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Quantum Markov Chain Monte Carlo with
Digital Dissipative Dynamics on Quantum Computers

Mekena Metcalf,1, ∗ Emma Stone,2 Katherine Klymko,1 Alexander F. Kemper,2 Mohan Sarovar,3 and Wibe A. de Jong1, †

1Computational Research Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
2Department of Physics, North Carolina State University, Raleigh, North Carolina 27695, USA

3Extreme-scale Data Science and Analytics, Sandia National Laboratories, Livermore, CA 94550, USA

Modeling the dynamics of a quantum system connected to the environment is critical for advancing our under-
standing of complex quantum processes, as most quantum processes in nature are affected by an environment.
Modeling a macroscopic environment on a quantum simulator may be achieved by coupling independent ancilla
qubits that facilitate energy exchange in an appropriate manner with the system and mimic an environment. This
approach requires a large, and possibly exponential number of ancillary degrees of freedom which is impractical.
In contrast, we develop a digital quantum algorithm that simulates interaction with an environment using a small
number of ancilla qubits. By combining periodic modulation of the ancilla energies, or spectral combing, with
periodic reset operations, we are able to mimic interaction with a large environment and generate thermal states
of interacting many-body systems. We evaluate the algorithm by simulating preparation of thermal states of the
transverse Ising model. Our algorithm can also be viewed as a quantum Markov chain Monte Carlo (QMCMC)
process that allows sampling of the Gibbs distribution of a multivariate model. To demonstrate this we evaluate
the accuracy of sampling Gibbs distributions of simple probabilistic graphical models using the algorithm.

I. INTRODUCTION

Much of simulation science is built upon modeling a sys-
tem interacting with an environment in order to capture com-
plex dissipative and relaxation dynamics. In addition, the use
of engineered environmental interactions to prepare equilib-
rium states of interacting systems has a long history in com-
puting. However, environments tend to be very large, and di-
rectly simulating a system coupled to an environment using
classical or quantum simulation requires approximations and
many extra degrees of freedom to serve as a source of entropy.
Sampling from difficult distributions like a multivariate Gibbs
distribution on quantum computers has been proposed using
Metropolis sampling algorithms that reduce time complex-
ity [1–5], variational algorithms that are possibly well-suited
to near-term quantum computers but have a classical opti-
mization overhead [6, 7], thermal-field double states [8, 9],
and quantum imaginary time-evolution to implement the min-
imally entangled typical thermal state (METTS) [10, 11] sam-
pling algorithm on quantum computers [12, 13]. Our ap-
proach is different, as we engineer an open-quantum system
with the desired thermal/Gibbs state as the fixed point of evo-
lution.

Thermal states can be prepared by modeling open-quantum
systems if the system and environment are weakly coupled, if
the dynamics are ergodic, and if the energy exchange is de-
tailed balanced [14–16]. However, it is not straightforward
to guarantee that these conditions are met by an environment
that is engineered from ancilla degrees of freedom, and more-
over, the number of required ancilla degrees of freedom could
scale exponentially with the degrees of freedom in the sys-
tem to be thermalized (since the number of energy eigenstates
scales exponentially with degrees of freedom). We address
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these difficulties by adding time-dependence to the ancilla
qubits that approximate the environment, and modulating the
energy of these ancilla qubits across the system energy spec-
trum in a suitable manner – a process termed spectral comb-
ing. This procedure allows us to engineer the necessary con-
ditions for thermalization with a number of ancilla that does
not need to scale exponentially with the system size. The al-
gorithm we develop in this paper can be viewed as a digital
version of the analog thermalization algorithm developed in
Ref. [16], which relied on the same principles. Our algorithm
is a method to emulate quantum Markov chain Monte Carlo
(QMCMC) methods [17] on quantum devices [2, 18], and thus
provides a general route to sample from complex probability
distributions corresponding to the stationary states of Markov
chains. In the case that the eigenvalues of the Hamiltonian
are non-degenerate and can be identified by a label, the al-
gorithm reduces to the classical Markov chain mapped to a
quantum Hamiltonian [1]. An important application will be
the preparation of thermal, initial states to simulate chemi-
cal and molecular reaction pathways [19] in large systems
(where the classical dynamics become prohibitively expen-
sive) at arbitrary temperatures. Our algorithm is designed
to obtain thermal distributions of statistical physics problems
with great accuracy. In the case of degenerate quantum algo-
rithms we find our algorithm is able to obtain thermal distri-
butions. The thermal state of Hamiltonians fully degenerate
levels has greater error due to the violation of detailed bal-
ance. For concreteness, we focus on spin systems, however,
the general approach can be used to thermalize any many-
body system whose Hamiltonian can be encoded in a many-
qubit Hamiltonian.

