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What’s in an Association? The Relationship Between Similarity and Episodic

Memory for Associations

Gregory E. Cox (gregcox7@gmail.com) Amy H. Criss
430 Huntington Hall, Department of Psychology, Syracuse University, Syracuse, NY 13244 USA

Abstract

When two events occur closely in time, an “association” exists
between memories for those events. When a pair of associ-
ated events is semantically similar, it is easier to recognize the
complete pair and easier to tell the complete pair apart from
pairs of events that did not co-occur; there is also, however, a
bias to report that similar events had co-occurred, even when
they had not. A new experiment shows that these phenomena
occur whenever two events share features, whether those fea-
tures are perceptual or conceptual in nature and whether the
events themselves are verbal or non-verbal. We present a dy-
namic model for storage and recognition of associations that
shows how all these results can be explained by the princi-
ple that shared features lead to correlated processing of similar
events, which in turn increases capacity to process associative
information.

Keywords: Memory; associative recognition; similarity.

Introduction

When two events occur closely in time, it is often the case

that an “association” is formed between the memories for

those events. That is, not only is information about the events

themselves stored in memory (often called “item” informa-

tion), so is information about the fact that they co-occurred

(often called “associative” information). The ability to store

both kinds of information underlies numerous cognitive func-

tions, such as the ability to associate a word with its referent,

to discover analogies between similar scenarios, and to learn

causal relationships between events. However, it remains un-

clear what the relationship is between memory for individual

events (items) and for combinations of events (associations).

In particular, it is not clear what the content of an associa-

tion is—does it depend on properties of the associated items

or is it independent? Based on a set of results regarding the

relationship between similarity and associative memory, we

present a model in which associative information is based

upon alignment of item representations. Results from a new

experiment lend support to this model.

Memory for associations can be studied using the associa-

tive recognition paradigm. In this task, participants study a

set of pairs of items such as words or images. In a subsequent

test phase, participants are asked to distinguish between pairs

of items that were studied together (“intact” pairs) from those

that were studied separately (“rearranged” pairs). Because

the items in each test pair were always studied, this task selec-

tively measures memory for the associations formed between

items that were studied at the same time. Good associative

memory is indicated by the ability to correctly recognize in-

tact pairs (high hit rate and/or fast correct recognition) and to

reject rearranged pairs (low false alarm rate and/or fast correct

rejection). By manipulating the kinds of item pairs used in the

Table 1: Examples of study and test pairs used by Dosher (1984)
and Dosher and Rosedale (1991).

Partial study list Test pair

PRESENT—GIFT PRESENT—GIFT (S+E+)

CENTER—SUM
CENTER—SUM (S−E+)

TOTAL—MIDDLE

DINNER—VOW
DINNER—SUPPER (S+E−)

PROMISE—SUPPER

SUMMIT—PERSON
SUMMIT—PATTERN (S−E−

u )
CURTAIN—PATTERN

MOVIE—FILM
MOVIE—REASON (S−E−

r )
MOTIVE—REASON

study and test phases of this task, it is possible to assess what

kinds of item information lead to better associative memory

and, therefore, to learn about how the mnemonic content of

individual events (items) is related to the content of associa-

tions formed between them.

Using this task, Dosher (1984) and Dosher and Rosedale

(1991) investigated the relationship between semantic simi-

larity and episodic memory for associations by using different

kinds of study and test pairs (Table 1). S+E+ pairs are those

that are both semantically related (S+) and studied together

(E+); S−E+ pairs are those that are semantically unrelated

(S−) and studied together (E+); S+E− pairs were not stud-

ied together (E−) but are semantically related (S+). There are

two kinds of S−E− pairs, i.e., pairs that are neither semanti-

cally related nor had been studied together: S−E−
u pairs are

formed by rearranging pairs of items that had originally been

studied with unrelated items; S−E−
r pairs are formed by rear-

ranging pairs of items that had been studied with semantically

related items. They found three critical results:

1. Correct recognition of an episodic association is improved

when pairs are semantically related (S+E+
> S−E+).

2. False recognition of a rearranged pair is reduced when its

members were originally studied as part of semantically-

related pairs (S−E−
r < S−E−

u ).

