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RESEARCH ARTICLE

A Conserved Glycan in the C2 Domain of
HIV-1 Envelope Acts as a Molecular Switch to
Control X4 Utilization by Clonal Variants with
Identical V3 Loops
Francesca Lombardi☯, Kyle J. Nakamura☯, Thomas Chen, Edwin R. Sobrera, Nicole
H. Tobin, Grace M. Aldrovandi*

Department of Pediatrics, Children’s Hospital Los Angeles, Los Angeles, CA, United States of America

☯ These authors contributed equally to this work.
* GAldrovandi@chla.usc.edu

Abstract
Nearly all persons newly infected with HIV-1 harbor exclusively CCR5-using virus.

CXCR4-using variants eventually arise in up to 50% of patients infected with subtypes B or

D. This transition to efficient CXCR4 utilization is often co-incident with progression to

AIDS. The basis for HIV-1’s initial dependence on CCR5, the selective force(s) that drive

CXCR4-utilization, and the evolutionary pathways by which it occurs are incompletely un-

derstood. Greater knowledge of these processes will inform interventions at all stages,

from vaccination to cure. The determinants of co-receptor use map primarily, though not

exclusively, to the V3 loop of gp120. In this study, we describe five clonal variants with

identical V3 loops but divergent CXCR4 use. Mutagenesis revealed two residues control-

ling this phenotypic switch: a rare polymorphism in C1 and a highly conserved N-glycan in

C2. To our knowledge, this is the first description of co-receptor usage regulated by the N-

glycan at position 262.

Introduction
The entry of HIV-1 into susceptible host cells is mediated by the viral envelope glycoprotein
(Env). The functional envelope spike is comprised of three non-covalently associated gp41
transmembrane sub-units and three gp120 surface units. Each gp120 molecule is divided into
five constant (C1-C5) and five variable (V1-V5) domains, and contains a binding site for the
primary cell-surface receptor CD4. Following CD4-engagement, the envelope undergoes a con-
formational change that exposes or creates a binding site for its co-receptor, typically CCR5
(R5) or CXCR4 (X4). Binding to the co-receptor triggers conformational changes in gp41 that
ultimately result in fusion of the virus and host-cell membranes [reviewed in [1].

Virtually all HIV-1 infections are established by exclusively R5-using virus, regardless of the
presence of R5/X4 or obligate X4 virus in the index case [2, 3]. Furthermore, approximately
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1–2% of persons of Northern European descent are homozygous for a 32 base pair deletion in
the CCR5 gene (CCR5Δ32) which alters CCR5 expression on the surface of their cells and
renders them highly resistant to HIV. Persons heterozygous for CCR5Δ32 have lower cell-
surface expression of CCR5, are partially resistant to infection, and tend to progress slower if
infected [4, 5].

This rigid constraint on an otherwise fluid and rapidly evolving virus has led to the develop-
ment and testing of many interventions targeting CCR5 for prevention, treatment, and even
cure [6–10]. Unfortunately, these efforts are at risk of failure should the virus successfully tran-
sition to efficient X4 utilization [11–13]. A better mechanistic understanding of the R5-to-X4
transition will allow scientists and clinicians to better predict, and potentially counter, such an
escape strategy.

The determinants of co-receptor usage map primarily to the V3 loop; which makes exten-
sive molecular contacts with the co-receptor [14–16]. It has been well-established that an over-
all shift towards positive charge, but especially positively charged substitutions at positions 11,
24, and 25 in V3 are predictive of X4 utilization [17, 18], as is the presence of an isoleucine at
position 326 in the V3 stem [19, 20]. Several algorithms have been developed to predict co-
receptor usage based on V3 sequence, with accuracies estimated at 70–80% [21]. However, sub-
stitutions in other regions including the bridging sheet, C4, V1/V2, and gp41 have also been
shown to influence co-receptor usage [22–27].

For this study, we screened a cohort of treatment-experienced, predominantly subtype-B in-
fected subjects failing their current ARV regimens, using resistance to the CCR5-antagonist
maraviroc (MVC) as an initial surrogate marker for efficient X4 utilization. We reasoned that
this population would be more likely to harbor the X4 using or transitional variants of interest.
Convenience sampling of ten subjects identified three with MVC-resistant virus. From one of
these three, we isolated a series of closely related molecular envelope clones with identical V3
sequences but highly variable co-receptor usage. Further in vitro characterization revealed that
X4 utilization was regulated by polymorphisms in C1 and C2. The C2 polymorphism disrupted
a conserved potential N-linked glycosylation site (PNG) important for envelope function but
not previously linked to co-receptor selectivity.