Spectral combing using auxiliary qubits that exchange en-
ergy with the principal qubits periodically in time has been
proposed for digital and analog unitary evolution to obtain
ground states and thermal states [20, 21]. Our approach in
Ref [16] used spectral combing to engineer detailed balance
conditions on analog quantum computers. By engineering
the detailed balance conditions we can obtain high-accuracy,
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approximate thermal distributions on quantum devices [15].
We extend our previous method to digital quantum comput-
ers, and devise an algorithm that mimics the interaction of a
system with a finite temperature macroscopic bath using time-
dependent ancilla qubits. Our algorithm is founded on the
three criteria needed for the thermal state to be the unique
fixed point of evolution: Born-Markov approximation, er-
godic dynamics, and detailed balance transitions [14]. We
test the performance of our algorithm by numerically evalu-
ating the distance between the steady-state solution and gen-
uine, thermal distribution for a transverse field Ising model
(TFIM) and by computing the error in computing the thermal
magnetization in the transverse direction. We also evaluate
the performance of the algorithm on the problem of sampling
multivariate Gibbs distributions over binary random variables
with constraints generated by Erdós Rényi random graphs.

II. THEORETICAL FOUNDATION

Modeling finite temperature physics of quantum systems
requires defining a composite Hilbert space of the system and
a bath H = Hs ⊗ Hb. The total Hamiltonian defines the
system Hs, the bath Hb, and the interaction between them
Hi,

H = Hs ⊗ I + I ⊗Hb +Hi. (1)

We can now express the time-evolution operator of the total
Hamiltonian

ρ(t) = U(t)ρ(0)U†(t), (2)

U(t) = e−iHt, (3)

where we set ~ = 1.
If the system and bath are weakly coupled, ||Hi|| �

||Hb|| �, ||Hs|| �, and the bath is fast equilibriating, the
influence of the system on the bath state is negligible. We
can make the Born approximation, defining the state of the
system-bath at t = 0 as an uncorrelated product state ρ(0) =
ρs(0)⊗ ρb. Tracing out the bath degrees of freedom the state
of the system at time t,

ρs(t) = Trb
(
U(t, 0) [ρs(0)⊗ ρb]U†(t, 0)

)
, (4)

defines a completely positive, trace preserving (CPTP) dy-
namical map. This dynamical map is what we aim to imple-
ment on a quantum computer. Under the conditions that the
system dynamics is ergodic and that the bath-induced transi-
tions between system eigenstates are detailed balanced [14],
the unique fixed point of evolution is the thermal state

ρs(t) = ρth =
e−βH

Tr (e−βH)
, (5)

where β = 1/kBT , and T is the equilibrium temperature.
Using insights from Ref. [16] we demonstrate how these con-
ditions can be satisfied by engineering a bath consisting of
locally coupled, time-independent ancilla spins.

III. QUANTUM ALGORITHM

The algorithm weakly couples a collection of periodically
modulated ancilla qubits (which function as the “bath”) to the
qubits in an arbitrary multi-qubit system Hamiltonian (Hs) as
such,

Hb(t) = −
M∑
m=1

Ω(t)

2
τmz (6)

Hi =

M∑
m=1

g
(
σλ(m)
x ⊗ τmx

)
(7)

H(t) = (Hs ⊗ Ib) + (Is ⊗Hb(t)) +Hi, (8)

where τmα (α = x, y, z) are the Pauli spin operators acting on
ancilla m, and σλ(m)

