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Cancer is a complex and heterogeneous disease that can sometimes be effectively targeted 

with precision and personalized medicine. Advances in next generation sequencing technologies 

have revolutionized our ability to catalog the landscape of somatic mutations in tumor genomes 

and have helped identify the role of MHC genotype in tumorigenesis. The MHC is a polymorphic 

protein complex that acts as a gatekeeper to cellular health by presenting peptides to T cells. This 

helps the immune system identify and eliminate infected or malignant cells. Tumor-specific 

neoantigens created from somatic mutations can be presented by the MHC complex, facilitating 



 xviii 

immune control of developing tumors. However, tumor interaction with the immune system via 

this process can result in immunoediting, or pruning of subclones with easily presentable 

mutations, resulting in an immunologically invisible population of tumor cells, 

ultimately contributing to escape from immune surveillance. Therapeutic efforts to re-stimulate 

the immune system to eliminate tumors based on neoantigens have had less success than has 

been hoped for, and efforts to uncover genomic correlates of immunotherapy response that could 

serve as predictive biomarkers have had limited success. To identify key aspects of a neoantigen-

based contribution to effective anti-tumor immune response, I first analyzed the role and 

limitations of MHC-based presentation of putative antigen. Next, I investigated the potential for 

sex and age, which have been tied to differences in immune response, to affect tumor-

immune interactions by studying the landscape of presentable driver mutations in a pancancer 

cohort. Finally, through investigation of the factors that limit the immunogenic potential of tumor 

mutations, I found a novel factor, parent protein subcellular localization, that improves prediction 

of immunogenic neoantigens. This body of work provides new insight into key factors limiting the 

immunogenic potential of the neoantigen landscape in tumors, providing direction for future 

efforts to improve personalized immunotherapies.



 1 

INTRODUCTION 
 

 Cancer is a group of heterogeneous, complex diseases that involve uncontrolled cellular 

growth in any tissue. It has been described and studied for millennia, with the first account dating 

back to ~3000 BC (1), though the actual origin of the word is attributed to Hippocrates in ~400 

BC. The 19th century marked the beginning of scientific oncology with Rudolf Virchow’s 

discovery that cancer originates from cells (2). Soon thereafter, the discoveries of 

histocompatibility antigens (1948) (3), acquired immunological tolerance (1956) (4, 5), and the 

development of the immune surveillance theory (1959) (6, 7) contributed to the concept that 

tumors and the immune system are intrinsically linked (8). Based on these foundations, the past 

few decades have seen the induction of immunotherapy as an important component of treatment, 

joining the ranks of surgery, radiation, and chemotherapy (2, 9). Significant advances in cancer 

prevention and treatment (10–12), have contributed to improved survival rates, with the risk of 

death from cancer dropping about 2% per year from 2015-2019 (13). Despite this considerable 

progress, cancer remains a difficult disease to treat, and current efforts are beginning to focus on 

exploiting patient-specific tumor biological characteristics, their interaction with the surrounding 

microenvironment (14), and how to best leverage existing patient anti-tumor immunity to achieve 

long-lasting benefit.  

 Immunotherapy co-opts an individual’s own immune system to eliminate tumors. This 

approach to cancer therapy has sometimes resulted in remarkable responses (15–17), motivating 

significant investment into immunotherapy research and development. However, overall response 

rates have been disappointing, and the field is racing to understand why immunotherapies succeed 

or fail (18). Recent advances in bioinformatics including whole-exome, -genome, and -

transcriptome sequencing, have enabled the rapid and systematic characterization of the tumor 
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antigenic landscape by cataloging tumor-specific mutant peptides (neopeptides) deriving from 

nonsynonymous mutations, frameshift mutations, and gene rearrangements (19–21). This has 

allowed researchers to probe the relationship between the MHC and genomic mutations at a level 

of resolution previously unachievable. Such efforts are revealing the ways in which the complex 

and dynamic interplay between tumors and the immune system can lead to short-lived or 

ineffective immune responses (22, 23). Some of the emerging pitfalls that can limit the 

effectiveness of therapy are not yet widely appreciated but are critical to improving outcomes.  

 In this dissertation, I investigate the role of the major histocompatibility complex (MHC) 

in neoantigen presentation in disease. Aim 1 covers three separate analyses that begin by 

emphasizing the importance and utility of quantifying MHC class I neopeptide presentation in 

immune checkpoint blockade treated patients. Next, I study the impact of somatic mutations to 

B2M and HLA-A/B/C on MHC-I integrity, and quantify how this affects effective presentation of 

antigen in the TCGA. Finally, I explore a potential mechanism of immune evasion by the SARS-

CoV-2 virus whereby poor MHC-II presentation of a critical B cell epitope may impact generation 

of neutralizing antibodies. Aim 2 investigates the extent to which sex and age alone and in 

conjunction with the MHC, affect the landscape of presentable driver mutations in the TCGA. 

Finally, in Aim 3, I build upon existing research that ties subcellular protein location to MHC 

presentation, and identify location as an important, novel feature for prediction of neoantigen 

immunogenicity. To do this, I developed a novel method for incorporating subcellular parent 

protein location in a machine learning model by performing dimensionality reduction on pretrained 

gene ontology cellular component embeddings. Overall, my research helps further define the role 

and limitations of MHC-I and MHC-II in cancer development, progression, and treatment, and 
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provides new insights into key factors limiting the immunogenic potential of the neoantigen 

landscape in tumors. 
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CHAPTER 1: Limitations and role of peptide-MHC interaction in disease 

1.1.1 Foreword 

Tumor mutational burden (TMB), or the number of somatic mutations present in a patient’s 

tumor, was recently approved by the FDA as a biomarker for immunotherapy response (1). High 

TMB has been generally associated with immunotherapy benefit in tumor types with higher 

numbers of somatic mutations such as melanoma (2) and tumors with DNA mismatch repair 

deficiency (3, 4). TMB acts as a proxy for the number of neoantigens, which are relatively rare (5) 

and are important for immunotherapy response (6). However, high TMB seems to work well as a 

predictor of response in only a few tumor types (7), and studies have observed unexpected response 

in low-TMB tumors and non-response in high-TMB tumors. For example, non-small cell lung 

cancer (NSCLC) tends to have a relatively high TMB, but there is less evidence tying TMB to 

benefit (8–10). Interestingly, a recent study suggested that extremely high TMB is associated with 

a more dysfunctional T cell landscape in NSCLC (11), which further complicates relying solely 

on TMB as a biomarker for response. These conflicting reports suggest that TMB itself is an 

imperfect proxy for the presence of effective neoantigens.  

A recent study that incorporates MHC genotype to more closely examine the relationship 

between putative neoantigens and response, has identified so-called motif neoepitopes, or mutated 

peptides with certain amino acid characteristics, that are beneficial only in patients with certain 

HLA supertypes (12). This finding is consistent with the idea that MHC presentation of mutation 

is required for immune response. However, counterintuitively, other studies have reported that 

predicted neoantigen load fails to predict outcomes better than TMB (13, 14). This suggests that 

current methods to identify true neoantigens are still inaccurate (15, 16) and highlights the need 

for improved methods to quantify presence of targetable tumor antigen. My research in Aim 1.1 
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assesses the utility of incorporating the ability of a patient’s MHC-I to present driver mutations 

compared to TMB alone and may help explain why some high TMB tumors do not respond well 

to immunotherapy.  

  

 
1.1.2 Abstract 

 Immune checkpoint blockade with antibodies inhibiting cytotoxic T lymphocyte-

associated protein-4 (CTLA-4) and programmed cell death protein-1 (PD-1) or its ligand (PD-L1) 

can stimulate immune responses against cancer and has revolutionized the treatment of tumors. 

The influence of host germline genetics and its interaction with tumor neoantigens remains poorly 

defined. We sought to determine the interaction between tumor mutational burden (TMB) and the 

ability of a patient’s major histocompatibility complex class I (MHC-I) to efficiently present 

mutated driver neoantigens in predicting response ICB. Comprehensive genomic profiling was 

performed on 83 patients with diverse cancers treated with ICB to determine TMB and HLA-I 

genotype. The ability of a patient’s MHC-I to efficiently present mutated driver neoantigens 

defined by the PHBR score (with lower PHBR indicating more efficient presentation) was 

calculated for each patient. The median progression-free survival (PFS) for PHBR score < 0.5 vs. 

≥ 0.5 was 5.1 vs. 4.4 months (P = 0.04). Using a TMB cutoff of 10 mutations/mb, the stable disease 

> 6 months/partial response/complete response rate, median PFS, and median overall survival (OS) 

of TMB high/PHBR high vs. TMB high/PHBR low were 43% vs. 78% (P = 0.049), 5.8 vs. 26.8 

months (P = 0.03), and 17.2 months vs. not reached (P = 0.23), respectively. These findings were 

confirmed in an independent validation cohort of 32 patients. In conclusion, poor presentation of 

driver mutation neoantigens by MHC-I may explain why some tumors (even with a high TMB) do 

not respond to ICB. 
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1.1.3 Introduction 

Immune checkpoint blockade (ICB) with antibodies inhibiting cytotoxic T lymphocyte-

associated protein-4 (CTLA-4) and programmed cell death protein-1 (PD-1) (or its ligand (PD-

L1)) can stimulate immune responses against cancer and has revolutionized the treatment of both 

solid (17) and hematologic malignancies (18). Durable remissions after ICB have been reported in 

patients with diverse advanced cancers including, but not limited to, melanoma (19), non-small 

cell lung cancer (NSCLC) (20), renal cell carcinoma (21), and Hodgkin lymphoma (22). Still, 

responses to ICB can be variable, toxicity can be serious, resistance is common (23), and 

hyperprogression can occur (24). Further, the majority of patients will not benefit from ICB, and 

there is a need to better select patients for treatment (25). 

Multiple factors influence the immune response against tumors including tumor T cell 

infiltration, tumor mutational burden (TMB), PD-L1 expression, interferon signaling, mismatch 

repair (MMR) deficiency, tumor aneuploidy, and possibly the intestinal microbiota (26). 

Biomarkers that have entered clinical practice include PD-L1 expression measured by 

immunohistochemistry (IHC) (27), PD-L1 amplification (28), microsatellite instability (MSI) (3, 

29), and TMB (30, 31). 

Somatic mutations in tumors can be recognized by the immune system (32) resulting in 

tumor eradication. MMR-deficient/MSI-high tumors have 10 to 100 times as many somatic 

alterations as MMR-proficient tumors (29), resulting in exquisite sensitivity to ICB therapy (3). 

Most cancers harboring MMR alterations are associated with high TMB (33). In addition, many 

cancers harbor high TMB (10–20% depending on the definition of high TMB), even without MMR 

alterations (24, 34). Higher TMB correlates with better treatment outcomes, including higher 
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response rates and longer progression-free survival (PFS) and overall survival (OS), in diverse 

cancers treated with immunotherapies (30). 

Despite the improved efficacy of ICB in TMB-high tumors, approximately 40–60% of 

patients with a high TMB will not respond (30, 31). To date, there is no sufficient way to predict 

which patients with high TMB will or will not respond to ICB. It has been hypothesized that tumors 

with high TMB and low PD-L1 expression might not respond as well to ICB; however, studies 

have demonstrated higher response rates and PFS in patients with high TMB versus low TMB, 

irrespective of PD-L1 expression (35). 

Major histocompatibility complex class I (MHC-I) molecules, encoded by the human 

leukocyte antigen-I (HLA-I) locus, present intracellular peptides on the surface of both normal and 

tumor cells for recognition by CD8+ cytotoxic T cells (36). HLA-I genotype has been linked to a 

variety of different immune responses including infection (37), autoimmune diseases (38), and the 

graft versus host/tumor effect seen after allogeneic stem cell transplantation (39). There is 

accumulating experimental evidence suggesting that immunosurveillance shapes the mutational 

landscapes of cancers through the elimination of early tumor cells (40–42). In addition, the 

predicted number of MHC-I-associated neoantigens has been shown to be low in certain tumors 

suggesting immune-mediated elimination (43), and the anti-tumor activity of ICB is dependent on 

MHC-I presentation of specific tumor-derived peptides (44, 45). 

Marty et al. developed a residue-centric patient MHC-I presentation score (termed the 

Patient Harmonic-mean Best Rank (PHBR) score) that describes a person’s ability to present 

specific cancer mutations to CD8+ T cells, and found that PHBR scores correlated with the 

likelihood of mutations to emerge in a patient’s tumor (46). Poor presentation of a mutation across 
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patients was correlated with higher frequency among tumors. These results support that MHC-I 

genotype-restricted immunoediting shapes the mutational landscape of malignancies. 

It has been suggested that the presence of a high-quality neoantigen is required for response 

to therapy (47) while a high burden of neoantigens has been associated with impaired anti-tumor 

immune activity (48); thus, we focused on neoantigen quality over quantity by using patient 

minimum PHBR score (i.e., best-presented mutation) to predict whether mutations observed in a 

patient’s tumor are likely to generate effectively presented neoantigens. We assessed the ability of 

PHBR and TMB to predict response to ICB in diverse solid tumors. 

 
1.1.4 Results 

Eighty-three patients with 20 different solid malignancies were identified. The most 

common malignancies in the cohort included non-small cell lung cancer (NSCLC) (N = 26), 

cutaneous squamous cell carcinoma (SCC) (N = 10), and head and neck SCC (N = 9). Sixty-six 

patients were treated with PD-1/L1 monotherapy and 17 with combination therapy. The OBR 

(stable disease (SD) ≥ 6 months/partial and complete response (PR/CR)) was 43%. Thirty-two 

patients had at least one PHBR score of < 0.5 and fifty-one patients had a minimum score ≥ 0.5 

(lower scores reflecting better neoantigen presentation). A minimum PHBR score ≥ 0.5 was 

significantly associated in univariate analysis with progressive disease (P = 0.02), non-cutaneous 

SCC malignancies (P = 0.04), and a TMB < 50 mutations/mb (P = 0.05). 

In univariate analysis (Table 1.1.2), only higher TMB (≥ 10 mutations/mb) was associated 

with a better OBR. Caucasian ethnicity, high TMB, and a minimum PHBR score < 0.5 were all 

significantly associated with longer median PFS while male sex, Caucasian ethnicity, and high 

TMB were associated with longer median OS. The median PFS for low versus high PHBR scores 

was 5.1 vs. 4.4 months (P = 0.04) (Figure 1.1.1). The median PFS for high versus low TMB at 
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various thresholds (10, 20, 50) was 6.9 vs. 4.0 months (P = 0.001), 14.1 vs. 4.2 months (P = 0.01), 

and 26.8 vs. 4.4 months (P = 0.03), respectively. 

Using a TMB cutoff of 10 mutations/mb, the OBR, median PFS, and median OS of TMB 

low/PHBR high vs. TMB high/PHBR low were 33% vs. 78% (P = 0.006), 3.5 vs. 26.8 months 

(P < 0.001), and 10.1 months vs. not reached (P = 0.008), respectively (Figure 1.1.1 and Table 

1.1.3). Results remain when we exclude patients who had unknown TMB values. Patients with 

high TMB had greater OBR (43% vs. 78%, P = 0.049), greater PFS (5.8 vs. 26.8 months, P = 0.03), 

and greater median overall survival (17.2 months vs. not reached, P = 0.23) when accompanied by 

a well-presented mutation (low PHBR) than their counterparts with less well-presented mutations 

(high PHBR) (Table 1.1.3, Figure S1.1.1). 

In a multivariable regression analysis (Table 1.1.4) of factors affecting outcome for 

patients treated with immunotherapy, high TMB (P = 0.01) and treatment with combination 

therapy (P = 0.006) were significantly associated with a higher OBR. Only high TMB was 

significantly associated with a prolonged median PFS (P = 0.01) and OS (P = 0.04). However, in 

stratified Cox regression, which allows for different hazard functions among strata (49)of PHBR 

in the higher TMB (≥ 10 mutations/mb) patients (N = 39), we found that a low PHBR score is 

significantly predictive of PFS (HR 0.39 (0.16–0.91), P = 0.03). Multivariable regression analysis 

in this cohort of 39 patients with high TMB showed that PHBR, but not TMB, was selected as an 

independent factor predicting both OBR and longer PFS (P = 0.049 and 0.03, respectively). In 

contrast, PHBR had no effect on PFS (P = 0.98) in patients with lower TMB (< 10 mutations/mb) 

(N = 38). Plotting Kaplan-Meier curves of patients based on lower or higher TMB and low or high 

PHBR found similar results in the general cohort (i.e., PHBR low versus high is associated with 

significant separation of the curves in patients with TMB ≥ 10 mutations/mb, but not in patients 
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with lower TMBs (Figure 1.1.1)). Finally, overall, Spearman correlation coefficient between TMB 

and PHBR was 0.31 with a P value of 0.01, consistent with a higher likelihood of carrying a low 

PHBR mutation when TMB is high (Figure S1.1.2). 

Next, we evaluated the added value of PHBR with respect to TMB from another 

perspective. We first fit a logistic regression model relating OBR to all potential confounders, 

using a backward selection process where we removed confounders one at a time and compared 

models using Akaike Information Criterion (AIC) scores (50). We kept all confounders for which 

exclusion did not result in an increased AIC (i.e., the model better explained the data when the 

confounder was included). The retained confounders included MSI status, ethnicity, and the type 

of cancer each patient was diagnosed with. Then, we sequentially added TMB and PHBR to the 

regression model, using AIC once again to compare models (Table S1.1.1). We found that with 

the confounders and TMB in the model, the addition of the PHBR results in a reduction of AIC, 

indicating added explanatory power of PHBR even when TMB is included. In the final model with 

all the selected confounders, TMB and PHBR, the PHBR has a negative coefficient with a p-value 

of 0.08. The AUC values associated with the final models with confounders were 0.64 for both 

TMB and PHBR models alone, and 0.68 for the model with both TMB and PHBR. 

To investigate the generalizability of our analyses across histologies, we revisited Kaplan-

Meier analysis for progression-free survival within tumor types with at least 5 patients (NSCLC, 

SCC, head and neck, breast) and in all tumors excluding NSCLC and SCC, the two most common 

histologies. In each of these analyses, we observed that low versus high PHBR similarly stratified 

patients with high TMB. In addition, when we train a logistic regression classifier using the two 

most frequent histologies (N = 31), NSCLC and SCC, and predict response for the remaining 

patients (N = 46), we observe that the combination of PHBR and TMB better predicts OBR. These 
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results suggest that the information provided by TMB and PHBR generalizes beyond high 

mutation burden tumors such as SCC and NSCLC. 

In an external validation cohort of 32 patients with NSCLC treated with pembrolizumab, 

the results were similar to those in our UCSD cohort: the OBR and median PFS of PHBR < 0.5 

vs. ≥ 0.5 was 76% vs. 30% (P = 0.02) and 14.5 vs. 2.1 months (P < 0.001), respectively (Figure 

1.1.2). Using a TMB cutoff of 10 mutations/mb, the median PFS of TMB high/PHBR high vs. 

TMB high/PHBR low was 8.1 months, versus not reached, respectively (P = 0.02) (Figure 1.1.2). 

OS data was not available for analysis. 

Finally, we compared our findings in an aggregated high-TMB melanoma cohort (2, 51–

53) and a low TMB kidney cancer cohort (54). While minimum PHBR score did not significantly 

stratify melanoma patient overall or progression-free survival across all patients (Figure 1.1.3A-

B), we did find, when also considering sex and age, that lower PHBR scores (i.e better presented 

mutations) were significantly associated with better overall and progression-free survival 

outcomes in high-TMB patients, consistent with our reported findings. As expected in the low 

TMB kidney tumors, there was no correlation between mutation burden and increased progression-

free or overall survival (Figure S1.1.1A-B). Interestingly, while we did not see significant survival 

stratification with min-PHBR (Figure 1.1.4C-D), we did find that responders tended to have lower 

PHBR scores (i.e., better presented mutations) than non-responders, although the trends did not 

reach statistical significance. 

1.1.5 Discussion 

In a cohort of 83 patients with diverse solid tumors, we demonstrate that both TMB and 

efficient neoantigen presentation (defined by at least one PHBR score < 0.5) predict better 

response (as defined by SD ≥ 6 months/PR/CR rate) and longer PFS and OS after treatment with 
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ICB. This finding was confirmed in an independent cohort of 32 patients with NSCLC treated with 

PD-1 blockade. Further, by incorporating the PHBR score, we were able to identify a group of 

higher TMB tumors (≥ 10 mutations/mb) that are less likely to benefit from ICB. Specifically, 

patients with tumors that poorly present driver neoantigens are less likely to respond to ICB, even 

in tumors with a higher mutational load. Numerous studies show that a significant proportion of 

patients with a higher TMB do not respond to ICB and there is a need to better identify this group 

of patients (30, 31, 34). 

Chowell et al. demonstrated that HLA-I homozygosity and somatic loss of heterozygosity 

(LOH) are predictive of poor outcomes in two independent cohorts treated with ICB (55). In 

addition, McGranahan et al. observed that 40% of early-stage NSCLC tumors had HLA loss of 

heterozygosity (47). It was hypothesized that patients homozygous in at least one HLA-I locus 

would be predicted to present a smaller and less diverse tumor-derived neoantigen repertoire to 

CD8+ cytotoxic T cells and that the diversity of HLA molecules in a given patient influences the 

selection and clonal expansion of T cells following ICB (56). 

Our report differs from the Chowell et al. in several ways. We assessed patient-specific 

MHC-I ability to bind to tumor neoantigens (PHBR score), not HLA-I diversity. Furthermore, by 

evaluating the interaction between TMB and the PHBR score, we demonstrated that tumors that 

present neoantigens efficiently respond to ICB, at least in the case of higher TMB (≥ 10 

mutations/mb). However, in patients with lower TMB, the presentation of neoantigens as reflected 

by PHBR had no association with outcome. We hypothesize that, when there are multiple 

neoantigens produced by the mutanome (i.e., in patients with higher TMB), there is the opportunity 

for MHC-I to present them (or at least one of them) in such a way that is critical to the response. 

However, when there are few neoantigens, the opportunity to present them may be diminished to 
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such an extent that the PHBR is not impactful. Additional studies will be required to better 

understand the neoantigen landscape as it relates to host anti-tumor immunity, in addition to the 

optimal method to combine information across multiple neoantigen for predicting response to 

therapy. 

In our study, all data gathered to identify possible biomarkers to ICB was obtained via one 

NGS test at one time point. Prediction scores and gene signatures that take into count numerous 

variables including T cell infiltration into tumors, mutational load, and PD-L1 level have also been 

developed (57, 58). Here we show that, with further validation, the PHBR score and TMB obtained 

via NGS, both of which are easy to assay, provide the ability to deliver data in real time for 

clinicians to make treatment decisions. 

Our study has several limitations. It was a retrospective study that included a non-uniform 

group of patients with different malignancies treated with different checkpoint inhibitors. 

However, similar results were obtained in our validation cohort of NSCLC all treated with the 

same therapy. Our study excluded melanoma and included only small subsets of patients with 

individual tumor types; while our specific analyses for tumor types with ≥ 5 patients and leave-

one-out analyses suggest generalizability, much larger sample sizes will be required to determine 

whether these findings generalize to specific histologies. Our study did not assess T cell receptor 

(TCR) specificity and diversity. TCR specificity for MHC-I/peptide complex is essential for CD8+ 

T cell cellular-mediated cytotoxicity. A strong correlation between TCR CDR3 diversity and TMB 

has been reported (56). Finally, we only assessed the PHBR score for MHC-I and not MHC-II. 

MHC-II presentation of neoantigens is possibly an important determinant of an immune response 

against a tumor. Frequent cancer driver mutations are poorly presented by MHC-II, and MHC-II 

shows less inter-patient variability but stronger selective effects than MHC-I (59). 
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In summary, the ability of patient-specific MHC-I complexes to bind and present 

neoantigens represented by the PHBR score can predict who is most likely to respond to ICB 

within the subgroup of patients with higher TMB. These results need to be extensively validated 

prior to incorporation into routine clinical use. Future studies are needed to clarify the role of 

PHBR score in predicting response to ICB in specific malignancies. Patients with high PHBR 

scores may benefit from immunotherapies that circumvent antigen presentation by MHC-I (e.g., 

chimeric antigen receptor T cells). Finally, much effort will be needed to decipher how to best 

incorporate MHC-I-related PHBR, reflecting neoantigen presentation by HLA-I, in the context of 

PD-L1 expression, TCR repertoire, and HLA-II genotype. 

1.1.6 Materials and Methods 

Patient selection. Three hundred and twenty-eight patients with diverse solid tumors 

treated with ICB (4/2010–5/2018) at a single institution were reviewed. Patients with melanoma, 

tumors that were not sequenced by Foundation Medicine (FM), and patients without an identified 

missense alteration by NGS were excluded. We excluded patients without next-generation 

sequencing or those with sequencing, but no identified missense alterations, because PHBR cannot 

be calculated in those cases; we omitted melanoma because melanoma patients have 

disproportionately high TMBs and high response rates to immunotherapy as compared to the 

majority of other cancers. All patients were treated with anti-PD-1/L1 monotherapy (or in 

combination with a second agent). The validation cohort was composed of thirty-two NSCLC 

patients treated with pembrolizumab (starting from 2012 to 2013) at Memorial Sloan Kettering 

and the University of California Los Angeles. All validation patients had consented to Institutional 

Review Board-approved protocols regarding tissue collection and sequencing. 
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TMB and HLA-I sequencing. Patients had NGS performed on tumor samples to 

determine genetic alterations, TMB, and HLA-I genotype (60). Formalin-fixed paraffin-embedded 

tumor samples were submitted for NGS to FM [clinical laboratory improvement amendments 

(CLIA)-certified lab]. The FoundationOne assay was used (hybrid-capture-based NGS; 236 or 315 

genes; http://www.foundationone.com/). The methods have been previously described (60). 

