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Abstract

Rapid detection of toxic agents in the indoor environment is essential for protecting building occupants from accidental or
intentional releases. While there is much research dedicated to designing sensors to detect airborne toxic contaminants, little
research has addressed how to incorporate such sensors into a monitoring system designed to protect building occupants. To
design sensor systems, one must quantify design tradeoffs, such as response time and accuracy, and select values to optimize the
performance of an overall system. We illustrate the importance of a systems approach for properly evaluating such tradeofts,
using data from tracer gas experiments conducted in a three-floor building at the Dugway Proving Grounds, Utah. We explore
how well a Bayesian interpretation approach can characterize an indoor release using threshold sensor data. We use this approach
to assess the effects of various sensor characteristics, such as response time, threshold level, and accuracy, on overall system
performance. The system performance is evaluated in terms of the time needed to characterize the release (location, amount
released, and duration). We demonstrate that a systems perspective enables selecting sensor characteristics that optimize the
system as a whole.

r 2006 Elsevier Ltd. All rights reserved.
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1. Introduction
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characterize accidental or deliberate toxic gas releases.
However, developing such a system is complicated by
several requirements. To limit the adverse impacts of
the release, the monitoring system must detect and
characterize releases in real time. Furthermore, the
Corresponding author. Indoor Environment Department, system must be robust against sensor error, such as

Lawrence Berkeley National Laboratory, One Cyclotron Road, false positive or negative measurements.

The sudden release of a toxic agent indoors can pose
an acute health threat to building occupants.
Consequently, it is of interest to devise indoor air
monitoring systems that can detect, locate, and



Much effort is being directed to the development of
toxic chemical sensors. However, relatively little

attention has been devoted to identifying and selecting
sensors characteristics that will optimize
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published studies are closely related to the

the performance of sensor systems designed to protect
occupants in indoor environments. More over, journal
publications on improving chemical protection within
indoor environments almost ex clusively focus on
optimizing the performance of sensors individually
(e.g., electronic noses and robotic systems for plume
tracking). The proceed ings of a recent Indoor Air
conference (2002) contained only two papers out of
726 that discussed how to design monitoring systems
that protect building occupants from toxic releases. The
pro ceedings of the 2004 IEEE Sensors conference
contained no papers on this topic.

Commercial buildings commonly have monitor ing
systems for fire protection, security, and control of
heating, ventilating and air conditioning (HVAC)
equipment. Advances in microprocessor computing,
networking, sensor technology, and artificial intelli
gence have helped foster a movement toward
automated control of building systems and intelli gent
building systems (Piette et al., 2001; Kintner Meyer et
al., 2002; Liu and Kim, 2003; Jablonski et al., 2004).
Despite rapid advances in these areas, systems that
incorporate real-time information about indoor air
pollutants have thus far been restricted mainly to
ventilation control and energy management utilizing
carbon dioxide sensors (Fisk and De Almeida, 1998).

Sohn et al. (2002a) demonstrated a Bayesian
interpretation scheme for real-time reconstruction of an
indoor contaminant release. That study used synthetic
data from a single, small building. A follow-up study
used real tracer-gas data in a three story building (Sohn
et al.,, 2002b). In both of these investigations, the
sensors were assumed to be capable of reporting
continuous concentration measurements.

This paper advances the earlier work by focusing on
trigger- or alarm-type sensors, rather than
continuous-output devices. A case-study approach is

employed, using data from one of 12 tracer-gas

experiments conducted at a three-story, 660 m’

building at the Dugway Proving Ground, Utah (Sextro
et al., 1999). Through a series of examples, we
examine how well various sensor systems, each system
consisting of sensors with different sensor
characteristics (threshold level, response time, and
accuracy), reconstruct the release event. These
examples demonstrate the importance of a systems
perspective in selecting sensors with desirable sensor
characteristics.
In addition to those already cited, only a few other

subject of this paper. Bayesian methods have been
proposed for interpreting data from accidental
radioactivity releases into outdoor air (Smith and
French, 1993; Politis and Robertson, 2004); and for
improving uncertainty estimates in Lagrangian
photochemical air quality models (Bergin and Milford,
2000). Federspiel (1997) proposed a Kalman filter
method to infer emission source strengths based on
measured concentrations in a multizone building. A
few studies have explored optimal sensor placement
within a building for monitoring high-risk release
events (Arvelo et al., 2002; Whicker et al., 2003).

