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ABSTRACT

The scatgering and production G:een‘s functions for one nucleon and
an arbitrary number of mesons are related by an infinite set of coupled |
linear integral equations. The first R’ of these equations cantain'.
Greén's £ functions involving 0,:1; 2, ..o N external meson lines. The set
of equations ma& be cut off at any point by making an.aasumptibn as to the |
atructuré of the Gréen‘s function with‘ﬁhe highest number of external meson
lines, In particular this fuhc@ion is vapproximated by decomposing it into
éroducts of lower order Green's functions, the physical assumption being
that one of the mesdns interacts weakly with the remaining meson~nucleon
'siatemo This leads to a closad setvof equations which are linear ;f vacuum
polarization ig neglected. Examples of successive approximations are
derived. The fgfmalism is also applied to the two-nucleon case and to the
three-fields prqblem, the latter being treated inﬁa manifestly gauge

cevariant manner,
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I. INTRODUCTION

Recent investigations of the problem of the interaction between the
meson and nucleon fields have been aimed at dispensing with methods only |
“suited to weakly coupled systems. In pgrticular, attention has been'centered
upon covariant two-body equaticnsl (in which the approximation of a perturbation
expansion of the interaction operator is made), and on the nqn—adiabatic three-
dimensional Tamm-Dancoff method2 (where the approximation consists of setting
the amplitudes for systems containing more than'a given number of particles
to zero). While the Bethe-Salpeter gpproach is a covariant one, a serious
drawback lies in its perturbation té;atment of the interaction term; Not.
only is the convergence of this in grave doubt, but one has no criteria for
- deciding how many (and which) irreducible graphs are to be included for thse
descfiption of a given proceéé. .In the Tamm-Dancoff scheme no perturbation
approximation is used. Here again however, there is no guide ehabling one
to determine at what number of particles the infinite set of ecuations should

be cut off., Furthermore, as has recently been pointed out3, the lack of

l_ J. Schwinger, Proc. Nat. Acad. Seci. U. S., 37, 452 (1951). and E. E. Salpeter

and H. A. Bethe, Phys. Rev. 84, 1232 (1951).

Dyson, Schweber, and Visscher, Phys, Rev. 90, 372 (1953).

3 M, Gell-Mann'and M, L, Goldberger, private communication from

M, L. Goldbérger.
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symnetry between the "crossed" and "uncrossed" diagrams at any stage of'the
approximation in the meson~nucleon case, will yield an incofrect Zero énergy
limit for the exchange scattering. | |

| The purpose of this paper is to utilize a new approximation procedure
for dealing with the Green's functions appropriate to a given problem. Taking
cognizance. of the relationship between the vertai operator and kernels involving

external meson lines, a system of coupled integral equdtions for these Green's

‘functions may be written down. Following a suggestion of M, Neumanh, we

‘treat one of the mesons as interacting weakly with the rest of the system,

by.decompoéing the highest Green's function considered, into products of
lower Green's functions, thus cutting off the infinite set of equations. This

scheme hasvthe advantéges'of being Lorentz covariant (and for photon processes,

" gauge covariant), of containing no perturbation featufes, and ofzpfcviding

some physical insight into the meaning of”the apﬁroximation; The basic

symmetry of the Green's functions in the meson variables avoids the difficulty

_with the exchange scattering mentioned above. If certain aspects of. vacuum

polarization are neglected, the resulting equations are linear,
/ In the following section the formalism is developed in connection
with the meson-nucleon system, Later sections deal with its applicability

to the two-nucleon and the three-fields problems,

M, Neuman, Phys. Rev. 92, 1021 {1953). The formalism developed below is

closely related to that of Dr. Neuman's paper,
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I1. ONE-NUCLEON SYSTEMS

_(A) Definitions and Notation.

