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                                                         ABSTRACT 

Formation anisotropy should be incorporated into the analysis of controlled source 

electromagnetic (CSEM) data because failure to do so can produce serious artifacts in the 

resulting resistivity images for certain data configurations of interest. This finding is 

demonstrated in model and case studies. Sensitivity to horizontal resistivity will be strongest in 

the broadside electric field data where detectors are offset from the tow line. Sensitivity to the 

vertical resistivity is strongest for over flight data where the transmitting antenna passes directly 

over the detecting antenna.  Consequently, consistent treatment of both over flight and broadside 

electric field measurements requires an anisotropic modeling assumption. To produce a 

consistent resistivity model for such data we develop and employ a 3D CSEM imaging algorithm 

that treats transverse anisotropy. The algorithm is based upon non-linear conjugate gradients and 

full wave equation modeling. It exploits parallel computing systems to effectively treat 3D 

imaging problems and CSEM data volumes of industrial size. Here we use it to demonstrate the 

anisotropic imaging process on model and field data sets from the North Sea and offshore Brazil. 

We also verify that isotropic imaging of over flight data alone produces an image generally 

consistent with the vertical resistivity.  However, superior data fits are obtained when the same 

over flight data are analyzed assuming an anisotropic resistivity model.   

mailto:ganewman@lbl.gov
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                                                               INTRODUCTION                                                                                                        

 New geophysical technologies can be combined with established seismic methods to 

improve the characterization of reservoir fluids is situations of practical interest. One technique 

that has emerged in the last several years utilizes low frequency electromagnetic (EM) energy 

(less than 10 Hz) to map variations in the subsurface electrical resistivity of offshore oil and gas 

prospects (Constable, 2006; Eidesmo et al., 2002; Ellingsrud et al., 2002, MacGregor et al., 

2006). In the marine controlled source electromagnetic (CSEM) measurement technique a deep-

towed electric dipole transmitter is used to excite a low-frequency electromagnetic signal that is 

measured on the sea floor by electric and magnetic field detectors, with the largest transmitter-

detector separations exceeding ~15 km. EM data have been shown to be highly sensitive to 

changes in the pore fluid types and the location of oil and gas accumulations, given that oil and 

gas are far more resistive than brine or water. The CSEM technique therefore has the potential to 

extract valuable information on reservoir fluid and rock properties that may not be sensed 

directly by seismic methods. The technique has been used to interrogate down to reservoir depths 

as deep as 4 km, but benefits from structural information from seismic imaging to help delineate 

bulk reservoir and surrounding geologic structure (cf. MacGregor et al., 2007).   

 Tompkins et al. (2004) and Tompkins (2005) recognized the importance of electrical 

anisotropy in the interpretation of CSEM data and this result may be anticipated from 

measurements made in deviated wells. Horizontally layered sedimentary sequences often arise in 

oil and gas exploration and can exhibit transverse anisotropy on a macroscopic scale; a scale 

much larger than individual sedimentary layers. Transverse anisotropy is the simplest case to 

model (cf. Newman and Alumbaugh, 2002).  Fortunately this corresponds with many situations 

encountered in actual geological basins where CSEM measurements are made for hydrocarbon 
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exploration. While it is possible to treat the more general form of the problem, where the 

formation anisotropy is modeled as a tensor with six independent elements (cf. Weiss and 

Newman, 2002), geological formations are frequently horizontally layered or nearly so and  the 

anisotropy can be described by independent vertical and horizontal resistivities. While there are 

cases where anisotropy is not vertically transverse, and do not conform precisely to this scenario, 

vertical anisotropy still represents a significant improvement over an isotropic modeling 

assumption. Moreover, CSEM measurements may preclude the ability to map generalized 

anisotropy because of limited data coverage and acquisition geometry. Whether they can is an 

area of future research and is outside the scope of this paper.                                          

 Anisotropy can have a profound effect on CSEM measurements and its affect depends 

strongly upon acquisition geometry. The study of electrical currents in a double half-space by Lu 

and Xia (2007) is illuminating. Their model consists of an upper half-space that is isotropic (the 

sea water) and a lower half-space exhibiting transverse anisotropy (the sea bed). Vertical current 

flow, and hence vertical resistivity, has a much stronger impact on over flight electric field 

measurements (null coupled data excluded); over flight data correspond to the case where the 

CSEM tow line is over the detector. However, broadside measurements where the measuring 

antenna is offset from and parallel to the tow line are far more sensitive to horizontal currents 

and hence the horizontal resistivity of the sea bed.        

