4 So the antiferromagnetic (AFM) state (in this lattice

realization and many others) is often the magnetic ground state in the Mott-Hubbard

4This was actually recognized by the legendary P.W. Anderson in 1950, a year after his Ph.D. in
molecular physics [5]. Anderson is one of the giants of this field; in 1952 he introduced the revelatory
idea of spontaneous symmetry breaking in an article about the quantum nature of antiferromagnetism
[6]. I only reference his early work because it was uncharacteristically straightforward. As the theorist
Anatoly Larkin said, “God speaks to us through Phil Anderson. The only mystery is why He chose a
vessel that is so difficult to understand.”
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insulating phase! Since the couplings are set by the correlations, the Néel transition

temperature from paramagnet to AFM can be very large TN ∼ t2/U . This energy scale

is often in the 10s of meV or equivalently 100s of K (e.g. for cuprates), which can be

much larger than the uncorrelated spin couplings ∼meV.

1.1.1 Spin and Charge Excitations

The lowest-energy pure spin excitations in an antiferromagnetic state are magnons.

Without belaboring the derivation, the familiar result for the dispersion ω(k) along one

direction is ~ω = 4JS| sin ka| where the crystal momentum k = |k| along that direction,

a is the lattice constant, J is the coupling (here = 2t2/U), and S is the spin quantum

number we are considering. Note that near k = 0, the dispersion is nearly linear in k.

Quantum-mechanical derivations invoke the Bogolyubov transformation [4].

Figure 1.3: Spectral weight transfer in the Hubbard model. The density of states in
the LHB and UHB as a function of single-particle energy ω is plotted at arbitrary
chemical potential µ. From [4]. Copyright 2014 Daniel I. Khomskii.

What about the low-energy charge excitations? For strong electronic correlations

U/t � 1, the charge gap comes from the interaction between electrons. This Mott-

Hubbard insulator ground state has totally different physics from a band insulator. One

huge difference is that the Lower and Upper Hubbard Bands (LHB and UHB) are not

ordinary bands: when we add electrons, the number of states in each sub-band changes!

In normal bands, the total number of states is 2N . However the LHB has 2N−Nel states

and the UHB has Nel states. The consequence of this ‘spectral weight transfer’ is that it
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is difficult to isolate one low-energy excitation from another, because states with a broad

range of energies ∼U are admixed.

Figure 1.4: Electronic phase separation in Mott antiferromagnets. When doped car-
riers neighbor each other, it disturbs the antiferromagnetism less by breaking fewer
magnetic couplings (squiggly lines). Here, vacancies indicated by circles are shown in
a sea of spin-1/2 electron sites on the square lattice. In (a) there are 2 more broken
couplings (red) than in (b). From [4]. Copyright 2014 Daniel I. Khomskii.

How do we even describe the charge carriers in the Mott-Hubbard insulator? It is

complicated. We can first try to think about how additional holes and electrons move in

the insulating AFM background. These carriers’ motion is strongly hindered by the anti-

aligned spins. A mean-field solution yields that the bands become narrower by a factor

of
√

1
4
− S2 with S=|〈|Szi |〉| the sublattice magnetization (slightly less than 1/2 due to

quantum fluctuations). A related consequence is that there is generally electronic phase

separation in Mott-Hubbard systems. From the magnetic Hamiltonian, it is energetically

favorable to have neighboring charge carriers - see Fig. 1.4.

What about the motion of existing charge carriers? This answer is more fascinating.

When we start to propagate one electron, we do two things: doubly occupy a site and

reverse a pair of spins. It is best in theoretical considerations to deconstruct this process

into two quasiparticles: a holon or a doublon (that is, a vacancy or a doubly occupied

single site, which carries only charge and no spin) and a separate spinon (which carries

no charge). This is called ‘spin-charge separation.’

7
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Energy 
cost

Figure 1.5: Charge excitations in a Mott antiferromagnetic background. Top panel :
an extra electron (red arrow) causes a doubly-occupied site (or ‘doublon’, boxed).
Each time the charge carrier hops, it disturbs the antiferromagnetism by breaking
magnetic couplings, costing ∼J (squiggly lines). Bottom panel : since the energy
cost of a charge carrier scales with distance R, and couplings can be ‘repaired’ by
backtracking, there is effectively a restoring force that confines the excitations. See
the more complete description in the text, and note the same physics applies to a
vacancy (‘holons’). From [4]. Copyright 2014 Daniel I. Khomskii.

When a doublon propagates, it creates a ‘tail’ of spins that are aligned with their

neighbors in d= 2 or 3, which strongly distorts the AFM background. Each hop has an

energy cost (z−2)J = 4t2/U on the square lattice. Thus as it propagates, a doublon

(or a holon) costs more and more energy, which goes as ∼J ·(radius)(≥1) from the initial

position. This acts like a restoring force, which causes wandering charge carriers to be

confined, like a magnetic version of polarons. This picture offers a possible (unconfirmed)

pairing mechanism for copper-oxide-based superconductors! One holon moving in an

AFM background leaves a tail of misaligned spins and becomes localized. But a second

holon can move after the first, repairing its damage. So pairs of carriers could reduce the

overall kinetic energy of the system, and these attractively paired carriers could move

freely, the ingredients for a Cooper pair.
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Section 1.1 Hubbard Model of Correlated Electrons

1.1.2 Stoner Instability

Let us return to our consideration of correlated magnetism more generally, beyond the

strongly-correlated regime. What kinds of magnetic order might we expect for correlated

metals, of the type depicted in the middle panels of Fig. 1.1 where there is density of

states peaked both at the Fermi level EF and at EF ± U/2 ?

Consider a scenario where there are a fixed number 0<n<2 of electrons (or holes) in

the Lower Hubbard Band. From mean field theory [7], we can approximate the expecta-

tion value of the Hubbard energy as: EHubbard = 〈ĤHubbard〉 ≈
∑n

i=1
1
4
U(n2− (Mv/µB)2),

where M is the magnetization per unit cell volume v, and each electron carries a magnetic

moment of one Bohr magneton µB. If we consider a system at zero temperature with

δε more up-states occupied than down-states, we can approximate the magnetization as

M/µB=− g(EF )δε/2 given the density of states g at the Fermi energy EF , and find that

the change in the kinetic energy for this magnetization is M2/(2g(EF )µ2
B). Thus the

change in the total energy per unit volume of the system due to finite magnetization is:

Etot − Etot(M=0) =
(
M
µB

)2[ 1
2g(EF )

− vU
4

]
. This means that if:

U >
2

g(EF )v
(1.4)

then the total energy of the interacting electron system is minimized by having a finite

magnetization. This relation is known as the Stoner criterion, and it is the reason why

having a large density of states at EF often leads to magnetism (the so-called Stoner

instability) [4, 7]. In the case that there are correlations but they are too weak to open

a charge gap, the magnetic ground state is most often an itinerant ferromagnet.

Reconsider the n=1 strongly-correlated system with its antiferromagnetism. As we

move away from a perfectly half-filled band and introduce the possibility of hopping, the

magnetic ground states can face very fierce competition. Clearly, the Hubbard model
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explains a diverse array of interacting electron systems with magnetic order.

1.1.3 Metal-Insulator Transitions

The Mott insulator phase and adjacent metallic phases exhibit strong fluctuations

of spin, charge, and/or orbital degrees of freedom. These competing fluctuations have

interesting consequences, as developed in Section 1.1.1. Now we talk about the role of

these fluctuations in mediating metal-insulator transitions (MITs).

From a theoretical perspective, there are two categories of approaches from a metal

to a Mott insulator [2]. One category of MIT is called ‘carrier vanishing’ and it happens

if a degree of freedom is spontaneously broken. The other category is called ‘effective

mass diverging’ and occurs in the absence of spontaneously broken symmetries. Since

the number of carriers remains constant, consequently the mass must diverge according

to the Luttinger theorem, because U is considered to be an adiabatic perturbation on

the Fermi liquid theory.

Figure 1.6: Metal-insulator phase diagram based on the Hubbard model. Bandwidth
control (BC) is mediated by tuning U/t (vertical axis). Filling control (FC) involves
tuning the chemical potential towards half-filling (horizontal axis). From [2]. Copy-
right 1998 American Physical Society.
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There are two tunable parameters in the Hubbard model, and therefore two discrete

ways to mediate a Hubbard MIT; see Fig. 1.6. The first is bandwidth control (BC) which

involves modifying the bonding environment, and the second is filling control (FC) via

carrier doping. BC transitions are often 1st order because the hopping t is discontinuous

in the presence of a discrete lattice change. But in the Hubbard theory at half-filling,

FC transitions are expected to be continuous (2nd order) barring a charge density wave

instability.

Figure 1.7: Mott phase diagram when bandwidth control mediates a 1st order met-
al-insulator transition. This depicts a 3-dimensional system with percolation threshold
near 1/3 of the critical filling xc. The abbreviations are paramagnetic (PM), antifer-
romagnet (AF), metal (M), and insulator (I). Dashed lines indicate phase coexistence.
From [8]. Copyright 2015 American Physical Society.

Yet in practice, many Mott insulator phases can survive very far away from half-

filling, which is incongruous with this treatment of FC transitions. One instructive

theory shows that, in the presence of a 1st order BC transition, the FC transition becomes

percolative [8]. Consider a correlated material with filling x = n−1 which is less than

some critical amount x < xc that yields perfect metallic behavior. In this doping range,

thermodynamics forbids charge densities less than xc, which yields spatially separated

11
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but coexisting insulating puddles with x=0 and metal puddles with x=xc. While Fig. 1.4

showed electronic phase separation in the insulating antiferromagnetic phase, this theory

extends phase separation to global metals, which have filling that exceeds the percolation

threshold.

Figure 1.8: The electronic phase diagram for Sr3(Ir1−xRux)2O7 on the left; C stands
for canted, and the other abbreviations are common to Fig. 1.7. The panels marked
(a) are scanning tunneling microscopy and spectroscopy in the global insulating phase,
indicating nanoscale regions that are insulating (blue) and conductive (yellow). ∂I/∂V
is an experimental proxy of the density of states. The panels marked (b) show similar
inhomogeneity in the global metal phase. Adapted from [9, 10].

There are many experimental examples of electronic phase coexistence in Mott sys-

tems, so here is one that is specifically instructive to this dissertation. In Sr3(Ir1−xRux)2O7,

percolative nanoscale clusters are visible via scanning tunneling microscopy studies [9].

In the globally insulating phase, there are locally metallic clusters embedded within.

And even across the percolation threshold in the global metal, there are puddles with

markedly reduced density of states near the chemical potential (i.e. more localized char-

acter). Magnetic phase coexistence occurs in this system farther from half-filling, which

is a central idea in Chapter 4.
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Section 1.2 Spin-Orbit-Coupled Mott Physics

Ueff

lSO ~ Z4

(unscreened)

Figure 1.9: Mott insulators are not expected for large 5d ions due to the correspond-
ingly large bandwidth which diminishes the effective correlation strength U eff = U/W .
However, large spin-orbit coupling for 5d elements is responsible for Mott physics.

1.2 Spin-Orbit-Coupled Mott Physics

At first pass, the above picture of Mott physics does not seem to describe the iridates

and other 5d ions at half-filling. The 5d ions have large bandwidth W because they

are quite extended compared to 3d and 4d ions. As a consequence, one might expect

metallicity due to the small effective Hubbard U when the bandwidth is taken into

account U eff = U/W .

What is missing from this consideration is the effect of spin-orbit coupling (SOC).

SOC is parameterized by λ in ĤSOC = λl̂ · ŝ, and scales with atomic number 5. While λ

is negligible for 3d systems, it is as large as 0.5 eV for the iridates, which is comparable

to the correlation strength. Interestingly, SOC seems to cooperate with correlations in

opening a charge gap [11]. SOC removes degeneracies and narrows bands, which enhances

the effective correlation strength. And conversely, correlations act to localize electrons,

which can enhance SOC.

5The unscreened ionic value of SOC goes as atomic number to the fourth power λ ∝ Z4, however
screening reduces this effect. Empirically the relation seems closer to Z2.
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Figure 1.10: Spin-orbit-coupled Mott phase diagram. Effective correlations (y axis)
and SOC (x axis) are cooperative, increasing the phase space for unusual insulating
phases (top right). Lines are not phase boundaries, just limits for regimes. From [12],
adapted from [11].

While much of the focus of this subfield is on Mott insulators, strong SOC also has

fascinating consequences for correlated metallic phases. Reconsider the picture of charge

excitations in an antiferromagnetic background depicted in Fig. 1.5. SOC allows spins

to flip as charges hop, with an energy cost that decreases with SOC strength. So SOC

has the consequence that antiferromagnetic order is easier to preserve in the presence of

charge excitations, enabling antiferromagnetic order to persist deep into metallic phases.

We explore the consequences of this in Chapter 4.

In the following section, we will explore some of the physics that results from this un-

usual route to insulating behavior. In particular, we will discuss the enigmatic Jeff=1/2 elec-

tronic ground state and its magnetism. These ideas are the crux of this dissertation.
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1.2.1 Jeff=1/2 State

For 5t52g electronic configurations (e.g. arrangements of Ir4+O6 octahedra), the strong

SOC completely removes the t2g orbital degeneracy. This idealized picture is known as

the Jeff=1/2 electronic state. In this state, the entanglement of spin and orbital quantum

states is responsible for a slew of exotic phase phenomena.

Let us first briefly review the quantum states for the t52g configuration in the presence

of a strong octahedral crystal field. For what follows it is helpful to simply consider the

effective hole rather than the 5 electrons. Here, the effective angular momentum L̂=1

states for this hole (which is spin-1/2) are linear combinations of |xy〉, |xz〉, and |yz〉

orbitals: |Lz = 0〉 = |xy〉,|Lz = ±1〉 = − 1√
2
(i|xz〉 ± |yz〉). Now if we consider the total

angular momentum operator Ĵ and the hole spin operator Ŝ, we’ll note Ĵ = Ŝ + L̂.

6 In what follows our Hilbert space is written in the |Lz〉 ⊗ |Sz〉 ≡ |Lz, Sz〉 basis. If

we account for SOC λ and a tetragonal splitting ∆,then the single ion Hamiltonian is

Ĥ0 = λL̂ · Ŝ + ∆L2
z

Figure 1.11: The |↑̃〉 pseudospin state. It is a linear combination of the t2g orbitals.
Shown without tetragonal distortions, it is roughly isotropic. From [13]. Copyright
2009 American Physical Society.

From Kramers Theorem, we know that an odd number of electrons (or in this case,

6This is NOT generic for two reasons. First is the “T-P” correspondence [3]: compared to the p

orbital manifold, l̂ for the t2g manifold has the opposite sign. Sometimes the form L̂eff = −L̂ is used.
Second, there is yet another minus sign from spin-orbit coupling: the Jeff=1/2 state comes from the
J=5/2 manifold, so this minus sign comes from Hund’s rules acting upon these states.
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one hole) is two-fold-degenerate in the absence of a magnetic field [7]. The resultant

Kramers doublet can be viewed in isolation as having an effective spin-1/2 state. But

this Hamiltonian Ĥ0 is a very different starting point than the conventional one invoked

by Hund’s rules, because here the stronger SOC term entangles spin and orbital states.

The lowest energy levels of this Hamiltonian are a Kramers doublet of ‘pseudospin’ states:

|↑̃〉 = sin θ|0, ↑〉 − cos θ| + 1, ↓〉, and |↓̃〉 = sin θ|0, ↓〉 − cos θ| − 1, ↑〉. Here, the unitless

parameter θ parameterizes the tetragonal splitting via tan 2θ = 2
√

2λ
λ−2∆

. Even in the

presence of small tetragonal distortions, the Jeff=1/2 state still is applicable; the SOC

trades the Jahn-Teller effect for the entanglement of spin and orbital states [11, 14].

The spin-orbit narrowed Jeff=1/2 band is especially susceptible to splitting via cor-

relation effects into Lower and Upper Hubbard bands. The resultant insulating state is

generally referred to as the ‘spin-orbit-assisted Mott insulator,’ though the applicability

of the word Mott is strongly debated.

This Jeff=1/2 insulting state was first reported in Sr2IrO4 in 2008 [15]. Unlike the

isostructural 4d compound Sr2RhO4 which is a paramagnetic metal, Sr2IrO4 is instead

small-bandgap insulator with canted antiferromagnetism. The initial experimental evi-

dence of this ground state comes from three papers by B.J. Kim and coworkers, Refs.

15–17. I will summarize the evidence in order of clarity:

1. Band Structure: The electronic levels for Sr2IrO4 can only be justified with SOC.

The evidence of the rearrangement of the valence level dispersion (compared to

Sr2RhO4) and of the circular Fermi surface sheets come from angle-resolved photoe-

mission (ARPES) [15]. The narrow UHB was measured with optical conductivity

[15].

2. Resonant X-ray Diffraction: Some quantum numbers can be directly probed with

resonant scattering. In particular, the Ir L2-edge can be shown to have perfect
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CF → SOC → GS ← CF ← SOC

Figure 1.12: Top panels: Single-ion energy levels and density-of-states cartoon for the
Jeff=1/2 spin-orbit-assisted Mott insulator. The ground state (GS) can be achieved
starting with either crystal field (CF) or SOC splitting. Transitions ‘A’ and ‘B’ have
been measured with optical reflectivity; spin-orbit excitons are not shown. Bottom
panel : Insensitivity of Jeff=1/2 state to small tetragonal (or trigonal) distortions ∆.
In the ideal case, each of the three t2g orbitals has equal occupation ρ but differing
phases. At very large distortions a simple S=1/2 state occurs. From [15] and [14]
respectively. Copyright American Physical Society.

destructive interference in the ideal Jeff=1/2 case [16]. These ideas will be described

in Section 2.1.3.

3. Quantum Numbers via Absorption Spectroscopies : From the X-ray selection rules

∆J = −1, 0,+1, we can learn about the relative filling of the different J manifolds

and also the ratio of Lz/Sz, and match these to predictions. Please see Section
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6.4.2 for a detailed explanation.

4. Spin-Orbit Excitons : Spin-orbit coupling yields local, bound excitations with mixed

spin and orbital character at the SOC energy scale λ. For the Jeff=1/2 state the

excitations are to a Jeff=3/2 band not indicated in level schematics in Fig. 1.12.

These excitons are optically forbidden [17]. See Sections 4.4.3 and 5.4 for examples.

5. Unconventional Magnetic States : For example, Sr2IrO4 has an anomalously large

ferromagnetic signal that puzzled researchers for more than a decade. Please see

the next Section 1.2.2 for an explanation and extension to other compounds.

6. Unquenched Orbital Momentum: For the typical Oh (octahedral) t2g levels, weak

Jahn-Teller distortion in real materials should quench the Lz quantum number.

Instead, the Jeff levels retain finite Lz. This is measurable in the significantly

reduced net moment size via bulk magnetization [18], neutron diffraction [19], and

X-ray magnetic circular dichroism [20]. I will note that other effects contribute to

the weak moment size, so this piece of evidence is no smoking gun.

The Jeff=1/2 state is a somewhat idealized case. It only holds when distortions to the

octahedral crystal field symmetry are weak. Additionally, there are several mechanisms

of hybridization in real materials that may yield deviations:

1. Covalency : In materials with high connectivity, such as the edge-sharing rutile

compound IrO2, covalency with oxygen yields p−d hybridization and results in

physics akin to charge-transfer insulators [21].

2. Dimerization: Similar to the above point, strong hybridization among isolated

iridium-oxygen clusters has been shown to lead to dimerization (e.g. Ba3CeIr2O9,

with Ir2O9 bi-octahedra [22, 23]).
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3. Valence Hybridization: Substantial itinerancy (hopping) can perhaps yield hy-

bridization between the Jeff=1/2 and Jeff=3/2 states [24].

4. eg Hybridization: Strong spin-orbit coupling may not be a simple perturbation to

the valence bands − it ought to additionally hybridize the eg manifold with the

Jeff=3/2 manifold [25]. In a model with realistic parameters for Sr2IrO4 (JH=0.1

eV, λ=0.5 eV) this approach yielded a whopping 0.2 electrons in the eg mani-

fold, with serious ramifications for the electronic properties. For example, the spin

quantum number increases from 0.5 to 0.7 with the above parameters.

Figure 1.13: When sufficiently strong, spin-orbit-coupling (here ζ) hybridizes the eg
and Jeff=3/2 manifolds (red lines). From [25]. Copyright 2018 American Physical
Society.

1.2.2 Magnetism and the Quantum Compass Model

In 3d ions, the spins are weakly coupled to the lattice, and the phenomenological

Goodenough-Kanamori rules broadly describe superexchange7 interactions [7]. In the

strong SOC limit neither of these ideas hold. For the Jeff=1/2 state, the spin state is

7Superexchange is shorthand for a magnetic coupling across a ligand. In transition metal oxides,
often the transition metal ion orbitals overlap strongly with ligands, making superexchange dominant
over the direct exchange.
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entangled with the orbital angular momentum, so the couplings are explicitly dependent

on bonding geometry [13]. Next we will consider different lattice geometries for ions with

pseudospin-1/2 states bonded across ligands: TM-O-TM where TM is a transition metal.

The following all assumes the idealized Jeff=1/2 state with perfect octahedral symmetry

(∆ = 0).

Figure 1.14: Bond-dependent exchange interactions for transition metal ions (big gray
circles) with t2g valence orbitals bonded across oxygen ions (little gray circles). These
limiting cases are the (a) corner- and (b) edge-sharing bonding geometries. From [13].
Copyright 2009 American Physical Society.

1.2.2.1 Perfect Corner-Sharing

In a 180◦ bond, seen in corner-sharing octahedra Fig. 1.14a, there is a diagonalized

hopping matrix because charges transfer between like t2g orbitals. Unfortunately, the full

exchange Hamiltonian necessary to describe this problem is too complicated to consider

here; it handles JH-multiplet splitting in 2nd order virtual exchange processes. Jackeli

and Khaliullin mapped this Hamiltonian in the Kramers basis onto a sum of Heisenberg
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Section 1.2 Spin-Orbit-Coupled Mott Physics

and pseudodipolar anisotropic exchange terms:

Ĥij = J1Ŝi · Ŝj + J2(Ŝi · rij)(Ŝj · rij) (1.5)

Note that the operator Ŝi is the spin-1/2 operator for pseudospins, and rij is the unit

vector along the bond ij. The ratio J2/J1 ∼ JH/U due to Hund’s splitting, which is

typically small, so the Heisenberg term J1 usually dominates and the pseudodipolar term

acts as a perturbation.

This model seems unexotic, in that the isotropic Heisenberg couplings are also found

when SOC is weak via the Goodenough-Kanamori rules. But its familiar results derive

from entirely different effects. Here, the anisotropic pseudodipolar term comes from the

Hund’s coupling, whereas for 3d ions anisotropy often comes from the SOC.

1.2.2.2 Perfect Edge-Sharing

In a 90◦ bond, seen in edge-sharing octahedra Fig. 1.14b, the geometry dictates a

non-diagonal hopping matrix where charges may only transfer between one |xz〉 and one

|yz〉 orbital. The two charge transfer paths between the ions, across the upper and lower

oxygens, results in destructive interference for the transfer amplitudes. This yields no

isotropic exchange terms in the Hamiltonian:

Ĥij = −K
∑

α=x,y,z

∑
〈ij〉∈α

Ŝαi Ŝ
α
j (1.6)

Where Ŝαi is the spin-1/2 operator for the pseudospin component along the α axis, with

α perpendicular to the plane of the bond (i.e. the xx exchange Ŝxi Ŝ
x
j occurs for ions

bonded in the yz-plane).

This is known as the quantum compass model, wherein the interaction depends on the
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Figure 1.15: The quantum compass model on two corner-sharing bonding geometries.
(a) is a triangular lattice and (b) is the honeycomb lattice. From [13]. Copyright 2009
American Physical Society.

bond’s spatial orientation. I labeled the exchange interaction as K to allude to the Kitaev

Hamiltonian [26]. Kitaev’s model may be defined as quantum compass on the honeycomb

lattice, shown in Fig. 1.15b. In brief, this model can yield a gapless quantum spin liquid,

a phase governed by magnetic frustration and many-body quantum entanglement [27].

The anyonic excitations of this particular flavor of quantum spin liquid have fractional

statistics, and may include long-sought topologically-protected Majorana quasiparticles.

In real materials with deviations from perfect 90◦ bonds, additional Heisenberg and/or

pseudodipolar couplings often occur. This leads to exotic low-temperature magnetic or-

ders in materials like (Na,Li)2IrO3 [28]. At high temperatures these materials’ paramag-

netic phases seem governed by Kitaev physics [29, 30]. A comprehensive review of these

fascinating materials is beyond the scope of this dissertation.

1.2.2.3 Imperfect Corner-Sharing

The coupling between spin and lattice degrees of freedom is a unique consequence

of the Jeff=1/2 state. In Sr2IrO4, the lattice distortions result in spin canting. The

combination of a considerable in-plane octahedral tilt of α = 11◦ and weak Jahn-Teller
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elongations gives us the following Hamiltonian:

Ĥij = JŜi · Ŝj −Dz ẑ · (Ŝi × Ŝj) + JzŜ
z
i Ŝ

z
j (1.7)

The third term is a small Ising-like coupling from single-ion anisotropy, and the second

is a Dzyaloshinskii-Moriya (DM) interaction. The DM term is what is responsible for the

remarkably large ferromagnetic moment ≈0.14 µB in this canted antiferromagnet with

moments oriented in the IrO2 basal plane. The spin canting angle is set by the ratio

D/J ∼ 2α.

The spin canting angle α was shown to be finely tuned also with the tetragonal distor-

tions, which places this system near a spin-flop transition. The proximity to this spin-flop

transition is one reason why the remarkably similar bilayer system Sr3Ir2O7 (which has

much less oxygen octahedral tilting) has its moments oriented mostly perpendicular to

the IrO2 basal plane.

1.3 Quantum Criticality

Several exotic varieties of quantum critical points (QCPs) have been proposed in the

iridates. Some QCPs are developed in the proceeding chapters. Here we will discuss

broadly what a QCP is, and then describe just one of the types that may be pertinent

to Sr2IrxRu1−xO4 in Chapter 3.

1.3.1 Brief Overview

A QCP is a continuous zero-temperature phase transition [31, 32]. Rather than

a typical phase transition driven by thermal fluctuations, a QCP is at T=0 and thus

must be driven by quantum fluctuations. The excitement for QCPs comes from their
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unconventional excitations and proximity to exotic electronic orders.

The essential ingredient for a QCP is noncommuting competing operators in the

microscopic Hamiltonian describing the system; in other words, the ground states away

from the QCP have different symmetries. A common example is the Ising model, where

the ordered ferromagnetic phase has a Z2 symmetry not present for the transverse-field-

polarized paramagnet.

Figure 1.16: A quantum critical point is a zero-temperature phase transition mediated
by a parameter like pressure, carrier concentration, or applied field. The quantum
critical behavior persists to high temperatures.

This noncommuting operator condition means that, at the QCP, the ground state

wavefunction cannot be described by a product state, and is instead a superposition of

configurations on all length scales. Counterintuitively, the effects of a QCP are mea-

surable at large temperature scales. This is because the length scale of a wavefunction

describing the T=0 QCP is divergently long, but thermal fluctuations act to shorten the

length scale that the system can access [33]. Therefore the wavefunction describing the

system at finite temperature is effectively quantum critical. Thus the quantum critical

regime, where quantum fluctuations with highly entangled degrees of freedom dominate

over conventional quasiparticles, can extend over a wide region of phase space.

For metals a QCP yields phase behavior beyond the conventional Fermi liquid theory.
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The hallmarks of ‘strange metal’ physics are linear-in-temperature resistance and poorly

defined quasiparticles. Strange metal phases are present in some important materials

families including the cuprate, iron-based, and heavy-fermion superconductors [34–37]).

1.3.2 J-freezing Model

The title of this recent theoretical model draws from the idea of angular momentum

quenching. In multiorbital materials such as the 3d ferromagnets Fe and Ni and Co, the

symmetry of the lattice mixes the wave functions with equal contributions of ml= ± 1

to yield an orbital angular momentum 〈Lz〉 ≈ 0. The J-freezing model invokes a similar

quenching of local moments under the influence of spin-orbit coupling. Since SOC mixes

the spin and orbital quantum states, the moment size here is determined by 〈Jz〉.

Figure 1.17: On the left is a correlation-filling phase diagram with the effects of spin-or-
bit coupling included. Plus signs mark J-freezing transitions, where a measure of local
fluctuations ∆χloc exhibits a maximum, indicating a transition from an itinerant to
a localized phase. Insulating phases are in black. On the right is a more straightfor-
ward plot of 〈J2

z 〉 at integer fillings. Solid (open) symbols are the metallic (insulat-
ing) solutions, and arrows are Hund’s rules values. The abbreviations are: D=W/2
half-bandwidth, JH Hund’s coupling, U correlations, N/FL Non/Fermi-liquid, MI
metal-insulator transition, and n filling in a t2g model. The parameters are the same
in both models and are approximate for Sr2IrO4. From [38]. Copyright 2017 American
Physical Society.

The J-freezing model applies the Hubbard model plus strong SOC to t2g multiorbital
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systems [38]. Similar approaches had already shown that multiorbital paramagnets are

quite different from single-orbital ones: there is an additional quantum phase transition

between a Fermi liquid and an incoherent metallic phase characterized by frozen local

moments [39]. A recent study by Aaram Kim and Roser Valent́ı and coworkers was

interested in the dynamical contribution to the local susceptibility ∆χloc as a measure of

local fluctuations across a wide range of parameters describing many materials.8 They

found that maxima in ∆χloc indicate a transition from an itinerant to a localized phase,

which coincides with a crossover from non-Fermi liquid behavior - i.e. a quantum critical

point.

Note in Fig. 1.17 the evolution from n=4 (Ir5+ or Ru4+, as in Sr2RuO4) to n=5

(Ir4+, as in Sr2IrO4). In the model, we learn that itinerant excitations comprise the

low-energy magnetic excitations for the highly correlated d4 ground state, whereas local

moment fluctuations dominate as the electron carrier concentration increases and/or as

the correlation energy scale decreases. Thus this model is consistent with a mechanism

for quantum criticality on carrier-doping compounds like Sr2RuO4.

This variety of quantum criticality has been proposed to explain the emergent super-

conductivity in several compounds including Sr2RuO4 and UCoGe [40]. In their normal

states, both of these compounds seem to have frozen, itinerant spins. A deeper under-

standing of this phenomenon may address outstanding issues in the field of unconven-

tional superconductivity. These ideas are perhaps relevant to Sr2IrxRu1−xO4 as discussed

in Chapter 3.