The equations of motion for the pseudoscalar meson operator ¢i and
[the nucleon field operator 4’ interacting via symmetric pseudoscalar

| ‘coupling in the absence of external fields are

(wa W g BTV - o

(b + 1) &, Fe9 L% wnv] = o
where PP;—LEP (5-

A generalized Green's function governing processes involving n nucleons

and m vexternal meson lines may be defined as follows

Ca (xl'f' X" ) >9,"' ><; 5 EI"'t§W1>

.n [ - — ' o
= U ) ) B k). B k)88, B(E)), D

X € (X,, .. Xn')‘

where for any Heisenberg operator F(x), the symbol < F(x) > stands for

5 Throughout the paper the notation is that of J. Schwinger, (reference 1).
mus, (Y., N} =-2s., ; Y& = -]
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<vac., Ty “:(X Yvac, O'¢>/6/OC,,<T, {VGCO’ > 0, and U, representing two
spacelike surfaces at + oO respectively, [..] is the. integral parb of
;  _.2. 3 € (xluoxn) 13 +1 for an even pemutation of the order of the )
times xo;, ”.,xon. landr -1 for an odd permutation. The spinor and isotopic
indices have been suppressed, In this section we shall concérn ourselves
with prot_sléms involving only one nucleon. For simplicity of notation the
‘nucleon éo%ordinates will aiso be suppreésed and matrix imxltipli.ea'bibn over

these varié.blea will be assumed. Thus we write

6(5.. En) = U CWB)BE).L PED) D € lx-x)  2)
It will also be found useful to define the quantity Y ( §) :‘ '

(2.5)

s (D) [x) = Yo Te § (x-x')8 (T-X")

| - (5e)
(B) Derivation of the Green's Functions Equations. )

We begin by obtaining the equation for the one-nucleon, no-meson
- Green's function. Operating on the quantity G with (Ip+m ) and

invoking the ‘equations of motion (2.1) one finds

(prm) G (xx') = & (x-x")- iq¥s Te (WX PEID (), Ye (x-x) (O

2L
N

| (5’@) . | | | :
Similar equations have been derived by J. Schwinger, unpu‘b‘llshed 1ectur-= noctes,
Harvard University
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where § (x - x') arises from the time derivative of the discontinuity of G.
Referring to (2.3) we notice that the last term on the r.h.s. is equal to

- %Yg’r G (X X’; X )) so that (2.6) may be rewritten as

(Yp+m) G = | - q g\((é)G(§§d§ (2.7)

where (x[1]x') = &(x = x'). Proceeding in a similar manner the equation

for G(Z) may be obtained:

(1p+mY G (3) = ig [Y(¥) G (F/E)dE’ (2.8)

No term corresponding to $ (x - x') appears here since < d(z)> = O
in the absence of ex’cernai meson fields. The application of (XP +mM) to
G(§/§ ) leads to the appearéﬁce of the quantity i<(¢i(§'),¢j(il ))+>v ,
to be den'o'tedv by q(‘d' (f g/ ) . (the one-meson (no-nucleon) Green's function),
as well as G(3” g’ 5‘): '

(Vp+m)G(¥E) = G(FE)-9[Y(E")G(E' ¥ §)dE" 29
The next equation in the scheme is: |
(oprm) G(E'E'5) = iq [YENG(E"E"'E'E) 4F" (2a0)

The equation for 9 may easily be obtained by operating with (El-r 1,«.‘)
(where k, =-( '3/55‘” ) upon a and using (2.2). Thus,
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(R+ 1) G(3%') = 8(3-1') + 9 Tr ¥(2) G(g') (2.11)

We may mention at this point that the substitution of (298) into (2,7) and

(2.11) yields equations (1"a) and (1"b) of Neumanh.

(prm) G = | - iq° [¥(3)6. ¥(3) G (F'E)dEds’ (232

[+ 1) GEE) = § (5-8') +iq? Tr [¥(2) G, Y (£") G (£'7")dE" (212)

We shall denote by G, (E%’) the solution of (2.11) with the second term
on the right omitted. |

(C) Thé’Approximation Scheme.