 Large-scale 3D imaging is also receiving considerable attention in the interpretation of 

CSEM data, (Commer et al. 2008, Commer & Newman 2008, Carazzone et al.  2008 and 2005, 

Gribenko and Zhdanov 2008, Plessix and Mulder 2008, Plessix and van der Sman, 2007 and 

2008, Zach et al. 2008). While one-dimensional (1D) modeling and inversion is relatively easy 

and trial and error 3D forward modeling seemingly straight forward (Hoversten et al. 2006; 
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Weiss & Constable 2006, Green et al., 2005), the need for 3D imaging is necessary as the search 

for hydrocarbons now increasingly occurs in highly complex situations where hydrocarbon 

effects are subtle aspects of the total offshore geological environment. Further complicating 

matters is the realization that electrical anisotropy also needs to be incorporated directly into the 

imaging process (Newman and Commer 2008; Carazzone et al. 2008; Jing et al. 2008). Failure to 

properly treat anisotropy can produce misleading and sometimes un-interpretable results when 

broadside data is included. Merely excluding broadside data detecting antennas is frequently an 

issue when 3D coverage is desired.         

 In this paper we introduce a 3D imaging approach that treats transverse anisotropy, which 

appears to be relevant for many practical exploration scenarios. We employ it to study the 

imaging of electrical anisotropy in synthetic and field data set examples.  The algorithm is based 

upon non-linear conjugate gradients and full wave equation modeling and is an extension of an 

algorithm designed for 3D isotropic media (Commer and Newman, 2008). It exploits parallel 

computing systems to effectively treat large-scale 3D imaging problems and CSEM data 

volumes of industrial size.  

                                                 THE IMAGING FRAMEWORK    

 In setting up the 3D imaging frame work, we employ finite difference (FD) 

approximations to Maxwell’s equations in the diffusive approximation for computing predicted 

data and cost functional gradients.  The imaging problem is solved using a non-linear conjugate 

gradient scheme based upon a regularized least-squares approach implemented on parallel 

computing systems. Many of the details of the 3D imaging approach adopted in this paper have 

been published elsewhere for the isotropic case (Commer and Newman, 2008 and Newman and 

Boggs, 2005). Extension to treat media exhibiting transverse anisotropy is not difficult and we 
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provide a short discussion of the methodology here and in the appendix. For further technical 

details, we refer readers to the above mentioned works.  

 We seek to minimize the error functional 

 

                     = ½ {D(dp - dobs)T*{D(dp - dobs)} + ½ h {Wmh}T{Wmh}+ ½ v {Wmv}
T{Wmv}.                (1) 

 

T
*
 denotes the transpose-conjugation operator and dobs and dp

 the observed and predicted CSEM 

data, consisting of n complex values of electric and magnetic fields at the detectors. A diagonal 

weighting matrix, D, is incorporated into the error functional to help compensate for noisy 

measurements. Stabilization terms also appear in (1) and are designed to treat media exhibiting 

transverse electrical anisotropy. Parameterization of anisotropic electrical conductivity is made 

on a Cartesian grid, where horizontal and vertical values are assigned to m cells; note that 

conductivity is the reciprocal of resistivity.  Solution stabilization is achieved by reducing the 

model curvature in three dimensions in the minimization process. To do this, we employ a FD 

approximation to the Laplacian (
2
) producing a roughening matrix W. W acts on both the 

horizontal and vertical conductivity values mh and mv, which are bounded using log or 

hyperbolic transformations. The regularization parameters, h and h control the amount of 

smoothing admitted into the model for the two different conductivities. 

 In modeling transverse anisotropy an additional constraint is often imposed: mh ≥ mv. 

The inequality is strictly valid for the case of thin vertical stacked layers that can be modeled as a 

parallel-serial circuit to electrical current flow in the horizontal and vertical directions. While it 

is possible to enforce this inequality in the minimization of (1) with the parameterization 

                                                                mv = α mh ; 0 ≤ α ≤ 1,            (2)                                   
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we do not in the results reported here. Geological formations while often layered may not be 

sufficiently thin for (2) to hold in general. Moreover, unlike well logging problems where 

measurements can be designed to sense variations in thin stacked layers along a well, CSEM 

measurements are made on the sea bed at a remote distance from such layering. They are not 

capable of distinguishing thin vertical variations in layering at the same resolution that can be 

recognized from induction logging. Nevertheless, for the problems discussed in this paper we 

find equation (2) holds to a high degree even when the constraint is not explicitly enforced.     

                                                       

MODEL STUDY 

Before presenting any field cases, model studies can yield important insight in 

interpreting the experimental results and serve to properly set expectations. We consider a simple 

model to illustrate the key features in imaging data influenced by transverse anisotropic media. 

Since the CSEM method is designed to map resistors we present models and imaging results that 

follow in the form of electrical resistivity instead of conductivity. The model shown in Figure 1 

represents a simple reservoir model of 50 .m isotropic resistivity. Its host medium exhibits 

transverse anisotropy, where horizontal (h) and vertical (v) resistivities are 0.65 and 2 .m, 

respectively. The sea water resistivity is isotropic (0.3 .m) and its depth is slightly more than 

one kilometer. The model also exhibits a flat sea bottom, no bathymetry.                               