α are spin operators for the principal spin
coupled to ancilla m, see Fig. 1(a). λ(m) simply returns the
index of the principal qubit that is coupled to ancilla qubit m.
The function Ω(t) = ωmf(t) represents the time-dependent
modulation of the bath qubits, and sweeps across the system
spectrum using a periodic function f(t) with period Tcycle in
conjunction with an estimate of the spectral width of the sys-
tem Hamiltonian, ωm ≈ |Emax − Emin|. Periodically mod-
ulating the energy of the independent ancilla spins enables an
exchange of energy with different system frequency transi-
tions at different times, see Fig. 1(b). In the above Hamilto-
nian we have modeled the system-ancilla interaction through
a σλ(m)

x ⊗ τmx interaction. This is not uniquely specified.
This could be any other interaction that promotes energy ex-
change between the system and ancilla degrees of freedom,
e.g., σλ(m)

y ⊗ τmy . The important element is that the system

portion of this interaction (e.g., σλ(m)
x ) cannot commute with

Hs. Finally, while not necessary, in the above model we have
assumed that the system-ancilla coupling, g, is the same for
all m for simplicity.

Our approach in the following will be to approximate the
above continuous evolution via a discretized Trotter evolution
and develop a gate-based implementation of the time evolu-
tion However, crucial to the thermalization behavior is engi-
neering the ancilla systems to mimic a macroscopic bath that
is on average in a thermal state. To do this, we need to en-
sure that the ancilla qubits, whose local eigenbasis is the com-
putational basis, are maintained in local thermal states over
coarse timescales. We employ a (non-unitary) reset mecha-
nism and a probabilistic application of a rotation in order to
achieve this. The reset operation on allM ancilla qubits is de-
fined asRρ ≡

∑2M−1
i=0 |0〉〈i| ρ |i〉〈0|, where |i〉 is the M qubit

state encoding the binary representation of i. In more detail,
the state of the ancilla spin that we wish to maintain at a time
t, is the (time-dependent) thermal state

ρthb (t) = p0(t) |0〉〈0|+ (1− p0(t)) |1〉〈1| , (9)

p0(t) =
eβΩ(t)/2

eβΩ(t)/2 + e−βΩ(t)/2
. (10)

We prepare this state by reseting the ancilla spin to |0〉 and
applying a τmx rotation with probability (1− p0(t)).
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Figure 1. a) Principal qubits (blue) locally connected to ancilla qubits (red). b) Time-dependent ancilla frequency combs the system energy
spectra and resonantly exchanges energy with different energy transitions in the system at different times c) Quantum circuit to implement the
interaction cycle dynamical map in Eq. 12 for arbitrary system size. Us = e−iHsπ/gNT and U(π/gNT ) is what we denote Wt in the main
text evaluated at some time t. The phase rotation with angle θa(t) = −Ω(t)π/gNT associated with the ancilla Hamiltonian does not affect
the dynamics until U(π/gNT )2. The system-bath interaction yields an angle θi = 2π/NT . Xp is a probabilistic X gate, which is applied
with probability (1− p0(t)), see text for details.

As shown in Ref. [16] thermalization of the system re-
lies on a separation of time-scales between the system-bath
interaction and the bath relaxation – essentially, the system
should “see” all ancilla degrees of freedom in thermal states
at the natural timescale of the system-bath interaction. There-
fore, we distribute the ancilla reset and randomized prepa-
ration steps in such a way that there is a reset after a full
cycle of system-ancilla interaction – i.e., after an evolution
time Tg = π/g. From another perspective, weak coupling
of the system to the ancilla and the periodic resets of the an-
cilla qubits ensure there is no correlation between the ancilla
spins, and phase differences will not lead to interference over
the course of evolution. In order for effective thermalization

of the system we require that the energy modulation of the an-
cilla be slower than the interaction timescale. More precisely,
we require the following hierarchy of parameters:

|df(t)

dt
| � g � ||Hs|| (11)

Putting this together, the operation on the composite system
for a period of system-ancilla interaction is,

ρ(t+ Tg) = [Wt ◦ Ft ◦ R] ρ(t), (12)

where
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Wtρ = WtρW
†
t , with Wt =