Average sequencing depth of coverage was greater than 250X, with > 100X at > 99% of exons. 

For TMB, the number of somatic mutations detected on NGS (interrogating 1.2 mb of the genome) 

is quantified and that value extrapolated to the whole exome using a validated algorithm (61). 

Alterations likely or known to be bona fide oncogenic drivers and germline polymorphisms are 

excluded. TMB was measured in mutations per megabase (mb). Sequence-derived HLA-A/B/C 

typing was conducted by back-converting BAM files to fastq, then performing HLA realignment 

and typing using OptiType (62). 

PHBR. The Patient Harmonic-mean Best Rank (PHBR) score as previously described (46), 

is a metric that represents how well the specific HLA-I genotype of an individual can bind and 

present a specific missense mutation. Each patient was assigned the PHBR score of his or her best-

presented missense driver mutation. For patients with two or more missense mutations, only the 

mutation with the lowest PHBR score was selected. PHBR low (strong presentation) and high 

(poor presentation) were defined as < 0.5 and ≥ 0.5, respectively. 

Mapping Foundation Medicine mutations to peptides. RefSeq transcript IDs from the 

FM variant spreadsheet were mapped to corresponding Ensembl transcript IDs with coding (CDS) 

sequences. For evaluation of missense mutations, we replaced the native amino acid residue with 

the mutated residue and selected all 38 possible peptides of length 8–11 that covered the mutated 

amino acid residue. For evaluation of in-frame insertion and deletion mutations, bases were 
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inserted or deleted from the CDS sequence according to the “cds effect” column from the FM data. 

The new CDS sequence was then translated into an amino acid sequence using the Seq.translate 

function from Biopython (Bio) package (63). We then selected any resulting novel peptides of 

length 8–11 for affinity analysis. 

Affinity analysis. We calculated the allele-specific binding affinities of the previously 

described mutated peptides using NetMHCpan4.0 (64). Conventionally, a NetMHCpan4.0 binding 

affinity percentile rank less than 2 indicates weak peptide-MHC binding, while a binding affinity 

percentile rank less than 0.5 indicates strong peptide-MHC binding (65). Patient Harmonic-mean 

Best Rank PHBR scores (46)were used to represent a patient’s ability to present the mutations in 

their tumor. HLA-A, HLA-B, and HLA-C alleles were obtained from FM. We evaluated the 

binding affinity of each HLA allele for 38 possible peptides of length 8–11 overlapping each 

mutation using NetMHCpan4.0. For individual alleles, the best rank percentile from 

NetMHCpan4.0 out of the 38 possible peptides was assigned. Best rank percentiles for all 6 alleles 

were aggregated into the PHBR score using a harmonic mean. High PHBR scores are indicative 

of poor affinity of peptides overlapping a mutation with the patient’s MHC-I molecules and vice 

versa. 

Validation. Matched tumor-normal exome sequencing fastq files obtained from (66) 

(dbGaP study accession phs000980.v1.p1.c1) were preprocessed and mutations called according 

to the GATK best practice workflow. Only mutations occurring in the 309 genes from the 

Foundation Medicine gene panel were retained. HLA typing was done in silico using the OptiType 

software package (62). Mutated peptides were created using the same method as described above. 

Similarly, PHBR scores were generated as described previously. 
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Statistical analysis. We used the Fisher exact test to assess categorical variables. P values 

< 0.05 were considered significant (values < 0.10 were included in the multivariable regression 

analyses). Overall benefit rate (OBR) (stable disease for ≥ 6 months and partial or complete 

response) was determined (RECIST criteria). Median PFS and OS were calculated from the start 

of checkpoint blockade and data was censored at the last visit for patients still progression free or 

alive, respectively, for PFS and OS. For the outcome analysis, comparisons were made between 

TMB low vs. high and PHBR low vs. high. Patients with no TMB values were assigned to the low 

TMB category for discrete analyses, and a pseudocount of 0.001 was added to TMB for all patients. 

We performed a Cox proportional hazards regression stratified by high (≥ 10 mutations/mb) or low 

(< 10 mutations/mb) TMB to quantify the specific effect of PHBR on PFS. These findings were 

visualized using Kaplan-Meier curves. Statistical analysis was performed on R version 3.5.2 and 

IBM SPSS Statistics version 24. 
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1.1.7 Figures 

 

 
 
Figure 1.1.1 Kaplan-Meier PFS and OS for patients treated with immunotherapy. P-values 
in Figure 1.1.1 compare all four categories. They differ slightly from P values in Table 1.1.3, which 
compares value to the reference. PFS (A) and OS (B) dichotomized by PHBR < 0.5 and ≥ 0.5 (N 
= 83). PFS (C) and OS (D) dichotomized by TMB < 10 and ≥ 10 mutations/mb (N = 83). PFS (e) 
and OS (f) separated by TMB < 10 and ≥ 10 and PHBR < 0.5 and ≥ 0.5 (N = 83). For PFS (E), P 
= 0.005 for difference between all four curves. Curve for TMB ≥ 10/PHBR < 0.5 versus TMB ≥ 
10/PHBR ≥ 0.5 was significantly different (P = 0.025); TMB ≥ 10/PHBR ≥ 0.5 did not differ 
significantly from TMB < 10/PHBR ≥ 0.5 (P = 0.19) or from TMB < 10/PHBR < 0.5 (P = 0.26); 
TMB < 10/PHBR ≥ 0.5 did not differ significantly from TMB < 10/PHBR < 0.5 (P = 0.91). For 
OS (F), P = 0.1 for difference between all four curves. Differences between individual curves were 
not statistically different.  
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Figure 1.1.2. PFS for patients treated with immunotherapy in the validation dataset (N = 32). 
P values in the figure compare all four categories. (A) PFS dichotomized by PHBR < 0.5 and ≥ 
0.5. (B) PFS dichotomized by TMB < 10 and ≥ 10 mutations/mb. (C)PFS separated by TMB < 10 
and ≥ 10 and PHBR < 0.5 and ≥ 0.5  
  



 24 

 
Figure 1.1.3. Kaplan-Meier curves showing the effects of TMB and presentable mutations 
on survival. (A) TMB versus overall survival, (B) TMB versus progression-free survival, (C) 
minimum PHBR score versus overall survival and (D) minimum PHBR score versus progression-
free survival in the combined melanoma cohort.  
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Figure 1.1.4. Kaplan-Meier curves showing the effects of TMB and mutation presentability 
in the Miao kidney cohort. (A) TMB versus overall survival, (B) TMB versus progression-free 
survival, (C) minimum PHBR score versus overall survival, and (D) progression-free survival  
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Figure 1.1.5. Analysis of responders and non-responders in the Miao kidney cohort. Boxplots 
showing the distribution of (A) TMB and (B)minimum PHBR score for responders and non-
responders in the Miao cohort. P values were calculated by the Mann-Whitney U test.  
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1.1.8 Tables 

Table 1.1.1. Patient demographics by PHBR score (< 0.5 vs. ≥ 0.5) (N=83). 1Relative risk for 
PHBR < 0.5. 2Calculated using Fisher’s exact test. 3Others: African American (N=2), Asian (N=4), 
Hispanic (N=5), and unknown (N=1). 4At time of initiation of treatment with immunotherapy. 
5Others: adrenal (N=1), appendix (N=4), basal cell carcinoma (N=3), breast cancer (N=6), cervical 
(N=1), cholangiocarcinoma (N=1), colorectal (N=2), duodenal (N=1), gastroesophageal (N=5), 
glioblastoma (N=2), thyroid (N=1), prostate (N=1), rectal squamous cell carcinoma (N=1), renal 
cell carcinoma (N=1), sarcoma (N=3), urothelial (N=4), and urethral squamous cell carcinoma 
(N=1). 6TMB was performed on 77 patients. 7One patient had SD, but had not reached to 6 months. 
Only 82 patients were evaluable for this comparison. Abbreviations: CR: complete response, HR: 
hazard ratio, NR: not reached to 50%, NSCLC: non-small cell lung cancer, OS: overall survival, 
PFS: progression-free survival, PD: progressive disease, PHBR: Patient Harmonic-mean Best 
Rank, PR: partial response, RR: relative risk, SCC: squamous cell carcinoma, SD: stable disease, 
TMB: tumor mutational burden.  
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Table 1.1.2. Univariate analysis of factors affecting outcome for patients treated with 
immune checkpoint blockade (N = 83). 1Thirty-six patients achieved SD with ≥ 6 
months/PR/CR. One patient attained ongoing SD, but has not yet reached 6-month follow-up and 
is therefore not considered evaluable for this parameter; only 82 patients were evaluable for this 
comparison. 2Calculated using Fisher’s exact test. 3Calculated using the log-rank test. 4Others: 
African American (N=2), Asian (N=4), Hispanic (N=5), and unknown (N=1). 5At time of initiation 
of treatment with immunotherapy. 6Others: adrenal (N=1), appendix (N=4), basal cell carcinoma 
(N=3), breast cancer (N=6), cervical (N=1), cholangiocarcinoma (N=1), colorectal (N=2), 
duodenal (N=1), gastroesophageal (N=5), glioblastoma (N=2), thyroid (N=1), prostate (N=1), 
rectal squamous cell carcinoma (N=1), renal cell carcinoma (N=1), sarcoma (N=3), urothelial (N 
= 4), and urethral squamous cell carcinoma (N=1). 7Seventy-seven patients with TMB were 
evaluable for the response rate, PFS, and OS. Abbreviations: HR: hazard ratio, NR: not reached 
to 50%, NSCLC: non-small cell lung cancer, OS: overall survival, PFS: progression-free survival, 
PHBR: Patient Harmonic-mean Best Rank, SCC: squamous cell carcinoma, TMB: tumor 
mutational burden. 
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Table 1.1.3. Overall response rate, PFS, and OS segregated by TMB low/high and PHBR 
low/high among patients treated with immunotherapy patients (N = 77 with TMB available). 
1Thirty-six patients achieved SD with ≥ 6 month/PR/CR. 2P-values in Figure 1.1.1 are different as 
they compare all four categories at the same time. 3Not reached to the median (median follow-up 
duration, 23.0 months). 4Not reached to the median (median follow-up duration, 24.6 months). 
5Not reached to the median (median follow-up duration, 27.0 months). Abbreviations: HR: hazard 
ratio, NR: not reached to 50%, OS: overall survival, PFS: progression-free survival, PHBR: Patient 
Harmonic-mean Best Rank, TMB: tumor mutational burden. 
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Table 1.1.4. Multivariable regression analysis of factors affecting outcome for patients 
treated with immunotherapy (N = 77 with TMB available). Variables with p-value of ≤ 0.1 in 
univariate (Table 1.1.2) were included in the multivariable regression analysis. Abbreviations: 
CR: complete response, HR: hazard ratio, NSCLC: non-small cell lung cancer, OR: odds ratio, 
PHBR: Patient Harmonic-mean Best Rank, PR: partial response, SCC: squamous cell carcinoma, 
SD: stable disease, TMB: tumor mutational burden.  
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Table 1.1.5. Cox proportional hazards regression for high-TMB patients in combined 
melanoma cohorts.  
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1.1.9 Supplemental Data, Tables and Figures 

 

 
Figure S1.1.1. Kaplan and Meier PFS and OS for patients treated with immunotherapy, 
excluding patients with TMB=0. PFS (A) and OS (B) dichotomized by PHBR <0.5 and ≥0.5 
(N=83).  PFS (C) and OS (D) dichotomized by TMB <10 and ≥10 mutations/mb (N=77).  PFS (E) 
and OS (F) separated by TMB <10 and ≥10 and PHBR <0.5 and ≥0.5 (N=77 with TMB available). 
  



 33 

 
Figure S1.1.2. Correlation between PHBR score and TMB (N=77 with TMB available). 
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Table S1.1.1: Covariates retained after the backwards selection process. The coefficients and 
respective p-values for the covariates including TMB and PHBR in the final model are shown. 
Covariates selected by backwards 

selection 
Coefficient P-value 

Confidence Interval 

(95%) 

Intercept -1.29 0.09 (-2.79, 0.20) 
MSI Status (MSS) 1.46 0.04 (0.04, 2.87) 
Ethnicity (African American) 10.96 0.83 (-89.16, 111.08) 
Ethnicity (Hispanic) -9.59 0.85 (-106.77, 87.60) 
Diagnosis (Adrenal cortical 
carcinoma) 

10.25 0.75 (-53.39, 73.89) 

Diagnosis (Colorectal 
adenocarcinoma) 

2.84 0.59 (-7.44, 13.13) 

Diagnosis (NSCLC) (squamous cell 
carcinoma) 

-9.31 0.89 (-141.53, 122.92) 

Diagnosis (Skin squamous cell 
carcinoma) 

0.85 0.39 (-1.10, 2.80) 

Diagnosis (Spleen angiosarcoma) 8.52 0.78 (-52.56, 69.60) 
TMB (mutations per megabase) 0.013 0.25 (-0.0091, 0.035) 
min PHBR score -0.31 0.08 (-0.66, 0.042) 
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1.2.1 Foreword 

Much emphasis has been placed on high affinity peptide-MHC interactions as a 

requirement for effective immune targeting of tumors. Indeed, my work described in Aim 1.1 has 

demonstrated the requisite of highly presentable mutations for improved outcomes in immune 

checkpoint blockade treated patients. However, over time, tumor interaction with the immune 

system results in immunoediting, or pruning of susceptible subclones, and eventual escape from 

immune detection and elimination. 

Impact to the integrity of the neopeptide-MHC complex, whether to the antigen processing 

pathway or to the MHC itself, could aid in tumor escape. B2M mutations and loss of heterozygosity 

(LOH) are linked to decreased MHC class I expression and decreased patient survival (1, 2). 

Somatic mutations to HLA-A and HLA-B have also been shown to be under positive selection 

during tumorigenesis and are more frequent when tumor immune cell infiltration and cytotoxicity 

are high (3). Somatic LOH in the human leukocyte antigen (HLA) locus was reported to occur in 

40% of adult non-small-cell lung cancers and contributes to impaired immune surveillance (4). In 

addition, our recent characterizations of multi-cancer pediatric cohorts have observed similar rates 

of somatic mutations and LOH affecting MHC-I. 

At a time when immunotherapy treatments are becoming more widely used, it remains 

critical to assess the integrity and subsequent utility of the MHC. Loss of MHC integrity may occur 

pre-treatment and is frequently observed post-treatment (5). In addition to somatic MHC 

alterations, mounting evidence points to additional pathways for impacting MHC cell surface 

expression. Decreased transcription of B2M or HLA genes can decrease the levels of overall MHC, 

or specific HLA alleles, having varying impacts on ability to present antigen. Germline variation 

may influence overall expression of certain HLA alleles (6). Presence of BRAF V600E mutations 
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has been reported to cause internal sequestration of MHC-I, also contributing to immune escape 

(7). In addition to antigen presentation function, MHC-I molecule presence on the cell surface 

provides an inhibitory signal to natural killer (NK) cell mediated effector functions (8). Thus, 

clinical characterization of MHC integrity and, by extension, cell surface presentation, is critical 

for effective anti-tumor immunity. 

My research in Aim 1.2 characterizes the extent of somatic mutations to the MHC-I in the 

TCGA, which is comprised of non-immunotherapy treated patients. Here, I describe the impacts 

of somatic MHC-I mutations to the mutation and putative neoantigen landscape and immune 

infiltration. 

  
  

1.2.2 Abstract 

The major histocompatibility complex class I (MHC-I) molecule is a protein complex that 

displays intracellular peptides to T cells, allowing the immune system to recognize and destroy 

infected or cancerous cells. MHC-I is composed of a highly polymorphic HLA-encoded alpha 

chain that binds the peptide and a Beta-2-microglobulin (B2M) protein that acts as a stabilizing 

scaffold. HLA mutations have been implicated as a mechanism of immune evasion during 

tumorigenesis, and B2M is considered a tumor suppressor gene. However, the implications of 

somatic HLA and B2M mutations have not been fully explored in the context of antigen 

presentation via the MHC-I molecule during tumor development. To understand the effect that 

B2M and HLA MHC-I molecule mutations have on mutagenesis, we analyzed the accumulation 

of mutations in patients from The Cancer Genome Atlas according to their MHC-I molecule 

mutation status. Somatic B2M and HLA mutations in microsatellite stable tumors were associated 

with higher overall mutation burden and a larger fraction of HLA-binding neoantigens when 
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compared to B2M and HLA wild type tumors. B2M and HLA mutations were highly enriched in 

patients with microsatellite instability. B2M mutations tended to occur relatively early during 

patients’ respective tumor development, whereas HLA mutations were either early or late events. 

In addition, B2M and HLA mutated patients had higher levels of immune infiltration by natural 

killer and CD8+ T cells and higher levels of cytotoxicity. Our findings add to a growing body of 

evidence that somatic B2M and HLA mutations are a mechanism of immune evasion by 

demonstrating that such mutations are associated with a higher load of neoantigens that should be 

presented via MHC-I. 

1.2.3 Introduction 

Immune evasion is one of the hallmark traits characteristic of cancer cells (9). The near 

universal requirement for tumor cells to evade immune elimination implicates the immune system 

as a major selective force acting on developing tumors. When a tumor cell successfully evades the 

immune system, the mutations harbored within can persist and propagate as the cell divides. 

In humans, the HLA-A, HLA-B, and HLA-C genes encode major histocompatibility 

complex class I (MHC-I) molecules, which display intracellular peptides on the cell surface for 

inspection by CD8+ T cells. These T cells have the potential to recognize the MHC-I-peptide 

complex and become activated cytotoxic T cells (CTLs). Cancer immunotherapies that target CTL 

activation rely on clinical selection of appropriate neoantigens, mutated peptides specific to tumor 

cells, to stimulate a response (10). Although these cancer immunotherapies are of high interest to 

patients and clinicians, they have not yet shown widespread clinical success (11). 

The MHC-I molecule is composed of a highly polymorphic HLA encoded alpha chain and 

a beta-2-microglobulin (B2M) protein that acts as a stabilizing scaffold. B2M is essential for 

MHC-I complex formation and peptide presentation. B2M mutations and loss of heterozygosity 
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(LOH) are linked to decreased MHC class I expression and decreased patient survival (1, 2). In 

addition to HLA-A, HLA-B, and HLA-C, B2M binds to other immune proteins including CD1, 

FCGRT, HFE, HLA-E, HLA-G LILRB, and MR1. Somatic mutations in HLA-A and HLA-B have 

also been shown to be under positive selection during tumorigenesis and are more frequent when 

tumor immune cell infiltration and cytotoxicity are high (3). Importantly, MHC-I molecule 

presence on the cell surface can provide an inhibitory signal to natural killer (NK) cell mediated 

effector functions (8). In addition to classical HLA molecules HLA-A, HLA-B, HLA-C, and HLA-

G, nonclassical HLA-E acts as a ligand to inhibitory receptors on NK cells. Thus, both presence 

and antigen presentation function of MHC-I molecules contribute to anti-tumor immunity. 

A recent study found that an individual’s HLA genotype can facilitate immune evasion and 

shape the landscape of a patient’s acquired mutations (12). Somatic mutations generating peptides 

with low affinity for an individual’s respective HLA alleles were likely to evade immune detection 

and persist in the tumor. Somatic LOH in the human leukocyte antigen (HLA) locus is thought to 

impair immune surveillance and was reported to occur in 40% of non-small-cell lung cancers. The 

authors found that HLA LOH was significantly associated with a high mutational burden and 

cancer-specific neoantigens generated from these mutations were biased to bind to the lost HLA 

allele (4). Thus, immune evasion may depend on an individual’s unique HLA genotype and the 

specificity of neoantigens for particular HLA alleles. 

We previously observed an uncharacteristic enrichment of somatic mutations at B2M 

interaction partner binding interfaces (13). Whereas for most cancer genes, mutations occurred 

preferentially on the cancer gene itself, genes encoding B2M binding partners showed almost as 

many somatic mutations as B2M (Figure 1.2.1A). Given B2M’s role as a central component of 

MHC-I, we hypothesized that mutations affecting B2M’s interaction with HLA-A, HLA-B, and 
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HLA-C could facilitate immune evasion by altering the availability of MHC-I molecules with 

distinct specificities, thus affecting presentation of specific peptides to the immune system (Figure 

1.2.1B). To gain a better understanding of the role of somatic mutations affecting B2M and its 

partners in immune evasion, we examined their effect on mutation burden, antigen binding affinity, 

immune infiltration, and cytotoxicity in tumors sequenced by The Cancer Genome Atlas (TCGA). 

  

1.2.4 Results 

HLA and B2M mutations in TCGA. B2M mutation calls were obtained directly from the 

MAF files provided by TCGA. Because the HLA locus is highly polymorphic, mutation calls 

against the reference genome are unreliable. Instead, we ran Polysolver (3) to simultaneously call 

patient-specific HLA types and detect somatic mutations affecting a patient’s HLA alleles. Out of 

10,428 TCGA patients that had the necessary whole exome sequencing data, only 579 patients had 

an HLA mutation and 125 patients had B2M mutations. Most of these mutations were 

nonsynonymous (Figure 1.2.2A). To determine whether nonsynonymous mutations occurred at 

amino acid residues with the potential to interfere with formation of the MHC-I molecule, 

experimental 3D structures for the B2M-HLA complex were obtained from the Protein Data Bank 

(14) and used to annotate amino acid residue location at protein core, surface or at the physical 

interface between B2M and HLA encoded proteins (Methods). 

Mutations on HLA proteins, particularly HLA-A, showed a biased distribution with several 

recurrent hotspots (Figure 1.2.2B). Mutations were most concentrated in the α3 domain that 

mediates interaction with the T cell receptor (TCR) (206 mutations, 40.63% of total; OR = 2.04, p 

< 2.58e-09), and included multiple recurrent hotspots. Fifty-one mutations (10.06%) were 

observed in the transmembrane domain including additional hotspots. Although mutations were 
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observed throughout the α1 and α2 domains that form the peptide binding groove, they tended to 

be less recurrent (88 mutations, 17.36% for both α1 and α2). This may reflect the much larger 

heterogeneity of this region across HLA alleles. 

Recurrent hotspot mutations often targeted interface and core regions on HLA-A, while 

they targeted core and surface regions on HLA-B, and surface regions on HLA-C (Figure 1.2.2B). 

Since there are many alleles for each HLA protein, we used the consensus of residue annotations 

across different alleles to annotate each HLA protein (Figure S1.2.1). Even though the annotations 

for most frequently mutated residues agreed between different HLA alleles, there were some 

exceptions, including residue 231 on HLA-A. Although residue 231 (R231) on HLA-A was 

annotated as surface based on the consensus across HLA-A alleles, the residue is located very 

close to the interface region (Figure 1.2.2B) and in fact was predicted as an interface residue on 2 

of the 6 HLA-A allele structures analyzed. Additionally, although residue 209 (R209) on HLA-A 

and HLA-B proteins was annotated as ambiguous due to its intermediate value of relative solvent 

accessible surface area (RSA) for most HLA-A/B structures analyzed, the average RSA across 

structures is close to the threshold for core annotation (7.17), and R209 was indeed annotated as 

core in some of them. Overall, the distribution of HLA mutations for the three proteins was 

consistent with the previous report by Shukla et al. (3), though the current analysis incorporates an 

overall larger number of samples. Mutations in B2M were largely loss of function (Figure 1.2.2A) 

and more broadly distributed (Figure 1.2.2C), as expected for a tumor suppressor gene, though 

several positions were also recurrently mutated. 

Expected effects of B2M versus HLA mutations on MHC-I composition. Since B2M is 

an essential component of all MHC-I molecules, loss of B2M should equally impact MHC-I 

molecules derived from different HLA alleles. The B2M interface with HLA alleles is shared 
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across the different alleles (Figure S1.2.2), so mutations at this interface are also likely to affect 

all variants of an individual’s MHC-I molecule, although complexes involving B2M and binding 

partners that use alternative interfaces should not be affected. In contrast, loss of function or 

interface mutations affecting a specific HLA allele would only affect the MHC-I molecules derived 

from that allele. Thus, we speculate that B2M mutations are likely to reduce the total amount of 

MHC-I molecules presenting antigens on the tumor cell surface, while HLA mutations would 

impact which mutations could be presented as neoantigens. 

Mutations in MHC-I proteins are associated with increased mutation burden. We 

hypothesized that both B2M and HLA mutations would affect MHC-I presentation of mutations. 

Mice with total lack of B2M express little if any cell surface MHC-I and lack cytotoxic CD8+ T 

Cells (15, 16). In human lung cancers, an association was found between higher somatic mutation 

burden and HLA loss of heterozygosity (4). If somatic mutations to HLA and B2M similarly impair 

antigen presentation, we would expect to see an increased mutation burden when comparing to 

unmutated patients. 