 Data acquisition geometry consists of ten sail lines, spaced at 1 km (Figure 2), where the 

transmitter transmits at 100 meter intervals along each sail line at three frequencies, 1.25, 0.75 

and 0.25 Hz. Twenty five sea bottom detectors on a uniformly sampled grid at 1 km are also 

shown. These detectors sample the horizontal electric fields in the orthogonal directions, Ex and 

Ey; while magnetic data is also recorded with field measurements it has been our experience they 
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offer little more information content than what is present in the electric fields and will not be 

used here. Both inline data (the null coupled data arising from detector antennas perpendicular to 

the sail line are discarded) and broadside data are present. For computational efficiency we 

employ reciprocity where the detectors become computational transmitters and the transmitters 

the computational receivers. Numerical tests have demonstrated that the requirements of 

reciprocity are met to a satisfactory degree by the finite difference scheme used.  Exploiting 

reciprocity results in 150 computational transmitters and 211,200 computational detectors.  

 In generating the synthetic data, we employed a much finer grid, 201
3
 nodes (cell size 50 

m), than used in the imaging experiments. Three different simulation grids were employed in the 

imaging, corresponding to 51
3
, 81

3
 and 101

3
 nodes and assigned to frequencies 0.25, 0.75 and 

1.25 Hz. The respective cell sizes for the simulation grids are 200, 125 and 100m and are adapted 

to source frequency to meet the spatial sampling requirement of 4 grid nodes per skin depth. 

These grids are assigned to each computational transmitter depending upon frequency and are 

used to compute predicted data and simulate fields within the medium. The grid used to render 

the image is finer than the simulation grids, 120
3
, nodes. Separation of the imaging grid from the 

simulation grids results in significant speed up in the computations. Interested readers are 

referred to Commer and Newman (2008) and the appendix for more details on the grid 

separation approach.           

 Five percent Gaussian noise was added to the data and data amplitudes below an assumed 

noise floor of 1x10
-13

 were discarded. Data weighting was based on amplitude of each data 

component to insure that long offset data would make meaningful contributions in the error 

functional. In selecting the regularization tradeoff parameters, h  and v, we did not enforce 

directionally dependent smoothing on the model. Larger tradeoff parameters produce smoother 
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images at the expense of an increase in the data fitting errors and smaller tradeoff parameters the 

opposite. Choice of the regularization parameters is dictated by the data noise and is optimally 

carried out using a cooling approach, where initially large tradeoff parameters are selected and 

then systematically reduced until the data fit to the expected noise. This can lead to multiple 

inversion runs at considerable cost. For purposes here, we tested several values, settling on 

tradeoff parameters that were fixed to a value of 0.25. 

We carried out imaging of the data using two types of measurements, over flight and 

broadside data together and over flight data only. This choice in considering two types of data is 

influenced by findings that broadside data with detectors parallel to the tow line is more sensitive 

to horizontal resistivity, much more so than over flight data (Commer et al., 2008). Using an 

isotropic starting model of 1 .m for the sea bed, anisotropic imaging results for both inline and 

broadside data are shown in the left panels of Figures 3 and 4 in cross section and in plan views. 

Enhanced resistivity of the reservoir zone is indicated in the vertical resistivity. Moreover, 

horizontal and vertical resistivities of the host medium are also captured within the sensitivity 

footprint of measurements. Footprints for vertical and horizontal resistivity illumination 

correspond to bowl like structures; outside the illumination footprint there is little to no change 

in the resistivity from the starting model.  These structures extend to several kilometers depth 

over the center of the tow lines and are more clearly rendered when the horizontal and vertical 

resistivity are plotted as a ratio (see Figure 5). The anisotropic imaging results show that 

treatment of both over flight and broadside data renders sharper images than using data acquired 

only in the over flight mode. However, the over flight data produces a better depth estimate of 

the reservoir. This result arises because the imaging process was allowed to continue out to 250 
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iterations, compared to 100 iterations for the broadside and over flight data (see Figure 6). 

Improved depth resolution is observed as the problem is iterated.  

Failure to image the reservoir is clear, when inline and broadside data are treated 

assuming isotropic media. Rapid resistivity variations down to several hundred meters below the 

seafloor are observed, below which a low resistivity feature, several hundred meters thick is also 

indicated. Resulting data misfit (the data component part in equation 1) is unacceptably large 

(see the top plot in Figure 6) indicating the modeling assumptions are inadequate to image the 

data. Inspection of the data fits shows that the cause for this poor result is due to the broadside 

data, specifically arising from detectors oriented parallel to the tow line. It confirms findings 

obtained from isotropic imaging of field data discussed below. Because inline broadside data are 

very sensitive to horizontal resistivity, failure to include anisotropy in the imaging process can 

produce disastrous image artifacts. However, the problem can be reduced by imaging only the 

over flight data. The result is illustrated in the right panels of Figures 3 and 4. While still inferior 

to anisotropic imaging enhanced resistivity is clearly associated with the reservoir. Thus over-

flight data are not that sensitive to horizontal resistivity, but rather to vertical resistivity, and can 

be imaged using an isotropic model. Image artifacts near the sea bottom remain, though. Data 

misfit is also much better in this case than when both broadside and inline data are imaged 

assuming isotropic media (compare the corresponding top and bottom plots in Figure 6).  