Materials and Methods

Study Population
All subjects were treatment experienced and screened for, but unable to enroll in, IMPAACT
protocol P1020a [28]. Written informed consent was obtained by study candidate, parent or
legal guardian prior to screening and recorded per protocol. The study was approved by the In-
stitutional Review Boards at each investigator site (see listing in acknowledgements and manu-
script PMID 25232777) and registered with ClinicalTrials.gov, Identifier NCT00006604. No
subjects had prior exposure to entry inhibitors (including Maraviroc).

Cells and Reagents
293T/17 retroviral packaging cells were obtained from the American Type Culture Collection
(ATCC, cat# CRL-11268). TZM-bl cells, a HeLa clone expressing high levels of CD4, CCR5, and
CXCR4 as well as ß-galactosidase and firefly luciferase reporter genes under the control of the
HIV promoter [29–33], were obtained from the NIH AIDS Reagent Program (ARRRP), Division
of AIDS, NIAID, NIH fromDr. John C. Kappes, Dr. XiaoyunWu, and Tranzyme Inc. (cat#
8129). Parental GHOST cells, as well as GHOST-R5, GHOST-X4, and GHOST-R3/X4/R5 sub-
clones were obtained from the ARRRP (cat#s 3679, 3944, 3685, and 3943) from Dr. Vineet N.
Kewal Ramani and Dr. Dan R. Littman [34]. All cell lines were maintained in Dulbecco’s Modified
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Eagle’s Medium (DMEM; Fisher Scientific, Waltham, MA) supplemented with 10% fetal bovine
serum (FBS; Gemini Bio-products, Sacramento, CA), 100 U/mL penicillin-streptomycin (Gibco,
Invitrogen, Carlsbad, CA), and 2 mM L-glutamine (Gibco). GHOST cells were supplemented
with 500 μg/mL G418 (Invitrogen) and 100 μg/mL hygromycin (Invitrogen), and 1 μg/mL puro-
mycin (GHOST-R5, GHOST-X4, and GHOST-R3/X4/R5; Sigma-Aldrich, St. Louis, MO).

MVC (Selzentry) was generously donated by Pfizer. TAK779 [35], AMD3100 [36–38], and
T20/Fuzeon (courtesy of Roche) were obtained from the ARRRP (cat#s 4983, 8128, and 9845).
AD-101 (SCH-350581) was generously donated by Schering-Plough. Soluble lectins were pur-
chased from commercial suppliers: Vector Laboratories Inc. [Burlingame, CA;Hippeastrum hy-
brid (Amaryllis) agglutinin (HHA) and Galanthus nivalis agglutinin (GNA), cat #s L-1240 and
L-1380] and EY Laboratories [San Mateo, CA;Urtica dioica agglutinin (UDA), cat# L-8005-1].

Cloning and Mutagenesis
RNA was extracted from plasma using QIAamp Viral RNAMini Kit (Qiagen, Valencia, CA).
Following reverse transcription using the SuperScript III system (Invitrogen) and the primer
envB3out (50-TTGCTACTTGTGATTGCTCCATGT-30), cDNAs were serially diluted until
<30% of reactions were positive as previously described [39]. Full-length gp160s were
amplified by nested PCR using high-fidelity polymerase and the primers envB5out (50-
TAGAGCCCTGGAAGCATCCAGGAAG-30)/envB3out for the first round, and envB5in (50-
TTAGGCATCTCTATGGCAGGAAGAAG-30)/envB3in (50-GTCTGAGATACTGCTCCCACCC-
30) for the second. Cycle timings were: first round [94°C × 2 min, 35 cycles of (94°C × 15 sec,
55°C × 30 sec, 68°C × 4 min), and 68°C × 20 min] and second round [94°C x 2 min, 45 cycles
of (94°C × 15 sec, 55°C × 30 sec, 68°C × 4 min), and 68°C × 20 min]. Amplicons were ligated
into the pcDNA 3.1 Topo Expression vector (Invitrogen) and transformed into TOP10 E. Coli
(Invitrogen) using standard molecular biology techniques.

Envelope clones were sequenced bi-directionally, and the contigs assembled and edited
using Sequencher (Gene Codes, Ann Arbor, MI). Alignments were constructed using MacVec-
tor (MacVector Inc, Cary, NC) and the LANL website tools (http://www.hiv.lanl.gov/content/
sequence/HIV/HIVTools.html). All amino acid residues are numbered based on the HXB2 ref-
erence sequence. Point mutations were introduced by site-directed mutagenesis (QuikChange
multi-site directed mutagenesis kit; Stratagene, La Jolla, CA) according to the manufacturer’s
instructions and sequenced to confirm integrity. For the remainder of the manuscript, un-
mutated envelopes derived from subject plasma will be referred to as ‘parental’.