2. Approach

We consider the following problem. A finite
quantity of a contaminant is released, over a short
duration, somewhere in a building (this may include its
indoor air intake vents). A network of threshold or
alarm-type sensors operates to detect the contaminant.
We seek to understand how sensor characteristics such
as threshold level and response time affect the ability
of a sensor interpretation algorithm to quickly detect
and characterize the contaminant release.

The indoor environment of the building is modeled
as a system of independent, well-mixed zones
interconnected by flow paths. The outdoor environment
is represented as an additional zone of infinite size. A
mechanical air-handling unit (AHU) operates to extract
air from return-air zones, possibly incorporates outdoor
air, and discharges the mixture to supply zones. The
contaminant is assumed to behave as an ideal tracer.

For the purposes of this paper, we assumed that each
zone is equipped with one sensor, and each sensor has
a single threshold, meaning the output is either ““below
threshold” or ‘““above threshold.” We define several
possible threshold levels that are at or above the
minimum detection limit of the sensor. Three
important parameters characterize sensor performance
in this study: threshold level; response time (also
sometimes called integration time); and accuracy.

A sufficiently large release will trigger one or more
sensors. A Bayes Monte Carlo algorithm is then
initiated to determine key information about the
release event, including the location of the release and
the contaminant mass discharged. This information can
help guide emergency response and post-event
remediation.
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data as a function

A two-stage Bayes Monte Carlo algorithm for signal
interpretation was presented in Sohn et al. (2002a,b)
and is summarized here. The first stage consists of
developing a library of hypothetical contaminant
transport simulations spanning the set of all plausible
pollutant release and internal airflow conditions. In the
second stage, the sensor data are interpreted by
estimating their degree of statistical agreement with
predictions in the simulation library. In an operational
system, the interpretation would occur in real time, as
the data stream in from sensors. A key virtue of this
two-stage algorithm is that the computationally
intensive effort to solve the contaminant transport
equations for a large number of simulations takes place
once, before an event. Because the second stage has
modest computational requirements, the monitoring
system is capable of real-time data interpretation.

Bayes’ rule provides a statistical method for
estimating the level of agreement between the observed
data and predictions from each of the simulations in
the library. A posterior probability states the relative
agreement of a given simulation with the observed
data. This in turn allows us to estimate uncertain input
parameters such as the release location and release
conditions or character istics.

The posterior probability of the kth simulation
making prediction Y}, given sensor measurements O, is

denoted as p(YlO). Bayes’ rule gives p(YlO) as

p8Yijop v, POOJYPpoY, P

ivapOOjY;PpdYip, (1)
N

where p(OlY,) is the likelihood of observing
measurements O given simulation prediction Y, p(Y,)
is the prior probability of the kth simulation (that is, an
a priori estimate of the probability of the kth
simulation), and N is the total number of simulations in
the library. Note that O and Y are vectors.

The likelihood function, p(OlY}), reflects the error
structure of the data. In general, errors can result from
measurement inaccuracy or imprecision, correlation
errors and imperfect model representa tion. In practice,
deriving a likelihood function will require careful
work. For example, if sensors contain calibration drift,
or if errors are correlated with time owing to the
presence of an interfering chemical, then the likelihood
function must account for the diminished quality of the

of time. Sohn et al. (2000, 2002a) and Brand and
Small (1995) describe the implementation of Bayes
Monte Carlo updating in more detail, and discuss
alternatives for evaluating the likelihood function. Qian
et al. (2003) also discuss the likelihood function and
compare the Bayes Monte Carlo approach to Bayesian
updating with Markov-chain Monte Carlo integration.
We evaluate the performance of a system of sensors
in terms of how accurately and quickly the system
estimates the contaminant release conditions such as
the release location and mass. In practice, different
performance criteria may be set depending on the
objectives of the particular monitoring system.

3. Case study: sudden tracer release in a three-story
building

This section explores the potential utility of the
two-stage Bayesian interpretation algorithm for
designing a sensor system that consists of single level
threshold sensors. Several examples are con structed
using data from a single case study. The objectives are:
(1) to test how well Bayesian interpretation works with
threshold sensors; and (2) to explore how the system’s
performance varies with the sensor threshold level,
response time, and error. The emphasis here is not on
optimizing the Bayesian algorithm for this case study,
but to demonstrate how a Bayesian methodology can
be used to assess sensor characteristics for any sensor
type, such as single-level threshold sensors. Actual
implementation for a specific sensor system may
require further refinement of the algorithm.