[(
M∏
m=1

e
−ig(σλ(m)

x ⊗τmx ) TgNT

)(
e
−iHs

Tg
NT

)( M∏
m=1

(
e
i

Ω(t)
2 τmz

Tg
NT

))]NT
, and (13)

Ftρ = ⊗Mm=1 (p0(t)ρ+ (1− p0(t))τmx ρτ
m
x ) . (14)

Note that we have suppressed the identity operations on sub-
systems being acted on trivially. The operationFt implements
the probabilistic bit flip of the ancilla qubits. The order of
the unitary operators in Wt describes the physical process of
system-bath evolution, we first evolve by the system and bath
Hamiltonians for a time Tg/NT , followed by an application of
the interaction. This is repeated for NT iterations, where NT
is parameter to be chosen. Eq. 12 corresponds to a first-order
Suzuki-Trotter discretization of the Hamiltonian dynamics de-
scribed above coupled with the non-unitary operations of reset
and probabilistic excitation of the ancilla qubits. The choice
of NT dictates the error incurred in discretizing the continu-
ous coherent evolution by Hamiltonian in Eq. 1. To achieve
an error of ε, we require NT = O((3TgΛ)2/ε) [22], where
Λ = max(‖Hi‖, ‖Hs‖, ‖Hb‖). We note that one could im-
plement the unitary portion of the dynamics, Wt, with higher
order Suzuki-Trotter product formulas. This would increase
the complexity of the gate sequence implementing the evolu-
tion but would allow for a smaller number of Trotter steps,
NT , while holding simulation error constant [23].

Eq. 12 provides a prescription for executing our thermal-
ization algorithm on a quantum computer. A circuit represen-
tation of the sequence of operations is given in Figure 1(c).
It is important to note that Ω(t), or more accurately f(t), is
assumed to be constant over an evolution time of Tg , consis-
tent with the parameter hierarchy presented in Eq. 11. We
introduce an additional parameter corresponding to the dis-
cretization of f(t) – we assume one period of f(t), Tcycle is
divided into Ncycle steps of size Tg; i.e., Tcycle = Tg ×Ncycle

sets the timescale of the sweep of the ancilla energies. The
overall dynamics over one Tcycle is then:

ρ(t+ Tcycle) =

Ncycle∏
k=0

Wtk ◦ Ftk ◦ R

 (ρs(t)⊗ |0〉b 〈0|) ,

(15)

with tk = kTg and |0〉b 〈0| denotes the state where all M an-
cilla qubits are in their ground state. Ncycle is another parame-
ter of choice, and we find that the appropriate choice depends
on the details of the system being driven to thermal equilib-
rium.

IV. NUMERICAL EXAMINATION OF QMCMC

In this section we simulate our QMCMC algorithm on two
model applications to determine its performance. The first is
a paradigmatic spin model, the transverse-field Ising model
(TFIM), and the goal is to prepare the thermal density matrix

Figure 2. Infidelity of the QMCMC ground state with the genuine
TFIM ground state with h/J = 0.5, h/J = 1, and h/J = 2. The
TFIM has Ns = 2 − 5 principal qubits each independently coupled
to a single ancilla spin prepared using p0 = 1.

of the model and reproduce thermal observables. The second
example demonstrates our algorithm for the task of sampling
from Gibbs distributions determined by probabilistic graphi-
cal models over classical random variables.

We determine the performance of our algorithm by numeri-
cally calculating the steady state of the dynamical map. To do
so, we compute the reduced system dynamics of the system
qubits over a complete cycle, or period Tcycle, of the ancilla
sweeping function f(t). The system dynamics is repeated ap-
plication of this dynamical map defined over the time period
[0, Tcycle], and therefore the steady state of the system is the
zero-eigenvalue eigenvector of the dynamical map over this
period. We explicitly compute the dynamical map acting on
just the system qubits over this period, defined as:

ρs(t+ Tcycle) ≡Mρ(t)

= Trb


Ncycle∏
k=0

Wtk ◦ Ftk ◦ R

 (ρs(t)⊗ |0〉b 〈0|)

 ,

After explicit computation of the linear mapM, we compute
its spectrum and define the steady state of the dynamics, ρss
as the eigenvector associated with eigenvalue one. In all of our
numerical studies, this map has a non-degenerate eigenspace
at eigenvalue one, and thus a unique steady state. We can also
determine the difficulty to achieve thermalization by evalu-
ating the spectral gap of the dynamical map, the inverse of
which determines the thermalization time scale [1].
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Figure 3. (upper) Transverse magnetization of the TFIM with h/J =
1 using Ns = 2 − 5 principal qubits, as a function of the target
(inverse) temperature compared to the exact magnetization shown by
the black curves.(lower) Error between the exact magnetization and
the magnetization of the algorithm steady-state.