Protease inhibitor (PI), nucleoside reverse transcriptase inhibitor (NRTI), and non-
nucleoside reverse transcriptase inhibitor (NNRTI) resistance data were obtained from the
IMPAACT P1020 screening records and were determined using the ViroSeq HIV-1 Genotyp-
ing System (ABI/Life Technologies, Foster City, CA) and the Stanford HIV drug resistance da-
tabase (http://hivdb.stanford.edu/).

The V3 loop sequence of each envelope was analyzed using the web-based tools Geno2-
pheno (http://co-receptor.bioinf.mpi-inf.mpg.de/index.phpare), position-specific scoring ma-
trix (PSSM, http://indra.mullins.microbiol.washington.edu/webpssm), and the 11KR/25KR
and 11/24/25 net charge rules to predict co-receptor usage [17, 18, 40–42]. These methods clas-
sify HIV-1 strains as either R5 or X4. The latter designation includes variants that use X4 exclu-
sively as well as those capable of using both R5 and X4 for entry.

Virus Pseudotyping
The env-deficient HIV-1 genome plasmids SG3ΔEnv (cat# 11051) and pNL4-3.Luc.R-.E- (car-
rying a luciferase reporter gene; cat# 3418) were obtained through the AIDS Research and
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Reference Reagent Program, Division of AIDS, NIAID, NIH from Dr. John C. Kappes and Dr.
Xiaoyun Wu [31, 43], and Dr. Nathanial Landau [44, 45] respectively. The backbone plasmid
bearing the green fluorescence protein (GFP) reporter gene, NLENG1-ES-IRES, was kindly
provided by Dr. David Levy [46, 47].

Inhibition and Entry Assays
Pseudoviruses were produced by co-transfection of 293T/17 cells with the patient-derived Env-
expressing plasmids, and either SG3Δenv, pNL4-3.Luc.R-E- or NLENG1-ES-IRES and titered
by X-gal staining of TZM-bl cells as previously described [48].

All cell entry assays (no primary cell data were included) were performed using pseudotype
virus in a 96-well plate format as previously described [48]. Briefly, using titers obtained by X-
gal staining, ~2000 units of pseudovirus in 16 μg/mL DEAE Dextran were added to each well
containing target cells. Luminescence was quantified after a 48-hour incubation using a Pro-
mega Luciferase Kit (Promega, Madison, WI) and a FLUOstar luminometer (BMG Labtech,
Cary, NC) according to manufacturer instructions.

Phenotypic determination of co-receptor utilization was performed by infecting TZM-bl
cells in the presence or absence of AMD3100 (X4 antagonist) or TAK-779 (R5 antagonist), and
by infection of GHOST cells (expressing CD4 and one or both of the co-receptors) with pNL4-
3.Luc.R-E-derived pseudoviruses.

Drug sensitivity was determined by pre-treatment of TZM-bl cells for 1 hour at 37°C with
increasing concentrations of the CCR5 antagonists MVC, TAK-779, AD101, the X4 inhibitor
AMD3100, the fusion inhibitor T20, or the lectins HHA, GNA, or UDA prior to addition
of pseudovirus.

Data Analysis
Drug sensitivity was quantified by calculating a mean 50% inhibitory concentration (IC50) for
each envelope/drug combination with the Prism 4 software (GraphPad, San Diego, CA) using
data from at least two experimental replicates. Co-receptor usage, based on TZM or GHOST
cell methods was expressed as a percentage normalized to entry in the absence of inhibitors in
cells expressing both co-receptors (GHOST-R3/X4/R5 for that platform).

Results

Clinical Characteristics of Study Subjects
The clinical characteristics of our cohort are listed in Table 1. All subjects were experiencing vi-
rologic failure (median plasma HIV RNA of 106,808 copies/ml) on their current ARV regimen,
with at least moderate resistance to two or more drug classes as determined by genotypic analy-
sis using the Stanford HIV drug resistance database. Of the ten subjects included in our initial
round of screening, nine were infected with subtype B and one (subject 1002) was infected with
subtype C HIV-1.