The functions G, G(Z ), G(¥, §I ), ete. of the preceding section
govern rigorously the motion of one nucleon and various numbers of mesons,
the functions with an odd number of meson indices referring to the production
of at least one meson (rather than a scat.tering)o Thus G is the propagation
function for a nucleon with all possible sélféehergy processes occurring. As
is customarily done, we shall represent such "clothed" particles by thick lines,
In Fig, 1, we give the diagrammatic representations of the first few Green's
functions with the times arranged so that a minimum number of "thick lines"
occur at a given time. We also notice that any Green's function may be_
symbolic¢ally represented by a set of three indices (x, ¥, z) where x = the

number of nucleons, ¥y = [_m/z ] where m is the number of meson variables,
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and the number z = 1 or O depending on whether m is odd or even. The sum of
bhése three indices yields the maximum number of thick lines in the corresponding
diagrams time~ordered as in Fig, lo
The equations (2.7), (2.8), (2.9) etec. coupling the various Green's

“functions may be schematically respresented by an array of linking "boxes®
(labeled by (x,y,2)), each box describing a particular Green's function

(Fig. 2). The scheme proposed consists of 1imiting oneself in a given
‘calculation, to a finite number of thick lines which corresponds to a finite
portion of the array of "boxes". If this is done, one in general obtains N
- equations involving N.+ 1 unknowns, the last Green's function G(E,.., 5»4 ) -
 having one more line than the number allowed by the scheme Following ghe
puggestion,made by M. Neumanh, the last function is now trgated.approxidgtelyo
. Thé sgﬁeme;utilized is to factor this function into products'of Green's
functions already‘appaaring in the equations, some of these being replaced
by their zeroth order forms so that the number 6f thick l;nes does not
exceed the maximum allowed. Sﬁch.a factorization may of course be carried
out in a number of ways. A procedure that appears mégi reasonable atllow
energies is the féctoring out, in a symmetric faéhion,nbf-a single meson
propagation fonetiont G(5..%,) ’-_—-‘_' G.(5%.)G (T, ) 4o -
The physical iﬁﬁerpretation of this p;ocedqre‘is that one of the mésons

does not interact strongly with the reméining meson~-nucleon complex.

(D) Examples of Approximations.

(i) Zero'th Approximation. |
To this order one allows only one thick line. Since in (2;7),_

G( £ ) has two lines and its factorization in the absence of an external
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meson field gifes zero (G(E)g G (4){;)) = 0 ) s Eq. (2.7) reduces to

(‘I(H—m)G,, = | o (2.13)
the equation for the non-interacting nucleon kernel.

~ (41) First Approximation.
‘In;this“éppréximétion we still restrict ourselves to one line.

‘Here we break up

N

cEE)x G G.ET)  ew

”-WEhich‘céffESpbndé to the explicit assumption of no medon»nuéléon'scatierihgo
Inserting (2.14) in (2.124) oné obtains: | B

)G = | —ig(lvaygar) g veazag) 6 ean

‘The’ G"v’defined by the above equation has previously been studie’d6 in order to
ascefrtai';l its eﬂffecﬁ on t.h? aluppr{*ession of paii‘a in meson-nucleon "scatt;ering.
Tt is to be noted that 4in the presént 'écheme', its use in any discussion of
the meson-nucleon equation would be inconsistent due to the approximation

made in Eq. (2.14).

¢ Brueckner, Gell-Mann and Goldberger, Phys. Rev, 90, 476 (1953); and
Karplus, Kivelson and Martin, Phys. Rev, 90,1072 (1953),
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(31%) “Second Approximation.

Here we consider the case of two thick lines, i.e. the second set
of boxes (Fig. 2), described by Eqs. (2.7), (2.8), (2.9) and (2.11). We -

approximate the three-line quantity appearing here by

G(z"zg' i) ~ G(x) G.(8'8) r G (8')q. (52") + G(z)‘q; (5') (2.26)

/
Eliminating G(% ) in terms of G(Z3% ) via (2.8) and substituting into

(2.9) one obtains an equation for G(3% /):
G(¥'8) = 6.G.(¥'5)-iq" [G,v(5")6.X (£") G(2"5") G, (5'T)

Hige T g3 (EY ()G (E" )

- -ig] Jeviey 656 (5"") G, (s 8)

F G (35)G.(5'8)} ]

