
UCLA
UCLA Electronic Theses and Dissertations

Title
Systematic Characterization of Tauopathy-Associated Genetic Risk Loci using Multiplexed 
Reporter Assays

Permalink
https://escholarship.org/uc/item/5r9077tg

Author
Cooper, Yonatan

Publication Date
2021

Supplemental Material
https://escholarship.org/uc/item/5r9077tg#supplemental
 
Peer reviewed|Thesis/dissertation

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/5r9077tg
https://escholarship.org/uc/item/5r9077tg#supplemental
https://escholarship.org
http://www.cdlib.org/


UNIVERSITY OF CALIFORNIA 

Los Angeles 

 

 

 

 

Systematic Characterization of Tauopathy-Associated Genetic Risk Loci  

using Multiplexed Reporter Assays 

 

 

 

A dissertation submitted in partial satisfaction of the 

requirements for the degree Doctor of Philosophy 

in Human Genetics 

 

by 

 

Yonatan Cooper 

 

 

2021 

 

 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

© Copyright by 

Yonatan Cooper 

2021



 ii 

 

ABSTRACT OF THE DISSERTATION 

 

Systematic Characterization of Tauopathy-Associated Genetic Risk Loci  

using Multiplexed Reporter Assays 

 

by 

 

Yonatan Cooper 

Doctor of Philosophy in Human Genetics 

University of California, Los Angeles, 2021 

Professor Daniel H Geschwind, Chair 

 

The widespread adoption of genome-wide association studies (GWAS) has 

revolutionized the detection of genetic loci associated with complex traits. However, the majority 

of common susceptibility loci reside in poorly annotated noncoding genomic regions and are 

composed of many correlated polymorphisms due to linkage disequilibrium, obscuring 

identification of the causal variants and mechanisms underlying trait association. Thus, the 

functional annotation of noncoding variation is a major impediment to interpretation of genetic 

risk. Massively Parallel Reporter Assays (MPRA) are a novel experimental approach for the 

high-throughput functional characterization of noncoding genetic variation, yet remain to be 

systematically applied to any neurologic disorder. In this dissertation, I utilize MPRA to 
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characterize variation associated with two neurodegenerative disorders that share tau-protein 

neuropathology, Alzheimer’s disease and Progressive Supranuclear Palsy. 

 First, I describe the design and implementation of an MPRA to screen 5,706 noncoding 

variants derived from three GWAS for AD and PSP, identifying 320 regulatory polymorphisms 

comprising 27 of 34 tested loci. These results enable subsequent identification of novel putative 

risk genes including PLEKHM1 and APOC1 distributed across the complex 17q21.31 and 

19q13.32 regions. In Chapter 3, I show that functional predictions from four popular 

computational algorithms for variant prioritization are discordant both with MPRA results and 

each other. In Chapter 4, I find that MPRA-defined functional variants preferentially disrupt 

predicted transcription factor binding sites that converge on enhancers with differential cell-type 

specific activity in PSP and AD, implicating a neuronal SP1-driven regulatory network in PSP 

pathogenesis. These analyses support a novel mechanism underlying noncoding genetic risk, 

whereby common genetic variants drive disease risk via their aggregate activity on specific 

transcriptional programs. In Chapter 5, I perform genome editing to validate four causal loci, 

identifying C4 as a novel genetic risk factor for AD. Finally, in Chapter 6, I interrogate technical 

parameters relevant to assay performance, aiding future studies. Taken together, this work 

represents a comprehensive characterization of common genetic risk associated with AD and 

PSP and implicates variants, genes, and transcriptional regulatory networks that represent novel 

risk factors for neurodegenerative tauopathies.  
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CHAPTER 1 

 

Introduction: 

Functional annotation of noncoding variation and neurodegenerative disease genetics 

 

 

Can you tell me, Socrates, whether virtue is acquired by teaching or by practice; or if neither by 
teaching nor practice, then whether it comes to man by nature, or in what other way? 

PLATO: MENO 
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Understanding the heritability of complex traits  

Although popularized into its modern formulation by Sir Francis Galton 1, “The Nature 

vs. Nurture” debate has captured the human imagination for millennia. This maxim summarizes 

a fundamental question in biology: To what extent do genetic or environmental factors determine 

observed phenotypic variance? This question is more formally encapsulated by the concept of 

heritability, defined respectively as the proportion of trait variance in a population arising from 

either total genetic variation (H2; broad-sense heritability) or additive genetic variation (h2; 

narrow-sense heritability) 2. Heritability is a population parameter that can be estimated using a 

variety of schema. Traditionally this has included comparing trait correlations between 

monozygotic and dizygotic twins 3, or computing regression coefficients of offspring against 

parental phenotypes, as exemplified by Galton’s classic example of hereditary stature 4. In cases 

of artificial or natural selection, such as in agricultural settings, h2 is the regression parameter 

relating the selection response to the selection differential over multiple generations (breeder’s 

equation; R = h2*S). Finally, trait heritability can be computed with either known pedigrees or 

genetic kinship matrices using linear mixed models to compute variance components while 

accounting for known fixed effects 5. 

 Heritability estimation has many downstream applications, informing cross-trait 

comparisons, artificial selection programs, and power for gene-mapping studies 2. However, 

understanding the causal, mechanistic underpinnings of genotype-phenotype relationships 

requires elucidating genetic architecture. This is defined as the number of loci associated with a 

given trait, as well as the joint distribution of allelic frequencies and effect sizes within these loci 

6. The Genome-Wide Association Study (GWAS) - a modern gene mapping approach - has 

rapidly proliferated due to the development and plummeting costs of genotyping and sequencing 
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technologies over the last 15 years. GWAS employ strategically located genetic markers as well 

as linkage disequilibrium (LD) - the inherited patterns of correlation between genetic variants – 

to efficiently survey variation across the genome in large population cohorts 7. While assayed 

variants are typically common (MAF > 1%), new reference panels, deep imputation, and 

increased sample sizes have enabled characterization of rarer variation (MAF > 0.1%) 8.  GWAS 

has proven remarkably successful: as of April 2021 the NHGRI-EBI GWAS repository catalogs 

more than 254,000 variant-trait associations across more than 4,000 studies 9. Additionally, 

Whole Genome Sequencing and Whole Exome Sequencing studies have identified millions of 

rare and structural polymorphisms across rapidly expanding case-control cohorts 10. 

 Nevertheless, the biological interpretation of gene-mapping studies remains non-trivial. 

GWAS survey sets of genomic markers, termed tag-SNPs, chosen for their correlations (i.e. 

linkage disequilibrium) with larger groups of unmeasured variants. In this way, GWAS does not 

identify causal variants, as any given association between tag-SNP and trait may actually be 

indirectly detecting the true causal association of another correlated variant in the LD block. 

Even when considering sufficiently dense genotyping or imputation, the lead (most significant) 

SNP may not be the causal variant, due to the presence of multiple causal variants in LD, low 

power, or other technical factors 11. Thus, the exploitation of LD in GWAS proves a double-

edged sword, aiding discovery power, but hindering interpretability. Underlying causal variants 

are obscured by the many correlated polymorphisms within loci 7, the majority of which are 

expected to be functionally neutral 12. Additionally, the majority of variants from GWAS and 

NGS studies are identified in noncoding regions and maintain unclear functional relationships to 

putative target genes. Even more vexing, it is uncertain which cell or tissue types genetic risk 

might be acting through 7,13 (Challenges summarized in Table 1-1). While there are noteworthy 
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examples of careful mechanistic validation for individual loci, such as identification of a C4A 

copy number variant underlying the MHC-region association in schizophrenia 14, such work is 

not feasibly scalable. Thus, at present there is a massive imbalance between identification and 

biologically interpretation of trait-associated loci and genetic variation. Therefore, the 

functional interpretation of genetic variation, particularly noncoding variation, is one of 

the major challenges facing modern genetics. Below, I will outline current strategies for 

annotation and prioritization of noncoding variation, emphasizing methodological advantages 

and drawbacks. I will then introduce Massively Parallel Reporter Assays, a novel approach for 

functional characterization of noncoding variation.   

Challenge Exacerbating Variables Methodological Solutions 

Is the variant causal? 

 

Linkage disequilibrium 

Low power/ small effect sizes 

Genotyping / imputation failure 

Fine-mapping 

Deep imputation with improved 
population reference panels, 
increased sample sizes 

Is the variant functional? Same as above 

Uncertain function of noncoding 
genome 

Prioritization algorithms 

Functional genomic annotations 

Genome editing/ in vitro modeling 

MPRA 

Which gene is regulated? Gene dense regions 

Strong LD 

Complex 3D genomic architecture 

QTL colocalization 

3D interactome assays 

Genome editing/ in vitro modeling 

Which cell-type mediates risk? Trait in heterogenous tissue, or 
unclear causal organ system 
 

Gene dense regions 

Heritability enrichment by cell-type 

Transcriptomics/Proteomics 

Genome editing/ in vitro modeling 

Table 1-1. The major challenges in interpreting noncoding loci and variants identified in GWAS 
and NGS studies. Proposed methodological solutions to address these challenges are also 
displayed.  
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Interpretation of noncoding genetic variation using functional genomic maps 

 Noncoding genetic variation is assumed to primarily function by directly or indirectly 

influencing gene expression (Figure 1-1). Therefore, an efficient and simple prioritization 

strategy is to overlap variants with functional genomic annotations. These annotations are 

identified through empirical assays leveraging next generation sequencing to query DNA regions 

enriched for specific biochemical modifications (called “peaks”) known to correlate with 

regulatory activity. This includes methods to identify DNA accessibility (DNase-hypersensitivity 

15 and ATAC-seq 16), DNA methylation, histone modifications (Histone ChIP-seq) 17, 

Transcription Factor Binding (TF-ChIP, HT-SELEX, PBM 18), or direct assessments of 

transcriptional activity (GRO-seq 19, PRO-seq 20, CAGE 21). Large-scale consortium initiatives 

including NIH Roadmap 22, ENCODE 23, IHEC 24, and FANTOM5 25 catalog multiple such 

marks across many cell-lines and tissues, and are an invaluable public resource. Moreover, the 

development of computational tools including ChromHMM 26 and Segway 27 that integrate 

multiple annotations across tissues provides higher resolution genomic segmentation and more 

refined descriptions of transcriptional regulatory states. Other tools, including RegulomeDB 28 

and HaploReg 29, integrate pre-existing or user defined marks to directly prioritize GWAS 

variants. Similarly, functional maps are leveraged by a number of computational algorithms and 

machine learning methods for functional variant prediction (discussed in Chapter 3). 

Conceptually, functional variation could act within regulatory regions to modify binding of 

transcriptional complexes (TFBS disruption), by modifying the chromatin architecture directly 
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(ex. hQTL, meQTL), or some combination of both (Figure 1-1).  

 

Figure 1-1. Functional mechanisms of transcriptional regulatory variants. Shown is an example 
trait-associated locus identified by GWAS. The underlying causal variant is in tight linkage with 
the tag-SNP and is in a noncoding regulatory genomic region. The alternate (T) allele might 
function by disrupting a binding site for a key transcription factor and directly impacting gene 
expression. The variant might also change chromatin structure to indirectly influence expression, 
including through histone modifications and DNA accessibility (hQTL), 3D chromatin looping, 
or CpG methylation status (meQTL). 
 
 The mechanistic relevance of functional genomic annotations to gene regulation and 

variant prioritization is supported by the strong statistical enrichment of GWAS variation within 

these regions 30,31. This has been observed repeatedly, using both simple enrichment tests (such 

as binomial tests 32) and more sophisticated regression-based approaches such as stratified LD-

Score Regression 33–35, fgwas 36, or GARFIELD 37. In addition, partitioning of polygenic risk can 

be used to characterize tissue or cell-type specific enrichment. For example, polygenic risk 

influencing platelet volume and count was enriched within open chromatin for CD34+ precursor 

cells, as expected 36. Such work begins to illuminate the cell-types mediating genetic risk and is 

especially relevant for traits affecting multiple tissues or heterogenous organs like the brain 38.  
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Nevertheless, functional genomic maps are subject to a number of limitations. First, 

peaks are relatively broad and lack the nucleotide-level resolution to disambiguate closely spaced 

variants 39. Second, existing functional maps are a static snapshot and may not recapitulate 

critical demographic, disease, or environmental -specific states, nor dynamic stimulus- induced 

regulatory changes 40,41. Moreover, such maps are often derived from immortalized cell-lines or 

bulk tissues, and are difficult to obtain from rarer cell-types, though single-cell epigenomic 

studies 42 as well as cross-tissue imputation strategies 43 attempt to rectify this. Third, intergenic 

regulatory elements and the corresponding GWAS variation they contain require assignment to 

relevant target genes. This can be addressed through integration with QTL and expression data 

(discussed below), as well as functional maps of 3D genetic architecture. Modern iterations of 

chromatin conformation capture, including CHIA-PET, Hi-C, and Hi-ChIP enable genome-scale 

characterization of the chromatin interactome, physically linking regulatory regions with cognate 

genes 44,45. A classic example is the obesity-associated variant rs9930506 located within an 

intron of FTO, which was found to interact and regulate IRX3 located 1.2 Mb away 46. Such 

studies generally highlight that regulatory regions such as enhancers interact with the nearest 

genes approximately 40% of the time, and often have complex one-to-many and many-to-one 

interaction relationships 47,48. However, these techniques are limited by kilobase resolution, 

moderate sensitivity, and a current lack of comprehensive cell-type and state-specific studies. 

Finally, and most critically, overlap of GWAS variation with regulatory annotations does not 

prove causal relationships. Overlap does not necessarily imply functional disruption of 

regulatory elements or dysregulation of gene expression.  
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Colocalization with Quantitative Trait Loci for variant prioritization 

 Quantitative Trait Loci (QTLs) map associations between genotypic variation and 

quantitative phenotypes, most commonly gene expression (eQTLs) due to the low cost and 

robustness of transcriptomic measurement. As causal noncoding GWAS variation is expected to 

regulate gene expression, it is intuitive to interpret GWAS loci through colocalization with 

eQTLs 49 . Indeed, GWAS variants are significantly enriched for eQTLs compared with 

background variation 50. A simple method for integrating GWAS and eQTL data is to simply 

assess overlap between the two. However this leads to a large proportion of false positives due to 

LD, considerable genomic pleiotropy, and because a large proportion of variants are eQTLs 

(estimated at 48%) 51,52. This motivated the development of statistical methods including 

COLOC 53, enloc 54, and eCAVIAR 55 that formally test whether two overlapping association 

signals share common causal variants. These approaches were initially used for fine-mapping 

and gene assignment for lipid, insulin, and glucose related traits. Large scale eQTL resources, 

including the Genotype Tissue Expression project 56,57 that curates 54 tissues from 938 individual 

donors, have greatly facilitated GWAS interpretation. The PsycheENCODE 58, AMP-AD, and 

Common Mind Consortium provide brain specific resources 59.  

 An alternative approach to QTL colocalization is the transcriptome wide association 

study (TWAS), which directly correlates changes in gene expression with downstream traits 60. 

Because it is prohibitive to directly measure gene expression from tens of thousands of 

individuals, a key insight was to leverage eQTL panels to impute gene expression onto GWAS  

datasets, either for individual-level data 61 or using summary statistics 62. By collapsing 

association testing down to thousands of genes rather than millions of SNPS, TWAS reduces the 
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multiple-testing burden to increase statistical power. Power is also increased in cases of allelic 

heterogeneity by integrating multiple causal signals into a single expression effect 60.  

 QTL integration and colocalization provides key advantages in interpretation of GWAS 

loci. Unlike overlap with genomic annotations, QTL analysis provides the relevant target genes 

(or relevant quantitative trait). Moreover, integrated colocalization and fine-mapping approaches 

provide statistical measures of shared causal mechanisms at loci. However, QTLs at present 

suffer from a number of limitations, most critically in regards to the reference panels used. Even 

the largest databases, such as GTEx, have only a few hundred individuals per condition, resulting 

in suboptimal discovery power. In line with this observation, the PsychENCODE consortium 

required ~1400 samples to nearly saturate discovery of protein-coding eGenes in bulk brain 

tissue 58. With the exception of blood, most QTL databases use bulk tissues, which are 

dominated by the most abundant cell-type, which is problematic in heterogenous tissues 63. 

Similarly, there are a dearth of trait or stimulus specific QTLs, and such data would be difficult 

to generate.  

 

Massively Parallel Reporter Assays enable direct functional characterization of diverse 

genomic features 

 The vast majority of GWAS variation and partitioned trait heritability is contained within 

the noncoding genome, the biological interpretation of which has undoubtedly benefited from the 

large-scale generation of functional genomic maps across multiple tissues and cell-types 64. 

However, such maps are often discordant and fail to overlap functional regulatory elements or 

variants. For example, a recent analysis in K562 cells found little genomic overlap between 

multiple different enhancer annotation methods, and found that only a small percentage of 
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GWAS and eQTL variation (including curated causal variants) overlapped any given enhancer 

mark 65. Additionally, experimental characterizations of predicted enhancers find that between 

30-46% are transcriptionally active 66,67, which taken together suggests that a large proportion of 

enhancers are both miss-specified and undetected. Similarly, at present QTL studies remain 

underpowered, in-line with the observation that only 26% of GWAS loci are explainable by 

colocalization with eQTLs 68. These limitations underscore the need for direct and high-

throughput functional characterization of noncoding genetic elements and variation within 

relevant biological contexts, and motivated the development of a diverse set of experimental 

approaches known as Massively Parallel Reporter Assays (MPRA). MPRA involves the 

construction of a synthetic library containing a large collection of genomic elements each paired 

with a reporter gene and a unique, genetically encoded barcode. These libraries are delivered to 

cell-lines or tissues of interest, and the functional effects of library elements are assayed through 

the multiplexed measurement of barcoded reporter transcripts using next generation sequencing 

69. This method has enabled regulatory characterization of diverse sets of genomic features 

across a variety of biological contexts.  

 The earliest MPRA iterations were developed to test the transcriptional activity of 

enhancers 68,70–72 . In these assays, putative enhancer elements drive expression of a barcoded 

reporter gene, and transcriptional activity is assessed as the normalized count of uniquely 

barcoded transcripts deriving from each element. There are a variety of assay designs, for 

example: enhancer elements placed upstream of a minimal promoter vs. in the 3’ UTR (STARR-

seq 73, suRE 74,75), enhancer DNA obtained via microarray synthesis, PCR 76, or genomic DNA 

capture 77,78, and episomal vs. integrating assays 79,80 . These assays have been used to 

successfully screen for enhancer activity 69, repressive elements 81, or differential activity across 
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a diverse array of prokaryotic and eukaryotic cell types 70–72,82 . Packaging libraries within viral 

delivery platforms, including Adeno-Associated Viruses (AAV) 78 and Lentivirus 79,83 have 

broadened the available cellular contexts to include difficult primary cell lines such as neural 

cells 83,84, and in vivo assays in the mouse retina 85 and brain 78. Approaches incorporating 

saturation mutagenesis 86 or tiling of overlapping elements 87 enable elucidation of TF-binding 

logic and nucleotide-resolution sequence specificity. Finally, more recent MPRA iterations probe 

the architecture of other noncoding genomic features such as 5’and 3’ UTRs or splice sites and 

their effects on transcriptional, post-transcriptional, or translational regulation. These include 

MPRA characterization of splicing 88,89, RNA or protein stability 90–92, RNA-editing 93, and 

translation efficiency 94. 

 MPRA can also be used to compare transcriptional regulatory effects between alleles, 

though these assays are performed less frequently due to the challenge of measuring small allelic 

effect sizes. In a landmark study, Tewhey and colleagues characterized more than 32,000 

variants associated with LCL eQTLS in K562 cells, identifying ~3400 active regulatory elements 

and 842 expression modulating variants with significant transcriptional skew between alleles. Of 

note, 53 of these were well annotated trait-associated variants 95. Another study assessed 2,756 

variants derived from 75 GWAS loci for red blood cell traits, identifying 32 functional 

expression modifying variants, 3 of which were validated using isogenic genome editing 96. 

Additionally, MPRA has been used to measure allelic effects of variants associated with cancer 

97,98, osteoarthritis 99 , COPD 100, Lupus 101, and neuropsychiatric disorders 102,103 (Table 1-2). 

However, it has not been used to test variation associated with any neurologic disorders. 

Study PMID Trait # Variants  Cell Type 
96 Systematic Functional Dissection of Common 
Genetic Variation Affecting Red Blood Cell 
Traits  

27259154 Red Blood Cells 2,756 K562 
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95 Direct Identification Of Hundreds Of 
Expression-Modulating Variants Using A 
Multiplexed Reporter Assay 

27259153 Lymphoblastoid 
eQTLs 

32,373 K562 
HepG2 

99 Functional testing of thousands of 
osteoarthritis-associated variants for regulatory 
activity 

31164647 Osteoarthritis 1,605 Saos-2 

97 Systematic identification of regulatory 
variants associated with cancer risk 

29061142 Cancer 10,763 HEK293T 

98 Massively parallel reporter assays of 
melanoma risk variants identify MX2 as a gene 
promoting melanoma 

32483191 

 

Melanoma 832 UACC903 
HEK293FT 

103 Common Genetic Risk Variants Identified In 
The Spark Cohort Support Ddhd2 As A 
Candidate Risk Gene For Autism 

32747698 

 

Autism Locus 98 HEK293T 

102 A Screen Of 1,049 Schizophrenia And 30 
Alzheimer's-Associated Variants For 
Regulatory Potential 

31503409 

 

Schizophrenia 1,049 K562 
SK-SY5Y 

101 Global Discovery Of Lupus Genetic Risk 
Variant Allelic Enhancer Activity 

33712590 Lupus 3,093 GM12878 
 

100 Identification Of Functional Variants In The 
FAM13A Chronic Obstructive Pulmonary 
Disease Genome-Wide Association Study 
Locus By Massively Parallel Reporter Assays 

30079747 COPD 606 Beas-2B 

75 High-throughput identification of human 
SNPs affecting regulatory element activity 

31253979 Human variants 5.9 million K562 
HepG2 

Table 1-2. Studies utilizing MPRA to screen trait-associated human genetic variation. 

 

Neurodegenerative disease genetics: A brief overview 

 Neurodegenerative diseases are a clinically and pathologically heterogenous group of 

disorders characterized by the progressive destruction of nervous system tissues and resultant 

cognitive, behavioral and motor deficits. Genetics has long been understood to play a 

fundamental role in disease etiology. Initial studies examining genetic risk found success 

employing linkage analysis in familial pedigrees of monogenic disorders, exemplified by 

identification of triplet repeat expansions underlying Huntington’s disease 104 and Spinal 

Cerebellar Ataxia type 1 105. This was followed by identification of multiple mendelian risk 

genes converging on single disease entities, most notably association of mutations in APP and 

PSEN1/2 with early onset Alzheimer’s disease (AD) 106, and SCNA and Parkin with Parkinson’s 
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disease (PD) 107. Early identification of mendelian risk genes established putative causal 

mechanisms in turn motivating drug development pipelines. In AD, high-penetrance mutations in 

proteins responsible for amyloid processing resulted in the “amyloid hypothesis” and a variety of 

amyloid reducing therapeutics such as aducanumab 108, which looks to receive FDA approval in 

2021.  

 Nevertheless, the underlying genetic architecture and supervening pathophysiology 

remains complex for the majority of neurodegenerative disorders. For instance, the C9ORF72 

hexanucleotide repeat expansion mysteriously causes FTD in some individuals and ALS in 

others, disorders with shared pathologies yet dissimilar clinical and anatomical manifestations 

109. Similarly, subtle changes in gene dosage can cause profound phenotypic divergence. For 

example, single copy mutations in TREM2 confers significant risk for AD, while homozygous 

loss-of-function results in Nasu-Hakola disease, a rare presenile dementia with bone cysts 110. 

Similarly, loss-of-function mutations in PGRN result in familial Frontotemporal dementia (FTD) 

111, while small reductions in PGRN expression from the common rs5848 polymorphism 

increase risk for AD 112. Lastly, many disorders have complex disease architectures, with 

completely penetrant, rare high-impact, and common variants, all contributing to risk.  

 For many neurodegenerative diseases, including AD, PD, FTD-ALS, and Progressive 

Supranuclear Palsy (PSP), the majority of cases are sporadic, with genetic risk mostly conferred 

by common polymorphisms. Likewise, polygenic risk has a substantial impact on disease 

trajectory even in monogenic disorders such as HD 113. Neurodegenerative disease has a large 

heritable component, estimated at 60-80% in AD for example 114, and our genetic understanding 

has greatly benefited from the GWAS revolution 115–121 (Table 1-3). As expected, GWAS of AD 

and PD (common diseases) benefit from the non-linear relationship between increased sample 
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size and locus-discovery 122.The latest meta-analyses have identified 69 disease-associated loci 

from 111,326 AD (or proxy) cases 116 and 90 loci from 56,306 PD cases117, vs. only 2 loci from a 

study with 3,526 FTD cases 120. The proliferation of GWAS across neurodegenerative diseases 

has provided key mechanistic insights. First, distinct clinicopathologic disorders share substantial 

heritable risk, pointing at shared underlying disease mechanisms 123. Moreover, there seems to be 

shared polygenic risk on the basis of overlapping disease pathology 124, highlighting the 

imprecision of current clinical diagnostics and motivating an expansion of disease categorization 

to include genetic and pathologic features 123. Second, GWAS risk variants and loci enrich within 

biological pathways and cell types. For example, AD polygenic risk implicates metabolic 

function, immune signaling, and microglia, findings that have been subsequently validated by 

functional studies 125,126 .  

 Nevertheless, for many of the reasons described above, the granular functional 

interpretation of most neurodegeneration GWAS loci has remained limited. This is highlighted 

by the MAPT locus, which confers risk for tauopathies including PSP and CBD as well as the a-

synucleinopathy PD 127. How a single locus might confer risk for multiple distinct 

clinicopathologies might be explained by differing underlying causal variants, haplotypes, or the 

influence of additional risk genes mediated by LD, but this remains to be explored (Chapter 2).  

Study PMID Disorder Cases/Controls* Loci 

Identified 

Bellenguez et al. 2020 NA Alzheimer’s disease 111,326/401,577 69 (31 new) 
Nalls et al. 2019 31701892 Parkinson’s disease 56,306/1,417,791 90 (38 new) 

Nicolas et al., 2018 29566793 Amyotrophic lateral sclerosis 20,806/59,804 6 (1 new) 
Chen et al., 2018 30089514 Progressive Supranuclear Palsy 1,646/10,662 5 (4 suggestive) 
Kouri et al., 2015 26077951 Corticobasal degeneration 219/3,750 2 

Ferrari et al., 2014 24943344 Frontotemporal dementia 3,526/9,402 2 
Chia et al., 2021& 33589841 Lewy body dementia 2,591/4027 5 

* Cases for AD and PSP GWAS include proxies  
& Genotyping performed using WGS 
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Table 1-3. Summarizes largest GWAS to date (# cases) for select neurodegenerative disorders. 
 