Identification of a Subject with both MVC-Resistant and MVC-Sensitive
Virus
Full-length molecular envelope clones were generated from the plasma of all ten subjects by
RT-PCR and fully sequenced. V3 loops were analyzed using the web-based algorithms Geno2-
Pheno, PSSM, and 11/24/25. Pseudotype viruses were generated from all envelopes and tested
for resistance to MVC, which served as a surrogate marker for X4 utilization at the screening
stage. Data are presented in Table 2.
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Viral envelopes isolated from seven of the ten patients screened were predicted in silico to
be exclusively R5-using and were phenotypically sensitive to MVC, thus no further studies
were performed on them. Seven clones isolated from subject 1009 were predicted to use X4 by
both Geno2Pheno and PSSM and were highly resistant to MVC. Two clones were isolated
from subject 1005 with highly divergent V3 loop sequences, one of which was predicted to use
X4 by Geno2Pheno and PSSM and was MVC-resistant, while the other was predicted to use X4
by Geno2Pheno but R5 by PSSM, and was sensitive to MVC. Finally, five clones were isolated
from subject 1010, all with identical V3 loop sequences that were predicted to use X4 by Gen-
o2Pheno but R5 by PSSM. Two of those clones were sensitive to MVC (IC50 ~2nM) while the
other three were highly resistant (IC50 >200nM). We chose to focus on the isolates from this
last subject for further examination. These data are summarized in Table 2.

Identification of Non-V3 Loop Co-receptor Use Determinants in Subject
1010
The five env clones from subject 1010, which had identical V3 sequences, differed at nine posi-
tions throughout the remainder of gp160 (five residues in gp120 and four in gp41; Fig 1). Only
two positions correlated with MVC sensitivity. The first was the highly conserved bridging
sheet residue 123, at which the MVC-sensitive isolates had an unusual isoleucine substitution
for the conserved threonine (T123I). Polymorphisms at this site were present in only 6 of 1501
complete subtype B sequences retrieved from the 2012 LANL database (two T123I and four
T123A). The second position was the highly conserved serine 264 in the C2 domain, which

Table 1. Clinical characteristics of study subjects.

Patient
ID

Subtype HIV Plasma
RNA
(copies/mL)

CD4 Count
(cells/μL)
[CD4
Percent]1

Protease
Inhibitor
Susecptibility2

Nucleoside RT
Inhibitor
Susceptibility2

Non-nucleoside
RT Inhibitor
Susceptibility2

Predicted
Tropism (V3
Loop)

Maraviroc
Susceptibility3

Subj.
1001

B 119,407 NA Resistant Resistant Resistant R5 Susceptible

Subj.
1002

C 51,400 2422 [39%] Resistant Intermediate Resistant R5 Susceptible

Subj.
1003

B 140,308 NA Resistant Resistant Resistant R5 Susceptible

Subj.
1004

B 29,959 NA Resistant Intermediate Resistant R5 Susceptible

Subj.
1005

B 1,197,844 NA Intermediate Resistant Intermediate R5/X4 Susceptible/
Resistant

Subj.
1006

B 5,567 751 [35%] Intermediate Intermediate Susceptible R5 Susceptible

Subj.
1007

B 7,474 NA Intermediate Intermediate Susceptible R5 Susceptible

Subj.
1008

B 684,733 NA Resistant Intermediate Resistant R5 Susceptible

Subj.
1009

B 110,415 NA Resistant Intermediate Resistant X4 Resistant

Subj.
1010

B 103,200 666 [15%] Resistant Resistant Resistant X4 Susceptible/
Resistant

1 Some subjects were identified as ineligible for P1020 before a CD4 count was performed
2 Anti-retroviral drug susceptibility was determined genotypically using the Stanford HIV Drug Resistance Database
3 Maraviroc susceptibility cut-offs reflect the ability to achieve 50% neutralization at the highest drug concentration tested (200nM)

doi:10.1371/journal.pone.0128116.t001
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Table 2. V3 loop sequences, genotypic characteristics, and R5/X4-usage screening data for all clones discussed in the study.

Subject ID Clone ID V3 loop sequence Position 11/25 V3 loop Pos. Charge V3 loop Net Charge MRV IC50 (nM) Coreceptor
Usage

Efficiency

R5% X4%

1001 1001 CTRPNNNTRKGIQMGPGKAFYATGEIIGDIRQAHC G/E 6 4 7.5 84.4 1.2

1003 - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - G/E 6 4 6.1 93.6 1.2

1004 - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - G/E 6 4 6.7 91.2 0.8

1005 - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - G/E 6 4 7.7 85.7 1.1

1006 - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - G/E 6 4 5.6 87.1 1.0

1008 - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - G/E 6 4 6.2 88.5 0.6

1010 - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - G/E 6 4 6.6 91.1 1.9

1012 - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - G/E 6 4 6.1 83.9 1.9

1002 902 CTRPNNNTRKSIRIGPGQTFYATGGIIGNIRQAHC S/G 6 5 2.8 94.3 0.1

905 - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - S/G 6 5 3.1 98.8 0.1

907 - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - S/G 6 5 3.3 90.9 0.2

912 - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - S/G 6 5 3.2 86.4 0.1

9A104 - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - S/G 6 5 1.0 96.7 0.1