We first analyzed 9055 TCGA patients across 31 solid tumor types that had both exome 

and RNA sequencing data (Figure 1.2.3A), removing patients that had synonymous B2M or HLA 

mutations. We then performed a cancer-specific analysis of 3514 patients across 8 solid tumor 

types with at least 5 somatic B2M and HLA mutations (Figure 1.2.3B). To determine whether 

somatic mutations to B2M and HLA were associated with an overall higher mutation burden, we 

compared the total number of expressed nonsynonymous mutations in patients with and without 

nonsynonymous somatic B2M or HLA mutations. Overall, we observed that both patients with a 

B2M and an HLA mutation had significantly higher tumor mutation burdens (Mann Whitney test, 

B2M p < 1.1e-20 and HLA p < 1.1e-30) than patients without (Figure 1.2.3A). Pan-cancer, B2M 
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mutated patients also had significantly higher mutation burdens than HLA mutated patients (Mann 

Whitney test, p < 0.0028). There were approximately equal numbers of early stage (I & II) and late 

stage (III & IV) tumors in these three groups. We repeated the pan-cancer mutational burden 

analysis with Cancer Cell Line Encyclopedia (CCLE) data for 25 B2M-mutated cell lines, 114 

HLA cell lines, and 1381 non-mutated cell lines, and observed the same trend: cell lines with B2M 

and HLA mutations had significantly higher overall mutational burden than cell lines without 

(Figure S1.2.3). When we analyzed tumors by tissue type, we observed that certain cancers 

(stomach adenocarcinoma, endometrial cancer, colorectal cancer, lung adenocarcinoma, and 

cervical cancer) also had significantly higher mutational burden in mutated patients (Figure 

1.2.3B). Stomach, uterine and colorectal cancers have documented high rates of microsatellite 

instability (MSI), thus we evaluated whether B2M and HLA mutations were biased to occur in 

high MSI tumors. Using MSI annotations available for 10,415 patients from Kautto et al. (17), we 

found a significant bias for B2M and HLA mutations to occur in patients with MSI (Fisher’s exact 

test; B2M OR = 14.66, p < 8.7e-24; HLA OR = 6.28, p < 2.0e-36). To rule out the possibility that 

MSI was solely driving our results, we reanalyzed the mutational burden between B2M and HLA 

mutated and unmutated patients, this time retaining only 8668 microsatellite stable (MSS) patients. 

Interestingly, we found similar trends in elevated mutational burden associated with B2M and 

HLA mutation (Figure 1.2.3C-D), and consequently focused on MSS patients only in the 

subsequent analyses. Thus, even in MSS tumors, B2M and HLA mutations are associated with an 

increased nonsynonymous mutational burden. 

Mutations in MHC-I proteins are associated with increased binding neoantigen counts. 

To obtain more evidence as to whether the elevated mutation counts observed in HLA and B2M 

mutated patients were a result of the mutation, or vice versa, we compared the fraction of mutations 
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likely to generate neoantigens across MSS patients with and without B2M and HLA mutations. 

We speculated that if B2M and HLA mutations are an artifact of higher mutation rates, the 

proportion of mutations that generate neoantigens should not differ relative to patients without 

such mutations. However, if these mutations truly facilitate immune escape, neoantigens should 

be enriched among the observed mutations. 

Using HLA allele genotypes called by Polysolver (3), we calculated patient-specific MHC-

I presentation scores for all expressed mutations observed in each patient’s tumor (12, 18). We 

previously demonstrated that these affinity-based presentation scores, called PHBR-I scores, can 

distinguish peptides found in complex with MHC-I on the cell surface in mass spectrometry 

experiments from random peptides simulated from the human proteome, supporting that affinity 

is a reasonable proxy for cell surface presentation (12). Indeed, when we looked at the fraction of 

expressed mutations considered to be neoantigens at various PHBR-I cutoffs, we found that at any 

given cutoff, a higher fraction of mutations represented neoantigens in both B2M and HLA 

mutated patients (Figure 1.2.4A-B). This corresponded to overall higher numbers of neoantigens 

in B2M and HLA mutant tumors (Figure S.1.2.4). The higher overall proportion of neoantigens 

is consistent with both somatic B2M and HLA mutations impairing presentation of neoantigens 

for immune surveillance. 

Assessing bias in neoantigen affinities in patients with mutant HLA alleles. McGranahan 

et al. reported that in lung cancer, subclones that had lost a particular HLA allele tended to 

accumulate mutations with higher affinity for the lost allele, suggesting that such mutations were 

no longer subject to immunoediting (4). We therefore sought to assess whether mutations 

accumulating in tumors with HLA mutations showed a bias in affinity toward the affected HLA 

allele. We first evaluated whether the number of mutant-allele specific mutations in these patients 
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was higher than the average number of mutations specific to each of the other alleles (Figure 

1.2.4C). We observed several patients for which the number of mutant-allele specific mutations 

was indeed higher (Figure 1.2.4C; red lines). We note that the current study design differs from 

the study by McGranahan et al. in that we do not have subclone-specific sequencing data, and thus 

cannot determine which mutations occurred in the same cell population as the mutated HLA allele. 

We also did not consider allele-specific deletion events, and thus the assumption that the other 5 

HLA alleles are intact may be incorrect for some patients. 

Timing of somatic mutations in MHC-I proteins. To better understand B2M and HLA 

mutation timelines, we analyzed the tumor allelic fraction of expressed mutations for all patients. 

Early clonal mutations are present in a larger fraction of cancer cells than later subclonal mutations 

and are, therefore, expected to be present in a higher fraction of the reads generated from that site 

during tumor sequencing. Although this assumption can be complicated by sampling bias and 

genomic instability of tumors, we nonetheless expect that somatic point mutations with higher read 

support will in general have occurred at earlier time points than those with lower read support. 

Since each individual’s tumor is unique, we quantified B2M and HLA mutations in terms of their 

allelic fraction percentile relative to other mutations observed in the same tumor (Figure 1.2.4D). 

Interestingly, B2M mutations tended to be present at higher percentiles than most HLA mutations, 

suggesting that B2M mutations might occur earlier in tumor development and affect a higher 

proportion of tumor cells. Most HLA mutations had low percentiles, suggesting these were late, 

subclonal events, while a subset had high percentiles and likely occurred early during tumor 

development in those individuals. This observation agrees with the previous report by 

McGranahan et al. that found HLA loss in lung cancer to be predominantly subclonal with a few 

observations of clonal loss noted. Patients with MSI tended to have HLA mutations with higher 
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variant allele fraction (VAF) (Fisher’s exact test, OR = 73.3, p < 8.1e-16). These findings remained 

even when we considered only mutations in regions unaffected by copy number changes which 

can confound VAF estimates (Figure S1.2.5). Interestingly, we found that tumors with early HLA 

mutations had significantly higher levels of neoantigens predicted to specifically bind to the 

mutated allele than tumors with late HLA mutations (Figure 1.2.4E). When we evaluated the bias 

in specificity of neoantigens for the mutated allele in patients with early HLA loss, we found a 

significant difference in the number of binding neoantigens between the mutated HLA allele and 

average of unmutated HLA alleles (Figure 1.2.4F). We conclude that somatic B2M and HLA 

mutations are associated with an overall higher burden of neoantigens, supporting the notion that 

these mutations facilitate tumor immune escape. 

Correlation of B2M versus HLA mutation with immune cell infiltration and cytotoxicity. 

Effective antigen presentation via MHC-I is associated with CD8+ T cell driven cytotoxicity. 

Furthermore, cell surface MHC-I molecules deliver an inhibitory signal to natural killer (NK) cells. 

Thus, changes to cell surface presentation of neoantigens by MHC-I due to mutations in B2M and 

HLA may be reflected in immune cell infiltration levels and levels of cytotoxicity. We quantified 

immune cell infiltration from tumor RNA sequencing data using Cibersort (19) and levels of 

cytotoxicity using the score proposed by Rooney et al. (20). While Shukla et al. previously 

evaluated immune infiltrates and cytotoxicity in the context of somatic HLA mutations, to our 

knowledge B2M mutations have not previously been analyzed in this context (3). 

CD8+ T cell levels were elevated in tumors with HLA mutations, both pan-cancer (Figure 

1.2.5A) and in several tumor types (Figure 1.2.5B). A possible explanation is that CD8+ T cells 

are primed in secondary lymphoid organs and travel to the tumor where they accumulate due to 

the lack of the corresponding MHC-I molecule/peptide complex. NK cell levels were elevated in 
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tumors with B2M mutations pan-cancer (Figure 1.2.5C), however the levels were not significantly 

different in any given tumor type (Figure 1.2.5D). Loss of B2M resulting in reduced cell surface 

MHC-I molecules should reduce the ability of tumor cells to inhibit NK cell driven cytotoxicity, 

however it is unclear whether this would affect NK cell levels in the tumor. Cytotoxicity was 

elevated in both HLA and B2M mutant tumors pan-cancer (Figure 1.2.5E) and in several tumor 

types (Figure 1.2.5F). These trends are consistent with the idea that mutations are a mechanism 

of escape from immune surveillance, as previously suggested by Shukla et al. for HLA mutations. 

  

1.2.5 Discussion 

Many immunotherapies, such as immune checkpoint inhibitors, rely on the integrity of a 

patient's immune system to eliminate tumors. Tumors use a variety of strategies to evade the 

immune system, raising important questions about how different mechanisms of immune evasion 

could impact response to particular immunotherapies. We found that somatic point mutations in 

proteins comprising the MHC-I, B2M and HLA, showed signs of positive selection in tumors. This 

observation motivated our study of the effects of somatic B2M and HLA mutations on 

accumulation of putative neoantigens in tumors. 

Our analysis builds on work by Shukla et al. that first applied Polysolver to evaluate 

patterns of HLA mutation across tumors and showed that such mutations occurred preferentially 

in tumors with high mutation burden and under strong pressure by the immune system as evidenced 

by high levels of CD8+ T cell infiltration. Here we further analyze patterns of mutation in tumors 

with HLA mutations, incorporating information about which mutations are likely to be presented 

by MHC-I molecules derived from patient-specific HLA alleles, and comparing to tumors with 

B2M mutations or with unaltered MHC-I. Our analysis supports a model where B2M mutations 
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reduce the overall levels of cell surface MHC-I molecules while HLA mutations perturb the overall 

composition of the MHC-I complex landscape, both providing escape from immune surveillance. 

Our findings are consistent with those of McGranahan et al. who reported that somatic loss of 

heterozygosity in the HLA locus was a common mechanism of immune evasion, and that loss of 

a specific HLA allele could render a subset of neoantigens within the tumor ineffective at 

generating an immune response upon checkpoint inhibition. While both B2M and HLA mutated 

patients showed elevated mutation rates, we observed differences in how neoantigens accumulated 

in these tumors, with B2M mutant tumors harboring the most neoantigens and tumors with intact 

MHC-I molecules harboring the least. 

Notably, B2M mutations were highly enriched in tumors with microsatellite instability, a 

phenomenon that has been previously observed in the context of colorectal cancer (21) and is now 

confirmed for other tumor types with high MSI. MSI tumors were associated with higher immune 

cell infiltration and robust immune responses in this disease (22). Previous studies have also linked 

B2M mutations to increased levels of local immune cytolytic activity in uterine, stomach, 

colorectal and breast cancer (20). It remains unclear to what extent high mutation burden precedes 

immune infiltration, cytotoxicity and escape via B2M or HLA mutation, or whether the rate and 

affinity characteristics of the mutations that occur after the event differ from those before. Grasso 

et al. (23) showed that MSI-H colorectal tumors disrupt B2M and HLA genes independent of 

mutational load with direct effect on T cell infiltration. We conclude that mutations to either 

component of MHC-I will provide effective escape in the setting of a robust anti-tumor immune 

response, however mutations to B2M may be more beneficial in settings such as MSI when the 

number of neoantigens generated is highest. 
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We note that the current analysis has several limitations. First, our analysis only considered 

mutations in HLA alleles, whereas other types of variation, including loss of heterozygosity or 

lack of expression could confer similar effects. In the current analysis, patients with such effects 

would be grouped with non-mutated tumors, which would reduce the statistical power of the 

analyses that we performed. In addition, we did not have information about the subclonal 

membership of particular mutations within the tumor, and thus could not distinguish mutations 

occurring in the subset of tumor cells with HLA mutation from other mutations in the tumor. 

Knowledge of the subclonal architecture of the tumor would be helpful to fully investigate the 

affinity bias of new mutations for the mutated HLA allele. Future studies should address these 

shortcomings. 

Here we show that somatic mutations affecting B2M and HLA genes interact with the 

accumulation of somatic mutations that generate neoantigens during tumor development. 

Mutations in both genes relieve pressure by the immune system, allowing the tumor to evade an 

active immune response. A better understanding of how these mutations differ in shaping the 

oncogenic landscape may provide insights as to how these factors could contribute to resistance to 

therapies that induce strong local anti-tumor immunity. 

 
  

1.2.6 Materials and Methods 

Data. All available whole exome sequencing (WXS) data as of 5/3/2018 was downloaded 

from The Cancer Genome Atlas (TCGA) database via their Genomic Data Commons (GDC) 

client. Both .bam files and auxiliary .bai files were downloaded. All available somatic mutation 

data as of 5/21/2018 was downloaded from the TCGA database in the form of TCGA project 
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mutation annotation files (MAF). Clinical data were also obtained from the GDC (downloaded on 

4/25/2017). 

Protein structure analysis. Experimental 3D X-ray protein structures for the B2M and 

HLA-A/B/C complexes were obtained from the Protein Data Bank (PDB) (14). Amino acid 

residues of each PDB structure were annotated based on their 3D location in the protein as core 

and surface according to their relative solvent accessible surface area (RSA) calculated using 

Naccess (24). Residues with RSA higher than 15 were annotated as surface and residues with RSA 

lower than 5 were annotated as core, while residues with RSA values between 5 and 15 were 

annotated as ambiguous. Residues involved in the physical interaction between B2M and HLA 

proteins are predicted using KFC2 (25) and annotated as interface. PDB residue positions were 

mapped onto the UniProt residue positions using the PDBSWS server (26). UniProt residues are 

numbered based on their position in the protein sequence of the full-length protein, starting from 

1. If multiple PDB structures were available for the same protein, we took consensus as the final 

annotation; and in the case of a tie, the residue was labeled as ambiguous. The residues without 

known 3D structure are also labeled as ambiguous. We had structures for 6 alleles of HLA-A 

protein, 15 alleles of HLA-B protein, and 3 alleles of HLA-C protein. We took consensus of 

residue annotations of different HLA alleles to annotate each HLA protein. VMD (27) is used to 

visualize protein 3D structures (Figure 1.2.2B). Exon information for HLA proteins is obtained 

from the IMGT/HLA database (v3.34; https://www.ebi.ac.uk/ipd/imgt/hla/) (28). 

HLA typing and mutation calling. HLA genotyping and mutation calling was performed 

for HLA-A, HLA-B, and HLA-C genes, which encode the human MHC-I complex. We extracted 

scripts from the Broad Institute’s Polysolver Docker container 

(https://software.broadinstitute.org/cancer/cga/polysolver_run). We verified that the majority of 
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Polysolver’s HLA calls were consistent with that of xHLA (29) and therefore used all available 

Polysolver results. B2M mutations were taken directly from the TCGA MAF files. Patients with 

somatic B2M or HLA mutations were grouped for subsequent analysis and compared to patients 

that had neither. We found that only 13 patients had both B2M and HLA mutations. 

Microsatellite instability. Microsatellite instability scores for all TCGA patients were 

obtained from Kautto et al., 2017. Patient MANTIS scores from the paper were binarized to 

microsatellite instable (MSI-H) and stable (MSS) according to the recommended MANTIS score 

threshold of 0.4 (17). 

Determining expressed mutations. We used the bam-readcount tool 

(https://github.com/genome/bam-readcount) to determine how many RNAseq reads covered a 

mutated position. To count a mutation as being expressed, we used a read count threshold of 5. 

Determining regions with CNVs. Regions affected by copy number variants were 

determined from TCGA affymetrix SNP6 data by using 0.1 thresholds as the cutoff in either 

direction. Thus, any region that has a log2 fold change larger than 0.1 or smaller than -0.1 is defined 

as a position with copy number variation (30). For Figure S1.2.7 we excluded any mutations that 

occurred in regions with copy number variation. 

Mutation burden. Mutation counts were obtained from TCGA MAF files for all patients. 

To obtain nonsynonymous counts, we filtered out mutations outside of coding regions as well as 

silent mutations and tallied the remaining mutations for each patient. We retained only expressed 

mutations, and added a pseudocount of 1 for all patients, for all mutation burden analyses. For 

cancer-type-specific analysis, patients from TCGA tumor types COAD and READ were merged 

under the name CRC (colon and rectal cancer). 
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Antigen affinity. We used the netMHCpan4.0 tool (18, 31) to obtain mutation affinity 

scores for all patient HLA alleles. To determine whether a mutation would be effectively bound as 

a neoantigen to the MHC-I complex, we binarized affinity scores: mutations with scores <= 2 we 

considered binding, and mutations with scores > 2 we considered non-binding (12, 18). We then 

took the harmonic mean of the best ranking neoantigen to calculate the Patient Harmonic-mean 

Best Rank (PHBR) score (12). To evaluate differences in fraction of binding neoantigens at various 

presentation score (PHBR-I score) cutoffs, we plotted the empirical cumulative distribution 

function (ECDF) using the median fraction of neoantigens generated from expressed mutations 

across patients. The Kolmogorov-Smirnov test was used to determine whether the distribution of 

neoantigen fractions was significantly different for each group (Figure 1.2.4A). To determine if 

the number of neoantigens was significantly different between mutated and control patients at a 

particular PHBR-I score threshold, we calculated p-values using an unpaired Mann Whitney test 

for pan-cancer comparisons (Figure 1.2.4B). To test the significance of the number of neoantigens 

between mutated and unmutated HLA alleles, we used a paired Wilcoxon test (Figure 1.2.4C, 

Figure 1.2.4F). The Kolmogorov-Smirnov, Mann Whitney, and Wilcoxon tests implemented in 

the scipy.stats Python package were used for these analyses. 

Allelic fraction analysis. For Polysolver-determined HLA mutations, we obtained the 

tumor allelic fraction (“tumor_f”) from the Mutect output files generated by Polysolver. For all 

other mutations we calculated tumor allelic fraction from tumor alternate allele reads 

(“t_alt_count”) and tumor read depth (“t_depth”) from TCGA MAF files. B2M and HLA 

mutations were further annotated according to their percentile within the ranked list of mutations 

in the tumor where they were observed. To determine if the distributions of patients with B2M and 
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HLA mutations were significantly different than patients without these mutations, we used an 

unpaired Mann Whitney statistical test from the scipy.stats Python package. 

Immune infiltration and cytotoxicity. Immune cell infiltration levels for CD8+ T cells and 

natural killer cells were obtained by running Cibersort with default parameters and without 

quantile normalization, on log2 TPM values obtained by reprocessing the TCGA RNAseq data 

through Sailfish V0.7.6 (32). Cytotoxicity was estimated as described in (20), by summing the z-

scored log2 TPM expression values of granzyme A (GZMA) and perforin (PRF1). For cancer-

type-specific analysis, patients from TCGA tumor types COAD and READ were merged under 

the name CRC (colon and rectal cancer). 

Other statistical considerations. Where appropriate, p-values were adjusted for multiple 

comparisons using the Benjamini-Hochberg method (33). 
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1.2.7 Figures 

 

 
Figure 1.2.1. Somatic mutations affecting components of the MHC-I molecule. (A) The total 
number of nonsynonymous mutations targeting the genes encoding the components of the MHC-
I complex, B2M and HLA-A, HLA-B or HLA-C proteins, across all TCGA patients. The HLA 
mutation counts were obtained via Polysolver. (B) Schematic representation of the effects of 
mutations that alter the cell surface composition of MHC-I. An HLA mutation will affect a specific 
MHC-I molecule, whereas a B2M mutation will affect all MHC-I molecules; both mutations can 
increase the mutation burden of the patient. In the case of an HLA mutation, the patient mutation 
burden should include more neoantigens with affinity for the mutated HLA allele. The MHC-I 
molecule displayed is composed of B2M (pink) and HLA-A (blue) proteins (PDB: 3bo8) 
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Figure 1.2.2. Mutational analysis of MHC-I complex. (A) Pie charts displaying percentages of 
types of mutation for the B2M protein; and for the combined HLA-A, HLA-B and HLA-C 
proteins, respectively, across all TCGA patients. (B) Distribution of nonsynonymous mutation 
counts, obtained from Polysolver, for HLA-A, HLA-B, and HLA-C proteins, across functional 
domains. The corresponding functional domains of HLA proteins are shown at the bottom. The 
UniProt sequential residue numbering scheme is used for residue numbering, which requires 
subtraction of the signal peptide (24 residues) for mapping to the IMGT/HLA residue numbering 
scheme. On the right, 3D crystal structures of MHC-I complex are displayed as B2M and HLA-A 
complex (PDB: 3bo8), as B2M and HLA-B complex (PDB: 3b3i), and as B2M and HLA-C 
complex (PDB: 4 nt6). Purple ribbons indicate B2M protein, while blue ribbons indicate the HLA 
proteins. The highlighted purple and blue residues correspond to the interface regions of B2M and 
HLA proteins, respectively. Hotspot mutations for HLA proteins (frequency > 3 for HLA-A, 
frequency > 3 for HLA-B, and frequency > 1 for HLA-C) are highlighted as green, red, tan and 
gray indicating interface, core, surface, and ambiguous residues, respectively. (C) Distribution of 
nonsynonymous mutation counts across the entire B2M protein. On the bottom of the plot, all 
amino acid residues of B2M protein are colored based on their 3D location: interface, core, surface, 
or ambiguous. 
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Figure 1.2.3. Increased mutational burden is related to mutations in MHC-
I. (A) and (C) Boxplots showing the total number of expressed nonsynonymous mutations of 
TCGA patients who acquired a mutation in their B2M protein or in one of their HLA alleles versus 
patients who did not acquire any B2M or HLA mutation, (A) for all patients, and (c) for only MSS 
patients. Sample sizes for each patient group are written under their name. (B) and (D) Boxplots 
showing total number of expressed nonsynonymous mutations for TCGA patients with or without 
B2M or HLA mutations, (C) for all patients, and (D) for only MSS patients. Patients are divided 
by tumor type and only the tumor types with at least 5 mutated patients are shown. P-values are 
adjusted for multiple comparisons using the Benjamini–Hochberg procedure. Sample sizes for 
each patient group are written under the tissue name. 
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Figure 1.2.4. Analysis of binding neoantigens to patient HLA alleles. (A) Empirical cumulative 
distribution function showing the proportion of expressed missense and indel mutations labeled as 
binding neoantigens at different PHBR-I score cutoffs in MSS patients. (B) Boxplots comparing 
the fraction of binding neoantigens in tumors with no B2M or HLA mutation (teal) versus patients 
with a B2M mutation (yellow) or HLA mutation (purple). A PHBR-I score cutoff of 2 was used 
to designate a binding neoantigen for this comparison. (C) Total number of neoantigens that bind 
to a patient’s mutated HLA allele versus the average number of neoantigens across the unmutated 
HLA alleles across all cancer types for MSS patients. A red line indicates that there are more 
neoantigens with binding affinity to the mutated HLA allele than the average across the unmutated 
HLA alleles; and a blue line depicts the opposite trend. (D) Allelic fraction percentile distribution 
for expressed mutations in MSS patients with B2M and HLA mutations. We used the Kolmogorov-
Smirnov statistic to determine whether the two distributions were significantly different. (E) 
Comparison of the number of expressed neoantigens with binding affinity to the patient-specific 
mutated allele between the low AF percentile (< 40%) and the high AF percentile (> 60%) HLA 
mutated patients. Patients with MSI and with mutations in both B2M and HLA genes were 
excluded. (F) Comparison of the total number of neoantigens that bind to a patient-specific 
mutated HLA allele versus the average number of neoantigens with binding affinity to the five 
unmutated HLA alleles in patients with high allelic fraction percentile HLA mutations. 
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Figure 1.2.5. Increased NK, CD8+ T-cell and cytotoxicity levels are associated with mutations 
in MHC-I. (A) and (C) and (E) Boxplots comparing MSS TCGA patients with or without B2M 
or HLA mutations, in terms of their (A) CD8+ T cell levels, (c) natural killer (NK) cell levels, and 
(E) cytotoxicity scores. Sample sizes for each patient group are written under their 
name. B and D and F) Boxplots comparing MSS TCGA patients with or without B2M or HLA 
mutations, in terms of their (B) CD8+ T cell levels, (D) natural killer (NK) cell levels, and (F) 
cytotoxicity scores. Patients are divided by tumor type and only the tumor types with at least 5 
mutated patients are shown. P-values are adjusted for multiple comparisons. Sample sizes for each 
patient group are written under the tissue name. 
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1.2.8 Supplemental Data, Tables and Figures 

 
Figure S1.2.1 MHC-I complex 3D structure. 3D crystal structure of MHC-I complex is 
displayed as B2M/HLA-A complex (PDB: 3bo8). Interface (blue and violet) and core (green and 
orange) regions of B2M and HLA-A proteins are highlighted, respectively. Transparent blue and 
violet regions correspond to the surface regions of B2M and HLA-A proteins, respectively. 
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Figure S1.2.2 B2M interface residue positions for HLA alleles. Residues on B2M that interact 
with HLA-A, HLA-B, HLA-C proteins are highlighted black. 
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Figure S1.2.3. Mutation burden in CCLE. Boxplots showing the total number of 
nonsynonymous mutations for CCLE cell lines who acquired a B2M or HLA versus cell lines that 
did not acquire any B2M or HLA mutation. Sample sizes for each group are written under their 
name. 
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Figure S1.2.4. Total number of binding neoantigens to patient HLA alleles. (A) Distribution 
of median total counts of binding neoantigens at different PHBR-I score cutoffs for MSS patients. 
(B) Boxplots comparing the number of neoantigens in MSS patients with no B2M or HLA 
mutation (teal) versus MSS patients with a B2M mutation (yellow) or an HLA mutation (purple). 
A PHBR-I score cutoff of 2 was used to designate a binding neoantigen for this comparison.
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Figure S1.2.5. Allelic fraction percentile distribution for patients with B2M and HLA 
mutations accounting for aneuploidy. Allelic fraction percentile distribution for expressed 
mutations in MSS patients with B2M and HLA mutations, excluding all mutations occurring in 
regions affected by CNVs. Patients that have both B2M and HLA mutations are excluded. 
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1.3.1 Foreword 

 Up until this point, my research has largely focused on the role of the MHC in cancer. 