 

Project goals 

 In summary, neurodegenerative disorders remain one of the most intractable clinical 

problems today. More than four decades of genetic analyses have uncovered a substantial genetic 

contribution to neurodegeneration and provided key insights into causal disease biology. Due to 

recent technical advances, the research community has identified many new degeneration-

associated loci and variants. However, the functional interpretation of this variation has remained 

unclear. Here I will describe the development and application of a massively parallel reporter 

assay to systematically characterize noncoding variation derived from GWAS for two distinct 

neurodegenerative disorders, Alzheimer’s disease and Progressive Supranuclear Palsy. I will pay 

particular attention to two complex haplotypes, 17q21.31 and 19q13.32 that are of particular 

interest to the field, and substantially benefit from empirical functional analysis (Chapter 2). 

Additionally, I will compare MPRA experimental data with existing computational algorithms 

(Chapter 3), and discuss how these data can inform empirical assessments of transcription factor 

binding dysregulation which may play a role in disease pathogenesis (Chapter 4). I will perform 

gold standard validation on a subset of my predictions using genome editing (Chapter 5). Finally, 

I will discuss technical factors and experimental consideration that will aid the design and 

execution of future high-throughput functional approaches (Chapter 6). 
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Abstract 

Predicting functionality of noncoding variation is one of the major challenges in modern 

genetics. I employed massively parallel reporter assays to screen 5,706 noncoding variants from 

three genome-wide association studies for both Alzheimer’s disease (AD) and Progressive 

Supranuclear Palsy (PSP), two neurodegenerative disorders representing significant global 

disease burden. I established the robustness and reproducibility of this approach by finding high 

intra and inter-replicate correlations of predicted variant effects and by confirming enrichment of 

functional genomic annotations within transcriptionally active library elements. I subsequently 

identified 320 functional regulatory polymorphisms (SigVars) comprising putative causal signal 

at 27 of 34 unique tested loci. These predictions were further refined using functional genomic 

annotations from relevant brain cell types to identify 55 high-confidence causal variants. SigVars 

were also found to be enriched within functional annotations enriched within neurons in PSP and 

microglial in AD, confirming that divergent cell types may mediate genetic risk for these related 

disorders. Finally, regulatory variants defined by my screen were used to systematically 

characterize 17q21.31 and 19q13.32, two complex regions harboring extended linkage 

disequilibrium, and nominate novel candidate risk genes in these loci including PLEKHM1 in 

PSP and APOC1 in AD. Thus, the successful prioritization of noncoding regulatory variation 

associated with AD and PSP demonstrates the utility of high-throughput experimental 

approaches in the functional dissection of GWAS loci.   
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Introduction 

Neurodegenerative disorders such as Alzheimer’s disease (AD) and Progressive 

Supranuclear Palsy (PSP) are a major and growing cause of morbidity and mortality worldwide, 

with AD alone expected to impact 135 million individuals by 2050 1. Given the lack of any 

disease modifying therapeutics, there is a significant need for investigation of causal disease 

mechanisms. Sporadic AD and PSP, both known as tauopathies because of the pathological 

deposition of tau in the brains of affected individuals 2, are complex polygenic traits with 

heritability estimates of between 40-80% 3,4. Over the last decade a number of genome-wide 

association studies (GWAS) have identified numerous susceptibility loci 5–12. However, most of 

these loci fall in noncoding regions of the genome and encompass numerous variants due to 

linkage disequilibrium (LD), which has hampered the identification of underlying regulatory 

variants and associated risk genes 13–15. This has posed a particular challenge for the 

interpretation of extended complex haplotypes harboring multiple independent association 

signals such as the H1 pan-neurodegenerative risk haplotype at 17q21.31 that includes the MAPT 

locus 12,16,17, and the AD risk locus at 19q13.32 that harbors APOE  18–20.  

Although a number of statistical fine-mapping approaches have been developed to 

identify causal GWAS variants, these methods perform poorly on underpowered datasets or 

regions of extended LD (reviewed in 21). Similarly, prioritization algorithms that score variant 

pathogenicity by leveraging features such as evolutionary conservation and chromatin 

annotations underperform in noncoding regions of the genome, or are nonspecific 22,23 (Chapter 

3). It is becoming increasingly recognized that functional methods are necessary to identify true 

causal variants within most loci, but the sheer numbers of variants challenge most experimental 

approaches. Massively parallel reporter assays (MPRA) provide a solution, enabling high-
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throughput experimental characterization of the transcriptional-regulatory potential of noncoding 

DNA elements 24–27. In an MPRA, many regulatory elements are cloned into an expression 

vector harboring a reporter gene and a unique DNA barcode to create an expression library that 

is assayed via high-throughput sequencing 24. MPRAs have prioritized functional common 

variation for lymphoblastoid eQTLs 28, red blood cell traits 29, cancer 30, adiposity 31, and 

osteoarthritis 32 (Chapter 1). However, they have not been systematically applied to 

neurodegeneration or any neurologic disorder.  

In this chapter, I describe the design and implementation of an MPRA to characterize 

common genetic variation associated with two distinct neurodegenerative disorders that both 

share tau pathology, AD and PSP. I screen 5,706 unique variants comprising 34 genome-wide 

significant or suggestive loci derived from three GWASs 6,7,10, including a comprehensive 

assessment of disease-associated variants within the 17q21.31 and 19q13.32 regions. I identify 

320 variants with significant allelic skew at a conservative false discovery rate, and find 

enrichment of these functional variants within genomic features associated with transcriptional 

regulation. 

 

Materials and Methods 

Identification of candidate variants 

MPRA Stage 1: I selected all genome wide significant (p < 5´10-8) variants from an AD and PSP 

GWAS 6,10. I then identified all variants with a MAF > 5% in LD (r2 > 0.8) with these variants in 

Europeans (CEU + FIN + GBR + IBS + TSI; 1000 Genomes Phase 3) using the LDProxy tool 

accessed through the LDlink API. I subsequently filtered out indels, multiallelic, and coding 

variants. Both alleles of each variant were centered in 162 bp of genomic context (hg19/37) 



 33 

using the biomaRt (2.44.0) and BSgenome (1.56.0) packages in R (4.0.0) to create oligos. I then 

removed oligos containing KpnI, MluI, SpeI, and XbaI restriction sites needed for library 

cloning, leaving 5,223 total variants. Finally, I appended 5’ 

(CTGAGTACTGTATGGGCGACGCGT) and 3’ (GGTACCGACAAAAGTGTCAACTGT) 

PCR adaptor sequences to each oligo and synthesized the library on an Agilent 15k 210-mer 

array. 

 

MPRA Stage 2: I replicated a selection of 186 variants with significant allelic skew (“SigVars”; 

FDR adjusted q < 0.01) identified in MPRA 1 and 140 negative control variants. For 212 

variants I also created oligos: 1) in reverse complement orientation, 2) with the variant located in 

the bottom third of the genomic context (i.e. 121 bp upstream and 40 bp downstream genomic 

context), and 3) in the reverse orientation (discussed further in Chapter 6). Furthermore, in 

MPRA 2 I attempted to re-assess variants that dropped out of MPRA 1 (defined below). Finally, 

I assessed the lead SNPs from additional significant loci from two AD GWAS 6,7, as well as 4 

PSP genome-wide suggestive loci 10 . LD partners were identified as above, constituting an 

additional 483 variants. The final MPRA 2 library was synthesized in duplicate on an Agilent 

7.5k 210-mer array. All tested loci for both MPRA stages are summarized below in Table 2-1. 

MPRA 1 
GWAS #  Loci 
Lambert et al., 2013 - 
Stage 1 

14 AD loci  CR1, BIN1, CD2AP, EPHA1, CLU, MS4A6A, PICALM, ABCA7, HLA-
DRB1/5, PTK2B, SORL1, SLC24A4/RIN3, DSG2, 19q13.32/APOE 

Chen et al., 2018 5 PSP loci  MAPT/17q.21.31, MOBP, STX6, RUNX2, SLC01A2 
MPRA 2 
GWAS # SNPs 
Lambert et al., 2013 - 
Stage 3 

6 AD 
SNPs 

rs3865444, rs35349669, rs1476679, rs10838725, rs17125944,  rs7274581 

Kunkle et al., 2019 11 AD 
SNPs 

rs12539172, rs3740688, rs17125924, rs12881735, rs3752246, rs6024870,  
rs7920721, rs138190086,  rs593742, rs7185636, rs2830500 

Chen et al., 2018 4 PSP lead 
SNPs 

rs12125383, rs147124286, rs2045091, rs114573015 
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Table 2-1. Loci (MPRA 1) or lead SNPs (MPRA 2) used to identify common variants tested in 
this study. Loci refers to a collection of all genome-wide significant SNPs in a given linkage 
region, annotated to the nearest gene. 
 
Custom MPRA vector design 

 The pAAV-stop-MCS-bGH plasmid was created as follows: The multiple cloning site 

(MCS) and bGH-polyA sequence from the Donor_eGP2AP_RC plasmid (Addgene #133784) 

was cloned into the pAAV.CMV.PI.EGFP.WPRE (Addgene #105530) backbone using NheI and 

SphI restriction sites. To prevent transcriptional readthrough from the AAV ITR, this vector was 

re-cut at the NheI site and the transcriptional insulator element from pGL4.23 (Promega, E8411) 

was inserted using Gibson Assembly 33. The pMPRAdonor2-eGFP plasmid was created by 

cloning the eGFP open reading frame into the pMPRAdonor2 plasmid (Addgene #49353) 

digested with NcoI and XbaI restriction enzymes.  

 

Library construction  

Sequences for primers described below are listed in Appendix A – Supplemental Materials and 

Methods. 

Step 1: I amplified and attached 20 bp degenerate barcodes to the oligo library by emulsion PCR 

(Chimerx, 3600-01). I performed four 50 uL PCR reactions with individual mixtures containing: 

2 pmol of library, 1 uM of barcode_new_F primer, 1 uM of barcode_N_R primer, 200 uM 

dNTPs, 0.25 mg/mL acetyl-BSA (Thermo Fisher Scientific, AM2614), and 2 U of Phusion Hot 

Start II DNA Polymerase (Thermo Fisher Scientific, F549S) in 1X HF buffer. Thermal cycle 

conditions were: initial denaturation for 1 min at 95°C, followed by 20 cycles of 10 sec at 95°C, 

20 sec at 61°C, and 20 sec at 72°C (2.5°C/sec ramp rate), followed by a final extension for 5 min 

at 72°C. Emulsions were broken with butanol, pooled, and purified per manufacturer’s 
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instructions on spin columns. The amplified library and the pAAV-stop-MCS-bGH plasmid were 

digested overnight using SpeI-HF and MluI-HF enzymes and purified using Streptavidin M-270 

Dynabeads (Thermo Fisher Scientific, 65305) or gel purification respectively (28704, Qiagen). 

An 80 uL T7 ligation reaction (NEB, M0318S) containing 200 ng of digested plasmid and 37.7 

ng of library was performed followed by cleanup and electroporation into DH5a 

electrocompetent cells (NEB, C2989K). Transformed bacteria were pooled, serially diluted, and 

plated overnight at 37ºC. Colonies from the dilution plate containing the number of bacterial 

colonies approximating 50-fold library coverage were collected and grown, followed by 

Maxiprep library extraction (Thermo Fisher Scientific, K210016). 

 

Barcode mapping: Sequencing was performed to create a lookup table mapping barcodes to 

oligos. Oligo-barcode sequences were amplified from 2 ng of plasmid using flanking PCR 

primers (BC_map_P5_Rev and BCmap_P7_For) that added P5 and P7 adaptor sequences. 

Amplicons were sequenced by the UCLA TCGB core using an Illumina NextSeq 550 system 

(PE 2x150 bp) using custom Read 1 (BCmap_R1Seq_Rev) and Read 2 (BCmap_R2Seq_For) 

sequencing primers. Reads were merged using the BBMerge tool 34 and barcodes filtered and 

assigned to oligos using a python script. Briefly, reads that did not perfectly match library oligos 

were discarded. Barcodes represented by fewer than three reads were dropped. Ambiguously 

mapped barcodes were then filtered as follows: I bootstrapped an empirical distribution of oligo 

Levenshtein distances (python-Levenshtein 0.12.0) to determine a cutoff score (1st percentile of 

distances). I then discarded barcodes where any pairwise read distance was greater than this 

cutoff score. The MPRA_barcode_mapping.py python script is provided: 

https://github.com/ycooper27/Tauopathy-MPRA.  
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Step 2: The MinP-eGFP fragment was amplified from the pMPRAdonor2-eGFP vector using 

Amp_minPLuc2_For and Amp_minPLuc2_Rev primers and both the plasmid library and 

fragment were sequentially digested using KpnI-HF and XbaI enzymes. These were used in a T7 

ligation reaction containing 200 ng plasmid and 125 ng fragment. The ligation product was 

transformed into DH5a competent cells followed by plasmid isolation. The final library was 

configured with the 162 bp oligo upstream of the minimal promoter and the 20 bp barcode 

located in the 3’ UTR of the eGFP transcript (Figure 2-1). 

 

Massively Parallel Reporter Assay 

MPRA was performed with 6 biological replicates each consisting of ~8 million 

HEK293T cells. I transfected 10 ug of library plasmid per replicate using Lipofectamine 3000 

(Thermo Fisher Scientific, L3000008). 24 hours post-transfection, cells were dissociated, 

pelleted, and washed with DPBS. Replicates were lysed in 1 mL of RLT buffer and 

homogenized using QIAshredder columns (Qiagen, 79654). Total RNA was extracted and eluted 

in 100 uL RNase-free water using an RNeasy Mini Kit (Qiagen, 74104) with on-column DNase I 

digestion (Qiagen, 79254). I then extracted mRNA from 75 ug total RNA per sample using a 

Dynabeads mRNA Purification Kit (Thermo Fisher Scientific, 61006). Residual DNA was 

removed from 1 ug of mRNA using ezDNase (Thermo Fisher Scientific, 11766051) followed by 

reverse transcription using a custom primer (Lib_Hand_RT) and the SuperScript IV First Strand 

Synthesis Kit (Thermo Fisher Scientific, 18091050). RT was performed for 80 min at 52°C. I 

then amplified 10 uL of cDNA in 100 uL PCR reactions using NEBNext Ultra II Q5 Master Mix 

(NEB, M0544S) and Lib_Seq_eGFP_F2 and Lib_Hand primers for either 8 or 3 cycles (MPRA 
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1 and 2 respectively). Likewise, 5 replicates of 25 ng plasmid DNA (MPRA 1) or 4 replicates of 

5 ng plasmid (MPRA 2) were amplified in 50 uL reactions using Lib_Seq_eGFP_F2 and 

Lib_Hand_RT primers. PCR products were purified using 0.6X-1.2X KAPA Pure Beads (Roche, 

KK8000) and then further amplified using P5_seq_eGFP_F2 and P7_Ind_#_Han primers for 7 

PCR cycles to add P5, P7, and unique 8 bp Illumina index sequences. Following SPRI cleanup, 

amplicons were sequenced using an Illumina NextSeq 550 (1x20) or NovaSeq 6000 SP flow cell 

(SR 1x26 cycles) with 5% PhiX spike-in and custom Read 1 (Exp_eGFP_Seq_F2) and Index 

(Exp_Ind_Seq_P) primers.  
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Figure 2-1. Technical schematic for massively parallel reporter assay (MPRA). (A) I selected all 
bi-allelic noncoding genome-wide significant (p > 5´10-8) or locus lead SNPs and LD partners 
(r2 > 0.8) from three GWAS. (B) The reference and alternate alleles of each variant were 
centered within 162 bp of genomic context (hg19) and synthesized on an Agilent array. (C) 
Oligos were amplified by PCR using primers complementary to flanking shared adaptor 
sequences. This step also attached 20 nucleotide random barcodes and restriction enzyme sites. 
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(D) Oligos were digested and cloned into an expression library, followed by paired-end 2x150 bp 
sequencing to map barcodes to associated oligos. (E) A minimal promoter and eGFP gene was 
inserted between the oligo and barcode, with the oligo upstream of the minimal promoter and the 
barcode in the 3’UTR of eGFP. (F) The expression library was transfected into HEK293T cells 
for 24 hours. (G) following mRNA extraction, mRNA and plasmid barcodes were amplified, 
pooled, and sequenced using indexed single-end sequencing. (H) mRNA barcode counts were 
normalized to DNA counts, and the median normalized barcode count was taken as an activity 
summary score for each allele.  
 

MPRA data analysis  

Preprocessing: Raw reads were trimmed to only contain the 20 bp barcode and aligned to the 

previously generated oligo-barcode lookup table to create a barcode count matrix. Barcode reads 

that did not perfectly match were discarded. The MPRA_BC_counter.py mapping script is 

provided: https://github.com/ycooper27/Tauopathy-MPRA.  

 Barcodes were filtered such that at least 1 count had to be detected in every RNA replicate 

and at least 5 counts detected in each DNA replicate (to ensure stability of the log-ratios). A 

pseudocount of 1 was added to each barcode count, which was then normalized to sequencing 

depth to create counts per million reads per replicate (CPM). I then computed log2 RNA/DNA 

ratios for each barcode (DNA = median count across plasmid replicates), which were then 

quantile normalized between replicates using the preprocessCore (1.50.0) package. Variants with 

fewer than 5 unique barcodes for either allele were removed from further analysis.  

 

Oligo activity measurements: To calculate transcriptional activity scores for each 162 bp oligo, 

allele-level summary statistics were computed as the median of the log2 barcode ratios. This 

value was then averaged between reference and alternate alleles to create an activity score for 

each oligo. To determine significance, this activity score was compared to the median activity 

value for the entire library using a one-sample Mann-Whitney-U test (two-tailed; n = 6 
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replicates), which was subsequently adjusted for multiple comparisons. “Active” elements for 

subsequent analyses had an increased RNA/DNA ratio compared with the library median at a 

Bonferonni adjusted p < 0.05 (or FDR adjusted q < 0.01 where described; Benjamini Hochberg 

method). 

 

SigVar calculations: To identify variants with significant allelic skew (SigVars), log2 barcode 

ratios were combined across all 6 replicates by taking the median value.  For each variant, a two-

way Mann-Whitney-U test comparing barcode counts between each allele was used to identify 

allelic skew. SigVars were defined at an FDR threshold q < 0.01 (FDR adjustment, Benjamini-

Hochberg method; further discussed below in Statistical Reporting). MPRA log2 effect sizes 

were defined as the median summed normalized barcode count for the alternate allele - reference 

allele.  

 

Quality control: Intra-experiment barcode reproducibility was defined as the mean pairwise 

correlation of each normalized barcode (RNA/DNA) count across all technical replicates. Allele 

correlation was determined by first finding the median normalized barcode count for each allele 

followed by determining mean pairwise correlation across all technical replicates (Both 

Pearson’s r and Spearman’s rho computed). Between experiment correlations for reference allele 

activity scores and variant effect sizes were also determined for 326 variants replicated in MPRA 

2 estimate inter-experiment reproducibility.  
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Bioinformatic analyses 

Jaccard Index calculations: I download DNase I hotspot files from the ENCODE project server 

(https://www.encodeproject.org/) 35 for brain cell types and tissues (cell types, accessions listed 

in Appendix A – Supplemental Materials and Methods. Pairwise Jaccard indices between all 

samples were calculated using the Jaccard tool from BEDTools (2.29.2) 36 and plotted as a 

heatmap. Biological replicates (rep #2) were then discarded to avoid artificial inflation (leaving 

only one sample per cell type), and the average pairwise Jaccard index for each cell type with all 

other cell types was computed. GWAS overlap was calculated for a given cell type by first 

intersecting all tested GWAS variants with that cell type’s DNase I peaks. Then, only the DNase-

overlapping variants were intersected with DNase I peaks from the other cell types (pairwise) 

and the mean proportion shared was computed.  

 

Chromatin annotation enrichment: I downloaded narrowPeak files for HEK293 DNase-seq, 

histone ChIP-Seq, and TF-ChIP-seq marks (accessions listed in Appendix A – Supplemental 

Materials and Methods) from the ENCODE project server 35. I then determined overlap between 

these marks and MPRA “active” and “repressive” elements using the GenomicRanges R package 

(1.40.0) assuming a minimum of 1 bp overlap between the 162 bp oligo and the chromatin mark. 

Enrichment was calculated for active or repressive elements against a background set of all other 

tested oligos using a Fisher’s exact test, with log2 odds ratios and 95% confidence intervals 

reported.  

 

SigVar functional annotations: SigVars from this study were annotated for TFBS disruption and 

overlapped with functional brain annotations (Supplemental Table 1). I calculated TFBS 
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disruption using both the motifbreakR package using the HOCOMOCO v10 TF binding model 

(filtered for a binding threshold of p < 1´10-4 and “strong” predicted effects) as well as the 

SNPS2TFBS webtool 37. Additionally, published enhancer and promoter annotations for sorted 

microglia, neurons, astrocytes, and oligodendrocytes were downloaded and converted to bed files 

using the ucsc-bigbedtobed tool and overlapped with SigVars using BEDTools intersect 36,38. I 

also identified SigVars overlapping high-confidence multi-tissue enhancers defined by the 

HACER database 39. Promoter/Enhancer accessions are provided in Appendix A – Supplemental 

Materials and Methods. 

 

LD clustering: To calculate LD between SigVars within the 17q21.31 locus, I downloaded chr17 

VCF files from the 1000 Genomes FTP server. The VCF was subsetted for 90 unrelated 

individuals of CEU ancestry and reformatted to get cumulative allele frequencies using PLINK 

1.9 40. Genotype files were loaded into R and used to create LD clusters for SigVars within 

17q21.31 using the clqd function (CLQDmode = “maximal”) from the gpart R package (1.6.0) 41. 

 

Cell culture 

 I obtained HEK293T (CRL-3216) cells from ATCC. HEK293T cells were cultured in 

DMEM containing GlutaMAX (Thermo Fisher Scientific, 10566016) supplemented with 10% 

FBS and 1% Sodium Pyruvate (11360070). 

 

Statistical reporting 

 Statistical analysis was performed using the stats package in R. All hypothesis testing was 

two-sided. Unless otherwise stated, all enrichment analysis was performed using a Fisher’s exact 
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test. MPRA allelic skew multiple testing correction was performed as follows: Variants from 

MPRA 1 were combined with additional unique variants tested in MPRA 2 (total 5340 variants) 

and Mann-Whitney-U p-values were FDR-adjusted (BH method). SigVars were called at a 

threshold of q < 0.01. To assess variant reproducibility, variants replicated, i.e. re-tested (320 

total) in MPRA 2 were considered separately, and assigned significance at a Bonferroni-adjusted 

q < 0.05.   

 

Data visualization 

 Variant genomic annotations were determined and plotted using the annotatr (1.14.0) 

Bioconductor package and ggplot2 from the tidyverse collection (1.3.0). Heatmaps were 

generated using the pheatmap R package (1.0.12). The circle Manhatten plot was created using 

the CMplot R package (https://github.com/YinLiLin/R-CMplot). 17q21.31 LD plots were 

created using the BigLD function from the gpart package 41. All other data were visualized using 

ggplot2 with the GGalley package extension.  

 

Results 

MPRA to identify candidate regulatory GWAS variants  

I conducted a staged analysis to identify regulatory variants underlying GWAS loci for 

two neurodegenerative tauopathies – Alzheimer’s disease (AD) and Progressive Supranuclear 

Palsy (PSP) – using massively parallel reporter assays (MPRA) (Figure 2-2). In stage 1 (MPRA 

1), I identified all variants in linkage disequilibrium (LD; r2 > 0.8) with the 1,090 genome-wide 

significant (p < 5´10-8) variants from an AD GWAS 6 and 3,626 genome-wide significant 

variants from a PSP GWAS 10. After filtering for bi-allelic noncoding variants, this resulted in a 
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list of 5,223 variants encompassing 14 AD and 5 PSP GWAS loci. Both alleles of each variant 

were centered in 162 base pairs (bp) of genomic context, synthesized as 210 bp oligonucleotides, 

and cloned into a custom MPRA vector along with degenerate barcodes to create an expression 

library (Figure 2-1; Methods). In stage 2 (MPRA 2), I sought to replicate 326 variants screened 

in MPRA 1 to asses reproducibility, test the importance of oligo configuration on assay 

performance, and screen an additional 483 variants encompassing 11 new loci from 2 recent AD 

GWAS 6,7 and 4 new suggestive loci for PSP 10 (Figure 2-2; Table 2-2; Methods). 

 

 

Figure 2-2. Project workflow: 1) 5,223 genome-wide significant variants and LD partners 
encompassing 14 AD and 5 PSP GWAS loci were selected in MPRA 1. For MPRA 2, select 
variants identified in MPRA 1 were replicated. An additional 483 variants from 11 AD and 4 
PSP loci were also tested. 2) Both alleles of each variant were barcoded and cloned into an 
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expression library that was transfected into HEK293T cells. Allele expression was quantified by 
next-generation sequencing of associated barcodes. 3) Strict quality control was performed to 
confirm within-assay and between-experiment reproducibility. 4) Comparison of expression 
between alleles enabled identification of variants with significant allele-specific transcriptional 
skew (SigVars). 5) SigVars were used for benchmarking of computational prediction algorithms 
(see Chapter 3) and transcription factor binding site-disruption analysis (see Chapter 4). SigVars 
were further prioritized using brain-specific genomic annotations and 6) five top variants were 
selected for validation using CRISPR/Cas9 genome-editing in brain-relevant cell lines (THP-1, 
IPSC-astrocytes, SH-SY5Y; see Chapter 5). 
 

 

Chr Pos/Cytoband Lead SNP Annotated 
Gene 

GWAS# MPRA 
Stage 

# SNPs 
Tested 

SigVars 

1 85603051 rs114573015 WDR63 PSP 2 4 0 
1 180993146 rs57113693 STX6 PSP 1 44 2 
1 207692049 rs6656401 CR1 AD 1 1 22 2 
1 221995092 rs12125383 DUSP10 PSP 2 51 3 
2 127892810 rs6733839 BIN1 AD 1 1 55 7 
2 234068476 rs35349669 INPP5D AD 1 2 45 2 
3 39510287 rs10675541 MOBP PSP 1 80 2 
6 32578530 rs9271192 HLA-

DRB5– HLA-
DRB1 

AD 1 1 445 13 

6 45499614 rs35740963 RUNX2 PSP 1 65 1 
6 47487762 rs10948363 CD2AP AD 1 1 71 3 
7 100004446; 

100091795 
rs1476679; 
rs12539172 

ZCWPW1; 
NYAP1 

AD 1&2 2 7 0 

7 143110762 rs11771145 EPHA1 AD 1 1 29 3 
8 27195121 rs28834970 PTK2B AD 1 1 8 2 
8 27467686 rs9331896 CLU AD 1 1 11 1 
8 131075859 rs2045091 ASAP1 PSP 2 49 2 
10 11720308 rs7920721 ECHDC3 AD 2 2 8 1 
11 47557871; 

47380340 
rs10838725; 
rs3740688 * 

CELF1/ SPI1-
PU.1 

AD 1&2 2 36 5 

11 59923508 rs983392 MS4A6A AD 1 1 177 4 
11 85867875 rs10792832 PICALM AD 1 1 64 0 
11 121435587 rs11218343 SORL1 AD 1 1 3 0 
12 21314281 rs7966334 SLC01A2 PSP 1 8 0 
12 53788003 rs147124286 SP1 PSP 2 79 5 
14 53400629; 

53391680 
rs17125944; 
rs17125924 

FERMT2 AD 1&2 2 26 2 

14 92926952; 
92932828 

rs10498633; 
rs12881735 

SLC24A4/RIN3 AD 1&2 1 4 1 

15 59045774 rs593742 ADAM10 AD 2 2 14 3 
16 19808163 rs7185636 IQCK AD 2 2 130 17 
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# Source GWAS for tested loci and variants. PSP = Chen et al., 2018 ; AD 1 = Lambert et al., 2013; AD 2 = Kunkle 
et al., 2019. 
* Locus re-mapped in AD GWAS 2. Lead SNPs are not in LD. Both lead SNPs were tested here. 
 