3.1. Building characterization, data collection, and
model generation

The study focuses on one unit in a multiunit building
located at the Dugway Proving Grounds, Utah (Sextro

et al.,, 1999). The unit consists of 660 m° of interior

volume and approximately 280 m? of floor area on
three levels (see Fig. 1). A mechanical air-handling unit
(AHU) supplies air to the first and second floors, and
its return is on the first floor. The AHU is a 100%
recirculating unit (i.e., there is no deliberate outside air
intake). Air exchange between inside and outside
occurs by means of pressure-driven airflow through
leaks in the unit’s envelope. Airflow between interior
zones occurs by means of mechanically induced flow
through the system ducts, by pressure-driven or
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Fig. 1. Case-study unit at the Dugway Proving Grounds, Utah. Plan views of: (a) floor 1 (ground level); (b) floor 2; (c) floor 3. Selected intrazonal
and AHU airflow rates for the actual release (as calculated by COMIS at the first time step) are shown, in units of m®min '
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convective airflow through open doorways, and by
pressure-driven airflow through interior leakage paths.
Sextro et al. (1999) conducted fan pressurization
tests to determine the leakage characteristics of the
building. They also conducted 12 tracer-gas experi
ments. In each, approximately 20 g of propylene was

instantaneously released at a specific interior loca tion,
and the concentrations in each room and the staircase
were recorded every 20 s.

For our study, we selected the data from one
tracer-gas experiment (Trial 1). In this case, the release
occurred outside the return grill of Room 1.2a (first
floor). The AHU was operating and all
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Fig. 2. Time-dependent tracer gas concentrations for case-study release normalized by theoretical peak concentration in the experiment: (a) first

floor rooms; (b) second floor and third floor rooms; (c) staircases.

interior doors were open. Fig. 2 displays concentra tion
data collected from the sensors.

Using the building leakage characteristics ob tained
from fan-pressurization tests, Sextro et al. (1999)
developed a multizone airflow and pollutant dispersion
model for the unit using COMIS (Feustel, 1999).
COMIS predicts airflow induced by wind, thermal
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buoyancy, and mechanical venti lation by representing
the building as a collection of well-mixed zones
connected by flow paths such as cracks, doors and
windows, and ductwork. Air is assumed to be
incompressible and airflow through these pathways is
predicted by imposing mass balance and calculating
pressure differences among the zones.

A library of 5000 simulated contaminant releases



was generated using this model, by sampling from
statistical distributions of a set of key input parameters,
as described by Sohn et al. (2002b). The variable input
parameters are summarized in Table 1.

3.2. Hypothetical threshold sensor data

We generated hypothetical threshold sensor data by
interpreting the tracer data from the experiment as if
they were concentrations to which surface acoustic
wave (SAW) sensors were exposed. SAW sensors are
piezoelectric devices, often configured to provide
alarms based on whether the incoming concentrations
are above or below a predefined trigger or threshold
level. False positive and false negative alarms may
occur, according to the performance characteristics of
each sensor, or the inability of the sensor to distinguish
between the contaminant of interest and interfering
chemi cals that also may be present in the air.

Table 1
Assumptions used to generate the library of 5000 simulated
contaminant releases

Parameter Values

Source location Ten locations: any room plus stairwell. Each
location is equally probable

Source duration 1 s to 5 min; log-uniform distribution Source
amount 10-100 g; log-uniform distribution Door position Three
scenarios: (1) all interior doors open; (2) all interior doors closed;
3
doors between staircase landings and

adjacent rooms closed, all others open

We generated hypothetical alarm data for sensors
with different performance characteristics, based on
discussions with several developers and users of SAW
sensors. Three sensor attributes were varied: threshold
level, response time, and error.

The threshold levels were chosen relative to the
measured concentrations during the first 120 min of the
release event. The lowest selected threshold would
cause 98% of the data to trigger the alarm, while the

highest threshold would trigger an alarm for only 1%
of the data. However, for presentation purposes, we
normalize both threshold levels and concentration data
by the concentration that would be found in the release
zone if the entire release amount instantaneously mixed
throughout that zone. That is, thresholds and
concentrations are reported in terms of the theoretical
maximum peak concentration that could be measured
in the system under the perfectly well-mixed
assumption. With this normalization, the lowest
threshold level was 0.02% of the maximum peak, and
the highest was 16%.