However, as gatekeepers of adaptive immunity, MHC class I and II are relevant in many other 

diseases and disorders, including infection and autoimmunity. MHC-I and MHC-II, though MHC-

II is usually only present on professional antigen-presenting cells such as macrophages, B cells, 

and dendritic cells, also influence autoimmune susceptibility (1) and infection. Historically, certain 

alleles have been identified as protective or predisposing against autoimmune disorders including 

Type-1 diabetes, Rheumatoid arthritis, Celiac disease, Ankylosing spondylitis, and Multiple 

sclerosis (2, 3). This protection or predisposition stems from clonal elimination or retention of T 

cells during thymic development (4). MHC presentation of antigen during thymic development is 

required for T cell selection (5); T cells that recognize self-peptides are clonally eliminated, leaving 

behind clones that should be able to recognize a multitude of foreign antigen if presented via MHC. 

In infection, MHC-I can present intracellular foreign peptides for recognition and 

elimination by CD8+ T cells (6), while MHC-II presents foreign peptides obtained via mechanisms 

ranging from macropinocytosis, endocytosis, phagocytosis and autophagy (7) to CD4+ T cells. 

Stimulated CD4+ T cells can help activate macrophages, CD8+ T cells, and B cells to fight 

infection (8, 9). Despite the fact that the majority of presented foreign peptides on MHC-I are 

immunogenic (10), MHC presentation can be a potential bottleneck for adaptive immunity. Like 

some tumor cells, viruses can downregulate MHC-I cell surface expression to avoid immune 

detection (11) in addition to targeting along the antigen presentation pathway. Here, I describe 

another potential mechanism of immune evasion by SARS-CoV-2, where overall poor MHC-II 

presentation of the critical ACE2 receptor binding motif (RBM) may affect subsequent CD4+ T 

cell stimulation and maturation of neutralizing antibody generating B cells. 
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1.3.2 Abstract 

 SARS-CoV-2 antibodies develop within two weeks of infection, but wane relatively 

rapidly post-infection, raising concerns about whether antibody responses will provide protection 

upon re-exposure. Here we revisit T-B cooperation as a prerequisite for effective and durable 

neutralizing antibody responses centered on a mutationally constrained RBM B cell epitope. T-B 

cooperation requires co-processing of B and T cell epitopes by the same B cell and is subject to 

MHC-II restriction. We evaluated MHC-II constraints relevant to the neutralizing antibody 

response to a mutationally-constrained B cell epitope in the receptor binding motif (RBM) of the 

spike protein. Examining common MHC-II alleles, we found that peptides surrounding this key B 

cell epitope are predicted to bind poorly, suggesting a lack MHC-II support in T-B cooperation, 

impacting generation of high-potency neutralizing antibodies in the general population. 

Additionally, we found that multiple microbial peptides had potential for RBM cross-reactivity, 

supporting previous exposures as a possible source of T cell memory. 

 

1.3.3 Introduction 

Upon infection with SARS-CoV-2 the individual undergoes seroconversion. In mildly 

symptomatic patients, seroconversion occurs between day 7 and 14, includes IgM and IgG, and 

outlasts virus detection with generally higher IgG levels in symptomatic than asymptomatic groups 

in the early convalescent phase (12). Alarmingly, the IgG levels in both asymptomatic and 

symptomatic patients decline during the early convalescent phase, with a median decrease of ~75% 

within 2–3 months after infection (13). This suggests that the systemic antibody response which 

follows natural infection with SARS-CoV-2 is short-lived, with the possibility of no residual 

immunity after 6-12 months (14) affecting primarily neutralizing antibodies in plasma (15). Early 
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activated B cells produce antibodies in quasi-germline configuration and are likely ‘innate-like B 

cells’ (16–19) that have not undergone somatic hypermutation and maturation. Consistent with the 

above argument, a lack of germinal center formation but robust activation of non-germinal type B 

cells has been reported in cases of severe COVID-19 infection, impairing production of long-lived 

memory or high affinity B cells (20). 

The generation of an antibody response requires cooperation between a B cell producing 

specific antibody molecules and a CD4 T cell (helper cell) activated by an epitope on the same 

antigen as that recognized by the B cell (T-B cooperation) (21). This reaction occurs in the 

germinal center (22, 23). Excluded from this rule are responses against carbohydrates and antigens 

with repeating motifs that alone cross-link the B cell antigen receptor leading to B cell activation 

(24). Discovered over 50 years ago (25–27), it also became apparent that T-B cooperation is 

restricted by Major Histocompatibility Complex class II (MHC-II) molecules (28–30). T-B 

cooperation plays a key role in the facilitation and strength of the antibody response (26, 31) and 

the size of the antibody response is proportional to the number of Th cells activated by the B cell 

during T-B cooperation (29, 30, 32). The importance of T cell help during the activation of antigen 

specific B cells to protein antigens driving B cell selection is emphasized by recent experiments 

where the injection of a conjugate of antigen (OVA) linked with an anti-DEC205 antibody induced 

a greater proliferation of DEC205+ relative to DEC205- B cells consistent with a T helper effect 

on B cell activation (33). 

T-B cooperation requires that the epitopes recognized by the B and T cell be on the same 

portion of the antigen (27, 34, 35) leading to a model requiring the contextual internalization and 

co-processing of T and B cell epitopes (21) which is consistent with the principle of linked (e.g. 

associative) recognition of antigen (36). Studies in vitro using human T and B lymphocytes showed 
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that an antigen specific B cell can present antigen to CD4 T cells even if antigen is present at very 

low concentration (10-11 – 10-12 M) (37). Presentation of antigen by the B cell also facilitates the 

cooperation between CD4 T cells of different specificities resulting in enhanced generation of 

memory CD4 T cells (38). However, T-B cooperation is not the only form of cooperative 

interaction among lymphocytes as cooperation exists between CD4 T and CD8 T cells (39) and 

between two CD4 T cells responding to distinct epitopes on the same antigen (40). 

A model based on coprocessing of T and B epitopes also led to the suggestion that 

preferential T-B pairing could be based on topological proximity (41–45) so that during BCR-

mediated internalization the T cell epitope is protected by the paratope of the BCR. Indeed, a more 

recent study showed that not only is CD4 T cell help a limiting factor in the development of 

antibodies to smallpox (vaccinia virus), but that there also exists a deterministic epitope linkage of 

specificities in T-B cooperation against this viral pathogen (46). Collectively, it appears that T-B 

pairing and MHC-II restriction are key events in the selection of the antibody response to 

pathogens and that operationally T-B cooperation and MHC-II restriction are key events in the 

generation of an adaptive antibody response, suggesting that lack of or defective T-B preferential 

pairing could result in an antibody response that is suboptimal, short-lived, or both. 

The relevance of T-B cooperation in protective antiviral responses has been documented 

in numerous systems. In the influenza A virus (PR8) system it was shown that while Th1 CD4 T 

cell responses on their own are ineffective at promoting recovery from infection, antibodies 

generated through T-B cooperation were indispensable in the protective response against the virus 

(47). In a different influenza A strain, it was shown that T-B cooperation and CD4 T cells represent 

a limiting factor in the kinetics and early magnitude of the primary B cell response to virus 

challenge and provide help in a preferential way (i.e. intra-molecular but nor inter-molecular) (48). 
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Additionally, CD40-CD40L (costimulatory molecules found on B cells and CD4 T cells, 

respectively) interaction is required for the generation of antibody responses, isotype switching 

and memory responses in non-viral model systems (49). In LCMV (lymphocytic choriomeningitis 

virus) and VSV (vesicular stomatitis virus) abrogation of CD40-CD40L interaction prevented T-

B cooperation and thus inhibited antiviral protection (50). Interestingly, this study also showed 

that the activation of CD4 T cells (e.g., inflammatory CD4 T cells) not associated with the 

activation of B cells was not compromised (50). These data demonstrate the relevance of T-B 

cooperation in the antibody response in protection against viral infection. 

In SARS-CoV-2, neutralizing antibodies (NAbs) are a key defense mechanism against 

infection and transmission. NAbs generated by single memory B cell VH/VL cloning from 

convalescent COVID-19 patients have been extremely useful in defining the fine epitope 

specificity of the antibody response in COVID-19 individuals. At present, SARS-CoV-2 NAbs 

can be distinguished into three large categories. 1) Repurposed antibodies, that is, NAbs 

discovered and characterized in the context of SARS-CoV and subsequently found to neutralize 

SARS-CoV-2 via cross-reactivity. These antibodies map away from the receptor binding domain 

(RBD) of the spike protein (51–53). 2) Non-RBD neutralizing antibodies discovered in SARS-

CoV-2 patients whose paratope is specific for sites outside the RBD (54). 3) RBD antibodies, 

including NAbs, derived from SARS-CoV-2 patients that map to a restricted site in the RBD (18, 

55–60). Cryo-EM of this third antibody category shows that they bind to residues in or around the 

four amino acids Phe-Asp-Cys-Tyr (FNCY) in the receptor binding motif (RBM) (residues 437-

508) which is inside the larger RBD (residues 319-541) at the virus:ACE2 interface (56). Although 

the RBD has been shown to be an immunodominant target of serum antibodies in COVID-19 

patients (61), high potency NAbs are directed against a conserved portion of the RBM on or around 
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the FNCY patch, a sequence only found in the RBD of SARS-CoV-2 and not in other 

coronaviruses. NAbs that make contact with the FNCY patch outperform other NAbs that do not 

in competition binding assays, highlighting the importance of the region in neutralizing ACE2 

binding (54). Indeed while the RBD is mutationally tolerant, the RBM is constrained to the wild-

type amino acids (62), implying that the B cell epitope included in this region of the virus:ACE2 

interface is resistant to antigenic drift. Thus, we may refer to this site as a key RBM B cell epitope 

in the generation of potent NAbs. 

Antibody responses against SARS-CoV-2 depend on CD4 T cell help. Spike-specific CD4 

T cell responses have been found to correlate with the magnitude of the anti-RBD IgG response 

whereas non-spike CD4 T cell responses do not(63). However, in unexposed patients, spike-

specific CD4 T cells reactive with MHC-II peptides proximal to the central B cell epitope represent 

a minority (~10%) of the total CD4 T cell responses, which are dominated by responses against 

either the distal portion of the spike protein or other structural antigens (64). Surprisingly, these 

CD4 T cell responses are largely cross-reactive and originate from previous coronavirus infections 

(65). 

As mounting evidence suggests that the NAb response in COVID-19 patients is relatively 

short-lived, we decided to test the hypothesis that associative recognition of a key RBM B cell 

epitope (in and around the FNCY patch) and proximal MHC-II-restricted epitopes may be 

defective with detrimental effects on preferential T-B pairing. Specifically, we hypothesize that 

the inability to present SARS-CoV-2 peptide sequences near putative B cell epitopes may impair 

memory cell generation and consequently reduce the strength and longevity of overall and 

neutralizing antibody responses. To quantify the potential effects of T-B cooperation in vivo, we 

analyzed all 15mer putative MHC-II epitopes (+/- 50 amino acid residues) relative to the key RBM 
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B cell epitope for coverage by all known 5,620 human MHC-II alleles and predicted binding 

affinity. The analysis shows that there exists in general less availability of effective T cell epitopes 

in close proximity to the key RBM B cell epitope in the human population. 

 

1.3.4 Results 

Topology of a key RBM B cell epitope. Within the 222 amino acid long RBD of the spike 

protein (residues 319-541), the RBM (residues 437-508) is the portion of the spike protein that 

establishes contact with the ACE2 receptor (Figure 1.3.1A). The contact residues span a relatively 

large surface involving approximately 17 residues (56), among them residues F486, N487, Y489 

form a loop, which we term the FNCY patch, which is surface exposed and protrudes up towards 

the ACE2 receptor from the bulge of the RBD (Figure 1.3.1B-C). F486 forms hydrophobic 

interactions with three ACE2 residues (L79, M82, W83). N487 forms hydrogen bonds with Q24 

and W83, and Y489 is linked with K31 via a hydrophobic interaction. This makes the amino acid 

residues in or around the FNCY patch a logical B cell epitope target for antibodies blocking the 

virus:receptor interaction. In addition, these core residues are mutationally constrained by the 

ACE2 contact surface (62). Not surprisingly, a set of recently reported potently neutralizing 

antibodies generated by single B cell VH/VL cloning from convalescent COVID-19 patients all 

bear paratopes that include the FNCY patch in their recognition site (54, 58–60, 66) (Figure 

1.3.1D). While other residues (Q493, N501, and Y505) are also shared between ACE2 and the 

paratope of these antibodies, they are not as protruding and are on a β-sheet unlike the FNCY patch 

which is organized in a short loop as a result of the C480:C488 disulfide bond. Thus, blockade of 

the RBM:ACE2 interaction (neutralization) depends at least in part on a B cell epitope in the RBM 
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that is structurally and functionally critical to the interaction, virus internalization, and cell 

infectivity. 

Prediction of MHC-II affinity for 15mer peptides proximal to the RBM B cell epitope. In 

the T-B cooperation model, B cell activation and production of NAbs is dependent on CD4 T cell 

responses to MHC-II restricted peptides. To test the hypothesis that the generation of NAbs against 

a mutationally constrained B cell epitope in the RBM reflects the efficiency of processing and 

presentation of MHC-II peptides proximal to the FNCY patch, we evaluated the landscape of 

MHC-II peptide restriction across the entire SARS-CoV-2 spike protein with respect to common 

MHC-II alleles in the human population. To assess the potential for effective restriction by MHC-

II molecules in a reasonable proportion of the population, we devised a position-based score that 

assigns each amino acid residue the median affinity of the best overlapping peptide, where median 

affinity is calculated across the 1911 most common MHC-II alleles (Figure 1.3.2A), which was 

highly correlated with scores across all 5620 MHC-II alleles (Figure 1.3.2B; Pearson rho=0.99, 

p<2.2e-308). While a number of sites along the spike protein are predicted to generate high affinity 

peptides for most common MHC-II alleles, the region around the FNCY patch was depleted for 

generally effective binders (Figure 1.3.2C, Fisher’s exact OR=0.21, p=0.015, Methods). 

Interestingly, the RBM region containing the FNCY patch was free of glycans that could 

potentially mask the epitope (Figure 1.3.2D). We further evaluated the distributions of binding 

affinities for the 20 best-ranked peptides across all sites in the spike protein (Figure 1.3.2E), and 

in comparison, the distributions for the best 20 peptides overlapping positions within +/- 50 

residues of the FNCY patch (Figure 1.3.2F). In the best case, less than half of the considered 

MHC-II alleles bound a shared peptide close to the FNCY patch, whereas at other sites there were 

multiple peptides that could be bound by nearly all of the MHC-II alleles (Figure 1.3.2E). This 
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suggested overall less availability of effective T cell epitopes in close proximity to the FNCY B 

cell epitope, which could limit the availability of T cell help during an epitope-specific T-B 

cooperative interaction in the germinal center. 

To further assess whether population variation in MHC-II alleles might contribute to 

heterogeneity in potential to generate neutralizing antibodies, we also evaluated the potential of 

MHC-II supertypes to restrict peptides from neighboring the FNCY patch. Greenbaum et al. 

previously defined 7 supertypes that group MHC-II alleles based on shared binding repertoire. 

These 7 supertypes account for between 46%-77% of haplotypes and cover over 98% of 

individuals when all four loci are considered together (67). We revisited our analysis of peptide 

restriction proximal to the FNCY patch treating each supertype separately. There was considerable 

variability in potential to effectively present FNCY patch proximal sequences across supertypes 

(Figure 1.3.3A-B, Χ2=175, p=3.75e-35). Only 3 supertypes (DP2, main DP and DR4) commonly 

presented peptides overlapping the FNCY patch (Figure 1.3.3B). We were able to obtain 

population allele frequencies for four populations from the Be The Match registry (68) and Du et 

al. (69). These data show that DR4 is relatively infrequent across the populations evaluated, 

whereas main DR, main DP, and DP2 are more common (Figure 1.3.3C), and thus could be more 

important for MHC-II restriction supportive of neutralizing antibodies. While there were some 

large population-specific differences in main DP and DP2 supertype frequencies, these frequency 

estimates are based on a limited population sample and may provide only a rough approximation. 

In general, DP and DR haplotypes were able to restrict more FNCY patch proximal sequences 

(Figure 1.3.3D).  

Cross-reactivity to a non-coronavirus MHC-II binding peptide as a potential driver of T 

cell responses helping antibody response to the RBM B cell epitope. Interestingly, Mateus et al. 
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reported pre-existing CD4 T cell responses to peptides derived from the spike protein using T cells 

from unexposed individuals, suggesting previous exposures to other human coronaviruses could 

potentially generate protective immunity toward SARS-CoV-2. Indeed, regions of higher 

coronavirus homology were associated with more T cell responses in their data (65). This 

represents the most comprehensive interrogation of the spike protein with response to CD4 T cell 

responses to date. They screened all 15mers of the spike protein in pooled format and further 

evaluated 66 predicted MHC-II peptides that generated CD4 T cell responses. Visualizing the 

landscape of the CD4 T cell responses described in their work by percent positive response (Figure 

1.3.4A) or spot forming cells (Figure 1.3.4B), we noted relatively few responses proximal to the 

FNCY patch in the RBM. Accordingly, few other coronaviruses had limited homology to the 

FNCY region, and none fully included the FNCY patch (Figure 1.3.5A).  

A notable exception in Mateus’ results is peptide 486FNCYFPLQSYGFQPT500, which 

was reported to induce a CD4 T cell response in an unexposed individual. In this case, the peptide 

was restricted by HLA-DRB1*0101 or HLA-DQA1*0101/DQB1*0501. We found that the 

peptide sequence had greater in silico predicted affinity to HLA-DRB1*0101. To explain the 

conundrum, we blasted this peptide against the “refseq_protein” database excluding SARS-CoV-

2 (Methods). Surprisingly, the sequences with the best homology for this query were not from 

coronaviruses but rather from common pathogens, first among them parasites of the 

Cryptosporidium genus of apicomplexan parasitic alveolates. These sequences included conserved 

anchor positions for the HLA-DRB*0101 allele making it plausible that a prior exposure could 

account for the formation of a memory CD4 T cell response (Figure 1.3.5B-C). To further assess 

the potential for other prior exposures in generating immune memory for sequences proximal to 

the FNCY patch we blasted all 15mers within +/-30 amino acids of the FNCY patch and filtered 
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the resulting sequences based on restriction by consensus MHC-II supertypes (67). We found 

peptides associated with multiple microbial organisms that may meet the criteria to potentially 

generate CD4 T cell memory relevant to the RBM of SARS-CoV-2 (Figure 1.3.5D). 

  

1.3.5 Discussion 

SARS-CoV-2 uses the RBD of the spike protein to bind to the ACE2 receptor on target 

cells. The actual contact with ACE2 is mediated by a discrete number of amino acids that have 

been visualized by cryo-EM (56, 70). Although several SARS-related coronaviruses share 75% 

homology and interact with ACE2 on target cells (71, 72) the RBM in SARS-CoV-2 is unique to 

this virus. In vitro binding measurements show that SARS-CoV-2 RBD binds to ACE2 with an 

affinity in the low nanomolar range (73). Mutations in this motif could be detrimental to the virus’s 

ability to infect ACE2 positive human cells. Since the RBD is an immunodominant site in the 

antibody response in humans (61) it is not surprising that the paratope of some antibodies isolated 

from convalescent individuals via single B cell VH/VL cloning, and selected on the basis of high 

neutralization potency, all seem to bind a surface encompassing the FNCY patch in the RBM (18, 

19, 55, 57–60). Arguably, this motif corresponds to a relevant B cell epitope in the spike protein 

of SARS-CoV-2 and is a logical target of potent neutralizing antibodies. 

Although antibodies directed to this site have been isolated by different groups, little is 

known about their contribution to the pool of antibodies in serum of SARS-CoV-2 infected 

individuals, but evidence suggests they are likely to be rare. In one study they were found to 

represent a subdominant fraction of the anti-RBD response (60) while the estimated frequency of 

antigen-specific B cells ranges from 0.07 to 0.005% of all the total B cells in COVID-19 

convalescent individuals (74). In a second study, the identification of two ultra-potent NAbs 
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having a paratope involving the FNCY patch required screening of 800 clones from twelve 

individuals (19). This suggests that a potent NAb response to a mutationally constrained RBM 

epitope is a rare component of the total anti-virus response consistent, with the observation that 

there is no correlation between RBM site-specific neutralizing antibodies and serum half-maximal 

neutralization titer (NT50) (74). Here we show that the core RBM B cell epitope is apparently 

uncoupled from preferential T-B pairing, a prerequisite for a coordinated activation of B cells 

against the pathogen. We analyzed MHC-II binding of 15mer peptides in the spike protein 

upstream (-50 aa) or downstream (+50 aa) of the central RBM B cell epitope and found both low 

coverage by 1911 common MHC-II alleles and a depletion of binding 15mers proximal to the 

FNCY patch versus other exposed areas on the spike protein. This could be due to the fact that a 

sizeable proportion (40%) of CD4 T cells responding to the spike protein are memory responses 

found in SARS-CoV-2 unexposed individuals (63, 75) or other structural protein of SARS-CoV-

2 such as the N protein (64). Thus, it is possible that these conserved responses are used as a decoy 

mechanism to polarize the response away from the RBM. However, this does not rule out the 

contribution of a bias in frequency of specific B cells in the available repertoire. 

Corroboration to our hypothesis also comes from Mateus et al. (65) who tested sixty-six 

15mer peptides of the spike protein in SARS-CoV-2 unexposed individuals and found that CD4 T 

cell responses against this narrow RBM site account for only 2/110 (1.8%) of the total CD4 T cell 

response to 15mer peptides of the spike protein. Surprisingly, a CD4 T cell response against 

peptide FNCYFPLQSYGFQPT was by CD4 T cells of an unexposed individual. Since this peptide 

has low homology with previous human coronaviruses, we reasoned that this could either represent 

a case of TCR cross-reactivity since a single TCR can engage large numbers of unique 

MHC/peptide combinations without requiring degeneracy in their recognition (76, 77). 
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Remarkably, however, a BLAST analysis revealed a 10 amino acid sequence match with proteins 

from pathogens including those from the Cryptosporidium genus, with identity in binding motif 

and anchor residues (agretope) for the restricting MHC-II allele strongly suggesting peptide cross-

reactivity. Cryptosporidium hominis is a parasite that causes watery diarrhea that can last up to 3 

weeks in immunocompetent patients (78). Additional possibilities for cross-reactivity to the RBM, 

albeit of a lesser stringency, involve antigens from Micromonospora, Pseudomonas, Blastococcus, 

Lactobacillus, and Bacteroides (Figure 1.3.5D). Thus, it appears as if memory CD4 T cells 

reactive with peptides in the RBM may reflect the immunological history of the individual that, as 

evidenced by this case, can be unrelated to infection by other coronaviruses. Interestingly, the great 

majority (64-88%) of COVID-19 positive individuals in homeless shelters in Los Angeles and 

Boston were found to be asymptomatic (79). This suggests that the status of the immune system, 

which itself reflects past antigenic exposure, may be a determining factor in the generation of a 

protective immune response after SARS-CoV-2 infection. 

The findings reported herein have considerable implications for natural immunity to 

SARS-CoV-2. The fact that there seems to be an overall suboptimal T-B preferential pairing 

suggests that B cells that respond to the RBM B cell epitope may receive inadequate T cell help. 

This is consistent with the observation that in general potent neutralizing antibodies to the RBM 

undergo very limited somatic mutation (19, 57) and are by and large in quasi-germline 

configuration (80). Since T cell help is also necessary to initiate somatic hypermutation in B cell 

through CD40 or CD38 signaling in the germinal center (81), it follows that one important 

implication of our study is that defective T-B pairing may negatively influence the normal process 

of germinal center maturation of the B cell response in response to SARS-CoV-2 infection in a 

critical way. 
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Which antigens can generate T cell responses depends on the binding specificities of MHC-

II molecules, which are highly polymorphic in the human population. We noted a general trend 

for MHC-II alleles to less effectively present peptides from the RBM region, but also observed 

some variability across MHC-II supertypes. The main DP and DP2 haplotypes were both common 

and had the highest potential to present peptides, suggesting that most individuals should carry at 

least one allele capable of presenting peptides in this region. Which of the two DP haplotypes was 

more common varied by ancestral population, thus it is possible that differences in the haplotypes 

could translate to differences in T-B cooperativity levels within groups, though binding affinities 

for epitopes near the FNCY patch were similar for both. DQ and DR supertypes were less able to 

present peptides near FNCY, with the exception of DR4, which is among the less common 

supertypes. Importantly, our analysis was limited to predicted affinity of peptides to MHC-II, and 

other characteristics such as expression levels, stability or differences in interactions with 

molecular chaperones likely also contribute to whether FNCY proximal peptides are available to 

support T-B cooperation (82). 