The second and third terms on the r.h.s. of (2.17) are only self-energy
structures on external lines and may therefore be absorbed into the first

term. In obtaining (2.17), use was made of Egs. (2,12a,b),
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The quantity G(Z“ ‘§~I % ) describes éne-meson p!‘oducti_én in a meson-
" nucleon scattering process. The approximation (2.16) does not allow a real
'production‘_of this type to occur since G(3 ) has vanishing matrix elements
between states conserving energy-momentum. Experimentally the meson-
production cross section in meson~nucleon collisions appears to be vai'y‘ smé.ll
up té energies ~~ 1 Bev, Thus this approximation may be adequaﬁe'vat' léw

energies, sineg one may hope that any expected rise in the matrix element
fof virtual production at energies > > 1 Bev (in intermediate‘} statgs)’
will be damped by the energy denominators. |

An integral equation for G(£ ), which is closély related t.a ‘bhe

vertex opéx"gtor, may be derived in this approximation. Substituting (2.16)
into (2.9) 'and eliminating G( §§/_) in (2.8) via (2.9) one obtains

]

G(%) = u% j@ ¥y(¥') G, [q (£ ) O (2ae)
9°Ge (22") Tr ¥(2") G(F)]

-i9’fe, vy 6, ¥ (e [ 6 (z")qo(§§')_

+6(3)G.(3"E") + G (2)G. (z"s)]
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(iv) Third Approximation.

In this case, we eliminate G(¥ " '§' ¥ ) in (2.9) via (2.10) and »

: / T
decompose 'fthe Green's function G(E”. i § ) so as to allow no more than

two thick lines:

siren= [oir) - sG]

(219)
+ (66" 8) -6 G EN]GEE) + [6(270)-G G (£8) ]G (5"
+[6(3'¢')- 6 Gl'e)]G("e) « [6(1'E) -GG (F'E)] G (2"¢")
+ [G(E'i)—GQ(f’SS]Cj (2"g") - '
+ G(GE"E)G(2'5) + §(3"8) G (2" £)

o ¢ G(E"3) G (2'E"))

The first terms in (2019)' represent the diagrams in which only one meson
can propagate independently. Since a(t" L3 " ¥' ¥ ) must also include
th‘e possibility of two disconnected meson lines, the second set of terms

must be a.dded in. Eq. (2.19) may be rewritten as follows:
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.G <§_m§n §' §> ~ [ G (-;m zu&q (3' Z 3 + G(gmzl)q (ZII§'> (2,20)
+ G ('§'"§> G(ENZ’)] [{G Euf Gq(gnz )} q Imf

+ {e (2'7) c;g(s"zx}qaf"'z)

b6 (D -GGG (3"E" >-]

b' The first three terms are -tha ones appaaring in the second approxi@tiono
Substituting (2.20) into (2.10), one _seeé ‘that in this case the three remaining
terms allow single meson production in a meson—-nﬁcleon collision. The approxi-
nation mada in (20_29) assumes thét two real mesons and ;a nucleon do not form a
closely bound system, or, for a different time ordering, one is neglécting
twwnieéon 'pr;-odu.ction‘ in 'Imeaoii—nucleon scattering. An equation for the meson-
nucleon Green's function may q&sily be/w derived-and is linear when vacuum
po_larizatj._oﬁ effects (closed loops) are neglec_tedq, Some of the 1_owgs§ order

diagrams included in this approximation are shown in Fig, 3.



UCRL-2529
~15- |

III. TWO-NUCLEON SYSTEMS

The formalism developed in Section II can easily be applied to the two-
nucleon problem., The quantity of central interest is the two-nucleon, no-meson

Green's function, Gy,, defined by

- CENVP )P ()P ()4 Y €

(3.1)
€ = € (X% ) € (xi=X¢) € (x=%') € (%{= %X, )€ (XX YE (X2 = X\ )

As before we will denote the two-nucleon, m-meson kernel by GIZ(EH.‘,, £, ).