Table 2-2. Description of GWAS loci and variation tested in this study. Shown are the locus lead 
SNPs and annotated genes as described in the listed GWASs. For each locus: the MPRA stage in 
which it was tested, the number of variants tested per locus, and the number of variants with 
significant allelic skew (FDR q < 0.01; SigVars) ultimately identified.  
 

The performance of MPRAs to detect allelic skew depends upon high library transfection 

efficiency 42, necessitating the use of easy to transfect cell lines, which in published studies have 

included HEK293T, K562, and HepG2 cells, among others 28,43. However, AD and PSP disease 

risk variants fall within open chromatin across several different neuronal and glial cell types, 

many of which are non-overlapping 7. Using available ENCODE DHS data 44, I found poor DNA 

accessibility overlap between divergent brain cell types, such as astrocytes and neural 

progenitors (mean Jaccard index = 0.14). Notably, HEK293T cells had the highest mean pairwise 

Jaccard index (0.22; Figure 2-3a) compared with all brain cell types and tissues, which was not 

driven by a larger number, or increased width of peaks in HEK293T cells. Moreover, I found 

that AD and PSP GWAS variants that fell within open chromatin in any brain cell type were also 

likely to fall within open chromatin in HEK293T cells (mean = 60%; Figure 2-3b). These data 

indicated that HEK293T cells would provide an optimal model for such high-throughput 

screening in a single cell line, and they were chosen for the MPRA.   

17 17q21.31 NA MAPT PSP 1 3482 194 
17 61538148 rs138190086 ACE AD 2 2 6 1 
18 29088958 rs8093731 DSG2 AD 1 1 11 2 
19 1063443 rs4147929 ABCA7 AD 1 1 8 0 
19 19q13.32 NA APOE/TOMM40 AD 1 1 640 37 
19 51727962 rs3865444 CD33 AD 1 2 6 0 
20 55018260; 

54997568 
rs7274581; 
rs6024870 

CASS4 AD 1&2 2 17 4 

21 28156856 rs2830500 ADAMTS1 AD 2 2 1 1 
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Figure 2-3. comparison of the chromatin landscape between divergent brain cell types. (A) left – 
Heatmap quantifying overlap (Jaccard index) of DNase hotspots (ENCODE project) between 
primary brain cell types and HEK293T cells. Right – boxplot displaying the mean pairwise 
Jaccard index for each cell type. (B), GWAS variants tested in this study were overlapped with 
DNase hotspots from each cell type. The boxplot displays the mean pairwise probability that a 
GWAS variant within open chromatin in a given cell type also overlaps open chromatin in 
another cell type. Green arrows highlight HEK293T. Error bars = S.E.M.  
 

I performed MPRA (n = 6 biological replicates), obtaining activity measurements from at 

least 5 unique barcodes for both alleles for 4,732 of 5,223 variants (~91%). Genomic annotations 

for the variants tested in MPRA 1 are shown in Figure 2-4. Overall, the library achieved a 

median barcode complexity of 40 

barcodes/allele (Figure 2-5a). Intra-library 

reproducibility was high; allele correlation 

between replicates had mean Pearson’s r = 

0.95 (Figure 2-5d) and normalized barcode 

correlations were consistent with expectations 

(r = 0.55; Figure 2-5c). Overall, I observed  

 

Figure 2-4. Genomic annotations for 5,223 variants tested in MPRA 1. 
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that  ~19% of library elements were transcriptionally active in the assay (Figure 2-6a), in 

concordance with previous estimates 28,29.  

 

Figure 2-5. MPRA 1 quality control metrics. (A) Density plot shows the distribution of uniquely 
mapped 20 nucleotide barcodes per individual allele (i.e. unique barcodes/allele; 9,464 total 
alleles) for the full MPRA 1 library, blue line = median (40 barcodes/allele). (B) Density plot of 
log2 normalized barcode (BC) ratios. (C) Representative plot showing the correlation of log2 
normalized barcode counts between technical replicates (Pearson’s r = 0.57; Spearman’s rho = 
0.50; both p < 2´10-16). (D) MPRA 1 exhibits high reproducibility between biological replicates 
(mean r = 0.95; n = 6). Panels show inter-replicate, pairwise correlations of median log2 
normalized barcode counts for all alleles passing filter (n = 9,464). Red line = regression line of 
best fit, Pearson’s correlation, all p < 2´10-16. 
 

I next assessed the functional genome annotations associated with active versus non-

active elements. Using available ENCODE data for HEK293T cells, I found depletion of the  

H3K36me3 mark in active elements (Fisher’s exact test; log2 OR = -0.54, FDR-adjusted q = 
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0.01). Conversely, active elements were highly enriched for DHS sites (log2 OR = 1.52, q = 

1´10-10), which are indicative of accessible chromatin. Furthermore, H3K27ac and H3K4me3 

marks, delineating active enhancers and promoters respectively, were likewise enriched in active 

elements (Figure 2-6b). ChIP-seq peaks for specific Transcription Factors (TF) were similarly 

enriched in active elements (Figure 2-6b). I also assessed for enrichment of specific TFBSs 

within active elements and identified significant enrichments of SP/KLF, ETS, and AP-1 family 

members (Figure 2-6c).  
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Figure 2-6. Enrichment of active and repressed elements in MPRA 1 with functional genomic 
features. (A) Identification of active and repressed MPRA elements. MPRA library 
transcriptional activity was quantified by comparing the median normalized barcode count for 
each element against the median of the whole library (n = 6 replicates; one-sample Mann-
Whitney-U test; two-sided, Bonferroni correction). Significantly (Bonferroni p < 0.05) increased 
(active) and decreased (repressed) library elements highlighted on the volcano plot in red and 
blue respectively. (B-C) Active elements are enriched for relevant chromatin features and 
TFBSs. (B) Enrichment log2 odds ratios (Fisher’s exact test) of active and repressed elements 
(thresholds defined at: left -  Bonferroni p < 0.05, right – FDR q < 0.01)  within HEK293T ChIP-
seq peaks for both histone and TF marks. Error bars = 95% CI, *** FDR-adjusted q < 0.001 (BH 
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method), * q < 0.05. (C) Active elements enrich for predicted TF binding motifs using HOMER, 
including SP/KLF, and FOS/JUN family TFs.  
 

I applied a stringent statistical threshold to identify variants with significantly different 

transcriptional efficacy between alleles, termed SigVars (two-sided Mann-Whitney-U test, FDR 

q < 0.01, Benjamini-Hochberg method), identifying 267 SigVars. I next analyzed the second 

MPRA (n = 6 biological replicates), which maintained high quality with median library barcode 

complexity of 54 and high allele level (mean r = 0.99) and barcode level (mean r = 0.84) 

correlations between replicates (Figure 2-7). Assessments of reproducibility between the separate 

MPRA experiments also revealed that the assay was robust; the correlations between activity 

scores (Pearson’s r = 0.98, p < 2´10-16) as well as effect sizes (r = 0.94, p < 2´10-16; Figure 2-8a) 

for replicated variants were both high, and 152 of 186 (82%) re-tested SigVars were reproduced 

in the second MPRA (replication Bonferroni p < 0.05). Placing oligos in the reverse orientation 

completely abolished reporter activity as expected (Chapter 6). 
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Figure 2-7. MPRA 2 quality metrics. (A) Barcode distribution for the 3,072 unique alleles tested 
in the full MPRA 2 library (blue line = median) with ii) representative plot showing correlation 
of normalized barcode (BC) counts between technical replicates (Pearson’s r = 0.83, Spearman’s 
rho = .79, p < 2´10-16). (B) Panels show pairwise correlation of median log2 normalized barcode 
counts for all alleles passing filter (n = 3,072) between 6 technical replicates. Red line = OLS 
regression line of best fit, all p < 2´10-16. 
 

Given the high correspondence between both MPRA experiments, I combined them, 

obtaining activity measurements from 5,340 of 5,706 (93.6%) assayed variants and identifying 

320 unique SigVars distributed across 17 chromosomes (6.0%; Figure 2-8b). I identified SigVars 

in 27 of 34 (79%) tested GWAS loci with a median of 2 SigVars per locus (Figure 2-8c; Table 2-

2). As expected, effect sizes (alt/ref allele) were generally modest (Figure 2-8d), with mean 

absolute SigVar log2 fold change of 0.53, consistent with prior work 29. SigVars were highly 

enriched within library elements that were transcriptionally active (Figure 2-7a) in this screen 



 53 

(OR = 6.2; p < 2´10-16; Methods) and were also significantly enriched within DHSs within major 

brain cell types including astrocytes and neural progenitors, as well as monocytes, which are 

from the same lineage as microglia in the brain (Figure 2-8e). However, when I separated 

SigVars derived from AD vs. PSP GWAS loci and identified those that were found to overlap 

enhancer marks from human brain neurons, microglia, astrocytes, and oligodendrocytes, I saw 

that the cell types impacted by each disorder were distinct (Methods) 38. A plurality of AD 

SigVars fell within microglial enhancers. In contrast, a plurality of PSP SigVars fell within 

neuronal enhancers, in concordance with recent estimates of cell type specific enrichment in 

SNP-based heritability for these two disorders 45 (Figure 2-8f). Interestingly, combined across 

both disorders, 55/78 (71%) of these variants overlapped with cell-type specific enhancer 

annotations (Figure 2-8g). 
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Figure 2-8. Identification of variants with significant allelic skew (SigVars) from both MPRA 
stages. (A) Reproducibility of MPRA across experimental stages. 326 variants, including 186 
SigVars identified from the preliminary MPRA (1) were re-tested in a follow-up MPRA (2). i) 
Reference allele transcriptional activity and ii) log2 effect sizes (alt/ref allele) show strong 
correlation (Pearson’s r = 0.98, 0.94, p < 2´10-16) between experiments. BC = barcode count. iii) 
152 of 186 assessed SigVars from MPRA 1 were replicated in MPRA 2 at replication Bonferroni 
p < 0.05.  (B) Manhattan plot of 5,340 unique variants successfully tested across both 
experiments. Red indicates SigVars at FDR-adjusted q < 0.01 (BH method). (C) Histogram of 
the number of SigVars identified per GWAS locus LD block (median = 2). (D) Volcano plot 
shows log2 allelic skew effect sizes and -log10 p-values for 5,340 unique variants tested by 
MPRA. SigVars for MPRA stage 1 (red) and 2 (blue) highlighted. blue line = median effect size. 
(E) Enrichment log2 odds ratios (Fisher’s exact test) of SigVars within DHSs of various brain 
cell types (ENCODE project). Error bars = 95% CI, All FDR-adjusted q < 0.001. (F-G) SigVars 
were separated into those derived from AD or PSP GWAS and annotated for overlap with 
enhancer marks from sorted brain tissue (annotations: Nott et al., 2019). Bar plot shows cell-type 
enhancer annotation counts for overlapping SigVars separated by disease. A plurality of AD 
SigVars fell within microglial enhancers, while PSP SigVars fell within neuronal enhancers. (G) 
most SigVars overlap enhancers present in only one cell type. 
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Refinement of SigVar annotations for high confidence predictions of causal variants 

 I next annotated the functional variants identified in this screen – representing likely 

causal variants – into those that fell within high confidence promoters or enhancers in neurons, 

astrocytes, microglia or oligodendrocytes (annotations 38), as well as those variants that strongly 

disrupted predicted TFBSs (union of two algorithms 37,46; Supplemental Table 1). Of 320 

SigVars, 233 (73%) had at least one additional functional annotation: 200 (63%) significantly 

altered TF-binding, 88 (28%) fell within a promoter or enhancer in at least one brain cell type, 

and 55 (17%) were double annotated for TFBS disruption and an additional promoter/enhancer 

mark. These 55 SNPs, disrupting TFBSs within annotated promoters or enhancers, represent the 

highest confidence causal functional variants within ten distinct GWAS loci, including BIN1, 

HLA-DRB1/5, PTK2B, CLU, ICQK/KNOP1, 17q21.31/MAPT, 19q13.32/APOE, ASAP1, 

SPI1/CELF, and CASS4. 

 

Systematic characterization of complex haplotypes 17q21.31 and 19q13.32 

 It is particularly challenging to identify causal variants within genomic loci harboring 

extensive LD using statistical fine-mapping (see Chapter 3), and characterization of these regions 

can substantially benefit from functional approaches. Considerable common genetic risk for 

Alzheimer’s disease and Progressive Supranuclear Palsy segregate to three such loci. This 

includes the 17q21.31 locus which harbors MAPT, the 19q13.32 locus that harbors APOE, and 

the extended HLA type II region on chromosome 6. In the following subsection, I will describe 

the systematic characterization of regulatory variants within two of these regions, 17q21.31 and 

19q13.31, using my MPRA data. 
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17q21.31: The chromosome 17q21.31 locus is noteworthy for harboring the tau-encoding 

MAPT gene within a common 900 kb inversion-polymorphism 16, and is a major risk locus for 

PSP (H1 haplotype OR = 4-5) as well as AD, Parkinson’s disease (PD), and Corticobasal 

Degeneration (CBD) 12. 17q21.31 contains complex haplotypic sub-structural variation and 

extensive LD, hampering interrogation with traditional statistical genetics approaches. I 

leveraged the ability to functionally dissect this region, testing 3,482 variants within 17q21.31 in 

strong LD with lead SNPs from a PSP GWAS 10, comprising approximately ~24% of the more 

than 14,000 common variants in the region. Of these, I identified a total of 194 SigVars, of 

which 111 were stringently replicated in both MPRA experiments. Of these replicated SigVars, 

20 variants were also double annotated for active chromatin features and TFBS disruption, 

making them very high confidence causal regulatory variants (Supplemental Table 1).  

I next clustered these SigVars based on LD (BigLD algorithm)41, which identified seven 

distinct LD clusters within four contiguous LD blocks (Figure 2-9a), suggesting distinct loci 

within this region. The largest LD cluster includes 42 SigVars within MAPT itself (-5 kb 

upstream of TSS to 3’ UTR) highlighting its striking regulatory complexity (Figure 2-9b-c). Of 

these, 23 were replicated SigVars,  13 of which are variants within annotated enhancers also 

predicted to disrupt TFBSs (Figure 2-9b). The MAPT promoter region overlaps a large CpG 

island and a number of repetitive transposon elements that may impact gene expression 47. This 

region has been previously characterized using serial deletion assays in a variety of cell types 48–

50, which identified a core promoter beginning -300 bp from the TSS 47. In this study, the region -

226/-63 (assay ID = 1447) was the 11th most transcriptionally active library element assayed 

overall, while -349/-186 (ID = 1446) had only modest expression, suggesting a more restricted 

core promoter starting at -186 upstream of the MAPT TSS (Figure 2-9d). I also identified 
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SigVars within the broader promoter region (-4364/+3292; Figure 2-9c) including rs17770296, 

which falls in the distal promoter (-2612) and overlaps a MLT1I (ERVL-MALR family) 

transposable element. Another variant, rs76324150 (+1485), falls within neuronal H3K4me3 

peaks and is predicted to disrupt binding of the TF ZFX (Figure 2-9d).  

SP1 is known to bind the MAPT core promoter and regulate Tau expression 51, and was 

also identified as a suggestive PSP risk locus 10. Unfortunately, four potentially interesting 

variants within the proximal promoter region (-144/+1485) dropped out of our assay likely due to 

the high GC content of the region 47 (Chapter 6). Nevertheless, I identified four SigVars within 

the MAPT gene region predicted to disrupt binding of SP1 (Supplemental Table 1), 

including rs76839282 which lies within H3K27ac peaks within the long regulatory intron 1 of 

MAPT (Figure 2-9c). 

I also identified SigVars within other LD blocks that are predicted to regulate 

independent risk genes. I highlight rs111392251, a high-confidence regulatory variant located in 

the promoter of PLEKHM1 that is predicted to disrupt binding of IRF-family TFs (Figure 2-9e-

g). PLEKHM1 regulates autophagosome-lysosome formation 52 and has been previously 

suggested as a PSP risk gene 9, but has yet to be extensively characterized in a disease context. 

Other independent risk genes in distinct LD blocks implicated here include MAP3K14 and 

LRRC37A4P (Table 2-3). 
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Figure 2-9. Systematic dissection of functional variation at 17q21.31. (A) Top: LD plot for 
common variants in 17q21.31 (1000 Genomes, CEU). MPRA SigVars were clustered by LD 
(CLQD clustering 41; Methods). Bottom: SigVars plotted by position across 17q21.31and MPRA 
significance (-log10 p-values; colors = cluster annotations, black variants are unclustered). Most 
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variants fall within LD-cluster 4 (purple) centering on MAPT. (B) Annotation breakdown for 
MAPT SigVars. ChIP-seq from 38, TFBS-X = union of predicted TFBS-disruption from two 
algorithms 37,46). (C) Chromatin annotations and MPRA SigVars across MAPT. Genomic tracks 
(1-8) show H3K27ac (enhancer) and H3K4me3 (promoter) ChIP-seq peaks for microglia (red), 
neurons (green), astrocytes (blue), and oligodendrocytes (orange) from sorted human brain tissue 
38, CpG islands (track 9), and all tested variants plotted by significance (-log10 p-value, track 10). 
SigVars (FDR q < 0.01, BH method) highlighted in red. Track 11 shows the MAPT gene model. 
Exons: Untranslated = blue, constitutive = white, alternative neuronal = green, rarely expressed 
in brain = yellow. (D) Functional annotations of the MAPT promoter (-4364/+3292, numbering 
relative to TSS, features from 50) with SigVars shown (red dots). Red = repressor regions. 
Bottom: MPRA relative reporter activity for two elements. (E-G) highlight rs111392251, a 
SigVar in the promoter (+/- 3kb) of PLEKHM1. (E) genomic tracks (1-4) for H3K4me3 peaks 
(as in B). (F) The alternate allele of rs111392251 is predicted to significantly disrupt the TFBS 
for IRF1-3 TFs. (G) violin plots show normalized barcode distributions for each allele (MPRA 
FDR-adjusted q-values shown).  
 

LD Block LD Clusters Number of SigVars cis Genes 
1 4 2 GJC1, HIGD1B, EFTUD2 

2 3 3 MAP3K14-AS1, SPATA32, MAP3K14 
3 2, 5 12 ARHGAP27, PLEKHM1, LRRC37A4P 

4 1,6,7 151 MAPK8IP1P2 ,LINC02210, CRHR1, MAPT-
AS1, SPPL2C, MAPT, STH, 
KANSL1, ARL17B, LRRC37A 

NA NA 20 NA 

Table 2-3. SigVars in 17q21.31 grouped by LD block and LD cluster with annotated cis Genes 
(+/- 10 Kb). NA = unclustered variants. SigVars were clustered on the basis of LD using 
individuals of European ancestry (see Methods), and clusters were assigned into contiguous LD 
blocks. Cis genes are annotated as falling within 10 Kb of any variant assigned to the LD block. 
 
 

19q.13.32: The APOE locus on 19q13.32 harbors the strongest common genetic 

association with late onset Alzheimer disease (LOAD), tagging the well-characterized APOE4 

risk haplotype 6,19,20. However, the extensive LD in the region coupled with the strength of the 

association signal has resulted in identification of hundreds of additional disease-associated 

variants 18,19. Recent work involving transethnic scans and haplotype-aware conditional analyses 

have uncovered evidence for APOE- independent risk in the locus, implicating PVRL2 and 

APOC1 18,53, though others have argued that APOE coding variants mediate the entire association 
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signal in the locus 19,20,54. I reasoned that identification of functional variants at 19q13.32 may 

help shed light on this complex regulatory architecture. I tested 640 variants in LD with the 538 

genome-wide significant SNPs 6 at this locus, and identified 37 SigVars. Of these, at least 10 

were whole blood or brain eQTLs for PVRL2/NECTIN2 (GTEx)55. These loci contained three 

intronic SigVars (rs34278513, rs412776, rs12972156) that were previously  associated with 

LOAD when analysis was conditioned on APOE4-status 18. My data identifies these variants as 

causal at this locus, and nominates their target gene as PVRL2. I also find that rs141622900, 

previously associated with cholesterol efflux capacity 56, is a SigVar residing in an active 

microglial enhancer directly downstream of APOC1, providing further support for APOC1 as an 

AD risk gene. Finally, I identified an intergenic variant (rs2927437) within a robustly supported 

multi-tissue enhancer closest to the BCL3 gene 39. 

 

Discussion 

Predicting functionality of noncoding variation is one of the major challenges in modern 

genetics. In this work, I provide the first systematic characterization of common variants 

underlying disease risk for two distinct neurodegenerative disorders: Alzheimer’s disease and 

Progressive Supranuclear Palsy. To do so, I designed and implemented two massively parallel 

reporter assays to screen 5,706 variants encompassing 34 unique loci identified across three 

genome-wide association studies 6,7,10, and obtained robust activity measures from 94% of tested 

elements. Most saliently, I identify 320 variants (6% of total) with significant transcriptional 

skew between alleles at a conservative false discovery rate (q < 0.01), thus delineating putative 

causal variants at 27 of 34 tested genomic loci. Detecting causal variants is critical towards 

identifying relevant risk genes, or even modeling genetic risk in cellular or in vivo systems. 
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Interestingly, I find that a majority of tested loci contain at least two variants with predicted 

transcriptional regulatory effects (Figure 2-8c). Previous studies have identified widespread 

allelic heterogeneity, or the presence of multiple causal variants at a single trait-associated locus. 

However, the proportions of loci with AH were estimated at 23-35% for two well-powered 

GWAS 57, less than the 50% identified here. This discrepancy could be due to either MPRA-

determined false positives or overly conservative joint-causal variant estimation.  

SNP-based heritability is known to be enriched within regulatory regions within disease-

relevant tissues 58–60. In this study, I find that regions of genomic DNA that drive transcriptional 

activity (e.g. “active elements”) are significantly enriched within functional regulatory 

annotations in HEK293T cells known to impact transcription, including open chromatin (DHS) 

and histone marks delineating active enhancers (H3K27ac; Figure 2-6). This is in agreement with 

findings from previous MPRAs incorporating alternative library designs and cellular contexts 

28,29, and represents an important validation of my screen. Interestingly, I find that approximately 

~40% of library elements that overlap DHSs are transcriptionally “active”, again in agreement 

with previous studies that find between 30-46% of surveyed enhancers exhibit functional 

regulatory activity 61,62. These results reinforce that while regulatory variation is highly enriched 

within functional genomic annotations, only a minority of regulatory regions defined by any 

given annotation are likely to have true transcriptional regulatory effects. 

It has been previously shown that trait heritability and GWAS variation enrich within 

functional annotations for trait-relevant cell or tissue-types 14,58–60. Indeed, such analyses have 

been crucial for identifying which cell types mediate common genetic risk, an important step 

towards interpreting gene mapping studies (Chapter 1). Similar to previous work partitioning 

heritability in neurologic disorders 63, I demonstrate that MPRA-defined functional regulatory 
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variants are enriched within active, open chromatin of brain cell types. However, I further show 

that this remains true of regulatory variants even relative to other GWAS variants within the 

locus LD block (Figure 2-8e). Moreover, across two separate disorders, I find that a large 

proportion of functional variants fall within enhancers of distinct cell-types with a demonstrated 

relationship to disease, and that a large proportion of these enhancers are cell-type specific 

(Figure 2-8g, 71%). For AD, a plurality of SigVars fall within microglial enhancers, while in 

PSP a plurality of variants fall within neuronal enhancers. This is in agreement with previous 

studies partitioning heritability in these disorders 45,64, and suggests that despite a convergence on 

tau pathology, underlying degenerative mechanisms might be mediated by distinct cellular 

processes for these two disorders. It should be noted that for PSP, much of this enrichment is due 

to variants falling within the 17q21.31 region. Unfortunately, there were too few SigVars 

remaining after excluding variants from the 17q21.31 region to determine whether this neuronal 

enrichment holds for the other PSP loci.  

The enrichment of MPRA SigVars within open chromatin of brain cell-types is also 

significant because it supports the external validity of this screen. The brain is an organ of 

extensive cellular heterogeneity, containing divergent cell types from distinct developmental 

lineages, each playing unique functional roles. I show that there is poor overlap between open 

chromatin for these cell types, and that HEK293T cells provide an adequate compromise for 

performing the MPRA within a single cell line. It should be emphasized that this cell line 

showed the best overlap in active regulatory regions with multiple neuronal and glial cell types 

that contribute to disease risk, better than either a pure neuronal or glial cell type. Nevertheless, it 

is reassuring that SigVars identified in an MPRA performed in HEK293T cells ultimately enrich 

within annotations of the appropriate brain-specific cell types. However, it should be noted that 



 63 

the specific cellular context and trans-acting factors undoubtedly play an important role in the 

results of functional genomic assays 65. I addressed this by integrating cell-type specific 

regulatory annotations to prioritize variants likely to be functional within relevant brain cell 

types (Supplemental Table 1) to identify high confidence causal variants, as well as performing 

orthogonal validation using gene editing (Chapter 5). Nevertheless, ideally this screen would be 

performed in parallel within neurons, glia, and oligodendrocytes, though this is technically 

challenging (limitations further discussed in Chapter 6). 