8This study used a combination of dynamical mean-field theory and the continuous-time quantum
Monte Carlo method, applied to the Bethe lattice.
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1.4 Chapter Overview

In Chapter 2, we move on to consider scattering methods. After a terse introduction,

most of the chapter is devoted to resonant X-ray scattering. Since this is a multi-step

process, a full picture of what is measured is complicated. Relevant cross-sections are

developed and ultimately pared down with assumptions that are valid for the iridates. I

also describe some instrumental setups that were used in later chapters. I conclude by

introducing only the parts of the neutron scattering formalism I used in my work.

Chapter 3 is the result of years of synthesis, characterization, and scattering experi-

ments on the compound Sr2IrxRu1−xO4. We focus on the correlated metal phases with

low Ir content x<0.4. The big picture of this project is that there are strong magnetic

fluctuations yet, despite painstaking searches, no evidence of any long-range order. Our

evidence is consistent with a peculiar sort of paramagnetic quantum criticality that co-

incides with a transition from itinerant moments to local moments. I believe this work

has the potential to provide insights to other quantum critical metals, perhaps including

the unusual superconductor Sr2RuO4.

In Chapter 4, we rely on resonant X-ray scattering to flesh out the phase diagram

for Sr3(Ir1−xRux)2O7. The Ru-rich correlated metal phases are poorly understood. Our

studies of the static order and the fluctuations seem to support persistent antiferromag-

netism with strongly damped local excitations. We attribute these results directly to

the strong spin-orbit coupling. Excitingly, this chapter may prompt more questions than

answers.

In Chapter 5, we turn to an insulating d4 system, where spin-orbit excitons (like

Van Vleck transitions) are predicted to yield interesting physics. To this end, I mapped

the excitation spectra of Sr3Ir2O7F2 and relied on collaborators to provide ab initio

and phenomenological models for comparison. Our analysis points to a system with
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very strong anisotropy in a spin-orbit singlet ground state. This project gave me a

better appreciation of the phenomenal power and complexity of resonant X-ray scattering

techniques.

Chapter 6 studies the metal-insulator transition in the pyrochlore iridates. Previous

work on Nd2Ir2O7 was mostly concerned with bandwidth control. We opted for filling

control via Ca substitution in (CaxNd1−x)2Ir2O7. What we find seems consistent with

a collapse of the Mott-like state towards a global metal. We also show thermodynamic

evidence of the intricate magnetic response. Perhaps the most useful contribution of

this work to the field was the careful structural studies, which support a picture of

the Jeff=1/2 physics and of a set of symmetries that can host the putative topological

semimetal phases. In this and all other chapters, I hope to motivate ideas for future

work.
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Scattering Methods

Dr. Apurva Mehta at SLAC offered me the following analogy about scattering: you throw

a tomato at someone’s head, and collect the splatter on a sheet behind them. Perhaps

there is little to learn from such an experiment. But this analogy illustrates how people

intuitively know about scattering between macroscopic objects. For large condensed

matter probes like tomatoes, the scattering is dominated by the electrostatic repulsion

(normal force), and this is what dictates the interaction Hamiltonian and resultant cross-

section. You are likely familiar with the elastic and inelastic scattering sectors, and their

dependence on the incident energy and wavevector of the tomato.

When approaching scattering with other probes, like X-rays or neutrons, it is nec-

essary to establish the mechanism behind a signal’s cross-section to achieve a similar

intuition. A photon’s electromagnetic field interacts with electrons in matter; a neu-

tron’s magnetic moment interacts with the magnetic field from the nucleus and unpaired

electrons. I will treat scattering with resonant X-rays and neutrons specifically later.

First I offer a brief general introduction to the shared concepts of scattering [41, 42].

What we measure with scattering is the differential scattering cross-section dσ
dΩ

. This is

defined as the number of particles detected per second I as a function of the incident flux

Φ0 by a detector that subtends the solid angle dΩ. In the double differential scattering
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cross-section, we further restrict the scattering within the energy range E to E+dE:

d2σ

dΩdE
=

I

Φ0 dΩ dE
=

(w into dΩ and dE)ρ(Ef )

Φ0 dΩ dE
. (2.1)

Here, the transition rate probability w for a given final density of states ρ(Ef ) is given by

time-dependent perturbation theory, developed by P.A.M. Dirac and commonly called

Fermi’s golden rule. This is set by the interaction Hamiltonian Ĥint acting on the

(probe+material) system’s initial and final states |a〉, |b〉. To calculate w, the first-order

term is sometimes sufficient:

w =
2π

~
∣∣〈b|Ĥint|a〉

∣∣2δ(Ea − Eb) (2.2)

where the Dirac delta function δ(Ea−Eb) ensures conservation of total energy. The energy

of a massless photon is given by the Planck-Einstein equation E = ~ω = ~ck = hc/λ,

and the energy of a neutron is given by its velocity E = mnv
2
n/2 = h2/(2mnλ

2). In the

above, ω is frequency, k is wavevector, λ is wavelength, mn is neutron mass, vn is neutron

velocity, (~)h is (reduced) Planck’s constant, and c is the speed of light. At a wavelength

of 2 Å, a photon has energy near 6.2 keV in the hard-X-ray regime, and a neutron has

energy near 20 meV in the thermal neutron regime.

Now to consider single crystals - see Refs. 41, 43 for a proper derivation. A crystal’s

periodicity is defined by lattice vectors Rn =
∑3

i=1 niai where the basis vectors are

(a1, a2, a3) and ni are integers. The reciprocal lattice is defined such that any site G =

ha∗1 + ka∗2 + la∗3 obeys the relation G ·Rn = 2π× integer. Working in reciprocal space,

the momentum transfer (or scattering vector) is defined as Q = k − k′, the difference

between the incident and outgoing wavevectors. For elastic scattering |k| = |k′| this

yields |Q| = Q = 4π sin θ/λ. The diffraction condition is satisfied when Q = G, and in
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the elastic case this can be reduced to Bragg’s law nλ = 2d sin θ for integer n and lattice

plane spacing d.

It is easy to consider X-ray or neutron scattering from a free ion, where the isotropic

interaction can be described by an atomic form factor f . In going from a free ion to a

crystal, we swap the atomic form factor in the cross-section for the crystal form factor

F . The crystal form factor is given by:

F (Q, ~ω) =
∑
j

fj(Q, ~ω)eiQ·rj
∑
n

eiQ·Rn (2.3)

where the first sum represents the molecular structure factor and sums over the atomic

form factor f for each atom j at position rj in one unit cell, and the second sum represents

the crystal structure factor and sums over the real space lattice vectors Rn. This is in

the Born approximation (kinematical scattering); the dynamical scattering theory is

outside the scope of this dissertation. For photons the atomic form factors are tabulated

accurately in tables, but are imprecise near the resonance energies linking the electronic

orbitals. For neutrons the form factors are typically denoted b, which are complex factors

tabulated for each isotope.

2.1 Resonant X-ray Scattering Theory

This section provides the relevant theoretical treatment for all forms of resonant X-ray

scattering (hereafter abbreviated as RXS). I will later separately consider two different

varieties of experiments: resonant in/elastic X-ray scattering (RIXS and REXS).

What sets resonant scattering apart from nonresonant scattering is the increase in

scattering length of the targeted element at its absorption edge, through the 2-step

process of virtual absorption and emission [41, 44]. This generally increases the relatively
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small magnetic scattering signal to measurable amounts. It also helps to elucidate details

of the bonding and local structure, which are very briefly discussed in this dissertation.

Figure 2.1: Difference between the typical Thomson scattering and resonant scatter-
ing processes. Thomson scattering probes electrons in the combined (X-ray + ion)
ground state |a〉. The additional term in the interaction Hamiltonian from the pho-
toexcited electron occupying intermediate states |n〉 is the basis for the ‘anomalous’
RXS amplitudes. Adapted from [41]. Copyright 2011 John Wiley and Sons, Ltd.

There are advantages of RXS that are manifest in the literature, which have moved

our understanding of quantum materials forward in the past several decades:

+ Fine reciprocal space resolution

+ Element, site, and orbital specificity

+ Large reciprocal space availability; magnetic form factors do not die off with Q so

signals can be tracked in multiple Brillouin zones

+ Can measure small samples (∼100 µm2 areas, ultrathin films [45])

+ Can measure isotopes that are strong neutron absorbers

But RXS also has disadvantages:

− Relatively poor energy transfer resolution >5 meV

− Complicated equipment
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− Low signals

− Complicated cross-section

On that last disadvantage, RXS measures the intermediate state which yields the

outgoing photon. This state has a “photoexcited electron” (virtual absorption kicks a

core electron to the valence) so it is by nature an atypical excited state [44]. This is what

complicates the theory, rendering it tractable only with a litany of assumptions. These

assumptions are discussed throughout.

In the following theory section, we shall build toward the multipole formalism, an

expansion in the rank of the resonant form factors. While nonresonant X-ray scattering

can be defined by scalar form factors, the tensors in resonant scattering encode more

information about the system in the X-ray’s polarization. This is useful for extracting,

say, magnetic moment orientation in your sample.

2.1.1 Cross-Sections and Form Factors

We begin our consideration of resonant X-ray scattering with a quantum mechanical

treatment of the interaction of photons with matter [41, 46]. The interaction Hamiltonian

between photons and electrons is:

Ĥint = Ĥtotal − (Ĥelectron + Ĥradiation)

=
e2

2mec2
A2 − ~e3

2m2
ec

4
S · (Ȧ×A)− e

mec
A · p− ~e

mec
S · (∇×A)

≡ Ĥ1 + Ĥ2 + Ĥ3 + Ĥ4

(2.4)

Where A is the photon vector potential, Ȧ is its derivative in time, and e,me,p,S

are the electron charge, mass, momentum operator, and spin operator. We implicitly

33



Scattering Methods Chapter 2

consider only one site here.

We have already made several assumptions which make this result only describe ex-

periments with energies below about 20 keV. Namely, this theory is only applicable at

energies much less than the electronic rest mass 511 keV, as it disregards the (incoher-

ent, inelastic) Compton scattering which dominates at high energies. Additionally, we

consider fields from the beam that are small relative to the electron mass, which is ac-

ceptable for synchrotrons but may not hold for focused free electron lasers [46]. Also,

we assumed that the core electrons travel non-relativistically (i.e. the Lorentz factor

1/
√

(1− p2/(mec)2) ≈ 1), which is acceptable for the 2p electrons probed at the L

edges, but precludes 1s electrons in 4d block elements and higher (which is why these

are not typically measured). So this theory will only describe L edge and 3d K edge

scattering. It will be made clear when we later consider the special sub-case of 4d and

5d L edges.

The vector potential may be expanded as a sum of plane waves. In second-quantization

form we express A as a sum of harmonic oscillator photon creation(annihilation) oper-

ators a†(a) for photon eigenstates |nu,k〉 indexed by polarization u and wavevector k:

A(r, t) =
∑
u

∑
k

√
~

2ε0Vωk

[
εεεuau,keik·r−iωt + εεε∗ua

†
u,ke−ik·r+iωt

]
(2.5)

where r is real space, t is time, εεεu is a polarization unit vector for the electric field, ~ is

the reduced Planck constant, ε0 is the vacuum permittivity, V is some arbitrary volume

which will be removed upon Fourier transforming to reciprocal space, and ω=c|k| is the

frequency of the photon. Since electromagnetic waves are transverse, k·εεεu = 0 there are

only two orthogonal polarization directions.

Note that the vector potential is along the photon polarization, and is linear in photon

creation and annihilation. Thus we can compute how the interaction of the photon with
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the material system affects the states, by considering the initial and final states of the

combined system. Let us consider the material’s electrons prepared in the initial state |i〉

and an incident photon prepared in the state |εεε,k〉; the initial state for the entire system

is then the product state |a〉 ≡ |i〉⊗ |εεε,k〉 = |i; εεε,k〉. Conversely the final state composed

of the perturbed material system and the outgoing photon is defined by |b〉 ≡ |f ; εεε′,k′〉.

We use the interaction Hamiltonian to understand the differential scattering cross-

section dσ
dΩ

, which is proportional to the transition rate probability w (see Equation 2.1).

I present the relevant second-order result below:

w =
2π

~

∣∣∣∣〈b|Ĥint|a〉+
∑
m

〈b|Ĥint|m〉〈m|Ĥint|a〉
Ea − Em

∣∣∣∣2δ(Ea − Eb) (2.6)

where the sum is over all intermediate states m with energy Em, and the Dirac delta

function δ(Ea−Eb) ensures conservation of total energy. The second-order perturbation

term (the sum) describes RXS, which is a two-step scattering process. This will be

described in more detail shortly.

The first-order perturbation term |〈b|Ĥint|a〉|2 describes the Thomson scattering:

(
dσ

dΩ

)
Thomson

∝ |〈b|Ĥ1|a〉|2 ∝ |〈b| A2 |a〉|2

= r2
0|εεε · εεε′|2|F (Q, ~ω)|2δ(Ea − Eb)

(2.7)

(with r0 the Thomson scattering length) and, to leading order, the absorption:

σabs ∝ |〈b|Ĥ3|a〉|2 ∝ |〈b| A · p |a〉|2. (2.8)

These equations reference the Ĥint terms in Equation 2.4. Absorption is isotropic so we

can easily integrate its differential cross-section.

I want to pay particular attention to the atomic form factor f for one particular ion
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now. We can experimentally determine the precise energy dependence of f , for richer

analysis of scattering results. The convention is to express f as a sum of distinct reciprocal

space and energy-dependent terms:

f(Q, ~ω) = f 0(Q) + f ′(ω) + if ′′(ω) (2.9)

where f ′(ω)≡Re[f(ω)] and f ′′(ω)≡Im[f(ω)]. f 0(Q) is tabulated for each element and

comes simply from the Fourier transform of the electron density.

By definition we have:

f ′′(ω) =
−ω

4πr0c
σabs(~ω) (2.10)

Thankfully, the absorption cross-section σabs is an easily measured quantity. Making

use of theory, we can experimentally approximate the real term f ′(ω) from the absorption.

We can think of the response of one bound electron to a photon as akin to a damped

driven oscillator with position given by εεε(eE0/me)
ω2
s−ω2−iωΓ

, where E0 is the photon’s electric

field magnitude, ωs is the resonance frequency, and Γ is the damping coefficient. The

mathematical tool we exploit here is Cauchy’s theorem, which relates the form factors

to a contour integral in the complex plane. This approach yields the Kramers-Kronig

relation:

f ′(ω) =
2

π
P
∫ ∞

0

dω′
ω′f ′′(ω′)

ω′2 − ω2

=
2

π

(∫ ωs−δ

0

dω′
ω′f ′′(ω′)

ω′2 − ω2
+

∫ ∞
ωs+δ

dω′
ω′f ′′(ω′)

ω′2 − ω2

)∣∣∣∣
δ→0

(2.11)

where the principle integral P
∫

is defined on the second line. In practice, this quantifica-

tion is used in the calculation of resonant reflectivity scattering lengths for thin films and

heterostructures. Similar concepts are exploited in other resonant scattering analyses.

36



Section 2.1 Resonant X-ray Scattering Theory

2.1.2 Multipole Interpretation of Resonant X-ray Diffraction

The full form of the RXS cross-section is unwieldy. To get to a useful formulation,

we will apply several assumptions. This section is adapted from Ref. 47 with discussion

from other sources [12, 46]. The following is a more complete formalism than is employed

in most experimental works, including my own.

The word ‘diffraction’ in the title of this section is deliberate. In diffraction, the

measured signal is a coherent interference of all scattering processes. On the other hand,

away from a Bragg peak, all the RXS terms in Equation 2.4 are added incoherently. So

the multipole expansion is not applicable to inelastic scattering (RIXS) in its entirety.

One common source of confusion in the terminology: the multipoles derived in this

section do NOT directly describe the collective order of the scattered material system.

They are interaction multipoles describing the photon-electron interaction. For example

the “electric dipole” terms describe the magnetic dipole and electric quadrupole orders

in the material system. I will elaborate on this point later.

Let us embark by explicitly writing the atomic form factors in Equations 2.4 and 2.9

to leading order fj(Ĥ1, Ĥ2, Ĥ3, Ĥ4) for one site j [47]. The terms with no explicit energy

dependence are straightforward:

f 0 = 〈b|Ĥ1,j|a〉+ 〈b|Ĥ2,j|a〉 ≡ f 0,nonmagnetic
j + f 0,magnetic

j . (2.12)

As for the resonant form factor terms f ′ + if ′′, these treat the two-step absorption

and emission process. Here it is helpful to account for the order of photon creation

and annihilation, so we keep note of photon number in each state. In this complicated
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notation:

f ′j + if ′′j =
∑
m

∑
i

〈b;n|Ĥ3,i + Ĥ4,i|m;n±1〉〈m;n±1|Ĥ3,j + Ĥ4,j|a;n〉
Ea − Em ∓ ~ωk′

~ωk

(2.13)

where n is the number of photon states, and the explicit dependence on wavevector and

polarization have been dropped for simplicity. We must consider multiple scattering sites

i, j because the site may differ in the resonant scattering processes if the photoexcited

electron is delocalized. In the above there are two physical scenarios encoded: one in

which the incident photon is absorbed before the outgoing photon is emitted (intermedi-

ate state n−1 with ωk in the denominator) where we have resonance; and one in which

the outgoing photon precedes the incident one (intermediate state n+1 with ωk′ in the

denominator).

Now, for completeness and some helpful redundancy [12], I show the full substitution

of Ĥint into the double differential scattering cross-section:

d2σ

dΩdE
=

e4

m2
ec

4

ωk′

ωk

∣∣∣∣〈b∣∣∣∣∑
j

eiQ·rj

∣∣∣∣a〉 εεε′ · εεε −

i~(ωk + ωk′)

2mec2

〈
b

∣∣∣∣∑
j

sje
iQ·rj

∣∣∣∣a〉 εεε′ × εεε +
1

me

∑
m

∑
i,j(

〈b|(εεε′ · pi − i~(k′ × εεε′) · si)e−ik′·ri |m〉〈m|(εεε · pj − i~(k× εεε) · sj)eik·rj |a〉
Ea − Em + ~ωk − iΓm/2

+
〈b|(εεε · pi − i~(k× εεε) · si)eik·ri |m〉〈m|(εεε′ · pj − i~(k′ × εεε′) · sj)e−ik′·rj |a〉

Ea − Em − ~ωk′

)∣∣∣∣2
δ(Ea − Eb)

(2.14)

where the finite lifetime of intermediate states Γm helps to remove unphysical divergence

at resonance. This has the explicit polarization dependence so the photon number has

been dropped from the electron-photon product states |a〉, |b〉, and the intermediate states
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|m〉 now implicitly include the photoexcited electron.

In the above, we can note that the first term is the Thomson cross-section, the second

term is a (typically very weak) nonresonant magnetic contribution, and the long terms

contain a mix of resonant and nonresonant terms. We can therefore recast this formula

in terms of its components:

d2σ

dΩdE
=

e4

m2
ec

4

ωk′

ωk

∣∣∣∣AThomson +Anonres +Ares

∣∣∣∣2δ(Ei − Ef + ~ωk − ~ωk′) (2.15)

where I have here split the Dirac delta function’s energies to separately consider the

material’s and the photon’s energies: Ea − Eb = (Ei + ~ωk)− (Ef + ~ωk′).

To make any progress on the resonant cross-section in Equation 2.14, we employ the

multipole expansion [47]. This invokes the approximation in the limit of small k ·rj ∼ 0.1

which is valid for hard X-rays:

eik·r ≈
∞∑
l=0

il(2l + 1)jl(kr)Pl(k · r/kr)

≈
∞∑
n=0

(ik · r)n

n!
= 1 + ik · r− 1

2
(k · r)2 + . . .

(2.16)

where we approximate the proper sum of plane waves (in terms of the regular Bessel func-

tion jl and the Legendre polynomials Pl) as a Taylor expansion. The Taylor expansion

provides short-term simplicity, but we’d need to rearrange terms to express the transfer

matrix in terms of terms of given rank l in this multipole expansion.

Now we wish to express the orbitals in terms of their real-space values for easier

mapping onto the electron creation and annihilation operators that describe exciting a

core electron into a valence band and its subsequent decay. For this we employ the
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following commutators:

[x, Ĥelectron] = − ~
ime

px (2.17)

[xy, Ĥelectron] =
i~
me

(ypx + xpy) =
i~
me

(2ypx + Lz) (2.18)

[xy2, Ĥelectron] =
i~
me

(2xypy + i~x+ y2px) =
i~
me

(2yLz + i~x+ 3y2px) (2.19)

where Lz is the projection of the angular momentum along z.

If we carry these substitutions through [47], we can solve for one matrix element Mma

within Ares ∝M ′
bmMma:

Mma ≈ −
i(Em − Ea)

~

[(
1 +

~2k2

6me(Em − Ea)

)
〈m|εεε · r|a〉

+
i

2
〈m|εεε · rk · r|a〉

− 1

6
〈m|εεε · r(k · r)2|a〉

+
~

2me(Em − Ea)
〈m|k× εεε ·

(
L̂+ 2Ŝ

)
|a〉

+
i~

2me(Em − Ea)
〈m|(k× εεε) ·

(
2

3
L̂+ 2Ŝ

)
k · r|a〉

]
e−iωt

= E1 + E2 + E3 + M1 + (M2+T1) + . . .

(2.20)

where we’ve taken the liberty to define the tensors: electric E, magnetic M, and toroidal

T, with rank the number after them. The terms are in order, and the last term is the

mixture of T1 and M2 (these are the anti/symmetric parts of the same tensor).

If you think each term in the above equation is unwieldy, remember that for each

scattering channel we are actually measuring a permutation of four of these terms. The

convention for describing one scattering channel is a combination of two ‘couples’ of the

form (A−B)−(C−D), e.g. (E1−E1)−(E1−E1). Thankfully, it is only in very exotic

cases that one considers terms beyond E1 and E2. It is known that the couples (E1−E1)
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and (E1−E2) and (E2−E2) have been detected, and it is hypothetically possible that

(E1−M2) and E1−T1) and maybe the especially weak interaction (E1−M1) could be

detected. And, since E2/E1 ratios range from 0.02 to 0.2, typically only the couples

(E1−E1) and (E1−E2) are measurable in materials [47].

Rank Matter Multipole Î RXD Couple(s)

0 Electric charge + (E1-E1), (E2-E2), (E1-M2)
1 Electric dipole − (E1-E2)
2 Electric quadrupole + (E1-E1), (E2-E2), (E1-M2)
3 Electric octupole − (E1-E2)
1 Magnetic dipole + (E1-E1), (E2-E2), (E1-M2)
2 Magnetic quadrupole − (E1-E2)
3 Magnetic octupole + (E2-E2), (E1-M2)
0 Polar toroidal monopole + (E1-M2)
1 Polar toroidal dipole − (E1-E2)
2 Polar toroidal quadrupole + (E1-M2)
3 Polar toroidal octupole − (E1-E2)
1 Axial toroidal dipole + (E1-M2)
2 Axial toroidal quadrupole − (E1-E2)
3 Axial toroidal octupole + (E1-M2)

Table 2.1: Correspondence between multipoles in matter and scattering channels.
Tensor rank and parity under spatial inversion Î are also included. The (typically
strongest) dipole term is in bold for clarity. From [47], which contains a description of
the matter multipoles that builds on Jackson’s Classical Electrodynamics textbook.

Recall that the interaction multipoles are distinct from the multipoles that describe

matter. Table 2.1 shows which matter multipoles are uncoverable in which channels.

The inversion symmetry of each channel is useful for interpreting the data and assigning

matter multipoles, in conjunction with the relevant space groups. The rank of each couple

is a sum of the ranks of the terms’ tensors; e.g. E1-E1 is rank 2 so it can only measure

matter multipoles with rank ≤2, which includes electric charges, electric quadrupoles,

and magnetic dipoles.

Since it is dominant [12], and it can capture magnetic dipolar order, most studies
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only treat the dipole term (E1−E1):

Ares ≈
∑
m

∑
i,j

me

(
Ea − Em

)3

~3ωk

(
〈b|(εεε′ · ri)|m〉〈m|(εεε · rj)|a〉
Ea − Em + ~ωk − iΓm/2

)
(2.21)

where again we explicitly show that resonant scattering can involve a photoexcited state

that is delocalized over two separate sites i and j, and we have dropped the small cor-

rection factor ∝k2. You will notice that the dipole term has no explicit dependence on

the spin state. However, we exploit the selection rules to ensure we are measuring the

magnetic valence states. We also can track the polarization, energy, temperature, and

reciprocal space dependence and measure the scattering at different edges (say, L2 and

L3) to learn specific information − please read on for more of this.

2.1.3 Resonant X-ray Scattering for 4d5 and 5d5

In this section, we employ a more user-friendly approach to the resonant X-ray scat-

tering for 4d5 and 5d5 ions (iridates and osmates and ruthenates. . . ). In making the

theory tractable, we lose a great deal of generality to other ions.

First we apply the “fast collision” approximation [48]. Here, we assume that the

width of the excited states is large compared to the excitation spectrum. In effect we are

limiting our consideration to edges with supremely short core-hole lifetimes: the L-edges

of 4d-block and higher elements. Often this treatment is used for studies of 3d K-edges,

but this is probably not valid because their core-hole lifetimes Γ are about as small as

the Hubbard energy scale [49].

The second approximation is to treat only dipole transitions (E1−E1) as in Equation

2.21. Under this approximation, throwing out the other interaction multipoles, there

is no difference in the theories for all resonant scattering cross-sections. This theory is
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therefore applicable to all RXS, RIXS and resonant diffraction alike.1

This section is mostly from the treatment by B.J. Kim and G. Khaliullin [49]. This

theory only explicitly handles insulators with t2g orbitals, because it only considers 1-site

terms and not delocalized excitations specifically.

The dipole transitions (E1) can be represented by operators of the form D̂ ∝ d̂†p̂

at the L-edges for 2p → d transitions. More explicitly, for X-ray polarization along z

(εεεz), the form is: d̂†yzp̂y + d̂†zxp̂x + 2√
3
d̂†(3z2−r2)p̂z, with cyclic permutations for the other

polarization directions.

With the fast collision approximation, the RXS operator R̂ is:

R̂ =
∑
m

D̂†(εεε′)|m〉〈m|D̂(εεε)

E − Em + iΓm/2
(2.22)

with, as a reminder, intermediate states |m〉 that include the photoexcited electron,

incident and outgoing polarization εεε and εεε′, incident X-ray energy E, and core-hole

lifetime Γm. The measured intensity would be I ∝ 〈b|R̂†R̂|a〉 measured for the initial

and final states |a〉, |b〉 at a particular value of energy and momentum transfer.

The theory breaks the RXS operator into a quadrupole and a dipole channel:

R̂ =
1

3

(
R̂Q + iR̂M

)
(2.23)

R̂Q =
∑
α

εαε
′
αQαα −

1

2

∑
α>β

(
εαε
′
β + εβε

′
α

)
Qαβ (2.24)

R̂M =
1

2

(
εεε× εεε′

)
·N (2.25)

where the quadrupolar tensor Qαβ and the magnetic vector N represent transitions with

∆j=±2 and ∆j=±1 respectively. These can both be calculated in terms of the D̂ oper-

1To reiterate, when we include higher-rank terms the RIXS signal is not described by the multipole
expansion because scattering terms may be added incoherently.
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L3−edge L2−edge
Qzz

d5
[
2L2

z − 2LzSz
] [

L2
z + 2LzSz

]
Jeff=1/2 0 0
Qxy

d5
[
2LxLy + 2LyLx − 2LxSy − 2LySx

] [
LxLy + LyLx + 2LxSy + 2LySx

]
Jeff=1/2 0 0
Nz

d5
[
2Lz − 4Sz + 8L2

zSz
[
Lz + 4Sz − 8L2

zSz
−2Lz(L · S)− 2(L · S)Lz

]
+2Lz(L · S) + 2(L · S)Lz

]
Jeff = 1/2

[√
8 sin 2θ − 4 cos 2θ

]
S̃z −−−→

cubic
4S̃z

[
3 + cos 2θ +

√
8 sin 2θ

]
S̃z −−−→

cubic
0

Nx

d5
[
2Lx − 4Sx + 8L2

xSx
[
Lx + 4Sx − 8L2

xSx
−2Lx(L · S)− 2(L · S)Lx

]
+2Lx(L · S) + 2(L · S)Lx

]
Jeff=1/2

[√
18 sin 2θ

]
S̃x −−−→

cubic
4S̃x 0

Table 2.2: The components of the RXS operator R̂ for 4d5 and 5d5 ions. The corre-
sponding Jeff=1/2 result is included in the cubic limit and as functions ofthe tetrag-

onal/trigonal distortion ∆ and SOC λ via tan 2θ = 2
√

2λ
λ−2∆ . Those components not

included in the table are related by symmetry. Adapted from [49].

ators. Then the intensities could be expressed as I ∝ 〈b|R̂†QR̂Q + R̂†M R̂M |a〉.

Table 2.2 has the results for both d5 and Jeff=1/2 states. To calculate Qαβ and N

in terms of the dipole operators, we assumed that eg states are negligibly occupied, and

that Hund’s first rule (maximizing Ŝz) is a good starting point. While the result in terms

of the spin and orbital momentum operators is useful, we are specifically interested in the

case of pseudospin-1/2 operators S̃ with |S̃z=1/2〉 ↔ |↑̃〉. See Section 1.2.1 for relevant

definitions.

The specific result for Jeff=1/2 in the cubic limit is as follows: R̂Q = R̂L2 = 0, and

R̂L3 = 2
(
εεε× εεε′

)
· S̃ (2.26)

In this cubic case the resonant X-ray cross-section is isotropic and, as we will soon
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Figure 2.2: Resonant X-ray Scattering can be used to show proof of the Jeff=1/2 state,
as was done for Sr2IrO4. The diffraction at a magnetic Bragg peak is plotted in red
for both the L3 and L2 edges. From [16]. Copyright 2009 American Association for
the Advancement of Science, reprinted with permission.

see, there is a direct correspondence between this and the spin-spin correlation function

measured with magnetic neutron scattering.

In REXS one can select the outgoing polarization εεε′ that points either along or per-

pendicular to the incident polarization εεε, to separate this magnetic signal from other

possible origins. When the incident polarization is σ, these two channels are dubbed

σ − σ′ and σ − π′ respectively. Because εεε× εεε′ is only finite for σ − π′, this is often called

the spin-flip channel. More on this in Section 2.2.1.

Another important result of this theory is the explanation for why Jeff=1/2 materials
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Figure 2.3: Relative intensities of the resonant X-ray scattering near the ideal
Jeff=1/2 state, as a function of tetragonal/trigonal distortions. In (a) and (b) the
ratio of the intensities at the L2-edge and L3-edge are plotted for various moment
angles θµ, with µµµ || (110) defined as having θµ = 90◦. While this ratio changes with θµ
in the spin-flip σ−π′ channel, there is no such dependence in the non-spin-flip σ−σ′
channel. In (c) are some expectation values. From [14]. Copyright 2014 American
Physical Society.