' We begin by operating with ( Y,Pl + M ) on Gy, to obtain

<Yan+m)G\z = (l 6 ) ﬂ §Y1(§)6,1(§>d§ (2)

where in general

(% LA, KK = (e |A TR X)) = (X% 1A Ixix{)  ©3

In (3.2) the inhomogeneous term comes from the two non-vanishing discontinuities

in the time derivative of (3.1). Continuing, one further finds that
| (3ob
(Yth"'m)(Ylp'*'m) G, = < 1,1, >A )

-91{1, 66,942 -9 {1, w@) 6 (2)d 5},
~i9® ()Y, 136, (38)dTdE’
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, _
The quantity Glz('g Z' ) 1is the kernel describing the scattering of a meson
by the two-nucleon system,'bf, fbr a différenﬁ time~ordering, double meson

production in a nucleon-nucleon collision. The breakup

6.1(22')‘2-6.1@‘0(5?') R P

which correspoﬁds to neglecting meson-deuteron sCattering, yields, aside from

the self-energy terms, the fariliar equation

i

*V<Y|P'.+‘m)('Ysz+~mx)-Gl.z = {1, ];'z}A' - - 38
g (w638 % (3)dEdE) G,

In our scheme, however,'thefbreakup (3.5) is incomplete in that it contains

but one of the possible "two lines" structures. The correct decomposition is

Gir (33') = 6, G.(58) + [ 6,(6.(55)- 6,G. (5)) 7

+ G (6E) -G G55 ]

In its wave function form, the equation analogous to (3.6) in quantum
electrodynamics has been investigated by J. Goldstein, Phys. Rev. 91, 1516
(1953), for the case of vanishing total energy. See also R, Arnowitt and

Sf Gasiorowicz, Phys? Rev., May 1, 1954.
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The additional terms may be interpreted as a kind of "impulse approximation"
to the meson-deuteron scattering kernel, in that the meson interacts with only

one nucleon at a time. The substitution of (3.7) into (3.4) yields (neglecting

self-energy terms):

(4 + m) (Y, botm) G, = {1. 1, }A (3.8)
- ica,-‘(fY. ()G, (85')Y, (§') d¥d z’) G,
-4 fvemEe {6,63)-6,G.8)} + 102 ],
Continuing with the scheme;bone may obtain the rigorous equation for
6T E):

(Vb +m) (% Pt M) G, (Z?’). = {11,658}, (3.9)

=9 {1, jn(?')@z(z“g’z)o\z“' F 1 es2 }

A

- {qr.~f\{1 (§nu) Yl (Eq')"cglz.( 1 Edl 33 A>¢ﬂ EJ'CA T 1]

/
In an elimination of Gl2(§ ¥ ) in (3.4) via (3.9), the first three terms

on the r.h.s. of (3.9) give "impulse" contributions, while the last term
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includes the effects due to the nucleon-nucleon binding. Making the breakup

-of G*lZ( T

- equation, for VG_1,2{~_§__,§' ).:(8,;

in

Z_':,Z ':, f ) analogous to. (3.7) in (3.9 yields an integral

In view of the experimental results favoring two-meson production in
nucleon-nucleon col%isions at. energies ~ 1 Bev, it would seem thgt a
decomposition of Glz(' 3 2’ )1 as in (3;,7) is not a goo;i approxitﬁation,
and the’ effects 1ncluded in (3 9) will have to be taken into account. It
is 1ntereot1ng to note that in tenrs of a perturbation expansion, (3, 9)
containsv ;he 'pwo-paip_ fourth—ox__'der potentials s w.hi'ch ha\{e previously been

“shown to be izirge o
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IV. THREE-FIELD SYSTEMS

The intro&uction of the electromagnetic field pennits.the extension
§f the technigue outlined above to such problems as photo-production, nuclear
Compton effect and the nucleon magnetic moments. In order to exhibit the
gauge ihvariance of the scheme, we shall in this secetion deal only with

manifestly gauge-covariant quantities. The three-field equations of motion are:

ormo-eV, TA, + qYs Tid )b =0 (1)
[(p-eSA)  + ] =-9 [§, v T ¥] \4-2)
FZ'A,A - Pr* ID,\ Ay = e/z [fp-' YFLP] (4.3)

vhere T = (') (1 +’T'3> and S =

&)
o
)

00 C-

o
-L
&

In the succeeding development § will be used to denote the meson coordinate,

Tl the photon coordinate, and

Y x!) = Y,A"T“S(X—X')S(q— X') (4.4)

The equation obeyed by the one-nucleon Green's function is
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(Yp+m)G = (-9 fr(s)6(5)aE + efY(q)G(q)c\'] (4.5)

wher_e
G(n) = t((wx)_g‘g(xf)/\(n))f) € (x-x') | (4.6)

and is not a gaﬁ.ge covariant quantity. The corresponding gauge covariant

kernel 159

G = KW FE)AM)DE (x-X') - w7

- L SAMYP TN ), > e (x-x')
= G6M)- GAN)

Introducting (G°(n) into (4.5) one obtains

(tp+m)G = [ -q[¥()G(3)d3 +efi()GE()dn .8)
relfvmamanG

[t(p-eTA) + m]G=1-9f¥®GE)T +efr@)G (n)dy .9

in which form the gauge invariance of the equation is clearly exhibited.

