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Abstract 

Photodegradation Stimulates Microbial Activity Through Enhanced Water Solubility of 

Grass Litter Carbon 

Trevor L. Romich 

Solar radiation is an important contributing factor to decomposition in drylands. Research 

suggests that in the presence of water, previously irradiated plant litter experiences greater 

microbial decay than litter which was not exposed to radiation. It is unclear how exactly 

radiation alters litter to allow this photopriming of microbial decomposition. However, the 

relationship to water suggests that radiation may make litter more water-soluble, and 

therefore more accessible to decomposers once water enters the system. I tested the 

hypothesis that the abiotic impact of solar radiation on grass litter would (1) increase the 

production of dissolved organic carbon (DOC) when litter is subsequently extracted with 

water, and (2) produce DOC that stimulates more microbial activity compared to unexposed 

litter. Dried senesced grass litter from three species, Bromus diandrus, Avena fatua, and 

Hordeum murinum, were placed in sealed bags and subjected to abiotic decomposition in 

either an outdoor experiment or an indoor experiment. Treated litter was then soaked in 

water, and the extract was analyzed to determine the dissolved organic carbon concentration 

and its bioavailability. Exposure to radiation resulted in more DOC for all species in both the 

indoor and outdoor experiments, suggesting that solar radiation does enhance solubility of 

grass litter. During a microbial incubation, I observed a significant increase in CO2 

production and a marginally significant increase in DOC consumption for samples exposed 

to more radiation in the indoor experiment. However, as a fraction of initial DOC available, 
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radiation reduced these measures of microbial activity. This indicates that photodegradation 

produces compounds which are relatively difficult for microbes to decompose, but 

photodegradation can still stimulate microbial activity by increasing the total amount of 

available dissolved carbon. Taken together, these results suggest a possible mechanism for 

observed increases in mass loss due to photopriming: litter carbon is made more soluble by 

radiation, and is mobilized in the presence of water, allowing for increased microbial 

decomposition. This insight into decomposition mechanisms could aid in developing more 

mechanistic models of carbon cycling that include photopriming. 
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Introduction 

Photodegradation can enhance the decay of plant organic matter and can contribute a 

substantial fraction of total decomposition in drier environments (King et al., 2012; Wang et 

al., 2015). In such locations, decomposition occurs more rapidly than would be expected 

from variables such as moisture and temperature that work well for predicting decomposition 

in wetter environments. Researchers have pointed to photodegradation as a possible 

explanation for this phenomenon (Parton et al., 2007).  Models that include photodegradation 

are better at estimating dryland decomposition than models that rely solely on biological 

decomposition, with one study reporting that photodegradation models predict 12% greater 

decomposition annually (Adair et al., 2017). In order to develop effective models of 

decomposition in drylands, it is important to understand the mechanisms of 

photodegradation. 

There are two components to photodegradation. First, absorption of visible and 

ultraviolet radiation can lead to the abiotic breakdown of litter. Studies also frequently 

observe that litter which was previously irradiated subsequently experiences higher microbial 

decomposition rates (e.g., Gliksman et al., 2017; Austin et al., 2016); this enhancement of 

microbial decay due to radiation is known as photpriming. However, observation of 

photopriming’s importance is not universal. The above-mentioned modeling study by Adair 

et al. (2017) compared a basic exponential decay model of biotic decomposition to several 

different types of photodegradation models, including some that attempted to account for 

photopriming by transforming recalcitrant carbon into more bioavailable carbon. Some of the 

photopriming models they tested performed better than the no-photodegradation model, but 

the best match for observations was a model that only included abiotic photodegradation 
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(Adair et al., 2017). There are also field studies that do not detect photopriming (e.g., Brandt 

et al., 2009). These conflicting results suggest that photopriming may only be relevant in 

some conditions, and the mechanics behind it remain unclear (King et al., 2012). A better 

mechanistic understanding of the process of photopriming may help reconcile the results of 

Adair et al. (2017)’s modeling study with the inconsistent but frequent observation that 

photopriming does in fact occur. 

 Photodegradation can break down three major carbon fractions in litter – cell 

solubles, cellulose/hemicellulose, and lignin and other highly recalcitrant compounds (Huang 

et al., 2017). However, previous research indicates that lignin and cellulose/hemicellulose 

may experience greater photodegradation than other components of plant litter. Lignin 

absorbs strongly in the ultraviolet (UV) wavelength range, leading researchers to suspect it 

may be impacted by photodegradation (King et al., 2012; George et al., 2005). Austin and 

Ballaré (2010) observed that wavelengths of radiation which promote photodegradation 

match those which are absorbed strongly by lignin. They also assessed mass loss from litter 

due to photodegradation using artificial plant litter created from laboratory materials; 

artificial litter with more lignin experienced greater mass loss after exposure to radiation 

(Austin & Ballaré, 2010). Wang et al. (2015)’s meta-analysis found that UV radiation 

resulted in a greater fraction of lignin than total mass being lost from litter, suggesting that 

this relationship may hold for actual plant litter. 

Not all studies see a positive relationship between litter lignin content and 

photodegradation (e.g., Brandt et al. 2010; Brandt et al., 2007). King et al. (2012) performed 

a meta-analysis and, unlike Wang et al. (2015), found either no relationship or a reduction in 
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photodegradation by UV radiation with increasing litter lignin content. There is also evidence 

that UV radiation preferentially affects cellulose-type compounds. Lin & King (2014) found 

that hemicellulose, but not cellulose or lignin, decayed more with radiation exposure than 

without. Similarly, Brandt et al. (2007) observed a radiation-induced reduction in the 

remaining pooled cellulose and hemicellulose fractions of litter after three years of exposure 

to differing UV radiation levels.  

Much research has focused on UV radiation due to the relationship with lignin, but 

UV and visible wavelengths are both important to photodegradation. Research on wood has 

identified UV radiation as a source of radiation-induced decomposition due to the 

aforementioned impact on lignin (George et al., 2005). UV radiation has also been observed 

to enhance decomposition of other types of plant matter, including grasses found in dryland 

environments (Brandt et al., 2010; Brandt et al., 2007; Brandt et al., 2009). Experiments have 

also demonstrated that visible light can account for close to 50% of the total 

photodegradation effect, both for artificial litter (Austin & Ballaré, 2010) and for B. gracilis 

grass litter (Brandt et al., 2009; Austin & Ballaré, 2010). Given the body of research 

suggesting the importance of both wavelength ranges to photodegradation overall, and the 

fact that photodegradation is observed to have a greater impact on compounds such as 

cellulose and lignin that are not water-soluble, I would expect both UV and visible radiation 

to promote dissolved organic carbon (DOC) production through photodegradation.  

In aquatic systems, research has shown a positive relationship between 

photodegradation and litter carbon bioavailability. Moran and Zepp (1997) reviewed existing 

literature and found that already dissolved organic carbon is broken into smaller carbon 
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compounds by radiation and that this degradation leads to increased microbial activity. 