Sensor response times ranged from 20 to 180 sec. In
the simulations, concentrations are averaged over the
response time, and then compared to the appropriate
threshold level. Note that averaging over the response
time corresponds to an assump tion that the SAW
desorption cycle is brief relative to its adsorption cycle.
In our simulations we ignored the duration of the
desorption cycle (i.e., each sensor started integrating
the next cycle of data as soon as it reported an alarm or
no-alarm condition).

Simulations were run using data with and without
synthetically added error. For simulations with added
error, we generated sensor signals according to the
following assumptions: (1) if the actual concentrations
are within 25% of the sensor thresh old level, the
signal will be false 50% of the time; and (2) for
concentrations outside of this range, the signal will be
false either 10% or 30% of the time, depending on the
assumed sensor error.

In this implementation of Bayes’ rule, the like
lihood function is based on the probability used to
generate the false positives and negatives. For
example, for data generated with a 30% error, the
likelihood is 0.3 when the modeled concentration is
more than 25% above the threshold level and the
sensor has not signaled on; conversely, the like lihood
is 0.7 if the sensor has signaled on. For the simulations
using data without synthetically added error, we
assume 5% error for all data. We did not
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assign 100% confidence to this data because of
inherent uncertainty and variability. In practice, the
designer of the sensor system should have reliable
information on the sensor’s actual rate of false positives
and false negatives.

Fig. 3 illustrates the conversion of measured
concentration data to simulate threshold data. Fig. 3(a)
shows normalized time-averaged concen tration data,

with the threshold level indicated.

Fig. 3(b) shows the threshold data that would result
from a threshold sensor with no error and
instantaneous response. Here, “1”° signals that the
concentration exceeds the threshold. Fig. 3(c) shows
the threshold data, corrupted with false negatives or
positives. Because the false readings are generated
stochastically, different realizations of the data in Fig.
3(c) would exhibit different patterns of output signals.
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Fig. 3. Sample illustrating conversion of tracer gas concentration to threshold data: (a) concentration data; (b) threshold data without simulated
error added; (c) threshold data with simulated error added.
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For the case-study examples, we systematically
varied the sensor characteristics, as described above.
In cases where error was specifically investigated,
for each sensor attribute, we generated 50 sets of
error-added threshold data, analogous to those
displayed in Fig. 3(c), for each sensor in the system.
Each combination of threshold level, response time,
and error produced a data stream against which to
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apply the Bayes Monte Carlo algorithm. The
algorithm was used to determine the release location
and release magnitude; the time of release was
assumed known.

4. Results and discussion

To demonstrate data interpretation using threshold
sensor data, we first investigate the ability of the sensor
system to estimate the release location, mass, and
duration. Next, we investigate the effect of changing
the threshold level and response time characteristics,
and lastly, the effect of changing the sensor error in
conjunction with these characteristics.

4.1. Estimating release characteristics with threshold
data

The information content in threshold sensor data is
significantly less than that in direct concentration
measurements. Nevertheless, the sensor system can
successfully reconstruct the source, at least in some
circumstances. We demonstrate this with an exam ple
in which the concentration data have been converted to
threshold data using a threshold level of 2.3%, a sensor
response time of 20 s, and without added error. We
judge the sensor system perfor mance by its ability to
reduce the uncertainty in the estimates of the release
location, mass, and duration parameters, and by the
time required to do so.

Fig. 4 depicts the time required to identify the
release location (Room 1.2a). At time zero, every zone
is assumed to be equally likely as the release location.
As sensor data arrive, the Bayes algorithm adjusts
these probabilities, identifying the release location
with greater than 90% confidence within 1 min. If
rapid response hinges on locating a source very
quickly, this example suggests that threshold sensors
under this network configuration and data quality may
be acceptable for real-time monitoring. Fig. 5 shows
the time-resolved estimates of the release mass and
duration parameters. These para meters are accurately
estimated within tight un certainty limits after 10 min.

Fig. 4. Probability of source being in location indicated, as estimated
with the Bayes Monte Carlo algorithm using threshold data with
response time of 20 s, threshold level of 2.3%, and without added
error. The actual release location is Room 1.2a. Time is referenced to
the instantaneous release event.
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Fig. 5. Release mass and release duration estimated with the Bayes
Monte Carlo algorithm using threshold data with response time of 20
s, threshold level of 2.3%, and without added error. The solid lines
indicate 80% confidence intervals; dashed lines indicate medians.
(Actual release mass was 20 g, and released as a puff.)