The present study assesses the probability of SARS-CoV-2 peptides of the Spike protein 

to bind and be presented by MHC-II molecules. Our study is limited by the following: results are 

an estimate based on an algorithm that encompasses many biophysical variables for MHC-II 

presentation but certainly not all. In addition, while we believe the epitope containing the FNCY 

patch is promising for inducing a protective neutralizing response, it is not the sole determinant of 

a protective antibody response to SARS-CoV-2; as neutralizing antibodies against other portions 

of the spike and other non-structural proteins have been reported (52, 53, 83–86). 

In light of our findings, it can be predicted that, in general, a specific RBM antibody 

response may be short-lived and that residual immunity from a primary infection may not be 
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sufficient to prevent reinfection after 6-9 months. Sporadic cases of re-infection have been reported 

by the media in Hong Kong and Nevada (87). A third case has been reported in a care-home 

resident who after the second infection produced only low levels of antibodies (88). Finally, silent 

re-infections in young workers in a COVID-19 ward who tested positive for the new coronavirus 

and became reinfected several months later with no symptoms in either instance have been reported 

(89). It is tempting to speculate that waning antibody levels or a poorly developed specific NAb 

antibody response to SARS-CoV-2 can potentially put people at risk of reinfection. Other factors 

to consider are a bias in the available B cell repertoire in the population and the extent to which a 

defective T-B cooperation influences the longevity of terminally differentiated plasma cells in the 

bone marrow (90). 

In summary, we provide evidence that MHC-II constrains the CD4 T cell response for 

epitopes that are best positioned to facilitate T-B pairing in generating and sustaining a potent 

neutralizing antibody response against a mutationally constrained RBM B cell epitope. 

Furthermore, we show that the immunological history of the individual, not necessarily related to 

infection by other coronaviruses, may confer immunologic advantage. Finally, these findings may 

have implications for the quality and persistence of a protective, neutralizing antibody response to 

RBM induced by current SARS-CoV-2 vaccines. 
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1.3.6. Materials and Methods 

Affinity analysis. NetMHCIIpan version 4.0 was used to predict peptide-MHC-II affinity 

(91) for generated 15mers along the SARS-CoV-2 spike protein. 

Spike protein analyses. SARS-CoV-2 spike protein sequence and protein regions were 

obtained from https://www. uniprot.org/uniprot/P0DTC2. Glycan data were obtained from (92) 

and true-positive sites were aggregated across 3 replicates. To assess depletion of effective binders 

near the FNCY patch, we performed a Fisher’s exact test for binding (median affinity across 

common alleles <10) versus proximity (+/- 50 amino acids) to FNCY for positions free of glycans. 

We excluded positions within 10 amino acids of a glycan using the data obtained from Watanabe 

et al. and added a pseudocount of 1. 

The SARS1, MERS1, HCoV-229E, HCoV-NL63, HCoV-OC43, and HCoV-HKU1 spike 

protein sequences were also downloaded from UniProt (P59594, K9N5Q8, P15423, Q6Q1S2, 

P36334, Q0ZME7, respectively). Multiple sequence alignment was performed on the EMBL-EBI 

Clustal Omega web server using default parameters (93). 

Structure analysis. The 6M0J 3D X-ray structure for the protein complex containing the 

SARS-CoV-2 spike protein RBD (P0DTC2) interaction with ACE2 (Q9BYF1) from (56). The 

structure figures were prepared using VMD (94). 

Supertype analysis. Supertypes were obtained from (67). All alpha/beta combinations 

spanning any of these types were included, resulting in 279 alleles. US supertype frequencies for 

alleles in DRB1 and DQB1 were obtained from the Be the Match registry (68), US frequencies for 

alleles in DPB1 were obtained from (69) as DPB1 was not available from the Be the Match 

registry. Available allele frequencies within each supertype were summed for Fig 3C. 



 98 

Motif analysis. All 13-20mer peptides adhering to the following parameters were 

downloaded from the IEDB (95): MHC-II assay, positive only, DRB1*01:01 allele, linear 

peptides; and any peptides with post-translational modifications or noncanonical amino acids were 

removed. The remaining 10,117 peptides were input into Gibbs cluster v2.0 using the default 

MHC-II ligand parameters. 

BLAST analysis. 15mers were generated along a sliding window +/-30 amino acids from 

the FNCY patch start and end (455–518, 0-index) and input into NCBI BLAST (96) using the 

‘refseq_protein’ database and excluding SARS-CoV-2 (taxid:2697049). Identified peptides were 

then evaluated for binding affinity and any peptide binding to at least one allele was retained. 
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1.3.7 Figures 

 

 

 
Figure 1.3.1. Visualization of the FNCY core of the RBM B cell epitope on the SARS-CoV-2 
spike protein RBD. (A) 3D structure of the SARS-CoV-2 spike protein RBD (white) binding the 
ACE2 receptor (green) (PDB: 6M0J) with contact residues highlighted in blue and the FNCY patch 
highlighted in red. (B-C) Spike protein RBD with ACE2 contact residues and FNCY patch residues 
labeled in two orientations (front and back). (D) Heatmap of neutralizing antibody contact residues 
(purple) on the spike protein RBM region (positions 437-508). Black dots indicate ACE2 contact 
residues and the FNCY patch is highlighted in red.  
  



 100 

 
Figure 1.3.2. Landscape of MHC-II binding affinity across spike protein 2D sequence. (A) 
Overview of the position affinity score. (B) Scatterplot showing position affinity scores estimated 
using only common (>10% frequency) MHC-II alleles (x-axis) versus across all MHC-II alleles 
(y-axis). (C) Lineplot showing the position affinity scores across common MHC-II alleles 
(Methods). Annotated domains from UniProt are highlighted. (D) Heatmap showing amino acid 
positions that are glycosylated(57). (E) Barplots (top) and boxplots (bottom) describing the 
fraction of binding MHC-II alleles and corresponding affinity percentile rank distributions 
respectively for the top 20 peptides with the highest fraction of common binding alleles. The 
binding threshold of 10 is shown as a dotted line, with values less than 10 indicating binding. 
Colors correspond to the regions listed in C. (F) Barplots (top) and boxplots (bottom) describing 
the fraction of binding MHC-II alleles and corresponding affinity percentile rank distributions 
respectively for the top 20 peptides within +/-50 amino acids of the FNCY B cell epitope. Colors 
correspond to the regions listed in C. 
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Figure 1.3.3. Population variation affecting availability of FNCY proximal T cell epitopes. 
(A) Barplot showing the aggregated supertype position affinity scores for each position +/- 50 
amino acids from the FNCY patch (grey zone). (B) Scatterplot showing the specific supertype 
position scores for each position +/- 50 amino acids from the FNCY patch (grey zone). The binding 
threshold of 10 is shown as a dashed blue line, with points below the threshold indicating binding. 
(C) Barplot showing United States population frequencies, summed across the available alleles in 
each supertype. (D) Fraction of positions falling below the binding threshold within the region of 
interest for each supertype. 
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Figure 1.3.4. Immunological history of relevance to SARS-CoV-2. (A) Barplot showing the 
percentage of positive responses toward SARS-CoV-2 peptides from unexposed individuals. (B) 
Barplot showing the number of spot-forming cells (SFC) for tested SARS-CoV-2 peptides against 
PBMCs from unexposed individuals. Data from Table S1 from Mateus et al. 
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Figure 1.3.5. Learned immunity to other targets that could support T cell responses to SARS-
CoV-2. (A) Multiple sequence alignment between SARS-CoV-2, SARS1, MERS, and other 
human coronaviruses, focusing on the region surrounding the FNCY B cell epitope. (B) SeqLogo 
plot obtained by clustering IEDB peptides reported to bind to DRB1*01:01. (C) Top results after 
blasting the FNCYFPLQSYGFQPT peptide against all reference proteins. (D) Barplot describing 
best peptide affinities across MHC-II alleles of the top 35 unique organisms with one or more 
peptides matching a peptide with high similarity to 15mers +/-30aa from the FNCY binding 
epitope based on BLAST analysis. The closer to 0, the greater the binding potential. 
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CHAPTER 2: Sex and age can influence tumor-immune interaction 
 

2.1 Foreword 

It is well established that sex is a biological variable that affects both innate and adaptive 

immune responses across multiple species (1–4). Age in and of itself results in a decline in immune 

function (5), and can also modify sex differences in immune responses (1). Differences in sex 

(including reproductive status) and age are associated with varying susceptibility and incidence of 

autoimmunity, infection, and cancer. Generally, females tend to have higher rates of autoimmune 

diseases such as Graves disease, Hashimoto thyroiditis, Multiple sclerosis, Rheumatoid arthritis, 

Lupus, and Type-1 diabetes while males have nearly a two-fold greater mortality rate from bladder, 

larynx, esophagus, and lung cancer (1, 6, 7). Investigations into the mechanistic root of these 

differences highlighted sex-chromosome-linked immune genes (8), Y-chromosome-linked tumor 

suppressors (9), and tumor suppressors that escape X-inactivation (10). There are also differential 

concentrations of sex steroids in men and women, which bind to immune cells and can influence 

signalling pathways as well as cytokine production (11, 12). Furthermore, males accumulate 

somatic mutations earlier than females, with earlier risk of developing truncal mutations (13, 14). 

Despite these facts, sex and age are generally not considered in cancer care and treatment. 

The growing promise of immunotherapy has resulted in an increase in immune checkpoint 

blockade clinical trials for multiple tumor types (15). Existing biomarkers are poor at predicting 

response to treatment, and researchers are attempting to pinpoint what other variables are 

important for long-term clinical benefit. Earlier meta-analyses of immunotherapy studies provide 

conflicting evidence of sex differences in response (16, 17). However, a more recent meta-analysis 

reported sex-associated biases in immune cell abundances and immune checkpoints in some tumor 

types, as well as a differential mutational/neoantigen load in a few clinical trials (18). Even more 
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recently, a preprint identified differential expression of mitochondrial genes as a likely driver of 

autoimmune incidence and multiple cancers (19). Altogether, in addition to general association of 

sex and age to cancer incidence and immunotherapy response, it is crucial to understand why such 

differences exist. At a glance, the stronger overall immune responses observed in younger and 

female individuals might lead to the paradoxical assumption that younger and female patients 

should generally respond well to immunotherapy. However, as I show in Aim 2, the interaction of 

sex and age as biological variables results in differential tumor-immune interaction and thus 

varying availability of visible driver mutations. My work provides some mechanistic insight into 

the cause of immunotherapy-response discrepancies. 

 

2.2 Abstract 

 Individual MHC genotype constrains the mutational landscape during tumorigenesis. 

Immune checkpoint inhibition reactivates immunity against tumors that escaped immune 

surveillance in approximately 30% of cases. Recent studies demonstrated poorer response rates in 

female and younger patients. Although immune responses differ with sex and age, the role of 

MHC- based immune selection in this context is unknown. We find that tumors in younger and 

female individuals accumulate more poorly presented driver mutations than those in older and 

male patients, despite no differences in MHC genotype. Younger patients show the strongest 

effects of MHC-based driver mutation selection, with younger females showing compounded 

effects and nearly twice as much MHC-II based selection. This study presents evidence that 

strength of immune selection during tumor development varies with sex and age, and may 

influence the availability of mutant peptides capable of driving effective response to immune 

checkpoint inhibitor therapy.  
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2.3 Introduction 

The major histocompatibility complex (MHC) exposes protein content on the cell surface 

to allow detection of antigens by the immune system. This applies to non-self-antigens such as 

viral proteins, and self-proteins that include tumor antigens. Tumor cells harbor oncogenic 

alterations that can be presented to the immune system by the MHC, causing immune recognition 

and elimination (immune surveillance) (20). However, in order to grow, invade, and spread, 

tumors must evade immune surveillance. Common mechanisms of immune evasion include loss 

of the MHC molecules and the upregulation of immune checkpoint molecules on cell surfaces that 

normally regulate the amplitude and duration of a T-cell response (21). Immune checkpoint 

blockade (ICB) uses antibodies to block these immune checkpoint molecules, and can invigorate 

inactive and/or exhausted T cells to produce antitumor effects that confer long-term survival 

benefits in certain types of cancer (22). However, ICB is effective in only 10-40% of patients for 

reasons that remain unclear. Meta-analyses of clinical trials in multiple cancer types treated with 

ICB suggest that young and female patients are characterized by low response rates (18, 23–26). 

The reason(s) for the poor response of these two populations remains elusive. 

An accumulating body of literature points to sexual dimorphism in immune responses (1). 

Moderated by genetic and hormonal factors, females have twice the antibody response to influenza 

vaccines (27) and higher CD4+ T-cell counts than males (28). Moreover, females are far more 

susceptible to autoimmune diseases (7), demonstrating a stark imbalance in the way the immune 

response causes diseases in the two sexes. Immuno-sequencing of over 800 individuals revealed 

sex-associated differences in the extent to which HLA molecules propagate selection and 

expansion of CD8+ T cells (29). Interestingly, a stronger immune response in females has been 

observed across several species (3, 4, 30), and sexual dimorphism has been demonstrated in 
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immune selection and restriction of intratumor genetic heterogeneity in a mouse model of B-cell 

lymphoma (31). In addition, a recent study has found sex-based differences in molecular 

biomarkers and immune checkpoint expression in multiple tumor types treated with ICB (18). 

Altogether, these studies suggest that these differences are sex-specific and not lifestyle dependent. 

Studies have demonstrated age-related changes in immune response as well. As humans 

age, there is a decrease of general immune function including production of IL-2, a pivotal growth 

factor for T cells (32). Reduced thymic output, lower numbers of naïve T cells, and overall 

reshaping of the size and specificity of the T-cell repertoire by microbial pathogens may explain 

why, for example, about 90% of excess deaths during flu season occur in patients greater than 65 

years of age (33). In addition, elderly people have reduced phagocytic function and HLA-II 

expression on antigen presenting cells (34). Collectively, these factors render elderly individuals 

less able to mount a T-cell response to new antigens and respond to vaccination. 

Recently, we developed the Patient Harmonic-mean Best Rank (PHBR) score that 

quantifies patients’ ability to present somatic mutations in their tumor by their specific MHC-I and 

MHC-II haplotypes (35, 36). PHBR-I and PHBR-II scores aggregate predicted peptide-MHC 

molecule binding affinities from established tools (37, 38) to produce a mass spectrometry-

validated, residue-centric, and patient-specific presentation score that captures a mutant peptide’s 

visibility to the immune system. In previous publications we used PHBR scores to assess the role 

of MHC genotype in shaping mutation accumulation during tumorigenesis (35, 36). We found that 

patients tend to accumulate driver mutations that cannot be effectively presented by their own 

MHC molecules, likely a consequence of immune-based elimination of tumor cells harboring well-

presented driver mutations, a selective process referred to as immunoediting (39). This analysis 

revealed that thyroid carcinoma and low-grade glioma patients experience the highest MHC-based 
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selective pressure on driver mutations (35, 36). Interestingly, these tumor types also had the 

youngest average age at diagnosis compared to all studied tumor types. In light of these 

observations, we reasoned that younger and female patients may experience stronger 

immunoediting early in their tumor history, accumulating mutations that are less favorably 

presented by their MHC, i.e., mutations more invisible to their immune system, at the time of 

diagnosis. Predictably, a depletion of potentially immunogenic mutant peptides would cause ICB 

to be ineffective. At first approximation we ruled out an effect due to sex-specific (MHC-I Pearson 

R = 0.99, MHC-II Pearson R = 0.99) or age-specific (MHC-I Pearson R = 0.98, MHC-II Pearson 

R=0.99) imbalances in MHC genotype frequencies. Therefore, we sought to test the hypothesis 

that sex- and age-specific differences in driver mutation presentation are the result of differential 

immunoediting. 

Here, we find that female and younger patients exhibit stronger immune selection in their 

tumors, measured by the affinity of their observed, expressed driver mutations compared to male 

and older patients. MHC-II appears to have a stronger effect compared to MHC-I. Our findings, 

based on TCGA samples, are validated in an independent validation cohort. 

 
2.4 Results 

Fewer presentable drivers in female and younger patients. We focused on a set of 1018 

driver mutations, defined in (35), as driver mutations are more prevalent in the clonal architecture 

of an individual’s cancer and confer a selective growth advantage. We assigned MHC-I and MHC-

II types using PolySolver and HLA-HD, two exome-based calling methods (40, 41) and considered 

only microsatellite-stable TCGA tumors. After excluding 515 patients from class I and 1064 

patients from class II analyses due to HLA genotype incompatibility with NetMHCpan affinity 

prediction software, 9913 patients with MHC-I calls and 7174 patients with MHC-II calls 



 121 

remained. These patients were diverse in sex, with more males than females, and a broad 

distribution of age at diagnosis. PHBR-I and -II scores were calculated for all patients across the 

1018 driver events by taking the harmonic mean of each allele’s best NetMHCpan percentile rank 

affinity score, providing an estimate of each patient’s potential to present each mutation via MHC-

I and MHC-II, respectively. Importantly, the PHBR-I and PHBR-II scores aggregate percentile 

rank scores of mutated peptides relative to large numbers of random peptide provided by 

NetMHCpan-4.0 and NetMHCIIpan3.2. For single peptide-HLA pairs, percentile rank scores of 

0.5% and 2% for MHC-I and 2% and 10% for MHC-II have been used to represent strong and 

weak binding cutoffs respectively (42, 43). 

To rule out other covariates, we performed a series of control analyses. We categorized 

patients into subgroups according to sex (male versus female) and age (younger versus older based 

on pan- cancer 30th and 70th percentiles at age of diagnosis for categorical analyses). For sex-

specific analyses, we further excluded seven sex- specific tumor types (breast, cervical, ovarian, 

uterine, prostate, and testicular cancer). First, we established that there were similar average 

numbers of driver mutations across sex and age patient groups. We previously found that TCGA 

patients with somatic MHC-I mutations had altered mutational landscapes, with a higher fraction 

of binding mutant peptides than patients without MHC-I mutations (44). To ensure that somatic 

MHC-I mutations would not skew the driver mutation PHBR-I score distributions, we compared 

scores for patients with and without MHC-I mutations grouped by sex and age and found no 

significant differences (Figure S2.1). We then compared the distributions of patient PHBR-I and 

PHBR-II scores across the 1018 driver mutations (Figure S2.2A-D) and found significant p values, 

but very small effect sizes between groups. To ensure that the potential to present driver mutations 

was consistent across sex and age, we compared the fraction of presented drivers at various score 
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thresholds, and found no significant differences (Figure S2.2E-F). The overall similarity of MHC 

presentation suggests that patients of both sexes and various ages at diagnosis present driver 

mutations with roughly equivalent efficacy, implying that specificity of MHC presentation 

resulting from specific allele combinations is not a mechanism causing differences in ICB response 

rate. 

We therefore reasoned that the discrepancy might be due to differences in the strength of 

immune selection, e.g., tumors with stronger immunoediting should retain fewer driver mutations 

that are presentable to T cells by the patient’s own MHC molecules. For sex- and age-specific 

groups in each cohort, we compared the PHBR-I and PHBR-II score distributions for observed, 

RNA-expressed driver mutations observed in patient tumors, excluding 4782 patients with no 

drivers from the list of 1018. While the number of observed drivers was not significantly different 

between sex and age groups, younger female patients were overrepresented in the group with no 

observed driver mutations (Fisher’s exact test: class I: OR = 1.12, p < 0.12; class II: OR = 1.28, p 

< 0.015). We note this group had an overrepresentation of thyroid cancer cases, a disease 

associated with low mutational burden and that typically only has a single driver mutation (45). 

We therefore performed sex-specific analysis for unique 2900 patients and age-specific analysis 

for 3928 unique patients. 

Across pan-cancer cohorts, females were at a significant disadvantage (higher PHBR 

scores) in presenting their driver mutations by both their MHC-I and MHC-II molecules (Figure 

2.1A-B, p < 2.6e−04 and p < 1.2e−07, respectively). Younger patients also tended to have worse 

presentation of driver mutations by both MHC-I and MHC-II molecules (Figure 2.1C-D, p < 

2.4e−5 and p <7.3e−04, respectively). Notably, the shift in PHBR score distributions between 

groups occurs near the threshold for weak binding. Given that a limited number of somatic 



 123 

mutations generate mutant peptides and not all of these are immunogenic, this small shift may 

translate to significantly less opportunity to generate a host antitumor response upon ICB. 

Importantly, we found that these observed between-group differences in PHBR scores were far 

greater (falling outside the 99% confidence interval) than differences when we randomly 

reassigned mutations across patients and recalculated patient-specific PHBR scores (Methods; 

Figure S2.3), and were an order of magnitude greater than the effect sizes observed when 

comparing score distributions independent of mutation occurrence (Figure S2.2). We also found 

differences in affinity independent of the PHBR score, using median NetMHCpan affinity scores 

across all alleles (Figure S2.4). Altogether this suggests that score differences do indeed result 

from the interaction of inherited MHC genotype with the observed mutations. Interestingly, the 

mutation-specific fraction of RNA reads mapping to these driver mutations was significantly lower 

for females and younger patients (Figure S2.5), further supporting sex- and age-based differential 

strength in immune selection. 

We next examined evidence for sex and age differences in specific tumor types, adjusting 

age thresholds according to tumor type. There was a general trend for female and younger patients’ 

tumors to have higher median PHBR-I and II scores across tumor types, although the difference 

was only statistically significant in melanoma (Figure S2.6A). We observed more variability in 

the trends across tumor types by age. Younger individuals trended toward higher median PHBR-I 

and II scores in tumors where the 30th/70th percentile was associated with a large age gap and the 

younger age threshold was under 55, with some notable exceptions that included rectal cancer, 

thyroid cancer, stomach cancer, and liver (Figure S2.6B). Overall these trends suggest that 

stronger pan-cancer immune selection in younger and female patients results broadly from effects 

observed across multiple tumor types. 
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Next, we explored the effect of age and sex in the context of the immune system’s ability 

to eliminate effectively-presented mutations by modeling the relationship between mutation 

occurrence and immune visibility as modeled by PHBR-I and II scores. We constructed sex- and 

age-specific generalized additive models with random effects to account for variation in mutation 

rate across individuals, and examined the coefficients corresponding to independent and 

interaction effects for PHBR-I, PHBR-II, and sex or age to assess their contribution to immune 

selection for expressed mutations observed ≥2 times in the cohort, excluding patients with no 

observed, expressed driver mutations. To control for the fact that some driver mutations occurred 

in the same tumor, and thus are not completely independent events, we included patient ID as a 

random effect in our linear model. In both models, we found that PHBR-I and PHBR-II scores 

alone had significant effects on the probability of a mutation to be a target of immune selection 

(Table 2.1). Positive coefficients for both PHBR scores indicate that the higher the PHBR score 

(i.e., poorer presentation), the higher the probability of mutation. Furthermore, when we quantified 

the influence of both scores on probability of mutation using odds ratios between respective 25th 

and 75th percentiles, we found that PHBR-II (OR: 3.4, CI [3.19, 3.6]) has a much larger impact 

on probability of mutation than PHBR-I (OR: 1.27, CI [1.26, 1.29]), echoing the larger effect sizes 

seen in Figure 2.1. As expected, sex and age alone did not influence the probability of mutation; 

however, of particular interest are the interaction terms that indicate the influence of PHBR scores 

on probability of mutation within the context of sex and age. Both the PHBR-I:sex and PHBR-

I:age interactions as well as the PHBR-II:sex and PHBR-II:age interactions were significant. The 

negative PHBR:age estimates indicate stronger effects of PHBR-I as well as PHBR-II contribution 

to the probability of mutation in younger patients. On the other hand, positive PHBR:sex estimates 

indicate stronger effects of PHBR-I and PHBR-II contributing to probability of mutation in 
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females according to the model formulation (Methods). Collectively, these results suggest 

stronger immune selection in females and younger patients. 

As females and younger patients both demonstrated stronger immune selection compared 

to males and older patients, we further partitioned the cohorts simultaneously by sex and age, and 

investigated the distribution of PHBR-I and -II scores for these groups. We found that sex and age 

effects are cumulative, with tumors in younger females exhibiting significantly higher selective 

pressure by MHC than those in the other three groups (Figure 2.2). We noticed a profound 

difference between PHBR score distributions between younger females and older males. Because 

younger males had worse presentation of their driver mutations compared to older females (Figure 

2.2), we sought to ensure that sex had an effect on immune selection independent of age. In two 

models incorporating sex, age, and PHBR-I and PHBR-II scores, respectively, both PHBR:sex and 

PHBR:age were independently significant for both class I and class II (Table S2.1). These results 

demonstrate that more aggressive immune selection in younger females selects for tumors with 

driver mutations that are less visible to the immune system. 