(in particular Sr2IrO4) have negligible intensity at L2 − recall Section 1.2.1, and see Fig.

2.2. This result from Ref. 16 can only be rationalized by the unusual spin and angular

momentum states for the Jeff=1/2 state. The intensity ratio of out-of-plane pseudospin

components Ic(L2)/Ic(L3) stays very small <0.01 unless the trigonal or tetragonal dis-
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tortion is quite large ∆ > 0.1λSO ≈ 40 meV for IrO6. The general results for scattered

intensities and expectation values near the Jeff=1/2 limit are plotted in Fig. 2.3.

2.1.4 Resonant X-ray Scattering for 4d4 and 5d4

For 5d4 ions in the strong SOC limit, the ground state is Jeff=0, and the lowest-energy

excitations are to a triplet of J = 1 levels. These Van-Vleck-type excitations are of great

theoretical interest, as will be discussed in Chapter 5.

Using the same framework as was used for the d5 derivation, we will consider d4 in

the cubic limit [49]:

RQ,L3 =−1

3

(
εxε
′
x + εyε

′
y + εzε

′
z

)
S̃2
z

RM,L3 =−
√

6

2

[(
εyε
′
z − εzε′y

)
S̃x + (εzε

′
x − εxε′z) S̃y

]
RQ,L2 =+

1

12

(
εxε
′
x + εyε

′
y + 10εzε

′
z

)
S̃2
z

+
3

4

[(
εxε
′
x − εyε′y

) (
S̃2
y − S̃2

x

)
+
(
εxε
′
y + εyε

′
x

) (
S̃xS̃y + S̃yS̃x

)]
RM,L2 =+

3

4

(
εxε
′
y − εyε′x

)
S̃z

(2.27)

where now S̃ operators represent the pseudospin-1 basis.

The full derivation, with corrections for tetragonal/trigonal distortions, is in Ref. 49.

The relevant point is that for d4 the resonant X-ray scattering cross-section contains a

(matter) quadrupole signal, even when only one site is considered. Thus d4 RXS could

plausibly be used to detect spin quadrupolar (nematic) order, such as the proposed Higgs

mode in Ca2RuO4 [50].

Another instructive limit, especially for the work in Chapter 5, is that in which

compressive distortions are much greater than SOC (∆� λSO). This is the S=1 ground

state where the J = 1 doublet is brought close enough to mix with the J = 0 level.
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Here, the pseudospin-1 levels correspond to the ‘triplon’ Van-Vleck excitations as follows:

1√
2
(S̃x + S̃y) ↔ T̃z, and S̃z ↔ 1√

2
(T̃x + T̃y); see Ref. 51 for a more complete discussion.

In this case,

RQ = 0

RM,L3 = −RM,L2 =− 1√
8

[(
εyε
′
z − εzε′y

)
S̃x + (εzε

′
x − εxε′z) S̃y

]
=− 1√

8

(
εεε× εεε′

)
· ẑT̃z

(2.28)

where, in the last line, I have changed the basis from pseudospin-1 to triplons as defined

above. This anisotropic cross-section is a simple starting point for considerations of how

the Van-Vleck signal looks like in most 4d4 systems, and in 5d4 systems with very strong

distortions.

2.1.5 Nonmagnetic Resonant Diffraction

The multipole formalism does not just apply to magnetic excitations and order; it is

also applicable to other details of the material. For instance, resonant X-ray diffraction

has been used in many studies of orbital ordering, by measuring the electric multipoles of

the sample; early work was on a variety of samples including Mott insulators like YVO3

[52].

One especially pernicious nonmagnetic scattering mechanism is termed the Anisotropic

Tensor Scattering (ATS, or anisotropic resonant scattering, or Templeton scattering).

ATS can yield scattering at structurally allowed and ‘forbidden’ wavevectors as a conse-

quence of nonmagnetic orbitals. A good review of this is by Dmitrienko and co-workers,

and it was initially discovered and developed theoretically by Templeton and Temple-

ton [53, 54]. ATS arises from anisotropy in the resonant tensor form factors related

to anisotropic charge distributions. For example, in the rare earth pyrochlore iridates,
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ATS arises from a slight Jahn-Teller-like distortion of the iridium-oxygen octahedra [55].

While ATS hinders direct interpretation of ‘forbidden’ peaks as magnetic, it also yields

rich information about local electronic symmetries.

The ‘forbidden’ ATS peaks mainly occur at wavevectors where glide planes or screw

axes lead to destructive interference in the nonresonant diffraction when there is a differ-

ence in the form factor for scattering along and perpendicular to the local symmetry axis.

ATS can also occur for materials with ‘special’ atomic positions, as with diamond’s (222)

reflection. For each material, the ATS contribution can have different polarization and

azimuthal dependencies as derived by the formalism for each space group. As previously

mentioned, ATS can mimic magnetic scattering; for instance, on resonance for a site on

a 21 screw axis, the dd scattering is purely in the σ − π′ channel [53].

2.2 Resonant X-ray Scattering Experiments

For 4d and 5d systems, the resonant X-ray scattering (RXS) is manageable to in-

terpret qualitatively (and Jeff=1/2 systems are especially straightforward). The main

assumptions, (1) of dipole-only scattering terms in the multipole expansion and (2) of

1-site interactions dominating the signal, seem to generally describe most signals in ex-

periments. With these assumptions, there is no difference between the theories for elastic

and inelastic scattering.

While RXS techniques share some similarities with diffraction, the key difference is

that RXS is inherently a multi-step process. One important example of this distinction

is that in RXS measurements of ions arranged like dimers (bilayers, trimers, etc.), the

double-slit interference condition can be satisfied. The identity of which ion in the pair

yielded the emitted photon, the ‘slit’ in this double-slit experiment, cannot be deter-

mined in principle [56]. This is because the delocalization of the photoexcited electron
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in the intermediate state removes the ‘which-path’ information for the emitted photon

[22, 57]. This result was shown in early REXS experiments on magnetic Bragg peaks

in Sr3Ir2O7 [58]. Recently this finding has proven essential for interpreting new RIXS

excitations in Sr3Ir2O7 [59] and for the work presented in Chapter 5.

RXS techniques are crucially dependent on the high flux and high energy discrimi-

nation available at modern X-ray sources: synchrotrons and free-electron lasers. This is

because the measured intensity of magnetic Bragg peaks is often a factor of 106 or more

weaker than the structural Bragg peaks. The general principle for these varied X-ray

sources is to accelerate relativistic charges in order to generate X-rays. Synchrotrons

accelerate an electron or positron beam in a ring, radiating a broad spectrum of light

tangent to the ring. In either a free-electron laser or an undulator within a synchrotron,

arrays of permanent magnets with alternating polarity impart oscillations on the elec-

tron/positron beam, leading to the radiation of tunable and highly coherent light with

low angular divergence [41].

While resonant diffraction “RXD” is helpful by itself, analyzer crystals used in reso-

nant elastic or inelastic scattering (“REXS” or “RIXS”) provide additional information.2

Scattering from an analyzer crystal selects only energies that satisfy the diffraction con-

dition, which screens out the fluorescence and some spurious signals. In RIXS, an array

of low-mosaicity (i.e. low acceptance angle) analyzers are used to sharpen the analyzer’s

energy resolution. In the case of REXS, a single analyzer in different geometries addi-

tionally screens the polarization of the scattered beam. It is best to think about these

techniques as akin to neutron scattering: they are flux-limited, so we must compromise

between reciprocal space resolution, energy resolution, and count rate. To make these

techniques feasible in a few days, REXS analyzers integrate over (relatively) large energy

2More acronyms are frequently used. The most common, resonant X-ray magnetic scattering (RXMS)
is confusing because it has described experiments both with and without an analyzer crystal (RXD and
REXS).
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ranges, and RIXS analyzers integrate over (relatively) wide regions of reciprocal space.

2.2.1 Elastic (REXS) and Magnetic Diffraction

The resonant elastic X-ray scattering (REXS) technique is generally performed at

instruments with high angular resolution, high flux, incident energy tunability, and the

ability to accommodate an analyzer crystal. The power of REXS over other RXS tech-

niques is to select the outgoing X-ray polarization. This is typically measured in two

channels, where the outgoing polarization is either along or perpendicular to the incident

polarization. When the incident polarization is perpendicular to the scattering plane σ,

these two channels are dubbed σ − σ′ and σ − π′ respectively.

Figure 2.4: The setup of a REXS experiment, highlighting the polarization definitions
in a vertical scattering plane. Here the polarization unit vector is labeled ê, the
azimuthal angle is labeled Ψ, and the typical definitions for Q, k, k′, and 2θ hold.

Reiterating our finding for Jeff=1/2 states in the nearly-cubic limit (Equation 2.26)

for the intensity: I ∝
∣∣(εεε × εεε′

)
· S̃
∣∣2. We can see that this signal ought to only be

measurable in the σ − π′ channel. Thus, in the resonant scattering community, often

σ − π′ is called the spin-flip channel.
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In REXS, the way polarization is selected is by exploiting Thomson scattering. At

scattering angle 2θ = 90◦, an analyzer crystal only diffracts photons with polarization

perpendicular to its scattering plane. Please see the schematic in Fig. 2.4.

Of course, polarization is not the only experimental tool to distinguish and study

magnetism in RXS. Below is a description of how other parameters can provide additional

information about site-specific magnetism.

1. Azimuthal Angle: Since the cross-section has explicit dependence on the magnetic

vector’s direction, we can use the azimuthal angle to learn about the moment

orientation. Here azimuth refers to the angle not defined by momentum transfer

Q; see Fig. 2.4. For the simple case of the Jeff=1/2 state, for a square-lattice

G-type antiferromagnet like Sr2IrO4, the cross-section specifies that the azimuthal

dependence goes as cos2(ψ) in the σ−π′ channel, with ψ=0 defined as the angle

along the moment direction. The form can of course be more exotic for other

lattice symmetries (i.e. three-fold), and is more complicated away from the d5

configuration. On the other hand, for structurally allowed ‘charge’ peaks in the

absence of ATS, there ought to be no azimuthal dependence. And an overly sharp

angular dependence is a strong indication of multiple scattering.

2. Correlation Lengths : The width of a magnetic Bragg peak is a measure of the

spatial extent of the order. Since resolution ellipsoids are not typically tabulated

for X-ray instruments, one must measure nearby structural Bragg peaks; magnetic

peak width is calculated by subtracting a charge peak width in quadrature, as with

neutron scattering.

3. Incident Energy : Magnetic peaks are resonantly enhanced near the L3 absorption

edge, whereas structural peaks are weaker due to absorption. For low-spin d≤5 ions

the absorption maximum is for the eg manifold, and the magnetic peak is several eV
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below in the relevant t2g valence level. The resonance width is typically several eV

for Ir (set by many things including beamline resolution, but also by the intrinsic

core-hole lifetime).

4. Temperature: For magnetic order, the scattered intensity should behave like an

order parameter. For the simple case of the Jeff=1/2 state, intensity is proportional

to the moment squared: I ∝ 〈R̂†R̂〉 ∝ S̃2.

2.2.2 REXS at APS Diffractometer 6-ID-B

Now we will focus on one instrument optimized for REXS, Beamline 6-ID-B at the

Advanced Photon Source (APS) synchrotron at Argonne National Laboratory in Lemont,

Illinois, USA. The APS is a highly coherent 3rd generation (soon to be 4th generation)

6-7 GeV storage ring with high brightness and flux. As the name abbreviates, 6-ID-B

is in the B hutch downstream from an Insertion Device (or an undulator in a straight

segment of the synchrotron, as opposed to a bending magnet). This undulator has a

length of 2.47 m and a period of 33 mm, which defines the spacing between permanent

magnets with alternating polarity. The first undulator harmonic can access about 4-13

keV photon energy, and the monochromator can access up to about 20 keV at higher

undulator harmonics. This instrument’s incident flux after the monochromator is near

1013 photons/s over the focused beam area, which is about 0.1 mm2 prior to slits. An-

other useful parameter is that this instrument’s incident photons are ≈99% horizontally

polarized.

The overall instrumental setup is fairly standard for REXS. From the synchrotron’s

white beam, a Si(1,1,1) double-bounce monochromator selects an energy with a typical

energy resolution of about 1 eV at an incident energy of 11 keV. After several optics

tables with slits and mirrors to trim and focus the beam, the beam impinges on the
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Figure 2.5: An overview of the REXS beamline 6-ID-B at the APS. The top right and
bottom panels are a photograph and a schematic of the diffractometer. Green lines
indicates the monochromatic incident and analyzed beam, and the narrow rainbow line
indicates the outgoing beam scattered from the sample. Ion Chamber is abbreviated
as IC. The top left panel highlights the polarization analyzer stage.

sample (here in a 6-circle Huber ψ−diffractometer). The sample can be cooled via a cold

finger at the end of a cryostat, sealed within a Be dome. After scattering from the sample,

the beam scatters from a plane analyzer crystal into a point detector. Each component

has many associated linear and angular motors. Flight paths between components are

typically evacuated to improve signal-to-noise and flux. Ion chambers passively monitor

the flux.

At 6-ID-B specifically, most experiments utilize a graphite analyzer crystal. The

reflectivity for graphite is high. Also the angular acceptance is large, which enhances the
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flux at some cost to the detected energy resolution.

The supreme angular resolution at 6-ID-B has made great strides in improving corre-

lation length bounds and in pinpointing incommensurate magnetic orders (e.g. Ref. 60).

But it also means that measurements on this instrument are challenging. The detected

signal is sensitive to the exact crystal orientation, which must be carefully tweaked for

small changes in temperature or azimuthal angle.

2.2.3 Inelastic (RIXS) and Magnetic Excitations

The resonant inelastic X-ray scattering (RIXS) technique is generally performed at

specialized spectrometers with high energy resolution and high flux. Since it is performed

in a backscattering geometry, RIXS does not offer polarization selection.

RIXS can measure many different kinds of excitations, more than neutrons and often

more than an experimentalist wants. In addition to magnetic excitations (spin waves

i.e. magnons, and dressed varieties like paramagnons and spin-orbit excitons), all sorts

of electronic and lattice excitations are accessible, including phonons, plasmons, orbital

excitations (like orbitons and charge transfer), and so on. These can typically be distin-

guished by their energy, momentum, and temperature dependence, and also by measuring

in other Brillouin zones. In order to further assess the nature of the excitations, RIXS is

typically measured in conjunction with other probes like optical reflectivity.

RIXS is a measure of the scattering function (or dynamic structure factor) S(Q, ω)

which is proportional to the imaginary part of the susceptibility tensor via the fluctuation-

dissipation theorem [42, 61]. However RIXS intensities are typically qualitative; I am not

aware of a method for normalizing to ‘absolute units’ for comparing between different

Brillouin zones or between different samples. To compare spectra within one zone apples-

to-apples, often experimentalists measure with a fixed scattering angle 2θ to make the
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X-ray absorption length in the sample the same, but this does not account for finer

corrections.

Figure 2.6: The setup of a RIXS instrument, highlighting the circular diced analyzer
which focuses to a strip detector. The Rowland circle for the analyzer’s diffraction
is shown in red. Other upstream components are shown on the right. Adapted from
[46]. Copyright 2011 American Physical Society.

2.2.4 RIXS at APS Spectrometer 27-ID-B

Now we will focus on one instrument optimized for RIXS, Beamline 27-ID-B at the

APS. This instrument also uses an insertion device (ID). There are actually two 2.4 m

long, 30 mm period undulators in this ID.

This instrument is optimized for energy resolution. It utilizes two sets of monochro-

mators (see schematic in Fig. 2.7) to achieve an incredibly fine incident energy resolution

of about 10 meV at an incident energy of 11 keV. The first monochromator is a double-

crystal diamond(1,1,1) monochromator designed to handle a high heat-load from the

considerable incident flux. The second is usually a four-bounce Si(4,4,8) monochroma-

tor, but for high-resolution applications a newly developed double-bounce quartz(-3,0,9)

monochromator can achieve record-shattering 6 meV overall instrumental resolution [62].

Downstream from the monochromators, the K-B focusing mirrors make the typical
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Figure 2.7: The RIXS beamline 27-ID-B at the APS. The overlaid green line indi-
cates the monochromatic incident beam, the narrow rainbow line the outgoing beam
scattered from the sample, and the wide rainbow line the analyzed beam.

spot size near 300 µm2 before slits, which is helpful for the maintaining the overall

instrumental resolution and for measuring small samples.

The RIXS measurements in this dissertation used a Si(4,4,8) diced spherical analyzer

crystal [63]. With it in place, the overall instrumental energy resolution is about 35

meV. This optic was fabricated by dicing a 100 mm diameter Si wafer on a polycarbonate

substrate, and then gluing that to a plano-concave glass lens with a 2 m curvature radius.

The result is many pixel-like flat crystals that each have small angular acceptances. The

analyzer is at the end of an evacuated ‘two-theta arm’ shown in Fig. 2.7. Spherical optics

focus to a line; this analyzer focuses onto a strip detector with energy discrimination.

The large size of the spherical analyzer helps boost the RIXS signal. It accomplishes this

gain by its large solid angle, effectively integrating over a large swath of reciprocal space.

For the highest-recorded-resolution RIXS setup on this same beamline, a quartz(-

3,0,9) diced analyzer crystal was developed, with an intrinsic resolution of <4 meV [64].
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This, along with a Montel mirror and a Si(1,1,1) collimator between the sample and

analyzer, enables supreme energy resolution on this beamline [65], which has recently

been used to shed light on the hyperhoneycomb iridate [30]. However, there is a trade-off

between flux and energy resolution. The Si monochromator and analyzer setup has more

flux, which is the limiting factor for many measurements.

2.3 Neutron Scattering Theory

Now we will briefly touch on several neutron scattering cross-sections that will be

explored in later chapters. This section is a purposely compact assortment of relevant

ideas, which are thoroughly derived in textbooks [42, 66].

The double differential cross-section (Equation 2.1) for neutrons is related simply to

the scattering function (or dynamic structure factor) S(Q, ω) by:

d2σ

dΩdE
=

σ

4π~
k′

k
S(Q, ω). (2.29)

For neutron scattering from nuclei, the cross-section is related to a site’s scattering

length b via:[42]

σ = 4πb2 = 4πb̄(Q)2 + 4π(∆b)2

= σcoh + σincoh

(2.30)

where the coherent and incoherent components arise from the average b̄ and standard

deviation (∆b)2 = b̄2 − (b̄)2 of the scattering lengths of the various isotopes occupying

that site. The incoherent scattering is weakly dependent on the momentum transfer Q

and results in a noisy background. In the case of elastic scattering (diffraction), the

dynamic structure factor is just the crystal structure factor with a Debye-Waller factor

that accounts for phonons.
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2.3.1 Magnetic Neutron Scattering

First we touch on the results for magnetic neutron diffraction. For scattering from

electrons’ moments, the double differential cross-section is

(
d2σ

dΩdE

)
mag

= (γr0)2k
′

k
Smag(Q, ω). (2.31)

with γ the neutron gyromagnetic ratio and r0 the electron radius. But what is the

magnetic scattering function? Consider the interaction Hamiltonian −µµµn · B, a dot

product between the neutron’s moment3 and the electrons’ magnetic field B. If we

consider a sublattice with only a spin contribution to the total angular momentum M =

2µBS, neutrons therefore are measuring the magnetization density:

M(Q) = 2µB

∑
j

Sjfmag,j(Q)eik·Rj (2.32)

where the magnetic form factor fmag(Q) is valence-specific. It is essentially the Fourier

transform of the real-space magnetization density M(r):

fmag(Q) =

∫
dr′M(R + r′)eiQ·r′∫
dr′M(R + r′)

. (2.33)

With these definitions in place, the elastic magnetic cross-section (without the crystal

structure factor) is:

(
d2σ

dΩdE

)
elastic,mag

=

(
γr0

2µB

)2 ∣∣∣Q̂×M(Q)× Q̂
∣∣∣2 . (2.34)

So for magnetic diffraction, we can only measure the component of the moment that is

perpendicular to the momentum transfer. There is a simple extension of this result for

3The neutron’s moment is µn = −1.913µN , with the nuclear magneton µN = e~/(2mp).
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spin states with finite angular momentum - see Ref. 66. Please note that this result is

related to, but quite different from, the resonant X-ray cross-section.

Now we consider the magnetic signals in inelastic neutron scattering. Note that the

scattering function in Equation 2.29 is essentially a Fourier transform of the correlation

function. So for magnetic signals, this is just the spin-spin correlation function. We can

therefore relate Smag(Q, ω) to the imaginary part of the susceptibility χ′′ through the

fluctuation-dissipation theorem and get:

χ′′(Q, ω) = π(1− e−ω/kBT )I(Q, ω)/|fmag(Q)|2 (2.35)

where the first term that corrects for bosonic filling with temperature is called the de-

tailed balance, and here the measured intensity I has been corrected for the factor k′/k

and converted to absolute units. This result is general for powder measurements, to a

multiplicative factor. Since the susceptibility is a tensor, for application in single crystals

the above equation requires further corrections that account for Q − see for example

Ref. 67.
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Moment Un-freezing in the
Monolayer Perovskite Sr2IrxRu1−xO4

1 This project was designed to explore the fascinating metallic phases that link the corre-

lated metal and unconventional superconductor Sr2RuO4 to the Jeff=1/2 antiferromag-

netic insulator Sr2IrO4. We sought to determine how the correlated, itinerant moments

for Sr2RuO4 evolve into local moments. Based on the existing research, little defini-

tive conclusions could be made about metallic (Ru-rich) samples. Existing crystals were

fairly inhomogeneous and small, making them poorly suited for either magnetotransport

or neutron scattering studies.

The preliminary thrust of this work was sample synthesis. We endeavored to boost

experimental efforts on unconventional correlated metal phases in Sr2IrxRu1−xO4 by im-

proving the sample quality and volume of crystals in the alloy series. Crucially, floating

zone synthesis fully opens this class of materials to study via neutron scattering, which

enabled more thorough investigation of O positions, magnetic structure, and excitations

than previous work on smaller crucible-based flux-grown crystals. Floating zone synthe-

1Part of this chapter includes work from one of our publications, Ref. 68: Zach Porter, Eli Zoghlin,
Julian L. Schmehr, and Stephen D. Wilson. Crystal growth of Sr2IrxRu1−xO4for x≤0.4, Journal of
Crystal Growth 578, 126432 (2022). Copyright 2021 Elsevier B.V. All rights reserved.

Much of the rest of the chapter is from an unpublished manuscript. My collaborators are: Aaram J.
Kim, Paul M. Sarte, Eli Zoghlin, Alexander I. Kolesnikov, Rebecca L. Dally, Jeffrey W. Lynn, Adam A.
Aczel, Roser Valent́ı, and Stephen D. Wilson.
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sis also has the potential to improve the alloy homogeneity due its ability to actively

mix the melt during the crystal growth process. We found that the resultant gram-sized

samples are more uniform in composition than comparable flux-grown crystals.

What we discovered was unusual compared to other substitution series for Sr2RuO4:

no apparent short-range or long-range magnetic order. Yet the local moment magnetism

turns on at a critical Ir concentration x=0.18 in Sr2IrxRu1−xO4. This marks a recently

established Lifshitz (quantum phase) transition, and we find a coincident quantum critical

response in the magnetotransport and the heat capacity. We interpret this result in the

context of moment freezing, a phenomenon that may link this transition to the mechanism

for the superconductivity in Sr2RuO4.

3.1 Introduction and Previous Work

Sr
Ir/Ru

O

=1 eff=½

50% 
subs�tu�onI4/mmm I41/acd

c

b
a

b
a

Figure 3.1: Ruddlesden-Popper structure of Sr2IrxRu1−xO4. The I4/mmm unit cell is
shown on the left. In-plane tilts are shown schematically on the right for Sr2RuO4 and
Sr2IrO4, along with quantum numbers for the B-site ions.

Sr2IrxRu1−xO4 is an alloy of the single layer member of the Ruddlesden-Popper series;

its chemical formula is Srn+1(Ir,Ru)nO3n+1 with n=1. It consists of alternating layers
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of SrO rock salt and perovskite, such that there are separated planes of corner-sharing

(Ir,Ru)4+O2−
6 octahedra. Hence it is occasionally considered to be a monolayer perovskite.

We studied Sr2IrxRu1−xO4 with the intent to look for ‘strange metal’ phases. These

mysterious phases are the hallmark of a metallic quantum critical point (QCP), a con-

tinuous phase transition at zero temperature (see Section 1.3). Strange metals are char-

acterized by linear-in-temperature resistivity which is not captured by the Fermi liquid

theory [31, 32]. Such phase behavior has been observed for several families of uncon-

ventional superconductor materials, where the superconducting phase is predicted to be

related to the quantum critical fluctuations. For the iron-based and heavy-fermion-based

superconductors, the QCPs frequently coincide with the end of antiferromagnetic phases,

which may suggest that the Cooper pairing is spin-driven (for example, Refs. 35–37).

However, the especially strong pairing mechanism for the cuprates has remained a puzzle.

The cuprate QCP seems to lie at the end of the enigmatic pseudogap phase, with inco-

herent quasiparticles and various density wave fluctuations which are difficult to directly

study [34]. There seems to be consensus that Mott physics are key to understanding

the cuprates, whether within the QCP theoretical framework or other theories [69, 70].

Therefore, uncovering the low-temperature physics of metallic quantum criticality in an-

other system with Mott physics and density waves may provide clues to the nature of

the superconductivity in the cuprates.

Sr2RuO4 is a paramagnetic correlated metal with an effective moment near 0.5 µB/Ru,

greatly reduced from the expected value 2.8 µB/Ru for S=1 4d4 local moments [71].

This paramagnetic phase lies near an electronic instability, as evidenced by the spin

density wave fluctuations [72, 73] and the unconventional superconductivity for ultra-

pure samples [74]. Dilute substitution of Ru for other d block elements (Ti, Mn, Co, Fe)

results in magnetic short-range order at low dopant concentrations ∼1% [67, 75, 76]. To

our knowledge, Ir is the only Ru substitute in Sr2RuO4 for which no static order has been
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demonstrated for x<0.3 (though a possible exception is Rh substitution [77]). Thus, this

study is uniquely positioned to explore the nature of the unusual paramagnetic ground

state for Sr2RuO4.

Figure 3.2: Top panels: band topology and density of states of Sr2RuO4. From [78]
Copyright 2018 Springer Nature. Bottom panels: orbitally-selective filling in the case
of Sr2IrxRu1−xO4. Ir substitution mostly fills the γ-band at low x, rather than rigidly
shifting the Fermi level. The Lifshitz transition lies between 0.1<x<0.2. Adapted
from [79] Copyright 2021 American Physical Society.

Substitution of Ru for 5d5 Ir4+ ions in Sr2IrxRu1−xO4 introduces delocalized elec-

trons and Jeff=1/2 magnetic impurities into this near-critical metallic phase. Recently,

an angle-resolved photoemission (ARPES) study demonstrated a Lifshitz transition in

Sr2IrxRu1−xO4 for 0.1<x<0.2 where the topology of the γ-band transitions from electron-

like to hole-like; see Fig. 3.2 [79]. This study found that electron doping from Ir substi-
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tution is orbitally selective, filling the γ-band more than comparable levels of La substi-

tution [80], an effect which was attributed to the increased effective spin-orbit coupling

energy scale.

In the multiorbital metal Sr2RuO4, the γ-band is primarily composed of Ru dxy

orbitals, and forms a 2-dimensional sheet that has the largest density of states at the

Fermi level. The additional filling at low Ir content comes from depleting the β-band,

which like the α-band is a nearly 1-dimensional sheet with mixed Ru dxz/dyz character. It

is these α- and β-bands which exhibit Fermi surface nesting. The resultant spin density

wave fluctuations have the quasi-2-dimensional wavevector (h, k)=(0.3, 0.3) in reciprocal

lattice units (r.l.u.) [72].

For the rest of this section we will consider pertinent work in other Sr2RuO4 variants,

mostly other substitution series. Later in this chapter, after establishing some synthetic

and structural details, we explore the thermodynamic signatures of the Lifshitz transi-

tion in Sr2IrxRu1−xO4. We present dc magnetization, magnetotransport, heat capacity,

and neutron scattering measurements that are suggestive of metallic quantum criticality

driven by moment freezing. We demonstrate that spin density wave fluctuations and in-

coherent quasiparticles seem to be prominent features of this transition, as in the cuprate

superconductors.

3.1.1 Comparison to other Sr2RuO4 Substitution Series

We need to untangle the effects of the band fluctuations and the local moment mag-

netism in this study. To do so we start by examining other substitution series. First

consider the relatively simple case of La substitution in Sr2−yLayRuO4, where the elec-

tron doping is well-described by a rigid band shift; see Fig. 3.4 [80]. As La content

increases toward the γ-band vHs at y ≈ 0.20, Kikugawa and co-workers measured an
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Figure 3.3: Crossing the Sr2RuO4 van Hove Singularity via electron doping and bi-
axial strain. (a) For Sr2−yLayRuO4, resistivity measurements show a sudden shift to
non-Fermi-liquid behavior near x = 0.2. From [78] Copyright 2018 Springer Nature,
which is adapted from [81].(b) Schematic of van Hove singularity, with various epitaxial
substrates and their lattice parameters indicated. (c) resistivity shows non-Fermi-liq-
uid behavior near the putative van Hove singularity sample (Ba2RuO4 on SrTiO3,
abbreviated as STO). From [82] Copyright American Physical Society.

upturn in the low-temperature heat capacity near the vHs [81], similar to the Ir system.

At y=0.20 the resistivity follows the form ρab = ρ0 +AT n with n=1.4 which may be evi-

dence of quantum criticality (Fig. 3.3a). Interestingly, similar critical resistivity behavior

was demonstrated for strained films of pure Sr2RuO4 and isostructural Ba2RuO4 (Fig.

3.3c) [82]. There, Burganov and co-workers produced and measured the ARPES for a

sample near the vHs using +0.9% biaxial strain and ∆c/c=+4.7%. (For comparison, the

Ir sample near the vHs is minimally strained: biaxial strain is +0.1% and ∆c/c=+0.3%.)

This finding demonstrates that this form of criticality may be inherent to the vHs of

Sr2RuO4, reached either via electron-doping or strain.