Purely abiotic photodegradation can increase production of dissolved organic carbon from 

aquatic plant litter. The remaining litter is then more susceptible to microbial breakdown 

(Vähätalo et al. 1998). These results suggest a link between photopriming and the production 

of DOC, which may be applicable to terrestrial environments as well. 

Some terrestrial studies do suggest a relationship between biotic decomposition, 

photodegradation, and water. According to Gliksman et al. (2017), dew moisture can 

stimulate photopriming in situations where radiation exposure does not increase biotic decay 

of dry litter. Though not specifically intending to investigate water-sunlight interactions, Lin 

& King (2014) found that litter covered by a surface litter layer still decays faster in sunlight. 

As this lower litter layer is not directly exposed to radiation, the enhanced decay may be 

caused by greater downward transport of DOC from the surface layer (Lin & King 2014). 

 Based on these results, I tested the following mechanism for photopriming. First, 

photodegradation by UV and visible radiation breaks plant compounds—preferentially 

affecting lignin and cellulose/hemicellulose—into smaller structures that are more water-

soluble. Then, in the presence of water, these compounds dissolve and become more 

available to microbes, increasing microbial activity. 

I tested this mechanism for photopriming by investigating the impact of different 

radiation exposure levels on (1) DOC production, (2) microbial consumption of carbon, and 

(3) chemical characteristics of DOC.  
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If this mechanism is correct, I would expect: 

1. Radiation increases DOC production in plant litter 

2. DOC produced from litter exposed to radiation stimulates more microbial activity 

than DOC from litter that was not irradiated 

3. DOC produced by photodegradation is preferentially derived from lignin and 

cellulose 

I also sought to identify possible differences in the importance of UV and visible light 

to this process. Because past studies have found both wavelengths to be important, I would 

expect both to contribute to DOC production with effects of equal order of magnitude. 

  

Methods 

Grass litter from three nonnative California grasses—Bromus diandrus, Hordeum 

murinum, and Avena fatua—was collected on July 15, 2018 from the University of California 

Natural Reserve System Sedgwick Reserve near Santa Barbara, CA. These grasses were 

chosen because they are three of the most common grasses in California (D’Antonio et al., 

2007), which should increase the likelihood that this study’s results are generally indicative 

of grassland photodegradation in the state. Prior studies report differences in litter lignin and 

cellulose content among the three grass species used, which may lead to differences in their 

response to radiation exposure (Table 1). However, if the same pattern is observed in 

multiple species, this should provide stronger evidence that the pattern is a general trend than 

if only one species were used. 
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Table 1: Litter carbon fractions as determined by past studies 

Litter Carbon 

Fraction 

Avena Bromus (soon after 

senescence) 

Hordeum vulgare 

Lignin 4.1% 3.2% 4.36% 

Cellulose 36.41% 39.7% 33.9% 

Hemicellulose 30% 31.6% 48.6% (reported as 

soluble carbohydrates) Cell solubles 29.49% 25.5% 

Source Esch et al., 2019 Lin et al., 2015 Pancotto et al., 2005 

 

The Sedgwick Reserve experiences a Mediterranean climate with cool, wet winters 

and warm, dry summers. The field litter collection site is located on a hill dominated by 

Bromus and Avena grasses; litter collection occurred before the senesced grass had been 

exposed to rain (University of California Natural Reserve System, 2020). Bromus and Avena 

litter were collected from a hilltop location (34.694oN, 120.030oW). Because no Hordeum 

litter was found at this location, Hordeum was instead collected on the side of the hill, near 

the base, about 50 meters away (34.695oN, 120.030oW). Standing dead litter was removed by 

hand, put into paper bags, and brought to the laboratory for storage. Litter was allowed to air 

dry in a fume hood in the laboratory for several days and was stored in loosely closed paper 

bags to minimize radiation exposure. 

Before being subjected to the radiation treatment, litter was cut into segments of < 10 

cm length, and roots were removed. Additionally, seeds were removed from Bromus and 

Avena litter. For Hordeum litter, the entire seed head was clipped off where it met the stem, 

as the seeds were more difficult to separate from the rest of the plant in this species. 

In order to minimize any confounding effects of sterilization procedures on litter 

chemistry, the litter itself was not sterilized, but the handling of litter and sample bags was 
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designed to minimize microbial activity. The litter was oven-dried at 45oC for 24 hours 

before being transferred to an ethanol-sterilized laminar flow hood where sample bags were 

constructed. For each sample bag, 0.25 g of litter was heat-sealed into approximately 10 cm 

by 10 cm polyvinyl fluoride plastic film (DuPont Tedlar® TST20SG4) bags that were 

transparent to ~90% of both UV and visible light. Bags were wiped with ethanol prior to 

adding litter to reduce microbial population. Due to this, as well as the dry conditions in the 

bags, I expected that microbial activity during the treatment would be minimal. This should 

mean any radiation treatment differences are primarily due to abiotic photodegradation. 

I set up two experiments to subject plant litter to different radiation conditions. One 

experiment was established outdoors, on the roof of Webb Hall at UC Santa Barbara. In this 

experiment, three different radiation treatments were created by filtering solar radiation. Each 

treatment consisted of two screens placed next to each other, and sample bags were placed 

approximately 10 cm beneath these screens, affixed to a wooden board to keep them in place. 

A high radiation treatment allowed 90% of both UV and visible light to reach the bags 

(hereafter referred to as the UV + Visible treatment). The screen for this treatment was made 

of the same type of Tedlar film used to make the sample bags. A treatment that allowed 90% 

of visible light but only 14% of UV radiation to reach the bags (hereafter called the Visible 

Pass treatment) was established using a 0.178 mm thick polycarbonate sheet (SABIC 

Lexan®). A third Radiation Block treatment, created by covering Tedlar film in aluminum 

foil, excluded over 90% of radiation in both the visible and UV wavelengths. Each treatment 

received 12 sample bags of each grass species, for a total of 108 samples (3 species x 3 

treatments x 12 replicates), and received 4 empty bags as controls. This experiment ran from 

August 18, 2018 to November 10, 2018, with the location of each treatment rotated weekly to 
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minimize differences in radiation reaching the treatment screens caused by the shadows of 

adjacent structures on the roof.  Because the sample bags were attached to a wooden board, 

they could not be turned over, so litter in the outdoor experiment was only exposed to 

radiation on one side of the bags (see Appendix 1, Figures A1-1 and A1-3 for photos of the 

outdoor setup and of all three types of treatment screen). 

The second experiment was established inside a climate-controlled room to assess the 

effect of radiation under more controlled environmental conditions. Radiation in this 

experiment was provided by UV lamps, which were left on 24 hours a day to maximize UV 

exposure (see Appendix 1, Figure A1-2 for a picture of the indoor experiment setup). 