3. Semantically related rearranged pairs (S+E−) tend to be

falsely recognized as having been studied, but primarily

when responding is rapid (S+E− ≈ S+E+ early, S+E− ≈
S−E−

u late).

It is difficult for any single account to explain all these re-

sults: The first two results indicate that the presence of a se-

mantic relationship between a pair of items leads to stronger

encoding of their episodic relationship, since it not only im-

proves correct recognition, but aids correct rejection as well.

Results 1 and 3 might lead one to conclude that semantically

related pairs are more familiar by virtue of co-occurring more

often in general, but in fact such words do not tend to co-occur

(synonyms or antonyms are used in place of one another, not
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next to one another), nor would this explain result 2. Result 2

might be attributed to an encoding-specificity effect (Tulving

& Thompson, 1973), but this would not explain the other re-

sults nor why the effect is larger for pairs that were originally

studied with a related word. Result 3 could indicate that asso-

ciative recognition depends initially on an overall assessment

of “relatedness”, and a second source of purely episodic infor-

mation “suppresses” this initial bias (e.g., a “recall-to-reject”

mechanism). However, the suppression account does not ex-

plain why S+E+
> S−E+ even for slower responses (if se-

mantic relatedness were suppressed, this should mitigate the

advantage for S+E+ pairs) nor why it is easier to reject S−E−
r

pairs than S−E−
u (unless studying a semantically related pair

also made that pair easier to recall, which could allow S+E+

pairs to retain their advantage even for slow responses).

Recent work from our laboratory suggests these results

may be a function of interactions between item memory and

memory for associations. Cox and Shiffrin (2017) proposed a

dynamic model for item and associative recognition in which

associative recognition decisions were based on a set of fea-

tures that emerged from the interrelation and/or elaboration of

the features of the component items. Because associative fea-

tures can only emerge after enough item features have been

processed, this model implies a strong interaction between

item and associative retrieval. Clear evidence for such an in-

teraction was found by Cox and Criss (2017), however they

also found that item and associative information were also

separable, in that some decisions could be made on the basis

of just one kind of information (cf. Buchler, Light, & Reder,

2008). This prior work focused on the mechanisms involved

at retrieval, rather than what happens during encoding, leav-

ing unspecified the precise nature of the interactions involved.

A Dynamic Model of Associative Encoding

While it would be possible to explain the set of results just

reviewed in terms of multiple processes, we present a model

that is based on a single set of encoding and retrieval mech-

anisms, based on the model for item and associative recog-

nition described by Cox and Shiffrin (2017). Although we

refer the reader to that source for additional detail, we lay out

the essential components of the model below, and show how

it helps explain the associative recognition results of Dosher

(1984) and Dosher and Rosedale (1991). The core of our

account is that encoding associative information depends on

aligning item representations, and when items are similar they

are processed in a correlated fashion that allows them to be

aligned more easily and affords greater capacity to encode

associative information. Four consequences follow directly

from this account:

1. Shared features between items at study leads to greater

storage of associative information.

2. Shared features between items at test allows extra capacity

to cue memory with associative information.

3. Correlation between channels at test leads to a bias to give

a positive response.

4. If shared features are used to encode an item at study but

they are no longer available at test, the similarity between

the test item and memory for the studied item is reduced.

It is apparent that many of these consequences map onto the

partial explanations offered in the Introduction—the aim of

our model is to show how they all flow from the single notion

that shared features lead to correlated processing.

Representation and storage The event of encountering a

pair of items at either study or test is represented in work-

ing memory as a set of binary (0 or 1) features. There are

three types of feature, as depicted in the top row of Figure 1:

context features, which represent the time and location of the

study event; item-specific features, which represent the per-

ceptual and conceptual aspects of each item; and associative

features which represent the co-occurrence of the two items.

There is a limited capacity to hold features in working mem-

ory. This capacity is determined by the number of unique

features across the event, such that when items are similar

less capacity is needed to represent them and more capacity is

available to represent associative features. Each item feature

has probability s of being shared between two semantically

related words. The proportion of features devoted to encod-

ing associative information is pA for unrelated items and is

1− (1− pA)(1− pAs) for related items (in other words, either

an associative feature is encoded normally with probability

pA or there is a shared feature with probability s and that ca-

pacity is used for an associative feature with probability pA).