Results from this model study can be summarized as follows. With CSEM data, 

sensitivity to horizontal resistivity will be strongest in the broadside data with detectors parallel 

to and offset from the tow line and isotropic imaging assumptions can produce serious artifacts.  

While it is possible to image vertical resistivity with over flight data and still extract useful 
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information assuming an isotropic model, optimal results require full treatment of anisotropic 

media within the imaging process.  

  FIELD EXAMPLES 

Two field examples will now be presented. It is outside of the scope of this paper to carry 

out a complete appraisal analysis of images produced from field data. Such an analysis requires 

multiple inversions using different assumptions of data noise and weighting, regularization 

tradeoff parameters and starting models. Tradeoffs between vertical and horizontal resistivity are 

certain to arise in the image process. The nature of these tradeoffs is difficult to quantify without 

a thorough appraisal study. Therefore our aim is more modest. It is to demonstrate that consistent 

anisotropic resistivity models can be produced that fit the observations better than with isotropic 

models and to confirm findings from the model study.  When features of the resistivity models 

can be verified with independent information, we will do so. Encouragingly, critical features of 

these models can be confirmed.       

Troll Field            

 CSEM data acquired over the Troll West Gas Provence (TWGP) has been used to vet 

isotropic imaging algorithms developed by various researchers (cf. Commer and Newman 

(2008), Plessix and Mulder (2008), Li et al. (2008), among others). Here we will use the data to 

verify results thus far developed from the model study for anisotropic media. The gas reservoir is 

located offshore of Norway in the North Sea. A single 25 km long sail line crosses over the 

reservoir with 24 CSEM electric field detectors spaced along 12 km of the line, over the gas 

field. The transmitter is towed in an over flight profile mode, at an average of 25 m above the sea 

floor. Sea water depth varies from 300 to 360 m over the sail line. Following Commer and 
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Newman (2008) bathymetry effects are assumed to be minimal and ignored in the analysis. Data 

at two frequencies were used, 0.75 and 0.25 Hz.  Simulation meshes employed for the two 

frequencies are based on skin depth estimations, as discussed earlier. A separate simulation mesh 

is assigned to each source in practice and is adapted to the source and receiver positions and their 

corresponding offsets. The meshing is summarized in Table 1 along with the imaging mesh. We 

also employed the same type of data amplitude weighting and the noise floor assumptions for the 

field data as was done in the model study and by Commer and Newman’s (2008) earlier 

investigation. Vertical and horizontal regularization tradeoff parameters were fixed at 0.1 and are 

also based upon the tradeoff parameter that was used in the analysis of the Troll data that 

assumed an isotropic resistivity model.  Additional details on the Troll survey logistics and the 

setup of the imaging experiment can be found in Johansen et al. (2005) and Commer and 

Newman (2008).   

 Figure 7 compares imaging results for anisotropic and isotropic media along with an 

interpreted geological section published by Johansen et al. (2005), based principally on well log 

and seismic data. Both isotropic and anisotropic (vertical resistivity) clearly image the gas field 

and correspond closely with the geological section. Even though we failed to achieve the target 

misfit of one (Figure 8), the anisotropic inversion produced a model that yields much data fits 

and a lower misfit error. Sensitivities to both horizontal and vertical resistivity variations are 

observed and it appears that the isotropic imaging attempts to merge these disparate resistivities 

into a single image. It is tempting to assign the low resistivity features to horizontal resistivity 

variations, but a detailed appraisal study is needed to make a determination. These features could 

also arise from tradeoff between vertical and horizontal resistivity parameterization as well as 

from stabilization/regularization employed in the imaging.  Down to one kilometer depth, below 
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the sea bed, we observed much less variation in the vertical and horizontal resistivities than in 

the isotropic case; at the sea floor we observed resistivity variations for both isotropic and 

anisotropic cases. We believe this to be caused by detector positioning errors, as well as high 

sensitivity in the imaging to near sea bottom resistivity variations.  Anisotropic imaging of the 

Troll data shows intriguing and consistent results. Even in the over flight mode, lower data 

fitting errors are observed compared to isotropic imaging of the data.  

 Campos Basin           

 The Campos Basin, located off-shore of Brazil is a known oil and gas province with 

ongoing production. In 2004, a first of a kind 3D CSEM survey was carried out to better quantify 

the hydrocarbon potential over part of the basin.  Analysis of the Campos Basin data including 

the broadside measurements without taking anisotropy into account produced serious image 

artifacts (Commer et al., 2008). It was demonstrated that inline broadside electric field data were 

particularly sensitive to horizontal resistivity and could not be interpreted with an isotropic 

model. Carazzone et al. (2008) presented 3D anisotropy imaging results of Campos Basin data. 

With the treatment of anisotropy, 3D imaging of the electric field data produced interpretable 

results. Here we will review the findings of these works, focusing on the importance of 

anisotropy in the imaging process.         