Mutational signatures do not explain differential selection. We next explored whether 

sex- and age-specific effects could be driven by differences in environmental exposure rather than 

the strength of immune selection. Mutational signatures assign specific mutations to different 

mutagenic processes, allowing the exploration of differences in environmental exposure across sex 

and age. We compared the sex-specific occurrence of mutational signatures in each tumor type 

and found only a minority of instances where signature strength was weakly but significantly 

associated with sex (Figure 2.3A). Importantly, only three of the signatures (01, 02, and 05) where 

we observed significant sex-specific differences contribute to the set of driver mutations used for 

this analysis (Figure 2.3B). Since signatures 01 and 05 are endogenous rather than exposure 
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associated signatures, this suggests a very low impact of environmental exposures on sex-specific 

effects of immune selection on drivers. Furthermore, when we excluded the tumor types with 

significant signature differences (glioblastoma multiforme, GBM and liver hepatocellular 

carcinoma, LIHC), we still observed sex- and age-related differences (Table S2.2). In addition, 

only two signatures correlated with age, both of which have known association with aging (46). 

We examined C>T and T>C mutations, which are hallmarks of signature 01 and 05, respectively, 

and found that observed driver mutations in these categories were broadly distributed across age 

at diagnosis. To explain weaker immune selection in older individuals, age-related mutations 

would have to be better presented (have lower PHBR scores) than other mutations. Instead, we 

found that C>T and T>C mutations were significantly more poorly presented (had slightly higher 

PHBR scores) than other mutations across all possible MHC-I and MHC-II alleles, suggesting that 

these mutations, and by extension, signatures 01 and 05, could not drive the apparent age-

associated difference in immune selection (Figure 2.3C). Thus, we conclude that the sex- and age-

specific effects on immune selection are not likely due to environmental exposure differences (46, 

47). 

Validation in an independent non-TCGA cohort. We sought validation of our findings in 

a cohort of 342 patients (309 with compatible MHC-I type calls and 277 with MHC-II type calls) 

compiled from published dbGaP studies and non-TCGA samples in the International Cancer 

Genome Consortium (ICGC) database (48) and filtered to exclude tumor types not represented in 

TCGA. While fewer tumor types were represented relative to the discovery cohort, these patients 

were diverse with respect to sex and age at diagnosis, with slightly more males than females, and 

similar average numbers of driver mutations. As in the discovery cohort, we found some 

significant differences in patient PHBR score distributions across the 1018 driver mutations, also 
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with very small effect sizes between groups. Likewise, there was no difference in the fraction of 

presented drivers at various score thresholds (Figure S2.7). The majority of our validation cohort 

did not have expression data, so we predicted RNA expression using a logistic regression classifier 

trained on the TCGA cohort (Methods). 

We found, as in the discovery cohort, that effectively-presented driver mutations were 

significantly depleted in younger and female patients compared to older and male patients (Figure 

2.4A-D). These differences were an order of magnitude greater than the effect sizes observed when 

comparing score distributions independent of mutation occurrence (Figure S2.7E-H). 

When we examined the simultaneous effects of sex and age (Figure 2.4E-F), younger 

females once again had significantly worse presentation of their driver mutations than older males 

across both MHC-I and MHC-II (p < 0.001, p < 0.007). We repeated the sex- and age-specific 

analyses using the generalized additive models and found that, for both sex and age, PHBR-II 

scores alone significantly influenced the probability of mutation, with higher PHBR scores (i.e., 

worse presentation) leading to higher probability of mutation (Table S2.3). While PHBR-II:sex 

and PHBR-II:age coefficients trended in the same direction, with stronger effects in females and 

younger patients, they did not reach significance, likely due to sample size. 

 

2.5 Discussion 

Here, we present evidence that both sex and age impact the driver mutations that arise and 

persist during tumorigenesis. We found that younger and female patients accumulate driver 

mutations in their tumors that are less readily presented by their MHC molecules (Figure 2.5), 

suggesting a stronger toll by immune selection early in tumorigenesis. This finding is consistent 

with recent meta-analyses across multiple tumors showing sex- and age-dependent differences in 
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response to ICB (23–26). We also observed the strongest effects in MHC-II based selection, in 

agreement with the fact that females have higher CD4+ T-cell counts than males (49). A prevalent 

role of MHC-II driven immune selection can be explained by the fact that CD4+ T cells, besides 

direct effector function comparable to that of CD8+ T cells, also play a deep-rooted regulatory role 

in cooperating with CD8+ T cells via associative recognition of antigen (50, 51). Their function in 

orchestrating T-cell immunity, in general terms, makes them privileged actors, hence targets of 

immune selection as revealed herein. In older individuals, immune selection effects by MHC-II 

presentation of driver mutations are mitigated by a reduced CD4+/CD8+ ratio (52) and greater 

telomere attrition in CD4+ T cells than in CD8+ T cells (53) leading to accelerated senescence. 

Taken together, the evidence suggests that tumors developing in younger and female patients are 

prone to stronger immunoediting than those in older and male patients. 

Our findings based on the TCGA were reproduced in the smaller validation cohort where 

we once again observed poorer MHC-based presentation of driver mutations in females versus 

males and younger versus older patients, with presentation being worse in younger and female 

patients. When modeling the influence of MHC genotype on the probability of observing driver 

mutations, the estimated effect sizes are modest, although relatively large compared to effects 

detected by genome wide association studies where odds ratios are often <1.240. Several sources 

of uncertainty, including errors in patient genotyping, prediction of the peptide-HLA binding 

affinities used to calculate the PHBR score, and errors in somatic mutation calling could obscure 

the true effects (35). More accurate estimates will likely require larger sample sizes, and ideally 

availability of expression data as non- expressed mutations should not reflect the effects of immune 

selection. 
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In this analysis, we focused on a set of recurrent missense and indel mutations in 

established driver genes developed in our previous work. This is motivated by the assumption that 

these are more likely to occur early during tumorigenesis, and may thus provide a view of immune 

selection before various mechanisms of immune evasion occur (36). However, it is unlikely that 

immune selection operates differently on different categories of mutation, and nondriver mutation-

derived neoantigens should be equally capable of triggering a T-cell response. Whether tumor cells 

can evade T cell responses more easily when they are targeted against nonessential nondriver 

mutations remains an important question. It has been suggested that ICB responses are most 

effective when a clonal driver neoantigen is present (54). While we did not observe large sex or 

age bias in the mutational signatures associated with the 1018 driver mutations, we speculate that 

it is possible non-driver mutations could show differences in their potential to serve as neoantigens 

if the underlying mutational processes are active at different times or are biased to generate 

mutations in expressed protein coding sequences with characteristics that bias their presentation. 

Notwithstanding some limitations, our analysis provides a compelling case for the 

paradigm that immune selection exerts its toll differently with respect to sex and age, with a greater 

effect in younger females. Of note, the younger female cohort had the poorest driver mutation 

presentation across both the discovery and validation cohorts, suggesting that these effects are 

strong and complementary. Although our analysis suggests that younger age is associated with 

stronger antitumor immune responses, we strongly suggest caution in considering whether this 

trend could generalize to pediatric tumors. The genomic landscape of pediatric tumors is distinct 

from that of adulthood tumors, with lower mutation burdens, different driver events and more 

germline factors and the characteristics of the pediatric immune system differ greatly from those 

of an adult (55). Furthermore, we are unable to control for other sex- and age-related factors 
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beyond predicted MHC presentation of driver mutation-derived peptides. These possibilities may 

include (a) differences in the antigen processing machinery preceding surface exposure of MHC- 

peptide complexes, and (b) genetic and epigenetic factors causing preferential mutation 

accumulation in the cohorts for reasons other than immunoediting. 

In conclusion, this study indicates that immune selection exerts its toll differently with respect 

to sex and age, with a greater effect in younger females. As such, the response rate to ICB may be 

dependent on the strength of immune selection occurring early in tumorigenesis. Methods to 

accurately predict the impact of immunoediting on a patient-specific basis may lead to better 

predictive algorithms for response to therapy. As a corollary, we posit that ICB treatment is likely 

to have a reduced effect in younger female patients since this treatment will attempt to reactivate 

T cells for immunologically invisible neoantigens. Rather, adaptive T-cell therapy against patient-

validated neoantigens or therapeutic vaccination against conserved antigens will likely be more 

beneficial in these patients. Notably prior to treatment with ICB, male sex (and less consistently 

older age) are associated with higher risk of recurrence and death in melanoma and may stand to 

benefit more from ICB (56, 57), thus it is also possible that overall stronger immune surveillance 

could prove advantageous in the context of ICB despite differences in the quality of neoantigens. 

Finally, these findings shed light on the role of immune surveillance in cancer progression. 

 
2.6 Materials and Methods 

 
Data acquisition. Data were obtained from publicly available sources including The 

Cancer Genome Atlas (TCGA) Research Network (http://cancergenome.nih.gov/). TCGA normal 

exome sequences and TCGA clinical data were downloaded from the GDC on June 23-26th, 2018 
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and April 25th, 2017 respectively. Furthermore, TCGA somatic mutations were accessed from the 

NCI Genomic Data Commons (https://portal.gdc.cancer.gov/) on May 14th, 2017. 

Validation cohort. dbGaP studies (accession numbers: phs001493.v1.p1.c2, 

phs001041.v1.p1.c1, phs001425.v1.p1.c1, phs001493.v1.p1.c1, phs000980.v1.p1.c1, 

phs001469.v1.p1.c1, phs000452.v2.p1.c1, phs001451.v1.p1.c1, phs001519.v1.p1.c1, 

phs001565.v1.p1.c1) were obtained from the dbGaP database and WXS/WGS data obtained from 

the Sequence Read Archive (SRA) (57). Somatic mutation files were obtained from the respective 

papers associated with each study. Additional non-TCGA patients’ WXS/WGS data was obtained 

from the ICGC and somatic mutation data from the ICGC DCC Data Release on (April 2, 2019 

(PCAWG), March 18, 2019 (THCA-SA)). The validation cohort’s MHC-I and -II genotypes were 

typed using HLA-HD (41) and PHBR scores calculated using the method described in 

“Presentation score assignment”. 

HLA typing. HLA genotyping was performed for class I genes HLA-A, HLA-B, HLA-C, 

and class II genes HLA-DRB1, HLA-DPA1, HLA-DPB1, HLA-DQA1, and HLA-DQB1, which 

encode three protein determinants of MHC-I peptide binding specificity, HLA-DR, HLA-DP, and 

HLA-DQ. TCGA samples were typed with Polysolver (40), with default parameters, for class I 

and typed with HLA-HD27, using default parameters, for class II. Both tools require germline 

(whole blood or tissue matched) whole exome sequenced samples. Samples with very low 

coverage on specific genes are left untyped by HLA-HD. Patients were assigned an HLA-DR type 

if they were successfully typed for HLA-DRB1. Patients were assigned HLA-DP and -DQ types 

if they had successful typing for HLA-DPA1/HLA-DPB1 and HLA-DQA1/HLA-DQB1, 

respectively. Class I and class II types were validated by xHLA (58), run with default parameters, 

and only patients where all alleles agreed in both classes were included in the analysis. 
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Presentation score assignment. We used patient presentation scores, as defined in (35), 

to represent a particular patient’s ability to present a residue given their distinct set of HLA types. 

For class I, 6 HLA alleles were considered (HLA-A, HLA- B, and HLA-C). For class II, 12 HLA-

encoded MHC-II molecules (4 combinations of HLA-DPA1/DPB1 and HLA-DQA1/DQB1; 2 

alleles of HLA-DRB1 considered twice each, since HLA-DRA1 is invariant, for consistency 

between resulting molecules). NetMHCpan4.0 (42) and NetMHCIIpan3.2 (43) were used to 

calculate binding affinities. The PHBR score was assigned as the harmonic mean of the best 

residue presentation scores for each group of MHC-I and MHC-II molecules. A lower patient 

presentation score indicates that the patient’s MHC molecules are more likely to present a residue 

on the cell surface. 

Set of driver mutations. Somatic mutations were considered to be recurrent and oncogenic 

if they occurred in one of the 100 most highly ranked oncogenes or tumor suppressors described 

by Davoli et al. (59) and were observed in at least three TCGA samples. Among these, we retained 

only mutations that would result in predictable protein sequence changes that could generate 

neoantigens, including missense mutations and inframe indels. A total of 1018 mutations (512 

missense mutations from oncogenes, 488 missense mutations from tumor suppressors, 11 indels 

from oncogenes and 7 indels from tumor suppressors) were obtained (35). 

Modeling the effects of PHBR score on mutation probability. We built two matrices, 

for PHBR-I scores and PHBR-II scores, from the 1018 mutations and the 1912 patients with both 

PHBR-I and -II calls. Next, we built a binary mutation matrix yij ∈ {0,1} indicating whether patient 

i has a specific mutation j. We evaluated the relationship between this binary matrix, the matched 

1912 × 1018 matrices with log PHBR-I and -II scores, x1ij and x2ij, respectively, and the variable 

of interest (sex or age) for patient i and mutation j. We fit a generalized additive model for the 
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centered log PHBR-I, centered log PHBR-II scores, centered sex (coded 0/1 for males/females) or 

centered age, and mutation probability with the GAM function in the MGCV R package (60). To 

estimate the effects of PHBR and sex or age on probability of mutation, we considered the 

following random effects models: 

(1) Logit (P(yij = 1)) = β1x1ij +  β2x2ij + β3Sexi + β4(x1ij*Sexi) + β5(x2ij*Sexi) + ηi 
 

(2) Logit (P(yij = 1)) = β1x1ij +  β2x2ij + β3Agei + β4(x1ij*Agei) + β5(x2ij*Agei) + ηi 
 
 

And PHBR-I and PHBR-II specific models (results in Table S2.1): 
(3) Logit (P(yij = 1)) = β1x1ij +  β2Agei + β3Sexi + β4(x1ij*Sexi) + β5(x1ij*Agei) + ηi 
(4) Logit (P(yij = 1)) = β1x2ij +  β2Agei + β3Sexi + β4(x2ij*Sexi) + β5(x2ij*Agei) + ηi 

 
 

where ηi ~ N(0, θη) are random effects capturing different mutation propensities among patients, 

using patient IDs. In these models βn measures the effect of the log-PHBR-I, log-PHBR-II, and 

sex or age. This analysis was repeated for the validation cohort. 
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2.7 Figures 

 

 
Figure 2.1. Sex- and age-specific MHC presentation of observed, RNA-expressed driver 
mutations. Box plots denoting the distribution of (A) PHBR-I and (B) PHBR-II scores for 
expressed driver mutations in female and male pan-cancer patients. c, d Box plots denoting the 
distribution of (C) PHBR-I and (D) PHBR-II scores for expressed driver mutations in younger and 
older pan-cancer patients. P values were calculated using the one-tailed Mann–Whitney U test. 
Median values are shown in each boxplot. All box plots include the median line, the box denotes 
the interquartile range (IQR), whiskers denote the rest of the data distribution and outliers are 
denoted by points greater than ±1.5 × IQR. The following effect sizes were calculated using Cliff’s 
d: (A) r = −0.0654, (B) −0.104, (C) −0.081, (D) −0.0734.  
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Figure 2.2. Integrated sex- and age-specific analysis. (A) PHBR-I and (B) PHBR-II scores for 
the observed driver mutations in pan-cancer integrated sex- and age- specific patient cohorts. One 
asterisk indicates p values < 0.05 and two asterisks indicates p values < 0.001. All p-values were 
calculated using a one-tailed Mann–Whitney U test. The Benjamini–Hochberg method was used 
to adjust for multiple comparisons. Median values are shown in each boxplot. Exact p-values for 
(A) include: YF, OM: 0.7e−05; YF, OF: 0.005; YF, YM: 0.008; YM, OM: 0.008; OF, OM: 0.08; 
OF, YM: 0.22. Exact p values for (B) include: YF, OM: 5.51e−07; YF, YM: 0.0003; YM, OM: 
0.035; YF, OF: 0.038; OF, YM: 0.17. Y = younger, O = older, F = female, M = male. All box plots 
include the median line, the box denotes the interquartile range (IQR), whiskers denote the rest of 
the data distribution and outliers are denoted by points greater than ±1.5 × IQR.  
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Figure 2.3. Sex-specific exposure analysis with mutational signatures. (A) Heatmap of log2 
male (blue) to female (pink) ratios of mutational signatures for each tumor type with asterisks 
denoting a significantly different ratio between male and female sexes. (B) The percentage of 
mutations in the set of driver mutations that are part of each mutational signature. (C) Boxplot 
comparing MHC-I and MHC-II presentation scores across all possible alleles for C>T or T>C 
driver mutations (green) versus driver mutations resulting from other base substitutions (yellow); 
1,063,975 and 2,051,300 affinity scores were evaluated for C>T or T>C mutations for class I and 
II, respectively; and 1,851,025 and 3,568,700 affinity scores were evaluated for other mutations 
for class I and II, respectively. Exact p-values were calculated using a one-tailed Mann–Whitney 
U test: (C) 2.2e−308 and 1.4e−86. Median values are denoted in each boxplot. All box plots 
include the median line, the box denotes the interquartile range (IQR), whiskers denote the rest of 
the data distribution and outliers are denoted by points greater than ±1.5 × IQR. 
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Figure 2.4. Sex- and age-specific MHC presentation of observed driver mutations in the 
validation cohort. Box plots denoting the distribution of (A) PHBR- I and (B) PHBR-II scores 
for driver mutations in female and male pan-cancer patients. Exact p-values were calculated using 
a one-tailed Mann–Whitney U test: (A) 0.027 and (B) 0.024, and effect sizes were calculated using 
Cliff’s d: (A) r = −0.154, (B) r = −0.164. Box plots denoting the distribution of (C) PHBR-I and 
(D) PHBR-II scores for driver mutations in younger and older pan-cancer patients. Exact p-values 
were calculated using a one-tailed Mann–Whitney U test: (C) 0.022 and (D) 7.9e−04, and effect 
sizes were calculated using Cliff’s d: (C) r = −0.207, (D) −0.346. Box plots denoting the 
distribution of (E) PHBR-I and (F) PHBR-II scores for driver mutations among integrated sex- 
and age-specific pan-cancer patient cohorts. One asterisk indicates p-values < 0.05 and two 
asterisks indicate p values < 0.001. P-values were calculated using a one-tailed Mann–Whitney U 
test. The Benjamini–Hochberg method was used to adjust for multiple comparisons for (E, F). 
Median values are shown in each boxplot. Exact p-values for (E) include: YM, OM: 0.024; YF, 
OM: 0.028; OF, OM: 0.070; YF, OF: 0.56; YF, YM: 0.49; OF, YM: 0.50. Exact p values for (F) 
include: YF, OF: 0.0083; YF, OM: 0.013; OF, YM: 0.023; YM, OM: 0.045; YF, YM: 0.24; OF, 
OM: 0.34. Y = younger, O = older, F = female, M = male. All box plots include the median line, 
the box denotes the interquartile range (IQR), whiskers denote the rest of the data distribution and 
outliers are denoted by points greater than ±1.5 × IQR. 
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Figure 2.5. Proposed model of the relationship between immune selection and 
immunotherapy in cancer patients. Young females experience the strongest immune response, 
rendering their diagnosed tumors more invisible to the immune system and difficult to treat with 
ICB. On the other extreme, old males experience the weakest immune response, leaving their 
diagnosed tumors more visible to the immune system and open to attack when stimulated with 
ICB. Blue dots indicate immunologically visible driver mutations while red dots indicate 
immunologically invisible driver mutations at various time points. 
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2.8 Tables 

 
Table 2.1. Quantitative estimate of the association between PHBR score and mutation 
occurrence in sex- and age-specific cohorts. Estimates and p-values are shown for a generalized 
additive model with random effects relating PHBR scores to the set of expressed driver mutations 
observed ≥2 times in this cohort. P-values were calculated via Wald tests using the Bayesian 
covariance matrix for the coefficients. Variables and their respective estimates and p-values have 
been bolded if significant (p<0.05). 
 

 Parametric coefficients Estimate Pr(>|z|) 

Sex analysis PHBR-I 0.048 0.0035 

PHBR-II 0.31 1.66e-56 

Sex  -0.02 0.59 

PHBR-I:Sex 0.07 0.02 

PHBR-II:Sex 0.15 0.00035 

Age analysis PHBR-I 0.043 0.0078 

PHBR-II 0.31 1.01e-54 

Age  -0.0025 0.06 

PHBR-I:Age -0.0029 0.005 

PHBR-II:Age -0.0035 0.007 
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2.9 Supplemental Data, Tables and Figures 

 
 

 

Figure S2.1. MHC-I mutation control analysis. Sex- and age-specific MHC presentation of 
common driver mutations for patients with and without MHC-I mutations. Box plots denote the 
distribution of PHBR-I scores for expressed driver mutations in female, male, younger, and older 
pan-cancer patients with and without MHC-I mutations. P-values were calculated using the one-
tailed Mann Whitney U test. Exact p-values are: (A) 0.192, (B) 0.178, (C) 0.192, (D) 0.178. 
Median values are indicated in each boxplot. All boxplots include the median line, the box denotes 
the interquartile range (IQR), whiskers denote the rest of the data distribution and outliers are 
denoted by points greater than +/- 1.5 * IQR.  
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Figure S2.2. Sex- and age-specific MHC presentation of common driver mutations. (A-D) 
Violin plots denoting the sex and age stratified distribution of (A, C) PHBR-I and (B, D) PHBR-
II scores across all common cancer driving mutations. P-values were calculated using the one-
tailed Mann Whitney U test. Exact p-values are: (A) 7.69e-05, (B) 4.34e-08, (C) 1.18e-10, (D) 
0.0442. Effect sizes were calculated using Cliff’s d: (A) r=-0.00276, (B) r=-0.00381, (C) r=-
0.00529, (D) r=-0.00144. Median PHBR scores are: (A) 1.42 F, 1.43 M, (B) 16.65 F, 16.81 M (C) 
1.44 Y, 1.42 O (D) 16.72 Y, 16.75 O. (E, F) Empirical cumulative distribution functions showing 
the fraction of driver mutations predicted to bind to (E) MHC-I and (F) MHC-II at different PHBR 
score thresholds. Distributions were compared using the Kolmogorov-Smirnov two-sample test.  
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Figure S2.3. Shuffling driver mutations control analysis. Distributions of the median difference 
in (A) PHBR-I and (B) PHBR-II scores between sex-specific (blue) and age-specific (orange) 
patient groups estimated by shuffling driver mutations between patients 10,000 times while 
maintaining constant column and row counts. Solid lines indicate the observed score differences 
between cohorts. 
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Figure S2.4. NetMHCpan alternate affinity analysis. Boxplots showing the distribution of 
median NetMHCpan (A-C) class I and (D-F) class II affinity scores for observed, expressed driver 
mutations across sex and age in our cohort. P-values were calculated using the one-tailed Mann 
Whitney U test. The Benjamini-Hochberg method was used to adjust for multiple comparisons for 
(C) and (F). Exact p-values are: (A) 0.00709, (B) 0.086, (C) YF, YM: 0.016; YF, OM: 0.019; YF, 
OF: 0.043; OF, YM: 0.27; OF, OM: 0.33; YM, OM: 0.42, (D) 0.00434, (E) 7.16e-04, (F) YF, OM: 
4.64e-05; YF, YM: 0.0005; YF, OF: 0.0008; YM, OM: 0.24; OF, OM: 0.21; OF, YM: 0.43. 
Y=younger, O=older, F=female, M=male. One asterisk indicates p-values <0.05 and two asterisks 
indicates p-values <0.001. Median values are indicated in each boxplot. All boxplots include the 
median line, the box denotes the interquartile range (IQR), whiskers denote the rest of the data 
distribution and outliers are denoted by points greater than +/- 1.5 * IQR.  
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Figure S2.5. Sex- and age-specific analysis of mutation RNA fraction. Box plots showing the 
distribution of fraction of RNA reads supporting the mutated allele in (A) female and male patients, 
(B) younger and older patients, and (C) integrated sex- and age-specific patient cohorts. P-values 
were calculated using the one-tailed Mann Whitney U test. The Benjamini-Hochberg method was 
used to adjust for multiple comparisons for (C). Exact p-values are: (A) 0.000147, (B) 1,53e-07, 
(C) YF, OM: 1.19e-08; YF, OF: 0.0003; YM, OM: 0.0006; YF, YM: 0.008; OF, OM: 0.015; OF, 
YM: 0.11. Y=younger, O=older, F=female, M=male. One asterisk indicates p-values <0.05 and 
two asterisks indicates p-values <0.001. Median values are indicated in each boxplot. All boxplots 
include the median line, the box denotes the interquartile range (IQR), whiskers denote the rest of 
the data distribution and outliers are denoted by points greater than +/- 1.5 * IQR.  
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Figure S2.6. Disease-specific sex- and age-specific analysis of driver affinities. Heatmaps 
showing disease-specific PHBR-I and PHBR-II median ratios for (A) females vs. males where red 
coloring indicates higher median female PHBR distributions, and blue coloring indicates higher 
median male PHBR distributions. (B) Younger vs. older patients where green coloring indicates 
higher median younger PHBR distributions and yellow indicates higher median older PHBR 
distributions. “Age gap” shows disease-specific age thresholds (30th and 70th percentile), with 
darker coloring indicating a wider age gap and vice versa. A minimum of 30 patients in each group 
was required; blanks indicate that fewer than 30 samples were available in one of the categories. 
P-values were calculated using the one-tailed Mann Whitney U test. The Benjamini-Hochberg 
method was used to adjust for multiple comparisons for (A) and (B). Exact p-values for significant 
comparisons are: (A) 0.00098 for PHBR-II in melanoma, (B) 0.04 for PHBR-II in melanoma, and 
0.07 for PHBR-II in rectal cancer. One asterisk indicates p-values <0.05, two asterisks indicates 
p-values <0.001, and a dot indicates p-values <0.1.  
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Figure S2.7. Overview of the validation cohort. (A) A bar plot comparing 346 male and female 
patients in the pan-cancer validation cohort. (B) A histogram denoting the distribution of ages 
when patients were diagnosed with cancer for 335 patients in the pan-cancer validation cohort. Bar 
plots denoting the average number of driver mutations for 346 patients in each sex- and age-
specific cohort for (C) patients with MHC-I calls, and (D) patients with MHC-II calls. Median 
PHBR scores are: (A) 1.46 F, 1.41 M, (B) 16.97 F, 17.07 M (C) 1.41 Y, 1.40 O (D) 17.15 Y, 16.50 
O. (E-H) Violin plots denoting the distribution of (E, G) PHBR-I and (F, H) PHBR-II scores across 
all common cancer driving mutations. P-values were calculated using the one-tailed Mann 
Whitney U test. Exact p-values are: (E) 7.62e-08, (F) 0.38, (G) 0.383, (H) 2.39e-06. Effect sizes 
were calculated using Cliff’s d: (A) r=-0.016, (B) r=-0.000938, (C) r=-0.00132, (D) r=-0.0212. 
Empirical cumulative distribution functions showing the fraction of driver mutations predicted to 
bind to (I) MHC-I and (J) MHC-II at different PHBR score thresholds. Distributions were 
compared using the Kolmogorov-Smirnov two-sample test.  
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Table S2.1. Quantitative estimate of the association between PHBR score and mutation 
occurrence in sex- and age-specific TCGA cohorts. Estimates and p-values are shown for a 
generalized additive model with random effects relating PHBR-I and PHBR-II scores to the 
occurrence of driver mutations observed ≥2 times in the TCGA cohort. P-values were calculated 
via Wald tests using the Bayesian covariance matrix for the coefficients. Variables and their 
respective estimates and p-values have been bolded if significant (p<0.05). 
 