If the pair is presented for study, its working memory rep-

resentation is stored as a trace in long-term memory1. Stor-

age tends to be incomplete and error-prone. Because con-

text features are persistent in the environment, we assume that

all available context features are stored in the memory trace.

However, due to limited time and attentional resources, not

all item or associative features may be stored—we let u de-

note the probability that a non-context feature gets stored in

the trace. If a feature is stored, it is stored correctly with prob-

ability cS, otherwise a random value (either 0 or 1 with equal

probability) is stored instead. There is also a potential cost

that comes from encoding similar items with shared features

in that the item features stored by relying on shared features

may not match those stored without using these features, a

type of encoding-specificity (Tulving & Thompson, 1973).

Thus, while the effective amount of item features stored for

pairs of similar items is no more or less than that for unrelated

items, those features will not necessarily match the features

that would have been stored for that item as part of a dif-

ferent pair. For example, the probability of feature overlap

between “jam” as part of “traffic-jam” and “jam” as part of

“strawberry-jam” would be (1− s) + s2 (either it is unique

with probability (1− s) or is shared with both “traffic” and

“strawberry” with probability s2).

Following the paradigm of Dosher (1984) and Dosher and

Rosedale (1991), we model storage of 21 memory traces, one

1Storage certainly occurs during test as well, but is not modeled
here for simplicity.
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Figure 1: Illustration of how the two-channel memory probe evolves as different features become active (upper panels), changing the joint
activation of the two channels (lower panels; gray area indicates where a “no” response will be made, white area where a “yes” response will
be made). Each column corresponds to times denoted by the dotted vertical lines in Figure 2.

for each studied pair in the list, of which there were 7 related

pairs and 14 pairs formed by recombining related word pairs.

Note that this means some of the item features in a trace for an

unrelated pair may be shared (with probability s) with some

of the item features in a different memory trace.

Encoding dynamics Pairs are encoded in working mem-

ory according to the same dynamic process at either study or

test, and it is this dynamic process that determines the shape

of the speed-accuracy trade-off curves. At test, the work-

ing memory representation is compared to the traces stored

in long-term memory to assess whether the pair is intact or

rearranged. Initially, the two items are processed in sep-

arate channels. Each channel starts with just the features

of the present context, which tend to match the stored con-

text features of recent events, like those from the study list.

These representations are compared, in parallel, to each of

the traces in memory, resulting in an activation level λi(t) for

each trace i that is a function of the number of features that

match (NM
i (t)) or mismatch (NN

i (t)) between the probe rep-

resentation and the trace: λi(t) = (1+ cS)
NM

i (t) (1− cS)
NN

i (t)
.

Because λi(t) takes the form of a likelihood ratio (Shiffrin

& Steyvers, 1997), it increases with the number of matching

features and decreases with the number of mismatching fea-

tures. As a result, a trace that has more features stored will be

more strongly activated by a matching probe, but will also be

more strongly de-activated by a mismatching probe.

The memory strength (“familiarity”) for each probe is

the logarithm of the average level of activation over those

traces whose activation is greater than one, i.e., φ(t) =
log〈λi(t)|λi(t)> 1〉. Finally, recognition decisions are based

on tracking how memory strength changes from its initial

context-only level as the test pair is processed, such that the

memory signal for a given probe is x(t) = φ(t)−φ(t0), where

t0 is the time at which the test pair begins being processed.

As the trial proceeds, features of each test item gradually

arrive from perception (e.g., color or contour features) and

knowledge (e.g., semantic features) and join the context fea-

tures already in each probe, as illustrated in Figure 1. If the

test items are related, they share features (again, with prob-

ability s), inducing a correlation between the signals from

each channel (cf. Tulving, 1981)2. Encoding an associa-

tive feature depends on having a feature stored in the same

“slot” for both items, a process we refer to as “alignment”;

the intuition behind the need for an alignment process is that

one cannot encode an association until one knows something

about what is being associated. The effect of this is that asso-

ciative features become active only after some item features

have already been encoded. Associative features enter both

channels, correlating their signals even more strongly. Once

again, the proportion of the available encoding capacity that

is devoted to associative features is pA for unrelated items

and 1−(1− pA)(1− pAs) for related items. The left two pan-

els of Figure 2 illustrate how the relative proportion of item-

specific and associative features in the probe yield different

levels of correlation, which are reflected in the joint distribu-

tion of recognition signals between the two channels (bottom

row, Figure 1).