GWAS loci in regions harboring extensive LD and numerous risk genes are particularly 

difficult to interpret, and therefore substantially benefit from functional analyses. Here, I used 

MPRA to identify candidate regulatory variants within two such regions, 17q21.31 and 

19q13.32, risk factors for PSP and AD respectively. The 17q21.31 region harbors the tau-

encoding MAPT gene, which has been genetically linked by familial mutations to tauopathies 

including PSP and FTLD-tau. Therefore, it is thought that common genetic risk in the 17q21.31 

locus might be mediated by haplotypic differences resulting in divergent tau regulation. Indeed, 

protective H2-haplotype carriers are reported to have decreased brain tau expression and 

differential splicing of exons 3 and 10 relative to carriers of the H1-risk allele 66. In agreement 

with this, I identified numerous variants with significant allelic skew in MAPT. Although in 

contrast to the published work, H2-derived alleles in aggregate increased reporter expression 

relative to H1 alleles. This may be an artifact of performing the assay in HEK293T cells 

(Chapter 6); previous studies using reporter assays found MAPT promoter variants to have 

opposite effects depending on technical factors, such as cell type and minimal promoter 

definition 50.  
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What is less clear is if genetic risk for tauopathies or PD is mediated by other genes 

besides MAPT within the large 17q21.31 region. Previous work using differential methylation 

and gene expression analysis have postulated that LRRC37A-family or ARL17A/B may be 

candidate risk genes 66,67. Here, I identify regulatory variants within 29 distinct risk coding genes 

or lncRNAs at 17q21.31 (Table S2-1). I find PSP-associated regulatory variants within 

independent LD clusters, representing possible independent causal signal overlapping multiple 

novel risk genes. One salient example is PLEKHM1, a critical regulator of endosome-lysosome 

fusion and autophagy 52. I identified rs111392251 in the promoter of PLEKHM1, which is in 

tight LD (r2 = 0.93) with rs11012 -  a well-known PD risk variant 68 tagging the H1 haplotype. 

Similarly, the presence of risk genes independent of APOE within the 19q13.32 AD-risk locus 

has remained controversial.  Here, I identified regulatory variants within 19q13.32 likely 

impacting expression of PVRL2/NECTIN2 and APOC1. This includes 10 SigVars linked to 

PVRL2 on the basis of cell-type specific eQTLs, and a variant in a microglial-specific regulatory 

region proximal to APOC1. Notably, PVRL2 and APOC1 have been suggested as APOE-

independent AD-risk genes 18,69,70 with APOC1 shown to be differentially expressed in microglia 

derived from AD-brains 71. Interestingly, I identified two variants in high-confidence enhancers 

upstream of BCL3, an inflammatory TF that is dramatically upregulated in reactive astrocytes 

downstream of inflammation and in conjunction with AD pathology 72,73. Further work is needed 

to validate these regulatory variants within edited isogenic brain relevant cell-lines and to 

functionally assess the role of these putative risk genes in animal or cellular models of 

neurodegeneration.   

 In summary, I utilized massively parallel reporter assays to efficiently 

characterize variation associated with two neurodegenerative disorders, AD and PSP and 
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identified 320 variants with significant transcriptional skew between alleles (SigVars). I found a 

high degree of inter- and intra-library reproducibility, confirming the robustness of these results. 

Identification of putative causal variants is an important first step towards the mechanistic 

interpretation of noncoding GWAS loci 74, particularly for complex haplotypes with extended 

LD such as 17q21.31 and 19q13.32. The MPRA data produced here will also be the basis for 

subsequent work exploring the genetic architecture and relevant risk genes underlying the 

neurodegenerative diseases AD and PSP.   

 

Supplement 

Chr. Gene SigVar Number 
chr15 ADAM10 1 
chr11 AGBL2 1 
chr12 AMHR2 4 
chr19 APOC1 1 
chr19 APOC1P1 3 
chr19 APOC2 4 
chr19 APOC4 4 
chr19 APOC4-APOC2 4 
chr19 APOE 2 
chr17 ARHGAP27 7 
chr17 ARL17B 15 
chr8 ASAP1 1 
chr19 BCAM 1 
chr19 BCL3 1 
chr11 C1QTNF4 1 
chr20 CASS4 4 
chr19 CBLC 1 
chr6 CD2AP 3 
chr11 CELF1 1 
chr19 CLPTM1 4 
chr8 CLU 1 
chr1 CR1 2 
chr17 CRHR1 11 
chr20 CSTF1 2 
chr17 CYB561 1 
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chr17 DCAKD 1 
chr18 DSG2 2 
chr17 EFTUD2 1 
chr7 EPHA1 1 
chr7 EPHA1-AS1 3 
chr19 EXOC3L2 4 
chr11 FAM180B 1 
chr14 FERMT2 2 
chr11 FNBP4 1 
chr17 GJC1 1 
chr17 HIGD1B 1 
chr6 HLA-DRB1 5 
chr6 HLA-DRB4 4 
chr6 HLA-DRB6 4 
chr2 INPP5D 2 
chr16 IQCK 15 
chr17 KANSL1 37 
chr17 KANSL1-AS1 6 
chr11 KBTBD4 1 
chr16 KNOP1 5 
chr17 LINC02210 3 
chr17 LINC02210-CRHR1 45 
chr1 LINC02257 2 
chr15 LOC101928725 2 
chr17 LRRC37A 5 
chr17 LRRC37A4P 16 
chr17 MAP3K14 3 
chr17 MAP3K14-AS1 2 
chr17 MAPK8IP1P2 8 
chr17 MAPT 45 
chr17 MAPT-AS1 21 
chr17 MAPT-IT1 8 
chr15 MINDY2 2 
chr17 MIR4315-1 4 
chr17 MIR4315-2 4 
chr8 MIR6843 1 
chr19 MIR8085 1 
chr1 MR1 2 
chr11 MS4A4E 1 
chr11 MS4A6A 1 
chr11 NDUFS3 1 
chr19 NECTIN2 16 
chr19 NKPD1 1 
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chr17 NMT1 1 
chr17 NSF 2 
chr17 PLEKHM1 11 
chr19 PPP1R37 2 
chr12 PRR13 1 
chr8 PTK2B 2 
chr6 RUNX2 1 
chr14 SLC24A4 1 
chr12 SP1 3 
chr17 SPATA32 1 
chr17 SPPL2C 7 
chr17 STH 10 
chr1 STX6 1 
chr19 TOMM40 3 
chr19 TRAPPC6A 1 
chr16 VPS35L 3 
chr17 WNT3 1 

Table S2-1. SigVar annotations by gene. Genes for which there was an MPRA SigVar within +/- 
10 kb of the gene body. "SigVar Number" is the number SigVars/gene. Some SigVars are 
annotated to multiple nearby genes. 
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Abstract 

 The functional annotation of noncoding genetic variation within trait-associated genomic 

loci is a major problem in modern genetics, motivating the development of both fine-mapping 

approaches and computational algorithms for variant prioritization. Machine learning methods 

leveraging features such as functional genomic annotations and conservation scores to predict 

variant pathogenicity have been recently popularized, though the relationship between predicted 

pathogenicity and empirically determined regulatory function remains unclear. I therefore 

compared the predicted scores from four such algorithms, CADD, CATO, GWAVA, and 

LINSIGHT with empirical effect sizes for common noncoding variants derived from two 

separate MPRA datasets. Generally, computational algorithms failed to predict MPRA-

determined variant functionality, though the CATO algorithm showed modest correlation with 

MPRA effect sizes. Moreover, computational algorithms were highly discordant with each other. 

Finally, I found that computational algorithms struggled to functionally discriminate between 

variants that were closely spaced together suggesting an overreliance on spatially broad genomic 

annotations during algorithm training. These results indicate that empirical assays provide 

orthogonal measures of variant function, which may aid in the future validation and 

improvement of predictive algorithms.  

 

Introduction 

The functional annotation of noncoding variation is an outstanding problem in human 

genetics, an issue that has become particularly salient due to the widespread adoption and 

utilization of the Genome Wide Association Study (GWAS). This poses a significant barrier 

impeding biological interpretation of GWAS loci, motivating the development of a number of 



 77 

statistical and computational approaches for functional variant prioritization. These methods can 

be divided into two main flavors: fine-mapping 1 and computational prioritization algorithms 2.  

 Fine-mapping encompasses a set of statistical methods that use association statistics to 

identify causal variants. These approaches include penalized regression or probabilistic Bayesian 

models and often incorporate simplifying underlying assumptions such as the number of causal 

variants, prior causal distribution, and local LD structure derived from population panels. Some 

approaches also integrate genomic annotations or gene expression to weight prior distributions or 

further narrow credible sets 1. Bayesian methods, including PAINTOR 3, eCAVIAR 4, and SuSiE 

5 are currently favored, having been shown to have improved performance through detailed 

simulation studies. Another fine-mapping strategy is the trans-ethnic scan 6,7. This approach is 

founded upon the observation that GWAS results are reproducible across populations, with the 

expectation that underlying causal variants are shared. Therefore, cross-population meta-analysis 

would greatly reduce average locus LD and subsequently improve detection power for causal 

variants. However, fine-mapping approaches are subject to a number of limitations. Notably, 

they require sufficiently large GWAS sample sizes to have adequate power. Furthermore, these 

methods perform poorly in regions of strong LD; in the extreme case of complete LD it is 

impossible to disambiguate variants. Finally, these approaches are incompatible with 

prioritization of rare or structural variants. For a detailed review, readers are directed to the work 

of Schaid and colleagues 1.  

 In contrast to fine-mapping approaches, computational prioritization algorithms are 

agnostic to association statistics and LD structure, instead considering SNPs on an individual 

basis 2. Earlier methods, including VEP 8, RegulomeDB 9, and FunciSNP 10, primarily use 

functional annotations such as chromatin accessibility, ChIP-seq, eQTLs, and TFBS annotations 
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to prioritize variants (Chapter 1). Other methods also incorporate evolutionary conservation as a 

predictive feature, under the assumption that constrained nucleotides have a higher probability of 

functional relevance 11,12. This assumption is tenuous in rapidly evolving noncoding regulatory 

domains such as human accelerated regions or enhancers for genes under positive selection 13. 

Finally, machine learning approaches incorporate functional annotations, conservation, 

nucleotide composition, and other features as predictors in models trained on curated or 

simulated sets of variants 14–18. For a comprehensive review of machine learning methods for 

GWAS prioritization, readers are directed to Nicholls and colleagues 19 . 

 The choice of variation used to train machine learning models is critical to their 

theoretical performance, which is problematic given that there is no gold standard dataset of 

functional noncoding variants 2. This issue similarly extends to method validation and 

benchmarking. Often, classification performance is based on discrimination of pathogenic 

variants from curated databases (such as ClinVar 20 or HGMD 21) or disease- associated variation 

from GWAS. This approach can introduce bias through implicit distributional assumptions made 

on control variants or through clinical ascertainment, skewing performance measurement. Some 

methods explicitly train on databases of pathogenic variants (e.g. GWAVA 17 and FATHMM-

MKL 18) introducing the possibility of overfitting. MPRA data, which directly measures the 

transcriptional-regulatory effects of polymorphisms, represents a truly orthogonal data-type 

which can be used as an alternative benchmarking strategy for these computational approaches. 

Indeed, there are a few examples in the literature correlating scores from predictive algorithms 

with MPRA data and results have been disparate. For example, Nishizaki and Boyle find some 

correlation (Pearson’s r2 = 0.17-0.3) between four methods (DeepSEA, FATHMM-MKL, 

RegulomeDB, CADD) and variants identified by MPRA as disrupting function of liver 
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enhancers2. Similarly, Ulirsch and colleagues tested variants derived from GWAS of red blood 

cell traits and found strong correlation with predicted effects from DeepSEA 22. By contrast, in 

an analysis of 19 different methods by Kircher and colleagues, computational predictions 

explained a very small proportion of the variance in MPRA data (average Pearson’s r = 0.03) 23.  

 Previously, I used MPRA to characterize 5,706 noncoding variants derived from GWAS 

for two neurodegenerative disorders, Alzheimer’s disease and Progressive Supranuclear Palsy 

(Chapter 2). Therefore, I reasoned that I could use these data to provide further insight into the 

relationship between computational prediction algorithms and MPRA experimental outcomes, 

adding to this growing literature. Here, I compare pre-computed scores derived from four 

commonly used algorithms, CADD 24, GWAVA 17, LINSIGHT 25, and CATO 26 with my MPRA 

results, identifying generally low concordance between different prioritization methods.  

 

Materials and Methods 

MPRA datasets  

 For this analysis I utilized two distinct MPRA datasets. The first was my MPRA dataset 

(see Chapter 2 for full description of the Methods). Summary statistics (p-values and log2 Fold 

Changes) were combined across both MPRA stages, and a total of 5,340 unique variants were 

considered. The second dataset was a previously published analysis of lymphoblastoid eQTLs 

performed in K562 cells by Tewhey and colleagues 27. In this study, some variants were tested in 

multiple orientations or with multiple genetic backgrounds. I filtered this dataset to get one 

effect-size per individual variant, by keeping the most significant statistical comparison per 

variant (max negative log p-value). 
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Comparison with computational predication algorithms:  

 I scored all tested variants from both datasets using the LINSIGHT, CADD, CATO, and 

GWAVA algorithms 17,24–26, using each algorithm’s precomputed scores. When an algorithm 

provided multiple scores per variant (particularly LINSIGHT, which provides scores in small 

genomic windows that sometimes overlapped), scores were averaged. First, I compared scores 

from the top vs bottom 5th percentile of variants as ranked by descending -log MPRA p-value 

using a Mann-Whitney-U test. The “top” variants were those with the most significant allelic 

skew, while “bottom” were least significant. I then correlated (Spearman’s rho) MPRA absolute 

value effect-sizes (i.e. absolute value log2 Fold Change) with computational predicted scores. 

This was done using all the variants, only variants with significant allelic skew (SigVars), and 

SigVars + 100 bottom ranked variants.  

 I then labeled MPRA SigVars at FDR-adjusted q < 0.01 thresholds and calculated Area 

Under the Receiver Operating Curve for each algorithm using the ModelMetrics (1.2.2.2) 

package in R (v. 4.0.0). I then performed binary classification on all scored variants by positively 

labeling MPRA SigVars (q < 0.01) and an equivalent number of the top scoring variants from 

each algorithm before calculating pairwise Cohen’s Kappa using the ModelMetrics package.  

 Finally, I tested whether there was an increased similarity between scores from variants 

that were nearby in genomic space compared with distantly spaced variants as follows: Variants 

were ordered by chromosome and position. Then, for each variant [Vi], I determined the absolute 

value difference in score between [Vi] and [Vi+1]. A similar analysis was done using MPRA 

effect sizes instead of scores. These absolute score differences were binned as “near” if the 

genomic distance between [Vi] and [Vi+1] was less than 100 base pairs, or “far” if otherwise. I 

then compared “near” vs “far” score differences using a two-tailed Mann-Whitney-U test.  
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Statistical analysis and data visualization 

All statistical analysis was performed using the stats package in R. All tests were two-sided. Data 

were visualized using ggplot2.  

 

Results 

I compared MPRA-determined effect sizes and allelic skew significance levels - derived 

from this study and the previously published MPRA dataset 27 - with regulatory scores from four 

widely used algorithms: CADD, CATO, GWAVA, and LINSIGHT 17,24–26. For both MPRA 

datasets, representing vastly different disorders and tissue types, I observed that these 

computational methods indeed were able to capture enrichment of regulatory signal. I compared 

the top vs bottom 5th percentile of variants as ranked by allelic skew p-values, and found a 

significant (two-sided Mann-Whitney-U test) increase in average algorithm prediction score for 

the top ranked MPRA variants across all algorithms in at least one study (Figure 3-1).  
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Figure 3-1. Top-ranked MPRA variants enrich for increased functional prediction scores. All 
MPRA-tested variants were scored using four variant-effect prediction algorithms; LINSIGHT, 
CADD, GWAVA, and CATO. Violin plots show algorithm prediction scores for the top vs. 
bottom 5th percentile of ranked variants (rank determined by MPRA allelic skew p-values) in the 
current study (A) and replication dataset 27 (B). p-values from two-sided Mann-Whitney-U test. 
 

However, if I applied a statistical threshold that would identify variants with functional 

effects (allelic skew FDR-corrected thresholds < 0.01; Methods), overall regulatory predictions 

were highly discordant and not strongly predictive (max AUC  = 0.55, 0.56; Figure 3-2a-b). 

MPRA effect sizes also failed to correlate with algorithm predictions, with the exception of 

CATO (Pearson’s r = 0.14 – 0.19, both p < 0.001; Figure 3-2c-d). Previous studies have 

described correlations between MPRA effect sizes and algorithm prediction scores. In these 

studies, only variants with significant allelic skew 22 or a collection composed of mostly 

significant variants and a handful of negative controls 2 were compared with algorithm 

predictions. I therefore considered that my approach might be overly conservative by including a 
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large proportion of non-significant variants with expected null effect sizes. However, the 

correlations between CADD, GWAVA, and LINSIGHT scores and MPRA effect sizes for: 1) 

only SigVars or, 2) a collection of SigVars and 100 non-significant variants, remained 

nonsignificant (all p > 0.05) for both my dataset and the replication dataset. Correlations with 

CATO improved somewhat from baseline when only considering SigVars (r = 0.23-0.29). 

 

Figure 3-2. Computational prediction algorithms poorly predict MPRA empirical effect sizes.  
A) ROC curves highlight the poor predictive performance (max AUC = 0.55) of four algorithms 
used to score variant functionality (LINSIGHT, CADD, GWAVA, and CATO) benchmarked 
against MPRA SigVars (defined at q < 0.01, BH method). (B) same as (A) except using SigVars 
from a published MPRA dataset 27 (max AUC = 0.56). When comparing all tested variants, 
prediction algorithm scores correlated poorly with MPRA-determined allelic skew effect sizes in 
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both my dataset (C) and the replication dataset (D) with the exception of the CATO algorithm. 
Black dashed line = OLS regression line of best fit. Pearson’s r, all p > 0.1 (N.S.), except for 
CATO algorithm. 
 

I also calculated pairwise overlap metrics and found that MPRA SigVar experimental 

outcomes had little overlap with computational predictions (mean Cohen’s Kappa = 0; Figure 3-

3; Methods). Interestingly, prediction algorithms had little concordance among themselves; 

overall mean Kappa between all predicative algorithms was 0.11 for variants in our dataset and 

0.14 for variants from the other published MPRA 27.  

 

Figure 3-3. Pairwise Cohen’s Kappa for MPRA SigVars and variant prediction algorithms. Top-
ranked variants scored by each algorithm (Methods) for this study (A) and the published study 27 
(B). 
 
 I next considered whether computational prediction algorithms could functionally 

discriminate between closely spaced variants. To do so, I computed the difference in predicted 

score between every variant and its nearest neighbor, and then binned these score differences 

into “near” (variants < 100 base pairs apart) and “far” ( > 100 bp apart) categories. I then 

compared the average difference in scores between these two categories for all algorithms using 

a Mann-Whitney-U test (Methods). I found that for all algorithms, variants that were closely 

spaced together had more similar predicted pathogenicity scores (i.e. smaller average 

differences) than variants that were far apart. These results suggest that algorithm predictions are 

biased by physical proximity, translating into a difficulty in discriminating closely spaced 
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regulatory variants. By contrast, the difference between MPRA effect sizes remained consistent 

irrespective of variant distance (Figure 3-4). 

 
Figure 3-4. Effect of variant proximity on algorithm functional predictions. The difference in 
algorithm prediction scores (or MPRA effect sizes) was computed pairwise for all variants and 
their nearest neighbor. These scores were binned into “near” or “far” categories if the genomic 
distance between variant pairs was less than or greater than 100 base pairs respectively. Violin 
plots display the score difference distribution by category for each algorithm, with quantiles 
demarcated. Two-sided Mann-Whitney-U test p-values are shown. 
 
 
Discussion 

 The use of computational methods for a priori identification of functional classes of 

variants is an ongoing area of active research and several predictive methods have been 

developed. I show here that four commonly used machine learning methods for variant 

functional prediction, CADD 24, GWAVA 17, LINSIGHT 25, and CATO 26, poorly recapitulate 
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my MPRA data and subsequent variant annotations, as well as previously published MPRA data 

in a different cell type from Tewhey et al 27. Of note, predictions from these four methods were 

also highly discordant with each other (Figure 3-3), an observation that has been noted 

repeatedly in the literature 28.  

 Machine learning methods can be broken down into three classes 25: 1) Methods, 

including FATHMM-MKL 18 and GWAVA 17, that are trained to classify curated sets of known 

deleterious mutations using genomic annotations. 2) Methods such as CADD 24, DANN 15, 

LINSIGHT 25, and FitCons2 11 that use genomic features and inferred patterns of selection to 

predict the effects of mutations on evolutionary fitness. 3) Methods such as CATO 26, DeepSEA 

14, and deltaSVM 16 that dispense of predicting variant pathogenicity, and instead identify 

sequence based predictors of cell-type specific annotations (such as DNA-accessibility or ChIP-

seq). All of these can be further contrasted with unsupervised learning methods such as EIGEN 

which infer variant classes based on spectral decomposition of a genomic annotation matrix 29. 

Considering these diverse objective functions (i.e. pathogenicity, selection, molecular 

phenotypes), it is perhaps unsurprising that method predictions are highly discordant, especially 

with MPRA data which is measuring a separate phenotype of transcriptional regulation. It is 

therefore likely that these different approaches have advantages or weaknesses depending on the 

specific prediction task. For example, approaches that predict variant effects on evolutionary 

fitness (e.g. LINSIGHT) are not limited by the same ascertainment bias as methods trained on 

curated sets of variants, but may be less accurate in regions of strong positive selection or on 

traits that are not under selective constraint (e.g. post-reproductive phenotypes) 25. Methods that 

learn sequence effects on molecular phenotypes depend on excellent cell-type specific genomic 

annotations, and make strong assumptions about the relevance of these phenotypes on the trait of 
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interest. This corresponds with the observation that different methods have highly variable 

performance at predicting MPRA variant activity across different genes and classes of noncoding 

genomic regions 23. Indeed, recent omnibus methods attempt to boost performance by integrating 

scores across many algorithms, though benchmarking against MPRA data has remained 

relatively poor 30. 

 One weakness consistent across many types of methods is a reliance on functional 

genomic annotations for model training. This manifests as poor nucleotide-level predictive 

resolution 28, and can be obscured by deceptive performance benchmarking. Method 

performance is often evaluated based on discrimination of specific sets of variants. For example, 

a task might be to identify GWAS variants against an allele-frequency matched set of controls 

from flanking genomic regions. As I have described previously (Chapter 1), GWAS variation is 

highly enriched within functional genomic elements and key genic annotations 31,32. It is 

therefore unsurprising that predictive methods trained on these annotations achieve high 

AUROC (which can be a misleading measure 33) given the relative genomic sparsity of these 

features. Likewise, methods will train on conservation scores (such as SIFT 34, PhyloP 35, 

GERP++36) which are expectedly higher in genic regions, and then “demonstrate” predictive 

performance by showing enrichment of predicted pathogenic variants within conserved regions 

with obvious functional consequences (e.g., promoters, UTRs, splice sites, etc.)25. Therefore, 

while these methods can demonstrate enrichment with functional genomic elements, they 

struggle to disambiguate functional variants within these elements, which are often hundreds of 

base pairs wide. It has been shown previously that six predictive methods perform poorly at 

prioritizing closely spaced variants, or different allelic substitutions at sites 28. Similarly, I show 

here that variants that are close together are more likely to have similar pathogenicity scores. 
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This is not the case for MPRA, which directly measures variant effects, and may be another 

explanation for the poor correlation between these methods and MPRA. 

 Methods that articulate sequence or motif-level predictors (CATO 26, deepSEA 14, 

deltaSVM 16, gkm-SVM 37) might therefore be expected to have the best single-nucleotide 

resolution and highest fidelity to MPRA data, which indeed has been reported 2,22,23,30. Similarly, 

in this study, the only algorithm that correlated with MPRA outcomes was CATO, which 

explicitly models TFBS-occupancy. Indeed, TFBS annotations are an important predictor of 

MPRA performance (Chapter 4). Another advantage of these approaches is that they incorporate 

cell-type specific information, as the cellular environment is a critical component of reporter 

assay performance 38. In a prior study using gkm-SVM, prediction of MPRA variant function in 

mouse retina was highly dependent on model training using retina-specific annotations 39. 

Interestingly, performance was further improved by incorporating MPRA training data, which 

suggests that such data types could be used to further improve algorithm predictive performance 

in the future.  
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CHAPTER 4 

 

Functional variation disrupts disease-specific transcriptional networks 
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Abstract 

Transcription factor binding sites are key genomic features mediating transcriptional 

regulation. Despite technical advances in the genome-wide prediction of transcription factor 

binding sites (TFBS), the gene-regulatory effects and downstream phenotypic relevance of 

genetic variation overlapping these motifs remains unclear. Massively Parallel Reporter Assays 

(MPRA) can efficiently survey the effects of polymorphisms on gene regulation. I previously 

used MPRA to screen genetic variation derived from GWAS for two neurodegenerative 

disorders, Alzheimer’s disease (AD) and Progressive Supranuclear Palsy (PSP). Here, I utilize 

two algorithms to predict the functional effects of this same variation on transcription factor 

binding. I find that predicted TFBS-alteration scores significantly correlate with empirical 

variant effect sizes and that disruption of ETS and SP -family TFBSs most strongly predicts 

MPRA outcomes. Moreover, I find that MPRA-defined functional variation preferentially 

disrupts binding sites for particular transcription factors that differ drastically by disease. 

Binding sites for these disease-specific transcription factors enrich within regulatory regions with 

differential cell-type specific activity in PSP and AD, which specifically implicates dysregulation 

of a neuronal SP1-driven transcriptional network in PSP pathogenesis. These analyses support a 

novel mechanism underlying noncoding genetic risk, whereby common genetic variation 

distributed across the genome functions in aggregate to drive disease risk via dysregulation of 

specific transcriptional programs.   
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Introduction 

 The binding of transcription factors to their cognate genomic binding sites is a key step 

during transcriptional initiation 1. Therefore, characterizing the spatiotemporal binding dynamics 

and sequence specificities of the more than 1,600 identified human transcription factors is critical 

towards understanding gene regulation and the impact of genetic variation 2. Modern high-

throughput approaches including ChIP-seq, HT-SELEX, and DAP-seq 3 efficiently survey 

physical protein-DNA interactions at the genome scale, and these data can subsequently be used 

to infer TF sequence specificities 4. These binding specificities are often represented in a position 

weight matrix (PWM) summarizing nucleotide probabilities at each position in the binding 

motif, and curated collections of TF PWMs are available in online repositories including 

TRANSFAC 5, JASPAR 4, and HOCOMOCO 6. A number of algorithms have been developed 

that incorporate PWMs to scan DNA sequences and identify binding motifs in a statistically 

rigorous manner, which can be used to efficiently predict TFBSs genome-wide 7,8. However, it is 

estimated that less than 1% of annotated TFBSs are actually bound by TFs in vivo 1, indicating 

that genomic annotation of core motifs is necessary but not sufficient to predict functionality. 

Indeed, TF-DNA binding is complex and is moderated by distal sequence context, binding of co-

factors, genomic accessibility, TF expression, and DNA methylation 9. 