Before we examine the numerical examples, we summa-
rize the expected sources of error in our protocol. Ref. [16]
presented a detailed analysis of the sources of imperfection
in the analog version of our thermalization protocol. There it
was shown that the effective spectral density seen by the sys-
tem can violate detailed balanced conditions due to the finite
scale of the ancilla subsystem, and this leads to thermaliza-
tion errors, especially in systems where the energy gaps in Hs

are congested in frequency and when the target temperature
is low. We expect poorer thermalization performance for this
digital algorithm in that regime also. In addition, the digital
algorithm will incur errors due to the Suzuki-Trotter approxi-
mation of the analog continuous-time dynamics.

Transverse Field Ising Model – The one-dimensional
TFIM [24, 25] with open boundary conditions is defined by
the Hamiltonian,

H = −J
Ns−1∑
i=1

σizσ
i+1
z − h

Ns∑
i=1

σiy, (16)

which describes spins coupled locally with strength J in the
presence of a transverse field h. Coupling strength J sets our
energy and time scale for the Hamiltonian evolution. Each
principal spin is coupled to an ancillary qubit with an interac-
tion strength g/J = 0.005 that sweeps the system spectrum

with a sinusoidal f(t) = sin2 (πt/Tcycle), with NT = 5000
and Ncycle = 500, implying a period of Tcycle = TgNcycle =
10π × 104/J .

To assess the quality of the thermalization, we compute the
infidelity of the steady state of the dynamical mapM defined
above with the ideal thermal state at the simulation tempera-
ture. The infidelity is defined as 1−F , with

F = Tr
(√√

ρthρss
√
ρth

)2

, (17)

where ρth is the ideal thermal state, which for low tempera-
tures approaches the ground state of the TFIM.

In Fig. 2 we show the quality of thermalization for TFIM
models of varying size and in three regimes: h/J < 1, h/J =
1, and h/J > 1. The target temperature for all simulations is
βJ = 10. The infidelity generally increases with system size
in all parameter regimes. In the regime where g/J < 1, the
error is significantly greater and increases exponentially with
system size. This error arises from the energy structure of the
TFIM at low fields. At low fields energy transitions become
similar requiring greater resolution of the sweeping function
f(t). The steady-state error could be improved in this regime
by increasing the resolution of the ancilla sweeping function
by increasing Ncycle.

Finally, for this physically motivated example, we demon-
strate the extraction of thermal observables finite-temperature
steady-state extracted from the dynamical map spectrum. For
the TFIM, a common observable of interest is the magneti-
zation in the transverse field direction, my(t) = tr(ρ(t)σy),
which is used to characterize thermal phase transitions. We
evaluate numerically the magnetization for the exact ther-
mal state ρth and the state ρ(t) obtained from applying algo-
rithm to a random initial state for a number of ancilla sweeps
(Tcycles). We calculate the magnetization for 1D chain with
open boundary conditions where h/J = 1 for Ns = 2 − 5
principal spins Fig. 3. Interestingly, we see a trend in the error
as a function of temperature. Rather than the error steadily
increasing with lower temperature, we notice the error is pe-
riodic for an even number of qubits as the temperature is in-
creased. Though, we see this pattern emerge for the mag-
netization, the infidelity of the steady-state increases for low
temperatures as expected.

Sampling from Gibbs distributions – Sampling from Gibbs
distributions of complex networks has a long history in statis-
tical mechanics and machine learning [26–28]. MCMC tech-
niques are the standard approach to such sampling problems,
and here we demonstrate that our QMCMC algorithm can be
used for such sampling problems.