4.2. Effects of sensor threshold level and response
time

Here, we explore tradeoffs between sensor thresh
old level and response time. The threshold level was
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varied between 0.02% and 16% of the theoretical peak
concentration, and the response time was varied
between 20 and 180 s. No added error was included in
these data sets, to isolate the effects of threshold level
and response time. Fig. 6 shows the time required to
identify the correct release location with 90%
confidence for these cases. The lowest threshold levels
(0.02% and 0.23%) and highest threshold levels (14%

and 16%) are often unable to identify the release
location because they yield data that varies little among
zones. Fig. 6 also shows that for the intermediate
threshold levels there is little difference in the time
required to locate the source, particularly for sensor
response times between 20 and 120 sec.

Fig. 7 shows estimates of the release amount for
four combinations of response times (60 and 120 s)
and threshold levels (2.3% and 9%). With higher



threshold level sensors, the algorithm estimates the
release mass to a higher level of confidence more
quickly. The sensor system with the high-threshold

Tima ta locata source (min)

level sensors reduces the posterior probabilities of
many more realizations than the sensor system with the
low-threshold level sensors. Therefore, the calculated
parameter uncertainty bounds for release mass are
narrower. We observed this relationship consistently
across all response times and thresholds between 2.3%
and 11%.

Over the range of conditions shown in Fig. 7, the
effect on the results of sensor response time is weaker.

As the response time increases, the sensor system
receives information less frequently, and the
confidence intervals broaden somewhat. In compar ing
Figs. 6 and 7, we observe that more time is needed to
estimate with high confidence the release mass than
the release location.

Summarizing the results depicted in Figs. 6 and 7,
the performance of the sensor system depends
significantly on threshold levels relative to actual
concentrations, and less on response time. If airborne
concentrations in the actual building can vary over a
broad range, a sensor system with
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Fig. 6. Time required to locate the release location, as a function of threshold level and sensor response time, using threshold data with no added
error.
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multithreshold sensors should be tested since they may
better cover the range of airborne concentra tions.

4.3. Effects of sensor error

In this example, we include error in the threshold
sensors. As expected, the algorithm requires more time
(and thus data) to identify the source zone with high
confidence.

Fig. 8 shows the time required to locate the release
location for the case of fixed sensor response time (20
s) and error (30%), but with varying threshold level.
Each of the three cases is based on 50 data realizations
with randomized error. Each frame in the figure shows
the time-dependent probability of correctly identifying
the release location. Even with relatively high error,
the sensor system containing sensors with low- and
medium threshold levels rapidly identifies the source
location with high probability in most realizations. The

sensor system with medium-threshold sensors per
forms best under these conditions, demonstrating the
ability to locate the source with 90% confidence more
rapidly in most cases than the low-threshold level.

The medium-threshold sensor performs better than
the low-threshold sensor for two likely reasons. (1) A
higher threshold level reduces the posterior
probabilities of a larger subset of model realizations
than the lower threshold level. (2) While a low
threshold sensor receives signaling-on information
before the medium-threshold sensor, a medium
threshold sensor receives the signaling-off informa tion
sooner. If both signaling-on and signaling-off
information is important for data interpretation, the
sensor system based on medium-threshold sensors may
provide more overall information, more rapidly.

In contrast to the sensor system with low- and
medium-threshold sensors, the sensor system with
high threshold sensors requires significantly more data
to estimate the release location with high
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(a) 2.3%, (b) 6.8%, (c) 11%.

confidence, for a majority of the data realizations (see
Fig. 8(c)). Furthermore, the wide confidence intervals
in Fig. 8(c) prior to 7 min are caused by inconclusive
or incorrect estimates of the release location for several
data realizations.

The results obtained by investigating data without
adding simulated error (i.e., false positives and
negatives) suggest that certain parameters are more
easily estimated than others; namely, the release
location was estimated more easily than the release
mass. The sensor system must, thus, be designed to
meet the performance objectives of the overall system,
given the many possible goals of a monitor ing system.
For example, accurate predictions of evolving
concentrations may rely on accurate estimates of both
release location and mass.