However, these lamps had relatively low visible light output. Three radiation treatments were 

established using the same three types of screen material as in the outdoor experiment, but 

with only one screen per treatment. Exact radiation dosage under the lamps varied with 

location, but samples were randomly moved to new locations every week to minimize the 

difference in radiation exposure between samples in the same treatment. Sample bags were 

also flipped every week at the same time they were moved, allowing the indoor samples to 

receive radiation on both sides of the bag. A total of 45 samples were included in the indoor 

experiment—5 samples of each species for each treatment. The indoor experiment ran from 

August 28, 2018 to February 10, 2019. 

Effectiveness of the radiation treatment was assessed by measuring radiation 

transmission. For each treatment, and for both experiments, the amount of radiation in the 

UV-A, UV-B, and visible (400-700 nm) ranges was measured both with and without the 

treatment screen. Visible light measurements were made with a QMSS Quantum Meter 

(Apogee Instruments), which measured radiation between 400 and 700 nm. UV-A radiation 
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was measured using a UVP UVX-36 radiometer (UV Products, now Analytik Jena), which 

responds most strongly to radiation between about 320 and 380 nm. UV-B radiation was 

measured using a UVP UVX-31 radiometer with strongest response between about 280 and 

340 nm (UV Products, now Analytik Jena). Measurements were taken for the start and for 

the conclusion of each experiment; for the outdoor experiment, a third measurement was also 

made about halfway through the treatment period. These data were used to generate rough 

approximations for the total UV and visible radiation received by samples in each treatment. 

For the outdoor treatments, varying day length was also included in the calculation, and day 

length values for the start and end of the experiment as well as the middle measurement date 

were obtained using a National Oceanic & Atmospheric Administration online Solar 

Calculator (Earth System Research Laboratory, 2020). 

The sample collection, processing, and analysis procedures were the same for both 

the outdoor experiment and the indoor experiment, except as noted below. After the radiation 

treatment period, sample bags were collected and subjected to a dark incubation to assess 

possible microbial activity during the treatment. Each litter sample was removed from the 

bag and transferred to a 4 oz glass jar. The jars were stored in the dark, and carbon dioxide 

(CO2) accumulation was monitored for 2 days by drawing air from the headspace through a 

butyl rubber septum. The CO2 concentration of this air was measured on an infrared gas 

analyzer (Li-Cor 6252, Lincoln, NE) at the beginning of the incubation, approximately one 

day after the incubation started, and at the incubation’s conclusion. Results of the incubation 

showed minimal CO2 accumulation in all jars, indicating that microbial activity was not 

likely a major contributor to decomposition during the radiation treatment period.  
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Following these measurements, litter samples were soaked in 30 mL of cold high 

purity water (MilliQ, MilliporeSigma) for two hours on an orbital shaker to collect 

extractable organic carbon. The resulting solution was filtered with a pre-combusted 1 µm 

glass fiber filter into a 40 mL centrifuge tube and frozen at -18 °C until chemical analysis. 

Four methods of analysis, described below, were used to assess the impacts of the radiation 

treatments on litter extractable carbon: measurement of extract DOC, microbial incubation to 

assess bioavailability, absorbance of extracts at 410 nm, and absorbance at 254 nm. 

First, a portion of the filtered sample extract was analyzed for dissolved organic 

carbon (DOC) concentration using a Shimadzu TOC-VCSN total organic carbon analyzer. The 

TOC analyzer was calibrated prior to each analysis using a 250 ppm carbon (C) solution. 

Depending on the analysis, this solution was either glucose dissolved in high purity water or 

a diluted 1000 ppm stock carbon standard consisting of phosphoric acid and potassium 

hydrogen phthalate dissolved in water. Samples were run in batches of 10 to 20 to ensure that 

no sample was at room temperature for longer than 6 hours prior to analysis. Between each 

batch of samples, and at the end of each run, a pair of standards of the same concentration 

were analyzed to check for drift; no substantial drift in measurements was observed. This 

analysis was also performed on a subsample of litter from each species that had been 

extracted around the time the experiments started (see Appendix 2). 

Second, sample extracts were subjected to a microbial incubation to assess ability to 

stimulate microbial activity. Microbial inocula were created by mixing approximately 0.25 g 

of soil from the Sedgwick Reserve with 30 mL of water, and centrifuging for 3 minutes at 

1000 rpm to settle out large soil particles. Soil was obtained at both the hilltop and hill-base 
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litter collection sites by removing surface organic matter (mostly standing dead litter with 

some fallen seeds) and then collecting the top 3-5 cm of the remaining soil. 

For each sample, inoculum was added to 10 mL of sample extract, and this mixture 

was sealed inside a 27.25 mL glass jar. Approximately 10 µL of inoculum was added to each 

sample in the outdoor experiment. The small volume of inoculum in the outdoor experiment 

led to difficulty ensuring the inoculum actually ended up in the sample solution, so a larger 

inoculum volume of about 20 µL was added to samples in the indoor experiment. For both 

experiments, the DOC concentration of the inoculum mixture itself was an order of 

magnitude lower than the concentration of the samples. Together with the extremely low 

volume of inoculum added, this meant that the inoculum itself accounted for a negligible 

fraction of the DOC in the jars. 

CO2 accumulation in the jars was measured as an indicator of the extract’s capacity 

to enhance microbial activity. Measurements during the incubation were conducted once 

daily until concentration was observed to have changed noticeably since the last 

measurement, at which point they were made 2-3 times daily until the CO2 production rate 

had passed its peak and levelled off. Ten jars were randomly selected as ‘indicator jars’ and 

were measured three times daily for the entire incubation. These indicator jars were used to 

ensure that all jars were measured before headspace CO2 reached values in excess of 10,000 

ppm. After the measurement of each batch of 10 jars, jars were flushed with compressed air 

for 10 minutes to reset their air concentration to a known value. Samples from the two 

experiments were run separately. The incubation for the outdoor experiment took place on 

7/1/19 and lasted for 4 days, and the indoor experiment incubations started on 6/18/19 and 

lasted for 7 days. The DOC concentration of samples (filtered again with a 0.2 µm nylon 
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filter) was determined before and after the incubation and was used to calculate DOC 

consumption during the incubations. 

For each of the two incubations, several control jars were created using filtration 

blanks mixed with inoculum. Additional control jars containing only water were also 

included. The filtration blanks contained water that had been filtered with a 0.2 µm nylon 

filter at the same time as the samples themselves. No control jar in either set showed a 

noticeable CO2 production peak during incubation. 