 The modification of TFBSs within gene regulatory elements is an important mechanism 

whereby genetic variation may contribute to disease risk. Across traits, GWAS variation has 

been found to be enriched within gene regulatory elements and TFBSs 10,11, and there are 

numerous examples linking specific motif-disrupting variants with gene expression and 

phenotypic alterations 9. This has motivated the development of a number of in silico variant 

functional profiling tools that predict the effects of genetic variation on TF binding 12,13. 
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However, the proportion of trait variance attributable to direct disruption of TFBSs - in contrast 

to other underlying mechanisms - has remained unclear. This is due to the abovementioned 

difficulties in identifying TFBSs with true functional effects in relevant cell-types, assigning 

causal variants within a given GWAS locus, and determining whether predicted motif alterations 

translate to true binding disruption in vivo 9,14. Indeed, it has been observed in TF ChIP-seq data 

that only a minority of allele-specific binding events were attributable to direct sequence 

alterations of the core TF-binding motif 15, pointing to the importance of broader sequence 

context and cooperative binding dynamics. Experimental approaches such as Massively Parallel 

Reporter Assays that directly assess variant effects in a cellular context have begun to answer 

these questions. 

 Previous studies utilizing MPRA have highlighted the significance of TFBSs on reporter 

function. For example, in one analysis of 56 regulatory features, TF-motif density was the single 

most predictive feature of MPRA activity 16. However, the relationship between TFBS disruption 

and assay performance remains less well characterized. I previously used MPRA to screen 5,706 

polymorphisms derived from GWAS for two neurodegenerative disorders, and found a 

significant enrichment of TF binding motifs within active regulatory elements (Chapter 2). In 

this work, I find a complex but significant relationship between predicted TFBS-disruption and 

MPRA-determined allelic effects for these disease associated variants. I subsequently find that 

functional variants are enriched within the binding sites of specific transcription factors that form 

cell-type and disease-specific regulatory networks. 
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Materials and Methods 

MPRA datasets  

 For this analysis I utilized two distinct MPRA datasets. The first was my MPRA dataset 

(see Chapter 2 for full description of the Methods). Summary statistics (p-values and log2 Fold 

Change) were combined across both MPRA stages, and a total of 5,340 unique variants were 

considered. The second dataset was a previously published analysis of lymphoblastoid eQTLs 

performed in K562 cells by Tewhey and colleagues 17. In this study, some variants were tested in 

multiple orientations or with multiple genetic backgrounds. I filtered this dataset to get one 

effect-size per individual variant, by keeping the most significant statistical comparison per 

variant (max negative log p-value). 

 
TFBS analysis 

 
Correlation with MPRA effect sizes: TFBS disruption was scored for all variants from my 

MPRA dataset using the SNPS2TFBS webtool 12. An enrichment odds ratio for predicted TFBS-

disruption between variants with and without significant allelic skew (FDR-adjusted q < 0.01) 

was calculated using Fisher’s exact test. For SigVars predicted to disrupt TFBSs, I correlated 

allelic skew effect sizes from my MPRA with predicted TFBS disruption scores. Sites with a 

TFBS score of 0 (denoting poorly defined scores) were discarded and the score with the max 

absolute value was chosen for sites with multiple predicted disruptions. I performed a similar 

analysis for SNPs from another large MPRA dataset 17. As this dataset characterized variants 

embedded in genomic context from both positive and negative strands, I used the max observed 

effect size.  
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TFBS-disruption enrichment: I then partitioned SigVars into those that were derived from AD or 

PSP GWAS (111 and 209 variants respectively; 17q21.31 variants were considered PSP), and re-

ran them through the SNPS2TFBS algorithm which outputs enrichment odds ratios for each TF 

based on their background binding site probability in the genome. This output was filtered for 

TFBSs with at least two predicted disruptions and enrichment p-values were then FDR-adjusted 

(BH method). Only TFBSs significantly (q < 0.05 or q < 0.1) enriched for disruption by SigVars 

were plotted using ggplot2, with disruption counts, log2 enrichment odds ratios, and unadjusted -

log10 p-values shown (Figure 4-3). As a negative control I also tested random samples of 111 or 

209 variants to calculate the expected null distribution. 

 

Correlation with TF abundance: I also tested whether HEK293T cell TF abundance (gene 

expression) correlates with MPRA allelic skew. To do so, I scored all variants tested in MPRA 1 

using the SNPS2TFBS software. For each variant predicted to disrupt a TFBS, I found the 

corresponding TF’s normalized gene expression in HEK293T cells using RNA-seq data from the 

human protein atlas 18 (accession in Appendix A – Supplemental Materials and Methods). I then 

found the Spearman’s correlation between TF expression and the MPRA absolute value log2 fold 

change.   

 

Protein-Protein Interaction network construction: For the 6 TFs enriched for significant binding 

site disruption in PSP (at q < 0.05 threshold) or the 14 TFs at q < 0.1, I created a protein-protein 

interaction network using the STRING (v11) webtool and standard parameters (Figure 4-3) 19. I 

then computed empirical SP1-connectivity p-values for this network using resampling as 

follows: I determined protein-protein interactions for all TFs annotated by the SNPS2TFBS tool 
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(165 TFs total) using STRING (https://string-db.org). I then found the number of edges between 

SP1 and either 5 or 13 additional randomly sampled TFs, repeating this procedure 10,000 times 

to create a distribution, which was compared to the true number of PSP-network edges (4 or 8 

respectively) to generate a SP1-connectivity p-value. I then identified all sites among the 209 

PSP-SigVars predicted to disrupt binding of these 6 TFs (union of SNPS2TFBS and motifbreakR 

annotations; Supplemental Table 1) and found all genes within +/- 10 kb of these sites, which I 

called “target genes” (Figure 4-4). I then annotated the network composed of these TFs and their 

target genes using single cell RNA-seq data from human M1 cortex (© 2010 Allen Institute for 

Brain Science. Allen Human Brain Atlas. Available from: https://portal.brain-map.org/atlases-

and-data/rnaseq/human-m1-10x) 20. I annotated each network gene as belonging to the 

corresponding cell type with the highest trimmed mean gene expression value, and created a 

boxplot displaying the number of annotated genes per cell type.  

 

TFBS-disruption predicts MPRA activity: I also tested whether TFBS disruption was predictive 

of MPRA allelic skew. For this analysis, I considered variants derived from the external MPRA 

dataset 17. Only variants with computed allelic skew values were considered. I used the 

maximum -log10 p-value for variants tested in multiple configurations and also filtered out 

variants missing valid rsIDs. I then performed FDR adjustment (BH method) on the MPRA-

determined allelic skew p-values, and labeled SigVars at q < 0.01 thresholds. All variants were 

scored for TFBS disruption using the motifbreakR package (2.2.0) utilizing the HOCOMOCO 

v10 TF binding model 6,13 (“strong” effect, and binding threshold of p < 1´10-4 ) .Variants that 

could not be identified in dbSNP v144 were not scored and were subsequently discarded. I then 

computed the positive predictive value between predicted TFBS disruption and SigVar labels. I 
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also downloaded RNA-seq data for K562 cells from the human protein atlas 18, and identified the 

top 200 TFs (by normalized counts) expressed in these cells. I then filtered for “strong” predicted 

TFBS disruption only for motifs corresponding to these top expressed TFs, and then re-computed 

PPD.  

 Finally, I tested whether disruption of particular TFBSs predicted MPRA allelic skew 

(Figure 4-2). I again only considered TFs expressed in K562 cells. All variants were previously 

scored for TFBS-disruption (described above) and were grouped according by specific TF 

annotation. For each collection of variants predicted to disrupt a particular TFBS, I found the 

proportion of these variants that were also annotated as SigVars (SigVars defined at q < 0.01). I 

then assessed the statistical significance of these proportions for each TF by performing a one-

tailed binomial test against the background SigVar probability in the overall dataset (prob = 

0.115), leaving a p-value which was FDR adjusted.  

 

Statistical analysis and visualization 

 Statistical analysis was performed using the stats package in R (version 4.0.0). All data 

were plotted using the ggplot2 package.  

 
 
Results 

MPRA SigVars enrich for transcription factor binding site disruption 

I previously found that active MPRA elements were enriched for TFBSs (Chapter 2). I 

therefore hypothesized that functional variants, defined as variants with significant 

transcriptional skew between alleles (i.e. SigVars), would be enriched for variants that disrupt 

TF-binding as a class. Therefore, I ran all my previously screened variants through the 
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SNPS2TFBS algorithm 12, which predicts TFBS disruption, finding that SigVars were enriched 

for variants that disrupt TFBSs (OR = 1.4, p = 0.003) compared to variants without significant 

allelic skew. I observed a similar magnitude of enrichment of TFBS-disrupting variants amongst 

SigVars from a previously published dataset from Tewhey et al. 17 (OR = 1.9, p = 8.7 ´10-8). 

These findings were reproduced in both my dataset (OR = 1.77, p = 9.8 ´ 10-7) and the 

previously published dataset (OR = 1.70, p= 1.3 ´ 10-6) using an alternative TFBS-scoring 

method (motifbreakR; Methods). Furthermore, the magnitude and directionality of predicted 

TFBS disruption correlated with MPRA effect sizes in both my dataset (Spearman’s rho = 0.44, 

p = 2.3 ´10-4) and the published dataset (rho = 0.52, p < 8.7 ´10-9; Figure 4-1). 

 

Figure 4-1. MPRA variant effect sizes correlate with predicted TFBS disruption. MPRA log2 
fold changes significantly correlate with TFBS-disruption scores from the SNPS2TFBS 
algorithm in my dataset (A) and the replication dataset (B). OLS line of best fit shown in red, 
Spearman’s rho also shown.  
 

Given this enrichment, I asked whether TFBS disruption alone predicts MPRA allelic 

skew. To do so, I scored all variants from the previously published dataset 17 (assay performed in 

K562 cells) for TFBS disruption (Methods) and found that only a proportion of TFBS-disrupting 

variants were also MPRA SigVars (Positive Predictive Value = 0.14). Predictive performance 

somewhat improved after filtering to only consider strongly disrupted binding sites for the top 
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200 K562-expressed TFs (PPD = 0.22; Methods). This predictive performance is on par with the 

top-performing algorithm, CATO 21 (Chapter 3). These findings demonstrate the importance of 

accounting for cell-type specific trans-factors such as transcription factor expression profiles for 

variant functional predictions. Nevertheless, although the overlap between predicted TFBS 

disruption and MPRA SigVar annotation was significantly higher than chance, TFBS-disruption 

only explains a subset of MPRA-defined functional variants. Interestingly, TFBS disruption was 

more predictive for some TFs over others. To test this, I grouped together all variants predicted 

to disrupt binding of a particular TF, and then found the proportion of variants in each group that 

were also MPRA SigVars (Methods). I found variants that disrupted certain TFBSs were highly 

enriched for MPRA SigVars. For example, disruption of ELK1, ELF2, and GABPA TFBSs (all 

ETS-family TFs), as well as SP-family TFBSs, were highly predictive of allelic skew captured 

by MPRA (Figure 4-2), while disruption of other TF families was not.  
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Figure 4-2. TFBS disruption is predictive of MPRA allelic skew for specific classes of TFs, 
including the ETS-related TF family. (A) Variants with significant allelic skew (SigVars) were 
defined at an FDR-adjusted threshold of q < 0.01 (BH method) for variants tested in a previously 
published large MPRA dataset. These variants were also assessed for predicted TFBS disruption 
(motifbreakR) filtering for motifs corresponding to the top 200 most highly expressed TFs in 
K562 cells. The histogram counts the number of TFBS-disrupting variants annotated for each 
TF, colored by whether variants are also MPRA SigVars (blue) or not (red). TFs for which 
disrupted binding significantly predicts MPRA allelic skew are highlighted in red, and also 
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described further in (B). Determination of a significantly increased proportion of SigVars 
amongst variants predicted to disrupt specific TFBSs was assessed using a one-sided binomial 
test against the background SigVar probability, with p-values and FDR-adjusted q-values shown 
(Methods).  
 

Enrichment of functional risk variants within disease-specific transcriptional networks 

I next assessed whether SigVars were enriched within binding sites for specific 

transcription factors. Importantly, I determined that TFBSs disrupted by risk variants differed by 

disease. In AD, NR4A2 (log2 OR = 4.9, p = 0.002), NR5A2 (log2 OR = 3.6, p = 0.01), ATOH1 

(log2 OR = 3.8, p = 0.009), SP2 (log2 OR = 2.3, p = 0.008) , and SMAD-family (SMAD2,3,4 

heterotrimer, log2 OR = 3.7, p = 0.0002) binding sites were enriched for disrupting risk variants 

(all enrichments at FDR-adjusted q < 0.05). Interestingly, PSP showed a different pattern of 

TFBS enrichment, in which five of the six TFs predicted to be enriched for binding site 

disruption physically interact with the transcription factor SP1 (including SP1 itself; Figure 4-

3a). Importantly, while these TFs are highly expressed in HEK293T cells, I did not find a general 

relationship between relative TF abundance and MPRA allelic skew (p > 0.05; Spearman’s 

correlation; Methods), indicating that expression levels in HEK293T cells do not explain these 

results. Additionally, as a negative control I ran equivalently sized random samples of variants 

through the SNPS2TFBS algorithm (Methods), only identifying one TF enrichment per sample 

(TFs: BACH1 and STAT6), demonstrating that the above results are not generic to any random 

collection of GWAS variants. Finally, I also assessed enrichments at a lower statistical threshold 

(TFBS enrichment q < 0.1), finding a number of ETS-family TFs and SP1 interactors to be 

enriched within functional PSP risk variants (Figure 4-3b). 
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Figure 4-3. MPRA SigVars are enriched for TFBS-disruption in a disease-specific manner. (A) 
Shows the log2 enrichments for significantly disrupted TFBSs (FDR q < 0.05, BH method), with 
SigVars from AD and PSP analyzed separately (color = -log10 enrichment p-values, size = # of 
disrupted TFBSs; SNPS2TFBS 12). Inset: i) protein-protein interaction network from the 
STRING 19 database for significantly disrupted PSP-TFs. Line thickness = strength of evidence. 
ii) Empirical distribution for expected PPI network SP1 – node connectivity generated by 
resampling (Methods). Red lines = observed PSP-TF network edges, with permutation p-value 
shown. (B) is the same as (A), except enrichment threshold was defined at FDR q < 0.1. 
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Further analysis indicated that the PSP-enriched TFs form a significant protein-protein 

interaction network with SP1 (permutation p = 0.05; Figure 4-3 insets; Methods), consistent with 

SP1’s multimerization capabilities and its activity as a core component of a broad array of gene 

regulatory complexes that regulate tissue specific gene expression 22. Interestingly, 11.1% of 

annotated PSP SigVars are predicted to participate specifically within this network (20% when 

including factors from the expanded network). Of note, the coding region for SP1 itself falls 

within a suggestive PSP risk locus approaching genome-wide significance (locus combined p-

value = 4.1´10-7) 23. These data, including identification of five functional regulatory variants at 

the SP1 locus, provide strong evidence for disruption of an SP1-based signaling network in PSP 

pathophysiology.  

To explore this further, I next generated a two-layer directed network composed of these 

six significant PSP TFs (q < 0.05) and their likely targets, defined as genes within the cis-

regulatory window of TFBS-disrupting SigVars (Figure 4-4a; Methods). Using available single-

cell human brain gene expression data 20, I annotated all members of this network for their 

highest expressed cell type (Methods), and found that all but one of these genes were expressed 

most strongly in neurons (Figure 4-4b), suggesting that this disrupted PSP-associated signaling 

network functions primarily within neurons, consistent with the observation of overall neuronal 

enrichment of heritable PSP risk variants from GWAS 24. 

 
Figure 4-4. A disrupted PSP transcriptional network is most highly expressed in neurons. (A) 
Network of TFs whose binding is significantly disrupted in PSP and their target genes (genes 
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within 10 kb of disrupted TFBSs). (B) Bar plot counts the top-expressing brain cell-type for each 
gene in (A) colored by network layer (cyan = TF, red = target gene). 
 
 
Discussion 

Transcription factor binding sites are critical genomic features mediating transcriptional 

regulation 1. Curated databases of TF binding specificities coupled with modern statistical 

approaches have enabled efficient scanning and prediction of TFBSs genome wide 4,8. However, 

the proportion and circumstances in which predicted binding sites might be functionally relevant, 

as well as the effects of genetic variation overlapping these sites remains uncertain. In this work, 

I used data from two separate Massively Parallel Reporter Assays to clarify the relationship 

between predicted TFBS disruption and empirically determined measures of variant effects on 

transcriptional regulation. First, I confirmed an enrichment of predicted TFBS-disruption 

amongst variants with significant transcriptional skew between alleles (SigVars), and found 

strong correlation between MPRA determined effect sizes and predicted TFBS alterations. This 

confirms previous reports in the literature that TFBS disruption is a strong predictor of MPRA 

activity 16,17. Interestingly, I found that certain TF families, including the ETS and SP family TFs 

are more predictive of MPRA performance than other classes. This also replicates previous 

reports that identify ETS and SP/KLF family, as well as AP-family TFBSs as being highly 

predictive of MPRA experimental outcomes in multiple cell types 16,25,26. Why single nucleotide 

disruption of core binding motifs predictably impacts transcription for some factors and not 

others is an unresolved question, but may have to do with baseline binding stringency and 

specificity, or evolutionary constraint. Whether these findings remain consistent across different 

experimental designs and cell types also remains to be explored.  
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I previously generated MPRA data characterizing common variation associated with two 

neurodegenerative disorders. Here, I find that binding sites for specific TFs are enriched for 

disrupting functional variation, enabling identification of specific transcriptional networks 

driving key aspects of disease risk (Figure 4-3). For AD, this involves TFs including NR4A2 and 

SMAD-family TFs, which have been described previously as acting within multiple cell-types in 

the brain and periphery to impact risk for AD 27,28. For PSP, my analysis identified an enrichment 

of TFBS-disrupting functional variation in a significant protein interaction network with the 

transcription factor SP1. These TFs, as well as most of their predicted regulatory target genes are 

most highly expressed in neurons, consistent with cell-type specific aggregation of genetic risk in 

PSP. Moreover, I identified five SigVars in the PSP genome-wide suggestive locus harboring 

SP1 23, as well as four SP1 binding site-disrupting functional variants within the MAPT gene 

(Chapter 2; Supplemental Table 1). These convergent findings provide strong evidence for 

disruption of SP1 signaling in neurons as a critical risk factor for PSP. SP1 is known to regulate 

a broad array of cellular processes including chromatin remodeling, apoptosis, immune 

regulation, and response to oxidative stress in neurons 29. While SP1 network dysregulation has 

been identified in AD brain 30–32, genes within this network do not harbor an over-representation 

of genetic risk; thus, this network is likely to play a reactive or secondary role. Overall, these 

data are consistent with PSP risk primarily impacting neurons, and astrocytes and 

oligodendrocytes secondarily, and AD risk in microglia and astrocytes, as has been reported 24,33. 

My observations also suggest a refined model for understanding common genetic risk. 

Signal from intergenic GWAS loci are typically interpreted as deriving from causal regulatory 

variants that influence downstream expression of specific cognate risk genes, and thus are 

explainable through colocalization with eQTLs. My results, implicating a TF network 



 109 

converging on SP1 in PSP, are consistent with a model whereby common genetic variants 

function in aggregate across multiple TFBSs to disrupt key cell-type specific transcriptional 

programs. I speculate that this genetic mechanism may particularly manifest itself only upon 

induction of the relevant transcriptional network, which may occur within a disease context. For 

example, transcriptomic and proteomic studies have previously identified induction of an SP1 

transcriptional network in tauopathies 31,32, which here I show may interact with common 

variation at relevant binding sites distributed across the genome to determine risk. It has been 

previously observed that GWAS loci and eQTLs exhibit limited genetic sharing, leading to a 

“missing” mechanism of action explaining a large proportion of noncoding loci 34. My data show 

that polymorphisms altering binding of critical, disease-relevant transcriptional networks offer an 

additional explanation. That these transcriptional networks regulate a large number of cell-type 

enriched genes, provides a mechanism whereby genetic risk is expressed, not by impacting a few 

core genes 35, but via polygenic cell type-specific regulatory effects on networks of genes 36. 
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CHAPTER 5 

 

Genome editing validates putative regulatory variants within AD GWAS loci 
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Abstract 

Massively Parallel Reporter Assays are a versatile high-throughput approach enabling the 

functional characterization of noncoding genetic elements. MPRAs have recently been utilized to 

successfully screen trait-associated loci derived from genome-wide association studies to identify 

underlying regulatory variants. However, MPRAs are synthetic assays that test variants removed 

from their native chromatin context and therefore may be susceptible to false positive results. I 

previously used MPRA to screen variation derived from GWAS for two neurodegenerative 

disorders. Here, I use CRISPR/Cas9 technology to validate six putative regulatory variants 

implicated in that screen by performing genome editing within brain-relevant cell lines. In doing 

so, I confirm rs13025717 and rs636317 as regulatory variants for BIN1 and MS4A6A 

respectively, validating two well-known Alzheimer’s disease (AD) risk loci. Furthermore, I find 

that rs6064392 likely increases CASS4 gene expression within microglia to increase AD risk. 

Finally, I identify pleiotropic regulatory function for rs9271171, a variant that lies within the 

complex HLA-DR region. Interestingly, I find that this variant modifies expression of the distal 

gene complement 4 in both monocytic cell lines and IPSC-derived astrocytes, implicating C4 as 

a novel genetic risk factor for AD.  

 

Introduction 

 Over the last few decades, the widespread deployment of genotyping and next generation 

sequencing technologies have enabled the identification of millions of noncoding genetic 

variants associated with numerous traits, including neurodegenerative and neuropsychiatric 

disorders 1. However, the mechanistic and functional characterization of this variation has 

remained limited. Transcriptomic, epigenomic, and proteomic profiling of patient-derived tissue 



 116 

has enabled detailed functional mapping of the noncoding genome forming the basis for 

subsequent variant prioritization 2 (Chapter 1). However, these studies are correlational in nature, 

and are also reflective of a single post-mortem snapshot rather than a complex disease trajectory. 

By contrast, genome editing technologies enable the direct manipulation and functional 

characterization of noncoding genetic elements. This effort has been revolutionized by the recent 

identification of an efficient, flexible, and programmable nuclease known as the CRISPR/Cas 

system 3. 

 CRISPR technology is based on an adaptive antiviral system first identified in bacteria, 

composed of genetic elements called CRISPRs (clustered regularly interspaced short palindromic 

repeats) and Cas nucleases. CRISPRs encode short single-stranded guide RNAs which interact 

with Cas proteins to target complementary DNA sequences for cleavage and degradation 4. The 

CRISPR system can be harnessed to flexibly target experimental sequences of interest through 

the rational design of sgRNAs, and the technology was first adapted for application in 

mammalian systems less than a decade ago 5,6. At its most rudimentary, CRISPR enables the 

precise generation of double-stranded breaks at target sites, subsequently eliciting repair using 

non-homologous end-joining. This pathway is error-prone, often resulting in small deletions and 

frameshift mutations useful for gene knock-out studies 3. However, researchers quickly realized 

that the alternate homologous recombination pathway could be harnessed to introduce precise 

mutations of interest by providing an exogenous DNA repair template 7. Later technological 

iterations fused nuclease-deactivated Cas with the effector domains of other proteins to enable 

specific editing sans template (base editing 8 or prime editing 9), as well as experimental 

applications beyond genome editing that include functional manipulation of gene expression 

(e.g. CRISPRi 10 and CRISPRa 11), the epigenome 12,13, or chromatin topology 14. Excitingly, 



 117 

these assays can be scaled by generating pooled libraries of many gRNAs and combining them 

with single-cell phenotyping to create high-throughput CRISPR screens 15. These screens can be 

used to survey the noncoding regulatory landscape, as highlighted by a recent study that paired 

CRISPR inactivation with scRNA-seq to characterize close to 6,000 putative enhancers in K562 

cells 16. Notably, CRISPR screens have also been implemented within IPSC-derived neurons 17. 

 Massively Parallel Reporter Assays are an alternate approach for the high-throughput 

experimental characterization of noncoding genetic features 18. However, MPRAs survey genetic 

elements removed from their natural genomic and chromatin environment, and therefore may not 

directly recapitulate features in their native context. Previous studies utilizing MPRA to survey 

natural human variation therefore verified key findings using genome editing within relevant 

cell-types 19–21. I previously used MPRA to screen 5,706 common variants associated with 

Alzheimer’s disease and Progressive Supranuclear Palsy (Chapter 2), identifying 320 variants 

with significant transcriptional skew between alleles (SigVars). Here, I use CRISPR/Cas9 

genome editing within brain-relevant cell lines to validate four of six tested SigVars as likely 

regulatory variants.   

  

Methods 

MPRA data used and visualized here was previously generated and described (Chapter 2). 

 

Cell Culture 

 I obtained HEK293T (CRL-3216), THP-1 (TIB-202), and SH-SY5Y (CRL-2266) cell 

lines from ATCC. HEK293T cells were cultured in DMEM containing GlutaMAX (Thermo 

Fisher Scientific, 10566016) supplemented with 10% FBS and 1% Sodium Pyruvate (11360070). 
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THP-1 cells were cultured in RPMI-1640 medium (ATCC 30-2001) supplemented with 10% 

heat-inactivated FCS and 10 mM HEPES buffer. THP-1 differentiation was performed through 

addition of 20 ng/mL of PMA (Millipore Sigma, P1585) to the culture media for 48 hours. SH-

SY5Y cells were cultured in 1:1 EMEM/Ham’s F12 (ATCC 30-2003 / Thermo Fisher Scientific, 

31765035) supplemented with 15% HI-FCS, 1% Sodium Pyruvate, and 1% MEM-NEAA 

(Thermo Fisher Scientific, 11140050). For differentiation, SH-SY5Y cells were gently passaged 

and plated on Poly-D Lysine coated plates. After 24 hours culture media was replaced with a 

differentiation media composed of Neurobasal A (Thermo Fisher Scientific, 10888022), 

GlutaMAX, B27 Supplement (17504044), and 10 uM Retinoic Acid (Millipore Sigma, R2625). 

Cells were differentiated for 5 days with half-media replacement every 48 hours.  

 Induced Pluripotent Stem Cells (IPSCs) used in this study were previously documented 22 

and kindly provided by Dr. Li Gan in accordance with the UCLA TDG guidelines. IPSCs were 

differentiated into mature astrocytes for 120 days as previously described 23, and were 

maintained post-differentiation in DMEM supplemented with 1% Sodium Pyruvate, 10% HI-

FCS, and 1x N2 supplement (Thermo Fisher Scientific, 17502048) until use.  

 

CRISPR experiments 

 I excised enhancers containing rs636317, rs13025717, rs6064392, rs9271171, rs1532277, 

and rs7920721 as follows: Pairs of guide RNAs targeting upstream (5’) and downstream (3’) 

flanking sequences were designed and cloned into LentiCRISPRv2-GFP (Addgene #82416) and 

LentiCRISPRv2-mCherry (#99154) respectively using the BsmbI restriction site (gRNA 

sequences in Appendix A – Supplemental Materials and Methods). Lentiviral particles were 

produced in HEK293T cells by triple transfection as previously described 
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(https://www.addgene.org/protocols/lentivirus-production), concentrated using Lenti-X (Takara 

Bio, 631232), and resuspended in DPBS. Guide pairs were then screened for cutting efficiency 

resulting in two pairs targeting rs13025717 (gRNA #s: 11 + 12, 11 + 14), one pair targeting 

rs636317 (15 + 16), one pair targeting rs6064392 (25 + 26), three pairs targeting rs9271171 (3 + 

4, 5 + 4, 5 + 6), three pairs targeting rs1532277 (7 + 8, 7 +10, 9 + 10), and one pair targeting 

rs7920721 (21 + 20). Guide pairs or scramble gRNA control lentiviruses (MOI ~ 0.5) were then 

used to infect 80% confluent 6-well plates of SH-SY5Y cells or t25 flasks of THP-1 cells. 