  Parametric coefficients Estimate Pr(>|z|) 

PHBR-I analysis PHBR-I 0.13 7.54e-22 

Sex  -0.003 0.93 

Age -0.0026 0.02 

PHBR-I:Sex 0.08 0.003 

PHBR-I:Age -0.0028 0.001 

PHBR-II analysis PHBR-II 0.33 2.05e-72 

Sex  -0.05 0.22 

Age -0.002 0.17 

PHBR-II:Sex 0.16 2.73e-05 

PHBR-II:Age -0.004 0.000518 

 
 
  



 148 

 
Table S2.2. Quantitative estimate of the association between PHBR score and mutation 
occurrence in sex- and age-specific TCGA cohorts, without tumor types significantly 
associated with sex-specific mutational signature ratios. Estimates and p-values are shown for 
a generalized additive model with random effects relating PHBR scores to occurence of driver 
mutations observed ≥2 times in the TCGA cohort. P-values were calculated via Wald tests using 
the Bayesian covariance matrix for the coefficients. Variables and their respective estimates and 
p-values have been bolded if significant (p<0.05). 
 
  
 

Parametric coefficients Estimate Pr(>|z|) 

Sex analysis PHBR-I 0.06 0.002 

PHBR-II 0.33 1.9e-41 

Sex  -0.03 0.54 

PHBR-I:Sex 0.075 0.07 

PHBR-II:Sex 0.12 0.01 

Age analysis PHBR-I 0.06 0.004 

PHBR-II 0.33 2.2e-40 

Age  -0.0021 0.17 

PHBR-I:Age -0.0044 0.0005 

PHBR-II:Age -0.004 0.01 
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Table S2.3. Quantitative estimate of the association between PHBR score and mutation 
occurrence in sex- and age-specific validation cohorts. Estimates and p-values are shown for a 
generalized additive model with random effects relating PHBR scores to occurence of driver 
mutations observed in the validation cohort. P-values were calculated via Wald tests using the 
Bayesian covariance matrix for the coefficients. Variables and their respective estimates and p-
values have been bolded if significant (p<0.05). 
 
 
 

Parametric coefficients Estimate Pr(>|z|) 

Sex analysis PHBR-I -0.17303 0.0576 

PHBR-II 0.26725 0.0464 

Sex  0.21348 0.2901 

PHBR-I:Sex -0.09819 0.5917 

PHBR-II:Sex 0.30335 0.2647 

Age analysis PHBR-I -0.153878 0.087 

PHBR-II 0.287683 0.0302 

Age  -0.009375 0.1771 

PHBR-I:Age -0.007862 0.2371 

PHBR-II:Age -0.009064 0.3329 
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CHAPTER 3: Subcellular location is a novel feature that improves immunogenicity 

prediction 

 

3.1 Foreword 

Over the past decade, there has been surge of interest in researching and exploiting 

neoantigens as targets. Thanks to expanded availability of datasets and progress in machine 

learning, in silico prediction of MHC presentation has improved greatly (1–4). However, cell 

surface presentation of antigen alone does not guarantee T cell recognition and response, also 

known as immunogenicity. Other factors such as peptide-MHC stability, affinity relative to the 

wildtype peptide, dissimilarity to the proteome, and presence of certain amino acids have all been 

correlated with immunogenicity, but often fail to validate experimentally (5, 6). Among other 

factors, these attempt to quantify the likelihood that 1) the mutant peptide can bind to MHC 

(affinity), 2) the peptide-MHC complex is stable enough to remain on the cell surface for some 

time (stability), and 3) T cells able to recognize this peptide-MHC complex have not been 

eliminated during negative selection in the thymus (agretopicity and foreignness); all of which are 

required in some degree to enable T cell recognition and response of neopeptide. Currently studied 

factors focus on neopeptide characteristics that are more relevant in the later portion of the antigen 

presentation pathway; after proteosomal cleavage and TAP transport into the endoplasmic 

reticulum. Motivated by initial experimental studies that identified a location bias for eluted MHC-

presented peptides, I hypothesized that location could affect ability to even enter the antigen 

presentation pathway. Aim 3 is the first investigation of its kind to assess the extent to which 

protein subcellular location can help improve immunogenicity prediction. Even now, this remains 
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a difficult challenge, one that requires significant strides in improvement in order to realize 

consistent, effective immunotherapy responses. 

 
 

3.2 Abstract 

 Antigen presentation via the major histocompatibility complex (MHC) is essential for anti-

tumor immunity, however the rules that determine what tumor-derived peptides will be 

immunogenic are still incompletely understood. Here we investigate whether constraints on 

peptide accessibility to the MHC due to protein subcellular location are associated with potential 

for peptide immunogenicity. Analyzing over 380,000 peptides from studies of MHC presentation 

and peptide immunogenicity, we find clear spatial biases in both eluted and immunogenic peptides. 

We find that including parent protein location improves prediction of peptide immunogenicity in 

multiple datasets. In human immunotherapy cohorts, location was associated with response to a 

neoantigen vaccine, and immune checkpoint blockade responders generally had a higher burden 

of neopeptides from accessible locations. We conclude that protein subcellular location adds 

important information for optimizing immunotherapies. 
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3.3 Introduction 

Accurate prediction of immunogenic neopeptides is crucial for the effective application of 

neoantigen-based cancer treatments such as neoantigen vaccines, immune checkpoint blockade, 

and adoptive T cell therapy. These immunotherapies all depend on cell surface display of tumor-

derived peptides by the major histocompatibility complex (MHC) for immune surveillance by T 

cells. Current approaches to predict neopeptide immunogenicity (i.e. which tumor mutations will 

result in neopeptides that are both displayed and recognized by T cells as foreign) largely focus on 

peptide-MHC affinity, with non-standardized, and sometimes controversial, incorporation of other 

peptide characteristics such as peptide-MHC stability, agretopicity (7), foreignness (8), 

hydrophobicity, mutation position within the neopeptide (9), and neopeptide RNA abundance (6). 

However, the utility of these features for predicting immunogenicity varies across experiments and 

cohorts and ultimately, current tools still yield many false positive neoantigen predictions (5, 10). 

Therefore, it follows that there must be other factors that contribute to T cell recognition of peptide-

bound MHC that remain to be accounted for.  

The canonical pathways by which peptides are added to the MHC for binding differ for 

class I and class II, with class I peptides requiring transport to the endoplasmic reticulum via TAP 

transporters (11) and class II peptides arriving via endosomes generated through phagocytosis or 

B cell receptor internalization by antigen presenting cells (12). It stands to reason that these distinct 

pathways could result in peptides from different proteins being more accessible to MHC class I 

versus class II molecules. Indeed, studies profiling eluted peptide-MHC complexes noted 

enrichment for peptide origin from intracellular compartments for MHC-I eluted peptides, and for 

secreted, cell membrane, and extracellular proteins for MHC-II eluted peptides (13–16). 

Interestingly, a more recent work found a bias for MHC-I presented peptides to come from proteins 
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with certain molecular functions such as intracellular structural proteins while MHC-II was biased 

to present membrane transport proteins (17).  

These observations imply that proteins in different cellular contexts (location or molecular 

function, which are correlated (18) can have varying levels of access to the MHC-I or MHC-II 

presentation pathway. This could further constrain the landscape of peptides that are presented to 

T cells during cancer development and during T cell selection in the thymus. In the first case, a 

tumor mutation that would otherwise be effectively bound and displayed by the MHC may not be 

presented because peptides from the source protein never reach the MHC. For the second, effective 

presentation of self-antigen during thymic development is required for clonal deletion of 

corresponding T cells. This pruning of the T cell repertoire is essential to prevent inappropriate 

activity against self; mutations to the AIRE gene that promotes tissue-specific self-antigen 

expression during selection result in widespread, multi-organ autoimmunity (19). However, if the 

peptide repertoire available for T cell selection is constrained by cellular context, it is conceivable 

that the remaining T cell repertoire would be more capable of mounting a response against peptides 

from those hidden cellular contexts. 

Based on this reasoning, we hypothesized that subcellular location of a source protein could 

influence the immunogenic potential of its derivative peptides. We collected and analyzed data on 

peptides presented by the MHC and peptides documented to generate immune responses.   To 

determine the extent to which cellular location can predict neopeptide immunogenicity, we trained 

and evaluated machine learning models on datasets of experimentally tested neopeptides. FInally, 

we evaluated source protein subcellular location in the context of immunotherapy response and 

tumor remodeling by immunotherapy. Together, these analyses support the view that protein 

subcellular location is a determinant of neopeptide immunogenicity.  
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3.4 Results 

Certain cellular components are enriched for immunogenic peptides.  We performed 

gene ontology cellular component enrichment analysis on over 380,000 MHC class I and II eluted 

peptides from a diverse set of normal tissues and tumor cell lines (Figure S3.1). We confirmed 

enrichment for MHC-I presented peptides in the cytosol, nucleoplasm, and extracellular exosome 

components and for MHC-II presented peptides in the extracellular exosome, region, and space 

(Figure S3.1) as previously described (13–16). Expression analysis of genes from enriched 

locations revealed increased expression compared to genes from depleted locations (Figure S3.2), 

though 62% of highly expressed genes were not significantly enriched in eluted pMHC, 

reaffirming previous findings that gene expression alone does not drive peptide elution (16). We 

also evaluated protein turnover rates from 4 human cell types including B cells, natural killer cells, 

hepatocytes, and monocytes (20) as peptides presented by MHC-I are derived from degraded 

peptides in the cell (21). Thus, a high turnover rate could result in more peptides being available 

for presentation. Instead, we found that overall, proteins from enriched location categories tended 

to have longer predicted half lives (Figure S3.3), though the cell types evaluated were limited. To 

understand the implications of these findings for peptide-directed T cell responses, we next sought 

to correlate peptide immunogenicity with subcellular origin.  

We hypothesized that the effects of protein subcellular localization bias on peptide 

availability for presentation and T cell selection would influence the immunogenicity of tumor 

neoepitopes. Therefore we sought to test whether incorporation of peptide parent protein location 

would improve prediction of neopeptide immunogenicity. We began by querying the immune 

epitope database (IEDB) (22) for neoepitopes that were assayed for immunogenicity. After 

filtering (Methods), 2,943 neoepitopes remained, of which 813 (27.6%) were reported to elicit a 
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positive T cell assay result. Cellular component enrichment analysis of parent proteins (n=325) of 

immunogenic peptides did not reveal any significantly enriched locations, likely due to limited 

sample size. However, these peptides did tend to come from locations where more eluted peptides 

were observed on average (Figure S3.4). Analysis of unique nonimmunogenic parent proteins 

(n=772) whose peptides passed the minimum MHC-I binding threshold (<2 netMHCpan percentile 

rank) showed enrichment for locations including integral component of plasma membrane, plasma 

membrane, which are depleted for eluted peptide-MHC (Figure S3.1) but also some other 

membrane locations that were enriched for MHC-bound peptides, such as the endoplasmic and 

sarcoplasmic reticulum membranes.  

As proteins can localize to multiple locations and have multiple cellular components, we 

sought a representation capable of capturing complex location patterns. We first used pretrained, 

200-dimensional gene ontology embeddings (23) to represent each protein’s gene ontology (GO) 

cellular component annotations, summing embedding vectors if a protein was associated with 

multiple GO terms. For visualization and use in a machine learning model, we used UMAP 

dimensionality reduction of these summed embeddings (Methods). As the embeddings and 

UMAP reduced features are in a non-Euclidean space, proteins with similar locations (e.g. integral 

component of membrane vs integral component of membrane + plasma membrane) are not 

necessarily near each other in 2D space (Figure S3.5).  

We next evaluated locations of immunogenic or non-immunogenic neopeptides from the 

IEDB, using unique proteins evaluated in respective studies (Methods). As expected, 

immunogenic and non-immunogenic peptide source proteins had many overlapping locations 

(Figure 3.1A,B). However, we still observed certain combinations of locations with more 

immunogenic peptides than not (Figure 3.1C) and vice versa. For example, proteins localizing to 
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both the mitochondrion and mitochondrial matrix, or the mitochondrial matrix alone had fewer 

immunogenic peptides while more immunogenic peptides were found in proteins localizing to the 

centrosome, cytoplasm, nucleoplasm, and nucleus regions, though small sample sizes and use of 

several different assays to determine immunogenicity may reduce power.   

Parent protein location improves peptide immunogenicity prediction in multiple datasets. 

Next, we sought to test whether incorporating location as a feature would improve immunogenicity 

prediction. We performed 10-fold cross validation using a random forest classifier on the IEDB 

dataset (Methods) with and without adding location to a feature set that comprised peptide-MHC 

binding affinity (nM) (24), peptide-MHC stability (25), and foreignness (6, 8). This dataset did not 

include many MHC-II peptides, and did not provide enough information about MHC-II alleles to 

calculate pMHC affinities, therefore we focused on MHC-I peptides. We found that adding 

location as a feature improved both the area under the receiver operating characteristic (ROC) 

curve (Figure 3.1D) and precision-recall (PR) curve (Figure 3.1E), and contributed to 38% of the 

model’s predictive power (Figure 3.1F). We examined the predicted differences between the two 

models by using the median Youden index to classify peptides as immunogenic or not for each 

model. 254 peptides were differentially classified between the two models, with 134 now classified 

as immunogenic and 120 not immunogenic in the location model. The re-classified peptides were 

enriched for true positives and negatives (Fisher’s exact OR: 1.74, p=0.04), and true positives 

included peptides from the cytosol while the true negatives included peptides from the nucleus 

(Figure S3.6). Interestingly, among these newly classified peptides, immunogenic versus non-

immunogenic peptides had significantly higher median GTEx gene expression but similar affinity, 

stability, and foreignness scores (Figure S3.6), suggesting that location may help predict gene 

expression. As gene expression was correlated with peptide-MHC elution (Figure S3.2) (26), we 
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repeated the analysis, this time including median gene expression obtained from GTEx as a feature. 

We found that the benefit of including location as a feature persisted, suggesting that location 

provides distinct information than expression for immunogenicity prediction (Figure S3.7). 

Next, we tested our model on unseen datasets not included in the IEDB database. First, we 

analyzed around 900 peptides from Wells et al. as this dataset represented the largest collection of 

immunologically tested peptides we could identify (6). As these data were designed to benchmark 

neoantigen prediction algorithms, they were partitioned into a ~600 peptide discovery set and a 

~300 peptide validation set. Initial analysis revealed differences in the distribution of MHC affinity 

and stability of immunogenic peptides between the IEDB and Wells datasets (Figure S3.8) and 

the parent proteins of immunogenic peptides identified in Wells et al., originated from locations 

that were infrequently observed in the IEDB. Interestingly, while a model trained solely on IEDB 

did not perform as well as a model trained on the discovery partition provided in the Wells study 

in ROC analysis (AUROC of 89% vs 93%), it significantly improved the precision-recall curve 

(AUPRC of 64% vs 9.2%) (Figure S3.8). This suggests that filtering candidate neoantigens based 

on location may significantly reduce false positive predictions. To address systematic differences 

in the feature sets, we trained a new model combining the IEDB with the Wells discovery set, and 

were able to achieve a higher recall on the test set (AUROC of 92%) while retaining the benefit 

for reducing false positives (69% AUPRC) (Figure 3.2A-C).  

Several peptide features including tumor abundance (expression) and agretopicity that 

were identified in the Wells dataset as being predictive of immunogenicity but were not available 

in the IEDB dataset. Therefore, we trained a separate model on the Wells discovery set alone 

incorporating these additional features and tested it on the independent Wells test set. We found 

that incorporating location improved both the AUROC (89% vs 67%) and AUPRC (9.6% vs 
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7.5%). In this model, the location features contributed 22% of feature importance, just below 

affinity (Figure S3.9). These experiments suggest that location improves prediction of 

immunogenic peptides, with the greatest benefit likely coming from reduction in the number of 

false positive predictions. The large improvement in precision and recall when incorporating the 

IEDB underscores the benefit of a large training set for capturing the information provided by 

parent protein location.  

We evaluated performance on a second independent dataset of 43 assayed MHC-I 

neoepitopes from advanced ovarian cancer patients (27) not seen in the IEDB cohort. Of these, 3 

(6.9%) were validated as immunogenic. The tested neopeptides once again had significantly 

different affinity and stability than the IEDB dataset, and while 16 locations were shared between 

datasets, these did not include the parent proteins for the 3 immunogenic peptides (Figure S3.10). 

We ran the model trained on IEDB alone with and without location features, as well as the model 

trained on both the IEDB and Wells datasets. We observed improved performance as with the 

addition of datasets and incorporation of location (Figure S3.11), 45% vs 65% AUROC and 6.2% 

vs 9% AUPRC. Taken together, these findings suggest that immunogenicity prediction benefits 

from incorporating parent protein subcellular location and can be improved through aggregation 

of independent datasets across cancer types.  

Immunotherapy response reflects neoepitope parent protein subcellular location. Most 

T cell based immunotherapies, such as anti-cancer vaccines and immune checkpoint blockade 

(ICB) depend on the availability of immunogenic peptides to drive effector T cell responses. We 

speculated that if parent protein subcellular location constrains the set of mutations in a tumor that 

could potentially be immunogenic, then we should find associations between location and 

immunotherapy responses. We evaluated three ways in which location might be apparent in human 
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immunotherapy studies. First, we sought to determine whether location was a determinant of T 

cell response in a neoantigen vaccine study, then we asked whether neopeptides from locations 

that were more immunogenic were more likely to be depleted by immunotherapy (immunoediting), 

and finally investigated whether location could improve estimation of the effective neoantigen 

burden and consequently stratification of responders and nonresponders to ICB.  

We first investigated the association of location with immune response in a neoantigen 

vaccine study (28) and found that parent proteins of neopeptides able to induce a post-vaccination 

response (75/125 tested; 120 distinct parent proteins) were enriched for previously observed 

immunogenic locations (Fisher’s exact 3.49, p=0.029). Because neoantigen vaccine studies have 

reported predominantly CD4+ T cell responses (28–31), we also investigated whether the vaccine 

neopeptides associated with response came from locations from which more MHC-I or MHC-II 

peptides were eluted by the HLA ligand atlas. The majority of neopeptides tested (92/125, 73.6%) 

had parent proteins from which peptides had been found eluted from both MHC-I and MHC-II. 

Nineteen neopeptides’ parent proteins were only observed to be eluted from MHC-I and 7 were 

exclusive to MHC-II (Figure S3.12A). Unlike having parent proteins in a location previously 

associated with immunogenic peptides, the number of MHC eluted peptides from neopeptide 

parent proteins alone did not correlate with response, although there was a weak trend for 

neopeptide parent proteins exclusive to MHC-II to have higher numbers of eluted peptides 

observed (Figure S3.12B). Thus, although we observed correlation between number of eluted 

peptides and immunogenicity in general (Figure S3.4), subcellular location may be a more 

nuanced determinant of immunogenic potential.  

Since we found an association between parent protein subcellular location and post-vaccine 

response, we speculated that tumor clones cleared during treatment would be more likely to harbor 
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mutations in proteins from immunogenic locations. To further explore this possibility, we 

evaluated 73 melanoma patients with paired pre- and on-treatment samples to see if there were 

notable differences between eliminated and persistent neopeptides before and after treatment (32). 

We focused on responders (n=38, partial/complete response, or >6 months of stable disease) as 

these patients should have a relatively intact immune response compared to non-responders. While 

responders had better overall presentation of evaluated neopeptides, eliminated neopeptides did 

not have significantly better overall MHC allele-specific presentation compared to retained 

neopeptides in both responders and nonresponders (Figure S3.13), suggesting that neopeptide 

elimination is not driven solely by affinity or stability in this dataset. However, we note that this 

analysis is complicated by the non-independence of mutations that coexist within the same 

subclones. To investigate further, we examined 12,915 retained neopeptides from responders that 

were predicted to be presented by MHC-I (NetMHCpan rank < 2) and, therefore, should have been 

eliminated by the patient’s immune system. We found that eliminated neopeptides tended to be 

enriched for locations where immunogenic peptides were previously observed (combining the 

immunogenic peptides from the IEDB, Wells et al., Liu et al.) (Fisher’s exact OR: 1.08, p=0.09).  

Next, we studied the potential for parent protein location to improve ICB response 

stratification. We evaluated cohorts with whole exome sequencing data, as well as one profiled 

using a deep sequenced gene panel. We began by looking for association of previously 

immunogenic locations with response status. We found that in a large cohort of melanoma patients 

(n=122) (33) where tumor mutation burden associated with response (Figure S3.14A), responders 

compared to nonresponders had a higher burden of proteins from locations where immunogenic 

responses have been previously observed (Fisher’s exact OR: 1.06, p=0.0014). Considering only 

mutations from immunogenic locations as putative neoantigens, responders still had a significantly 
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higher burden of neoantigens relative to non-responders (Figure 3.3A).  We repeated this analysis 

in another melanoma cohort (n=110) (34), where higher tumor mutation burden (TMB) was also 

associated with response (Figure S3.14B) and this time found no significant association between 

neopeptide parent protein location and response (Fisher’s exact OR: 0.95, p=0.24). This could be 

due in part to ignoring other major determinants of immunogenicity such as affinity for the MHC. 

Therefore, we used a model trained on all datasets with immunogenicity information (IEDB + 

Wells + Liu (ovarian)) to classify neopeptides in both ICB cohorts as immunogenic or not based 

on the Youden index of the trained model (Methods). In the Van Allen cohort, the predicted burden 

of immunogenic peptides in responders was significantly higher than in non-responders (Figure 

3.3B). Comparing predicted neoantigens from models with and without location, to the burden of 

neopeptides with MHC-I affinity <500nM, we found that filtering out neopeptides predicted not 

to be immunogenic widened the gap between responders and non-responders in both cohorts, with 

the largest difference between responders and non-responders obtained with the model including 

location (Figure 3.3C), supporting the potential of location to improve stratification of patient 

groups pre-treatment.  

 Finally, we analyzed a cohort of 83 diverse tumors treated with immune checkpoint 

monotherapy that were profiled pre-treatment with the Foundation Medicine gene panel. Of 325 

genes on this panel, 40 (12.3%) encoded proteins with subcellular locations from which 

immunogenic peptides had previously been observed, including ABL1, ALK, APC, ARAF, 

C11ORF30, EMSY, CCND3, CDK4, CDKN1A, CDKN2A, CREBBP, EGFR, EZH2, FAM46C, 

FGF19, FGF3, FGF4, FUBP1, GATA3, ID3, INPP4B, JAK1, KDM5C, KMT2D,MLL2, KRAS, 

MAP3K1, MDM4, MET, MYCL, MYCL1, NPM1, NT5C2, PALB2, PBRM1, PTPRO, RARA, SMO, 

TBX3, TET2, TIPARP  and TP53. Thirty-seven of these 40 were from regions where only MHC-I 
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peptides had been previously observed, while 2 genes (BCORL1 and EPHA3) were associated with 

locations from which only MHC-II peptides had been observed.  