Fig. 9 shows how the time required to identify the
release location varies with sensor response time. In
these simulations, we used sensors with a 2.3%
threshold level and 30% error. As the response time

Fig. 9. Probability of correctly identifying the release location using
threshold data generated with 30% error, variable sensor response
time, and threshold level of 2.3%; median (dashed line), 10th and

90th percentiles (solid lines) for 50 data realizations. Sensor
response time: (a) 20 s, (b) 60 s, (c) 120 s.

increases from 20 to 120 s, the ability of the system to
estimate the release location and mass degrades. These
results are similar to those discussed in Section 4.2.
For sensors with a fixed threshold level, a longer
response time reduces the amount of information, and,
therefore, reduces the certainty with which release
parameters can be estimated.

To investigate tradeoffs between sensor speed and
accuracy, we compare system performance with more
rapid, but less accurate sensors against system
performance with slower but more accurate sensors
(Fig. 10). System 1 consists of sensors with a 20-s
response time and 30% error (Fig. 10(a)); System 2
consists of sensors with a 60-s response time and 10%
error (Fig. 10(b)); and System 3 consists of sensors
with a 120-s response time and 10% error (Fig. 10(c)).
All three systems utilize sensors with a threshold level
of 2.3%. System 1 receives data at a higher rate, but
lower accuracy than do the other systems. System 2
receives data at a higher rate than
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pants in the event of high-risk pollutant releases.
The premise of this paper is that the selection of
sensor characteristics is best performed from a
systems perspective. Here, we have demonstrated—
albeit for a limited set of circumstances—that a
network of single-level threshold sensors can be
used to determine the location and magnitude of the
release within a Bayes Monte Carlo framework.
More importantly, treating the network as a system
may lead to better choices for sensor characteristics
like response time and error, than might be the case
when considering sensors individually.

The actual rate of false readings (i.e., false
positives or negatives) for real sensors is likely to
be less than 30%. Probabilistic results reached by

the Bayesian algorithm based on the assigned

confidence are therefore likely to be conservative.
A primary purpose of this work is to illustrate the
relationship between sensor characteristics and
sensor system performance. The work also shows
that the two-stage Bayesian Monte Carlo algorithm
is a promising approach for designing sensor
systems, even when using threshold-type sensors.
Important questions remain for future investiga
tion. How well does the algorithm work against a
full array of release conditions, including slow,



Fig. 10. Probability of correctly identifying release location using
sensors with varying sensor response time and error, with threshold
level of 2.3%; median (dashed line), 10th and 90th percentiles (solid
lines) for 50 data realizations. (a) Response time 20 s, error 30%; (b)
response time 60 s, error 10%; and (c) response time 120 s, error
10%.

System 3, but with the same accuracy. We observe that
System 2 clearly outperforms the other two systems,
and System 3 performs slightly better than System 1.
Therefore, in this example, a sensor system that is
based on slower but more accurate sensors identifies
the release location with higher confidence, more
quickly, than a sensor system using faster, but less
accurate, sensors. This result was consistently observed
in our simulations across most threshold levels,
suggesting that slower, but more accurate threshold
sensors may be more informative and lead to faster
definitive interpreta tion than rapid, less accurate,
threshold  sensors ~ when  deployed in a
building-monitoring system.

5. Conclusion

Real-time environmental monitoring systems have
the potential to help protect building occu

steady releases? How should the library of simula tions

be generated so as to simultaneously ensure sufficiently
dense sampling of the space of input variables, and
complete coverage of possible release conditions?
What information from other types of sensors could
improve the overall performance and cost-effectiveness
of the sensor system? How can the information
generated from this type of monitoring system be used
to specify responses that protect building occupants
and first responders?

The deployment of a monitoring system of the type
explored in this paper is likely to occur first in
buildings that are much larger and more complex than
the one considered here. The scalability of the Bayes
Monte Carlo algorithm to larger and more complex
systems poses unexplored challenges. With more
complex buildings, system characterization is
technically more challenging, and also more ex
pensive. Hybrid methods that augment prior knowl
edge with sensor system data that monitors building
operations to learn about airflows and contaminant
transport may improve overall system performance.
Such advances would not only be beneficial for
designing indoor monitoring systems, but may
potentially be extended to help diagnose and interpret
data from large-scale contaminant releases
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to the ambient atmosphere and to other environ mental
media. Such approaches also hold the promise of
facilitating improvements in building performance
with respect to energy use, thermal comfort, and
indoor air quality.