Culture media was replaced 16 hours later and cells were expanded for 5 days post-infection. 

Cells were sorted at the UCLA BSCRC flow cytometry core to isolate ~500,000 

GFP+/mCherry+ cells per replicate, and were subsequently differentiated. Ultimately I excised a 

240 or 374 bp region containing rs13025717 in SH-SY5Y cells, a 430 bp region containing 

rs636317 in THP-1 cells, a 382 bp region containing rs6064392 in THP-1 cells, a 1065 or 682 bp 

region containing rs9271171 in THP-1 cells (as well as a 1005 bp region in IPSC-derived 

astrocytes), a 393, 259, or 200 bp region containing rs1532277 in SH-SY5Y cells, and a 473 bp 

region surrounding rs7920721 in THP-1 cells.  

 For each replicate I collected total RNA and genomic DNA using the AllPrep DNA/RNA 

Mini Kit (Qiagen, 80204). CRISPR-mediated removal of the target enhancer was assessed by 

amplifying the target region of gDNA by PCR (genomic PCR primers: Appendix A – 

Supplemental Materials and Methods) and verifying strong representation of the truncated allele 

via gel electrophoresis. cDNA was reversed transcribed using SuperScript IV, Oligo(dT)20 

primer, and 300ng of total RNA. We performed qPCR using the KAPA SYBR FAST Kit 

(Roche, KK4600), 500nM qPCR primers (qPCR primers: Appendix A – Supplemental Materials 
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and Methods) and a Roche LightCycler 480. Relative transcript abundance was quantified using 

the 2-ΔΔCT method 24 normalized to the geometric mean of ACTB and GAPDH reference genes. 

 

Statistical analysis and data visualization 

 Statistical analysis was performed using the stats package in R (version 4.0.0). Group 

comparisons were performed using a two-sided Student’s t-test. Genomic tracks and chromatin 

annotations were visualized using the pyGenomeTracks python module 25. All other data were 

plotted using the ggplot2 package.  

 

Results 

Validation of select MPRA SigVars  

Beginning with the 320 significant putative regulatory variants identified in Chapter 2 at 

a conservative false discovery rate (FDR-adjusted q < 0.01), I used brain functional regulatory 

annotations to identify 55 high-confidence likely causal variants (Chapter 2; Methods). Here, I 

selected six of these variants for additional validation, including three variants within well-

characterized AD loci near BIN1, CLU, and MS4A6, and three variants within less well-described 

loci near HLA-DRB1/5, CASS4, and ECDHC3. I used CRISPR-Cas9 genome editing to assay 

regulatory regions in their native genomic context by excising the enhancer elements containing 

these variants, then assaying downstream effects on gene expression using quantitative PCR 

(Methods). I identified the target genes for a given variant either when the variant was close to 

the gene within its cis-regulatory region, or those genes linked by chromatin interaction data 

based on Hi-C from a relevant cell-type. 
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BIN1 gene expression is regulated by rs13025717 

I first assessed rs13025717, which is a highly significant MPRA SigVar (MPRA 1 q = 

2.6 ´ 10-38). This variant resides about ~20 kb from the transcriptional start site (TSS) of the 

established AD risk gene BIN1. It is also predicted to strongly disrupt binding of the transcription 

factor KLF4, and overlaps functional microglial and monocyte annotations including DNAse 

Hypersensitivity Sites (DHS) and H3K27ac, H3K4me1, and H3K4me3 ChIP-seq peaks (Figure 

5-1a-c). I used two pairs of gRNAs to excise a 240 or 374 bp segment containing rs13025717 in 

the SH-SY5Y cell line, and found a significant reduction in BIN1 gene expression (Figure 5-1d). 

Of note, I also tried performing this experiment in differentiated THP-1 cells, but BIN1 was not 

expressed in this cell type. 

 

Figure 5-1. Validation of rs13025707 as a regulatory variant underlying the BIN1 AD GWAS 
locus. (A) Genomic tracks (1-4) at the BIN1 locus show rs13025707 falling within H3K27ac, 
H3K4me1, H3K4me3, and DHS peaks (CD14+ monocytes; ENCODE). All variants tested by 
MPRA in the locus plotted by -log10 p-value (track 5). SigVars (FDR q < 0.01, BH method) 
shown in red. (B) the alternate allele of rs13025707 is predicted to disrupt binding of KLF4. (C) 
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violin plots show normalized barcode distributions for each allele across both MPRA stages. 
FDR-adjusted p-values displayed. (D) CRISPR-mediated deletion of small genomic regions 
containing rs13025707 in SH-SY5Y cells significantly reduces BIN1 expression compared with 
gRNA-scramble controls (n=3/group, combined n=6/condition; t(10) = -6.0; p = 0.0001; two-
tailed Student’s t-test). Error bars = S.E.M. 
 
MS4A6A gene expression is regulated by rs636317 

I next tested intergenic variant, rs636317, which lies within the complex Chr11:59923508 

AD GWAS locus (MS4A gene region) 26 and is another highly significant MPRA SigVar (MPRA 

1 q = 8.7 ´ 10-21). This variant is predicted to disrupt CTCF binding and overlaps H3K27ac and 

H3K4me1 peaks, as well as DHS in microglia and monocytes (Figure 5-2a-c). Analysis of 

existing Hi-C data from THP-1 cells 27 reveals rs636317 physically looping with upstream distal 

gene MS4A6A, which although not the closest gene to this variant, is also an eQTL 28 and the 

most highly-expressed gene at this locus in monocytes. As predicted, removing rs636317 in 

THP-1 cells, a macrophage-microglia related cell line 27 led to a significant reduction in 

expression of MS4A6A compared with both controls, validating the function of this locus in a 

native context (Figure 5-2d).  
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Figure 5-2. Validation of rs636317 as a regulatory variant underlying the MS4A6 AD GWAS 
locus. (A) Genomic tracks (1-5) at the MS4A6 locus show rs636317 falling within CTCF, 
H3K27ac, H3K4me1, H3K4me3, and DHS peaks (CD14+ monocytes; ENCODE). All variants 
tested by MPRA in the locus plotted by -log10 p-value (track 6). SigVars shown in red. Monocyte 
Hi-C data 27 (track 6) links rs636317 with MS4A6A. (B) rs636317 is predicted to disrupt binding 
of CTCF. (C) violin plots show normalized barcode distributions for each allele across both 
MPRA stages. FDR-adjusted p-values shown. (D) CRISPR-mediated deletion of a genomic 
region containing rs636317 in differentiated THP-1 monocytes significantly reduces MS4A6A 
expression (n=4/group; t(10) = -2.3; p = 0.03; two-tailed Student’s t-test). Error bars = S.E.M. 
 

CASS4 gene expression is regulated by rs6064392 

The CASS4 gene, although identified as residing within an AD-risk locus for close to a 

decade 26, remains relatively understudied. I identified functional variant rs6064392 within a 
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microglial enhancer in an intergenic region upstream of CASS4. This variant falls within a 

monocyte H3K27ac peak and is predicted to significantly disrupt ATF-family TFBS (Figure 5-

3a-b). The minor T-allele of rs6064392 is in tight LD (r2 = 0.91) with the protective allele of the 

GWAS locus lead SNP rs6024870 (A; OR = 0.88)29 and is also predicted by MPRA to decrease 

downstream gene expression (MPRA q = 2.6 ´ 10-20). This is in agreement with whole blood 

eQTL data from the GTEx consortium (Figure 5-3c). I used a pair of gRNAs to excise a 382 bp 

region around rs6064392 in differentiated THP-1 cells, which significantly altered CASS4 but 

not neighboring RTF2 expression (also a predicted eQTL) (Figure 5-3e-f), supporting the 

functional impact of this variant on the CASS4 gene.  
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Figure 5-3. Validation of rs6064392 as a regulatory variant underlying the CASS4 AD GWAS 
locus. (A) Genomic tracks (1-4) at the CASS4 locus show rs6064392 falling within H3K27ac, 
H3K4me1, and DHS peaks (CD14+ monocytes; ENCODE) upstream of the CASS4 TSS. All 
variants tested by MPRA in the locus plotted by -log10 p-value (track 5). SigVars (FDR q < 0.01, 
BH method) shown in red. (B) rs6064392 is predicted to disrupt binding of ATF6. (C) Whole 
blood eQTL (GTEx) for rs6064392 and CASS4. (D) violin plot shows normalized barcode 
distributions for each allele (MPRA 2). FDR-adjusted p-values displayed (two-tailed Mann-
Whitney-U test). (E-F) CRISPR-mediated deletion of a small genomic region containing 
rs6064392 in differentiated THP-1 cells significantly reduces (E) CASS4 (n=4/group; t(6) = -4.3; 
p = 0.005), but not (F) RTF2 (n=4/group; t(6) = 0.1; p = 0.94) gene expression compared with 
gRNA-scramble controls. Two-tailed Student’s t-test. Error bars = S.E.M. 
 
Multiple genes regulated by rs9271171 within the HLA locus 

Next, I explored the HLA-DRB1/5 AD GWAS locus, which is a highly polymorphic 

region of extended LD with numerous AD-associated variants and potential risk genes. My 

screen identified nine significant variants in the locus, the majority of which fell within the 

intergenic region between HLA-DRB1 and HLA-DQA1. I chose to further validate rs9271171 as 

it fell within a large myeloid open-chromatin region and was a significant eQTL in whole blood 

for multiple genes (GTEx)28 where the alternate (protective) allele decreased reporter expression 

(MPRA q = 4.9 ´ 10-6 ). I used two pairs of gRNAs to excise part of the enhancer region 

containing the variant in differentiated THP-1 macrophages, which revealed a dramatic (2.5-fold; 

Figure 5-4b) increase in expression of HLA-DQA1. Interestingly, unpublished chromatin 

conformation data from PsychENCODE indicated that rs9271171 might also physically interact 

with the distal gene, complement 4 (C4A), for which it is also an eQTL in whole blood (GTEx)28. 

Indeed, I observed that excision of this variant significantly reduced C4A expression in THP-1 

macrophages (Figure 5-4c). Its regulation of both HLA-DQA1 and C4A, but in opposite 

directions, suggested that this region may be pleiotropic and regulate multiple downstream 

genes. Because complement components are also expressed by reactive astrocytes, I performed 
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the experiment again in human PSC-derived astrocyte cultures (Figure 5-4d), confirming that 

excision of this variant reduced C4A gene expression in astrocytes as well.  

 

Figure 5-4. Validation of rs9271171 as a pleiotropic regulatory variant within the HLA-DRB1/5 
AD GWAS locus. (A) Genomic tracks (1-4) at the HLA-DRB1/5 locus show rs9271171 falling 
within H3K27ac, H3K4me1, H3K4me3, and DHS peaks (CD14+ monocytes; ENCODE). All 
variants tested by MPRA in the locus plotted by -log10 p-value (track 6). SigVars shown in red. 
(B) CRISPR-mediated deletion of genomic regions containing rs9271171 significantly increases 
expression of HLA-DQA1 (n=4 group, n=8/condition, t(14) = -6.9; p = 7.5´10-6) and  (C) 
significantly decreases C4A expression (n=4 group, n=8/condition; t(14) = 3.6; p = 0.003) 
relative to controls in differentiated THP-1 cells. (D) CRISPR deletion also decreases expression 
of C4A in IPSC-derived astrocytes (CRISPR n = 3, control n = 2; t(3) = 3.5; p = 0.04). Two-
tailed Student’s t-test. Error bars = S.E.M. 
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Inconclusive evidence for regulation of CLU gene expression by rs1532277 

 The clusterin (CLU) gene is secreted multifunctional glycoprotein implicated in amyloid 

clearance and inflammatory signaling, and was one of the earliest identified AD risk genes 30. 

Previous studies have postulated multiple causal variants within the CLU GWAS locus, 

including rs1523378 within intron 3 of the clusterin gene 31. My MPRA identified rs1532277 as 

being a significant regulatory variant (MPRA 1 q = 4.7 ´ 10-5). Of note, this variant is located 

just 135 bp upstream of rs1523378 within CLU intron 3. Furthermore, this variant falls within 

open chromatin in multiple cell types and is predicted to disrupt binding of the USF1 

transcription factor (Supplemental Table 1). I used three pairs of guide RNAs to excise a 393, 

259, or 200 bp region surrounding this variant in differentiated SH-SY5Y cells, ensuring that 

these truncations did not include any of the nearby exon. Confusingly, the longest excision (of 

393 bp) increased expression of the secreted CLU isoform, while the shorter excisions reduced 

expression relative to controls (Figure 5-5a). Of note, the longer excision also deleted rs1532278, 

while the shorter two spared this variant from removal (Figure 5-5b).  
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Figure 5-5. Ambiguous functional validation of rs1532277 within the CLU AD GWAS locus. 
(A) CRISPR mediated excision of the genomic region containing rs1532277 within intron 3 of 
the CLU gene using three pairs of guide RNAs in differentiated SH-SY5Y cells resulted in 
contradictory findings. The first pair (CRISPR 1) elevated gene expression (p = 0.01), while the 
other two pairs (CRISPR 2 and 3) reduced gene expression (p = 0.007) relative to scrambled 
gRNA controls. Two-sided Welch’s t-test. Error bars = S.E.M. (B) gene model of CLU intron 3 
and exon 4 shows the location of the genomic excisions of the three CRISPR gRNA pairs 
relative to rs1532277 and neighboring variant rs1532278. 
 
rs7920721 does not regulate gene expression in THP-1 cells 

Finally, the variant rs7920721 falls within an intergenic region on chromosome 10 

annotated to the ECHDC3 gene. This variant was a highly significant MPRA SigVar (MPRA q = 

1.8 ´ 10-10) and resides within microglial open chromatin and an H3K27ac peak. I excised the 

region surrounding this variant in differentiated THP-1 cells (tested because of their similarity to 

microglia), but failed to find any impact on gene expression for either ECHDC3 or USP6NL 

(closest genes; Figure 5-6). However, I cannot rule out that this variant may function within a 

different cell type.  

 

Figure 5-6. CRISPR-mediated deletion of a small genomic region containing rs7920721 in 
differentiated THP-1 cells does not alter expression of USP6NL or ECHDC3 (n=4/group; t(6) = 
0.1 and 0.6; p = 0.92 and 0.6 respectively; two-tailed Student’s t-test). Error bars = S.E.M. 
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Discussion 

I previously used MPRA to characterize noncoding variation associated with two 

neurodegenerative disorders, AD and PSP, identifying putative regulatory variants at numerous 

risk loci (Chapter 2). However, a limitation of that work was the technical infeasibility of 

performing MPRA within human brain cell types, with the specific trans-regulatory environment 

of HEK293T cells likely influencing the generalizability of the screen 19. Here, I address this 

limitation by identifying and validating causal SNPS at six loci within brain-relevant cell lines, 

an important proof-of-principle for the external validity of my screen. In doing so, I provide 

strong evidence for rs13025717 and rs636317 as regulatory variants underlying the BIN1 and 

MS4A6A loci respectively, as had been previously suggested 32,33. Moreover, my work suggests 

that these variants likely function within microglia to promote AD risk.  

Furthermore, I show that rs6064392 regulates expression of CASS4 within 

monocyte/microglial lineages. The function of CASS4 has largely been inferred by its homology 

with other CASS-family proteins and its interactions with known AD risk-genes such as 

PTK2B/Pyk2 at focal adhesions. Interestingly, multiple studies assessing gene expression from 

sorted brain tissues have determined that CASS4 is most highly expressed in microglia and 

endothelial cells 34,35, where it may influence cell migration, phagocytosis, and Aβ peripheral 

clearance 36. I find the minor T-allele of rs6064392 is predicted by MPRA to decrease 

downstream gene expression, which is in agreement with whole blood eQTL data (Figure 5-3c). 

As rs6064392 is in tight LD with the protective A-allele of rs6024870, decreased CASS4 

expression may play a protective role in AD. This is in-line with functional genetic screens that 
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found elevated CASS4 expression exacerbating tau pathology in drosophila models 37, although 

the exact role of CASS4 in microglia remains unclear.  

Furthermore, I characterized rs9271171, which lies within the flank of a recently 

described myeloid super-enhancer 38 in the HLA-DRB1/5 locus. Excision of the ~600 bp 

surrounding rs9271171 in THP-1 macrophages dramatically increased expression of the most 

proximal gene, HLA-DQA1. Highlighting the regions regulatory complexity, in THP-1 

macrophages and IPSC-derived astrocytes, deletion of this region also significantly reduced 

expression of complement 4 (C4A), a distal gene ~600 kb away. In this study, the rs9271171 (C)-

allele increased expression of the reporter gene, in agreement with the eQTL effect for this allele 

on C4A (GTEx) 28. This (C) allele is in tight LD (r2 = 0.99) with the risk (A) allele of the locus 

lead SNP rs9271058 (OR = 1.1) 29, consistent with a hypothesis that elevated C4A expression 

increases risk for AD. Indeed, C4 as well as other members of the classical complement cascade 

(e.g. C1q, C3) associate with amyloid plaques and are dramatically elevated in AD brain 39. 

Work in animal models has consistently demonstrated an exacerbation of tau pathology and 

synaptic dysfunction downstream of complement activation 40,41. Likewise, genetic risk in the 

complement pathway was identified more than a decade ago in CR1 and CLU 42, in C7 in a Han 

Chinese cohort more recently 43, and suggested in C4 through a small study assessing local copy 

number variation 44. However, this is the first time common genetic variation influencing C4 

expression has been linked to AD risk.  

 Finally, I was unable to conclusively verify the gene-regulatory effects of two 

SigVars, rs7920721 (ECHDC3 locus) and rs1523377 (CLU locus). While excision of the 

genomic region containing rs7920721 failed to have any discernable effect on gene expression of 

nearby genes ECHDC3 and USP6NL, excision of rs1523377 had contradictory results. Removal 
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of a relatively large genomic region containing the variant increased expression of the secreted 

CLU isoform, while more restricted truncations decreased gene expression. It is possible that 

these different length truncations include or exclude different transcriptional-regulatory domains, 

and indeed the longer truncation also removed nearby variant rs1532278. However, rs1532277 is 

an intronic variant neighboring an exon, and excision of this region might thereby impact mRNA 

splicing or stability, confusing the interpretability of my results. These findings highlight the 

limitations of my gene editing approach, wherein a small genomic region surrounding the SNP 

of interest is removed using pairs of guide RNAs. This method is much more technically 

efficient than laborious allelic replacement experiments, and provides information about whether 

the gene region containing the SNP of interest (in its native chromatin context) is involved in 

gene regulation. However, this method does not directly test the causality of that SNP due to the 

confounding effects of removing multiple neighboring nucleotides. Although I provide strong 

evidence using both MPRA and CRISPR-mediated excision, future gene-editing studies 

performing precise allelic replacement will be required to fully validate these likely regulatory 

variants.   
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Abstract 

Massively Parallel Reporter Assays are a recently developed high-throughput 

experimental approach for the transcriptional regulatory characterization of noncoding genomic 

elements. However, this technology remains relatively immature, and the influence of key 

technical parameters and design considerations on assay performance remains unclear. In Part 1 

of this Chapter, I use my MPRA data to explore the significance of various technical factors. 

After confirming that my assay is highly robust and reproducible, I determine that high MPRA 

barcode complexity (~40 barcodes/allele) and cellular expression is critical for assay 

performance. Additionally, I find modest effects of element orientation on experimental 

outcomes, and also determine that a library sequencing depth of approximately 25-fold maintains 

adequate data quality while reducing assay costs. Finally, I describe sequence features including 

GC content extremes, low sequence complexity, and long nucleotide repeats that predict element 

dropout during library construction. In Part 2, I describe technical barriers and challenges faced 

towards implementing MPRA within neuronal cell types relevant for modeling 

neurodegenerative disease.  

 

Introduction 

 A major goal of modern genetics is the identification and functional annotation of 

noncoding genomic regions. However, characterization of the millions of putative regulatory 

elements identified across diverse and myriad biospecimens is a daunting task, necessitating 

scalable, multiplexed methods. Massively Parallel Reporter Assays (MPRA) have emerged as a 

high-throughput approach for functional characterization of the noncoding genome 1. Briefly, 

MPRA measures the transcriptional regulatory effects of short genetic elements, using deep 
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sequencing to quantify transcribed barcodes uniquely associated with each assay element 

(Chapter 1). Since its introduction in eukaryotic systems in 2012, MPRA has been used across 

diverse experimental settings to screen for enhancer activity 2,3, identify functional variants 4–7, 

and probe transcriptional architecture 8. However, the assay remains relatively immature, and 

unlike other high-throughput methodologies in functional genomics, lacks a consensus and 

robustly validated assay pipeline. Implementations in the field have been diverse, and the 

performance effects of library design, cellular environment, sequencing parameters, and analysis 

approaches remain to be fully clarified 9,10. 

 Nevertheless, there have been attempts in the literature to elucidate assay parameters 

critical to MPRA performance, the most comprehensive of which was a recently published study 

from Klein and colleagues who screened 2,440 previously described liver enhancers across nine 

different library designs 9. They determined that the most significant design consideration was 

the spatial location of the enhancer element, which can have a canonical 5’ placement or be 

placed within the 3’UTR of the reporter gene (as in STARR-seq 11). The authors also found 

modest effects when comparing chromatin integrating (lentiMPRA 12) vs. episomal assays. 

Interestingly, they further tested candidate enhancers at three different lengths (192, 354, and 678 

bp), determined that the distal enhancer context influences assay results while noting that the 

short, sub-200 bp enhancer size seen in most studies is an artificial technical constraint of 

microarray synthesis 9. In summary, Klein and colleagues systematically tested a number of 

MPRA library design parameters, describing advantages and disadvantages for each 

implementation. Importantly in regards to my work, they claim that the “classic” MPRA design 

based on the pGL4 reporter construct 2 (used here) had the highest reproducibility, largest 

dynamic range, and was the most well-predicted by regression on relevant genomic features 9.  



 140 

 The work by Klein and colleagues comprehensively replicates results from earlier studies 

characterizing episomal vs. integrating assays 12,13  and 5’ vs. 3’ enhancer placements (STARR-

seq 11). Other parameters examined in the literature include power at different barcode 

complexities 5,14 or numbers of biological replicates 15, influence of minimal promoter strength 

16–18, impact of library expression and coverage 19, or the effects of different modeling 

assumptions on data analysis pipelines 15,20–22. Furthermore, it has been extensively noted that 

cellular context and specific trans-factor expression profiles dramatically influence reporter 

assays results, and several studies have examined cell-type specific effects 5,8,16,23 . 

 In this work I use the MPRA data I previously generated (Chapter 2) to examine 

technical factors influencing MPRA performance. In Part 1, I discuss the effects of a number of 

technical factors including variant dropout during library construction, barcode complexity, 

library expression, and sequencing depth. These results will inform the discussion in Part 2, 

where I note the significance of cellular context and describe my progress in adapting my MPRA 

approach for use in neuronal cells. 

 

Materials and Methods 

Data and quality control 

 MPRA data used and visualized here was previously generated and described (Chapter 2). 

Quality control (inter-replicate and inter-assay) were also previously defined. 

 

Variant dropout analysis 

 Variants were excluded from analysis if I was unable to obtain activity measurements from 

at least 5 unique barcodes for both alleles. Of the 5,706 unique SNPs tested in both MPRA 
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stages, 366 did not meet this inclusion threshold in either stage. I then compared sequence 

features from these “dropouts” vs the rest of the “included” oligos. I used the SeqComplex perl 

module to compute GC content, CpG skew, and sequence complexity metrics 

(https://github.com/caballero/SeqComplex) 24. Sequence entropy was calculated using the 

RNAfold tool from the ViennaRNA 2.0 software suite 25. I also generated a custom python script 

to identify the longest runs of mono- or di-nucleotide repeats within each oligo (script provided: 

https://github.com/ycooper27/Tauopathy-MPRA). Outputted scores were compared between 

“dropouts” and all “tested” oligos using a two-sided Mann-Whitney-U test. For visualization 

purposes (Figure 6-3) I took a random sample of 366 “tested” variants. 

 

Power analysis 

I performed a power analysis to determine the sensitivity of my assay at different barcode 

complexities. I first determined empirical SigVar effect sizes from my combined study, which 

were binned into percentiles. I also determined an empirical assay standard deviation by taking 

the average standard deviation of the normalized barcode counts for all alleles that passed filter 

in both studies. I then performed a power analysis using the power.t.test function from the stats 

package in R, using the empirical standard deviation, an alpha threshold of p < 0.01 and a 

“two.sided” hypothesis test. The analysis was performed using different percentiles (0, 20, 40, 

60, 80th) of empirically computed effect sizes, as well as all integer n (i.e. # unique barcodes per 

allele) between 5-100, and plotted using ggplot2. 
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AAV production 

 The pAAV.CMV.PI.EGFP.WPRE (Addgene #105530) plasmid was packaged into AAVs 

of four different serotypes using the following rep/cap plasmids: pAAV2/1 (Addgene #112862) , 

pAAV2/9n (Addgene #112865), 7m8 (Addgene #64839) 26, and pUCmini-iCAP-PHP.eB 

(Addgene #103005) 27. This was done using the triple transfection method and a modified 

iodixanol gradient purification protocol  28. In brief 1:1:1 molar ratios of insert, pAdDeltaF6 

helper plasmid (Addgene #112867), and rep/cap plasmid were transfected into eight 15 cm plates 

of 70% confluent HEK293T cells using Lipofectamine 2000, following manufacturer’s 

instructions. Six hours post transfection the media was switched to low (2%) serum culture 

media. Cells were mechanically detached 72 hours later, spun down, and lysed via three freeze-

thaw cycles using a dry ice slurry and 37°C water bath. Cell lysate was spun at 1000g for 15 min 

and the liquid phase was subsequently loaded into an 54/40/25/15% underlayed iodixanol 

gradient in a Beckman Coulter tube (Beckman 331372) and spun for 5 hours at 35,000 rpm and 

4°C using a SW41 rotor and a swing-bucket ultracentrifuge. 3 mL at the 54/40% interface were 

removed and loaded into an Amicon concentrator (Millipore UFC91008) for buffer exchange 

and concentration in DPBS + 0.001% Pluronic-F68. The MPRA 1 library (Chapter 2) was also 

packaged into PHP.eB serotype AAVs using this method. Viral titer was determined by qPCR 

using primers for the eGFP insert and a DNA standard.  