9A105 - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - S/G 6 5 4.1 90.0 0.5

9A106 - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - S/G 6 5 3.5 92.2 0.3

9A107 - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - S/G 6 5 3.7 91.9 0.1

9A108 - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - S/G 6 5 1.3 89.6 0.1

9A204 - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - S/G 6 5 3.0 90.0 0.4

9A408 - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - S/G 6 5 3.9 87.6 0.1

9A208 - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - S/G 6 5 3.0 95.4 0.2

9A405 - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - S/G 6 5 3.9 91.5 0.1

1003 740 CTRPNNNTRKGIQMGPGKAFYATGEIIGDIRQAHC G/E 6 4 6.3 89.6 1.2

1931 - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - G/E 6 4 8.8 83.9 1.3

1932 - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - G/E 6 4 4.8 87.3 1.1

1934 - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - G/E 6 4 6.2 87.2 1.0

1004 4801 CTRPNNNTRKSINIGPGRAFYTTGEVIGNIRQAHC S/E 7 6 2.2 89.5 0.6

4802 - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - S/E 7 6 2.0 90.1 0.5

4803 - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - S/E 7 6 2.1 90.3 0.5

4809 - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - S/E 7 6 2.3 90.5 0.4

1005 4007 CIRPNNNTRQRLSIGPGRSFYATRQIVGNIRQAHC R/Q 7 7 >200 60.6 83.1

4022 - - - - - - - - - KSIG- - - - - A- - - - GD- I- D- - - - - - S/D 6 4 3.2 99.8 0.1

1006 102 CTRPNNNTRKSIHIGQGRALYATGQIIGDIRQAHC S/Q 7 6 2.6 79.8 0.1

1007 1406 CERPNNNTRKSIHLGPGGAFYATGNIIGDIRKAHC S/N 7 5 1.8 99.9 0.3

1047 - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - S/N 7 5 2.4 98.2 0.2

1052 - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - S/N 7 5 2.4 96.3 0.2

562 - - - - - - - - - - - - - - - - - - - - - - - - R- - - - - - - - - - S/R 8 6 1.7 89.9 0.1

567 - - - - - - - - - - - - - - - - - - - - - - - - R- - - - - - - - - - S/R 8 6 2.1 95.1 0.5

1044 - - - - - - - - - - - - - - - - - - - - - - - - R- - - - - - - - - - S/R 8 6 2.2 95.0 0.1

1211 - - - - - - - - - - - - - - - - R- - - - - - - - - - - - - - - - - - S/N 8 6 1.7 98.1 0.9

564 - - - - - - - - - - - - - - - - R- - - - - - - - - - - - - - - - - - S/N 8 6 2.3 93.7 0.2

1008 1591 CTRPSNNTRRGIHMGPGK_FYTTGQIIGDIRQAHC G/Q 7 6 6.6 89.9 1.1

1009 665 CTRPTNYTSKMIRIQRGPGRAYVRTRPSGDIRQAYC M/T 7 6 >200 0.5 100.0

1692 - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - M/T 7 6 >200 0.5 94.1

2120 - - - - - - - - - - - - - - - - - - - - - F- - - K- - - - - - - - - - M/T 7 6 >200 0.6 100.0

2122 - - - - - - - - - - - - - - - - - - - - - F- - - K- - - - - - - - - - M/T 7 6 >200 0.5 85.9

2003 - - - - - - - - - - - - - - - - - - - - - F- - - K- - - - - - - - - - M/T 7 6 >200 0.7 100.0

2009 - - - - - - - - - - - - - - - - - - - - - F- - - K- - - - - - - - - - M/T 7 6 >200 0.3 100.0

2342 - - - - - - - - - - - - - - - - - - - - - F- - - K- - - - - - - - - - M/T 7 6 >200 0.5 98.7

(Continued)
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was mutated to a glycine in the MVC-sensitive isolates (S264G). Polymorphisms at this site
were similarly rare, present in only 7 of 1501 subtype B LANL sequences (one S264G, one
S264N, three S264T, and two nonsense mutations). For simplicity, envelopes will be referred to
by the amino acids at positions 123 and 264 (i.e. I+G or T+S) for the remainder of the manu-
script (as shown in Fig 1). It is important to note here that serine 264 is part of a PNG sequon,
[NX(S/T)] including the conserved asparagine at 262, which is disrupted by the S264G poly-
morphism. This glycan has been localized to the outer domain of gp120, where it forms a gly-
can cluster with N295, N332, and N448 [most recently in the structure described in [49]].