Decision rule and related-pair bias In the signal-to-

respond paradigm, participants withhold their response until

a signal is given, at which point they make a response rapidly

(typically within 300 ms) based on whatever features they

were able to encode by the time of the signal. When the sig-

nal is given, a participant responds “yes” (the pair is intact) if

both signals are above a criterion θ, otherwise they respond

“no” (corresponding to the white “yes” and shaded “no” re-

gions in the lower panels of Figure 1). This decision rule

makes it clear why correlated signals due to shared features

lead to a bias to give a positive response early on—by mak-

ing it less likely for the signals to disagree (i.e., one above

and one below the criterion), this makes negative responses

less likely (see the lower middle panel of Figure 1). But the

fact that shared features allow for more associative features to

be encoded later on (once enough item features are encoded)

2Context features are also shared between channels, but because
memory signals subtract the initial context-only level, they do not
result in a cross-channel correlation.
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Figure 2: The proportion of feature types active in the memory probe over time (left panel) determines the level of correlation between the
two channels (middle panel) which, in turn, determines the form of the bivariate distribution of signals in each channel which determine
the response probabilities (right panel, showing data averaged from Dosher, 1984, Exp. 1 and Dosher & Rosedale, 1991, Exp. 1). Model
parameters (see main text for definitions): u = 0.51, cS = 0.96, s = 0.45, pA = 0.40, θ =−1.2, t0 = 0.100, ρ = 0.013.

means that this early bias gets suppressed for S+E− pairs be-

cause it is easier to detect the mis-match between the associa-

tive features at test and those stored at study. Conversely, it is

easier to detect the associative match for S+E+ pairs.

Model fit For simplicity, we assumed that the maximum

number of either item, associative, or context features that

could be held in either the probe or trace was 30. Model

predictions were generated using a discrete-time approxima-

tion (Cox & Shiffrin, 2017, Appendix A), where each time

step takes ρ seconds and processing begins at a time t0 af-

ter the onset of the test pair. The complete model then has

five more free parameters: u (feature storage probability),

cS (feature storage accuracy), s (probability of related items

sharing features), pA (proportion of capacity for associative

features), and θ (response criterion). The right panel of Fig-

ure 2 shows that the model captures not only the qualitative

features of the data, but the quantitative details as well (for

average data, R2 = 0.98; over individuals, R2 ranged between

0.72 and 0.96, with median 0.91).

Experiment

Our dynamic account of associative encoding says that shared

item features of any kind make it possible to encode more as-

sociative information in memory, leading to better recogni-

tion of intact pairs and better rejection of rearranged pairs, as

well as an early bias to call related pairs “old” that gets over-

whelmed by the fact that such pairs contain shared item fea-

tures that allow for more associative features later on. How-

ever, our account was designed to explain results using ver-

bal stimuli and semantic similarity only. Therefore, we con-

ducted a new associative recognition experiment to assess

whether our account remained plausible for non-verbal stim-

uli or non-semantic kinds of similarity.

Methods

Participants 79 Syracuse University undergraduate stu-

dents participated in this study in exchange for course credit

in accord with local Institutional Review Board policy.

Materials Stimuli were one of three kinds: pictures of com-

mon objects (drawn from Brady, Konkle, Alvarez, & Oliva,

2013), distorted versions of those objects, or words, as shown

in Figure 3. The object stimuli consisted of 100 quartets,

where each quartet comprise two pictures of two objects each,

depicting each object in one of two states. There are three

ways to draw two non-overlapping pairs from a quartet, such

that there are three types of object pair: causally-related pairs

(same object in two different states); categorically-related

pairs (different objects but in the same state); and compound

causal+category pairs (different objects in different states).