 The Campos Basin data was acquired using ten sail lines at 5 km intervals (Figure 9), 

resulting in data acquisition from nearly 1 million transmitter sites using three frequencies, 1.25, 

0.75 and 0.25 Hz.  Twenty three detectors were deployed on the sea floor on a 40 x 40 km
2
 grid. 

Horizontal grid sizes employed in the imaging mesh were kept constant at =250 m and vertical 

meshing varied from 40 to 200 m in depth. Thus the total number of nodes employed in the 

meshing 403 nodes along x and y, and 173 nodes vertically, and corresponds to 27.8 million 



13 
 

cells.  Horizontal meshing for field simulation was designed upon the criteria that from each 

computational source midpoint, ten skin depths were spanned assuming 2 Ω.m resistivity for the 

sea bed. Grid sizes varied with frequency, =250 m, 200 m and 125m, according to frequency 

f=0.125 Hz, 0.25 Hz and 0.5 Hz, respectively. Vertical meshing for simulation was identical to 

that in the image mesh to account for an accurate representation of the seafloor bathymetry. With 

these considerations size of the simulation meshes were reduced significantly; the number of x 

and y grid nodes range from 128 to 162. Solution accuracy was also verified against solutions 

where simulation and imaging meshes were identical.     

 Both over flight and broadside electric field data were imaged from this experiment using 

a fixed tradeoff parameters, h =0.025 and v =0.025 and   =0.25 for the isotropic case. A 

detailed 3D starting model was constructed from forward modeling of the data. In order to 

preserve key features of the starting model in the imaging process it was necessary to avoid 

setting the regularization parameters too large. Large parameters smooth out the resistivity 

image. We also avoided making them too small to insure for a stable image. Data weighting 

employed were based on the amplitude of the total electric field at each computational detector 

to reduce the sensitivity of weakly coupled data in the inversion process. Again reciprocity 

processing was used to reduce the number of computational transmitters. All three components 

of the electric field were included in the data analysis. Shown in Figure 10 are data fits for 

isotropic and anisotropic modeling assumptions along selected profiles. The isotropic results 

presented by Commer et al. (2008) show it is possible to fit the over flight data, as well as 

broadside perpendicular and vertical data as the problem is iterated, but not the broadside data 

arising from the detectors parallel to the tow line (inline components). A systematic fitting error 

is observed with broadside inline data displays, which does not dissipate as the problem is 
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iterated. This indicates a bias in the underlying assumptions employed in the image processing. 

However, with an anisotropy model both over flight and broadside inline data can be fit. These 

results confirm that the broadside data, particularly the inline detector components, are quite 

sensitive to the horizontal resistivity, and other data components to the vertical resistivity.  

  Commer et al. (2008) showed that the resistivity images created by the isotropic media 

produced strong data-acquisition overprints, particularly near the sea floor and other non-

geological effects proceeding to significant depths (this resistivity image is shown in Figure 11). 

Subsequent modeling by Commer et al. (2008) also confirmed that improved broadside data fits 

(inline data) could be achieved by considering the medium that exhibits transverse anisotropy. A 

complete anisotropic inversion of the data was carried out by Carazzone et al. (2008). As 

expected, anisotropic resistivity imaging eliminated the problems observed with the isotropic 

resistivity assumptions. While the resistivity interpretation by Carazzone et al. (2008) did not 

directly reveal hydrocarbons, they demonstrated many correlations between the resistivity and 

seismic images which high graded the hydrocarbon potential. Shown in Figure 12, is a vertical 

resistivity transect across a known hydrocarbon reservoir with the seismic image superimposed. 

The combined image shows three interesting features. Anomaly A points to a resistivity 

enhancement associated with a known oil field below a seismically imaged fault. At anomaly B, 

the resistivity enhancement is associated with a possible trap, above a salt diaper with 

stratigraphic pinchouts and faulting. Lastly, anomaly C shows a possibility of conductive brine 

leaking up from deeper salt. While salt is considered resistive, brines originating from it can be 

conductive.  Such brines can be buoyant and rise from depth because of dissolved gas.       
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                                                               CONCLUSIONS 

The algorithm introduced in this paper has been designed to treat 3D resistivity media 

exhibiting transverse anisotropy. Within the stated modeling assumptions, this algorithm is 

sufficiently general and can treat large scale imaging problems and industrial size data volumes 

critical for 3D CSEM resistivity imaging.  There are also several extensions to the algorithm 

worth mentioning. Joint imaging of CSEM and magnetotelluric (MT) data has much appeal as 

MT data acquisition comes at little additional cost and can significantly improve resolution of the 

resistivity image (cf. Commer and Newman, 2009). Our approach to imaging 3D transverse 

anisotropy is easily extended to a joint imaging framework for CSEM and MT data. In fact we 

have already implemented it.  Extension to treat 3D media exhibiting generalized anisotropy is 

also possible, but will require six resistivity estimates per image cell.  We doubt that all six 

parameters can ever be resolved given the additional number of degrees of freedom, but future 

research on the problem may prove otherwise.  The results from the Campos Basin study are 

encouraging in this regard. Clearly the anisotropy present is not strictly transverse given how salt 

and faulting has distorted the geological bedding planes, yet a transverse anisotropic resistivity 

model is sufficient to fit the data and has resistivity features that are geologically consistent with 

well information and seismic imaging results.  Perhaps the description of the resistivity with 

horizontal and vertical resistivity is sufficient here because the model is represented by cell 

values on a grid. Since the cell size is much smaller than the skin depth, the modeled anisotropy 

at the skin depth scale is quite general. 