Regarding the magnetism in Sr2−yLayRuO4, there is no static order and the suscep-
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Figure 3.4: Rigid band shift-driven van Hove singularity in Sr2−yLayRuO4. (a) An-
gle-resolved photoemission spectroscopy (ARPES) results suggest that the bands are
filled fairly evenly. Across the Lifshitz transition γ≈0.2 the γ-band switches from elec-
tron-like to hole-like. (b) The Sommerfeld coefficient of the heat capacity γN , here
approximated via Cp/T at T=0.5 K, is shown in empty triangles. Effective mass for
each valence band (colors) and their sum (black) is extracted from the de Haas−van
Alphen effect (dVhA) and shown in solid dots. (c) The dc susceptibility (field cooled,
measured at 1 T) is shown both along ab and c, and is much more isotropic than for Ir
substitution. Low-temperature glassy features are present. From [80, 81]. Copyright
American Physical Society.

tibility isotropically increases toward the vHs; see Fig. 3.4. This magnetic response has

been attributed to ferromagnetic fluctuations from the increase in density of states at

the Fermi level, without direct evidence. Indirect experimental clues of the ferromag-

netic fluctuations come an NMR study of pure Sr2RuO4 which suggests the γ-band’s

fluctuations are ferromagnetic [83]. Yet the susceptibility enhancement persists beyond

the vHs, which is inconsistent with this explanation. Note that La substitution intro-

duces Ru3+ Jeff= 1/2 moments. A local-moment picture of the magnetism captures the

gradual increase in the Curie-Weiss effective moment µeff and the gradual decrease in

the temperature-independent paramagnetism χ0. Unfortunately the susceptibility has

only been reported at a lower temperature range than our measurements, so it is hard

to compare our Curie-Weiss results directly.

Another interesting substitution series is that with 3d0 Ti4+, which does not seem to
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Figure 3.5: Close proximity to antiferromagnetism in Sr2Ru1−xMnxO4. (a) The phase
diagram, which evolves from paramagnetism (PM) to incommensurate spin-glass an-
tiferromagnetism (SG-IC). The antiferromagnetic transition TN (purple square, ex-
trapolated to light-green region) and the resistivity upturn TWL (blue circles) are
not coincident with irreversibility in the bulk magnetization T ir (red diamonds). (b)
Bulk susceptibility Mc/H shows strong irreversibility on field cooling versus zero-field
cooling (closed and open symbols). (c) Neutron diffraction intensity shows an elastic
signal at the incommensurate wavevector associated with the spin-density wave in
undoped Sr2RuO4. The K-scan in the inset has a large correlation length indicating
short-range order. (d) Sommerfeld coefficient extracted from fitting the heat capacity
Cp/T in (e), which decreases with Mn content. (f) Weak localization in the in-plane
resistivity ρab under increasing Mn content. From [75]. Copyright 2013 The Authors.

dope carriers. For Sr2Ru1−zTizO4, short-range and glassy antiferromagnetic order sets

in at z=0.03, which demonstrates how close the ruthenate is to an electronic instability.

The antiferromagnetism is marked by hysteresis along the c easy axis, and has the same

ordering wavevector as the SDW for the parent Sr2RuO4 [84, 85]. With increasing Ti

content z>0.03, the low-temperature heat capacity decreases [86, 87], and the resistivity

shows insulating upturns, consistent with localization. Now, please compare nonmag-

netic Ti with magnetic Mn, which additionally acts as a hole-dopant (Fig. 3.5) [75].
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Notably, both Ti and Mn substitution yield the same phase behavior. Mn doping yields

higher transition temperatures than Ti, which suggests that local moment magnetism

strengthens the antiferromagnetic order. While no ARPES or inelastic neutron scatter-

ing is published for Mn, Ortmann et al. conjecture that Mn may stabilize the AFM order

by enhancing nesting between the α and β Fermi surface sheets, possibly by hole-doping

the α band selectively [75]. Taken together, these two substitution series suggest that

enhanced itinerant fluctuations are what yield their long-range order.

3.2 Synthesis: High-Pressure Floating Zone

Synthesis of crystalline samples of Sr2IrxRu1−xO4 was accomplished with a floating

zone growth technique. This work owes its success entirely to the high-pressure float-

ing zone furnace (named LAPIS) that my colleagues Julian, Michael, Eli, and Stephen

designed, built, and commissioned [88].2 We found that the use of a high pressure gas en-

vironment (70 bar mixed O2 and Ar) greatly decreases the volatility and loss of the IrO2

and RuO2 reactants. In effect, this gas environment is what enabled record incorporation

of iridium oxide (≈20 wt%) into the molten zone.

3.2.1 Synthesis Overview

Below I describe the growth of Sr2IrxRu1−xO4 crystals with 0 ≤ x ≤ 0.4 on the Ru-

rich side of the solid solution between Sr2IrO4 and Sr2RuO4. I discuss the evolution of the

average structure of crystals in the alloy series, and additionally comment on composite

two-phase structures that form under certain conditions. They include lamellae of (Ir,Ru)

metal alloy, and also dendrites of a seemingly metastable phase Sr9(Ir,Ru)3O17, both

embedded in the bulk phase. The metastable phase is removed (within detection limits)

2For more information on using this furnace, please see Eli Zoghlin’s dissertation.
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by annealing, and the (Ir,Ru) alloy is diminished by annealing. Based on these products

we are confident that the bulk phase is not transition metal-deficient.

Figure 3.6: The LAPIS high-pressure floating zone furnace. Top panel : Schematic
of the laser optics. Lasers are radially distributed and focused so that their spots
overlap slightly. In this furnace the separate camera and pyrometer ports are at an
angle. Adapted from Ref. 10. Left panel : Photograph of LAPIS with designers
(from bottom) Julian, Michael, and Eli. Picture credit S.D. Wilson. Right panel :
Approximate synthesis parameters for Sr2IrxRu1−xO4.

Crystals of Sr2IrxRu1−xO4 were grown with a floating zone (FZ) technique with an

(Ir,Ru)O2 self-flux. In our apparatus, we first melt the tip of the seed rod (affixed from

below) and then lower the feed rod (suspended from above) into the melt, establishing

a connected molten zone. We pull a crystal from the (Ir,Ru)O2-rich molten solution

by lowering both rods through the fixed optical heating source. For this work we used

a custom furnace with a laser-based heating source designed to accommodate high gas
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pressures, which is described elsewhere [88]. The relevant details of the furnace are that

the molten zone is approximately 4 mm tall and 6-7 radially distributed laser beams are

used to heat the zone with an optical wavelength in the range 800-820 nm.

The synthesis steps are as follows:

1. Solid state synthesis of powder

(a) Prepare Reactants : SrCO3 (99.99% excluding Ca or Ba) and IrO2 (99.99%

metals basis) and RuO2 (99.95% metals basis) were used as starting mate-

rials, all sourced from Alfa Aesar. We found some as-purchased IrO2 and

RuO2 powders to be O-deficient, so these precursors were initially heated in

a tube furnace to 700 ◦C for 18 h with O2 flow at 30 SCCM to ensure full O

occupation.

(b) Dry Reactants : The reactants are stored in alumina crucibles in a ≈200 ◦C

drying oven, but they are hygroscopic and Santa Barbara is humid. We used

box furnaces to dry the IrO2 and RuO2 at 700 ◦C, and the SrCO3 at 400 ◦C for

at least 18 h in air prior to weighing. The input stoichiometries are reported

in Table 3.1.

(c) Initial Sinter : To prepare the initial powder, mix the reagents in an agate

mortar for >25 minutes, pack them into a clean latex balloon, and press into

a pellet at 300 MPa within an isostatic press. Remove the pelletized powder

from the balloon, place in an alumina crucible on a thick layer of reactant

powder, and sinter at 1100 ◦C for 18 h in air. Store this pellet in a glove box

until the next step to minimize water content.

2. Rod Preparation: Since our laser furnace only accommodates ≈5 mm diameter

rods, it is especially hard to prepare straight rods without breaking them.
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(a) Regrind the (dry) sintered pellet into powder. Tightly and uniformly pack

the powder into a water-cleaned cylindrical latex balloon with diameter 5 mm

and length up to 120 mm. The packing process involves compressing small

additions of powder and frequently rolling the balloon to ensure the latex is

relaxed, the diameter is uniform, and there are no lightly packed segments

with trapped air pockets.

(b) Evacuate the air from the balloon with a rough pump and tie it off. Straighten

the balloon by rolling it on a clean surface and compressing it from two sides

with boxes. Then wrap the balloon tightly with paper, fastening with tape

radially to prevent bending. Suspend the balloon with string within the iso-

static press so that it does not touch any walls, and press at 300 MPa for 3

minutes.

(c) On removal, the rod is incredibly delicate and difficult to extract from the

balloon. Remove the paper by gently slicing the tape, and then rinse the

balloon with ethanol to weaken the latex. Tape the (dry) balloon with many

strips of scotch tape width-wise onto a flat surface, such that there is tension

in the tape. Carefully cut the tape and balloon incrementally length-wise with

a sharp curved #12 stainless steel blade so that the tape expands the incision

and allows for easier removal of the pressed rod.

(d) Place the rod on a conforming bed of reactant powder within a long alumina

boat so that the rod does not bend when it softens. Sinter at 1380 ◦C for up

to 12 h in air using a box furnace.

3. Floating zone growth procedure

(a) Mount and align the seed and feed rods in the furnace so as to minimize rod

precession.
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(b) Seal and pressurize the chamber.

(c) Ramp up optical power over approximately 40 minutes to gradually heat the

seed’s tip. During this, counter-rotate the seed and feed rods at ≈10 rpm.

(d) When the seed becomes fully molten (nearly 2150 ◦C) lower the feed rod slowly

to establish a connected molten zone.

(e) Start pulling slowly and ramp up the rates. The translation rates need to be

closely monitored, especially because the feed rate ≈40 mm/h is quite fast.

(f) When the growth is complete, disconnect the molten zone by slowly translating

the feed rod away from the zone.

(g) Ramp the optical power down slowly with the crystal in the beam to avoid

quenching and breaking the crystal.

(h) De-pressurize the furnace and remove the ‘as-grown’ sample when the system

is cold. For synthesis feedback only, some ‘as-grown’ samples were measured

with diffraction and microscopy below.

(i) Clean and inspect the furnace for damage. The evaporation did slightly dis-

color the quartz inner shroud which is closest to the growth zone, but each

shroud was usable for about 10 such syntheses before absorption effects were

noticeable.

4. Anneal: prior to any electronic or magnetic measurements, samples were annealed

in air on powder beds for 4 to 6 days at 1380 ◦C. This is slightly lower than the

temperature used for the pure ruthenate [89], but we note that Sr2IrO4 is reported

to decompose near 1400 ◦C [90].

Here are some additional notes on this floating zone procedure. The low surface

tension and/or melt viscosity made the molten zone unstable, so in some cases it spilled
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Figure 3.7: Top panel : Photograph of a representative sample: batch ‘x0.25c’. Exte-
rior facets are visible toward the end of the growth (right). The red scale bar is 1 cm.
Bottom panels: We oriented crystals and assessed the crystal quality with a Photonic
Science back reflection Laue Crystal Orientation System. Backscattered Laue detec-
tor images of cleaved surfaces of annealed Sr2IrxRu1−xO4. These images are of two
batches: (left) ‘x0.10c’ and (right) ‘x0.40c’ and confirm that they are crystalline. The
samples are mounted with the growth direction vertical and c approximately along
the beam, so the rotation of the patterns indicates that the a axis is 10-15 degrees
away from the growth direction. The sample on the right is more mosaic due to the
oxidizing synthesis environment.

downward violently. Preventing this required a low sample volume in the beam. We

accomplished this by using a lower translation speed for the feed rod relative to the seed

rod; i.e. the volumetric flow rate into the zone was less than the rate of the crystal

pulled out, as others reported for Sr2RuO4 e.g. Refs. [89, 91]. This caused the crystal

boule’s diameter to be less than the polycrystalline rod’s diameter. As such, the zone

narrowed after the initial join, so the power and translation speeds were adjusted after

the beginning of the growth. Part of this had to do with the low polycrystalline rod

density 72(5)%; we note that we followed the optimized sintering conditions reported by

Ref. 89. We report the final values of the crystal growth parameters in Table 3.1.
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input RuO2 IrO2 as-grown annealed
batch xnom x stoichiometry excess excess Pmelt P end pO2

pAr vfeed vseed (Ir,Ru) ‘9-3-17’ (Ir,Ru)
[mol%] [mol%] [W] [W] [bar] [bar] [mm/h] [mm/h] [wt%] [wt%] [wt%]

x0a 0 - Sr2Ir0.00Ru1.03O4.1 3 - 210 198 3 66 33 40 0.6 -
x0.10a 0.10 0.09 Sr2Ir0.12Ru0.93O4.1 3 2 210 216 3 66 35 40 1.1 -
x0.10b 0.10 0.08 Sr2Ir0.11Ru0.93O4.1 3 1 234 228 3 66 35 40 0.1 -
x0.10c 0.10 0.09 Sr2Ir0.10Ru0.91O4.1 1 0 240 228 3 66 33 40 0.1 - 0.1
x0.15a 0.15 0.15 Sr2Ir0.17Ru0.86O4.1 1 2 234 228 3 66 32 40 1.2 - 0.7
x0.18a 0.18 0.18 Sr2Ir0.20Ru0.83O4.1 1 2 234 228 3 66 55 40 0.1 - 0.1
x0.20a 0.20 0.20 Sr2Ir0.23Ru0.81O4.1 1 3 276 252 14 55 25 40 0.1 3.5 0.1
x0.20b 0.20 0.20 Sr2Ir0.23Ru0.81O4.1 1 3 300 276 3 66 25 40 0.2 - 0.2
x0.25a 0.25 0.23 Sr2Ir0.26Ru0.76O4.1 1 1 240 240 3 66 34 40 0.5 -
x0.25b 0.25 0.23 Sr2Ir0.28Ru0.76O4.1 1 3 240 222 3 66 36 40 0.7 -
x0.25c 0.25 0.24 Sr2Ir0.28Ru0.76O4.1 1 3 240 240 3 66 31 40 0.9 - 0.9
x0.32a 0.32 0.32 Sr2Ir0.37Ru0.69O4.1 1 5 282 264 14 55 29 40 0.2 - 0.2
x0.40a 0.40 0.31 Sr2Ir0.41Ru0.61O4.1 1 1 264 276 3 66 32 40 2.1 8.1
x0.40b 0.40 0.38 Sr2Ir0.46Ru0.61O4.1 1 6 258 252 3 66 33 40 3.0 6.9
x0.40c 0.40 0.39 Sr2Ir0.46Ru0.61O4.1 1 6 276 258 14 55 34 40 0.1 4.0 0.1

Table 3.1: Crystal growth parameters: batch name, nominal and EDS-measured Ir
substitution x, input stoichiometry, excess reactant, total beam power during melting
and at the end of the growth P , partial pressure p, feed and seed translation speed
v. The last columns contain the impurity phase fractions of the (Ir,Ru) alloy and the
‘9-3-17’ phase Sr9(Ir,Ru)3O17 as attained from laboratory PXRD refinements before
and after annealing crystals at 1380 ◦C for 4 to 6 days in air. Note that as-grown and
annealed samples are ground from similar regions of the boule but are not the same
samples, which accounts for some of the variation in alloy phase fraction.

3.2.2 Synthesis Optimization

Nearly phase-pure samples were produced by optimizing the sample stoichiometry and

the gas environment used during crystal growth. Other growth parameters throughout

the series of samples were held fixed, to the best of our ability. A typical image of an

as-grown Sr2IrxRu1−xO4 boule is shown in Fig. 3.7a. A crystal grain is typically selected

within 2 cm of growth when seeded from a polycrystalline rod, as evidenced by facets on

the exterior and interior of the boule and confirmed by Laue measurements (Fig. 3.7b,c).

As observed for the parent compound Sr2RuO4, the (Ir,Ru)O2 layer direction (ab basal

plane) is typically along the growth direction (cylinder axis)[89, 92]. Samples readily

cleave along the basal plane.

For consistency, a fixed chamber pressure of 69(4) bar at room temperature was

used. The optimal gas environment in our syntheses was found to be a ratio of 96:4
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Ar:O2.3 However, for several syntheses of samples with higher Ir content, a more oxidizing

environment with a ratio of 80:20 Ar:O2 was utilized to decrease the Ir metal content.

This led to high-phase-purity samples but also resulted in crystals that are highly friable

and exfoliate easily. The gas environment for each growth attempt for an array of Ir

concentrations is shown in Table 3.1.

To prepare the nominal chemical formula Sr2IrxRu1−xO4, the optimal input stoi-

chiometry contains 15 mol% excess IrO2 and 1 mol% excess RuO2; that is,

Sr2Ir1.15xRu1.01(1−x)O4.02+0.28x. The input stoichiometries and reactant excess values are

summarized in Table 3.1; some batch stoichiometries are not optimal. Note that, at lower

pressures, earlier reports required far greater excesses of IrO2 and RuO2 within starting

stoichiometries. For example, in a FZ study by N. Kikugawa and co-workers with Ir

x≤3% grown in 2.2 bar of 90:10 Ar:O2, the reported starting stoichiometry contains an

excess of about 300 mol% IrO2 and 15 mol% RuO2 [93].

For the samples reported here, there are two impurities detected via powder X-ray

diffraction collected on crushed crystals. The first is an alloy of Ir and Ru metal that, for

samples with x>0, adopts the Ir Fm3̄m space group. The second phase seems to be an

Ru-substituted form of the recently reported phase Sr9Ir3O17 [94]. Electron microscopy

for these impurities is shown in Figure 3.10 and discussed later.

In Table 3.1 we summarize growth parameters for a variety of trial growths and the

composition of the resulting boules. We note that the variance in the feed translation

speed compensates for differences in the feed density and diameter. The required power

for melting is a relative metric only and depends on a number of parameters; however the

overall trend is to increase with Ir content. We do not report the pyrometer-measured

temperature because it primarily varies with the pyrometer reticle position and with

3The procedure was to fill the chamber to 14 bar with pre-mixed 80:20 Ar:O2 gas after purging several
times, then to fill the rest of the way with pure Ar gas.
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the amount of volatilized powder that coats the sapphire inner shroud in front of the

pyrometer.

3.3 Structural Characterization

Most of the structural characterization detailed below comes from our publication in

the Journal of Crystal Growth [68]. Powder X-ray diffraction and electron microscopy

were used as feedback for the growth optimization described above. Mostly what we

found were indications of very high sample quality and low impurity content up to Ir

substitutions of 40%.

The last section describes new work on the subtleties of the oxygen positions. Addi-

tional weak peaks were found using single crystal neutron diffraction. Along with indirect

evidence from thermal expansion, these peaks indicate oxygen octahedral tilts and/or ro-

tations similar to those in Sr2IrO4. The space group is unclear from our limited studies.

This slight deviation from the I4/mmm unit cell is not expected to make much of a

difference in the electronic properties, especially when pitted against considerable carrier

doping and disorder that come with Ir substitution.

3.3.1 Powder X-ray Diffraction

Preliminary powder X-ray diffraction (PXRD) was performed with a Panalytical

Empyrean diffractometer using lab-source Cu K-α radiation. Follow-up high-resolution

synchrotron measurements were taken at Beamline 11-BM of the Advanced Photon

Source at Argonne National Laboratory with a fixed wavelength of 0.458 Å. 11-BM

samples were diluted with SiO2 powder to optimize the transmission to >10%. The

PXRD patterns were refined using the TOPAS software package [95]. The refinements were

straightforward for extracting lattice constants, thermal parameters, and site occupation.
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I applied standard particle size and strain corrections with the ‘LVol FWHM CS G L’

macro. Preferred orientation was an issue for this layered compound, so corrections were

handled with the ‘PO Spherical Harmonics’ macro to capture this and the anisotropic

peakshapes such as the broader (00L)-type peaks.
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Figure 3.8: Tetragonal lattice parameters from PXRD refinements. Lab-source data
(black) is indicated as ‘Lab’ and synchrotron data is indicated as ‘11-BM’ in the figure.
Approximate uncertainties are either indicated with error bars or are smaller than the
data markers. Lines are a guide to the eye.

The evolution of the bulk crystallographic parameters across the substitution series

is shown in Table 3.2 and lattice parameters are plotted in Figure 3.8. The samples are

indexed to the I4/mmm tetragonal space group commonly used for Sr2RuO4, and the

atomic displacement parameters increase with x as expected for substitutional disorder.

While the out-of-plane lattice constant c trends up with x, the in-plane lattice constant

a only weakly depends on x.
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There are two free coordinates for this compound in the I4/mmm space group, O(2)

z and Sr(1) z; both are 4e Wyckoff positions with x = y = 0. These free coordinates

parameterize the positions of the apical O ions and Sr ions along c. In the refinements, the

O(2) z positions are unreliable, but there is a weak trend down in Sr(1) z with increasing

x, which indicates that Sr ions are positioned farther away from the (Ir,Ru)O2 planes

with Ir content. In other words there is a small Jahn-Teller elongation with increasing x.

batch x0a x0.10c x0.25c x0.40c
xnom 0 0.10 0.25 0.40

x 0 0.09 0.24 0.39
100 K

a [Å] 3.8641 3.8673 3.8641 3.8638
c [Å] 12.730 12.733 12.806 12.848

Sr(1) z 0.3536 0.3536 0.3519 0.3513
O(2) z 0.161 0.162 0.169 0.167
Sr Uiso [Å2] 0.004 0.004 0.003 0.005
B Uiso [Å2] 0.003 0.003 0.004 0.006
Rwp [%] 9.79 8.06 8.61 10.22
χ2 1.15 1.50 1.25 1.61

295 K
a [Å] 3.8716 3.8757 3.8749 3.8749
c [Å] 12.746 12.741 12.791 12.830

Sr(1) z 0.3535 0.3535 0.3522 0.3512
O(2) z 0.160 0.164 0.168 0.169
Sr Uiso [Å2] 0.007 0.008 0.007 0.006
B Uiso [Å2] 0.004 0.005 0.007 0.009
Rwp [%] 9.76 8.88 9.14 10.51
χ2 1.19 1.35 1.19 1.09

Table 3.2: Select bulk crystallographic data from Rietveld refinement of synchrotron
PXRD data on as-grown samples. First, batch name, nominal and measured x from
EDS measurements. Next, refined values at 100 K and at 295 K: a and c tetragonal
lattice parameters; Sr(1) z and the O(2) z free parameters; isotropic atomic displace-
ment parameters Uiso for the Sr and B sites (B=Ir/Ru); and Rietveld goodness-of-fit
parameters Rwp and χ2. Note all occupancies were set to the stoichiometric values.
Uiso for oxygen sites was fixed at 0.008 Å. The O(2) z positions are not reliable in that
their refined positions have minimal effects on the goodness-of-fit, because the X-ray
diffraction signal is dominated by the heavier elements. If not indicated, uncertainties
are smaller than half of the last significant digit.
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3.3.2 Scanning Electron Microscopy

A ThermoFisher Apreo C scanning electron microscope was utilized for energy-

dispersive X-ray spectroscopy (EDX) and backscattered electron imaging (BSE) with

a typical configuration of 20 kV accelerating voltage and 1.6 nA beam current.

The homogeneity of the Ir substitution x was measured with EDX mapping. The

Ir/Ru atomic ratios are homogeneous on the ∼10 µm scale; i.e. the variation in x is

within measurement uncertainty σx≈0.2%. The variation in x on the ∼5 mm scale (i.e.

radially across the crystal boule) is within σx≤0.5%.

This alloy homogeneity for FZ-synthesized samples is an improvement compared to

previously reported flux-synthesized samples. In the ARPES study on the same com-

pound grown via a flux method by J. Kwon and co-workers, the reported EDX-measured

variance in x is about 3% on the 100 µm scale [79]. This value is consistent with mea-

surements reported on the related compound Sr3(Ir,Ru)2O7, for which the variation in x

for the highest-quality flux samples is typically near 2% on both the µm and mm length

scales - see e.g. Ref. [9].

3.3.3 Impurity phases

We now comment on impurity phases that result and are amplified away from op-

timal growth conditions, which we indicate in the ternary phase diagram sketched in

Figure 3.9. There are two reactions that lead to chemical inhomogeneity and likely drive

unwanted phase formation: (a) (Ir,Ru)O2 reduces to form (Ir,Ru) metal just below the

liquidus temperature[96] and also (b) (Ir,Ru)O2 reacts with oxygen gas to briefly form

(Ir,Ru)O3,4(g), which effectively evaporates the oxide from the molten zone.

The small (typically <1 wt%) (Ir,Ru) metal impurity detected in diffraction mea-

surements is primarily caused by the reduction of the oxides, during both the solid state

80



Section 3.3 Structural Characterization
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Figure 3.9: The approximate isothermal ternary phase diagram for Sr-Ir-O at 2200
◦C, which captures mixed (Ir,Ru) phase formation. The red dot is Sr2IrO4. Known
phases are in black and other possible phases are in blue.

reaction as well as during FZ growth. The observed ∼1 µm size lamellar alloy formation

in unannealed samples is shown in Figure 3.10. The alloy is predominantly Ir even for

low Ir content, and EDS measurements indicate compositions of Ir0.85Ru0.15 for the x≈0.1

batches and closer to Ir0.95Ru0.05 for samples with x≈0.2.

In unannealed samples, a perovskite-like impurity phase is identified most closely

matching the structure of Sr9(Ir,Ru)3O17 as seen in Figure 3.10b. Our diffraction data

are most consistent with this phase and unannealed samples show a weak 11 K feature

in susceptibility (not shown) resembling the reported antiferromagnetism of Sr9Ir3O17.

An alternative model for this impurity phase could be Sr3(Ir,Ru)O5+δ (related to double

perovskites like Sr3WO6 but with O vacancies [91]). For visualization these phases are

included in the ternary phase diagram Figure 3.9. This phase disappears upon annealing,

suggesting it is metastable. The phase fraction of this impurity scales with excess Ir

content in unannealed crystals, and it seems to form upon rapid cooling in locally Ir/Ru

poor regions in an oxidizing environment - see Ref. [91].

Other Ruddlesden-Popper phases such as the bilayer Sr3(Ir,Ru)2O7 and the trilayer

Sr4(Ir,Ru)3O10 compounds were not observed in PXRD or SEM measurements. However,

a dilute quantity <0.1 mol% of the ferromagnetic Sr(Ir,Ru)O3 phase is detectable solely

via magnetization. This perovskite phase is also not directly visible in PXRD or SEM

data, similar to reports on the parent system Sr2RuO4 [91]. It has a saturated moment
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Figure 3.10: Scanning electron microscope backscattered electron images for polished
as-grown samples: (a) batch ‘x0.10b’ with inclusions and lamellae of the (Ir,Ru) alloy
phase that appears brighter than the bulk; and (b) batch ‘x0.40a’ which additionally
contains a dendritic phase that appears slightly brighter than the bulk. The Sr:(Ir,Ru)
ratio of this phase is near 3:1 from EDX analysis.

as high as 1.5 µB/Ru, so even ppm impurities of Sr(Ir,Ru)O3 can be resolved via low-field

magnetization measurements [97, 98].

3.3.4 Weak Oxygen Distortions

From the X-ray powder diffraction, the volumetric thermal expansion is positive for

all samples. Interestingly, there is a changeover in the coefficient of thermal expansion

along c, from thermal expansion for x=0 and 0.09 to thermal contraction for x=0.25 and

0.40 − see Figure 3.8. This change is likely related to a subtle symmetry change that

we do not observe in laboratory PXRD at room temperature. There is one unindexed

peak in the synchrotron PXRD for the x=0.25 and 0.40 samples near Q=2.55 Å−1 that

is stronger at 100 K than at 295 K. This may be the disallowed (1 1 2) peak which is

allowed for the Sr2IrO4 I41/acd space group.

Recent single crystal neutron diffraction (SCND) studies helped confirm the nature

of the thermal contraction along the c-axis, plotted for one sample in Fig. 3.11. SCND

was measured down to T < 5 K and without an applied field. First I summarize data on
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the x=0.25 sample, then I move on to the x=0.09 sample, which both have I4/mmm-

disallowed half-order peaks. We associate these weak peaks with oxygen octahedral

rotations and/or tilts.

HB-1A

0.3%

I4/mmm

Figure 3.11: Thermal expansion probed via single crystal neutron diffraction.
Sr2IrxRu1−xO4 with x=0.25 was measured in the (HHL) plane at beamline HB-1A
at HFIR. These are the approximate lattice parameters from the lattice orientation,
calculated by Adam A. Aczel. While there is an overall 1.4% thermal expansion over
this temperature range 50-500 K, the c lattice parameter decreases with temperature.

A 0.2 g sample of x=0.25 was measured in the (H,H,L) plane on the HB-1A triple-

axis spectrometer, located at the High Flux Isotope Reactor (HFIR) at Oak Ridge Na-

tional Laboratory (ORNL). The setup entailed a 14.64 meV double bounce monochro-

mator, pyrolitic graphite (PG) filters before and after the sample, and then an analyzer

before the point detector to minimize higher harmonics. We used the tight collimator

configuration 40’-40’-40’-120’ to improve angular resolution. A series of weak half-order

peaks with [1/2,1/2,1/2] wavevectors was found. The transition above 500 K does not co-

incide with magnetic signals (based on magnetization measurements in the range 400-850

K). We cannot rule out a magnetic component for the low-Q peaks such as (0.5, 0.5, 0.5).
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But stronger signal at (0.5, 0.5, 7.5) and the high onset temperature (much higher than

Sr2IrO4) indicate a primarily structural origin for these peaks.

Figure 3.12: Weak oxygen distortions tracked with single-crystal neutron diffrac-
tion. Please note these signals are ∼10,000× weaker than allowed I4/mmm re-
flections. Sr2IrxRu1−xO4 with x=0.25 was measured in the (H,H,L) plane. (a-b)
[1/2,1/2,1/2]-type peaks are evident. The onset temperature is near 550 K. (c) is an
order parameter. (d) is an L scan that demonstrates there is no reflection at (0.5,0.5,0)
- more detailed scans indicate possible low-Q scattering from the CYTOP epoxy. (e)
shows magnetization - note the lack of a feature in the range 500-600 K. For this
sample there is a ∼10 ppm ferromagnetic impurity, hence the feature near 100 K.

A 0.4 g sample of x=0.09 was measured in the (HK0) plane at NCNR on the BT-

7 triple-axis spectrometer. The setup entailed a fixed Ef=14.7 meV, a vertical bounce

monochromator, and 1 PG filter before and 2 after the sample. Most scans were measured

with a velocity selector (to further reduce higher harmonics) and the open-80’-80R-open-

point detector configuration, because flux was limited. A series of weak half-order peaks
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[1/2,1/2,0] was found, with a transition near room temperature that does not coincide

with magnetic signals. We cannot rule out a magnetic component for the low-Q peaks

such as (0.5, 0.5, 0) but stronger signal at (7.5, 0.5, 0) and the order parameters indicate

a primarily structural origin for these peaks. The correlation length for (0.5, 0.5, 0) stays

at 25(4) Å over the range 3 K to 200 K.

Figure 3.13: Weak oxygen distortions tracked with single-crystal neutron diffraction.
Please note these signals are ∼10,000× weaker than allowed I4/mmm reflections.
Sr2IrxRu1−xO4 with x=0.09 was measured in the (H,K, 0) plane. [1/2,1/2,0]-type
peaks are evident. The onset temperature is near 280 K. In the order parameter, the
black and magenta symbols are peak intensities, and blue symbols are the integrated
intensities from (H,0.5,0) scans.