Distorted versions of each object quartet were created by

vertically flipping each image and then translating its pixels

according to a randomly generated Perlin fractal noise tex-

ture. Although different noise textures were used for each

quartet, within a quartet, the same noise texture was used to

distort each image. The effect was that each image in the

same quartet was subjected to the same distortion, preserving

the local pixel relationships while disrupting the global form

of the images and making them unidentifiable as objects. By

comparing normal to distorted objects, we can compare the

extent to which low-level perceptual similarity or high-level

conceptual relationships affect associative encoding.

Verbal stimuli were also designed to form quartets, where

again any pair from the quartet embodies a particular rela-

tionship (or lack thereof) between the items in the pair. There

were two kinds of verbal quartets: In one type, pair mem-

bers either had no systematic relationship or could be com-

bined to form compound words. In the other type of quar-

tet, pair members were either synonyms, orthographic neigh-

bors, or had no systematic relationship. The possible ver-

bal relationships thus run the gamut from being unrelated, to

being semantically similar (synonyms), perceptually similar

(orthographic neighbors), or potentially unitized (compound

words). In all, there were 48 of each type of verbal quartet.

Design and Procedure Each participant engaged in 16

study/test blocks, 4 using normal object stimuli, 4 using dis-

torted object stimuli, and 8 using verbal stimuli. The order of

blocks was randomized for each participant. Each study list

consisted of 24 pairs of items—2 non-overlapping pairs from

12 quartets—presented for 3 seconds each in random order

(with a 1 second inter-stimulus interval), under the constraint
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Figure 3: Examples of stimulus quartets used to generate study and test pairs.

that two pairs from the same quartet would not be presented

one after the other. Which set of pairs was shown at study

was counterbalanced across quartets, e.g., for object stim-

uli 4 quartets were causal pairs, 4 were category pairs, and

4 were causal+category pairs. Each verbal list was comprised

of 6 sets of pairs from compound-word quartets and 6 sets

of pairs from synonym/neighbor quartets (again, the set of

pairs within a quartet that were studied was counterbalanced

across quartets within each list). At test, half of the pairs were

shown intact and half were rearranged, with assignment of in-

tact/rearranged (and, for rearranged pairs, how they would be

rearranged) being counterbalanced across quartets within a

list. Any given item would only been seen by a participant in

a single study/test block, and if a participant encountered an

object quartet in distorted form, they would never encounter

it in its original form, and vice versa.

During study, the items in each pair were presented next to

one another in horizontal orientation, with left/right position

determined randomly. Prior to each study list, participants

were told to try to remember the items in the list as well as

which items appeared together at the same time (i.e., as part

of a pair). After presentation of the study list, test instructions

were shown to participants for a minimum of 15 seconds, af-

ter which they could proceed. These instructed participants

that they should give a positive response (using either the J

or F key, randomly assigned per participant) when shown an

intact pair and a negative response (using the other key) oth-

erwise, and that they should try to make their responses as

quickly and accurately as possible. The items in each test pair

were presented on top of one another in vertical orientation,

with top/bottom position determined randomly, to preclude

any bias due to left/right item position at study. Each test trial

began with a fixation cross in the center of the screen for 500

ms, followed by presentation of the test pair which remained

on screen until the participant made their response. After re-

sponding, participants were told whether their response was

correct or incorrect; if they made a response in less than 300

milliseconds, they were also shown a message to “Please take

more time to respond” and if they responded in more than 4

seconds, they saw a message to “Please try to respond more

quickly”. Feedback was displayed for at least 1 second, and

for an additional 3 seconds if the response was under 300 ms.

A random interval between 1.25 and 1.75 seconds preceded

the onset of the next test trial.

Results

The mean proportions of positive recognition responses as a

function of both study and test relationship are shown in Fig-

ure 43. For present purposes, we simply note a few crucial

features of the data: Among normal object stimuli, causally-

related pairs had slightly higher hit rates and were less likely

to result in false alarms when rearranged, analogous to S+E+

and S−E−
r pairs. When comparing normal to distorted ob-

jects, however, it is clear that at least some of the advantage

for causally-related pairs is due to their shared low-level fea-

tures rather than the conceptual relation—such pairs yield su-

perior discriminability even when the objects are deprived of

semantic content by distortion.