Suppose we have a collection of binary random vari-
ables Xi, 1 ≤ i ≤ NS , whose configurations are dic-
tated by a potential in the form of a quadratic formula
in conjunctive normal form, η(X1, ..NNs). We are in-
terested in sampling from the Gibbs distribution defined
by p(X1, ..NNs) = exp(η(X1, ...XNs))/Z , where Z =∑
X1,...XNs

exp(η(X1, ...XNs)) is a partition function. This
is equivalent to sampling the Gibbs distribution over a proba-
bilistic graphical model with nodes corresponding to the ran-
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Figure 4. Total variational distance (TVD) and infidelity between the true Gibbs distribution and the distribution generated by the QMCMC
algorithm for random instances of graphs with 4 vertices and edge probability a) 0.4, b) 0.6, and c) 1 at inverse temperatures β = 10, 1, 0.1.
The vertex values are ha = {0.084, 0.026, 0.403, 0.379}, hb = {0.403, 0.379, 0.0528, 0.805}, hc = {0.379, 0.0528, 0.805, 0.379} and are
computed using the same seed as the edges.

dom variables and each edge corresponding to a clause in the
potential formula [29].

We test the ability of QMCMC to prepare thermal states
that enable such Gibbs sampling by encoding the potential in
a Hamiltonian of the form

Hg =

Ns∑
i=1

hiσ
i
z +

∑
j,k∈ζ

wζσ
j
zσ

k
z . (18)

This Hamiltonian is equivalent to an encoding of
η(X1, ...XNs), and the |0〉 , |1〉 states of each qubit cor-
respond to the possible values of the random variables. ζ
lists all clauses in η. In the following, we generate random
instances of such problems. To do so, we first generate Erdös-
Rényi random graphs with edge probability pe. These edges
in this graph dictate ζ for the problem. Then for each edge
we assign a weight, wζ , that is a random variable uniformly
distributed in the interval [0, 1], and for each variable we
assign a random local energy, hi, that is uniformly distributed
in the interval [0, 1].

After generating such a random instance and its corre-
sponding Hamiltonian, we evaluate the ability of QMCMC
to thermalize the many-body system by computing the steady
state of the thermalization mapM, and comparing the distri-
bution of measurement outcomes in the computational basis
to the ideal Gibbs distribution p(X1, ...XNs). We use the total

variation distance (TVD) to quantify the error between these
distributions:

TV D(p, q) =
1

2

∑
i

|pi − qi| (19)

In Fig. 4 we show the TVDs along with the infideli-
ties achieved by QMCMC with an interaction strength of
g = 0.005 for three random instances with varying pe for
several values of (inverse) temperature. We use the same si-
nusoidal f(t) used in the TFIM calculations discretized by
Ncycle = 100 and NT = 5000. Distance between the
true Gibbs distribution and distribution generated by sampling
from the QMCMC steady-state is comparable to the infideli-
ties seen for the TFIM example in the low temperature. Sim-
ilar to the results for the TFIM, the trend observed in tem-
perature for the physically motivated observable is a feature
of the energy structure. Algorithmic accuracy depends on the
system energy structure, and we can place no guarantees on
the energy structure of a random instance. However, the trend
seen by infidelity metric as a function of temperature is a good
approximation for any given graph. These infidelity results
are in good agreement with the analog protocol, accuracy in-
creases with temperature.
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V. CONCLUSION

Dynamically generating thermal states of quantum systems
has historically required modeling a macroscopic environment
or obtaining detailed knowledge of the system energy spectra,
but in this work we demonstrate a method to represent these
systems with linear spatial complexity using time-dependent,
ancilla qubits. We analyzed the success of this model using
magnetization as an observable in the TFIM and by numer-
ically evaluating the fixed point of evolution for a random
graph mapped to the Ising model. When the three criteria
(Born-Markov, ergodic dynamics, and detailed balance energy
exchange) are met, our algorithm generates a unique steady-
state that approximates the thermal state. We aim to use this
algorithmic framework to sample other complex distributions
and define methods to generate non-equilibrium quantum dis-
tributions on quantum computers.
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