To verify that these isolates were indeed using X4 for entry and not simply able to produc-
tively utilize MVC-bound CCR5 as described in [50], they were tested on cells pre-treated with
two additional CCR5 inhibitors, TAK779 and AD101, to which they were also resistant. Enve-
lopes were also tested for entry into GHOST cells expressing CD4 and either CCR5 or CXCR4
alone, with results concordant with those obtained from the TZM-based inhibitor assays (sum-
marized in Fig 1). These results confirmed that we identified clonal envelope variants with
highly divergent X4 usage regulated by polymorphisms outside the V3 loop.

Site-Directed Mutagenesis Reveals a Novel Regulator of X4 Usage
We created a panel of mutant envelopes in which the residues at 123 and 264 were exchanged
individually and in combination between the MVC-resistant/X4-using (T+S) and MVC-
sensitive/R5-using (I+G) variants. This panel was screened using MVC, TAK779, AD101,
AMD3100, and assayed for entry into R5- and X4-expressing GHOST cells. Results are pre-
sented in Fig 1.

The exchange of both residues (123 and 264) was sufficient to confer MVC-resistance and
X4-utilization on the sensitive/R5 envelopes, and vice versa. The intermediate genotype T+G
(which lacked a PNG at 262) was relatively sensitive to R5 inhibitors, but demonstrated elevat-
ed efficiency of X4-usage compared to the fully MVC-sensitive envelopes (I+G). In contrast,
the intermediate genotype I+S (which possessed a PNG at 262) was relatively resistant to R5 in-
hibitors and had an X4-utilization efficiency much closer to the fully MVC-resistant (T+S)
clones. These data indicate that exchange of residues at positions 123 and 264 is sufficient to
confer full X4-tropism, and that position 264 is the dominant molecular switch.

Only one mutant, 547 I+G, was non-functional for pseudotyping in 293 cells. I+G mutants
made using the other parental X4 envelopes (543 I+G and 544 I+G) were fully functional, as
was the mutant 547 T+G. The most apparent difference between the parental 547 and 543/544
envelopes is the presence of a conserved PNG at position 392 in clone 547 that is absent in 543/
544. Interestingly, this PNG was also absent in the parental R5 variants (542/550), both of

Table 2. (Continued)

Subject ID Clone ID V3 loop sequence Position 11/25 V3 loop Pos. Charge V3 loop Net Charge MRV IC50 (nM) Coreceptor
Usage

Efficiency

R5% X4%

1010 550 CIRPNNNTRKGITLGPGRVFYTTGQIVGDIRKAHC C/Q 7 6 2.2 87.5 9.5

542 - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - C/Q 7 6 1.8 85.5 9.9

543 - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - C/Q 7 6 >200 100.0 56.9

544 - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - C/Q 7 6 >200 88.8 59.9

547 - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - C/Q 7 6 >200 98.7 50.0

doi:10.1371/journal.pone.0128116.t002
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which have the I+G genotype. To determine whether a PNG at position 392 was functionally
incompatible with the I+G genotype we constructed a second round of mutants, disrupting the
PNG sequon with an S394N substitution in the non-functional mutant 547 I+G and adding a
PNG site to clone 542 (a parental I+G) at position 392 via the reciprocal N394S substitution.
Surprisingly mutant 547 I+G S394N remained non-functional for pseudotyping, while mutant
542 N394S retained function and was similarly sensitive to R5 inhibition as the parental 542
variant (data not shown). The functional and non-functional variants differed at only two addi-
tional residues, a glycine-to-aspartic acid at position 395, and a serine-to-glycine at position
668 in the gp41 membrane-proximal external region.

Changes in T20 susceptibility, in the absence of gp41 mutations that directly affect binding,
have been associated with altered fusion kinetics [51]. T20 binds to the fusion-intermediate con-
formation of gp41 and prevents final collapse of the gp41 trimer into the 6-helix bundle required
for membrane fusion and entry [52]. To determine whether any of our parental or mutant enve-
lopes had gross defects in their entry kinetics, we tested the full panel for susceptibility to T20.
We did not observe any significant differences in T20 susceptibility between R5 and X4 variants,
nor associated with any of our in vitro mutants (Fig 1).