Case and model studies confirm the importance of electrical anisotropy in imaging 

CSEM data.  The presence of anisotropy can be confirmed when over flight and broadside 

electric-field measurements are found to be inconsistent with an isotropic resistivity model. 
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Electric field data acquired in the broadside configuration using inline detectors are particularly 

sensitive to horizontal resistivity. High sensitivity to vertical resistivity is observed for over flight 

electric field data and broadside vertical and perpendicular data to some extent.  Isotropic 

imaging using such data can yield meaningful results with respect to vertical resistivity 

(broadside measurements omitted) since there is less sensitivity to horizontal resistivity 

variations. Nevertheless, we find that anisotropic imaging of these data produces superior results 

as measured by better data fits and more consistent resistivity models.   
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APPENDIX 

3D CSEM INVERSE MODELING: TREATING TRANSVERSE ANISOTROPY 

 

    Minimization of (1) is carried out using a non-linear conjugate gradient scheme, with a 

line search to control the model step. Typically only three to four solutions of the forward 

modeling problem for each transmitter and excitation frequency are necessary to obtain the 

model update. This iterative scheme is ideal for large scale data sets and imaging volumes that 

typically arise for CSEM type problems. Solution for isotropic media has been developed by 

Commer and Newman (2008) and Newman and Boggs (2005). Here we will discuss 

modifications to the above mentioned approach for media exhibiting transverse anisotropy.  

Large computational demands arise in solving realistic 3D CSEM field simulation 

problems. In solving such problems we employ finite-difference approximations over a 

simulation mesh because of their simplicity and accuracy.  Now the simulation mesh, Ωs, is not 

required to be identical to the mesh, Ωm, employed for the inverse modeling. Hence, significant 

computational efficiencies can be realized when the meshes are different for large-scale 

problems (cf. Commer and Newman, 2008). Solution of the forward problem is obtained through 

a sparse linear system of equations,  

                                                                KE=S.                                                       (A1) 

It is solved using iterative Krylov methods (cf. Newman and Boggs, 2005). K is a sparse 

complex symmetric matrix with 13 non-zero entries per row. E is the electric field sampled on 

the mesh using a staggered grid (Yee, 1966) and S is the field sourcing term, with Dirichlet 

boundary conditions imposed in (A1). 
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This matrix equation is a discrete representation of the operator 

 

                                  ∇ × ∇ × 𝐸𝑠 + 𝑖𝜔 𝜇𝑜  σ 𝐸𝑠 =  − 𝑖𝜔  𝜇𝑜(σ - 𝜎𝑏  ) 𝐸𝑏 ,                                 (A2) 

where 

                            σ =    

𝜎ℎ 0 0
0 𝜎ℎ 0
0 0 𝜎𝑣

      and    𝜎𝑏  =    

𝜎ℎ
𝑏 0 0

0 𝜎ℎ
𝑏 0

0 0 𝜎𝑣
𝑏

  .                              (A3) 

 

Equation (A2) is a 3D vector equation for the scattered electric field arising in conductive media 

exhibiting transverse anisotropy. It assumes a time harmonic dependence of  𝑒𝑖𝜔𝑡 , where 𝜔 

represents angular frequency and 𝑖 =  −1.  The electrical conductivity, σ, is described by a 

tensor, where 𝜎ℎ  and 𝜎𝑣 denote the conductivities in the horizontal and vertical directions; 

magnetic permeability,  𝜇𝑜 ,  is assumed to be that of free space.  We prefer a scattered field 

solution to the field equations over a total field, because of accuracy issues, particularly in the 

vicinity of the transmitter. In a scattered-field formulation we are also required to specify a 

background electric field, 𝐸𝑏 . Thus the total electric field is given by 𝐸 = 𝐸𝑏 + 𝐸𝑠  . Here we 

have selected a background field arising from 1D layered media that also exhibits transverse 

anisotropy, 𝜎𝑏 .  The background field can be easily and quickly computed from Hankel 

transforms. Once the electric field is determined from equation (A1), the magnetic field follows 

from Faraday’s law by numerically approximating the curl of the electric field at the various 

nodal points and interpolating these fields to the points of interests. In a scattered field 

formulation, background fields will need to be added to the interpolated fields to yield the total 

fields.  
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 Following Commer and Newman (2008), the inversion unknowns 𝐦𝐡  and 𝐦𝐯  belong to 

Ωm, and a mapping is required from Ωs to Ωm in computing the gradient of equation (1). This 

gradient is used for updating the conductivity model in the inversion process using the non-linear 

conjugate gradient scheme previously mentioned. Consider the data component of the gradient, 