Extract chemistry was assessed using two proxy methods for classes of carbon 

compounds based on absorbance of specific wavelengths of radiation. The first absorbance 

method, based on work by Lever (1972), uses sample absorbance at 410 nm as a proxy for 

reducing sugars content. This method involved adding 25 µL of sample to 125 µL of a 

reagent mixture containing para-hydroxybenzoic acid hydrazide (PAHBAH), sodium 

hydroxide, hydrochloric acid, calcium chloride, and trisodium citrate. The sample and 

reagents were initially mixed in a 96-well thermocycler plate, which was heated to 100o C in 

a thermocycler for 5 minutes before being cooled by floating in an ice water bath for 5 

minutes. The mixture was then pipetted into a 96-well flat bottom plate, which was inserted 

into a TECAN Infinite M200 Pro plate reader to measure absorbance at 410 nm. Litter 

extract used for this method had only been filtered through the glass fiber filter. This 

measurement is a proxy for reducing sugars in the sample, as such sugars react strongly with 

PAHBAH to change the absorbance of solution at 410 nm. There is a range of sugars which 

respond substantially, but the strongest response is from maltose, fructose, glucose, and 

mannose (Lever, 1972). The measured absorbance at this wavelength is therefore a proxy of 
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the amount of reducing sugars in the sample – these are compounds which could be produced 

by breakdown of a range of plant cell components, including lignin and cellulose.  

The second method uses the specific UV absorbance (SUVA) of the sample as a 

proxy for the sample’s degree of aromaticity (Weishaar et al., 2003). Weishaar et al. (2003) 

found a positive relationship between the absorbance of river water at this wavelength and 

the aromatic compound content of the water. As lignin is an aromatic compound, I expect 

that photodegradation of lignin may result in the production of smaller, more water-soluble 

aromatic compounds, leading to greater specific UV absorbance of extract from samples that 

were exposed to more radiation. 

I obtained this data for the sample extracts by measuring the absorbance at 254 nm 

and dividing the result by the sample’s DOC concentration, as measured on the TOC 

analyzer. The sample extract that was used in this measurement had been filtered through a 

0.2 µm nylon filter, in addition to the initial filtration with the glass fiber filter. A 75 µL 

volume of each sample was directly added to UV-transparent 96-well flat bottom plates, and 

their absorbance at 254 nm was measured using the same plate reader used for the 410 nm 

measurement. 

All analyses were normalized to the initial litter mass for that sample prior to 

analysis. For specific UV absorbance at 254 nm, the data was also normalized to the DOC 

concentration. For incubation data, analysis was performed on the data normalized to initial 

litter mass only and on the data normalized to both initial litter mass and extract 

concentration at the start of the incubation. For the latter incubation analysis, I also expected 

to see a greater portion of DOC consumed or respired as CO2 for samples exposed to greater 
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radiation. This would indicate that radiation increased bioavailability per molecule of the 

DOC, which is to be expected if recalcitrant compounds are being broken down into less 

recalcitrant ones by radiation. 

Statistical analyses were conducted in MATLAB. An n-way ANOVA was performed 

on the data after determining that it met the assumptions of normality and equal variance. 

This tested the significance of both species and radiation treatment as factors. Initially, the 

ANOVA model was run including interaction terms for all factors and was rerun 

progressively removing an interaction that was not significant each time. For absorbance 

data, since multiple plates were used, the plate number was also included as a third factor. In 

most cases all interactions were found not to be significant. Aside from the outdoor 

experiment’s SUVA at 254 nm data, absorbance data did not meet the requirements for the 

ANOVA model; as a result, all absorbance metrics were tested using the Kruskal-Wallis one-

way ANOVA for non-normal data instead. CO2 production data from the indoor incubation 

did not have equal variance across species when normalized by initial DOC concentration, so 

the normalized CO2 data for both experiments were also tested with the Kruskal-Wallis 

ANOVA. 
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Results 

1 - Radiation exposure in different treatments 

In both experiments, screens were effective in establishing the intended different UV 

radiation treatments (Figure 1). For the indoor experiment, the UV + Visible treatment 

received about an order of magnitude more UV radiation than the Visible Pass treatment, and 

the Visible Pass treatment received about two orders of magnitude more UV radiation than 

the Radiation Block treatment. A similar though less pronounced difference was observed 

with the outdoor experiment. The UV + Visible treatment received roughly 6 times more UV 

radiation than the Visible Pass treatment, and the Visible Pass treatment received roughly 40 

times more UV radiation than the Radiation Block treatment. 

The indoor experiment received about 3.6 times as much UV radiation as the outdoor 

experiment in the UV + Visible treatment and around 1.8 times as much UV radiation in the 

Visible Pass treatment. This likely resulted both from the greater length of the indoor 

experiment and from the use of UV lamps which were turned on for 24 hours a day to 

provide radiation (Table 2). In contrast, the Radiation Block treatment received less UV 

radiation in the indoor experiment than in the outdoor experiment. I suspect this is because 

the lamps used in the indoor experiment were always situated above the opaque screen, 

which was nearly flush against the wall on two sides during measurements. In the outdoor 

experiment, solar radiation would have been more likely to indirectly reach the sample bags 

at times when the sun was at a low angle (see Appendix 1 for photos of each experimental 

setup). 



16 
 

  

 

Figure 1: Approximate cumulative dosage of UV (1a) and visible (1b) radiation 

dosages for each treatment in both experiments. These are rough estimates for the 

radiation received by the litter samples, meaning they include both the reduction 

in radiation by the sample bag and the impact of the treatment screen. 
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Table 2: Approximate UV and visible radiation dosage per day (J/square cm/day) 

 

 UV radiation Visible radiation 

 

Radiation 

Block 

Visible 

Pass 

UV + 

Visible 

Radiation 

Block 

Visible 

Pass 

UV + 

Visible 

Outdoor 0.2 10 63 16 1400 1500 

Indoor 0.06 9 107 0 35 37 

 

Screens also effectively established the desired treatment difference for visible light. 

In the outdoor experiment, the UV + Visible treatment received roughly the same amount of 

visible light as the Visible Pass treatment, while the Visible Pass treatment received almost 

two orders of magnitude more visible light than the Radiation Block treatment. Similarly, in 

the indoor experiment, the UV + Visible treatment received a comparable visible light dosage 

to the Visible Pass treatment (Figure 1). 

The indoor experiment’s Radiation Block treatment was measured as receiving 0 

µmol photons/m2/s at every location tested for each measurement time. This was a limitation 

of the sensor, which could not report decimal values, and is not an indication that the 

treatment received absolutely no radiation. If the sensor had reported 1 instead of 0 on each 

measurement, the calculated total visible light dosage for this treatment would have been 370 

J/cm2; this value can serve as an upper bound on cumulative visible light input. 

In the outdoor experiment, where radiation was provided by the sun, total visible light 

dosage was higher than the UV dosage for all treatments. In contrast, samples in the indoor 

experiment received less visible light than UV radiation in both the Radiation Block and UV 

+ Visible treatments. For the treatments exposed to visible light, the indoor samples also 

received two orders of magnitude less visible light than outdoor samples in the same 
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treatment. These outcomes were expected, as this experiment used UV lamps to provide 

radiation, and the lamps had low visible light output. 