Confusingly, we do NOT observe the [1
2

1
2

0]-type peaks for the x=0.25 sample, only

the ones with half-integer L. These peaks are observed for x=0.09 and also for x>0.5,

since they are allowed in the I41/acd space group. This likely points to a different variety

of oxygen rotations and/or tilts at intermediate Ir content.

Now I briefly share another piece of evidence for a subtle structural change. The
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Figure 3.14: Subtle Fermi surface change tracked with Hall effect measurements.
Compare with the order parameter in the right panel of Fig. 3.13. Data between 230
and 350 K show an order-of-magnitude difference in the Hall resistivity ρxy, suggesting
a change in the carrier number.

Hall effect is sensitive to the number of carriers and the mobility, and thus is a (tricky-

to-interpret) probe for changes in the Fermi surface. In Fig. 3.14 we show Hall effect

data across the transition temperature where the order parameter turns on. This sample

is from the same batch as the neutron diffraction measurements shown in Fig. 3.13.

The Hall resistivity changes drastically across this transition. Our understanding of this

phenomenology is preliminary, especially since most samples’ transitions are well above

the 400 K limit of our apparatus.

In summary, I want to reiterate how these half-order peaks are very weak, too small

to be observed in synchrotron X-ray diffraction. We cannot point to a definite origin but

it is likely a small structural perturbation that marginally affects the low-temperature

physics. Note how angle-resolved photoemission (ARPES) studies do not detect the

effects of octahedral rotations until x>0.4 [79]. Future work to refine precise structural

solutions would entail single-crystal diffraction with several orientations, measured on a

neutron diffraction instrument like TOPAZ or HB-3A.
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3.4 Heat Capacity

The heat capacity is perhaps the most convincing evidence for quantum criticality in

Sr2IrxRu1−xO4. We present data and analysis of the temperature and field dependence

for samples spanning the van Hove singularity.

0.18
0.15

0.20
0.25
0.09

0.00 (b)

Figure 3.15: Quantum critical fluctuations and the low-temperature degrees of free-
dom. Panel (a) shows the zero-field heat capacity Cp/T for the substitution series,
with no clear evidence of phase transitions. Panel (b) shows Cp/T at low tempera-
tures; for samples near x≈0.18 there is an upturn.
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Heat capacity was measured with a Quantum Design PPMS with a dilution refrigera-

tor insert. Measurements used the pulse method, which involves heating with a constant-

power pulse and fitting the heating and cooling curves. Addenda measurements were run

before inserting the sample, which measured the puck with small amounts of Apiezon N

grease. The typical procedure was to measure several repetitions at each temperature

and to bin the measurements with a weighted mean.

We argue that the abrupt change in local magnetic moments and fluctuations as x

increases from 0.15 to 0.20 is indicative of a quantum critical point. The corresponding

increase in the low-temperature degrees of freedom is captured by the increase in the heat

capacity Cp (Fig. 3.15) at low temperatures for samples near x=0.2. In other words,

the Sommerfeld coefficient, which scales with the effective electron mass, is maximized

at this Ir concentration.

Figure 3.16: Quantum critical fluctuations and the low-temperature degrees of free-
dom. The panels show the field-dependence of the heat capacity for the x=0.18 and
x=0.15 concentrations, with field applied along the c axis.

Focusing on the near-critical concentration x=0.18, we observe a >20% increase in
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Cp/T over the range 0.1 K < T < 5 K. The data are well-described by the phenomeno-

logical form Cp/T ∝ log(T ), as shown in Fig. 3.16. The fit to another critical form

Cp/T ∝
√
T is only valid over a limited temperature range 2 − 4 K. Interestingly, the

low-temperature upturn in the heat capacity is strongly suppressed with magnetic field.

Similar field dependence was observed for the x=0.15 sample.

3.5 Magnetization

As a quick overview, magnetization studies show no evidence of long-range order.

Some low-temperature glassy behavior likely reflects the quantum critical fluctuations.

The most striking evidence of these fluctuations is in the Curie-Weiss fits, which show a

sharp change near the reported Lifshitz transition.

Magnetization was measured with a Quantum Design MPMS3 SQUID magnetometer

on cleaved samples adhered to a quartz paddle with GE varnish.

Surprisingly, no long-range order was detected via magnetization. This is consistent

with single crystal neutron diffraction measurements of samples with x=0.09 and x=0.25

that show no order. Additionally, there are no clear peaks in the heat capacity (Fig.

3.15a) which confirms a lack of magnetic ordering in the ground state. For the x=0.20

sample, the inelastic neutron scattering revealed no magnon modes below 60 meV at 5 K.

Thus all samples reported here for x≤0.25 are considered to have paramagnetic ground

states.

Magnetization measurements in Sr2IrxRu1−xO4 (Figs. 3.17 and 3.18) reveal an in-

triguing substitution-driven un-freezing of the moments. The parent ruthenate Sr2RuO4

demonstrates Pauli-like paramagnetic susceptibility with a weak temperature depen-

dence, which increases slightly above 300 K and thus cannot be described by the Curie-

Weiss model. The non-monotonic susceptibility dependence on temperature persists to
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(a)

(b)

(c)

Figure 3.17: Moment freezing gives way to local moment magnetism with Ir substitu-
tion. Panels (a)−(c) summarize the effective moment µeff (circles), temperature-inde-
pendent paramagnetism χ0 (diamonds), and Curie-Weiss temperature θCW (squares),
respectively. All change abruptly near x=0.2. Lines are guides to the eye. These
values are from Curie-Weiss fits over the ranges 200−400 K (empty markers) and
300−400 K (filled markers) with µ0H=0.1 T applied within the ab plane (dark red)
and along the c axis (light red).

low Ir substitution x=0.05. At higher Ir concentrations x≥0.09, local moments become

evident within the largely temperature-independent susceptibility [71].

Remarkably, on increasing the Ir content x from 0.15 to 0.20 we observe:

1. a three-fold increase in the Curie-Weiss effective moment µeff;

2. a sharp decrease in the temperature-independent paramagnetism χ0; and
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Figure 3.18: Moment freezing gives way to local moment magnetism with Ir substi-
tution. The dc susceptibility is shown in panel (d); some samples have 100−150 K
features due to ppm impurities of the ferromagnet SrIrxRu1−xO3. Panel (e) shows
the isothermal magnetization at T=2 K for select samples with undetectable ferro-
magnetic impurities. The abbreviation (Z)FC stands for (zero) field cooling.

3. an order-of-magnitude change in the Curie temperature θCW, from ∼10 K to −450

K, indicative of strong antiferromagnetic spin fluctuations 4.

Based on the ensuing measurements, we argue that the abrupt change in local mag-

netic moments and fluctuations as x increases from 0.15 to 0.20 is indicative of a quantum

critical point.

To understand the nature of this low-temperature field-driven magnetic response, we

carefully measured the dc magnetization for the high-purity x=0.20 sample. There are

no cusps and negligible ≈1% irreversibility for this sample above 1.8 K. However, there is

a clear inflection feature in M(T ) with large applied fields >1 T along c (Fig. 3.19). The

inflection temperature T
inflection

increases with increasing field, from 3 K at 1.2 T to 12

4While some samples’ |θCW| values lie outside the temperature range of the fit and thus are unsuitable
for interpretation with the mean-field Curie-Weiss model, they qualitatively point to strong fluctuations.
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Figure 3.19: Field-driven freezing is observed across the substitution series. The
field-cooled susceptibility is shown with field oriented along (a) the ab plane and (b)
the easy c axis. Note that below T≈30 K the susceptibility differs strongly with field
for all samples. Arrows in panel (b) show an inflection in the susceptibility. The
inset tracks the inflection temperature Tinflection with field for the x=0.20 sample; no
inflection is observed for T>2 K below 1.2 T.

K at 7 T. A similar feature is observed for all of our samples for the range 0 ≤ x ≤ 0.40.

This suggests that applied fields suppress electronic degrees of freedom via spin freezing

in this entire substitution series.

The magnetization becomes very anisotropic from Ir substitution, with c the easy axis.

The low-temperature susceptibility is much larger and the inflection is much clearer with

H || c as compared to H || ab (Fig. 3.19). Also the magnitudes of µeff and θCW are lower

with H || c (Fig. 3.17a-c). This anisotropy contrasts with the isotropic susceptibility for

La substitution [81].

One clear magnetic feature shared by all samples is that the susceptibility for different

applied fields starts to diverge below 30−50 K (Fig. 3.19). This temperature scale is

explored more in the magnetotransport results below.
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Figure 3.20: Field-driven freezing, focusing on the x=0.20 sample. (a) The field-cooled
susceptibility is shown with field oriented along the easy c axis. (b) The slope of the
same data are in dots; smoothed lines are guides to the eye. The 1 T and 2 T data
are heavier for clarity.

3.6 Magnetotransport

Magnetotransport measurements reveal features for all samples in the range 30− 50

K. The resistivity also strongly deviates from typical Fermi-liquid behavior.

Electron transport was measured with a Quantum Design PPMS with a dilution

refrigerator insert. Transport samples were cleaved with a blade, diced into long bars

with a diamond saw, and then mechanically polished to <100 µm using diamond lapping

paper and water. Surface roughness was about 5 µm. Samples were glued to insulating

cigarette paper atop gold puck surfaces with GE varnish. Contacts were made with silver

paint and gold wirebonding wire. All measurements were repeated on multiple samples

of each composition.

The most important set of transport measurements are of the temperature dependence

of the resistivity ρ ∝ AT n. We found these to be a supporting piece of evidence for

quantum criticality. In our transport measurements, the in-plane resistivity ρab(T ) is
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(a)

0.40
0.18
0.20
0.25

0.15
0.09
0.00

Figure 3.21: Magnetotransport near quantum criticality. Panel (a) shows the normal-
ized resistivity ρab for Sr2IrxRu1−xO4, which is nearly linear in temperature above 100
K. For samples with 0<x<0.3, ρab(2 K)≈100 µΩ·cm, whereas x=0.40 samples have
ρab(2 K)≈2 mΩ·cm. The inset shows the T 1.4 dependence of the x=0.18 sample over
the range 2<T<14 K.

observed to follow n≈1.4 for the near-critical sample x=0.18 (inset to Fig. 3.6) over

a wide temperature range 2 < T < 20 K. This divergence from Fermi Liquid n=2

behavior may be an indication of one of several types of quantum criticality [81, 99,

100]. Additionally, the high-temperature linearity n=1 has an onset temperature that is

lowest near x=0.2. This linearity indicates non-Fermi liquid excitations with diverging

relaxation time scales. The resultant ‘quantum critical fan’ is shown in the substitution-

temperature phase diagram (Fig. 3.6d).

This is the temperature below which the magnetoresistance turns on and the resistiv-

ity shows an inflection in temperature (Fig. 3.6). We suggest that a poorly understood
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(b)

(d)

(c)

Figure 3.22: Magnetotransport near quantum criticality. Panel (b) shows the normal-
ized slope of the resistivity. Panel (c) shows the magnetoresistance. Panel (d) is a
false-color map of the exponent in temperature α, calculated from fits to the zero-field
resistivity of the form ρab = ρ0 + ATα. All these panels highlight the inflection in
temperature and the onset of the magnetoresistance near T = 30−50 K.

change in electronic properties is responsible for this significant response. The most rel-

evant electronic detail seems to be the vicinity of all samples to the van Hove singularity

(vHs) and its flat band physics. In the parent compound Sr2RuO4, above this tem-

perature the resistance dependence on temperature changes qualitatively [101], the Hall

coefficient dramatically changes sign [102], and for lightly strained films the electronic

nematicity turns on [103].
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A recent theoretical work by Herman and coworkers presents numerical simulations

of Sr2RuO4 that match many of our magnetotransport observations [104]. Theirs is a

Boltzmann equation approach to quasiparticle scattering for the γ-band. By tracking a

crossover in scattering time near the vHs, they simulate the feature we call an inflection

in the resistivity. This feature has a temperature scale of ∼40 K that decreases with

doping towards the vHs, which gives way to transport with exponents n<2 near the

vHs. Notably, they also predict that the low-temperature resistivity is maximized near

the vHs. The applicability of these theoretical results may suggest that the non-Fermi

Liquid transport arises from well-defined quasiparticles. However, that study considers

neither the magnetic response nor SDW excitations from the α- and β-bands explicitly.

Figure 3.23: Hall resistivity near quantum criticality. The left panel shows the sym-
metrized Hall resistivity ρxy at 2 K. In the right panel, the number of carriers ntot

∝ H/ρxy was calculated by averaging the Hall data in field over the range 5 to 9 T.
This analysis invokes an oversimplified one-band model. More data are in Fig. 3.14.

We turn our attention now to the Hall resistivity, shown in Fig. 3.6. As the samples

approach the vHs there is a local maximum in ρxy(H). This is unsurprising since the
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density of states is maximized when the chemical potential sits at the vHs. Similar

observations of extrema in ρxy hold under both La doping and uniaxial strain [78, 105].

In our case the value of ρxy(2 K, 9 T) is near −0.9 µΩ·cm away from the vHs and

−0.6 µΩ·cm at x=0.18; assuming a simple one-band model, the latter corresponds to

about one electron per formula unit. Since we know from ARPES that the number of

carriers increases more or less continuously across the vHs [79], these results are broadly

consistent with expectations and the other measurements.

To make further claims from the Hall data we would need to tread carefully. It is

hard to compare the precise values of ρxy because of the inherent uncertainties from

the polishing procedure, which yielded typical thicknesses 50±3 microns. And as was

reported for other substitution series, it is hard to make meaningful claims from the Hall

coefficient in this multiband, disordered system [105]. For pure Sr2RuO4, the ρxy(µ0H) is

famously nonlinear and changes sign with temperature [102]. In our case, Ir-substitution

yields short scattering times (ρxx is relatively large), so ρxy is linear in field and negative

as a function of temperature.

3.7 Neutron Scattering

No long-range order was detected via single crystal neutron diffraction measurements

of samples with x=0.09 and x=0.25. Instead we only found peaks with a structural origin

- see Section 3.3.4. For the x=0.20 sample, the inelastic neutron scattering revealed no

magnon modes below 60 meV at 5 K. Thus all samples reported here for x≤0.25 are

considered to have paramagnetic ground states.

We did, however, track the spin density wave (SDW) fluctuations using inelastic

neutron scattering (INS). We were motivated to look for magnetic fluctuations but found

no clear evidence of magnons. For Sr2RuO4, there are gapped SDW fluctuations present,
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as previously mentioned. The generalized susceptibility exhibits non-Fermi-liquid-like

ω/T scaling above 30−50 K for pure Sr2RuO4 [67]. So measurements of the SDWs could

stand to teach us about the electronic features we see in this temperature range.

Figure 3.24: Spin density waves persist with Ir substitution. Both panels on the left
show false-color maps of the inelastic neutron scattering of an x=0.20 sample measured
on the SEQUOIA spectrometer. The integration ranges of the crystal momenta are
reported in reciprocal lattice units, and the maps are symmetrized in H and K. The
panel with Ei=80 meV shows no dispersing spin wave features, only the phonon
modes reported for Sr2RuO4 [106]. In the panel with Ei=25 meV it is easier to
distinguish the spin density wave (SDW) fluctuations with wavevector (0.30, 0.30)
in the quasi-2-dimensional Brillouin Zone. On the right is the imaginary part of the
susceptibility. The fit is described in the text.
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INS was measured at the SEQUOIA direct geometry time-of-flight spectrometer at

the Spallation Neutron Source (SNS) at Oak Ridge National Laboratory (ORNL). One

1.8 g crystal of the x=0.20 sample was mounted on an aluminum plate with aluminum

wire and CYTOP epoxy within a closed-cycle cryostat. The sample was aligned with the

incident beam along the tetragonal c axis (ki || c) to measure the scattering in the ab

basal plane, and the high flux Fermi chopper settings were utilized. For a measurement

of the background, the aluminum sample can was measured under the same conditions

with slits covering the sample.

As demonstrated in our INS spectra in Fig. 3.24, there are qualitatively similar

SDW excitations for the x=0.20 sample compared to the parent Sr2RuO4. The quasi-2-

dimensional SDW wavevector (0.30, 0.30) is the same as in Sr2RuO4. From our measure-

ments we can set an upper bound for the SDW excitation gap at 2 meV, but lower-energy

measurements are needed to determine whether the excitations are gapped.

The imaginary part of the susceptibility χ′′(q, ω) was calculated by first integrating

for the energy dependence: the data were integrated and symmetrized as in Fig. 3.24

and then were further integrated by fitting energy cuts along K to Gaussians centered

at the SDW wavevector with a constant background term. Then we accounted for the

detailed balance and magnetic form factor. The Ru4+ form factor is not tabulated, so it

was approximated by the International Tables for Crystallography value for Ru1+, as is

standard in the literature [107–109]. The resultant susceptibility data (black dots in Fig.

3.24) was fitted to single-relaxor behavior χ′′(q, ω) ∝ Γω/(ω2 + Γ2) (orange line) where

the free parameter Γ is the characteristic energy scale associated with damping.

One important finding is that the damping of χ′′(q, ω) for the x=0.20 sample is in

the range 2.0(5) meV, whereas for the parent sample the damping is near 7(1) meV [67].

This buildup of susceptibility at lower energies indicates that Ir pushes the electronic

response towards criticality.
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3.8 Discussion

What do La, Ti, and Mn teach us about Ir substitution? Let us revisit the re-

sults shown in Section 3.1.1. First, most qualitative experimental phenomena are shared

between the Ir and La systems, except the magnetic anisotropy. Therefore we can at-

tribute this difference to the orbitally-selective filling, since Ti and Mn are both highly

anisotropic. It is interesting, then, that an easy c axis susceptibility does not render

long-range order, as happens also under electron doping in the case of Co [75]. Clearly

some additional competition or different chemistry occurs for Ir substitution that favors

paramagnetism.

Figure 3.25: A self-energy (ε) consideration of the Ir substitution in Sr2IrxRu1−xO4.
On the left is a cartoon showing how correlations (U) prohibit electron transfer from
Ru to Ir. In the center is a molecular extrapolation of these levels, and at right
is a band structure calculation (without spin-orbit coupling and at x=0.5) showing
that valence bands have primary Ru character. Adapted from [110]. Copyright 2021
American Physical Society.

Along the lines of different chemistry, we advance a simple self-energy argument

proposed by Brouet et al. [110], shown in Fig. 3.25. If Ir has a lower self-energy than

Ru, then correlations prohibit Ru from transferring an electron to Ir and forming the

mixed valent Ru5+/Ir3+ configuration (in a purely local, oversimplified picture). Instead

it seems like the valence bands have dominant Ru character, which may be part of the

puzzle of this unusually persistent paramagnetism under Ir substitution.
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Before we assert our QCP claims, we offer one alternative explanation for the change

in the high-temperature magnetic response with Ir substitution. Consider an oversim-

plified model in which isolated Ru ions have negligibly small magnetic moments, and Ir

sites can magnetically polarize their nearest-neighbor Ru sites. In this model, accord-

ing to percolation theory, the square lattice site percolation threshold pc≈0.59 lies near

x=0.16; in other words, magnetic clusters would begin to span large domains above this

substitution value. Without further work it is unclear how well Ir polarization captures

the high-temperature susceptibility behavior in Fig. 3.17a-c. However this polarization

framework does not describe the low-temperature magnetism: there is a simple linear

trend with Ir substitution for the magnetization M(2 K, 7 T) in Fig. 3.18e, which

demonstrates that Ir ions do not polarize neighbors’ moments at low temperatures.

(a) (b)

Figure 3.26: Possible quantum critical scaling. (a) shows the low-field susceptibility,
plotted to show an approximate M/H ∝ T 1/3 dependence. (b) is a reminder of the
approximate Cp ∝ T log T dependence in Fig. 3.15.

Instead we assert the presence of a quantum critical point to explain the thermody-

namics, and in particular the low-temperature divergence of the heat capacity which is

much greater than La substitution. The scaling of the heat capacity and the suscepti-
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bility in Fig. 3.8 might be consistent with expectations for metallic QCPs (e.g. Ref.

100):

(a) d = 3, z = 3 antiferromagnetic QCP with Cp ∝ T log T and M/H ∝ T 1/3,

(b) d = 3, z = 2 antiferromagnetic QCP with Cp ∝ −T 1.5 and M/H ∝ T 1/4,

where d is the spatial dimension and z is the dynamical exponent. The nature is not

definitive in our measurements, but there is some consistency with (a). The heat capacity

is most consistent with (a) below 5 K when no corrections are made for the phonons (e.g.

subtraction of a Debye fit). But the susceptibility is amenable to both options. The

susceptibility is best fit by T 1/3 over the range 2 to 14 K, but it is best fit by T 1/4 over

the wider range 2 to 40 K. Future theoretical collaborations will hopefully shed light on

other possibilities, with special attention to theories in 2 spatial dimensions that may be

more applicable.

This system’s QCP may arise from moment freezing in the presence of strong spin-

orbit coupling, as some of us and our co-workers predicted for multiorbital 4d and 5d com-

pounds [49]. In this “J-freezing” model, itinerant excitations comprise the low-energy

magnetic excitations for the highly correlated d4 ground state, whereas local moment

fluctuations dominate as the electron carrier concentration increases and/or as the cor-

relation energy scale decreases. This variety of quantum criticality has been proposed

to explain the emergent superconductivity in several compounds including Sr2RuO4 and

UCoGe [39, 40]. A deeper understanding of this phenomenon may address outstanding

issues in the field of unconventional superconductivity.

This proposed J-freezing quantum criticality seems applicable to a range of metals

that host broad paramagnon bands, resulting in slow spin excitations prone to localization

rather than long-range magnetic order. One common route to magnetic localization

might be flat electronic bands. One example is the paramagnetic state in the flat band
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metal URuGe, and reports of quantum criticality in U(Co,Ru)Ge [111, 112]. For another

example, we point to recent experimental work on the kagome metal Ni3In [113], which

does not seem to order in spite of strong antiferromagnetic fluctuations θCW≈−70 K.

Lastly, we suggest that these physics might be at play in GaTa4Se8, where moment

freezing and flat bands have been associated with unconventional superconductivity [114,

115]. In these systems, like in Sr2IrxRu1−xO4, the flat (yet delocalized) electronic bands

lead to increased effective electronic mass (and perhaps reduces the bandwidth, increasing

effective correlations), which may tune toward magnetically localized quantum criticality.

Lastly, we return to the connection between moment freezing in Sr2RuO4 and the

cuprate superconductors. There, the bulk magnetization is qualitatively unique for each

compound, but there is generally an onset in Curie-Weiss local magnetism for overdoped

strange metal samples; for instance, above hole content pc≈0.19 for (La,Sr)2CuO4 (LSCO)

[116]. LSCO is a charge transfer insulator and antiferromagnet at p=0, so it is best to

compare Sr2RuO4 to strongly overdoped cuprates (e.g. p≈0.3 in LSCO) with dominant

Pauli paramagnetism and Fermi Liquid physics [117]. Without attempting to smooth

over any subtleties, it is difficult to compare the magnetic responses because of the

nature of the hole doping and the Lifshitz transitions particular to each cuprate system.

Instead, we choose to elaborate on the density waves common to Sr2IrxRu1−xO4 and

LSCO. Recently charge density waves (CDWs) were shown to exist to at least p=0.25

in the strongly overdoped regime [118]. At temperatures above the CDW order, density

wave fluctuations seem to have a strong effect on the thermodynamics. We echo claims

that the density wave fluctuations and Mott physics are central to the strange metal

phases of both the cuprates and Sr2IrxRu1−xO4.
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3.9 Conclusions

In conclusion, we show how the correlated, itinerant moments for Sr2RuO4 seem to

evolve into local moments for Sr2IrxRu1−xO4 for x>0.18. Some hallmarks of strange metal

behavior in the paramagnetic metal phase were observed. The possibility of a quantum

critical point was discussed and extended to other materials. The discussion highlighted

ideas for future theory work. I will now explicitly describe some future experimental

directions.

On the synthesis end, of course ever-higher-quality samples are sought in the field

of quantum materials. It would be good to measure samples with a tighter control

of Ir content x across the phase diagram. In the cuprates, minute changes in carrier

concentration ≈0.01 are sufficient to traverse phase regions, like the anomalies seen in

La1.875Ba0.125CuO4 and near the pseudogap phase’s endpoint. As a parallel effort, several

researchers have requested high-quality samples traversing the metal-insulator transition

at large Ir content x∼0.5. I am invested in this question, but so far it has proven

very difficult to prepare higher-Ir-content samples via the floating zone technique. We

report evidence of weak localization for samples with x=0.40, but it is unclear if this is

a consequence of mediocre sample quality.

I briefly identify some next steps regarding measurements on current samples. We

performed few measurements below 2 K where the quantum critical fluctuations are

strong; ac susceptibility and neutron scattering might find interesting fluctuations or

perhaps other orders. Magnetoresistance at higher fields might yield more insights about

the strange metallicity. We did not measure resistivity along the interplane c direction

so we cannot speak much to the transport anisotropies. Collaborations with measure-

ments sensitive to fluctuating density wave orders, like terahertz spectroscopies, could be

complementary to our inelastic neutron studies. Muon spectroscopy and X-ray magnetic
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circular dichroism have the potential to yield insights about the magnetism. Measure-

ments of the electronic nematicity could also be insightful. Near the vHs, uniaxial strain

might be an interesting parameter to tune.
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Chapter 4

Persistent Antiferromagnetism in
the Bilayer Sr3(Ir1−xRux)2O7

1 The substitution series Sr3(Ir1−xRux)2O7 is closely related to Sr2Ir1−xRuxO4, the com-

pound explored in Chapter 3.2 Sr3(Ir1−xRux)2O7 is the bilayer in the Ruddlesden-Popper

series, so each (Ir/Ru)O6 octahedron ion has an additional interplane nearest neighbor,

for a total of 5. The resultant increase in bandwidth (or, if you like, dimensionality) man-

ifests in a smaller band gap for the insulating antiferromagnetic endmember Sr3Ir2O7. On

the other end of the phase diagram, the fully Ru-substituted system Sr3Ru2O7 is a metal-

lic paramagnet near both ferromagnetic and antiferromagnetic instabilities [120, 121].

While they share commonalities, much of the physics of this bilayer compound are

different from the monolayer. Sr3Ir2O7 has small octahedral tilts relative to Sr2IrO4, so it

has its spins oriented along the long axis in its antiferromagnetic ground state; see Section

1.2.2. And, relatedly, there is no structural transition between Sr3Ir2O7 and Sr3Ru2O7,

1Part of this chapter is based on one of our publications, Ref. 10: Julian L. Schmehr, Thomas R.
Mion, Zach Porter, Michael Aling, Huibo Cao, Mary H. Upton, Zahirul Islam, Rui-Hua He, Rajdeep
Sensarma, Nandini Trivedi, and Stephen D. Wilson. Overdamped antiferromagnetic strange metal state
in Sr3IrRuO7, Physical Review Letters 122, 157201 (2019). Copyright 2019 American Physical Society.

Other measurements reported here were collaborative efforts with several of the above scientists.
We also reference some of the work published in Ref. [119]: Gihyeon Ahn, Julian L. Schmehr, Zach

Porter, Stephen D. Wilson, and Soonjae Moon. Doping and temperature evolutions of optical response
of Sr3(Ir1−xRux)2O7, Scientific Reports 10, 22340 (2020). Copyright 2020 The Authors.

2Note we are using a different definition of x from the previous chapter, for consistency with the
literature.
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Figure 4.1: Structural overview of Sr3(Ir1−xRux)2O7. The n=2 (bilayer) Ruddles-
den-Popper structure is shown on the left, and the orthorhombic cell (close to tetrag-
onal) is briefly described. The in-plane bond angles are shown on bottom right,
adapted from Ref. [10]. A representative iridate sample is shown on the top right.

according to the neutron diffraction in Refs. 10, 122. Accordingly the bandstructures of

the monolayer and bilayer vary. The bilayer ruthenate Sr3Ru2O7 is incredibly close to

a spin density wave (SDW) instability, and these gapped fluctuations seem to dominate

the low-energy physics. Sr3Ru2O7 can be tuned across a metamagnetic quantum critical

point with applied magnetic fields [123–127].

In this chapter we present evidence for a correlated electron system hosting substitution-

driven metallic quantum criticality. We demonstrate an antiferromagnetic ground state

in Sr3(Ir1−xRux)2O7 that persists to at least x = 0.70, deep in the strange metallic phase

where quasiparticles are highly incoherent. Long-range Ir Jeff=1/2 antiferromagnetism

with a large transition temperature TN > 200 K is revealed via resonant X-ray scattering,

but it is not evident in the bulk magnetization due to dominant Ru S=1 local fluctua-

tions. Spectroscopies suggests that damped fluctuations could play a role in stabilizing

the magnetic order. Our linear-in-temperature resistivity measurements may point to a

quantum critical point near x≈0.8.
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4.1 Introduction

Sr3(Ir1−xRux)2O7 has a rich yet partially unexplored phase diagram [9, 128]. The par-

ent system, Sr3Ir2O7, is a Jeff=1/2 Mott insulator with long-range G-type antiferromag-

netic (AF) order. Upon alloying Ru4+ (S=1) on the Ir4+ sites, there is a percolative metal-

insulator transition near Ru fraction x=0.4, yet long-range AF order persists well into the

metallic state, beyond x=0.7. To date, the AF endpoint in the Sr3(Ir1−xRux)2O7 phase

diagram has not been established.

Figure 4.2: Strange metal physics of Sr3IrRuO7. From top left, first we present the
phase diagram; then we repeat the scanning tunneling results shown in Fig. 1.8 from
Ref. 9 that demonstrate phase segregation on the nanoscale. The proceeding results
were published in Ref. 10: incoherent Fermi surface with poorly-defined quasiparticles
(SW stands for spectral weight); inverse susceptibility 1/χ is featureless near the
Néel transition; the in-plane resistivity ρ is roughly linear-in-temperature; and the
Ir-L3 resonant elastic X-ray scattering (REXS) shows a low-temperature signal in the
magnetic σ − π′ channel at the antiferromagnetic wavevector (1, 0, 24). All results
are indexed to the tetragonal I4/mmm space group.
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Our resonant X-ray scattering (RXS) studies were targeted at determining the details

of the magnetic structure for samples with high Ru content. To summarize our main

results, at 50% Ru substitution, Sr3IrRuO7 is an inhomogeneous metal marked by an

incoherent Fermi surface with no well-defined quasiparticles [10]. Surprisingly, long-

range AF order survives in this electronically incoherent state, even though the large

background of local Ru moment magnetism makes the onset of AF order too weak to

be detected via dc magnetization measurements. Perhaps the ARPES spectral weight

at the M -point, the magnetic zone center, reflects a spin density wave instability toward

this order; see Fig. 4.2 top right. Recent Ir-L3 resonant elastic X-ray scattering (REXS)

measurements of Sr3(Ir0.3Ru0.7)2O7 directly confirm long-range G-type AF order with an

isotropic correlation length of about 100 nm, about the same as in earlier measurements

of Sr3IrRuO7. This prompts the question of how far long-range magnetic order survives

with increasing Ru content.