∇φ
d
 𝐦𝐡,𝐦𝐯 , which involves only the first term in equation (1),  

                                   ∇φ
d
 𝐦𝐡,𝐦𝐯 = −𝑅𝑒{(𝐃𝐉T) D(d

p 
- d

obs
)
* }                                            (A4) 

The above expression requires the Jacobian matrix, which we split into horizontal and vertical 

components based on horizontal and vertical conductivity sensitivities: 

                                                          𝐉 =  
𝒋ℎ

𝒋𝑣
  .                                                                           (A5) 

Here specific elements are given by 

                                 𝑗𝑗𝑘
ℎ =

𝜕𝑑 𝑗
 𝑝

𝜕𝑚 ℎ𝑘

     and      𝑗𝑗𝑘
𝑣 =

𝜕𝑑 𝑗
𝑝

𝜕𝑚 𝑣𝑘

  j=1,…,N  ; k=1,…,M   ,                        (A6) 

with N and M representing the number of data points and inverse modeling cells. In terms of the 

electric field on the simulation mesh, Ωs , the Jacobian elements can also be expressed by  

                                                              𝐽𝑗𝑘
ℎ = 𝒒𝑗

𝑇 𝜕𝑬

𝜕𝑚 ℎ𝑘

                                                               (A7) 

and 

                                                             𝐽𝑗𝑘
𝑣 = 𝒒𝑗

𝑇 𝜕𝑬

𝜕𝑚 𝑣𝑘

,                                                                (A8) 

where 𝒒𝐣 is a column vector for the jth data point that maps the electric field solution on Ωs  to the 

detector location. Next differentiating (A1) with respect to 𝑚ℎ𝑘  and 𝑚𝑣𝑘  we have 
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𝜕𝑬

𝜕𝑚 ℎ𝑘

= 𝐊−1(
𝜕𝐒

𝜕𝑚 ℎ𝑘

 −  
𝜕𝐊

𝜕𝑚 ℎ𝑘

𝐄)                                                 (A9) 

and 

                                                  
𝜕𝑬

𝜕𝑚 𝑣𝑘

= 𝐊−1(
𝜕𝐒

𝜕𝑚 𝑣𝑘

 −  
𝜕𝐊

𝜕𝑚 𝑣𝑘

𝐄).                                                (A10) 

Using the chain rule we can express equations (A9 and A10) in terms of the conductivities on the 

simulation mesh, where  

                               
𝜕𝑬

 𝜕𝑚 ℎ𝑘

= 𝐊−1( 
𝜕𝐒

𝜕𝜎ℎ𝑙
 

𝑃(𝑘)
𝑙=1

𝜕𝜎ℎ𝒍
𝜕𝑚 ℎ𝑘

 −  
𝜕𝐊

𝜕𝜎ℎ𝑙
 

𝑃(𝑘)
𝑙=1

𝜕𝜎ℎ𝒍
𝜕𝑚 ℎ𝑘

𝐄)                                (A11) 

and   

                               
𝜕𝑬

𝜕𝑚 𝑣𝑘

= 𝐊−1( 
𝜕𝐒

𝜕𝜎𝑣𝑙
 

𝑄(𝑘)
𝑙=1

𝜕𝜎𝑣𝒍

𝜕𝑚 𝑣𝑘

 −   
𝜕𝐊

𝜕𝜎𝑣𝑙
 

𝑄(𝑘)
𝑙=1

𝜕𝜎𝑣𝒍

𝜕𝑚 𝑣𝑘

𝐄)                                 (A12) 

The summations are over conductivity cells on the simulation mesh that overlap cell k on the 

modeling mesh (Figure 13). For the kth model (inversion) cell, we have P(k) and Q(k) horizontal 

and vertical conductivities overlapping from the simulation mesh.  For the isotropic case, 

Commer and Newman (2008) provides and explicit formula for 
𝜕𝜎𝑙

𝜕𝑚 𝑘
  based upon a material 

averaging scheme of Moskow et. al. (1999). Extension to media exhibiting transverse anisotropy 

is straight forward, with material averaging for horizontal and vertical conductivities each done 

separately. Computational efficient forms for the gradient (the data part) follow by substituting 

equations (A11 and A12) into equations (A7 and A8), followed by substitution into equation 

(A4). Note we never explicitly form 𝐊−1 or the Jacobain when evaluating the gradient. For 
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computational efficiency an adjoint state method is exploited. We refer the reader to Newman 

and Boggs (2005) for further details.  

TABLES 

_____________________________________________________________________ 

Grid          Number of cells                x                 y                 z 

m              125 × 41 × 59                 250               250               100  

                                                       𝑥
𝑚𝑖𝑛 /𝑥

𝑚𝑎𝑥      𝑦
𝑚𝑖𝑛 /𝑦

𝑚𝑎𝑥     𝑧
𝑚𝑖𝑛 /𝑧

𝑚𝑎𝑥       f(Hz) 

_____________________________________________________________________ 

 𝑠
1                85 × 41 × 85              125/250          250/250        25/200            0.25 (f 1)                     

 

 𝑠
2               110 × 43 × 85              75/125           125/250        25/200            0.75 (f 2) 

_____________________________________________________________________ 

 

 

Table 1. List of model and simulation grids for the Troll data inversion. m and  𝑠
1 and  𝑠

2 

correspond to the modeling mesh and the two simulations meshes designed for frequencies 0.25 

and 0.75 Hz. Grid sizes are in meters. 