 

2 - Radiation impact on DOC 

Samples in a treatment with more radiation produced more DOC than samples in 

treatments with lower radiation exposure (Figure 3, Tables 3). These results were statistically 

significant at 95% confidence in both experiments. 

 

Table 3: Dissolved Organic Carbon Extracted Post-Treatment - mg C/(L*g litter) 

         

 Radiation Block  Visible Pass  UV + Visible 

 Mean SE  Mean SE  Mean SE 

Outdoor         
Total** 558.1 3.3  779.0 4.7  932.7 6.5 

Bromus 615.2 5.6  836.9 7.0  1013.8 15.5 

Avena 569.8 6.7  879.5 13.4  1009.2 22.1 

Hordeum 489.3 13.5  625.8 6.6  790.7 10.9 

Indoor         
Total** 586.5 9.6  709.0 7.7  1071.2 10.4 

Bromus 658.1 24.7  750.7 27.6  1154.0 20.0 

Avena 658.2 24.1  707.3 15.8  1097.3 33.9 

Hordeum 443.1 13.3  668.8 26.5  962.4 30.3 

 

 

 

 

Table 3: Dissolved organic carbon extracted after the radiation treatment, as measured by the TOC 

analyzer. Average and standard error for both experiments are given by treatment, for (1) all samples in 

the treatment and (2) each species used in the study. Two asterisks (**) next to the total effect indicate a 

significant treatment difference for the experiment at 95% confidence. 

Indoor experiment (n = 45) ANOVA results:  Outdoor experiment (n = 96) ANOVA results: 

Species: 2 df, F = 7.39, p = 0.0019   Species: 2 df, F = 23.15, p < 0.001 

Treatment: 2 df, F = 63.43, p < 0.001  Treatment: 2 df, F = 75.57, p < 0.001 
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Figure 2: Dissolved organic carbon per gram initial sample as measured at the end of 

the radiation exposure treatment, for each species in (a) the outdoor and (b) the indoor 

experiment. Within species, different letters indicate a treatment difference that was 

significant at 95% confidence. Indoor n = 45; outdoor n = 96. 
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Outdoor Experiment 

For the outdoor experiment, results of a two-factor ANOVA indicated a significant 

effect of both species (p < 0.001) and treatment (p < 0.001). Interaction between species and 

treatment was not found to be significant (p = 0.1633) and was removed before obtaining 

these values. DOC in the Visible Pass treatment was 40% greater than in the Radiation Block 

treatment, and DOC in the UV + Visible treatment was 20% greater than in the Visible Pass 

treatment (Table 3). Trends within species mirror the overall trend of increasing DOC 

production in treatments with greater radiation. For all three species, the difference between 

each radiation treatment was significant (Figure 2a). 

 

Indoor Experiment 

For the indoor experiment, the results of a two-factor ANOVA indicated a significant 

effect of both treatment (p < 0.001) and species (p = 0.0019). Interaction between species and 

treatment was not found to be significant (p = 0.569) and was removed before obtaining these 

values. Treatments with greater radiation resulted in extract with more DOC, with the Visible 

Pass samples producing 21% more DOC than the Radiation Block samples and the UV + 

Visible samples producing 51% more DOC than the Visible Pass samples (Table 3). For each 

of the three species, there was a significant difference between post-treatment DOC from the 

UV + Visible and post-treatment DOC from the Visible Pass treatment, but not between the 

Visible Pass and Radiation Block treatments (Figure 2b).  
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3 - Bioavailability of dissolved carbon: DOC consumption during incubation 

DOC consumption during incubation generally increased with greater radiation 

exposure, as expected (Figure 3a and 3c; Table 4). However, high variability meant that 

results were not statistically significant at the species level or in the outdoor experiment, and 

were only marginally significant for the indoor experiment. 

Contrary to expectations, DOC consumption as a fraction of the initial DOC 

decreased with increasing radiation exposure. This trend was consistent in both experiments 

and for most (but not all) species in each experiment (Figure 3b and 3c; Table 5). 

Table 4: Amount of DOC consumed during incubation - mg C/(L*g litter) 

         

 Radiation Block  Visible Pass  UV + Visible 

 Mean SE  Mean SE  Mean SE 

Outdoor         
Total 174.4 1.9  200.2 1.9  191.7 3.0 

Bromus 167.1 3.5  169.8 2.2  182.3 6.3 

Avena 138.1 3.0  177.5 6.6  152.3 10.9 

Hordeum 221.2 7.4  250.4 3.0  246.7 4.6 

Indoor         
Total* 185.8 5.0  215.6 5.0  256.9 7.3 

Bromus 202.3 10.3  208.6 13.2  215.3 20.6 

Avena 167.3 17.2  193.6 6.4  254.6 23.3 

Hordeum 192.5 15.8  244.7 22.5  310.5 15.4 

 

 

 

Table 4: Dissolved organic carbon consumed during the microbial incubation. Average and standard error 

for both experiments are given by treatment, for (1) the entire treatment and (2) each species used in the 

study. A single asterisk next to the total effect for an experiment indicates a significant treatment difference 

at 90% confidence. 

Indoor experiment (n = 40) ANOVA results:  Outdoor experiment (n = 92) ANOVA results: 

Species: 2 df, F = 1.53, p = 0.2306   Species: 2 df, F = 18.05, p < 0.001 

Treatment: 2 df, F = 2.68, p = 0.0829  Treatment: 2 df, F =1.62, p = 0.2034 
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Figure 3: Dissolved organic carbon consumption during the microbial incubation for each experiment. 

The amount of DOC consumption (3A, 3C) is the difference between the DOC concentration at the end 

of the incubation and the concentration at the start of the incubation, divided by the initial mass of the 

litter sample. The fraction of DOC consumed (3B, 3D) is additionally divided by the initial DOC 

concentration at the start of the incubation. Within species, different letters indicate a treatment difference 

that was significant at 95% confidence. Outdoor n = 92 (3A and 3B); indoor n = 40 (3C and 3D) 
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Outdoor Experiment 

The results of a two-factor ANOVA did not indicate a significant treatment effect (p 

= 0.2034) on the change in DOC during the incubation for the outdoor experiment. However, 

there was a significant species effect (p < 0.001). Interaction between species and treatment 

was not significant (p = 0.8154) and was removed. At the species level, no treatment was 

determined to have a significant difference from any other. Though differences were not 

statistically significant, the data for Bromus and Hordeum follow the general trend of 

increasing DOC consumption with greater radiation exposure. Overall data and data for 

Avena litter show lower DOC consumption in the radiation block treatment than the other 

two treatments, but show the highest DOC consumption for the Visible Pass treatment 

(Figure 3a, Table 4). 