First, we asked whether the burden of somatic mutations in the 40 genes was informative 

for stratifying patient outcomes. Focusing on mutation burden in proteins from immunogenic 

locations reduced the total number of mutations under consideration while preserving the potential 

to distinguish responders from non-responders and those with stable disease (SD) (Figure 3.4A-

B). Second, we asked whether effective presentation of one or more neopeptides from these 40 

proteins was a better determinant of outcome than presentation of one or more neopeptides across 

all proteins in the panel. For this analysis, we focused on the 71 out of 83 patients that carried at 

least one mutation in these 40 genes. While patient MHC genotype specific presentation scores 

(PHBR scores, (35)) were able to stratify responders from non-responders when all proteins were 

considered (Figure 3.4C), the stratification improved when we focused on only the 40 proteins 

from immunogenic locations overall (Figure 3.4D) and in high TMB patients (Figure S3.15). We 

revisited this analysis using a Cox Proportional Hazards model with covariates as described 

previously (36), and found that when we focused on the 40 panel genes encoding proteins from 

immunogenic locations, presentation (PHBR score) was more significantly associated with 

outcome in high TMB patients, and the model had an improved (lower) Akaike information 

criterion score (Table S3.1). Altogether these results support that subcellular location of parent 

proteins is a determinant of the effective neoantigen burden in the setting of immunotherapy.  

 

3.5 Discussion 

While immunotherapy has generated more durable responses than targeted therapies (37), 

the fraction of patients that respond is lower. Notably, immunotherapy tends to have higher 
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response rates in tumor types with a high burden of somatic mutations which is thought to be a 

proxy for having a large number of immunogenic mutations. Mapping the mutations in a tumor 

genome to the subset that are likely to create immunogenic neoantigens is therefore important for 

realistically assessing the potential for immunotherapy response as well as for designing effective 

cancer vaccines. Consequently, a variety of metrics have been developed to reveal putative 

neoantigens in tumor genomes, with the most common being peptide-MHC binding affinity, 

peptide-MHC complex stability, peptide agretopicity, foreignness, and mutation expression. Here 

we analyzed peptides from eluted peptide-MHC and found that the subcellular location of proteins 

also influences which peptides are presented by the MHC. Using a high-dimensional cellular 

location embedding that captured multi-localization mapped to a 2 dimensional representation, we 

analyzed the implications of parent protein location relative to peptide immunogenicity and 

immunotherapy response. Immunogenic peptides were biased toward specific subcellular 

locations and a higher burden of mutations from these regions was associated with more benefit 

from immunotherapy in multiple cohorts. These findings provide the first evidence that parent 

protein locations influence both neopeptide presentation and T cell recognition and elimination.  

We evaluated both the subcellular locations of proteins from which MHC-I and MHC-II 

bound peptides originate as well as those associated with peptides labeled as immunogenic based 

on experimental assays. We note that these locations may not fully overlap. While stable 

presentation by the MHC is a prerequisite for immunogenicity, it’s possible that not all locations 

from which peptides are sourced will generate immunogenic peptides. This is dependent in part 

on the extent of thymic selection. Furthermore, we note that not all experimental assays used to 

profile immunogenicity will fully recapitulate the dependence on protein location, which could 

lead to the appearance of some immunogenic peptides coming from regions with no HLA 
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presented peptides. Furthermore, there was substantially less information about MHC-II peptides 

than MHC-I, leading to more limited assessment of immunogenicity in locations where peptides 

were predominantly eluted from MHC-II. Nonetheless, more MHC-II presented peptides than 

MHC-I presented peptides were associated with vaccine response in multiple vaccine studies (28–

31).  

In general, we speculate that the location constraint could more strongly affect peptide 

availability for MHC-I. Peptides from different compartments within the cell may have more 

variable access to the ER, which depends largely on transport from the cytoplasm by TAP family 

transporters (38). Peptides displayed by MHC-II come mostly from proteins internalized by 

antigen presenting cells, however MHC-I and MHC-II has been found abundantly in extracellular 

exosomes derived from B cells, which may explain the significant enrichment in eluted peptides 

(39, 40). In addition, the diversity and availability of such proteins could change drastically in the 

presence of apoptotic or necrotic cells in the tumor immune microenvironment, making proteins 

from previously unavailable locations more accessible. Cross-priming may allow some exceptions 

to location constraints as well (41).  

These considerations are particularly important in the context of cancer vaccines. Effective 

vaccine design depends on selecting peptides that will induce robust immune responses. Inclusion 

of peptides that stimulate T cell expansion but are not effectively displayed by the MHC at the 

tumor site creates the risk of generating immunodominance toward ineffective targets (38). The 

resulting T cell expansions could be dominated by clones incapable of suppressing the tumor, 

while more relevant clones are outcompeted in competition for antigen on the APCs (42), nutrient 

starved (43) and may become more easily exhausted (44). Thus, it may be important to avoid 

including peptides from parent proteins that are less accessible to the MHC.  More stringent 
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constraints on peptide accessibility to MHC-I might make selection of effective peptides for MHC-

I more challenging than for MHC-II.  

Another possible consideration is whether biases in protein location during thymic 

tolerance render the T cell repertoire more sensitive to proteins from certain locations. Including 

peptides from these locations could be beneficial. This also leads to the speculation that protein 

localization changes in tumor cells could alter accessibility to the MHC. If these proteins were less 

subject to thymic tolerance, they could potentially be more potently immunogenic. One study 

found that an inverted form of melanoma antigen with altered localization, Melan-A, was 

recognized by T cells while the native orientation and a variant expressed in the cytosol were not 

(45). Although alterations in localization signals are reportedly rare (46, 47), differences in 

trafficking could be more common (48). For example, we found that some mitochondrial regions 

were depleted for immunogenic proteins, however mitochondrial derived vesicles may provide a 

pathway for proteins from these regions to the MHC (49). 

We note several limitations to our study. The pretrained location embeddings were based 

on characteristics of normal cells, and will reflect any biases or gaps present in the Gene Ontology 

(50). Furthermore, many proteins map to multiple locations (51) and have multiple associated 

cellular component terms. In this study we weighted each component equally, but it is likely that 

some locations may be predominant or transient. Immunogenicity is based on experimental assays 

in the IEDB performed on 325 proteins by various groups using various assays. These proteins 

could reflect selection bias. Similarly, locations associated with MHC eluted peptides may reflect 

the specific alleles that were profiled. In addition, MHC-II datasets may be biased toward B cells, 

whereas differences in internalization mechanisms among antigen presenting cell types such as 

dendritic cells or macrophages could create differences in which proteins are more accessible.  
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Despite these limitations, we found that incorporating protein location into analysis of 

immunotherapy cohorts was helpful in several ways. We used location to revise the effective 

neoantigen burden in tumors and better stratify potential for immunotherapy response. While 

expression and location provided independent benefit for inferring immunogenicity, correlation 

between these measures suggests that location could serve as a generic proxy for expression in 

studies where expression was not directly measured. Studying the effects of location in the context 

of tumor immunoediting is further made difficult by patterns of co-segregating mutation and 

subclone-specific mechanisms of immune evasion can confound the association with neoantigen 

characteristics. More insight may be gained from future single cell studies where it is possible to 

define the clonal architecture of tumors and determine which mutations coexist within the same 

clones. Indeed, Mehrabadi et al found that location bias of mutated proteins correlated with 

immunoediting of specific tumor subclones in a murine model of melanoma (52). Location 

information was also beneficial in a cohort that was profiled with a gene panel however, suggesting 

that this information could still be relevant for the more limited data commonly generated in 

clinical settings. Thus, we conclude that protein subcellular location contributes to shaping the 

tumor-immune interface and can potentially be leveraged to improve the effective application of 

immunotherapies.  

 

3.6 Materials and Methods 

GO analysis. Gene ontology enrichment analysis was performed using GOATOOLS 

(https://github.com/tanghaibao/goatools) (53) using the standard parameters, and retaining 

enriched or depleted results if the Benjamini-Hochberg corrected p-value was less than 0.05. 

(Table S3.2) 
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Abelin 2019 peptides. Peptides were obtained from the published Supplementary Data 

S1B. Peptides were mapped to parent UniProt sequences and filtered out if they mapped to multiple 

parent proteins. 69653/76561 (90.7%) peptides uniquely mapped to 1 parent protein sequence. 

Isolation and purification of HLA-DR bound peptides. The human B cell lymphoblastoid 

cell lines 721.221, JThom (9004), OLL (9100), and SPACHECO (9072) were grown in complete 

RPMI 1640 medium (Gibco) supplemented with 10% fetal bovine serum (FBS; Gibco/Invitrogen 

Corp). The HeLa cell line was grown in DMEM/F12K (Gibco) supplemented with 10% fetal 

bovine serum (FBS; Gibco/Invitrogen Corp). The cells were grown in large scale cultures in roller 

bottles and the cell viability was maintained at >90% throughout the experiments. To induce HLA-

Class II surface expression, HeLa cells were treated with IFNɣ (500 U/mL) for 72 hours after 

which the cells were harvested, washed twice with ice cold PBS and spun down at 2500xg for 10 

minutes. The cell pellets were snap frozen in LN2 and stored at -80 until downstream processing. 

All  cell lines were subjected to high-resolution sequence-based HLA typing (HLA-A, -B, -C, DR, 

DP and DQ) for authentication prior to large scale culture and data collection. 

HLA-DR molecules were purified from the cells by affinity chromatography using the anti-

human HLA-DR antibody (clone L243) coupled to CNBr-activated Sepharose 4 Fast Flow 

(Amersham Pharmacia Biotech, Orsay, France) as described previously (54). Briefly, frozen cell 

pellets were pulverized using Retsch Mixer Mill MM400, resuspended in lysis buffer comprised 

of Tris pH 8.0 (50 mM), Igepal, 0.5%, NaCl (150 mM) and complete protease inhibitor cocktail 

(Roche, Mannheim, Germany). Lysates were centrifuged in an Optima XPN-80 ultracentrifuge 

(Beckman Coulter, IN, USA) and filtered supernatants were loaded on immunoaffinity columns. 

After a minimum of 3 passages, columns were washed sequentially with a series of wash buffers 

(55) and were eluted with 0.2 N acetic acid. The HLA was denatured, and the peptides were 
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isolated by adding glacial acetic acid and heat. The mixture of peptides and HLA-DR was 

subjected to reverse phase high performance liquid chromatography (RP-HPLC). 

Fractionation of the HLA/Peptide Mixture by RP-HPLC. RP-HPLC was used to reduce 

the complexity of the peptide mixture eluted from the affinity column. First, the eluate was dried 

under vacuum using a CentriVap concentrator (Labconco, Kansas City, Missouri, USA). The solid 

residue was dissolved in 10% acetic acid and fractionated using a Paradigm MG4 instrument 

(Michrom BioResources, Auburn, California, USA). An acetonitrile (ACN) gradient was run at 

pH 2 using a two-solvent system. Solvent A contained 2% ACN in water, and solvent B contained 

5% water in ACN. Both solvent A and Solvent B contained 0.1% trifluoroacetic acid (TFA). The 

column was pre-equilibrated at 2% solvent B. Then the sample was loaded at a flow rate of 120 

µl/min and a two-segment gradient was run at 160 µl/min flow rate as described in detail in (54). 

Fractions were collected in 2 min intervals using a Gilson FC 203B fraction collector (Gilson, 

Middleton, Wisconsin, USA), and the ultra-violet (UV) absorption profile of the eluate was 

recorded at 215 nm wavelength. 

Nano LC-MS/MS Analysis. Peptide-containing HPLC fractions were dried, resuspended 

in a solvent composed of 10% acetic acid, 2% ACN and iRT peptides (Biognosys, Schlieren, 

Switzerland) as internal standards.  Fractions were applied individually to an Eksigent nanoLC 

415 nanoscale RP-HPLC (AB Sciex, Framingham, Massachusetts, USA), including a 5-mm long, 

350 µm internal diameter Chrom XP C18 trap column with 3 µm particles and 120 Å pores, and a 

15-cm-long ChromXP C18 separation column (75 µm internal diameter) packed with the same 

medium (AB Sciex, Framingham, Massachusetts, USA). An ACN gradient was run at pH 2.5 using 

a two-solvent system. Solvent A was 0.1% formic acid in water, and solvent B was 0.1% formic 

acid in 95% ACN in water. The column was pre-equilibrated at 2% solvent B. Samples were loaded 
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at 5 µL/min flow rate onto the trap column and run through the separation column at 300 nL/min 

with two linear gradients: 10% to 40% B for 70 minutes, followed by 40% to 80% B for 7 

minutes.              

The column effluent was ionized using the nanospray III ion source of an AB Sciex 

TripleTOF 5600 quadrupole time-of-flight mass spectrometer (AB Sciex, Framingham, MA, 

USA) with the source voltage set to 2,400 V. Information-dependent analysis (IDA) method was 

used for data acquisition (54). PeakView Software version 1.2.0.3 (AB Sciex, Framingham, MA, 

USA) was used for data visualization.                   

Peptide Identification and Source Protein Information. Peptide sequences were identified 

using PEAKS Studio 10.5 software (Bioinformatics Solutions, Waterloo, Canada). A database 

composed of SwissProt Homo sapiens (taxon identifier 9606) and iRT peptide sequences was used 

as the reference for database search. Variable post-translational modifications (PTM) including 

acetylation, deamination, pyroglutamate formation, oxidation, sodium adducts, phosphorylation, 

and cysteinylation were included in database search. Identified peptides were further filtered at a 

false discovery rate (FDR) of 1% using PEAKS decoy-fusion algorithm                      

Cellular component location embedding. Gene Ontology (GO) cellular component (CC) 

annotations for all UniProt protein IDs was obtained from uniprot.org. Pretrained 200 dimensional 

vectors for 64,649 GO terms were obtained from (23). Vectors were mapped to UniProt IDs and 

summed if a UniProt ID had more than 1 associated GO CC term. UMAP dimensionality reduction 

(56) using the “hyperboloid” metric was applied, then mapped to the Poincare disk model. The 

resulting 2 values for each protein were used as features.  

IEDB Data. Peptides were selected from the Immune Epitope Database and Analysis 

Resource (www.iedb.org) (22) on July 16, 2021 using filters “Epitope Structure: Linear 
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Sequence”, “Included Related Structures: neo-epitope”, “No B cell Assays”, “No MHC assays”, 

“MHC Restriction Type: Class I”, “Host: Homo sapiens (human)” and “Include Positive Assays”, 

“Include Negative Assays” (T cell assays). This resulted in 3754 peptides. Peptides whose “Assay 

Antigen Antigen Description” sequence did not match “Epitope Description” sequence were 

filtered, resulting in 3521 peptides. Peptides were also filtered out if they did not have an associated 

UniProt ID, found in the “Related Object Parent Protein IRI'' field, resulting in 3367 peptides. 

Peptides were additionally removed if they were not in the UniProt CC file (downloaded on April 

17, 2020 from uniprot.org by selecting all Human peptides and choosing “Gene ontology (cellular 

component)” in the column selection, see Cellular component location embedding), resulting in 

3125 peptides. Peptides were dropped if they did not have a specific associated HLA allele (e.g. 

Allele Name = “HLA class I” or Allele Name = “HLA-A2”) or if they were not a simple linear 

sequence (e.g. ILCETCLIV + AIB(C3, C6)). This resulted in 2943 peptides. Affinity, stability, 

and foreignness features were calculated as described in “Validation Data”.  

Hex plots. Parent protein locations were plotted for each unique protein and immunogenic 

state for each study (i.e. if peptides from ProteinA had positive and negative tests, the parent 

protein would be retained twice, once in each immunogenic category).  

Random forest model. The RandomForestClassifier from sklearn v0.24.2 was used using 

random state 2021. The  StratifiedKFold function was used to perform the 10-fold splits, also using 

random state 2021. The Youden indices for each fold were obtained by taking the threshold that 

had the greatest TPR-FPR (i.e. greatest area under the curve). The median Youden index was used 

to classify peptides as immunogenic or not for downstream analyses. 

Wells Data. Experimentally validated peptides were obtained from published 

supplementary tables S4 and S7 in (6). Peptides were mapped to parent proteins by iterating 
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through all UniProt proteins and looking for a match to any peptide with a wildcard in the given 

mutated position (e.g. Python code to find the wildtype peptide corresponding to "FLCEILRSMSI” 

with mutated position 10: re.findall(r'(?=(“FLCEILRSM.I”))’, protein_sequence). 10 peptides 

without a mutated position were excluded. 584 (97.6%) of neopeptide sequences mapped to 1 

unique parent wildtype sequence. Peptides with matched wildtype sequences mapping to multiple 

UniProt IDs were dropped. Missing foreginness or agretopicity scores were recalculated using the 

methods described in Wells et al. The resulting 558 peptides from the discovery set was used to 

train a Random Forest classifier using sklearn (v0.24.2).  

Wells Validation Data. The trained model was tested on the 310 peptide validation dataset 

from Wells et al., as well as 43 peptides from ovarian tumors (27). As these datasets did not include 

all features from the discovery dataset, NetMHCstabpan (v1.0) (25) was used to predict pMHC 

stability, NetMHCpan (v4.0) (24) was used to predict pMHC binding affinity, and the 

antigen.garnish package (https://github.com/andrewrech/antigen.garnish) was used to calculate 

foreignness as described in Luksa, Wells. Finally, agretopicity was calculated by taking the ratio 

of mutant to wildtype binding affinity.  
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3.7 Figures 

 

 
Figure 3.1. Overview of T cell assayed neoepitopes from IEDB. Hexplots of embedded location 
for (A) non-immunogenic (blue) and (B) immunogenic (orange) peptides. (C) Hexplot depicting 
the difference between immunogenic and non-immunogenic hexplots in A and B. Orange indicates 
more immunogenic peptides, and blue indicates more non-immunogenic peptides. (D) Area under 
the receiver operating characteristic curve (AUROC) and (E) area under the precision recall curve 
(AUPRC) for 10-fold cross validation using a Random Forest model incorporating peptide affinity, 
stability, and foreignness (Methods) with and without parent protein location features. (F) Barplot 
of model feature importances. 
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Figure 3.2. Predicting immunogenicity on unseen datasets. (A) Area under the receiver 
operating characteristic curve (AUROC) (B) and area under the precision recall curve (AUPRC) 
for the unseen validation dataset with and without parent protein location features. (C) Scatterplot 
of the predicted probabilities for unseen test neopeptides to be immunogenic with and without 
location as a feature. Dashed lines indicate the Youden index for each model, used to optimally 
threshold predictions. False positives are reduced in the model with location. 
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Figure 3.3. ICB responders carry a higher burden of mutations in proteins from 
immunogenic locations. (A) Predicted neoantigen burden versus response category in the Liu 
cohort when retaining only mutations in proteins from subcellular locations previously observed 
to source immunogenic peptides. (B) Predicted neoantigen burden versus response category in the 
VanAllen cohort where neoantigen status is predicted using a model trained on 3 sources of 
immunogenic peptide and features including peptide MHC affinity, stability, agretopicity and 
location. (C) Barplot of effect sizes between responders and nonresponders where neoantigen 
status is predicted using a model trained on 3 sources of immunogenic peptide and MHC affinity, 
stability and agretopicity, with and without location. 
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Figure 3.4. Focusing on immunogenic locations improves response prediction in a gene panel 
profiled cohort. Tumor mutation burden (A) focusing on the 40 genes whose proteins localize to 
previously observed immunogenic subcellular locations and (B) all genes in the gene panel. 
Kaplan Meier curves showing the effect of the best presented mutation on progression-free 
survival (C) using all genes in the panel and (D) using only the 40 genes of interest. 
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3.8 Supplemental Data, Tables and Figures 

 

Figure S3.1. Overview of enrichment or depletion of cellular components in multiple 
datasets. (A) Clustermap of the top 20 cellular components depleted in eluted peptide-MHC 
(pMHC) class I from normal and cell lines. (B) Clustermap of 21 cellular components enriched in 
eluted pMHC-I complexes across all evaluated normal tissues, indicated by “(N)” (Marcu et al., 
2021) and evaluated cell lines (Abelin et al., 2017). The color indicates the difference in study vs 
population enrichment. Clustermaps of (C) depleted and (D) enriched cellular components for 
eluted pMHC-II from 721.221, JThom (9004), OLL (9100), and SPACHECO (9072) B cells, HeLa 
cells stimulated with IFN-γ, (Abelin et al., 2019), and (Abelin et al., 2019; Marcu et al., 2021).  
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Figure S3.2. Correlation of gene expression and eluted peptide location. Barplot for each tissue 
showing the effect size comparing the median GTEx gene expression for enriched over depleted 
genes. All comparisons show that genes in enriched locations have higher median gene expression 
than genes in depleted locations. 
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Figure S3.3. Relationship between protein turnover and elution for the top 20 most 
frequently enriched or depleted cellular components across evaluated tissues or cell lines. 
The Mann-Whitney U test was used to compare statistical significance. 
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Figure S3.4. Analysis of the relationship between elution and immunogenicity. Boxplot 
comparing the frequency of eluted peptides versus immunogenicity assay results for proteins that 
have been evaluated for class I immunogenicity in the IEDB. 
  



 190 

 
 
 
 

 
 
Figure S3.5. Overview of UMAP location embeddings for all unique UniProt proteins. 
Hexplot of UMAP location embeddings for all unique UniProt proteins with reviewed status and 
unique gene names. 
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Figure S3.6. Overview of differentially classified peptides between the models with and 
without location as a feature. Orange indicates locations with more immunogenic peptides 
compared to non-immunogenic peptides and vice versa. Locations with more than 3 immunogenic 
or non-immunogenic genes are highlighted. 
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Figure S3.7. Analysis of the effects of incorporating gene expression in the random forest 
model.  (Left) Area under the receiver operating characteristic curve (AUROC) and (right) area 
under the precision recall curve (AUPRC) for 10-fold cross validation using a Random Forest 
model incorporating median GTEx gene expression, peptide affinity, stability, and foreignness 
(Methods) with and without parent protein location features.  
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Figure S3.8. Comparison of the IEDB and Wells et al. datasets. (Top) Boxplots comparing 
affinity (measured in nM), stability (measured by half life), and foreignness stratified by 
immunogenicity. The Mann-Whitney U test was used to compare statistical significance. (Bottom 
panel) Area under the receiver operating characteristic and precision recall curves using the 
random forest model trained on the IEDB dataset and Wells discovery set to test on the Wells test 
set.  
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Figure S3.9. AUROC and AUPRC plots for the model trained on the Wells discovery dataset 
and tested on the Wells test dataset. Features include peptide affinity, stability, tumor abundance, 
agretopicity, and foreignness. Barplot denoting feature importance for the model. 
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Figure S3.10. Comparison of the IEDB and Liu et al. datasets. Boxplots comparing affinity 
(measured in nM), stability (measured by half-life), and foreignness. The Mann-Whitney U test 
was used to compare statistical significance. The Venn diagram shows the overlapping unique 
locations. All overlapping locations were non-immunogenic in Liu. 
 
 
 



 196 

 
 
Figure S3.11. Testing pretrained models on the unseen Liu ovarian dataset. (Left) AUROC 
and (right) AUPRC curves for the IEDB model without location, with location, and aggregated 
model with IEDB, Wells et al., and location. 
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Figure S3.12. Analysis of neopeptide vaccine parent protein MHC elution patterns. (A) 
Boxplots showing the number of eluted peptides in the HLA ligand atlas associated with the parent 
proteins of the 125 neopeptides evaluated by Sahin et al. The majority were from proteins from 
which peptides were found in both MHC-I and MHC-II eluted complexes. Parent proteins 
exclusive to MHC-I tended to have lower eluted peptide counts than parent proteins exclusive to 
MHC-II. (B) Boxplots showing the number of eluted peptides as in panel A, but further divided 
according to whether the number of MHC eluted peptides was not associated with post-vaccination 
response.  
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Figure S3.13. Comparison of neopeptide characteristics in the Riaz et al. dataset. (Top) 
Boxplots comparing affinity, agretopicity, stability, and foreignness between eliminated versus 
remaining neopeptides for both responders and nonresponders. (Bottom) Comparison of 
neopeptide affinity between responders and nonresponders. 
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Figure S3.14. Initial association of tumor mutation burden with response. (A) Liu et al. and 
(B) Van Allen et al. Tumor mutation burden was defined in Liu et al. as the number of somatic 
mutations, and in Van Allen et al. as the number of neopeptides <500nM. 
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Figure S3.15.  Kaplan Meier curves showing the effect of the best presented mutation on 
progression-free survival. (Left) using all genes in the panel and (Right) using only the 40 genes 
of interest for high TMB patients. 
 
  



 201 

Table S3.1. Cox proportional hazards results.  
 
 

 
 
  

  Hazard 
ratios 
(exp(coef)) 

Standard error 
(se(coeff)) 

p-value 

Model focusing 
on the 40 genes 
that fall in 
locations seen to 
be previously 
immunogenic 
 
Partial 
AIC=147.9 

PHBR score 1.27 0.09 0.01 

TMB 0.99 0.004 0.57 

Age at treatment with 
immunotherapy 

0.97 0.02 0.13 

Gender 1.55 0.47 0.35 

Unfiltered 
model. Focuses 
on all genes from 
the gene panel 
 
Partial 
AIC=151.7 

PHBR score 1.35 0.22 0.17 

TMB 0.99 0.004 0.46 

Age at treatment with 
immunotherapy 

0.98 0.02 0.33 

Gender 1.88 0.46 0.17 
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