Glycosylation of Asparagine 262, Rather Than the Specific Identity of the
Residue at Position 264, Controls Co-Receptor Usage and Effects
Neutralization by Mannose-, but Not Complex Glycan-, Dependent
Soluble Lectins
To confirm that the S264G substitution was indeed acting by elimination of the glycan attached
to asparagine 262, we constructed a set of mutants designated I+(Q)S and T+(Q)S, in which

Fig 1. Partial alignment and phenotypic data for all parental andmutants envelopes from subject 1010.Mutant sequences are identified by the
parental clone (i.e. 542) and the residues present at positions 123 and 264 (i.e. 543 I+G indicates a mutant derived from parental clone 543 with an I at
position 123 and a G at position 264). The presence or absence of a potential N-linked glycosylation site (PNG) at position 262 (as determined by the N-
glycosite web tool from LANL) is denoted by a + or—in the column labeled PNG 262, and the relevant sequons [Nx(S/T)] are shaded dark gray in the
abbreviated alignment on the right. Efficiency of entry into CXCR4-expressing (X4) GHOST cells [relative to CCR5/CXCR4-expressing (R5/X4) GHOST
cells] is indicated for each clone, as are fifty-percent inhibitory concentrations (IC50) in nM for the R5 inhibitors Maraviroc (MVC), TAK779, and AD101; the
peptide fusion inhibitor T-20; and in μg/ml for the plant-derived lectins GNA, HHA, and UDA. Columns have been color-coded to highlight the concentration of
a given compound that is required to achieve the IC50. Expressing cut-offs for green, yellow, and red coding: for MVC and AD101:0–9.9, 10–24.9, >25nM; for
TAK-779: 0–24.9, 25.0–49.9, >50nM; and for GNA and HHA: 0–0.49, 0.5–0.99, and >1.0 μg/ml. T20 and UDA were not color coded, as their IC50s did not
correspond to the % X4 usage of the clone. Phenotypic data for reference viruses Bori, 89.6, and pNL4-3 are shown at the bottom of the figure.

doi:10.1371/journal.pone.0128116.g001
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the PNG sequon was disrupted by an N262Q substitution that left the serine at position 264 in-
tact. The I+(Q)S and T+(Q)S mutants behaved identically to the I+G and T+G variants (all of
which lack a PNG at 262). We constructed other mutants, designated I+T and T+T, in which
the serine at position 264 was changed to a threonine, preserving the PNG sequon. The I+T
and T+T mutants behaved like the I+S and T+S variants (all of which have a PNG at 262).
These data confirm that it is the presence of a PNG at position 262, and not the specific identity
of the residue at position 264, that regulates co-receptor usage in these clonal variants.

We also tested the parental and mutant envelopes with the soluble plant-derived lectins
GNA, HHA, and UDA. GNA and HHA both bind high-mannose glycans, while UDA binds
complex-type glycans [53]. All three lectins neutralized all tested envelopes (Fig 1). Activity of
the two mannose-dependent lectins, GNA and HHA, correlated well with the activity of the R5
antagonists (R2 0.68–0.79): the most lectin-resistant variants had the T+S genotype, the moder-
ately resistant variants the I+S genotype, and the most sensitive had either the I+G or T+G ge-
notypes. Resistance to the complex-glycan-dependent lectin UDA did not vary significantly
among any of our isolates, nor correlated with the activity of any of the R5 antagonists (R2

0.01–0.05). It is important to note that previously published biochemical analyses indicate that
the glycan at position 262 is predominantly high mannose when produced in 293 cells [54, 55].
Correlation plots are presented in Fig 2.

Discussion
In this study, we analyzed a series of clonal HIV-1 envelope variants with identical V3 loops
but varied co-receptor usage. We found that substitutions at conserved residues in the bridging
sheet (position 123) and the C2 domain (PNG at position 262) were responsible for regulating
X4 usage in these isolates. To our knowledge, neither of these positions has been previously
identified as a regulator of co-receptor utilization.

It is noteworthy that in this case the atypical (I+G) variants are the more phenotypically
‘normal’ (MVC-sensitive and R5-using), while the genotypically normal (T+S) variants are
phenotypically unusual (MVC-resistant with efficient X4-utilization). This limits our ability to
draw broad conclusions about X4 evolution in general, but does point to a previously unappre-
ciated role of the N-glycan at 262 in governing the conformation or exposure of the co-receptor
binding site. Previous studies have identified this glycan as important for viral infectivity [56,
57], and it will be of interest to determine what compensatory mutations have emerged in these
naturally occurring variants.

The lack of effect resulting from exchange of the PNG at 392 between functional and non-
functional I+G variants was surprising to us. The conserved N-glycan at position 392 is present
in only one of the three X4-using clones and its absence does not affect any measure of co-re-
ceptor usage that we tested. Additional studies will be required to determine what functional
relationship exists between PNG 392 and positions 395/668, and whether those interactions
are strain-specific or generalizable.