The outdoor experiment showed a decreasing trend in fraction of DOC consumed 

during incubation with increased radiation exposure. This result was statistically significant 

with high confidence (p < 0.001), in contrast to the incubation results for amount consumed. 

Interaction between species and treatment was not significant (p = 0.4204) and was removed. 

UV + Visible samples saw a 21% reduction in the fraction of DOC consumed relative to 

Visible Pass samples, and Visible Pass samples had a 15% reduction in fraction of DOC 

consumed relative to Radiation Block samples (Table 5). The trend was exhibited for all 

three species, and the difference between the Radiation Block and UV + Visible treatments 

was significant at 95% confidence for each (Figure 3b).  
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Table 5: Fraction of initial DOC consumed during incubation - (1/(g litter) 

         

 Radiation Block  Visible Pass UV + Visible 

 Mean SE  Mean SE  Mean SE 

Outdoor         

Total** 1.45 0.01  1.22 0.02  0.97 0.02 

Bromus 1.22 0.02  0.92 0.01  0.85 0.03 

Avena 1.10 0.02  0.91 0.03  0.69 0.05 

Hordeum 2.04 0.02  1.82 0.03  1.43 0.02 

Indoor         

Total* 1.46 0.04  1.36 0.03  1.08 0.04 

Bromus 1.44 0.05  1.24 0.06  0.84 0.08 

Avena 1.09 0.08  1.23 0.05  1.04 0.14 

Hordeum 1.93 0.14  1.61 0.13  1.40 0.09 

 

 

 

Indoor Experiment 

For the indoor experiment, a two-factor ANOVA indicated a marginally significant 

difference in DOC loss during incubation based on treatment (p = 0.0829), but no significant 

difference based on species (p = 0.2306). Interaction between species and treatment was not 

found to be significant (p = 0.7023) and was removed. DOC loss during incubation was 

greater in treatments with greater radiation exposure. The UV + Visible light treatment 

increased DOC loss by 19% over the Visible Pass treatment, and the Visible Pass treatment 

Table 5: Fraction of initial dissolved organic carbon consumed during the microbial incubation. Average 

and standard error for both experiments are given by treatment, for (1) the entire treatment and (2) each 

species used in the study. Two asterisks (**) next to the total effect indicate a significant treatment 

difference for the experiment at 95% confidence, and a single asterisk indicates a significant treatment 

difference at 90% confidence. 

Indoor experiment (n = 40) ANOVA results:  Outdoor experiment (n = 92) ANOVA results: 

Species: 2 df, F = 6.85, p = 0.0031   Species: 2 df, F = 102.74, p < 0.001 

Treatment: 2 df, F = 3.18, p = 0.0539  Treatment: 2 df, F =23.14, p < 0.001 
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increased DOC loss by 16% relative to the Radiation Block treatment. A similar trend is 

observed for each species, though differences between treatments were not statistically 

significant at the species level (Figure 3c, Table 4). 

For the indoor experiment, greater radiation exposure led to a marginally significant 

reduction in the fraction of DOC consumed (p = 0.0539). Interaction between species and 

treatment was not significant (p = 0.6204) and was removed. Visible Pass samples had a 7% 

lower fraction consumed than Radiation Block samples, and UV + Visible samples 

experienced a 21% lower fraction of DOC consumed than Visible Pass samples (Table 5). 

Within species, this general trend was observed for Bromus and Hordeum extract, but not for 

Avena extract, where the Visible Pass treatment led to a greater fraction of DOC lost than 

either of the other two treatments. However, differences were not significant at the species 

level (Figure 3d). 

 

4 - Bioavailability of dissolved carbon – CO2 production during incubation 

As expected, extract from treatments with greater radiation showed greater CO2 

production during incubation in both experiments. However, the result was not significant at 

the species level or in the outdoor experiment (Figures 4a and 4c; Table 6). 

As with DOC consumption, when normalized to the initial DOC concentration as 

well as sample mass, CO2 production decreased with increasing radiation exposure. This 

difference was significant in the outdoor experiment (Figure 4b, Table 7), but not in the 

indoor experiment (Figure 4d, Table 7). 
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From here on, I refer to the measurement of CO2 production normalized to both 

initial sample mass and initial incubation DOC concentration as “normalized CO2 

production,” even though the CO2 data was normalized to initial sample mass for both 

analyses. 

Table 6: CO2 production during incubation - µmol/g litter 

         

 Radiation Block  Visible Pass UV + Visible 

 Mean SE  Mean SE  Mean SE 

Outdoor         

Total 0.141 0.002  0.154 0.001  0.161 0.001 

Bromus 0.140 0.003  0.139 0.002  0.147 0.003 

Avena 0.118 0.002  0.142 0.003  0.153 0.005 

Hordeum 0.163 0.007  0.179 0.004  0.183 0.004 

Indoor         
Total** 0.123 0.003  0.141 0.003  0.167 0.003 

Bromus 0.124 0.002  0.134 0.006  0.157 0.009 

Avena 0.129 0.011  0.131 0.005  0.188 0.016 

Hordeum 0.110 0.017  0.157 0.014  0.165 0.007 

 

 

 

Table 6: CO2 production during the microbial incubation. Average and standard error for both experiments 

are given by treatment, for (1) the entire treatment and (2) each species used in the study. Two asterisks 

(**) next to the total effect indicate a significant treatment difference for the experiment at 95% 

confidence. 

Indoor experiment (n = 39) ANOVA results:  Outdoor experiment (n = 94) ANOVA results: 

Species: 2 df, F = 0.19, p = 0.8298   Species: 2 df, F = 7.43, p = 0.001 

Treatment: 2 df, F = 3.32, p = 0.0481  Treatment: 2 df, F =1.89, p = 0.1564 
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Figure 4: CO2 production during the microbial incubation, for each experiment. The amount of CO2 

production (4A, 4C) was analyzed using a two-factor ANOVA. For these data, within species, different 

letters indicate a treatment difference that was significant at 95% confidence. The fraction of DOC 

consumed (4B, 4D) is additionally divided by the initial DOC concentration at the start of the incubation, 

and was separately analyzed using a Kruskal-Wallis one-way ANOVA for each species, with treatment 

as the factor. For these data, three asterisks (***) above a species group indicates a significant treatment 

effect for that species at 95% confidence; no asterisks means the result was not significant at 95% 

confidence. Outdoor n = 94 (4A) and 93 (4B); indoor n = 39 (4C and 4D). 
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Table 7: Normalized CO2 Production during incubation - µmol/(g litter * mg C/L) 

         