This question of the magnetic phase boundary is vital for understanding recent ob-

servations of strange metal transport behavior in these samples. It is unclear exactly

how long-range magnetic order is tied to the strange metal phases as a function of tem-

perature, though we present some preliminary order parameters. A bigger open question

as of this writing is whether strange metallicity stems from a continuous global AF-

paramagnetic phase transition at zero temperature − a quantum critical point; see for

example Refs. 129, 130. There may be a relation to the well-established quantum critical

transition in Sr3Ru2O7 (x=1) under an applied magnetic field [126].

Regarding the strange metallicity, recent optical spectroscopy measurements unam-

biguously reveal a state with a non-Fermi-liquid scattering rate 1/τ ∝ ω [119]. The

intraband response was shown to be dissipative, indicating poorly defined quasiparticles.

The effective mass enhancement was further evidence of the highly correlated nature of

this strange metal state for samples spanning x=0.49-0.77. These findings are comple-
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mentary to the ARPES measurements reported in Ref. 10, shown in Fig. 4.2.

4.1.1 Relevant Work on Sr2Ir1−xRuxO4

Few studies have focused on Sr3(Ir1−xRux)2O7, so we now present previous work that

may be relevant. Since some of the physics are shared, I will describe a small subset of

the results of X-ray and neutron scattering studies of the excitations in Sr2Ir1−xRuxO4

(note how x in this chapter describes Ru content).

Figure 4.3: Band structure corroboration for spin-orbit excitons. These angle-resolved
photoemission (ARPES) data are for the closely related compound Sr2Ir1−xRuxO4. In
the left panels, band dispersions along Γ−Γ′ are shown, with fits for the Jeff=1/2 and
3/2 bands. On the right is the fitted splitting ∆ between these bands extrapolated to
Γ′. The ≈200 energy scale of the splitting at x=0.7 seems relevant for the excitations
presented in Section 4.4.3. Adapted from Ref. 79. Copyright 2021 American Physical
Society.

First, some band structure results from ARPES, which I touched on in Section 3.1.

J. Kwon and co-workers estimated the splitting between the Jeff=1/2 and 3/2 manifolds,

shown in Fig. 4.3 [79]. This ≈200 meV energy scale for Ru substitutions x≈0.7 may be
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relevant to the spin-orbit excitons. The trend down with Ru matches expectations for

the change in effective spin-orbit energy scales for Sr2MO4 with M=Ir d5 λ≈400 meV to

M=Ru d4 λ̃≈40 meV. Because spin-orbit coupling is tied to the local physics, it seems

fair to assume a similar trend for Sr3(Ir1−xRux)2O7.

Figure 4.4: Scattering corroboration for spin-orbit excitons. These data are for the
closely related compound Sr2Ir1−xRuxO4. In (a,b) is our own inelastic neutron scat-
tering (INS) measurements at incident energy of Ei=400 meV. Integration bounds for
both the cut and the false-color slice with a logarithmic color scale are indicated in
(a). In (c,d), resonant inelastic X-ray scattering (RIXS) spectra and fits are shown,
adapted from Ref. 131, Copyright 2017 American Physical Society.

Now we move on to a salient resonant inelastic X-ray scattering (RIXS) study of

Sr2Ir1−xRuxO4. Y. Cao and co-workers reported RIXS studies of samples spanning from

Sr2IrO4 nearly to Sr2RuO4 see Fig. 4.4c-d [131]. The two highly-Ru-substituted samples

both have similar spectra. Their Gaussian fits for x = 0.77, which capture some but not

all of the energy dependence, show a weakly dispersive band of excitations peaked near

180 meV. These results are clearly similar to ours on Sr3(Ir1−xRux)2O7 in Section 4.4.3.
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Note how this energy scale is very similar to the one in ARPES.

Contrast this RIXS result with the high-energy inelastic neutron scattering (INS) of

Sr2Ir1−xRuxO4. The measured sample has a high Ru content of x = 0.80, very near the

stoichiometry of the RIXS sample. The measurement setup at the SEQUOIA time-of-

flight spectrometer was reported in Section 3.7. In measurements with an incident energy

of 400 meV, we were unable to resolve any features in the spectra in the range 100-300

meV. This is evidence that the excitations measured by RIXS are not magnetic. We take

this to imply that the RIXS signal is instead more consistent with spin-orbital excitons.

4.2 Synthesis: Unconventional Flux

Single crystal synthesis was accomplished using a flux technique. It is unconventional

mainly in the sense that the flux boils off during synthesis, which changes the flux ratio

over time. As such, sample size and homogeneity are finely sensitive to the furnace

settings and to the input flux ratio.

Figure 4.5: Flux synthesis technique for Sr3(Ir1−xRux)2O7. First reactants are placed
in a Pt crucible, then heated and slowly cooled. The resultant ∼1 mm2 plate-shaped
crystals adopt a square habit, with rectangular ∼10 µm features visible in the sec-
ondary electron image on the right.

Crystals were grown in platinum crucibles using SrCO3, IrO2, and RuO2 (all >99.9%,

Alfa Aesar) in a stoichiometric ratio. These powders were dried overnight, weighed, mixed
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for about 20 minutes with an agate mortar and pestle, and then poured into the crucible.

Then dried anhydrous SrCl2 (99.5%, Alfa Aesar) flux was added in a 15:1 molar ratio, for

a total mass of about 10 g. The crucibles were affixed with a Pt lid and further contained

inside alumina crucibles. Mixtures were heated up to 1650 K over several hours in a box

furnace, reacted there for 3-5 hours, then slowly cooled to 1120 K at a rate of about 3.5

K per hour. Finally the reaction was furnace-cooled to room temperature; below the

melting point of the flux the final cooling rate seems unimportant. The resulting crystals

were etched from the solidified flux mixture with warm deionized water to reveal shiny,

black, rectangular-prism-shaped samples. The encrusted chloride salt was scraped with

fine nonmagnetic tools (dental probe and needles) and rinsed with water. To cleave fresh

surfaces, samples were pressed onto Scotch double-sided tape and lifted off, then rinsed

in acetone and isopropanol to remove residue.

Sample composition was checked with X-ray diffraction using a Panalytical Empyrean

diffractometer. Each batch’s lattice parameters were checked by finely grinding several

crystals, diffracting over a wide range, and using a Pawley fit. Each studied crystal was

additionally screened for phase purity with the diffractometer by placing it flat on a zero-

diffraction plate; since the crystals cleave in the basal plane the θ−2θ scans along the long

axis. In the oversimplified I4/mmm tetragonal space group this means we measured the

[00L] reflections. This type of measurement is insensitive to misoriented grains but it is

a fairly sensitive measure of whether there was intergrowth of other Ruddlesden-Popper

phases like the monolayer Sr2Ir1−xRuxO4 which is synthesized under similar conditions.

Since the Cu-Kα X-rays have a penetration depth of several tens of microns, samples

were checked on both sides.

To measure Ru substitution, we used a ThermoFisher Apreo C scanning electron

microscope for energy-dispersive X-ray spectroscopy (EDX) and backscattered electron

imaging (BSE) with a typical configuration of 20 kV accelerating voltage and 1.6 nA
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beam current. Ruthenium is incorporated somewhat homogeneously into the bulk crystal

matrix, as confirmed by lattice parameters and energy dispersive spectroscopy. The

variance of x for one sample on the 50 µm length scale is typically near 0.04x.

One peculiar finding is that the batches’ stoichiometries were difficult to tune and

somewhat insensitive to the input stoichiometry. Of hundreds of EDX measurements,

only several samples were found with compositions between x=0.52 and 0.64. Large gaps

in x are common across the substitution series.

4.3 Electron Transport

Electron transport was measured with a Quantum Design PPMS. Samples were glued

to insulating cigarette paper atop gold puck surfaces with GE varnish. 4-wire contacts

were made with silver paint and gold wirebonding wires onto flat unpolished crystal

facets. Paint was applied with an eyelash due to small sample size.

Fig. 4.6 shows the in-plane resistivity ρab(T ) for the series Sr3(Ir1−xRux)2O7. Largely

linear-in-temperature behavior (ρab ∝ Tα with α=1) was observed near 100 K, which is

consistent with strange metallicity. The overall trend with x is for the residual resistivity

ratio ρab(100 K)/ρab(2 K) to increase, as site disorder decreases towards the metallic

endmember Sr3Ru2O7. At Ru concentrations near x=0.5, weak upturns were observed

at low temperatures. Fitting above these upturns, the resistivity is nearly quadratic

(α=2) at low temperatures and becomes nearly linear at high temperatures.

As x increases, the onset temperature for the linearity decreases until about x=0.74

and subsequently increases, as is readily observed in the resistivity. For a more quan-

titative analysis, we calculated a false-color map of α values. In the map, this trend is

exhibited by the solid black lines, which cut very approximately through α=1.4. The

samples in the range 0.66 ≤ x ≤ 0.82 are best fit by α = 1.3(1) below about 15 K.
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Figure 4.6: Strange metal transport for Ru-rich Sr3(Ir1−xRux)2O7. In the left panel,
the normalized in-plane resistivity ρab is plotted for several samples. The gray line
coarsely marks the onset of linear-in-temperature behavior: ρ = ρ0 +ATα with α ≈ 1.
On the right is a calculated, interpolated false-color map of α for select samples.
Measured x values are indicated by dashed lines. Black solid lines are guides to the
eye.

We associate this temperature dependence with a possible quantum critical point in the

range near x=0.75.

As a follow-up, we attempted heat capacity measurements to explore this possibility.

But the <1 mg sample masses with mediocre thermal conductivity made quantitative

analysis and sample-to-sample comparison difficult. Magnetization was similarly difficult,

in part due to dilute impurity phases.

4.4 Resonant X-ray Scattering

Our Ir L3-edge RXS measurements may show long-range antiferromagnetism to at

least x=0.7. Recent results include correlation lengths and partial temperature order

parameters. These measurements are challenging because of the dilute Ir concentrations.
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The signals are more than 103× weaker than in the parent iridate Sr3Ir2O7.

As for the resonant inelastic X-ray spectroscopy (RIXS), the discussion of Ref. [10]

claims that the lowest-energy excitations near 200 meV are overdamped magnons. Our

recent work on Sr3Ir2O7F2 instead suggests a subtle distinction, that these are spin-

orbit excitons; see Chapter 5. Since spin-orbit excitons are highly local, this hypothesis

addresses how incredibly isotropic these excitations appear. Also, excitons better explain

why the low-energy excitations’ energy scale increases with Ru content from x=0.17 to

0.48, as the Ir ions are hole-doped towards the 5d4 Jeff=0 state. The energy scale of the

excitations seems to match the ≈200 meV Jeff manifold splitting measured by ARPES;

see Fig. 4.3. The magnons that must be present in these antiferromagnetic samples are

likely at lower energies ∼10 meV inaccessible by our RIXS measurements.

First I will summarize the resonant elastic X-ray scattering (REXS) studies of x=0.5

samples (Sr3IrRuO7). Then I will discuss higher-Ru content samples with x=0.7; these

were measured on a RIXS beamline but we pay particular attention to measurements

in the elastic channel. For comparison to the scattering, magnetization was measured

on the same samples with a Quantum Design MPMS3 SQUID magnetometer on cleaved

samples adhered to a quartz paddle with GE varnish.

4.4.1 x=0.5 Magnetic Diffraction

Samples with x=0.5 (Sr3IrRuO7) are known to have G-type antiferromagnetic order.

A neutron diffraction study found a (1 0 3) magnetic peak persists to this Ru concentra-

tion, with an onset temperature >150 K [9]. Since no evidence of a structural transition

was resolved with high-resolution neutron diffraction at T=4 K on HB-3A at the High

Flux Isotope Reactor (HFIR), we are confident in this result [10].

The results of resonant elastic X-ray scattering (REXS) measurements at APS 6-ID-B
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=106(12) nm

Sr3IrRuO7

=114(11) 
nm

(a) (b) (c)

(e) (f)(d)

Figure 4.7: Resonant elastic X-ray scattering (REXS) measurements exploring the
long-range G-type antiferromagnetism in Sr3IrRuO7. (a,b,c) are K,L,E scans of a
magnetic (red) and a structural (black) Bragg reflection. (d) shows energy scans at the
magnetic Bragg reflection with encroaching multiple scattering (MS). (e) shows the
θ−2θ scans; widths are roughly constant in temperature. (f) shows the θ-integrated
order parameter (left axis, red) after subtracting an approximate MS contribution.
Compare this to the bulk magnetization (right axis, black) for the same sample. All
results are indexed to the tetragonal I4/mmm space group.

are shown in Fig. 4.7. Some information about the setup is in Section 2.2.2. These are

the results from two different experiments on samples with similar Ru content x. All

the measurements are on resonance unless otherwise indicated, and analyzed with a flat

Si(1,1,1) crystal in the σ − π′ polarization channel.

The top panels in Fig. 4.7 indicate results already known about the putative G-type

antiferromagnetic order from Ref. [10]. The correlation lengths ξ are near 100 nm along
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K and L, indicating long-range order.3

The most confusing finding is that the incident energy that maximizes the magnetic

reflection ≈11.218 keV (see Fig. 4.7c) is about 4 eV above the absorption maximum

(AM). If this is a trustworthy value, it is perhaps at odds with measurements of d5

iridates e.g. Sr2IrO4 and Sr3Ir2O7 [16, 58], where the resonant enhancement occurs 3-4

eV below the AM. We are unaware of another Ir compound with this exact behavior, but

a similar peak was recently observed on a mixed structural and magnetic reflection in

the trimer antiferromagnet Ba4Ir3O10 [132]. For t52g ions, the AM typically corresponds

to the eg manifold since it has the most available states for the photoexcited electron.

So the conventional wisdom goes that the magnetic state in the t2g manifold ought to

lie below the AM. By this logic our signal is 6-7 eV above the valence states, which

casts the origin of this in doubt. We rule out anisotropic tensor scattering (ATS, Section

2.1.5) because that is expected within the eg manifold, and such peaks usually do not

exhibit much temperature dependence (e.g. Ref. [133]). Instead this energy scale is on

par with expectations for charge transfer to hybridized O 2p states [134, 135]. What if

the magnetism is on the Ru sites, only probed at Ir sites by transferring electrons to Ru

over the oxygen ions? We suspect some such complication or another experimental issue

at play. Therefore, based on the neutron diffraction, we will assume this is a magnetic

signal.

Now we turn our attention to the partial order parameter (bottom panels of Fig. 4.7)

which is currently unpublished. The θ−2θ scans do not seem to change significantly in

width (correlation length) with temperature, possibly consistent with long-range order

remaining through at least 180 K. The energy scans at the (1, 0, 18) magnetic Bragg

reflection show a strong multiple scattering (MS) peak moving in from low energy to

obscure the signal. The effect is quite significant above 180 K. To deal with this we

3The H direction was not sharp with the analyzer crystal in place.
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fit the energy scans and approximately subtracted the MS contribution from the order

parameters. The order parameter (red data in Fig. 4.7f) seems uncorrelated with the

measured susceptibility for this exact same sample. In the susceptibility there are no

clear features above 150 K, when the REXS order parameter is already saturated. The

susceptibility is potentially picking up a dilute ferromagnetic impurity such as sub-percent

contamination of Sr(Ir,Ru)O3.

4.4.2 x=0.7 Magnetic Diffraction

The results of resonant X-ray scattering (RXS) measurements at APS 27-ID-D are

shown in Fig. 4.8. Some information about the setup is in Section 2.2.4. All the

measurements are at 11.215 keV. The scattering was analyzed with a Si(4,4,8) diced

spherical analyzer crystal and detected in the elastic channel of the strip detector. This

setup allowed us to minimize the fluorescence background while integrating the peak over

a fairly large solid angle, vastly improving signal-to-noise. But since the scattering was

performed in a backscattering geometry, all scattered polarizations were detected.

The x=0.71(3) sample was mounted with GE varnish to an aluminum mount on a cold

finger, and cooled in an evacuated cryostat within two Be windows. The alignment was

performed using a C2/c unit cell with a=20.92 Å, b=5.481 Å, c=5.463 Å, and β=90.045◦,

but all the values in this thesis reference the tetragonal I4/mmm space group with c as

the long axis. I aligned at base temperature using the (0, 0, 24), (2, 0, 24), and (1, 1, 25)

structurally allowed Bragg peaks. The (0, 0, 24) rocking curve’s width was about 0.07

degrees, which is fairly sharp and indicates a good sample mosaic. The analyzer crystal

(100 mm diameter) integrated over a wide range of 2θ values.

Intensity was observed at the wavevector (3, 0, 24) which lies near normal incidence.

This is consistent with G-type antiferromagnetic order. Due to time constraints this is
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(a)

(b)

(c) (d)

Figure 4.8: Resonant X-ray scattering (RXS) measurements exploring the long-range
G-type antiferromagnetism in Sr3(Ir0.3Ru0.7)2O7. (a,c,d) are θ, L,H scans of a mag-
netic Bragg reflection at various temperatures. (b) shows the θ-integrated order pa-
rameter (left axis, red) and the bulk magnetization (right axis, black) for the same
sample. All results are indexed to the tetragonal I4/mmm space group.

the only disallowed reflection that I tracked.

The rough order parameter for Sr3(Ir0.3Ru0.7)2O7 in Fig. 4.8b is qualitatively similar

to the x=0.5 sample (Fig 4.7f): nearly saturated by 100 K and diminished to ≈1/4 of the

intensity at 200 K without a large change in correlation length. At low temperatures the

in-plane correlation lengths ξab≈100 nm for both samples. Again the long-range order

seems to be largely uncorrelated to the bulk susceptibility. Electronic phase segregation

(coexisting antiferromagnetic and paramagnetic metal phases) is the likely culprit.

Above 200 K, at temperatures above those probed for x=0.5, there is a gradual

decrease in intensity. We note there is no significant change in correlation length or the
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width in the θ scans to 250 K. This is an unusual order parameter that warrants finer

temperature steps and measurements in other zones. As a final precaution for interpreting

this result, I reiterate that there is no polarization analysis and that we did not track the

energy or azimuthal dependence, so we cannot be certain that this is a magnetic signal.

4.4.3 x=0.7 Excitations

The results of resonant inelastic X-ray scattering (RIXS) measurements at APS 27-

ID-D are shown in Fig. 4.9. This is the same experiment, sample, and setup as were

employed in the previous section, except that the scattering was measured in the inelastic

channels.

Figure 4.9: Resonant inelastic X-ray spectroscopy (RIXS) measurements of low-energy
excitations in Sr3(Ir0.3Ru0.7)2O7. The incident energy is tuned to the Ir-L3 edge.
Spectra are indexed to the tetragonal I4/mmm space group.
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Spectra were measured at several (h, k) wavevectors in the l = 26.5 plane. Detected

energy resolution was≈35 meV (the width of the elastic peak from a piece of Scotch magic

tape). We observed relatively strong scattering near energy transfer E≈0. This ‘elastic’

feature convolves many different signals, including phonons and possibly magnons. At

the wavevectors (0, 0) and (1, 1) the elastic signal is strong, likely indicating crystal

truncation rods from the integer-l allowed structural Bragg peaks.

At higher energies, several broad features are present, indicated by dashed lines in

Fig. 4.9. These features are peaked near 200 and 700 meV and show very little dis-

persion. Because changes were so small across the quasi-2-dimensional Brillouin zone,

coarse momentum steps were chosen despite the fine angular resolution of the sample

and apparatus (∆θ ≈ 0.07◦ for the structural Bragg peaks).

The ≈200 meV excitations appear to follow a damped oscillator form. Following the

analysis in Ref. [10], we modeled the scattering χ′′(ω) by the form:

χ′′(ω) = χ′′0
γω

(ω2 − ω2
0)2 + γ2ω2

(4.1)

where χ′′, ω0, γ/2 are the momentum integrated intensities, characteristic energy scales,

and damping rates (widths) of the magnetic excitations, respectively. We use the symbols

−E,ω interchangeably to refer to the energy transfer.

We fitted the elastic signals with a Voigt function, and the lowest-resolvable-energy

features with the damped form above, modified so that it was zero at and above the

elastic line. Since the higher-energy feature is asymmetric we fitted it with two Gaussians

maximized near 700 and 900 meV. All fit parameters (intensities, widths, peak energies)

were not fixed.

The fit results for the x=0.70 spectra indicate a weakly dispersive band of excitations

peaked near 180 meV, with comparable damping rates. These fits are very similar to
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Figure 4.10: Fits of the lowest-resolvable-energy excitation of Sr3(Ir1−xRux)2O7 from
the RIXS measurements. Results for Sr3(Ir0.3Ru0.7)2O7 are plotted in black over the
results from Refs. 10, 136. (a) shows the fitted peak energy and (b) shows the damping
rate (width) for a peak of the form given by Equation 4.1. (c) shows the intensity.
Spectra are indexed to the tetragonal I4/mmm space group and were all measured
in the l = 26.5 plane.

those for the x=0.48 sample measured in Ref. [10]. For both samples, the intensity is

largely isotropic, but it is maximized at the (1, 0) zone center and minimized at (0, 0).

This band might be magnons damped by charge excitations, as was asserted for

Sr3IrRuO7. However, we suggest a subtly different assignment for these metallic samples:

damped spin-orbit exciton modes. It does not seem plausible that a magnon energy scale

would change so little after such a drastic change in the carrier doping, and that there

would be so little dispersion for a statically ordered system. Highly local excitations with

orbital character seem to better address these discrepancies; see Fig. 4.3 for more details.

These fluctuations merit further investigation with complementary probes.
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4.5 Conclusions

In summary, we have shown evidence of long-range magnetism in Sr3(Ir1−xRux)2O7 for

unintuitively large Ru substitution, exceeding 70%. Our theory collaborators hypothe-

sized that this finding is directly attributable to the spin-orbit coupling, which decreases

the energy cost for charge carriers in the antiferromagnetic background; see Section 1.2

[10]. Our other main result was that similar ≈200 meV fluctuations, with a slightly lower

energy scale, were found for Sr3(Ir0.3Ru0.7)2O7 compared to Sr3IrRuO7.

Our RIXS study is one of the very first to track an exciton dispersion for a d4−5

metal. Other examples of spin-orbit excitons in metals are the pyrochlore iridates and

osmates e.g. Refs. 133, 137. These reports indicated highly localized excitons too. The

dispersion of another more similar metal would provide a helpful comparison. While it

was not directly resolved, a 36 meV energy scale was inferred for Ca2RuO4 [135].4

The excitations in Sr3(Ir0.3Ru0.7)2O7 are strongly damped, and coupled charge exci-

tations seem likely to play a large role in this damping. This is a complicated scenario

to consider, and we are hopeful our experimental work will motivate theories that piece

together the thermodynamics at play. Similar excitations might be present in other

correlated metal systems such as the cuprate superconductors.

Several experimentally-answerable questions remain regarding these excitations. Does

the exciton energy scale decrease farther with more Ru content x? Follow-up RIXS

measurements at an even higher Ru concentration x≈0.9 using a higher-resolution setup

could help distinguish whether these excitations decrease as expected from the ARPES in

Fig. 4.3. A related question is, could we resolve magnons if samples with x≥0.5 were able

to be studied with inelastic neutron scattering? This would be a difficult measurement,

and the continuum of states expected for a magnetic metal (the Stoner continuum) might

4Recent advances in spectrometers have made the spin-orbit exciton energy scale directly resolvable
in ruthenates at the Ru L-edge [138, 139].
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impede experimental efforts, but there is much that could be learned. As for the static

magnetism, neutron diffraction or even Ru L-edge REXS studies could be well-suited to

explore the unusual incident energy dependence observed in the Ir L-edge REXS.

Our incomplete picture of the physics in Sr3(Ir1−xRux)2O7 would be rounded out by

higher-quality samples. Flux-synthesized samples are somewhat inhomogeneous, which

hinders magnetotransport and scattering studies. More crucially, it is hard to prepare

samples with fine and controllable Ir/Ru content.
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Spin-orbit Excitons in Sr3Ir2O7F2

1 The Jeff model describes how spin-orbit coupling can preserve an unusual ground state

even in the presence of small distortions. This chapter represents an opposite limit.

Sr3Ir2O7F2 has such large distortions that it cannot achieve the predicted Jeff=0 ground

state for its 5d4 configuration. Interestingly, it still has low-energy excitations owing to

its strong spin-orbit coupling.

We report on the energy and momentum dependence of low-energy excitations in the

Ir5+ band insulator Sr3Ir2O7F2, as revealed by resonant inelastic X-ray scattering (RIXS).

This material is composed of corner-sharing planes of IrO6 arranged in bilayers as in the

precursor material Sr3Ir2O7. Quantum chemistry simulations suggest that the strong

departure from octahedral symmetry results in a spin-orbit singlet ground state, where

S and J are not good quantum numbers. In what follows I sometimes slip and describe

this by a closely related S=1 (L=1, J=0) ground state. Weakly dispersive modes ≤

0.6 eV are well-described by spin-orbit excitons. The couplings between excitons are too

weak to yield gapless excitations yet they are relevant to the thermodynamics of this d4

1Part of this chapter is based on one of our publications, Ref. 140: Christi Peterson, Michael W.
Swift, Zach Porter, Raphaële J. Clément, Guang Wu, G. H. Ahn, S. J. Moon, B. C. Chakoumakos,
Jacob P.C. Ruff, Huibo Cao, Chris Van de Walle, and Stephen D. Wilson. Sr3Ir2O7F2 : Topochemical
conversion of a relativistic Mott state into a spin-orbit driven band insulator, Physical Review B 98,
155128 (2018). Copyright 2018 American Physical Society.

Much of the rest of the chapter is from an unpublished manuscript. My collaborators are: Paul M.
Sarte, Thorben Petersen, Mary H. Upton, Liviu Hozoi, and Stephen D. Wilson.
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system.

5.1 Introduction

Recently, a great experimental effort has begun to explore the magnetism of previously

unconsidered 4d4 and 5d4 systems with octahedral ligand coordination. Such systems host

J=0 singlet ground states, which näıvely yield band insulators without static magnetic

order. But lately researchers have been searching for a material example, motivated by

a transformative theoretical framework by Khaliullin [141], which proposed that with

strong spin-orbit coupling (SOC) the Van Vleck-type bosonic J=0 to J=1 excitations

can condense into so-called ‘excitonic’ magnetism. One exciting aspect of this proposal

is the proximity to a quantum critical point with high energy scales [142]. And, for some

material realizations, the condensed phase itself could support novel spin-liquid ground

states. Even though the materials studied so far (including the one in this study) may

lack static magnetism arising from spin-orbit excitons, the thermodynamic signatures

and phase phenomena of this fascinating class of materials is rich and little explored.

Figure 5.1: Overview of Van Vleck excitations in J=0 ground states. (a) shows how
the J=1 triplet state is split from the J=0 singlet by spin-orbit coupling λ̂; it is further
split by tetragonal/trigonal compression +δ to the triplon states Tx,y and Tz. (b) is
two cartoons of J=1 excitations, schematically and then in real space. Couplings
between excitons lead to dispersion in (c); if couplings are strong enough then the
band could become gapless.

Even under perfect octahedral crystal fields, for 4d4 and 5d4 materials there are
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uncertainties regarding the electronic configuration, which draws into question the appli-

cability of theoretical predictions for spin-orbit excitons and the broader magnetic phase

behavior. Generally, the ground states for these systems are considered in two limits:

1. when SOC is much weaker than correlations, the triply degenerate t2g manifold

hosts a S=1 (L=1, J=0) state;

2. when SOC is much stronger than correlations, the Jeff=3/2 doublet is filled yielding

a Jeff=0 state.

However, the comparable energy scales of SOC (parameterized as λ̃≡α′λ with α′=1
2

for d4 and α′=1 for d5)2 and correlations (considered via the Hund’s coupling JH or

the unscreened on-site Coulomb interaction U) for 4d4 and 5d4 compounds are difficult

to reconcile with either of these limits. As additional sources of complication, ligand

hybridization has been predicted to modify filling;[134] itinerancy can mix ground state

wavefunctions; [24] and distortions from the octahedral crystal field are known to split

states. The effects of these deviations from the ideal case are especially noticeable in

excited states. Thus, without relying on sophisticated quantum chemistry calculations,

it is difficult to compare experimentally observed electronic excitations to theoretical

predictions of d4 magnetism.

Here we study a compound derived from the well-studied Ir4+ material Sr3Ir2O7. Via

a topochemical transformation on single-crystalline samples, fluorine layers are inter-

calated between the bilayers of corner-sharing IrO6 octahedra [140]. The fluorine ions

act to hole-dope each Ir ion to the 5+ valence. The magnetic ground state is near-fully

quenched, amounting to about 1% of Ir sites with spin-1/2 moments. Crucially, this hole-

doping is accomplished without diluting the lattice; each Ir ion is still nearest-neighbor

2In other words the effective spin-orbit coupling of d4 ions is reduced by a factor of 2 from d5 ions;
see Ref. 143.
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Figure 5.2: Overview of Sr3Ir2O7F2. In (a) the fluorine intercalation is depicted
pictorially. In (b) the dc resistivity measurements show a band insulator, rather than
a Mott state. In (c) the optical conductivity is consistent with this assignment. From
[140].

coupled to 1 interlayer and 4 intralayer Ir ions (via superexchange across oxygen ions).

And, owing to the constituent elements, we expect negligible Ir antisite defects. The re-

sultant compound Sr3Ir2O7F2 has a strong deviation from an octahedral crystal field, in

contrast to Sr3Ir2O7 [140]. Its spin-orbit singlet ground state, with its first excited states

resembling the Sz=±1 states, makes the present system relevant to other tetragonally

distorted compounds such as Ca2RuO4 with its S=1 (L=1, J=0) state [50].

We use resonant inelastic X-ray spectroscopy (RIXS) to measure low-energy excita-

tions in Sr3Ir2O7F2. Through this study, we measure weakly coupled spin-orbit excitons

and d−d excitations to establish the energy scales of SOC, correlations, and crystal field

splitting in this novel material. This work may allow for quantitative comparisons to

other d4 materials like Ca2RuO4 and (Sr,Ba)2YIrO6.
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5.1.1 Other efforts to hole-dope Sr3Ir2O7 (and Sr2IrO4)

Some hole-doping studies of Sr3Ir2O7 have been performed. I have personally studied

Ru substitution (Chapter 4). But above 40% Ru substitution these samples have metallic

ground states. Since this metallicity seems to be a consequence of Ru4+ ground state

and percolation, this is not a great system to understand Ir5+ physics. Therefore, to get

at the insulating behavior relevant to Sr3Ir2O7F2, other dopants merit consideration.