 

AAV serotype comparison  

The pAAV.CMV.PI.EGFP.WPRE plasmid was packaged into AAV 1, 9, 7m8 26, and 

PHP.eB 27 serotypes as described above and viral titer was determined by qPCR. Human neural 

progenitor cells (NPCs) were expanded and cultured as previously described 29. 105 NPCs were 
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seeded onto acid-washed glass coverslips pre-coated with PLO/Laminin in 24-well culture 

vessels. Each AAV serotype was added in triplicate at a concentration of approximately 104 

vg/cell, and cells were incubated for an additional five days post infection. Coverslips were then 

washed and fixed with 4% PFA at room temperature for 12 minutes before DAPI counterstaining 

and mounting onto coverslips. Slides were imaged using a Zeiss fluorescent microscope with a 

20X air objective, and the proportion of GFP+/DAPI+ cells was manually quantified.  

 

Cell culture 

HEK293T cells: HEK293T cells were cultured in DMEM containing GlutaMAX (Thermo Fisher 

Scientific, 10566016) supplemented with 10% FBS and 1% Sodium Pyruvate (11360070). 

 

IPSC-derived neurons: Induced Pluripotent Stem Cells (IPSCs) were previously documented 30 

and kindly provided by Dr. Li Gan in accordance with the UCLA TDG guidelines. IPSCs were 

grown on Matrigel-coated culture vessels using MTESR media as previously described. To 

perform neuronal differentiation, IPSCs were gently detached using Accutase and plated on 

culture vessels pre-coated with Poly-L-Ornithine and Laminin. IPSC-media was switched to a 

differentiation media composed of: DMEM/F-12, 1X N2 supplement (Thermo Fisher Scientific, 

17502048), 1% MEM-NEAA (Thermo Fisher Scientific, 11140050), Y-27632 (StemCell 

Technologies), Doxycycline (2ug/mL), and Laminin (200 ng/mL). On differentiation day 3, 

media was switched to 50% DMEM/F-12 + 50% Neurobasal A, 0.5X N2, 1X B27 (Thermo 

Fisher Scientific, 12587010) with the following supplements: 10ng/ml BDNF, GDNF, NT3,  

Laminin (200 ng/ml), RepSox (7.5uM ), Doxycycline (2ug/mL), and ascorbic acid (200 nM).  
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On day 7, a half media change was performed (without Dox and RepSox). Half media change 

was performed every 3-4 days until collection. 

 

Massively Parallel Reporter Assay 

 Three technical replicates of 4-5 million IPSCs were grown and differentiated as above 

on pre-coated 10 cm culture dishes. On differentiation day 14, a half media change was 

accompanied by 100 uL of MPRA 1 library packaged into PHP.eB serotype AAVs (titer ~6 x 10-

12 vg/mL). The virus was allowed to express for seven days. Cells were collected on day 21 and 

DNA and RNA were extracted. Libraries were prepped for sequencing and downstream analysis 

as previously described (Chapter 2, Methods), with 18 PCR cycles required for cDNA and 

Plasmid amplification prior to sequencing.  

 

Statistical analysis 

 All statistical analysis was performed using the stats package in R (v. 4.0.0). All 

statistical tests are reported where relevant and are two-sided.  

 

Results 

Part 1 

In Chapter 2 I described screening 5,706 unique noncoding variants across two unique 

MPRAs. Here, I use these data to provide further discussion and analysis of factors observed to 

impact MPRA experimental outcomes and technical performance. Consideration of these 

parameters may aid in the design and implementation of future studies involving complex library 

construction and massively multiplexed assays.  
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ASSESSMENT OF MPRA REPRODUCIBILITY 

 Because of my two-staged experimental design, I took the opportunity to characterize the 

true reproducibility of my assay. I identified 326 variants in the first MPRA stage, including 186 

with significant transcriptional skew between alleles (SigVars; FDR adjusted q < 0.01) to be re-

tested in the second stage. Importantly, although library design stayed identical, oligo barcoding, 

cell culture, sequencing, and other technical factors were distinct between stages, thereby 

providing an informative estimate of the impact of technical confounding variables. Fortunately, 

I found that the assay was highly reproducible, with measurements of allele transcriptional 

efficacy, and relatedly, MPRA-determined effect sizes, highly correlated between experiments (r 

= 0.98 and 0.94 respectively, both p < 2´10-16; Figure 2-8a). This suggests that MPRA-

determined measurements of transcriptional efficacy are highly precise and that variant ordering 

(e.g. prioritization) on the basis of effect size is robust. Significantly, reproducibility is not an 

inherent feature of SigVars or highly expressed variants in particular. Upon inspection of the 140 

re-tested variants without significant allelic skew  (q > 0.01), I again confirmed high correlation 

between stages (r = 0.96, p < 2´10-16) 

Interestingly, 152 of 186 (82%) re-tested MPRA 1 SigVars remained significant in stage 

2 (replication threshold; Bonferroni q < 0.05; Figure 2-8a), which is somewhat lower than might 

be expected considering the original conservative FDR threshold of q < 0.01 used to determine 

significance in stage 1 and the near perfect correlation of effect sizes observed between 

experiments. In comparing the 34 non-replicating (NR) and 152 replicating (R) variants, the non-

replicates had a higher MPRA stage 1 median barcode complexity (average least complex allele; 

94 (NR) vs. 67 (R) barcodes), and a lower MPRA stage 2 barcode complexity (45 (NR) vs. 65 
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(R) barcodes). Thus, variants that failed to replicate had a dramatic reduction in barcode 

complexity in the replication stage (delta barcodes = -49 (NR) vs. -3 (R) barcodes). 

Concurrently, non-replicating variants had a significantly lower mean absolute effect size 

(MPRA stage 1 Log2 FC: 0.36 (NR) vs. 0.72 (R); p = 2.6 ´10-9; two-sided Mann-Whitney-U 

test).  

I next determined power to detect significant allelic skew for a range of percentiles of 

empirical MPRA effect sizes at different levels of barcode complexity (Figure 6-1; Methods). 

Interestingly, the threshold at which 80% power is achieved for the 40th percentile of empirical 

effect sizes is at a barcode complexity of 42 barcodes per allele, with a steep drop-off in power at 

decreasing effect sizes and barcode complexities. Thus power to detect SigVars of small effects 

are highly contingent on high (>40 barcodes/allele) barcode complexity, and suggests that while 

MPRA is highly precise in determining allele effect sizes (even at low complexities ~5 barcodes, 

data not shown), identification of allelic skew significance will be somewhat impacted by 

stochastic fluctuations in barcode complexity due to PCR. Interestingly, while barcode 

complexity seems that have a strong impact on sensitivity, it may play less of a role in 

determining specificity. For example, I did not find that increasing the stringency threshold for 

variant inclusion from a minimum barcode complexity of 5 to either 8 or 10 improved the 

reproducibility rate. Indeed, there was no obvious bias towards having low MPRA 1 barcode 

complexity amongst variants that failed to replicate in MPRA 2. It therefore seems likely that 

other factors that influence assay quality, including library expression and coverage (discussed 

below), may influence noise and specificity more than barcode complexity.  
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Figure 6-1. Barcode complexity significantly impacts power for massively parallel reporter 
assays. A simulated power analysis, using MPRA-determined empirical variance and different 
quintiles of empirical effect sizes, revealed that adequate power (0.8) to detect significant allelic 
skew at a broad range of effect-sizes is achieved at a barcode complexity of ~40 barcodes/allele. 
 

EFFECTS OF OLIGO CONFIGURATION ON MPRA PERFORMANCE 

I also tested the effects of library construction parameters on SigVar detection and 

reproducibility, using the SigVars identified in MPRA stage 1 as a “gold standard” test set. 

Specifically, I tested the impact of placing the oligo in the reverse complement (RC) orientation 

in the MPRA vector as well as the effect of placing the variant in the bottom third (as opposed to 

the middle) of the 162 bp genomic context. I used the oligo in reverse orientation as a negative 

control as this maintained identical nucleotide composition (Figure 6-2). Interestingly, SigVars 

had strong but imperfect correlation with their RC (r = 0.69, p < 2´10-16) and lower third (r = 

0.78, p < 2´10-16) counterparts, suggesting modest effects of oligo orientation and distal 

sequence context on MPRA activity. As MPRA activity measures are highly precise and 
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reproducible (discussed above), these effects of oligo configuration are likely biological and not 

due underlying assay noise. Placing oligos in the reverse orientation completely abolished 

activity as expected (all p > 0.5; Figure 6-2). These findings can inform design considerations for 

future massively parallel screens. 

 

Figure 6-2. Effects of oligo configuration on MPRA performance. i) Shows the experimental 
design for testing the effect of enhancer orientation and variant placement on MPRA activity. 
212 variants identified from MPRA 1 were replicated in MPRA 2: Oligos were kept in the same 
orientation as the original (FDR), oligos were placed in the reverse complement orientation (Rev. 
Comp.), variant was placed in the lower third of the oligo rather than the middle (Lower Third), 
or the enhancer sequence was reversed (Reverse) as a negative control. Plots showing 
correlations between oligo orientations shown in ii), red line = OLS regression line of best fit, 
Pearson’s correlation. 
 

TECHNICAL FACTORS INFLUENCING VARIANT DROP-OUT 

I initially assumed that the observed 9% variant drop-out during stage 1 was random 

bottlenecking due to library construction and therefore attempted to re-test missing variants in 
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stage 2. However 346/491 of these variants also failed to pass QC in stage 2, suggesting that a 

large proportion of drop-outs were due to systematic amplification failure during library 

construction or strong transcriptional repression. Indeed, the vast majority of variants that 

dropped out specifically during MPRA 1 library construction dropped out again during MPRA 2 

library construction, suggesting PCR amplification failure. I assessed sequence features of the 

366 unique variants that failed to pass quality control (QC) for both MPRA 1 and 2 and found 

that missing variants were more likely to contain GC content greater than 75% or less than 25% 

(GC extremes) and had increased rates of CpG skew (p = 8*10-5; Mann-Whitney-U test). 

Additionally, drop-out variants had significantly lower mean sequence complexity (measured by 

Shannon’s entropy, compressibility, linguistic complexity measures, etc.; Methods), and were 

more likely to contain long regions of repetitive sequences such as CpGs, dinucleotide repeats, or 

polyA tracts (average longest repeat 14 vs. 7 nucleotides; p < 2 *10-16; Mann-Whitney-U test). 

Results are summarized in Figure 6-3. The two features most predictive of variant drop-out were 

GC extremes and di-nucleotide repeats of more than 20 nucleotides.  
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Figure 6-3. Assessment of sequence-level features of the 366 variants (“Dropouts”) that failed to 
pass quality control thresholds through both MPRA experimental stages (Methods). Violin plots 
display GC-content, CpG content, sequence complexity measures (-log2 compressibility and log2 
Shannon’s entropy), predicted secondary structure (calculated using RNAfold), and longest 
mono- or di-nucleotide repeat per tested oligo for the 366 dropout variants vs. a random sample 
of 366 variants that passed QC (“Tested”). Dropout variants were enriched for GC content 
extremes (>75% or <25%), increased CpG skew, had decreased mean sequence complexity, and 
on average contained longer runs of nucleotide repeats (mean 14 vs 7 nucleotides; two-tailed 
Mann-Whitney-U test). Predicted secondary structure did not differ between groups (p = 0.6). 
 

SEQUENCING DEPTH REQUIREMENTS 

 The appropriate sequencing depth (defined here as mean mapped reads per unique 

barcode) to obtain high-quality MPRA data has remained unaddressed in the literature. As 

sequencing is one of the largest cost-components of these assays, it is valuable to identify the 

optimal balance between coverage and data quality. I initially sequenced my libraries at a high, 

45-fold coverage. I therefore performed read downsampling, assessing the number of unique 

barcodes retained and variant level inter-replicate correlations (Spearman’s rho) at 45, 25, 20, 15, 

and 10x library coverage. As can be seen in Figure 6-4, library barcode complexity drops off 

down to 72% of maximum at 10x coverage, with an inflection at around 25x. Allele level inter-

replicate correlation showed a similar trend (though admittedly maintaining decent correlations 

at all depths). These results suggest that a target sequencing depth of 20-25x should maintain 

appropriate data quality while reducing cost. 
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Figure 6-4. MPRA performance metrics at various sequencing depths. Library coverage was 
downsampled (coverage defined as the average number of reads per unique library barcode). The 
percentage of retained barcodes (left) and the mean variant inter-replicate Spearman’s correlation 
(right) are shown at different read depths.  
 

One quality control metric used in next generation sequencing studies is the percentage of 

reads mapped to the reference, with a target of ~90% for RNA-seq 31. However in my MPRAs I 

typically observed between ~40-50% reads mapped, highlighting that a majority of reads are 

wasted. The algorithm I used to map reads requires perfect matching between sequenced 

barcodes and the reference. Therefore, errors introduced by cDNA amplification or during 

sequencing may account for some proportion of unmapped reads. Indeed, I found that the 

percentage of reads mapped to plasmid libraries was 3% higher than reads mapped to mRNA 

libraries, a discrepancy likely reflecting errors introduced during cDNA synthesis. I also 

considered another explanation: Because barcodes are appended to library elements using PCR, I 

use paired-end sequencing to create a reference file mapping unique barcodes to library elements 

(See Chapter 2, Methods). Reads are later aligned to this barcode lookup table. If this initial 

barcode-mapping step was not performed at sufficient coverage, it is possible that I sampled only 

a small proportion of true barcodes in the library. This would create a limited reference, leading 

to poor read mapping. Therefore, for one of my MPRA libraries, I went back and re-sequenced 
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barcode-variant associations at 6-fold the initial depth, identifying approximately twice the 

original number of uniquely mapped barcodes. However, this only improved read mapping 

during the actual MPRA by a few percent, suggesting that barcode saturation is not required. 

 The most likely explanation for poor mapability has to do with the synthesis and cloning 

of the library elements themselves. When assessing allelic effects, the only difference between 

the reference and alternate alleles can be the target SNP. Therefore, I only consider barcodes 

mapped to “perfect” library elements with no off-target deletions or mutations. Agilent high 

fidelity library synthesis advertises an error rate of one per kilobase (likely optimistic), which has 

a 15% probability of occurring at least once in an 162 bp element. Moreover, microarray 

synthesis is known to introduce frequent deletions at longer oligo lengths, and while attenuated 

using emulsion PCR with high-fidelity polymerase, amplification of repetitive genomic libraries 

can lead to a large proportion of chimeric amplicons. Indeed, I found using colony PCR that 

between 15-20% of library plasmids contained elements of an inappropriate size. In summary, I 

estimate that the process of element synthesis and cloning introduces approximately ~40% 

“junk” into my library. Reads from barcodes associated with these junk elements cannot be 

mapped, explaining the low overall percentage of reads mapped. Unfortunately, this is a difficult 

issue to rectify at present. However, it must be accounted for when estimating adequate assay 

sequencing depth. 

  

LIBRARY EXPRESSION IMPACTS ASSAY PERFORMANCE 

 It has been previously reported that MPRA performance, as defined by the precision and 

reproducibility of measurements of library transcriptional efficacy, is dependent on high levels of 

library expression 19. This is particularly true for assays measuring variant function, which 
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attempt to identify subtle changes in transcriptional efficacy between alleles (i.e. detect small 

effect size events). Three critical factors influencing expression of reporter libraries are: 1) the 

ability of library elements to drive transcription, 2) global transcriptional propensity of the 

particular cell-type, 3) transfection or infection efficiency into cells of interest (e.g. copy number 

per cell, cell transduction percentage). Unfortunately, assays testing variant allelic skew typically 

employ weak minimal promoters so as not to overwhelm the transcriptional impacts of single 

nucleotide substitutions, which are typically small. As a result, these assays have been 

exclusively performed in cancerous cell lines, which can be transfected at high efficiencies. 

Moreover, cancer cells, particularly those with c-Myc amplifications have been noted to have 

higher levels of overall transcription (known as transcriptional amplification) 32.  

 I confirmed the importance of library expression on assay performance by comparing 

four separate MPRA experiments: the two assays presented Chapter 2, the AAV-MPRA 

experiment (described below), as well as an additional unpublished assay. I took the average 

between-replicate correlation (Spearman’s rho) of allele expression as the overall performance 

metric for each experiment. Significantly, each experiment required a differing number of PCR 

cycles to amplify an adequate amount of library cDNA for downstream sequencing (10, 15, 17, 

18 total PCR cycles). I found an inverse relationship between PCR cycle number and 

performance (mean rho), with a large performance drop off above 15 cycles. As PCR cycle 

number likely reflects underlying mRNA quantity and library expression, this confirms the 

importance of expression on performance. This observation represents a major technical obstacle 

towards implementing MPRAs within difficult to transduce primary cell-lines, which may be 

desirable in vitro model systems that more closely recapitulate relevant biology than cancer lines 

(discussed further in Part 2). 
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MPRA DATA ANALYSIS CONSIDERATIONS  

 The development of analysis methods for MPRA data remains an active area of ongoing 

research. Previous studies examining allelic effects have used diverse approaches, including 

adoption of differential expression packages from RNA-seq (e.g. DESEQ2), t-tests, and non-

parametric tests. More recently, a number of dedicated methods have been developed specifically 

tailored to MPRA data analysis, including QUASAR-MPRA 20, MPRAnalyze 21, MPRALM 15, 

and atMPRA 22, with user-friendly implementations in the R computing environment. I did not 

rigorously benchmark these various methods as this has been done extensively through 

simulation elsewhere 15, but I will highlight some important considerations. 

 A primary application of MPRA is to identify noncoding elements with enhancer or 

repressor activity, which is done by comparing the transcriptional activity of each library element 

compared with a null distribution. This distribution has been constructed in previous studies by 

including negative control elements such as: an “empty” vector containing only the minimal 

promoter, sets of scrambled sequences, or previously defined negative/control elements 1. It is 

my view that the empty vector approach is dubious as there will always be some plasmid DNA 

elements adjacent to the minimal promoter, which may have transcriptional activity. Indeed, it 

has been found that the plasmid ORI can drive transcription in mammalian systems 33, as can the 

AAV ITR 34 (I mitigate this by introducing a transcriptional pause sequence upstream of the 

minimal promoter in my vector design 28). In my work, I did not include negative control 

elements, and therefore defined activity as a significant deviation from the activity of the median 

library element. This is reasonable under the assumption that most surveyed noncoding elements 

are transcriptionally neutral, but may not hold for all libraries. What is certainly inappropriate is 

taking the normalized RNA/DNA ratio and defining active or repressed elements at thresholds 
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greater or less than one respectively, as these unadjusted ratios are certainly subject to sampling 

bias during sequencing 35 . Additionally, because I use a weak minimal promoter with low basal 

transcriptional activity, it is much easier to identify elements that increase rather than decrease 

transcription (as has been noted 5). Repressor screens should incorporate stronger minimal 

promoters to increase sensitivity. 

 To identify allelic skew, I adapted a pipeline from Ulirsch and colleagues 4, using the 

non-parametric Mann-Whitney-U test to compare barcode rank distributions between alleles. 

Non-parametric tests are robust to deviations from normality and outliers at the expense of 

power. I confirmed that this approach adequately controls p-value inflation by visual comparison 

of Q-Q plots before and after removal of variants with p < 0.01. In this method, barcode counts 

are combined across replicates before comparison of the barcode distribution between alleles. It 

is therefore highly sensitive to barcode complexity (as described above). By contrast, recently 

developed methods for dedicated MPRA analysis are based on linear models, including the 

eponymous MPRALM 15. This method explicitly models the variance-mean relationship inherent 

in MPRA data, and pools variance across elements using Bayesian shrinkage to increase 

discovery power 36. More generally, linear models are attractive because they are fast and easy to 

implement, simple to interpret, and can flexibly incorporate various design matrices and 

contrasts to explore interaction terms. One difference is that these approaches aggregate barcodes 

within replicates, and the choice of aggregation method (e.g. sum, mean, median) may affect 

outcomes 15. Additionally, these methods may be less sensitive to barcode complexity, but more 

sensitive to the number of biological replicates 15.  
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Part 2 

 A theoretical advantage of MPRA is the ability to interrogate genetic elements in tissues 

or cell types relevant to traits of interest 1. Examination of eQTLs reveals that single genetic 

variants can simultaneously increase or decrease downstream gene expression depending on the 

specific tissues examined 37. Similarly, it has been noted that variants tested in reporter assays 

can have opposite effects depending on the cell type used 38. Thus, measuring variant-expression 

effects depends on the interaction between the variant and the specific trans-cellular 

environment, consisting of transcription factors, RNA binding proteins, and transcriptional 

machinery 1. Neurodegeneration is a brain phenotype, mechanistically implicating all major 

brain cell types including neurons, astrocytes, oligodendrocytes, microglia, and endothelial cells. 

As discussed in Chapter 2 (Figure 2-3), these represent highly non-overlapping cell types and I 

therefore chose to use HEK293T cells as a technically tractable compromise. While ideally a 

functional genetic screen of neurodegeneration would occur in brain cell types, these primary 

cells are difficult to isolate, culture, and most importantly transduce. As I note in part one, a key 

technical parameter governing MPRA performance is strong library coverage and resultant 

expression, which is mediated by efficient cellular transduction. Here, I will describe attempts to 

perform MPRA within primary human neuronal model systems. Neurons were chosen as the cell 

type most directly mediating relevant behavioral phenotypes in neurodegeneration, and as 

harboring the most genetic risk for PSP 39,40 (Chapter 2). 

AAV-MPRA 

 The implementation of MPRA within neurons is primarily limited by poor transfection 

efficiency. Adeno-Associated Viruses (AAV) are a commonly used viral delivery system, with 

well-documented neural tropism and high cellular copy numbers of the genetic payload 41. 
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I therefore chose to test AAVs as a library delivery system in neurons. Different AAV serotypes 

have different tissue tropisms and cell-type specific transduction efficiencies. First, I screened 

four viral serotypes, AAV1, AAV9, 7m8 26, and PHP.eB 27 for infectivity in cultured human 

neural progenitor cells (hNPCs). To do so, I packaged a reporter vector expressing eGFP under 

control of a constitutive promoter into AAVs of these four serotypes. I then infected culture 

wells containing hNPCs with equal amounts of each viral serotype and manually determined the 

percent of GFP+ cells per field using fluorescent microscopy. I found that AAV-PHP.eB seemed 

to have the best tissue tropism and it was selected for the subsequent experiment. 

 I previously discussed the development of an MPRA vector compatible with AAV 

packaging and delivery (Chapter 2, Methods). Since my MPRA library plasmids were designed 

such that functional elements were harbored between the AAV2 ITRs, I was able to directly 

package my library into PHP.eB serotype AAVs using an in-house protocol (Methods). I chose 

to use neurons derived from induced pluripotent stem cell (IPSC) using the NGN2-

overexpression protocol as this differentiation paradigm delivers rapid and homogenous neuronal 

differentiation 30. I infected three biological replicates of 5 million IPSC-derived neurons, 

allowed my library to express for seven days, collected mRNA and DNA and sequenced the 

library.  

 However, data quality was quite poor. The log-normalized barcode count distribution 

exhibited a large peak at very high counts (Figure 6-5a), indicating the presence of PCR-

overamplification artifacts comprising a large proportion of the data. Indeed, this library required 

18 PCR cycles to obtain barely enough material for sequencing, which is many more 

amplification cycles than needed in HEK293T cells. Moreover, I found low and highly non-

linear barcode level correlations between replicates (mean Pearson’s r = 0.49, p = 2*10-16). 
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Variant level inter-replicate correlations had a mean Pearson’s correlation of 0.52 (Figure 6-5b), 

which is dramatically lower than the correlations of 0.95-0.99 observed in HEK293T cells. 

Similarly, when comparing variant expression and allelic effect size z-scores between iNeurons 

and HEK293T cells, there was almost no correlation (Spearman’s rho 0.06-0.17; Figure 6-5c). 

These results suggest that the AAV-MPRA protocol failed to deliver usable data. 

 

Figure 6-5. AAV-MPRA exhibited poor technical performance in iNeurons. (A) Density plot of 
log2 normalized barcode (BC) counts shows a peak (blue arrow) at extremely high counts, 
indicative of PCR overamplification. (B) Representative plot displaying low allele level 
correlations between replicates (Spearman’s rho). (C) There was little correlation between 
variant effect size z-scores (e.g. FC z-scores) when the library was tested in HEK cells vs. IPSC-
derived neurons (iNeurons).  
 

NUCLEOFECTION PROTOCOL 

 The following is a summary of work performed in collaboration with Dr. Qiuyu Guo in 

the Geschwind lab. We opted to test a nucleofection protocol in hNPCs as an alternative to AAV 

delivery. First, we noted previous reports that plasmid transfection in primary cell lines can 

activate the cGAS-STING pathway and drive the type-I interferon response 33. Type-I interferons 

can induce a highly coordinated pro-inflammatory transcriptional response, potentially biasing 

our MPRA results 33. We first confirmed that plasmid nucleofection in hNPCs induced robust 

expression of IFN-response genes and found that this inflammatory response could be inhibited 



 159 

by co-incubation with the inhibitors C16 and BX-795 (Figure 6-6a) 33. Next, we tested whether 

our MPRA libraries could be nucleofected into hNPCs. We nucleofected 20 ug of library into six 

biological replicates of 5 million hNPCs each, in the presence of C16 and BX-795 inhibitors. 

Three replicates were collected 24 hours later (undifferentiated), while another three replicates 

were differentiated into post-mitotic neurons for 14 days before collection. Then, we isolated 

mRNA and plasmid DNA before performing deep sequencing. Library quality was assessed by 

looking at inter-replicate variant level correlation. Unfortunately, the differentiated hNPC 

libraries exhibited very poor quality, with mean correlation of 0.2. However, the undifferentiated 

library had modest inter-replicate correlations of 0.77-0.82 (Pearson’s R2; Figure 6-6b). While 

these results remain sub-optimal, they represent a dramatic improvement over the AAV-delivery 

method and suggests that nucleofection could be a promising approach. Further optimization of 

this protocol remains ongoing.  

 

Figure 6-6. Nucleofection of MPRA libraries into neural progenitor cells (NPCs). (A) NPCs 
were placed into four different treatment groups: +/- plasmid nucleofection and +/- 0.1 uM of 
C16 and BX-795 inhibitors. Interferon activity was then assessed through quantitative PCR of 
four downstream genes: IFI27, IFIT1, IRF7, and ISG15 which were normalized against GAPDH 
expression. Plasmid DNA nucleofection significantly increased IFN activity (grey bars), which 
could be rescued by incubation with the inhibitors (yellow). (B) MPRA library performance 
(assessed as allele-level inter-replicate Pearson’s correlations) across three different cell types: 
HEK293T, differentiated hNPCs, and undifferentiated hNPCs. 
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Discussion 

The recent development and deployment of Massively Parallel Reporter Assays has 

enabled the widespread functional characterization of noncoding genetic elements. However, the 

contribution of a number of technical parameters on assay performance has remained relatively 

undefined. In this work, I use my MPRA data to both reproduce previous findings and provide 

novel insights into factors germane to MPRA implementation (Table S6-1 summarizes these 

findings). First, as was noted in Klein et al. 9, I demonstrate that the “classic” MPRA design 

based on the pGL4 reporter construct 2 is highly reproducible and robust to technical noise across 

separate experiments. I also find that detection power for allelic effects is especially dependent 

on a high degree of barcode complexity. In agreement with Tewhey and colleagues 5, I show that 

approximately 40 barcodes per allele maximizes sensitivity, though this may be dependent on 

specific analysis methods.  