 Radiation Block  Visible Pass UV + Visible 

 Mean SE  Mean SE  Mean SE 

Outdoor         

Total** 0.00106 0.00001  0.00087 0.00001  0.00078 0.00001 

Bromus 0.00095 0.00001  0.00072 0.00001  0.00066 0.00001 

Avena 0.00088 0.00001  0.00070 0.00001  0.00066 0.00002 

Hordeum 0.00136 0.00003  0.00119 0.00002  0.00102 0.00001 

Indoor         
Total* 0.00083 0.00002  0.00085 0.00002  0.00067 0.00002 

Bromus 0.00079 0.00003  0.00077 0.00002  0.0006 0.00003 

Avena 0.00081 0.00005  0.00079 0.00003  0.00075 0.00011 

Hordeum 0.00094 0.00012  0.00098 0.00008  0.00071 0.00003 

 

 

 

Outdoor Experiment 

For the outdoor experiment’s microbial incubation, 5% more CO2 was produced in 

the UV + Visible treatment than in the Visible Pass treatment, and 9% more was produced in 

the Visible Pass treatment than in the Radiation Block treatment. This result was not 

statistically significant (p = 0.1564), but a significant species difference (p = 0.001) in CO2 

production was observed. Interaction between species and treatment was not significant (p = 

0.8566) and was removed (Table 6). At the species level, no significant difference in CO2 

production was found, though the general increasing trend was still present (Figure 4a). 

Table 7: Normalized CO2 production during the microbial incubation. Average and standard error for both 

experiments are given by treatment, for (1) the entire treatment and (2) each species used in the study. This 

data was statistically tested using the Kruskal-Wallis one-way ANOVA with treatment or species as the 

factor. Two asterisks (**) next to the total effect indicate a significant treatment difference for the 

experiment at 95% confidence, and a single asterisk indicates a significant treatment difference at 90% 

confidence. Statistical test results for species are below, as well as detailed results for treatment. 

Indoor experiment (n = 39) ANOVA results:  Outdoor experiment (n = 93) ANOVA results: 

Species: 2 df, chi-square = 1.3, p = 0.5213  Species: 2 df, chi-square = 47.26, p < 0.001 

Treatment: 2 df, chi-square = 5.35, p = 0.0689 Treatment: 2 df, chi-square = 14.33, p = 0.0008 
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For the outdoor experiment, significantly more CO2 was produced per unit initial 

DOC from samples exposed to more radiation (p = 0.0008). A significant species difference 

in this metric was also found (p < 0.001). Normalized CO2 production was 17% lower in the 

Visible Pass treatment than in the Radiation Block treatment, and was 11% lower in the UV 

+ Visible treatment than in the Visible Pass treatment. Significance was tested using the 

Kruskal-Wallis one-way ANOVA for non-normal data, despite being a two-factor setup, so 

the statistical test result for the overall data should be taken with caution (Table 7). This 

general trend was also observed for each of the three species, and the Kruskal-Wallis 

ANOVA indicated a significant treatment difference for each species (Figure 4b).  

Data was also tested using the two-factor ANOVA, and results of this test indicated a 

significant effect of both species (p < 0.001) and treatment (p < 0.001), similar to the results 

of the Kruskal-Wallis ANOVA. Interaction between species and treatment was not 

significant (p = 0.7183) and was removed. 

Indoor Experiment 

For the indoor experiment, the two-factor ANOVA indicated that treatment (p = 

0.0481) had a significant impact on CO2 production, but that species (p = 0.8298) did not. 

Interaction between species and treatment was not found to be significant (p = 0.7462) and 

was removed. The UV + Visible treatment produced 19% more CO2 than the Visible Pass 

treatment, and the Visible Pass treatment produced 15% more CO2 than the Radiation Block 

treatment (Table 6). 
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Each species did exhibit the same trend as the overall data, with sizeable differences 

between the average CO2 production in the Radiation Block and UV + Visible treatments. 

However, variability in the data was high, and treatment differences were not statistically 

significant at the species level (Figure 4c). 

Exposure to more radiation in the indoor experiment also resulted in less normalized 

CO2 production. This treatment difference was marginally significant (p = 0.0689), and 

species did not have a significant effect on CO2 production (p = 0.5213). The treatment 

difference was not significant at the species level for any of the three species (Figure 4d). 

Overall, the UV + Visible treatment had 21% lower normalized CO2 production than the 

Visible Pass treatment, which had 2% higher normalized CO2 production than the Radiation 

Block treatment (Table 7). The minimal difference between the Visible Pass and Radiation 

Block treatments as well as the larger difference between Visible Pass and UV + Visible are 

both apparent at the species level despite the lack of statistical significance (Figure 4d). As 

with the outdoor experiment normalized CO2 data was analyzed with the Kruskal-Wallis 

one-way ANOVA and should be treated with caution for the overall result. 

 

5 - Differences in composition of DOC – Absorbance at 410 nm 

Absorbance at 410 nm is a proxy for reducing sugar content in the sample, with greater 

absorbance indicating a greater presence of sugars. For half of the species/experiment 

combinations, absorbance at 410 nm was significantly higher for treatments with more 

radiation than it was for treatments with less radiation. This result indicates that radiation led 
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to a greater presence of sugars in extract (Table 8). This was significant for two species in the 

indoor experiment but only for one in the outdoor experiment (Figures 5a and 5b). 

 

 

 

Figure 5: Absorbance at 410 nm (5A, 5B) and specific absorbance at 254 nm (5C, 5D) for each 

experiment. Absorbance at 410 nm is a proxy for reducing sugars in the sample extract, and specific 

absorbance at 254 nm is a proxy for aromatic compounds in the extract; the latter may result from lignin 

photodegradation. All data was analyzed using a Kruskal-Wallis one-way ANOVA for each species, with 

treatment as the factor. For these data, three asterisks (***) above a species group indicates a significant 

treatment effect for that species at 95% confidence; no asterisk means the group did not exhibit a 

significant treatment difference at this confidence level. Indoor n = 45 (5B) and 42 (5D); outdoor n = 94 

(5A) and 93 (5C). 
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 Table 8: Absorbance at 410 nm (reducing sugars proxy) - 1/g litter  

         

        Radiation Block  Visible Pass         UV + Visible 

 Mean SE  Mean SE  Mean SE 

Outdoor         

Total** 0.965 0.013  1.143 0.014  1.229 0.019 

Bromus 1.003 0.015  1.159 0.027  1.124 0.048 

Avena 0.824 0.017  1.269 0.057  1.456 0.070 

Hordeum 1.060 0.061  1.001 0.032  1.119 0.046 

Indoor         

Total** 0.806 0.028  1.069 0.027  1.329 0.037 

Bromus 0.776 0.026  0.990 0.034  1.313 0.049 

Avena 1.112 0.123  0.913 0.047  1.314 0.157 

Hordeum 0.530 0.021  1.304 0.126  1.358 0.126 

 

 

 

 

Outdoor Experiment 

The outdoor experiment saw greater radiation exposure lead to more absorbance at 

410 nm (p = 0.0019). UV + Visible treatment samples had 8% greater absorbance than 

Visible Pass samples, and Visible Pass samples had 18% greater absorbance than Radiation 

Block samples (Table 8). No significant effect of species (p = 0.4867) or of the plate used to 

measure samples in the plate reader (p =0.1648) was found. Significance of these overall 

outcomes was tested using the Kruskal-Wallis one-way ANOVA for non-normal data, 

Table 8: Absorbance of extracts at 410 nm. Average and standard error for both experiments are given by 

treatment, for (1) the entire treatment and (2) each species used in the study. This data was statistically 

tested using the Kruskal-Wallis one-way ANOVA with treatment, species, or plate used in the plate reader 

as the factor. Two asterisks (**) next to the total effect indicate a significant treatment difference for the 

experiment at 95% confidence, and a single asterisk indicates a significant treatment difference at 90% 

confidence. Detailed statistics for treatment are below, as well as for species and plate. 