One very important system that seems to entail Ir5+ physics is Rh-substituted Sr2IrO4.

I will only briefly discuss Sr2Ir1−xRhxO4 here because it is incredibly complicated. The

Rh ions seem to hole-dope Ir sites in a manner that may involve a rigid band shift [144].

By x = 0.2 the Rh drives this insulator into a global metal [145]. Rh substitution seems to

involve a great deal of site disorder that complicates interpretation. At high Rh content,

some of the physics of the Ir5+ valence is obscured by the mixed Rh3+/4+ sites.

Are there ways to significantly hole-dope without diluting the iridium lattice? A-site

doping (substitution for Sr) is a good approach. J.N. Nelson and co-workers studied

hole doping under K substitution in Sr1.93K0.07IrO4 [146]. There it was found that light

hole-doping collapses of the Mott gap and yields a global metal, with surprisingly similar

bandstructure to electron-doped Sr2IrO4 (with a few subtle differences). In this and

many other A-site dopants, the structural stability limits the how many holes can be

doped into the system.

This leaves few ways to achieve even more hole-doping. Substitution of oxygen for

nitrogen-group elements does not seem feasible. Therefore, intercalation of anions was

our chosen route to insulating d4 physics.
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5.1.2 Other J=0 Systems

I will briefly introduce several systems with singlet ground states. The most relevant

to Sr3Ir2O7F2 are those with S=1. From one S=1 example, I will summarize a few

putative Jeff=0 compounds that shape the context for our results.

Figure 5.3: On the left, relative orbital filling from the tetragonal distortion. Iridate
compounds are in green and ruthenates are in red. Deviation from Jeff orbitals is
shown above the plot. Adapted from [147]. On the right is the specific case of d4

levels. J and Jz quantum states are indicated. In this figure, +∆ is tetragonal
compression, n is orbital filling, λ and ζ are spin-orbit coupling, and E is energy
relative to the ground state. From [49]. Copyright American Physical Society.

Among all possible S=1 systems I will focus on Ca2RuO4 because it is well-studied

and perhaps most applicable. Ca2RuO4 is an exotic 4d4 Mott antiferromagnetic insulator

[148], which is especially tunable with pressure or light e.g. Refs. 148, 149. At low

energies accessible by neutron scattering there is significant magnon dispersion [50]. But

at higher energies the orbital excitations accessible by RIXS weakly disperse, owing

to their local character [135]. As seen in Fig. 5.3, the RuO6 octahedra are strongly
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tetragonally compressed, so Ru dxy orbitals are occupied more than dxz and dyz. This

yields a situation where the doublet of J=1 states (〈Jz〉=±1) is brought down in energy

towards the S=1 ground state, mixing with it. This effective S̃ = 1 state is predicted

to yield its excitonic magnetic order, exemplified by a putative Higgs (amplitude) mode

[50]. This electronic state is analogous to the Jeff=0 state under strong exciton coupling.

Figure 5.4: The weakly dispersive Jeff=0 system Ba2YIrO6. (a) and (b) show the
cubic unit cell and Brillouin zone. (c) shows a false-color RIXS map of the spin-orbital
excitations. From [150]. Copyright 2018 American Physical Society.

Several putative Jeff=0 compounds have been studied in the past decade. Currently

there is scant evidence of excitonic magnetism in these systems. The preferred candidates

have nearly-perfect octahedral crystal fields. Y2Os2O7 [151] and K2RuCl6 [138] and

several double perovskite iridates like (Ba,Sr)2YIrO6 [150] are some examples of this.

In each of these systems the exciton bands very weakly disperse; see Fig. 5.4. For the

osmate and iridate above, bulk magnetism has been attributed to glassy, impurity-driven

behavior. However, the excitonic nature of the magnetism, particularly in the double-

perovskite iridates, has been fiercely debated.
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5.2 Synthesis: Topochemical Reaction

The topochemical reaction was hard to control and often inconsistent. The technique

we employ has strong variability in resulting O and F stoichiometry, probably because

of changes in reactant dryness and precise furnace conditions. Therefore, each sample

needed to be individually checked, both for crystal structure and fluorine content.

For the RIXS study, I reacted a ∼1 mg sample of single crystalline Sr3Ir2O7. I

produced this with the flux technique described in Section 4.2. I placed this sample

in an alumina boat and buried it under about 1 g of CuF2, handled in a glovebox for

safety and to prevent water absorption. The reaction was performed in a tube furnace,

at 550 K for 3 h under flowing argon gas at 30 sccm. I checked that this sample was

phase-pure by laboratory X-ray diffraction (Panalytical Empyrean and Rigaku Smartlab

diffractometers).

After the RIXS measurements, the sample was ground into powder onto double-sided

tape and measured with X-ray photoemission spectroscopy (XPS) using a Thermo Fisher

Escalab Xi+ instrument. The CasaXPS software was used to fit the XPS intensities, and

without using standards we found the Sr:F ratio was 3:2.1 which is nearly stoichiometric

within the large expected uncertainty.

I sent collaborators powder to perform nuclear magnetic resonance (NMR) and X-ray

absorption spectroscopy (XAS) measurements. Some of these measurements on well-

prepared samples are described in Ref. 140. Measurements on differently-prepared sam-

ples showed evidence of incomplete intercalation and also substitution of fluorine ions for

oxygen ions.
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5.3 Magnetization

The bulk dc magnetization was measured with a Quantum Design MPMS3 magne-

tometer. The sample was affixed with GE varnish to a quartz paddle, oriented with field

along the basal plane.

Figure 5.5: Weak bulk magnetization in Sr3Ir2O7F2. The low-temperature upturn is
consistent with dilute impurities. The inset is the inverse susceptibility, in units of
(Oe·mol formula unit / emu). The cyan line is a Curie-Weiss fit.

As seen in Fig. 5.5, the magnetization is incredibly weak. The dominant temperature-

independent Van Vleck contribution to the susceptibility is about 1.1(1)×10−3 emu/mol.

From Curie-Weiss fits, several similarly prepared samples had <1 mass percent µeff=1

paramagnetic impurities. We ascribe this to dilute Ir4+ impurities, either from fluorine

substitution for oxygen or from oxygen vacancies.
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5.4 Resonant Inelastic X-ray Scattering

Figure 5.6: Orthorhombic Bbcb unit cell (left) and quasi-2D Brillouin zone (right) for
Sr3Ir2O7F2. Ir−O bond lengths are appreciably compressed along c near the fluorine
planes. Cartoon of the excitations observed in RIXS measurements (center). Details
are in the text. J is not a good quantum number so transitions are approximate.

Resonant inelastic X-ray scattering (RIXS) measurements were performed at Beam-

line 27-ID of the Advanced Photon Source at Argonne National Laboratory. See Section

2.2.3 for more details of the experimental setup. For the exact sample measured with X-

ray scattering, X-ray photoelectron spectroscopy (XPS) measurements confirm accurate

stoichiometry and diffraction confirmed the correct structure. The incident photons were

tuned to the Ir L3 absorption edge (E = 11.215 keV) and final energies were selected

with the Si(4,4,8) reflection of a spherical analyzer crystal array in a horizontal scatter-

ing geometry. Excitations were mapped primarily in the quasi-2D l=30.5 Brillouin zone

(BZ). This l value was chosen because it is far from Bragg peaks and near 2θ=90◦ where

Thomson scattering (i.e. elastic charge scattering) is minimized.

Momentum space positions are indexed using an orthorhombic Bbcb unit cell with
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lattice parameters a=5.45 Å, b=5.51 Å, and c=24.21 Å; see Figure 5.6. This simplification

from the proper C2/c cell was chosen for comparison to other quasi-2D samples. Due to

twin structural domains, we do not distinguish between a and b axes. RIXS measurements

were sample-resolution-limited in momentum, approximately 0.2 Å−1, due to the high

mosaicity of samples after the topochemical conversion. Detected energy resolution was

≈35 meV. Unless otherwise stated, measurements were performed at 8(2) K.

RIXS spectra are shown at individual Q positions in Fig. 5.7, and as a map in the

quasi-2D Brillouin zone in Fig. 5.4. All measured excitations disperse weakly. We label

the features (Table 5.1 and Fig. 5.7) as elastic at energy loss E=0, A at E≈170 meV,

B at E≈220 meV, and C at E≈500-900 meV. A, B, and C are spin-orbit excitons. The

A and B features match qualitatively with the ab initio model; see Table 5.1. We note

that no sharp features were observed in the optical conductivity from 0 to 1 eV [140],

consistent with feature C being composed of optically-forbidden spin-orbit excitons.

Near 1.3 eV, there is a broad excitation in the optical conductivity, so the scattering

may begin to include transitions across the charge gap. We call these intra-t2g excitations.

Some of the ambiguity in interpreting this feature stems from difficulty in modeling the

electron-hole continuum; see for example Ref. 152.

Higher energy features are visible in the spectra with a wider energy window shown

in Figure 5.4. In the spectra there is a broad peak at 3.2(1) eV, and at higher energies

the scattered intensity is nearly flat. This is consistent with expectations for excitations

to the eg manifold, and establishes an approximate energy for the octahedral crystal

field splitting. The high energy features also include contributions from O 2p−Ir t2g

charge-transfer scattering channels [153, 154].

Next we comment on the widths of the low-energy RIXS features. For the A and B

modes, the full width at half maximum (FWHM) values are very near 60 meV. This is

near the 35 meV instrumental resolution and is much sharper than the other features,
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Figure 5.7: Representative RIXS spectra (black dots) for several Q. Fits to the spectra
(solid red lines) utilize the spectral components discussed in the text. J values are
approximate.
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Figure 5.8: Top Panel : RIXS false-color map of raw intensities in the
quasi-2-dimensional Brillouin zone. Ticks indicate the Q positions where spectra were
measured; the map was generated by interpolation. Bottom Panel : Representative
spectra for several Q over a wide energy range to show higher-energy excitations. A
constant background was subtracted from all scans in this figure.
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so it seems to preclude a collection of many distinct modes. The bandwidth for the A

and B modes is about 15-35 meV, which points to weakly coupled excitations (i.e. high

effective mass). The C feature has FWHM values near 100 meV, and a bandwidth of

about 80 meV, consistent with a collection of many dispersive modes (confirmed from

the many nearby modes in the quantum chemistry models).

To analyze these RIXS features, the elastic line was fitted to a Voigt function, A and

B were fitted to Lorenztians, and all other features were fitted to Gaussians, on a constant

background. These peak shapes were chosen to empirically match the data. To attain

well-behaved fits we found it appropriate to fix the A and B peaks’ widths throughout this

paper. The reduced chisquared χ2
r (goodness-of-fit) values are nearly equal for fits where

these parameters were fixed or free. For the special case of tracking the l dependence of

the A and B intensities at fixed h and k, the modes seem nondispersive so we fixed the

A and B peak energies as well, corroborated by the goodness-of-fit.

Using the fits as described above, we now consider the RIXS integrated intensities.

Most features’ intensities are nearly constant as functions of Q, with the exception of

the A and B modes, which are nearly constant across each quasi-2D BZ yet exhibit

a strong sinusoidal l dependence; see Fig. 5.9. The A mode intensity appears well-

described by the functional form sin2(πld/c), with d the bilayer Ir-Ir spacing and c the

lattice constant. For the B mode the intensity variation is π/2 phase-shifted (to cos2)

with an added constant background. We attribute this sinusoidal behavior of A and B to

a double-slit-like interference for two different excited states that are delocalized across

the bilayer. This interference effect results from the emission process in RIXS [57], so

it should be expected for RIXS spectra of all ions arranged like dimers, and it will not

occur in the inelastic neutron scattering. A more detailed description of the physical

origin and alternative explanations are provided below in Section 5.4.1.
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Figure 5.9: Interference pattern in the RIXS spectra along l. Left Panel : Raw RIXS
spectra at (1, 0, l) show the change in spectral weight of the A and B features (magenta
and blue, respectively). Right Panel : Integrated intensities of the Lorentzian fits to
these features reveal sinusoidal dependence in l. The functional form of the magenta
line is sin2(πld/c), as is described in the text. Note that for l<28 the fitted scans
were measured at (3, 0, l) which was closer to normal incidence, where self-absorption
effects were larger due primarily to the scattering geometry. The h=3 scans were
scaled by a factor of 2 to make the intensity values comparable.
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5.4.1 Sinusoidal intensity dependence

Now we return to our consideration of the sinusoidal intensity dependence of the A

and B modes along the l direction. When we consider possible explanations, we must

satisfy the following observations:

• First, this effect must come from the Ir interactions along c such as across the

bilayers, as it cannot be reconciled with isolated ab planes of Ir ions.

• Second, we note that these modes are large in magnitude and that the A intensity

goes to zero within uncertainty at certain l values. Therefore, any explanation for

the l dependence of the A and B features must be a significant effect that invokes

the bulk d4 state rather than defects.

• Third, given how dilute the RIXS-excited ions are in the measured sample,3 we

do not consider pairs of excitations on nearest-neighbor ions since these comprise

weak scattering channels.

Based on these considerations for the sinusoidal l intensity dependence, we accredit

the A and B features to spin-orbit excitons which form molecular orbitals that are delo-

calized across the bilayer. A similar conclusion was described with little clarification in a

recent paper describing excitons in Sr3Ir2O7 [59]. I choose to spell this out here because

it is a point of confusion for many in the field.

In X-ray emission measurements of ions arranged like dimers, such as RIXS performed

on bilayers, the double-slit interference condition can be satisfied: the identity of which

ion in the pair yielded the emitted photon, the ‘slit’ in this double-slit experiment, cannot

be determined in principle. An essential ingredient for the interference is delocalization

3Here, flux ∼1012/s and the excited volume contains ∼1015 Ir ions. These values imply that pairs of
excitations caused by the incident photons are infrequent for realistic final excited state lifetimes � s.
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of the photoexcited electron in the state intermediate to the absorption and the emission

processes, which removes the ‘which-path’ information for the emitted photon. For more

ideal 5d4 J=0 materials, triplon (J=1) excitations are considered to be very delocalized.

Delocalized excitons certainly propagate in-plane, yet the geometry of the Ir-O planes

does not allow for double-slit interference.

The most natural microscopic picture for the observed A and B features is symmetric

and antisymmetric molecular orbital excited states that form across the bilayer. For

visualization purposes these orbitals can improperly be considered as akin to bonding

and anti-bonding states. The most consistent scenario is one of the two crystal field split

Sz=±1 states hybridizing with the Sz=0 ground state; however we note that this is not

explicitly captured in the ab initio simulations, which reveal a singlet where S and J are

not good quantum numbers.

To explain the phase shift between these two features that yields the sin2 and cos2

dependence along l, we derive the RIXS scattering amplitudes. The derivation that

follows is a slightly modified reproduction of the supplemental materials to Ref. 22. In

the dipole and fast-collision approximations [46, 49], the Ir L3 RIXS scattering amplitude

Af (Q, ω) of one final state |f〉 is:

Af (Q, ω) ∝ 〈f |
∑
R

eiQ·R[D̂†(εεε′)D̂(εεε)]R|i〉 (5.1)

where |i〉 denotes the initial (ground) state, εεε(εεε′) the polarization of incident(outgoing)

photons, D̂ the local dipole transition operator, and R runs over all Ir sites that contribute

to the final state |f〉. This is essentially Equation 2.22 where we explicitly include the

crystal structure factor.

If we consider a final state that accounts for two Ir sites across the bilayer at r1,2 =

(0, 0,±d/2) then, since they are equivalent sites, the matrix elements may only differ in
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sign. If we measure the dependence along l at |Q| = 2πl/c we get:

Af (Q, ω) ∝ eiQ·r1 ± eiQ·r2 ∝


sin(πld/c)

cos(πld/c)

(5.2)

The intensity (scattering cross section) is I(q, ω) =
∑

f |Af (Q, ω)|2δ(~ω−Ef ) where ~ω

is the outgoing photon energy and Ef is the excited state energy. Therefore, symmetric

and antisymmetric levels yield sin2 and cos2 dependences along l, as observed for the A

and B features respectively.

An interference phenomenon was measured in detail for structural dimer systems in-

cluding Ba3CeIr2O9, with Ir2O9 bi-octahedra that have small Ir-Ir separations d=2.5Å

along the c axis [22, 23]. The dimerized Ir sites’ molecular orbitals are delocalized, giving

rise to interference among several distinct excited states in RIXS measurements. As a

result, the intensity of transitions to the excited states for Ba3CeIr2O9 modulates sinu-

soidally along l, where symmetric intermediate states vary as sin2(πld/c) and antisym-

metric intermediate states vary as cos2(πld/c) [22]. In contrast to Sr3Ir2O7F2, this dimer

example has much closer Ir ions with a different valence and wildly different electronic

configurations. Crucially the dimer system has a much larger orbital overlap parame-

terized by the hopping t≈1 eV along c. However, we propose that the excitons in the

present study are delocalized, with the Ir-O-Ir bonding providing enough orbital overlap

to result in modest hopping for the exciton.

Instead of the proposed electronic configuration, one could envision magnetic or or-

bital dimerization as a means of interpreting the sinusoidal intensity dependence. For

instance, if there are many O vacancies then there could be interlayer-dimerized Ir4+

defects, since these may not have a strong signature in the bulk susceptibility. However,

this magnetic dimerization seems unrealistic based on how dilute unpaired Ir4+ ions are
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<1 mol percent and also the structural refinements. On the other hand, we cannot

rule out Ir5+ orbital ordering and dimerization based on the existing evidence. In the

3d2 compound Sr3Cr2O7, the proposed ground state is an interlayer orbital singlet state

which yields a qualitatively similar crystal field environment [155]. Orbital ordering or

dimerization could plausibly explain why the bilayer Ir spacing d does not decrease sig-

nificantly with holes from Sr3Ir2O7 to Sr3Ir2O7F2, even though the Ir free ionic radius

decreases 9% from the 4+ to the 5+ valence.

Yet another explanation for the sinusoidal intensity variation is acoustic and optical

transverse paramagnon modes, which could possibly exist along with a longitudinal mode.

Acoustic(optical) modes are known to have a sin2(cos2) dependence on the wavevector

along the bilayer direction l [156]. In this explanation, the oberved splitting 50 meV

translates to intra-bilayer coupling Jc≈25 meV.[157] This sizeable interlayer coupling

(much greater than J1,2) would imply dimer excitations that are weakly coupled in-plane.

However, the primary inconsistency with this interpretation lies in the room-temperature

coupling Jc which is at odds with the established paramagnetic ground state for 2 K

< T < 400 K. Also, it is difficult to imagine such strong anisotropy for the paramagnons,

since in-plane and out-of-plane Ir-Ir distances are comparable.

5.5 Modeling

To determine the ground state and excited states measured via RIXS, collaborators

performed ab initio quantum chemistry calculations on an isolated (IrO6)7− monomer as

well as a cluster (Ir2O11)12−. This effort was led by Thorben Petersen, Satoshi Nishimoto,

Ulrich K. Rößler, and Liviu Hozoi. The input structure was solved from powder X-ray

diffraction refinements [140]. First, the Ir t2g orbitals were considered for the initial

complete-activespace self-consistent-field (CASSCF) optimization. Then these levels and
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t42g terms MRCI+SOC RIXS
3T1g 0 (≈Sz=0) 0 elastic

370, 440 (≈Sz=±1) 170, 210 A, B
580 (≈J=1) ≈550 C

1T2g,
1Eg 790, 820, 850 ≈750 C

960 intra-t2g
1700, 1730, 1780 intra-t2g

Table 5.1: Low-energy Ir5+ 5d4 multiplet structure for Sr3Ir2O7F2 from ab initio
calculations of a monomer (IrO6)7− site and from RIXS experiments, approximated
from Fig. 5.7. Values are in meV.

the O 2s, 2p electrons were correlated in multireference configuration interaction (MRCI)

computations, which additionally take spin-orbit coupling (SOC) into account. The

details of these computations are beyond the scope of this dissertation.

We first discuss the results of the quantum chemistry simulations from the model of

the isolated (IrO6)7− monomer (see Table 5.1). Here the anisotropy and strong spin-orbit

coupling are dominant. The singlet ground state and first excited states are within the

spin-orbit-split 3T1g manifold, so they are linear combinations of the dxy, dxz, and dyz

orbitals. The ab initio ground state has dominant in-plane orbital occupation. The first

excited states are two spin-orbit-split levels akin to Sz=±1 near 300-400 meV. Another

distinct 3T1g level is near 600 meV. At higher energies there are more intra-t2g transitions

to strongly spin-orbit-mixed 1T2g,
1Eg configurations in the ranges 0.8-1.0 and 1.6-2.0

eV. These states’ levels are likely an overestimation from neglecting partial occupation

of the eg manifold.

The quantum chemistry model of the cluster (Ir2O11)12− reveals that each of the

lowest-energy modes is split by about 10 meV compared to the isolated (IrO6)7− monomer.

This supports our assertion that the dispersion is due to exchange coupling.

To supplement the quantum chemistry calculations, Paul Sarte modeled our exper-

imental dispersion relations with a spin-orbit exciton model that relies on a single-ion

145



Spin-orbit Excitons in Sr3Ir2O7F2 Chapter 5

Hamiltonian ĤS.I.. This model for Sr3Ir2O7F2 employs the same formalism that was

established [61] for the d4 multiorbital Mott insulator Ca2RuO4. This Hamiltonian is

parameterized by: α′λ, HMF , and δ, corresponding to the individual contributions from

spin-orbit coupling, an internal mean molecular field, and a uniaxial (either tetragonal or

trigonal) distortion of the local octahedral coordination environment, respectively. The

resulting eigenstates of ĤS.I. are then coupled by the Fourier transform of the exchange

interaction J(Q), where both an isotropic nearest neighbor J1 and next nearest neighbor

exchange J2 are considered. Before getting to the results, we note that the model does

not capture the sinusoidal variation in intensity along l because it is restricted to the

(a, b) basal plane, so it only describes the quasi-2D BZ.

The model assumes an idealized S=1 (L=1, J=0) regime. By employing the refined

parameters (Table 5.2), the model produced two distinct modes with calculated dispersion

relations in excellent agreement with the experimental data. As illustrated in Fig. 5.10,

the A mode corresponds to transverse fluctuations (αβ = +− and −+) within the basal

plane of the pseudo-tetragonal unit cell, whereas the B mode at higher energy transfers

corresponds to longitudinal zz fluctuations along the Ir5+ moment’s axis. As summarized

in Table 5.2, the refined values for each of the five parameters exhibit close agreement

(within 20%) with their initial values.

The refined value of 187(5) meV for the spin orbit coupling α′λ is comparable to values

reported for other d4 iridates [158]. The presence of one, rather than two, transverse

modes can be understood by the negligible molecular field. According to the model,

HMF has a refined value of 0.2(2) meV, and this implies no splitting between the two

plausible αβ= +− and −+ transverse modes. The lack of a molecular field is also

consistent with the absence of magnetic long-range order.

In such a case where the molecular field is absent, the gap between the longitudinal

and transverse modes results from a uniaxial distortion of the coordination environment
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Section 5.5 Modeling

Figure 5.10: Spin-orbit exciton model (solid colors and lines) in comparison to the
fitted data (points). Energy transfers of transverse (lower energy) and longitudinal
(higher energy) modes overplotted on S(Q). Note that the RIXS intensity is not
equivalent to S(Q), and intensities have not been scaled to account for the scattering
geometry. Error bars only account for peak energy uncertainty, and do not incorporate
fixed widths ≈60 meV.
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Parameter Initial Value Range Refined Value

α′λ 200 [150,250] 187(5)

HMF 0 [-5,5] 0.2(2)

δ 82 [40,120] 100(5)

J1 2.1 [0,5] 2.1(1)

J2 −1 [−2,2] -0.80(5)

Table 5.2: Refined parameter values of the spin-orbit exciton model for Sr3Ir2O7F2.
All values are reported in meV and numbers in parentheses indicate calculated uncer-
tainties.

for a magnetic ion with unquenched orbital angular momentum. The large magnitude

of δ with a refined value of 100(5) meV yields a significant gap of δ/2. The positive

sign fixes the longitudinal mode to higher energy transfers than the transverse mode. It

can be shown [61] that the dispersion relation illustrated in Fig. 5.10 is indicative of an

antiferromagnetic J1 > 0 whose magnitude is greater than the ferromagnetic J2 < 0.

To summarize, we interpreted the two lowest energy excitations as one transverse and

one longitudinal S=1 exciton branch, split by a tetragonal distortion, with negligible

molecular field. The modes disperse weakly according to weak couplings J1,2. This

interpretation was used an oversimplified starting point.

5.6 Conclusions

In conclusion, we measured resonant inelastic X-ray scattering for the 5d4 band insu-

lator Sr3Ir2O7F2 and interpret the low-energy excitations with quantum chemistry simu-

lations as well as a spin-orbit exciton model. We comment on the electronic configuration

of the system and the relevant energy scales including effective spin-orbit coupling, tetrag-
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onal distortion, exchange coupling, and correlations, in the context of related systems

based on Ir, Ru, and Os sites. The strong interference effect along the bilayer direction is

a consequence of X-ray emission. We echo previous predictions that interference effects

can be significant in dimer, bilayer, and related systems studied via RIXS.

As a next step, if would be of great interest to tune the fluorine content, and for

instance study Sr3Ir2O7F with Ir4.5+. Others in my research group and I have failed

to modify the intercalation reaction to control the fluorine content. As predicted by

density functional theory, our solid state reaction is all-or-nothing; my reactions invari-

ably yielded some mix of Sr3Ir2O7 and Sr3Ir2O7F2. Maybe wet chemistry methods are

better-suited to achieve this goal. In addition, it remains to be seen if the topochemical

reactions could be made gentler; single crystals with a better mosaic that are less dam-

aged would be better able to answer open questions about the electron transport and

structure. As a parallel effort, it would be incredibly valuable to have large volumes of

sample, even in polycrystalline form, for neutron diffraction and thermodynamic mea-

surements. The current roadblock is that there is no synthetic technique for producing

high-quality polycrystalline Sr3Ir2O7, so our powder studies were performed on crushed

single crystals.
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Chapter 6

Tuning the Pyrochlore Iridate
(CaxNd1−x)2Ir2O7

1 While the pyrochlore iridates neatly fit into this dissertation centered around Jeff=1/2

states in iridium oxides, they are quite different from materials like Sr2IrO4. Due to a

significantly larger bandwidth, the pyrochlores are in the weak to intermediately corre-

lated regime where semimetal states exist [11]. This leads to an itinerant picture of spins,

where the Quantum Compass model in Section 1.2.2 is not directly applicable (especially

for these Ir-O-Ir bonds near 130◦ where neither 90◦ nor 180◦ models are applicable).

We were motivated to study the pyrochlore iridates by a host of studies demonstrating

topological semimetal phases [160–163] and predicting associated quantum criticality

[164–168]. Unfortunately a complete discussion of the topology is beyond the scope of this

dissertation, but for the experts I include some helpful figures below. The requirements

for this particular Weyl semimetal phase are that time reversal symmetry must be broken

(by short- or long-range magnetism) and that inversion symmetry remains; as such, the

existing theories assume a cubic structure and minimal local disorder.

1This chapter is based on one of our publications, Ref. 159: Zach Porter, Eli Zoghlin, Samuel Britner,
Samra Husremovic, Jacob P.C. Ruff, Yongseong Choi, Daniel Haskel, Geneva Laurita, and Stephen D.
Wilson. Evolution of structure and magnetism across the metal-insulator transition in the pyrochlore
iridate (CaxNd1−x)2Ir2O7, Physical Review B, 100, 054409 (2019). Copyright 2019 American Physical
Society.
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Figure 6.1: Pyrochlore iridate topology. Top panel : predictions of a quantum critical
point from tuning the AFM Weyl semimetal phase. Bottom panels: the eight Weyl
nodes (Fermi level crossings) are pictured in the Brillouin zone. Pairs of nodes with
opposite chirality (blue/red) are protected by the broken time-reversal symmetry.
From [164, 168]. Copyright American Physical Society.

We sought to tune the promising material Nd2Ir2O7 via hole doping across a metal-

insulator transition (MIT). We attempted to resolve some of relations between lattice,

spin, and charge degrees of freedom across this unusual MIT. Our data establish a com-

plex interplay between magnetism and the formation of the metallic state in hole-doped

(CaxNd1−x)2Ir2O7.

Another primary goal of this work was to answer open questions about the chemistry

in the pyrochlore iridates: does doping affect the local structure symmetries, which are

important for the topological properties? And is the electronic state described by the

minimal Jeff = 1/2 model? To these ends, we collaborated with local structure expert

Prof. Geneva Laurita and with X-ray staff scientists skilled in absorption spectroscopies.

Our answers to these questions encouraged future studies of this material family.
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Figure 6.2: Pyrochlore oxide structure. There are 4 crystallographic sites A2B2O6O′

in the cubic space group Fd3m. The left panel separately shows the interpenetrating
corner-sharing tetrahedral A and B sublattices. The right panel shows one AO6O′2
scalenohedron (puckered cube) and one BO6 octahedron. From [169]. Copyright 2010
American Physical Society.

6.1 Introduction

The pyrochlore oxide structure A2B2O7 is decorated with interpenetrating A and B

sublattices of corner-sharing tetrahedra composed of AO8 and BO6 coordination com-

plexes. Pyrochlores host a variety of electronic and magnetic phases owing in part to

geometric frustration in the presence of antiferromagnetic exchange interactions [169]

and the diversity of cation species which can be accommodated within this structural

framework. This is a highly stable structure, for better or worse; it can accommodate

large levels of cation disorder and ligand vacancies.

We focus on the lanthanide iridium oxide pyrochlores Ln2Ir2O7 (with Ln3+ and Ir4+)

because they have small energy gaps between quadratic bands. Upon varying the lan-

thanide site, this series exhibits a metal-insulator transition (MIT) [170] where the gap

monotonically decreases with increasing ionic radius [171] until a metallic state is reached

between A=Nd and A=Pr lanthanide ions [172]. Our current theoretical understanding

of this transition is that it is bandwidth-driven: larger Ln ions decrease the trigonal

compression of the oxygen octahedra, increasing the Ir-O orbital overlap [11]. This
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Figure 6.3: Bandwidth-controlled metal-insulator transition in Ln2Ir2O7. Left panel :
Transport behavior for the lanthanide series. The MIT tracks with Ln radius, which
changes Ir-O bonding. Right panel : hydrostatic and ‘chemical’ pressure on Ln =
(Sm,Nd,Pr) samples. From [171] Copyright 2011 Physical Society of Japan, and from
[173] Copyright 2015 American Physical Society.

bandwidth-driven picture has been established by studies of both hydrostatic and ‘chem-

ical’ pressure. Pressure has a relatively gradual effect on the MIT [173]. As of yet there

have been no detailed structural studies of Nd2Ir2O7 under pressure, which could be

insightful.