? The structure of Gc( q) arises naturally using the variational definition

of Schwinger. We shall henceforth denote < A () simply by A(Y ).
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: c
Proceeding as before, the kernels G(¥ ) and G (Q ) obey the

equations:

(ymem)6 (3)=iqfr@)e(3's)dT — iefvy () G(9'E) dn’

(e m) G (1) = iq (¥ GS(s)dE'-ie [y G(n'n ) di

(4.10)

(L.11)

where TTP = Fﬁ,— e 71/\F and the covariant photoproduction and Compton

kernels are

G(£') = G(¥'n) - { Aln) G (3')

Gc(q’q): G—(q"])—(A(Vﬂ G—C(q’) -0 /-\(V)') G<(n)
—TAMANG

respectively. The meson-nucleon scattering, photoproduction and Compton

‘scattering functions further obey the equationslo

(Tem)G(3'5)= G(5'8)-q fx(z")e(z“s'ﬁ&g‘h e (M GE(n1 5 5 )dy" |
(T rm) G E) = - ¥ @) G5 ' )d5" ve JY(p) G (9" ' £) dn"

(XTHm)GC(V]"]): qc(']"?)"ﬂ YX(i')GC(Elq'q)A§I+e f!(q")@c(q"v)'ﬁ) dV) 0

10 These equations have also been obtained by M, Neuman by using the

variational derivative techniques. (Private communication.)

(4.12)

(4.13)

(L.14)

(L4.15)

(4.16)
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with definitions for qc(q'q) Gc(n," g’g)) Gc(r)" rl’g) and G° (\') ! d ' d, )
analogous to (4.12) and (4.13).

In cutting off the infinite set of ecuations, it is necessary to
. decompose the higher meson and photon Green's functions in a gauge-invariant
manner, that is, break them up into products of gauge-invariant quantities.

Thus in the first approximation we set

GEEE)EGGE'E) 5 G°(1'E)= o ; GMN)Z GG (y'n)  wan

Eliminating G (¥) = and G'c(q ') in (4.9) via (4.10) and (4.11) one
obtains an equation for G,v involving G (§’§) , gc (r)' V’)) and

= (Y'IT + m )—' . Neglecting vacuum polarization effects, the equation

ror G(0') = G5 (')

PG (1) -G M) =80 S y'=n)  Gae
where q, = -t a/ar),“ The equation for § (g' £) win be considered in
connecti.on with the next approximation.

In the second approximation, the production kernels of equations

(L.14) to (4L.16) are decomposed:

G ( " 3! g) 6(5“)(}(5 §> + symm, terms - (4.19)

G (n'T'E) =6 (w)e(z z) + Gq (" £'g) (4.20)
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G("9'g) = G(E)G, (7" ") - | 420yt

(4.22)

GE(M"0'7) = G(1") GE(n') + symn. kerms

By the use of. E;;va, (4.10) and (4.11), the production kernels (4.19) to (4.22)
may be expressed in terms of scattering kernels, which when substituted into
(4.14) to (4.16) yield three equations coupling the meson-nucleon scattering,

photoproduction and Compton scattering Green's functions:

G(g 5) :G (E'f) —¢ 60‘ )/(5“)60 Y(Em (f”f zmz ) g(; ”_{ ) G'(?’”f}]d?’dj
a (4.23)
4.23

+1ec}f6 ( (e Gy ¥ (n") [:g E”Z)G (n"g') + Q(.i”§ G© (q'"f)]dg"dq'“
FefGEY(MG (1 E'E) 6 ay’