 

FIGURE CAPTIONS 

Figure 1.  Shown is a simple 3D model to illustrate the key features in imaging data influenced 

by transverse anisotropy.  

Figure 2.  The data acquisition geometry consists of ten sail lines, spaced at 1 km. Twenty five 

sea bottom detectors are shown and the projection of the reservoir is indicated by the dashed 

square. Different measurement configurations are also illustrated. 

Figure 3. Images cross sections of the test model assuming isotropic and anisotropic media 

directly over the reservoir, y=0 km. The left column consider both over flight and broadside data. 

Those on the right are images based only on over flight data.  
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Figure 4. Illustrated are images depth sections at 1 km of the test model data assuming isotropic 

and anisotropic media. The left column consider both over flight and broadside data. Those on 

the right are images based only on over flight data. 

Figure 5. Cross-sectional ratio plots of horizontal (h) to vertical (v) resistivity of the test 

model, directly over the reservoir, y=0 km. Plots are based upon inline and inline plus broadside 

data illustrated on a log scale. They were generated from the anisotropic imaging results of 

Figure 3. A value 0.33 corresponds to the correct ratio for the background. Ratios near one 

indicate there is little change from the starting model, and consequently the recovered model has 

little to no sensitivity to the data at these image points.   

Figure 6. Convergence plots for isotropic and anisotropic media. The top plots shows the data 

misfits plotted against inversion iteration for broadside and over flight data. Ideally, the target 

misfit is one assuming that noise in the data is Gaussian. The lower plot is only for over flight 

data. Note also that number of iterations used for anisotropic imaging differs in the two plots.  

Figure 7. Imaging results for the Troll field. The top part of the figure is the interpretation 

published by Johansen et al. (2005) based on well log and seismic data. The middle and lower 

panels shows the isotropic and anisotropic CSEM imaging results.  

Figure 8. Convergence plots for isotropic and anisotropic media for the Troll data set.  

Figure 9. Shown are the layout of the sail lines and twenty three sea bottom detectors, indicated 

by the plus symbols, for the Campos Basin CSEM survey. The bathymetry is in meters below sea 

level with a contour interval of 50 m. Data acquired at the embolden detector, shown closest to 

the upper right hand corner of the plot, is used to illustrate the data fitting errors for broadside 

and over flight data in Figure 10 along sail lines RC06 and RC07. 
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Figure 10. Plotted are data fits to over flight data (line RC07) (left, (a) isotropic and (c) 

anisotropic) and broadside inline data (line RC06) (right, (b) isotropic and (d) anisotropic).  Data 

acquired at the emboldened detector and the plots are projected along the x axis (see Figure 9). 

The observed data are plotted in black, the predicted data at iteration 72 in green, and the 

predicted data for the starting model in red. Data correspond to a frequency of 0.125 Hz. The 

anisotropic starting model uses a vertical resistivity identical to that used in the isotropic 

imaging. However, the horizontal resistivity was set to one third the vertical resistivity below the 

water bottom.     

Figure 11. Shown is the average resistivity computed over three depth ranges assuming an 

isotropic medium. The figure is from Commer et al. (2008) and shows (a) average resistivity 

from the water bottom to 500m depth, (b) depth interval 500 to 1500 m and (c) 2,500 to 2,500 m. 

Resistivity is rendered on a base 10 log scale.  

Figure 12. Rendered at the top is the average vertical resistivity map from 500 to 2500 m below 

the seafloor, superimposed with sail lines used to acquire the Campos Basin data. Also shown 

are lease block boundaries outlined in violet and known hydrocarbon deposits (black contours). 

The cross-section at the bottom shows the vertical resistivity image along the indicated transect. 

The EM image is shown together with seismic reflection horizons. Results presented by 

Carazzone et al. (2008). 

                                                                                                                                               

Figure 13. Concept of separate model/inversion and simulation grids is illustrated in two 

dimensions. The dashed grid corresponds to the model/inversion mesh 𝑚  and the solid grid to 

the simulation mesh  𝑠. Field simulation on a staggered grid requires that the electrical 

conductivity be sampled at the edges of the simulation grid; illustrated here is the case for 𝜎ℎ . 
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The zone outlined in red corresponds to the averaging area on the modeling grid from which 𝜎ℎ  

is to be computed on the simulation grid using Moskow et al. 1999, aggregation formula, shown 

at the top of the figure. 
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Figure 3. 
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Figure 4. 
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Figure 7. 
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Figure 8. 

 

 

 

 

 

 

 

 

 

 



37 
 

 

Figure 9. 
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Figure 10. 
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Figure 13. 