Among words, studying an unrelated pair leads to overall

worse recognition (lower hit rates and generally higher false

alarms), but there was no substantial difference between dif-

ferent kinds of foils in terms of false alarm rate, in accord

with the finding above that any relatedness bias tends to oc-

cur when responses are rapid and not necessarily in free re-

sponse. Although semantic relatedness lead to higher hit rates

(and lower false alarms, at least for neighbor foils), pairs of

orthographic neighbors (which are perceptually, not seman-

tically, similar) or pairs that could form a compound word

(which may not be similar to one another, but could be pro-

cessed holistically) yielded even better correct recognition as

well as lower false alarms, at least to unrelated foil pairs.

Discussion

Our experiment is consistent with our model in that shared

features of any kind, whether perceptual (e.g., orthographic

neighbors or similar distorted objects) or semantic (e.g., syn-

onyms or identical undistorted objects) yield superior en-

coding of associative information, as evidenced in enhanced

recognition of intact similar pairs and/or enhanced rejection

of rearranged pairs that “break” similar pairs (like S−E−
r

pairs). Further, this holds not just for verbal stimuli, but for

natural objects and abstract forms (the result of distorting the

normal object images). Our results are thus congruent with

3Space constraints preclude plots of response time, however it
is generally anti-correlated with accuracy, such that high-accuracy
conditions also have faster responses on average.
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Figure 4: Mean proportion of positive recognition responses (error bars ±1 within-subject standard error about the mean).

results 1 and 2 from the Introduction. As for result 3, the

lack of a similarity-based bias in our results is consistent with

Dosher and Rosedale (1991) in finding that such biases are

usually restricted to short response deadlines.

Discussion

We have shown how the presence of shared features between

items—a single parameter (s)—leads to the three critical find-

ings described in the Introduction: Shared item features leave

extra capacity for storing associative features at study, mean-

ing that an intact related pair will more strongly activate its

corresponding study trace (result 1) but a test pair that breaks

related pairs (i.e., S−E−
r ) will more strongly de-activate those

traces and is less likely to match the studied items (result 2).

At test, shared item features induce a stronger correlation be-

tween the channels devoted to processing each item, leading

to a bias to give a positive response to such pairs that is later

suppressed as shared features allow more capacity for asso-

ciative features (result 3). This model also builds on the ac-

count proposed by Cox and Shiffrin (2017) to illustrate how

item and associative information interact during both encod-

ing and retrieval (Cox & Criss, 2017).

Our experiment illustrates how any shared features,

whether perceptual or conceptual, lead to these consequences.

In addition, we can directly compare these results to pairs of

words that form a compound, that is, a single unit, which

elicited performance similar to that for pairs of orthographic

neighbors (i.e., strong perceptual similarity). While it is true

that the items in such a pair still form words in their own

right, it is likely that compound word pairs are encoded with

relatively few item-specific features and relatively more as-

sociative features. Within the context of the model, if only

associative (and context) features are active at retrieval, the

“two channels” are perfectly correlated—effectively forming

a single-item unit, i.e., a compound.

That compound word pairs can be viewed as an extreme

case of “feature sharing”, even though their component items

do not necessarily share any features, highlights how experi-

ence can alter the encoding of event memories and event as-

sociations. A feature that was once “associative”, that is, that

could only become available in the presence of combinations

of other features, can become an “item” feature as those com-

binations are experienced repeatedly, a phenomenon often as-

sociated with the term “unitization” (LaBerge & Samuels,

1974; Goldstone, 2000). This suggests that the additional ca-

pacity for associative features that arises from shared item

features is not solely the result of feature sharing being, it-

self, a type of associative feature. Instead, associative features

may represent higher-order relationships between items. And

while more work is needed to relate how associations are re-

trieved when all elements of the association are present (as

in recognition) versus when they are only partially presented

(as in cued recall), the strong correlation between associative

recognition and cued recall—including how item properties

affect performance in each task—suggests that similar mech-

anisms are involved (Cox, Hemmer, Aue, & Criss, 2018).

We do not pretend to have explored all possible models of

associative representation and retrieval, and given the over-

whelming number of as-yet-untested experimental manipu-

lations of item and associative relationship, we suspect that

any extant model—including the one we describe here—will

eventually prove insufficient. What we have done is to illus-

trate how a diverse set of results that have been difficult to

reconcile can be readily understood within a single dynamic

framework for memory retrieval.
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