! " " " (L. )
G (')= -iq*feEviz") G, ¥§“)Q(§"§)G ()'8")d5'd e

+ ie%S‘G:Y(zu)GOC Y(')") q (Enz) GOC g:(,)n n\) d3 ”dq"
+1eq (GEY(P)GEY (3')GE(1" ) G (3'8) dE'd '
._a ‘S‘GC N g ( SNE —'Aelz j‘Goc Y(')“)G.,CY('}"')QE(Q"')'> Gc(qmg)

- The term vinvolvin‘g 9° ( N " Q'Z > is absent, since we have explicitly

neglected vacuum polarization. This type of kernel describes the two-

photon decay of the neutral meson,
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G=()= 6 G(n') + ieq G v (") GV (T)GE(E'0')Gi(n"n) we2s)
+ieq[ G X (") GV (3) G (5'7) G (0" ') dndE

_et fGSY(q n) GQC Y (r]'") Gc'(qm»r),} qg (V)" n ) O‘V]“ d")m
et {GEY M) GEY (1) G ) G5 (4" ) aw’ dn”
I£ renains to evaluate g(i i') and CJ c( n 3 3') . Starting witb equation

(4.2) we obtain

+}43q{§ §> S(§§+165<({k Af)}¢(§)¢ )>(l+20)
e g? <(A(§ A (2') $(z )¢(§>) >

Introducing the notation S (E, l") =S % ( g- q) and the covariant

derivative Er = hr -e S Ar‘ s (L4.26) may be written in the form

(R*+ 1) G(¥'8) = 5 (3-8)+e g{g(qy)’E}qc(g,ﬂ)‘d(%@zn

‘+' et [s(nE) S(y T)G(E'En" n)dndy:



UCRL-2529

Similarly

(R*+ 1) G (g'En) = = ie [ {5 (1 7) & JG° (R )dyt

+iet [ (1'8)S(n ) G (£'5n" ')

Keeping terms of order e only, the above quantities satisfy the equations

(R*+ p)Q(T'E) = $(3'-3) (1.29)
(R*+ p)G (2'5) = —ie  {S(1'8"), R} G (52 )Golqn) 3

To lowest order in e (4.23) to (4.25) become

G(¥8)= GG (TD)-ig"[6S Y (1ESV(8) [G.(£'5) G (5"E) ()

‘+ qo (3"¢' >G(§m§>] di"di"'

GC(V\IE).'-‘-L%zJG:Y(gm)GoCX(gu) qo (gulg) GC(EIIV)1> df”dim
| ] (L.32)
+:ecjf6,, V(£ )Gy ( )g (8"8) G¢(n"q +:e3§6°¥(q” YGE ¥ (3") g(q"q G(i"?)

+l€a gG X(i" q (‘g'l zul) {S(q"i"’ g(zmi q (q ’]) G
6‘:(7?’7): G q:’(q/q)+ Le% fG;Y(q")GOC Y(z;) [GC(E/')')CJ:(V?” r)} (4.33)
+ G (1) GEl )]

-ie? 65 Y () GS Y () (CEGI M IGE () + GE Gy )Gs (47n) |
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It should be noted that a knowledge of the meson-nucleon scattering Green's
function is required for the solution of the photo-production equation, and
the latter for the nﬁcleaerompton effect. - Since the equations are gauge
covariant one may of course choose any gauge, in particular the usual Lorentz

gauge.
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V. CONCLUSION

In the preceding sections an attempt has been made ﬁé outline a procedure
for obtaining a closed set of covariant equations describing meson processes
in an approximate fashion. The approximation does not depend for its validity
on the weakness of the coupling between the meson and the nucleon fields, but
rather on the correctness of the conjectured form of the highest order Green's
function appearing in a subset of the rigorous equations. More explicitly,
since any subset of the rigorous equations correctly describes the whole theory,
a knowledge of the Green's function containing the highest number of variables
in such a set allows one in principle to calculate any physical procéss,v The
approximation made is to assume that one of the mesons in the highest Green's
function does not interact with the remaining meson-nucleon structure. The
successive approximations allow more and more mesons to'intpract closely with
the nucleon. Although it seems mathematically impossible at this stage to
prove convergence, the scheme appears reasonable in view of the fact that
highly-multiple meson production is not observed experimentally. K