Interestingly, the pyrochlore iridates’ MIT coincides with the formation of all-in-

all-out (AIAO) antiferromagnetic order of the Jeff=1/2 moments on the Ir magnetic

sublattice, while magnetic A site lanthanide cations may establish the same order at

lower temperatures. The role of magnetism in the MIT is unresolved. Unexpectedly,

chiral spin textures are reported to persist into the metallic regime [174]. Additionally,

while q=0 AIAO order coincides with the opening of a charge gap [11], the MIT shows

evidence of both Mott and Slater (or mean-field) character [175]. The electronic response

may be tied to the magnetism on each sublattice.

Our study aimed to get at some of the ambiguities regarding the mechanism of this
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Figure 6.4: Coupled magnetic and electronic transitions in Nd2Ir2O7 specifically. Left
panel : All-in-all-out (AIAO) antiferromagnetic ground state. Center panel : A differ-
ent perspective on the AIAO state, highlighting relations to kagome structures. This
picture also includes the Nd sublattice explicitly. Right panel : Temperature-driven
progression from metal to mean-field-like-insulator to Mott insulator via the energy
distribution curves (EDCs, essentially the density of states as probed by angle-resolved
photoemission). Note how the first transition is coincident with the Ir AIAO order,
and the second coincides with alleged Nd order. From [176] Copyright 2012 American
Physical Society, and from [175] Copyright 2016 Physical Society of Japan.
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unusual MIT. As an alternative to bandwidth control of the MIT with A-site isoelectronic

substitution, filling control via carrier doping has the potential to access metallic states

in the A2Ir2O7 phase diagram with thermodynamically distinct magnetic and electronic

properties.

One of the chief mysteries of filling control in the pyrochlore iridates is the wide vari-

ety of magnetic responses. For some compounds and synthesis conditions, the MIT and

magnetic transition are coupled, and in others they are decoupled. In the present study

and in recent work on (Eu1−xCax)2Ir2O7, the MIT and AIAO transition temperatures

remain coincident [177], and this transition is rapidly suppressed with increasing x until

a metallic ground state is realized between x=0.05 and x=0.10. Yet our own work on

the exact same A=(Eu,Ca) system yielded different behavior entirely: while the MIT

temperature decreases rapidly with x, the magnetic transition is decoupled in tempera-

ture and slowly decreases with x [178]. This is especially vexing because our Ca-doped

Nd and Eu compounds were synthesized under nearly-identical conditions. A similar

decoupling of the MIT and magnetism was demonstrated in other studies on A=(Y,Ca)

and A=(Eu,Sr) [179, 180]. The discrepancies between these näıvely similar materials,

and the relation between their synthesis conditions and magnetic properties, warrants

further investigation.

6.2 Synthesis: Solid State

Polycrystalline samples of (Nd1−xCax)2Ir2O7 were synthesized by a conventional solid-

state reaction:

• Dry: Prepare reactant powders (99.99%, Alfa Aesar) of Nd2O3, CaCO3, and IrO2

by drying them in alumina crucibles in air at 1370, 570, and 970 K respectively.

This step is very important in humid places like Santa Barbara California.
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• Weigh: Use a precision scale to weigh out stoichiometric amounts of the reactants

Nd:Ca:Ir in (2-2x):2x:2 ratios, ignoring oxygen stoichiometry. Typical batch size

was 2-5 grams.

• 1st reaction: mix and grind powders for > 25 minutes in a clean agate mortar and

pestle, and heat at 1070 K in an alumina crucible in air for 18 h. In this initial

reaction step, pelletization seemed unimportant.

• 2nd reaction: regrind and remix powder, funnel into a large clean latex balloon,

remove air with a rough pump before tying a knot, and press into a pellets at

300 MPa within an isostatic press. Remove the balloon, then place in an alumina

crucible and heat at 1270 K in air for 8 days with one intermediate grinding.

• 3rd reaction: Repeat previous step, sintering at 1320 K − 1370 K. This step always

resulted in several mol% unreacted Nd2O3. Further repetition was not shown to

have any improvements in pyrochlore phase fraction. Higher sinter temperatures

were avoided as they were thought to evaporate the IrO2 more quickly or yield

other products like the defect fluorite Nd3IrO7.

• Vacuum anneal: For several samples, the remaining Nd2O3 was reacted by adding

4 mol% additional IrO2 to the powder, then sintering the pellet at 1370 K in

an alumina crucible sealed in a quartz tube under vacuum for 8 days with one

intermediate grinding. For these samples, the final pellet was sintered at 1170 K

for 2 days in air. These samples had improved electronic homogeneity, as evidenced

by the removal of 120 K features in the resistivity and the magnetization. We were

unable to resolve any structural differences from vacuum annealing. We suppose

without direct evidence that the vacuum anneal improved oxygen stoichiometry.

For this chapter, I will be describing only the properties of vacuum annealed samples
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for clarity.

As an aside, we note that we attempted single crystal flux synthesis. SrCl2 fluxes

resulted in ∼0.1 mm crystals with high Sr content on the A site. We also tried to

replicate reported KF flux methods but were unable to produce crystals.2

After solid state synthesis, laboratory powder X-ray diffraction was performed to

track phase composition and lattice constants. For preliminary measurements we used a

Panalytical Empyrean diffractometer using lab-source Cu K-α radiation with standard

settings. Finely ground samples were tamped down on a zero diffraction plate. Preferred

orientation was not much of an issue.

Refinements of the data exhibit the expected pyrochlore phase as well as small

(<1.5%) impurity fractions of each of the reactants and Ir metal. The reactants are

all paramagnetic, which enabled study of magnetic order. But for magnetotransport it

was unfortunate that we could not prepare purer (and denser) samples.

We quantified the Ca content using a Rigaku ZSX Primus IV wavelength-dispersive

X-ray fluorescence (WDXRF) spectrometer. Pressed pellet samples were quantitatively

analyzed against standards composed of unreacted powders of known stoichiometry. This

is a labor-intensive method but it is more repeatable and precise than similar measure-

ments without standards. It was especially necessary for low Ca content < 5%, where

energy dispersive X-ray spectroscopy (EDS) on a scanning electron microscope (SEM) is

imprecise.

2Because of the dangers of boiling fluorine compounds, our KF flux technique involved weighing and
filling the platinum crucible in a glovebox, and sealing it in an alumina crucible with high-temperature
cement. A piece of string in the cement would burn away at high temperatures to vent gas in a controlled
way. The reaction furnace was placed within a fume hood, and sacrificial alumina shrouds were used to
protect the heating elements.
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6.3 Lattice Structure

Beyond just reporting lattice constants, we sought a more complete structural char-

acterization of our samples. First we employed synchrotron powder diffraction measure-

ments of the average structure, which revealed minimal changes in bond lengths and

bond angles as Ca is alloyed into the pyrochlore matrix. Second, we used pair distribu-

tion function (PDF) measurements of the local structure, which showed that Ca enters

the lattice homogeneously with no resolvable clustering.

6.3.1 Average Structure

Several samples were characterized by synchrotron powder X-ray diffraction (XRD)

measurements at Beamline 11-BM of the Advanced Photon Source (APS) at Argonne

National Laboratory. Sample preparation is important for this experiment. Because of

the incredibly short absorption lengths I should have diluted the samples (e.g. with silica

powder), but instead I loosely filled the kapton tubes with pyrochlore powder. The data

quality was much better than is possible with Cu Kα lab-based instruments, but poorer

than it could have been. Our transmission was much less than 1%, and I have since

learned that transmission > 10% (or equivalently µR < 1) is optimal.

The diffraction patterns were refined using the TOPAS software package [95]. We

observed unusually asymmetric and difficult-to-describe peakshapes, which are perhaps

typical of pyrochlore powders (e.g. Ref. 181). I opted for a refinement that captured

the desired parameters: lattice constants, thermal parameters, and site occupation. My

model was perhaps slightly unphysical in terms of particle strain distribution: in addition

to strain and size terms I included a small ‘Tube Tails’ correction. In addition to the built-

in absorption correction, I found it necessary to manually broaden peaks as a function

of scattering angle, which is not standard.
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Figure 6.5: (CaxNd1−x)2Ir2O7 synchrotron XRD patterns, all taken at 300 K. Cal-
culated curves include the pyrochlore phase and the impurity phases Ir, IrO2, and
Nd2O3. Lines above the residual curves index only pyrochlore peaks.
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In the pyrochlore structure there are four sites A2B2O6O′, which are located at the

16d, 16c, 48f , and 8b Wyckoff positions respectively. The cubic lattice constant a de-

creases with Ca substitution, as expected. Occupancies of Nd and Ir indicate slight 3%

‘stuffing’ through anti-site defects of excess Nd cations on the B-sites. Refinements of

the O and Ca occupancies were unreliable because they are light elements. For O ions

we had no available way to fit occupancy. But for Ca we used the WDXRF-measured

values and fixed the Ca ions on the A-sites. We justify this from the thermal parameters,

and the finding that refinements with Ca on the B-sites had inferior fits.

An important result from the refinements was the finding that the bandwidth change

from the Ir-O bonding was small. We gathered this from the free coordinate u for O

48f sites, which decreases marginally with Ca content. This trend signifies a reduction

in trigonal compression of the IrO6 octahedra toward octahedral symmetry (u=0.3125).

This reflects a 0.5(2) degree increase in the Ir-O-Ir bond angle from x=0 to x=0.08. The

x=0.08 sample’s angle is much less than the bond angle in the metallic A=Pr system

[182]. We infer, then, that the electronic bandwidth change from Ca is less significant

than the effects of carrier doping and disorder in driving the metal-insulator transition.

6.3.2 Local Structure

Synchrotron total scattering data for pair distribution function (PDF) analysis were

collected at Beamline 6-ID-D at the APS using powder taken from the same batches as

the 11-BM samples. Prof. Geneva Laurita led the experiments and analysis with help

from Eli Zoghlin, Samuel Britner, and Samra Husremovic. Sieved powders with <44 µm

particle size were sealed into Kapton tubes using copper wire and epoxy in a He-filled

glove-bag to provide a thermal exchange gas. The samples were measured in transmission

using an area detector. The 2D data were integrated to 1D diffraction data utilizing the
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x 0 0.02 0.08
xWDXRF 0 0.0245(9) 0.0755(9)

a(6 K) [Å] 10.3719(7) 10.3667(9) 10.3497(9)
a(25 K) [Å] 10.3712(9) 10.3680(9) 10.3497(9)
a(45 K) [Å] 10.3726(9) - 10.3489(9)
a(300 K) [Å] 10.3877(12) 10.3783(12) 10.3631(11)
100 K
u(O48f ) 0.3323(2) 0.3325(3) 0.3309(2)
∠Ir-O-Ir [◦] 129.7(2) 129.5(2) 130.4(2)
∠O-Ir-O [◦] 82.28(7) 82.16(8) 82.76(7)
Nd A Occ. 1.000(16) 0.975(17) 0.925(11)
Ir A Occ. 0.000(16) 0.000(17) 0.000(11)
Ir B Occ. 0.988(23) 1.000(25) 1.000(17)
Nd B Occ. 0.012(23) 0.000(25) 0.000(17)
A Uiso [Å2] 0.00262(9) 0.00305(9) 0.00339(6)
B Uiso [Å2] 0.00344(7) 0.00329(6) 0.00228(4)
A2B2O7 [%] 96.48 95.59 98.39
Rwp [%] 10.54 12.83 9.45
χ2 2.32 3.00 2.24
300 K
u(O48f ) 0.3313(2) 0.3312(2) 0.3298(2)
∠Ir-O-Ir [◦] 130.6(2) 130.1(2) 131.1(2)
∠O-Ir-O [◦] 82.87(8) 82.55(8) 83.19(7)
Nd A Occ. 1.000(14) 0.975(16) 0.925(10)
Ir A Occ. 0.000(14) 0.000(16) 0.000(10)
Ir B Occ. 0.974(21) 0.978(23) 1.000(16)
Nd B Occ. 0.026(21) 0.022(23) 0.000(16)
A Uiso [Å2] 0.00660(9) 0.00729(9) 0.00749(6)
B Uiso [Å2] 0.00268(6) 0.00272(6) 0.00292(3)
A2B2O7 [%] 96.68 96.04 99.00
Rwp [%] 10.01 12.12 8.69
χ2 2.20 2.88 2.04

Table 6.1: Select crystallographic data from Rietveld refinement of synchrotron pow-
der XRD data. First, nominal sample x and sample xWDXRF from quantitative WDXRF
analysis. Second, cubic lattice parameters a at several temperatures. Next, refined
values at 100 K and 300 K: u for the O 48f site; nearest-neighbor Ir-O-Ir bond angles;
intra-tetrahedron O-Ir-O bond angles; occupancies of Nd and Ir on the A and B sites;
isotropic atomic displacement parameters Uiso for A- and B-sites; pyrochlore phase
fractions less Ir, IrO2, and Nd2O3; and Rietveld goodness-of-fit parameters Rwp and
χ2. Note oxygen occupancies and Uiso were fixed to 1 and 0.001, respectively.
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Fit2D software [183]. Corrections to obtain I(Q) and subsequent Fourier Transform with

Qmax=24 Å to obtain G(r) were performed using the program PDFgetX2 [184]. Analysis

of the total scattering data was performed using the PDFgui software suite [185] over the

range 1.75 Å − 10.0 Å.

Figure 6.6: X-ray PDF refinement of the (CaxNd1−x)2Ir2O7 local structure: (a) 300
K PDF data in circles, offset vertically, with fits in red solid lines. (b) Metal-metal
distances between A and B sites. (c) A- and (d) B-site isotropic atomic displacement
parameters Uiso. Dashed lines are guides to the eye.

To summarize, the PDF experiments showed that the local structure does not change

much as functions of either temperature or Ca. No new atomic correlations (i.e. peaks

in G(r)) were observed as Ca was introduced into the lattice or as the lattice was cooled

through the MIT. Short-range order of the A- and B-sites is unchanged within experi-

mental resolution for the measured samples for 6 K ≤ T ≤ 300 K. All PDF measurements

fit well to the site symmetry of the parent pyrochlore structure, with goodness of fit Rw

values between 9% and 15%. This is consistent with a previous synchrotron XRD study

that reported no symmetry change for Nd2Ir2O7 upon cooling to 4 K [186]. Notably,
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the A- and B-sites’ isotropic displacement parameters, as determined from PDF refine-

ments, are also unchanged under varying Ca content within (significant) uncertainty.

This precludes Ca clustering effects or nanoscale chemical phase separation. Further-

more, metal-metal distances track well with lattice constants, indicating that minimal

site disorder is introduced with Ca substitution.

6.4 Electronic Structure

To get at the electronic structure, we performed electron transport (resistivity) mea-

surements. As Ca substitution levels increase, the MIT is pushed downward in tem-

perature and coincides with the onset of magnetic order. For doping levels greater than

x = 0.05, the ground state switches to a metal with a weak upturn in the low temperature

resistivity coupled to Nd magnetism.

To complement the electron transport studies, we performed X-ray absorption spec-

troscopy (XAS) studies at the Ir L edges to pin down the Ir electronic configuration and

valence magnetic state. XAS showed that the metallic state retains a strong spin-orbit

coupled character with branching ratios little altered with doping. Magnetic circular

dichroism data reveal an anomalous, weak net Ir moment that survives across the MIT.

Taken together, these spectroscopies support the idea that the Jeff = 1/2 state remains

valid on carrier-doping through the MIT.

6.4.1 Transport

Transport measurements were carried out in a Quantum Design DynaCool Physical

Property Measurement (PPMS) system. Cut portions of sintered pellets were mounted

with GE varnish in a four-wire configuration using silver paint and gold wire to create

contacts. Current was driven perpendicular to the applied magnetic field, and voltage
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was measured with the standard resistivity option.3

Figure 6.7: (CaxNd1−x)2Ir2O7 resistivity measurements: (a) Relative resistivity from
2 K to 300 K, all at 0 T on zero field cooling. Arrows indicate the onset of δρ

δT > 0.
Resistances are normalized due to variation in pellet densities; typical values are ρ(300
K)≈10 mΩ·cm.

Resistivity measurements showed that all (CaxNd1−x)2Ir2O7 samples are metals at

high temperatures, defined via the positive slope δρ
δT
>0. The pure x=0 sample enters

a well-defined insulating state with a sharp TMIT=34 K. This transition weakens and

drops in temperature quickly with the addition of carriers. For samples with x≥0.05,

the insulating state becomes ill-defined, and scattering is only weakly enhanced below

10 K. And this weak residual upturn in resistivity at large x is strongly suppressed with

the application of a magnetic field (though this is not observed for x≤0.02). We suggest

that this upturn could arise from an RKKY-type coupling of itinerant carriers to the

3For this type of measurement on semimetallic samples, the built-in ‘ETO’ option that uses an ac
resistance bridge has superior signal-to-noise.
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Nd moments in the samples. This observation is in keeping with muon spin resonance

(µSR) features linked to ordering or freezing of the Nd magnetic sublattice [187, 188]. We

speculate that this additional scattering channel associated with Nd magnetism could be

obstructing the full TMIT suppression to 0 K. This would mean that there may still be

quantum criticality if the MIT and coincident Ir sublattice order is suppressed to T=0,

but it might not be evident in the transport.

6.4.2 X-ray Absorption

X-ray absorption spectroscopy (XAS) and X-ray magnetic circular dichroism (XMCD)

measurements were performed at Beamline 4-ID-D at the APS. Sieved powders with

≈5 µm particle size were brushed on about 10 layers of scotch tape to achieve a uni-

form sample thickness corresponding to nearly two absorption lengths, where signal is

optimum. Care was taken to avoid gaps that would yield ‘pinholing’ (diffraction) ef-

fects. Measurements were collected at the Ir L2, 3 absorption edges (2p1/2, 3/2 → 5d) in

transmission geometry. The incident energy was selected using a double-crystal Si(1,1,1)

monochromator. Circularly polarized X-rays were generated in helicity-switching mode

at 13 Hz using a diamond phase retarder, and the absorption was detected using a diode

with lock-in amplification [189]. To better handle spurious signals, XMCD measurements

were repeated under µ0H=±5 T oriented along the incident wave vector.

In the XAS spectra, qualitatively all samples are quite similar. This is consistent with

the small structural and valence changes at low levels of Ca substitution; Ca-doping does

not radically change the bandwidth. As for hole-doping, x values were too small to cause

measurable changes in peak energies. Some evidence of doping comes from the increase

in the XAS-calculated number of holes nh, estimated from the increase in IL2+IL3 with

x.4

4 The XAS L2 and L3 white line intensities are defined as IL2,3
=
∫

[µ(E) − Θ(E)]dE, where µ(E)
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Figure 6.8: Overview of X-ray magnetic circular dichroism (XMCD). XMCD is ab-
sorption with circularly polarized light. Right- and left-circularly polarized photons
(LCP, RCP) have different angular momenta m. The selection rules limit the valence
orbitals that the photoelectron can occupy in each case. This example shows a simple
2p4 K-edge, where only one set of orbitals with j= + 1 can be occupied; the con-
trast between RCP and LCP would reveal the electronic configuration. From [41].
Copyright 2011 John Wiley and Sons, Ltd.

From the very weak XMCD signal, we calculate the Ir total net moment mtot=0.004

µB/Ir at 5 K and 5 T. This small value is unchanged within uncertainty for the x=0 and

x=0.08 samples. This magnitude is similar to the bulk magnetization values of other

pyrochlore iridates that do not have magnetic A sites.

The ratio of angular to spin moment Lz/Sz≈3 and the high branching ratio BR≈6

both provide strong indications of an Ir Jeff=1/2 ground state [15, 191].

is the XAS signal, Θ(E) is a broadened step function centered on the inflection energy as expected for
isolated ions, and the integration range is over the white line feature [190].
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Figure 6.9: (CaxNd1−x)2Ir2O7 X-ray spectroscopic measurements: Ir L-edge XAS is
indicated with solid lines, and XMCD with dots. XAS lines are offset by 0.3 for clarity.
XMCD was measured at 5 K and ±5 T and normalized to the corresponding XAS
edge jump.

To calculate the spin and orbital moments, we applied the XMCD sum rules [192]:

〈Lz〉 =
IXMCD
L3

+ IXMCD
L2

IL2 + IL3

× 2

3
nh

〈Seff,z〉 =
IXMCD
L3

− 2IXMCD
L2

IL2 + IL3

× 3

2
nh

ml = −〈Lz〉

ms = −2 〈Sz〉 = −2 〈Seff,z〉+ 7 〈Tz〉

(6.1)

where Lz and Sz are angular and spin momentum operators along z, Tz is an additional

magnetic dipole term,5 and ml and mz are the corresponding moment sizes. XAS white

5As is standard practice, we included a magnetic dipole term 〈Tz〉≈0.2〈Sz〉. This value is the same
strength as in other iridate systems like Sr2IrO4 [20]. Configuration Interaction calculations (from
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line intensity IL2,3 calculations are described in Footnote 4. Simple integrated XMCD

intensities IXMCD
L2,3

are normalized to the XAS intensities. To get quantitative values in

units of µB/Ir, these results are compared to data on well-studied systems.

As for BR, it comes from careful analysis of the XAS intensities, which I fit in the

ATHENA software package [193] and subsequently integrated in MATLAB. BR is a relative

measurement of spin-orbit coupling for similarly prepared samples. From the selection

rules ∆J=0,±1, the branching ratio BR= IL3/IL2 ought to be 2 for free ions (just from

considering the 2p orbital occupations). So BR>2 indicates that unoccupied 5d states

are primarily 5d5/2 rather than 5d3/2, which is consistent with a Jeff = 1/2 state.

x nh XAS nh BR 〈L·S〉 mtot Lz/Sz
[qe] [qe] [~2] [µB/Ir]

0.00 5.00 5 5.7(2) 2.8(1) 0.0042(9) 3.0(4)
0.02 5.02 5.06(6) 5.7(2) 2.8(1) − −
0.08 5.08 5.10(6) 5.5(2) 2.7(1) 0.0036(9) 2.8(4)

Table 6.2: Calculations for (CaxNd1−x)2Ir2O7 from Ir L-edge XAS and XMCD, as
described in the text: stoichiometric and XAS-calculated number of holes nh; branch-
ing ratios BR; spin-orbit expectation values 〈L·S〉; total moments mtot at 5 K and 5
T; and Lz/Sz = 2ml/ms.

The very large BR values we attain are large, as is typical for the pyrochlore iri-

dates. A few words of caution are warranted here. First, this by itself is not proof of a

Jeff=1/2 state. A high branching ratio is seen in a range of Ir oxidation states and ligand

environments, including the d4 compound Sr3Ir2O7F2 [140]. Another word of caution is

that in most reports, researchers forego an approximate uncertainty, which is problem-

atic because the fitting and integration procedure is highly subjective. In my analysis

the most sensitive and subjective parameter is the inflection energy where the broadened

step function is centered − this is subtracted from the raw spectrum µ(E). The choice

of inflection energy is inherently inaccurate, and can be stymied by experimental <0.1

quantum chemistry) are needed for a precise value.
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eV shifts in a spectrum’s energy, which occur even on the best XAS instruments. To

handle this, my uncertainties assume some miscalibration in energy and span values with

reasonable offsets for our instrument.

6.5 Magnetic Properties

The subtle magnetic properties for (CaxNd1−x)2Ir2O7 are especially difficult to dis-

entangle because there are multiple magnetic sublattices: Nd and Ir. We first show bulk

magnetization, where by changing temperature and field and tracking hysteresis, we can

learn about the changes in the populations of the magnetic domains and metamagnetism.

Many of these findings are also reflected in the magnetotransport, but only at low tem-

peratures, so this maybe points to the Nd response. To tie it all off, we analyze our Ir

site-specific circular dichroism. This final result is especially subtle and points to very

weak net polarization.

6.5.1 Bulk Magnetization

Magnetization data were collected with a vibrating sample magnetometer (VSM)

within a DynaCool PPMS or a MPMS3 Quantum Design SQUID magnetometer. The

maximum field is 7 T. 10-40 mg of powder was placed in polypropylene capsules that fit

inside brass holders.

Magnetization measurements reveal a weak irreversibility (here the difference between

(zero-)field cooling sweeps FC-ZFC) that persists across the doping range. This effect

in the pyrochlore iridates is conventionally ascribed to spin canting within the all-in-

all-out (AIAO) networks of Ir and Nd spins, but may instead be related to domain

wall formation. Irreversibility in magnetization data appears at the same temperature

where the low temperature resistivity changes slope. This connects the onset of magnetic

169



Tuning the Pyrochlore Iridate (CaxNd1−x)2Ir2O7 Chapter 6

Figure 6.10: (CaxNd1−x)2Ir2O7 magnetization measurements: (a) Field dependence
of the isothermal dc magnetization, swept as in Fig. 6.11, with just H>0 shown.
Arrows indicate field sweep direction. Inset: Irreversibility of the dc susceptibility
(field cooling minus zero-field cooling) taken at 200 Oe. TMIT values are indicated
with arrows. (b) Solid lines are numerical derivatives of magnetization with respect to
field, highlighting the hysteretic splitting. The initial 0→+9 T sweeps (virgin curves)
are not shown. Dashed lines are the absolute differences between sweep directions,
magnified for clarity.

correlations or freezing with the onset of the MIT for the low doping regime (x≤0.02)

as well as with the low temperature increase in resistivity for the high doping regime

(x≥0.05).

At T = 2 K, isothermal magnetization M(H) is dominated by the Nd sublattice

[171, 194], and as such hysteretic differences appear between sweeps of increasing and

decreasing field. The splitting is illustrated by plots of dM/dH. In the ordered state

of the parent system, applying a magnetic field polarizes the Ising-like domains of both

sublattices toward either AIAO or all-out-all-in (AOAI) order [195].

At higher fields, a second hysteretic feature appears, consistent with a spin-flop

transition likely into the Nd 3-in-1-out (3I1O) state reported for the single crystals of
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Nd2Ir2O7 [194, 195]. Upon Ca substitution, this higher field spin-flop feature decreases

in onset field and vanishes for x=0.05. This is consistent with the destabilization of

long-range Nd antiferromagnetism at high hole-doping and substitutional disorder. The

remaining magnetization in these metallic samples may arise from short-range freezing

of Nd/Ir moments coincident with the low temperature upturn in ρ(T ).

6.5.2 Magnetotransport

The aforementioned hysteretic features in the magnetization mirror those in the mag-

netoresistance (MR). The critical fields are equal within measurement uncertainty, which

suggests that the magnetoresistance changes are governed by magnetic domain scattering

effects.

Figure 6.11: (CaxNd1−x)2Ir2O7 magnetotransport measurements: (b) Relative mag-
netoresistance at 2 K on zero-field cooling, swept from µ0H=0→+9→−9→+9 T, with
arrows to indicate field sweep direction. Note the hysteretic splitting, which is largest
for the x=0 sample. (c) Hysteretic differences of the magnetoresistance in b, for
sweeps after the initial 0→+9 T sweeps (virgin curves).

Magnetoresistance is negative at low temperatures for all samples. The low tempera-
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ture MR decreases in magnitude with Ca, consistent with the suppression of long-range

magnetism in the system. Field-induced ‘training’ or hysteretic behavior is observed in

the parent system and is consistent with previous studies of conducting domain walls

[194, 196] in the parent material; yet this behavior is rapidly suppressed with Ca-doping.

6.5.3 X-ray Magnetic Circular Dichroism

An open question remains regarding the origin of the weak, but finite, Ir moment

present in both the insulating parent x=0 and metallic x=0.08 samples. That the XMCD

net Ir moment from both samples is identical within error and suggests that the weak

local Ir moment is not trivially tied to the AIAO state.

Figure 6.12: X-ray magnetic circular dichroism versus temperature for
(CaxNd1−x)2Ir2O7 (red) and the Eu analog (blue). Solid points subtract values at
positive and negative fields and are thus more trustworthy. There are no significant
differences versus temperature or between the Nd and Eu series. It is not clear how
the Ir net moment is related to the magnetic phase behavior.

XMCD picks up both ferromagnetic and reversible (paramagnetic) responses to the
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field; like in bulk probes, these are only distinguished by hysteresis loops, which we tried

but had insufficient signal. If the signal is ferromagnetic, our signal could be tied to

antiferromagnetic domain walls in the parent insulating phase, where domains persist

locally in an electronically phase separated state even to high temperatures ∼100 K.

6.6 Conclusions

Figure 6.13: Temperature-concentration phase diagram for (CaxNd1−x)2Ir2O7 based
on resistivity measurements. Inset: field-concentration phase diagram, indicating
magnetism on the Nd sublattice. All lines are guides to the eye.

In conclusion, we performed a litany of measurements to better understand the MIT

and magnetic transitions in (CaxNd1−x)2Ir2O7. We reported on the suppression of both

TMIT and the AIAO TN on the Ir sublattice. We attribute this mostly to hole-doping.

From a combined analysis of diffraction, PDF, and XAS data, we present evidence of Ca
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incorporation without clustering or phase separation on both local and average length

scales. Calcium ions only weakly perturb the underlying structure with minimal changes

inferred to the corresponding bandwidth, and hole carriers associated with replacing

Nd3+ with Ca2+ cations instead drive the suppression of the low temperature MIT. For

x > 0.02, as the system enters a metallic ground state, both the charge transport and

magnetism remain influenced by fluctuations and disorder on the Nd magnetic sublattice.

Our results point toward the coincident suppression of long-range magnetic order and

the charge gap in Nd2Ir2O7 as the parent spin-orbit Mott state is suppressed via carrier

doping.

Since our study was published three years ago, a large number of related studies on

the pyrochlore iridates have been published. Hole-doping work has continued, though no

doped single crystals have been reported to our knowledge. Single crystal samples would

be best-suited to explore the phase phenomena associated with hole doping, including

the possible quantum critical transition associated with the suppression of the antiferro-

magnetism. Since we were able to (accidentally) produce Sr-substituted single crystals

with a SrCl2 flux, it seems plausible that a flux with Ca cations would dope samples. It

would be of interest, not only from a solid-state chemistry perspective, to see if the Ca

content could be controlled during synthesis and/or homogenized post-growth.

There remain open questions about the low-energy excitations in the pyrochlore iri-

dates, especially their evolution across the metal-insulator transition. Great progress has

been made recently from optical studies (probing at the Γ point) e.g. Refs. [197] that

built upon existing work. But the dispersion is of particular interest. To my knowledge,

the highest-energy-resolution RIXS studies to date have had 25 meV resolution [55, 198],

which is quite coarse and certainly unsuitable for low-TN compounds like Nd2Ir2O7. The

record-breaking 6 meV resolution setup at the APS could possibly uncover more physics;

see Section 2.2.3. In addition, it would be interesting to observe the evolution of the
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excitations in a magnetic field. Currently-accessible static fields of 2 T [30] may be suffi-

cient to polarize the 3-in-1-out phase for certain carrier dopings. Polycrystalline samples

might be usable for such a study, but single crystals would be preferable.
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