Acknowledgements

This work was supported in part by a fellowship
from the National Science Foundation, and by the
Office of Chemical Biological Countermeasures, of the
Science and Technology Directorate of the Department
of Homeland Security, and performed under US
Department of Energy Contract No. DE

AC03-76SF00098. We thank David Brown, Greg Foltz,
William Swansiger, Norm Davis, Anthony Policastro,
William Dunn and Edward Zellers for providing
information on chemical sensors. We also thank
Richard Sextro, Darryl Dickerhoff, Helmut Feustel and
Corina Jump for collecting the Dugway data and
generating the COMIS models.

References

Arvelo, J., Brandt., A., Roger, R.P., Saksena, A., 2002. An enhanced
multizone model and its application to optimum placement of
CBW sensors. ASHRAE Transactions 108 (2), 818-826.

Bergin, M.S., Milford, J.B., 2000. Application of Bayesian Monte
Carlo analysis to a Lagrangian photochemical air quality model.
Atmospheric Environment 34, 781-792.

Brand, K.P., Small, M.J., 1995. Updating uncertainty in an integrated
risk assessment: conceptual framework and meth ods. Risk
Analysis 15, 719-731.

Federspiel, C.C., 1997. Estimating the inputs of gas transport
processes in buildings. IEEE Transactions on Control Systems
Technology 5, 480—489.

Feustel, H.E., 1999. COMIS—an international multizone air flow
and contaminant transport model. Energy and Buildings 30,
3-18.

Fisk, W.J., De Almeida, A.T., 1998. Sensor-based demand controlled
ventilation: a review. Energy and Buildings 29, 35-45.

Jablonski, A., Klempous, R., Licznerski, B., 2004. Diversified
approach to methodology and technology in distributed
intelligent building systems. Lecture Notes in Computer Science,
vol. 2809. Springer, Berlin, pp. 174-184.

Kintner-Meyer, M., Brambley, M.R., Carlon, T.A., Bauman, N.N.,
2002. Wireless sensors: technology and cost-savings for
commercial buildings. 2002 ACEEE Summer Study on Energy
Efficiency in Buildings. American Council for Energy Efficient
Economy, Washington, DC, pp. 7.121-7.134.

Liu, Z., Kim, A.K., 2003. Review of recent developments in fire
detection technologies. Journal of Fire Protection Engineer ing
13, 129-151.



Piette, M.A., Kinney, S.K., Haves, P., 2001. Analysis of an
information monitoring and diagnostic system to improve
building operations. Energy and Buildings 33, 783-791.

Politis, K., Robertson, L., 2004. Bayesian updating of atmo spheric
dispersion after a nuclear accident. Journal of the Royal
Statistical Society Series C—Applied Statistics 53, 583-600.

Qian, S.S., Stow, C.A., Borsuk, M.E., 2003. On Monte Carlo
methods for Bayesian inference. Ecological Modelling 159,
269-277.

Sextro, R.G., Daisey, J.M., Feustel, H.E., Dickerhoff, D.J., Jump, C.,
1999. Comparison of modeled and measured tracer gas
concentrations in a multizone building. Proceedings of the
Eighth International Conference on Indoor Air Quality and
Climate—Indoor Air 99, Indoor Air 99, vol. 1, Edinburgh, pp.
696-701.

Smith, J., French, S., 1993. Bayesian updating of atmospheric
dispersion models for use after accidental release of radio
activity. The Statistician 42, 501-511.

Sohn, M.D., Small, M.J., Pantazidou, M., 2000. Reducing
uncertainty in site characterization using Bayes Monte Carlo
methods. ASCE Journal of Environmental Engineering 126,
893-902.

Sohn, M.D., Reynolds, P., Singh, N., Gadgil, A.J., 2002a. Rapidly
locating and characterizing pollutant releases in buildings.
Journal of the Air and Waste Management Association 52,
1422-1432.

Sohn, M.D., Reynolds, P., Gadgil, A.J., Sextro, R.G., 2002b. Rapidly
locating sources and predicting contaminant disper sion in
buildings. Proceedings of the Ninth International Conference on
Indoor Air Quality and Climate—Indoor Air 2002, Indoor Air
2002, vol. 4, Monterey, pp. 211-216.

Whicker, J.J., Rodgers, J.C., Moxley, J.S., 2003. A quantitative
method for optimized placement of continuous air monitors.
Health Physics 85, 599-609.