A remark should be made on the consistency of the decomposition scheme.,
The rules for making the breakup apply only to the first Green's function that
is not treated rigorously. The question arises whether the equations containing
the higher Green's functions are then consistent. It can be shown that to make
them so, one must make the same physical assumptions in these equatioﬁs as aré
implied by the original breakup. For example, if the decomposition (2.14) is
substituted into (209), consistency isfzgtained provided one assumes
65T = G( Z")Q., (2'3) . Comparison with (2.16) shows that this term

b

appears there along with two other terms which give rise to meson-nucleon
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scattering. The latter, however, must be neglected in accordance with the
assumptions leading to (2.14), namely that no meson-nucleon scattering be
allowed,

The neglect of vacuum polarization effects in the low energy region
‘seems reasonable. For high energies, however, one might expect the incident
meson to interact mainly with the meson cloud around the nucleon, and hence
‘polarization effects would predominaﬁe, It is possible to rearrange the
equations so that these effects are more explicitly exhibited, while the
direct wmeson-nucleon interaction is deermphasized.

Unlike the approximation in the Tamm-Dancoff method, the number of
mesons and pairs present is not limited to a fixed number. This is due
mainly to the covariance of the approach, which allows the "bending back!
of nucleon lines in timelz. The covariance allows as a conseguence a
preservation of the symmetry in meson indices of the Green's functions, with
the resulting inclusion of equal numbers of crossed and uncrossed graphs in
‘the same approximation. There is, of course, the serious practical drawback
of having to solve inhomogeneous four-dimensional equations for the Green's
functions rather than three-dimensional wave eruations; on the other hand the
boundary conditions are clearly defined when dealing with the kernels.,

In order to get a qualitative feeling for the equations, we have
examined the problem of TTf— P scattering in the second approximation in

a Very crude fashion. Eq. (2.18) was simplified‘by neglecting vacuum

12
The scheme resembles more closely a Tamm-Dancoff procedure in "proper

time",
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polarization and dropping terms which yield only self-energy contributions to
the .external linesBo Rewriting the integral equation in momentum space, an
ansatz was made that the solution be expressible in terms of a product of the
lowest order perturbation expression times a slowly varying function, which
could be taken out of the int.egrallh° The resulting algebraic equation was
solved for the slowly varying function which was found to be expressible in
terms of the second ordér mass and vertex operators. Substitution of this
result into Eq, (2.17) yielded an expression for the meson-nucleon Green's
function° In this particular case, a perturbation theory renormalization of
the second order mass and vertex operators gave the same result as a term-by-
term renormalization of the perturbation solution of (2.18) followed by the
"glowly varying approximation® applied to the resulting finite residue which
was then resunmed. With a coupling constant gz/hﬂ' ~ 1-3 the low
energy data may be fitted roughly. However no particular emphasis should be
placed on this result since it is by no means clear that the first step of
such an iteration procedure approximates the true solution, or even that the

iteration converges,

13

These contributions were assumed to renormalize the masses and Green's

functions on the outgoing lines.

14
This may be viewed as the first step of an iteration procedure. Thus if

the solution obtained below is written as Gl(f ) = G,(X )fy where f3
is the slowly varying function, then the next ansatz would be

G2(§) - Gl(i)fg where now f, is to be taken out of the integral.,
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The renormalization used in the above example is basically unsatisfactory
due to its limited applicability. In addition, it is questionable whether the
renornalizations of the external line513 are consistent with those carried
out on the approximate solution of the integral equation. The general problem
of renormalizipg_the entire approximation scheme is being investigated by the
authors in collaboration with Dr. S, Bludman. .

It is a pleasure to acknowledge stiﬁulating discussions with
Drs, J. V. Lepore and M. Neuman. This work was performed under the auspices

of the Atomic Energy Comunission,
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FIGURE CAPTIONS

The first three Green's functions with the time orderiﬁg arranged

so that a minimum number of lines occur at a given time,

Schematic representation of Green's function couplings. The dashed
boxes show the kernels included for one, two, and three "thick lines"

respectively,

Some of the lower order diagrams included in the third approximation.
The corresponding "ecrossed" diagrams also appear as the Green's

function is symmetric in the meson variables.
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