One limitation of our study is the lack of longitudinal sampling. While it is very likely this
subject was originally infected with an R5 virus, we cannot be certain without testing earlier
samples. If this were indeed the case, it would be of interest to know whether the transmitted
isolate possessed a PNG at 262 and, if not, how the acquisition of that PNG is temporally relat-
ed to the emergence of a strong X4 phenotype. Moreover, if the transmitted isolate was indeed
exclusively R5-using and evolved to utilize X4 while still possessing a PNG at 262, then dissect-
ing the selective forces that favored some variants loosing their ability to use X4, as well as the
conserved PNG at 262, may shed more light on the underlying biology of co-receptor selection.
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It is also of interest that the X4 clones from this subject (both parental and mutant) were rel-
atively sensitive to all three CCR5 antagonists (MVC, TAK779, and AD101), not achieving an
IC50>200nM until the strain had>50% predicted X4 usage (see Fig 1). Examination of TZM
neutralization curves (exemplar shown in Fig 3) indicated that both R5 inhibitor-sensitive and
R5 inhibitor-resistant variants had similar slopes but reached plateaus at the approximate max-
imum-percent-inhibition predicted by the GHOST cell assay (hence the inability to determine
an IC50 value for envelopes which used X4 very efficiently). Given that MVC, AD101, and
TAK779 bind CCR5 differently and may act through different mechanisms [35, 50, 51, 58–62],
these data suggest that the envelopes which utilized X4 efficiently maintained a conventional
interaction with CCR5, rather than shifting their binding to a different part of the receptor or
increasing affinity.

Considering that all variants isolated from this subject had identical V3 loops, genotypically
predicted to use X4, we speculate that they represent a lineage of V3 sequences that are in fact
highly adapted to using both co-receptors, but for which the polymorphism at 123 and the loss
of the PNG at position 262 selectively compromise X4 binding. It is also possible, since we used
assays with productive infection as their endpoint, that the described polymorphisms do not
limit X4-binding per se, but instead compromise down-stream conformational changes which

Fig 2. Correlation of R5 inhibitor susceptibility and highmannose specific (GNA/HHA) or complex glycan specific (UDA) lectin susceptibility. For
each parental (n = 5) and mutant (n = 15) clone from patient 1010, the 50% inhibitory concentration (IC50, in nM) of maraviroc (A-C), TAK779 (D-F), or AD101
(G-I) is plotted on the x-axis and the IC50s (in μm) for the high mannose specific lectin GNA (A,D,G), the high mannose specific lectin HHA (B,E,H), and the
complex glycan specific lectin UDA (C,F,I) are plotted on the y-axis. Pearson correlation coefficients (r) and associated p-values are also displayed.

doi:10.1371/journal.pone.0128116.g002
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ultimately lead to more abortive entry events upon X4 binding, though we consider this alter-
native hypothesis unlikely.

In summary, we have isolated and described a series of closely related, naturally occurring
clonal envelope variants with identical V3 loops that can utilize both CCR5 and CXCR4 effi-
ciently. These variants have two molecular switches, a threonine at position 123 and an N-
glycan at position 262, that act cooperatively to permit or constrain X4 utilization without af-
fecting CCR5 usage. This study is, to the best of our knowledge, the first published evidence
that these two sites have a direct and significant influence on co-receptor utilization by HIV-
1 envelope.

Accession Numbers
Nucleotide sequences associated with this manuscript have been submitted to GenBank with
accession numbers: KP693359–KP693388.

Supporting Information
S1 Fig. Inhibition curves from single assays showing the concentration of the specified in-
hibitor on the x-axis and the percent infectivity on the y-axis. The legend lists the tested
clone. Mutant sequences are identified by the parental clone (i.e. 542) and the residues present
at positions 123 and 264 (i.e. 543 I+G indicates a mutant derived from parental clone 543 with

Fig 3. Exemplar neutralization curve showing plateau effect for the CCR5 antagonist TAK779.Clones
representing the four core genotypes described in the study [543 parental (T+S), 542 parental (I+G), 542 I+S
mutant, and 542 T+Gmutant] were tested for neutralization using the R5 antagonist TAK779 (concentration
of TAK779 is shown on the X-axis and percent infectivity on the Y-axis).

doi:10.1371/journal.pone.0128116.g003
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an I at position 123 and a G at position 264). MRV = maraviroc, TAK-779, AD101 = SCH-
350581, T20 = Fuzeon, nM = nanomolar.
(PDF)

S2 Fig. Inhibition curves from single assays showing the concentration of the specified lec-
tin on the x-axis and the percent infectivity on the y-axis. The legend lists the tested clone.
Mutant sequences are identified by the parental clone (i.e. 542) and the residues present at po-
sitions 123 and 264 (i.e. 543 I+G indicates a mutant derived from parental clone 543 with an I
at position 123 and a G at position 264). GNA = Galanthus nivalis agglutinin, HHA =Hippeas-
trum hybrid (Amaryllis) agglutinin, UDA = Urtica dioica agglutinin, ug/ml = micrograms
per milliliter.
(PDF)
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