Additionally, I describe technical factors that influence waste and overall cost. I find that 

sequence features including GC content extremes, uninterrupted strings of dinucleotide repeats, 

and low sequence complexity predict element dropout during library construction. Prefiltering 

elements based on extremes of these predictor values is warranted, freeing up limited space 

within synthesis microarrays that might otherwise be wasted. I also note that a relatively low 

sequencing coverage of 20-25 fold is sufficient to ensure assay quality. However, I find that a 

large percentage (~50%) of reads are wasted due to mapping to “junk” library elements 

introduced during element synthesis and cloning. Remediation of this issue will largely depend 

on further fidelity improvements for DNA synthesis. 

By assessing variants in multiple element configurations, including differing amounts of 

upstream and downstream genomic context, I show that distal DNA sequences have a modest 
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impact on allelic effects (r = 0.78). Likewise, Klein et al. 9 note that increasing enhancer size 

changes regulatory function through the introduction of distal TFBSs with transcriptional 

modifying effects. Currently, DNA elements are typically obtained by microarray synthesis, 

which limits element size to around 200 bp 9. However, this likely underestimates the true width 

and relevant regulatory context of most enhancers. Alternative methods for DNA capture and 

improved oligo assembly methods may rectify this. Additionally, Klein and colleagues report 

minimal effects of element orientation on performance (mean r = 0.88) 9, while I find a stronger 

effect from this parameter (mean r = 0.69). However, they primarily assessed enhancer elements, 

while noting that element asymmetry from promoters is stronger. It is possible that orientation 

effects are minimal for enhancer elements but more influential in elements derived from other 

genomic features such as promoters.  

Finally, by comparing four different MPRA libraries requiring differing numbers of PCR 

amplification cycles prior to sequencing (a proxy for library mRNA abundance), I find that 

robust library coverage is the single most critical factor contributing to assay quality. This 

observation underlies an inherent tension in the technique, which is that reporter assays are 

highly dependent on cellular contexts but problematic to implement across most primary cell 

types, due to the difficulty of large scale cell cultures and efficient library transduction. Overall 

library expression can be roughly captured by the equation: Expression = Total Cell Number ´ 

Transduction Percentage ´ Copy Number ´ Transcriptional Drive. And: Coverage = Expression / 

Library Complexity. Transcriptional drive is an innate feature of the cell type and particular 

library used. Therefore, coverage (and performance by extension) can be improved by increasing 

cell numbers per replicate, maximizing delivery efficiency, or reducing library complexity (e.g. 
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fewer elements tested). I surveyed variants associated with neurodegenerative disease, which 

ideally would be tested within human neuronal model systems.  

In Part 2 I discussed my attempts to implement MPRA within these cell types, which are 

notoriously difficult to transduce. The first approach, which entailed packaging my MPRA 

library into AAVs for subsequent delivery into IPSC-derived neurons, failed to generate usable 

quality data. Although I screened multiple AAV serotypes identifying PHP.eB 27 as having the 

best neuronal tropism, this synthetic capsid was originally developed using directed evolution in 

the murine nervous system. Similarly, other serotypes with reported neuronal tropism are almost 

uniformly test in rodents 42. It is likely that these AAV serotypes are not optimized for 

transduction of human neurons, and the field would greatly benefit from the development of 

novel capsids for this application. We also tested a nucleofection delivery strategy in hNPCs. For 

differentiated neurons, data quality was again quite poor. Nucleofected plasmids remain 

episomal, so residual post-transfection cell division will effectively “dilute” the library. 

Additionally, library performance could worsen through epigenetic silencing. By contrast, data 

quality from the undifferentiated condition was relatively promising. We intend to further 

improve quality by doubling or tripling cell numbers per condition to boost library coverage and 

quality. Finally, an unexplored approach thus far is to use lentivirus for library delivery, which 

has the advantage of integrating into the genome 9,12. In contrast to transfection or AAV infection 

which can achieve high copy number (10-100s), lentivirus achieves a more modest number of 

integrations (1-10) per cell. Thus, this approach would require very large cell numbers to achieve 

adequate coverage for measuring allelic effects, but could nevertheless be viable for relatively 

small libraries of variants.  
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Supplement 

Technical Parameter Significance Source Additional Notes 

Oligo sequence features + This work Extreme GC content, low sequence 
complexity, and nucleotide repeats 
predict dropout. Can drop such oligos 
before array synthesis.  

Enhancer placement: 5’ vs. 
3’ 

++/+++ Klein et al., 2020 9 5’ placement is more sensitive to 
promoter binding factors. 3’ 
placement is sensitive to RNA 
binding proteins.  

Distal genomic context of 
element 

++ Klein et al., 2020 9 
This work 

Klein et al. assessed this by looking at 
enhancers of different lengths. 
Currently limited by microarray 
synthesis. 

Element orientation + or ++ Klein et al., 2020 
This work 

Contradictory results: may depend on 
the type of elements tested. 

Choice of minimal 
promoter 

Variable Ernst et al., 2016 16 
Jayavelou  et al., 
2019 18 

Depends on experimental goals. 
Weak minimal promoter is good for 
detecting active regions, strong 
minimal promoter is good for 
detecting repressive regions. 

Integrating vs. episomal 
assay 

++ Inoue et al., 2017 12 
Klein et al., 2020 9 

 

Barcode complexity ++/+++ Tewhey et al., 2016 
5 
This work 

Especially important for power to 
detect variants with small effect sizes. 
Less relevant to enhancer screens. 

Number of biological 
replicates 

++/+++ Myint et al., 2019 15 Also relevant for power, good 
saturation achieved at 6 replicates. 

Library Coverage / 
Expression 

++++ Melnikov et al., 
201419 
This work 

Cellular transduction and expression 
of the MPRA library. This is the 
single most critical parameter. 

Assay cell type +++ Mulvey et al., 2020 
1 

Cell type specific trans factors greatly 
influence results, rather than data 
quality. 

Sequencing depth + This work Quality maintained at relatively low 
coverage 

Analysis pipeline Variable Myint et al., 2019 15 Depends on application. There are 
also clearly incorrect methods to 
avoid, such as Chi-square tests.  

Table S6-1. Summary of technical parameters influencing MPRA performance. Each parameter 
is scored on its relative impact: + Minor, ++ Moderate, +++ Strong, ++++ Critical. Sources 
informing these findings as well as additional notes are also listed.  
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Conclusions and future directions 

  



 170 

Conclusions 

 In this work, I perform a comprehensive characterization of common genetic variation 

associated with two neurodegenerative disorders that share overlapping clinicopathologic 

features – Alzheimer’s disease (AD) and Progressive Supranuclear Palsy (PSP). I use Massively 

Parallel Reporter Assays - a high-throughput experimental approach 1,2 - to screen 5,706 variants 

derived from three genome wide association studies for these disorders 3–5, identifying 320 

regulatory polymorphisms distributed across 27 of 34 tested loci. Confidence in these findings is 

supported by confirming that: 1) the assay is highly reproducible and robust to technical noise, 2) 

MPRA-defined regulatory variants are enriched within functional genomic annotations derived 

from human brain, and 3) four of six (66%) regulatory predictions were verified using genome 

editing within brain-relevant cell lines. Thus, I conclude that Massively Parallel Reporter Assays 

efficiently survey and prioritize functional regulatory variants within GWAS loci for brain 

related traits.  

 This work demonstrates the utility of identifying underlying regulatory variants within 

GWAS loci 6. Isolating causal variants enables downstream prediction of genes and functional 

mechanisms connecting phenotypes with associated risk loci. In particular, complex genomic 

regions harboring extensive linkage disequilibrium and multiple genes substantially benefit from 

such functional analyses, as these loci are particularly ambiguous and difficult to characterize 

using traditional statistical approaches. Here I highlight three such regions, the pan-

neurodegeneration risk locus in 17q21.31 (containing MAPT and primarily associated with PSP) 

7, and the 19q13.32 (APOE) and 6p21 (HLA) regions associated with AD 4. I identify regulatory 

variants distributed across these loci that regulate novel putative risk genes, including PLEKHM1 

and C4 within the 17q21.31 and 6p21 regions, respectively.  
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 Furthermore, identifying underlying causal variants allows for the more precise 

characterization of genetic risk factors shared across trait-associated loci. As discussed in 

Chapter 1, GWAS loci are mostly composed of neutral trait-associated variants due to LD 6,8. 

While many studies have identified enrichment of GWAS variation within functional genomic 

features to uncover trait-relevant biology 9–13, the presence of many non-functional variants 

undoubtedly introduces noise into such analyses. Here, I demonstrate that MPRA-defined 

regulatory variants preferentially disrupt binding sites for transcription factors that form cell-type 

and disease-specific regulatory networks, relative to the complement set of non-functional GWAS 

variants. In particular, this implicates dysregulation of a neuronal transcriptional network 

composed of SP1 and its binding partners as a genetic risk factor for PSP (Chapter 4). Although 

these findings remain to be verified, such analyses are made possible by specifically considering 

refined sets of regulatory variants. 

 

Limitations 

 Of note, identification of transcriptional regulatory variants by MPRA does not directly 

imply causality. In the context of GWAS interpretation, loci may contain multiple variants with 

distinct molecular functions of which only a subset meaningfully influence the phenotype of 

interest. For example, it has been estimated that there is a roughly proportional phenotypic 

impact between common variation affecting mRNA splicing (sQTL) and gene expression 

(eQTL) 14. The identification of both eQTLs and sQTLs within a given GWAS locus does not 

entail that both mechanisms are causal, nor does the presence of multiple differentially regulated 

genes within a risk haplotype entail that all genes are causal. Thus, the causal determination of 

regulatory predictions should be validated through careful genetic modeling using in vitro assays 
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or animal models. Moreover, MPRAs to screen allelic effects such as the one utilized in this 

work cannot capture variation influencing other genetic mechanisms (chromatin accessibility, 

splicing, RNA stability, etc.), which must be identified through other means.  

 A limitation specific to this work was the performance of MPRA within HEK293T cells. 

The trans-cellular environment substantially contributes to reporter assay outcomes 15–17 and 

undoubtedly meaningfully differs between HEK293T and primary brain cell types. I addressed 

this limitation by integrating brain specific functional annotations with my MPRA results and by 

performing genome editing in relevant brain cell types to validate four of six tested predictions. I 

also found a 60% overlap between GWAS variation residing within open chromatin in brain cell 

types and HEK293T cells (Chapter 2). Taken together, these results suggest that my MPRA is 

valuable as a high-throughput preliminary screen, but has the potential to miss a proportion of 

tested variants. Nevertheless, as discussed in Chapter 3, MPRA provides valuable information 

orthogonal to other approaches for variant prioritization. Thus, while MPRA is not a panacea, it 

is an important component of a broader arsenal of complementary methods for the regulatory 

annotation and functional interpretation of noncoding loci and variants 6,8.  

 

Future directions 

 These limitations underscore the need for future work to solidify and expand upon my 

findings. First, while I was able to verify select predictions from my screen using genome 

editing, a number of important loci remain to validated. This process could be parallelized by 

performing a CRISPRi screen, ideally in IPSC-derived neurons or organoids 18, to 

transcriptionally inhibit regions containing predicted regulatory variants and verify suppression 

of cognate gene expression. True gold standard validation of variant function would ideally be 
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performed using CRISPR/Cas9 mediated allelic replacement, though these are admittedly time-

consuming and laborious experiments that are at the cutting edge of feasibility . Second, this 

work implicates a number of novel candidate risk genes for PSP and AD (e.g. PLEKHM1, 

APOC1, C4). The relationship between these genes and disease pathogenesis should be clarified 

through careful mechanistic studies in relevant disease models. 

Furthermore, an ongoing area of research is the implementation of MPRAs screening 

variation associated with brain-related traits within neuronal model systems that more closely 

recapitulate the relevant cellular environment. This would improve the sensitivity, specificity, 

and interpretability of these screens. More broadly, MPRA tests genomic elements artificially 

removed from their natural chromatin environment, and it cannot simultaneously screen multiple 

regulatory mechanisms. In the future, the field should move towards high-throughput screens 

that directly perform allelic replacement in the mammalian genome. This has been done on a 

limited basis in pioneering studies performing saturation mutagenesis, 19,20 or multiplexed base 

editing 21. However, because the efficiency of allelic editing is low, these approaches require 

phenotypic selection to enrich for functional mutations, thereby limiting experimental flexibility. 

Future technical advances improving the efficiency of allelic replacement or the single cell 

identification of genetic mutations would facilitate the development of next generation 

approaches that parallelized annotation of noncoding variation assessed directly within the 

mammalian genome.  
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CHAPTER 8: Appendix A 

 
 

Supplemental Materials and Methods 

 
 
Table A-1. Primers 

MPRA library 
construction 

Sequence (5' - 3') 

barcode_new_F  /5Biosg/CTGAGTACTGTATGGGCGA 
barcode_N_R /5Biosg/AGTCGACTAGTNNNNNNNNNNNNNNNNNNNNTCTAGAACAGTTGA

CACTTTTGTCGG 
BC_map_P5_Rev AATGATACGGCGACCACCGAGATCTACACGTAACCACCCTGATCGACGG 
BCmap_P7_For CAAGCAGAAGACGGCATACGAGATTCGGCAGTTGGGAAGAGCATAGTCG 
BCmap_R1Seq_Rev  GTAACCACCCTGATCGACGGGGAGTGTACTAGT  
BCmap_R2Seq_For TCGGCAGTTGGGAAGAGCATAGTCGTAGAGCACGCGT 
Amp_minPLuc2_For  /Biosg/ACGACGTTGTAAAACGACGG 
Amp_minPLuc2_Rev /Biosg/CACAGGAAACAGCTATGACC 
Lib_Hand_RT  ATGCTCTTCCCAACTGCCGACGACGGGGAGTGTACTAGT 
Lib_Hand ATGCTCTTCCCAACTGCCGA 
Lib_seq_eGFP_F2 CAAGATCCGCCACAACATCG 
P5_seq_eGFP_F2 AATGATACGGCGACCACCGAGATCTACACCAAGATCCGCCACAACATCG 
P7_Ind_#_Han CAAGCAGAAGACGGCATACGAGATNNNNNNNNGCGTGCTCTACGACTATGC

TCTTCCCAACTGCCGA 
Exp_eGFP_Seq_F2  GGATCACTCTCGGCATGGACGAGCTGTACAAGTAATCTAGA 
Exp_Ind_Seq_P TCGGCAGTTGGGAAGAGCATAGTCGTAGAGCACGC 
  

Genotyping 
 

rs636317_genomic_F TTTGGCTGTGAATCCGTCTGG 
rs636317_genomic_R TAGAACAAAGCCCGACACAGTG 
rs13025717_genomic
_F 

AAGTCTGCAGAAAGGTAGC 

rs13025717_genomic
_R 

GCATGCCCATAGAACTTGG 

rs6064392_genomic_
F 

TCTTGCCCAGCCAATTCATG 

rs6064392_genomic_
R 

GAAGAGCCTGCCCTTAAGC 

rs7920721_genomic_
F 

CCTGTAATCCCAGCTACTC 

rs7920721_genomic_
R 

AGAGATCGAGACCATCCTG 
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rs9271171_genomic_
F 

AGAGGAGTACTGTCTGATGGG 

rs9271171_genomic_
R 

CCAGAATTCTGACCTCATGACC 

rs1532277_genomic_
F 

CATTAAGCACAGGCTAGACC 

rs1532277_genomic_
R 

CCAATCAGGGAAGTAAGTACG 
   

qPCR 
 

BIN1_F ACAACGACCTGCTGTGGATGG 
BIN1_R CGTGACTTGATGTCGGGGAACT 
MS4A6_F TGTTCCCAATGAGACCATCA 
MS4A6_R AGCAGATGCCAAAATGATCC 
GAPDH_F TCGACAGTCAGCCGCATCTTCTT 
GAPDH_R GCGCCCAATACGACCAAATCC 
ACTB_F CACCATTGGCAATGAGCGGTTC 
ACTB_R AGGTCTTTGCGGATGTCCACGT 
C4A_F CCTGAGAAACTGCAGGAGACAT 
C4A_R GTGAGTGCCACAGTCTCATCAT 
HLA-DRB1_F CACCAGACCACGTTTCTTGGAGT 
HLA-DRB1_R CACGTTCTCCTCCTGGTTATGGA 
HLA-DQA1_F CTTGCCCTGACCACCGTGATGA 
HLA-DQA1_R CAGAGGGACCGTAAGACTGGTAC 
USP6NL_F ATACTCAGCCTTTCAACTCG 
USP6NL_R GCAAGTACACGTCAAATCTC 
ECHDC3_F CAAGTCCTCTTTTGCCACTCC 
ECHDC3_R ATCTCCAAGGCCACCTTTCTA 
CASS4_F GGGTTGGTGGAAGTGTTTGC 
CASS4_R TCTTCCAGGCCTCTCAGGAA 
RTF2_F TGCTGAAGACAAGGATGGAG 
RTF2_R TGAAACAGACTCTGCTGCCT 
sCLU_F AGGCGTGCAAAGACTCCA 
sCLU_R GCCCACTCTCCCAGGTCA 

 
 
Table A-2. CRISPR gRNAs (Chapter 5) 

SNP ID 5' guide 3' guide sequence (5' - 3') 
rs636317 g15 X 

 
ATGACACAGAGTCATGCCAA 

rs636317 g16 
 

X GTACCCGAAAATCACTGGAG 
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rs13025717 g11 X 
 

AGACTGAGTTGGAAAACGGA 
rs13025717 g12 

 
X AACAGGACCTCACTGTCACG 

rs13025717 g14 
 

X ACGCACCATGCTTAGCAACA 
     

rs6064392 g25 X 
 

TGCCTTATACATGCGTAGGG 
rs6064392 g26 

 
X TATTCACAAAATATCAAACT 

     

rs7920721 g21 X 
 

GAAACCGCAGCCCATGAGCC 
rs7920721 g20 

 
X TGCACTCTGTCCTGGCGACA 

     

rs9271171 g3 X 
 

TCCTAGACTTGTAACTACAC 
rs9271171 g4 

 
X TAGTTTATTTGAGATCAGCA 

rs9271171 g5 X 
 

AATATTCTCATAATCATGCT 
rs9271171 g6 

 
X ATTGTCCTATGACAATCAGC 

     
rs1532277 g7 X  CAGAACTCTAGCAAGACGTG 
rs1532277 g8  X CCAGTGGGATGGTCAAGGCA 
rs1532277 g9 X  TCAGGAAGCTTATCTAATAG 
rs1532277 g10  X ATTTGCTTCTGAAAGCATCA 

 
 
Table A-3. ENCODE Accessions 1,2 (Chapter 2) 

Sample Description Accession 
HEK293T DNase-seq hotspot ENCFF013WVF 
bipolar neuron DNase-seq hotspot rep 1 ENCFF017HNT 
bipolar neuron DNase-seq hotspot rep 2 ENCFF502TUB 
brain pericyte DNase-seq hotspot ENCFF133GOH 
frontal cortex DNase-seq hotspot rep 1 ENCFF661TYD 
frontal cortex DNase-seq hotspot rep 2 ENCFF861YPP 
neural progenitor DNase-seq hotspot rep 1 ENCFF800OYT 
neural progenitor DNase-seq hotspot rep 2 ENCFF077TNH 
astrocyte DNase-seq hotspot rep 1 ENCFF606JSS 
astrocyte DNase-seq hotspot rep 2 ENCFF529ZNC 
CD14+ monocyte DNase-seq hotspot rep 1 ENCFF281ASX 
CD14+ monocyte DNase-seq hotspot rep 2 ENCFF943FMD 
HEK293T DHS ENCFF910QHN 
HEK293 H3K27ac replicated narrowPeak ENCFF668WID 
HEK293 H3K4me3 replicated narrowPeak ENCFF728WLM 
HEK293 H3K36me3 pseudo-replicated narrowPeak ENCFF496OIF 
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HEK293 H3K9me3 replicated narrowPeak ENCFF037SXA 
HEK293T SP1 optimal IDR narrowPeak ENCFF240PYU 
HEK293T SP2 optimal IDR narrowPeak ENCFF905HYT 
HEK293T ARNT optimal IDR narrowPeak ENCFF550UEU 
HEK293 KLF14 optimal IDR narrowPeak ENCSR780ESQ 
HEK293T DNase-seq narrowPeak ENCFF910QHN 
astrocyte DNase-seq narrowPeak rep 2 ENCFF803JHO 
astrocyte DNase-seq narrowPeak rep 2 ENCFF399UZY 
neural progenitor DNase-seq narrowPeak rep 1 ENCFF572AAL 

neural progenitor DNase-seq narrowPeak rep 2 ENCFF230SPN 

bipolar neuron DNase-seq narrowPeak rep 1 ENCFF524XCQ 
bipolar neuron DNase-seq narrowPeak rep 2 ENCFF950DMO 
fetal brain DNase-seq narrowPeak rep 1 ENCFF528GDM 
fetal brain DNase-seq narrowPeak rep 2 ENCFF457XYZ 
CD14+ monocyte DNase-seq narrowPeak rep 1 ENCFF063IUG 
CD14+ monocyte DNase-seq narrowPeak rep 2 ENCFF815GDP 
CD14+ monocyte H3K27ac BigWig ENCFF437JSB 

CD14+ monocyte H3K4me3 BigWig ENCFF485XYG 

CD14+ monocyte H3K4me1 BigWig ENCFF929UOK 

CD14+ monocyte CTCF BigWig ENCFF971FFO 

CD14+ monocyte DNase-seq narrowPeak ENCFF376RLJ 

 
 
Table A-4. External Data Access Links 

Description Access/Download Link 
External MPRA Data (Tewhey et 
al., 2016) 3 

https://www.cell.com/cms/10.1016/j.cell.2016.04.027/attachment/ddbd23af-
33df-41ff-a796-5b89759b0a97/mmc2.xlsx 

CADD 4 https://cadd.gs.washington.edu/score 
GWAVA 5 https://www.sanger.ac.uk/sanger/StatGen_Gwava 
CATO 6 http://www.mauranolab.org/CATO/ 
LINSIGHT 7 http://compgen.cshl.edu/LINSIGHT/LINSIGHT.bw 
SNPS2TFBS 8 http://ccg.vital-it.ch/snp2tfbs/ 
Microglia H3K27ac 9 http://homer.ucsd.edu/hubs//nuclei_h3k27ac_hg19_pooled/hg19/human_PU

1nuclei_H3K27ac_epilepsy_pooled_hg19.ucsc.bigWig 
Neuron H3K27ac http://homer.ucsd.edu/hubs//nuclei_h3k27ac_hg19_pooled/hg19/human_NE

UNnuclei_H3K27ac_epilepsy_pooled_hg19.ucsc.bigWig 
Oligodendrocyte H3K27ac http://homer.ucsd.edu/hubs//nuclei_h3k27ac_hg19_pooled/hg19/human_OLI

G2nuclei_H3K27ac_epilepsy_pooled_hg19.ucsc.bigWig 
Astrocyte H3K27ac http://homer.ucsd.edu/hubs//nuclei_h3k27ac_hg19_pooled/hg19/human_LH

X2nuclei_H3K27ac_epilepsy_pooled_hg19.ucsc.bigWig 
Microglia H3K4me3 http://homer.ucsd.edu/hubs//nuclei_h3k4me3_hg19_pooled/hg19/human_PU

1nuclei_H3K4me3_epilepsy_hg19.ucsc.bigWig 
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Neuron H3K4me3 http://homer.ucsd.edu/hubs//nuclei_h3k4me3_hg19_pooled/hg19/human_NE
UNnuclei_H3K4me3_epilepsy_hg19.ucsc.bigWig 

Oligodendrocyte H3K4me3 http://homer.ucsd.edu/hubs//nuclei_h3k4me3_hg19_pooled/hg19/human_OL
IG2nuclei_H3K4me3_epilepsy_hg19.ucsc.bigWig 

Astrocyte H3K4me3 http://homer.ucsd.edu/hubs//nuclei_h3k4me3_hg19_pooled/hg19/human_LH
X2nuclei_H3K4me3_epilepsy_pooled_hg19.ucsc.bigWig 

Microglia enhancers http://homer.ucsd.edu/iholtman/Nuclei_project/peak_files_IDR_hg19/UCSC
_peak_files/hg19/PU1_enhancers.sorted.bigWig 

Neuron enhancers http://homer.ucsd.edu/iholtman/Nuclei_project/peak_files_IDR_hg19/UCSC
_peak_files/hg19/NeuN_enhancers.sorted.bigWig 

Oligodendrocyte enhancers http://homer.ucsd.edu/iholtman/Nuclei_project/peak_files_IDR_hg19/UCSC
_peak_files/hg19/Olig2_enhancers.sorted.bigWig 

Astrocyte enhancers http://homer.ucsd.edu/iholtman/Nuclei_project/peak_files_IDR_hg19/UCSC
_peak_files/hg19/LHX2_enhancers.sorted.bigWig 

Microglia promoters http://homer.ucsd.edu/iholtman/Nuclei_project/peak_files_IDR_hg19/UCSC
_peak_files/hg19/PU1_promoters.sorted.bigWig 

Neuron promoters http://homer.ucsd.edu/iholtman/Nuclei_project/peak_files_IDR_hg19/UCSC
_peak_files/hg19/NeuN_promoters.sorted.bigWig 

Oligodendrocyte promoters http://homer.ucsd.edu/iholtman/Nuclei_project/peak_files_IDR_hg19/UCSC
_peak_files/hg19/Olig2_promoters.sorted.bigWig 

Astrocyte promoters http://homer.ucsd.edu/iholtman/Nuclei_project/peak_files_IDR_hg19/UCSC
_peak_files/hg19/LHX2_promoters.sorted.bigWig 

HACER cell type enhancers 10 http://bioinfo.vanderbilt.edu/AE/HACER/download/T1.txt 
THP-1 Hi-C loops 11 http://promoter.bx.psu.edu/hi-c/downloads/loops-hg19.zip 
Gene annotations https://hgdownload.soe.ucsc.edu/goldenPath/hg19/bigZips/genes/hg19.ensGe

ne.gtf.gz 
RNA HPA cell line gene data 12 https://www.proteinatlas.org/download/rna_celline.tsv.zip 
Single Cell Human Brain RNA-
seq from Allen Brain Atlas 

https://portal.brain-map.org/atlases-and-data/rnaseq/human-m1-10x 

List of human TFs http://humantfs.ccbr.utoronto.ca/download/v_1.01/TF_names_v_1.01.txt 
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