Indoor experiment (n = 45) ANOVA results:  Outdoor experiment (n = 94) ANOVA results: 

Plate: 6 df, chi-square = 8.63, p = 0.1958  Plate: 14 df, chi-square = 19, p = 0.1648 

Species: 2 df, chi-square = 0.34, p = 0.8433  Species: 2 df, chi-square = 1.44, p = 0.4867 

Treatment: 2 df, chi-square = 9.68, p = 0.002 Treatment: 2 df, chi-square = 12.55, p = 0.0019 



33 
 

despite being a two-factor setup, so the statistical test result for the overall data should be 

taken with caution. 

For each species (i.e. reduced to a single factor as the statistical test is designed for), 

treatments with more radiation led to significantly higher absorbance at 410 nm by Avena 

litter extract (p = 0.0099). There was no significant difference by treatment for Bromus 

extract (p = 0.1338) or Hordeum extract (p = 0.3971; Figure 5a). 

Indoor Experiment 

For the indoor experiment, a significant difference was observed between treatments 

(p = 0.002), with more radiation exposure leading to more absorbance at 410 nm. The UV + 

Visible treatment had 24% greater absorbance than the Visible Pass treatment, which had 

33% greater absorbance than the Radiation Block treatment. No significant difference for 

plate (p = 0.1958) or species (p = 0.8433) was observed (Table 8). As noted above, the 

Kruskal-Wallis one-way ANOVA used for this data is for data with a single factor, but the 

experiment had a two-factor setup, so the statistical test result for the overall data should be 

taken with caution. 

Within species, treatments with higher radiation dosage saw significantly more 

absorbance at 410 nm in Bromus extract (p = 0.0079) and Hordeum extract (p = 0.0132). The 

treatment difference for Avena extract was not significant (p = 0.6126; Figure 5b). 
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 Table 9: Specific absorbance at 254 nm (aromatics proxy) - 1/(g litter * mg/L) 

         

     Radiation Block  Visible Pass      UV + Visible 

 Mean SE  Mean SE  Mean SE 

Outdoor         

Total* 0.0232 0.0002  0.0230 0.0002  0.0202 0.0002 

Bromus 0.0285 0.0002  0.0286 0.0004  0.0231 0.0004 

Avena 0.0246 0.0004  0.0236 0.0003  0.0220 0.0004 

Hordeum 0.0163 0.0005  0.0174 0.0006  0.0155 0.0004 

Indoor         

Total** 0.0229 0.0007  0.0196 0.0004  0.0148 0.0003 

Bromus 0.0314 0.0005  0.0263 0.0005  0.0184 0.0004 

Avena 0.0192 0.0016  0.0213 0.0005  0.0144 0.0010 

Hordeum 0.0148 0.0009  0.0126 0.0004  0.0118 0.0003 

 

 

 

 

 

6 - Differences in composition of DOC – Specific absorbance at 254 nm 

Specific UV absorbance is a proxy for aromatic compounds in the sample, with 

greater absorbance indicating that more aromatic compounds are present. I am interested in 

this measurement as it may be influenced by the breakdown of lignin (an aromatic 

compound) into smaller aromatic compounds that are more water-soluble. Specific UV 

Table 9: Specific absorbance of extracts at 254 nm. Values for each sample extract were calculated by 

dividing the absorbance at 254 nm by the sample’s initial DOC value used in the incubation. Average and 

standard error for both experiments are given by treatment, for (1) the entire treatment and (2) each species 

used in the study. This data was statistically tested using the Kruskal-Wallis one-way ANOVA with 

treatment, species, or plate used in the plate reader as the factor. Two asterisks (**) next to the total effect 

indicate a significant treatment difference for the experiment at 95% confidence, and a single asterisk 

indicates a significant treatment difference at 90% confidence. Detailed statistics for treatment are below, 

as well as for species and plate. 

Indoor experiment (n = 42) ANOVA results:  Outdoor experiment (n = 93) ANOVA results: 

Plate: 2 df, chi-square = 1.95, p = 0.3777  Plate: 5 df, chi-square = 8.57, p = 0.1275 

Species: 2 df, chi-square = 21.8, p < 0.001  Species: 2 df, chi-square = 46.26, p < 0.001 

Treatment: 2 df, chi-square = 7.63, p = 0.0221 Treatment: 2 df, chi-square = 5.02, p = 0.0814 
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absorbance results were similar between the two experiments. The indoor experiment saw 

significantly reduced specific UV absorbance with increased radiation exposure, and the 

same pattern was observed in the outdoor experiment, with marginal significance (Table 9). 

This result is the opposite of what I had initially predicted. For both experiments, a 

significant difference was detectable at the species level only for Bromus litter (Figures 5c 

and 5d). 

Outdoor Experiment 

Specific UV absorbance at 254 nm was reduced in treatments with more radiation 

exposure relative to treatments that received less radiation (p = 0.0814), with samples from 

the UV + Visible light treatment absorbing 12% less than samples from the Visible Pass 

treatment. Samples from the Visible Pass treatment had an average specific absorbance that 

was only 1% less than for the Radiation Block treatment. A significant species difference in 

specific UV absorbance (p < 0.001) was identified, but there was no significant plate effect 

(p = 0.1275; Table 9). As with the other absorbance metrics, this analysis used the Kruskal-

Wallis one-way ANOVA despite a two-factor experimental design, so the overall result 

should be treated with caution. 

For Bromus litter specifically, the UV + Visible light treatment extract had 

significantly lower specific UV absorbance than the other two treatments (p = 0.0051). No 

significant differences between treatments were observed for either Avena (p = 0.2495) or 

Hordeum (p = 0.7596), though the general trend of lower absorbance with greater radiation 

exposure is still visually apparent for Avena samples (Figure 5c). 
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Specific UV absorbance data for the outdoor experiment was deemed sufficiently 

normal to also analyze using a regular n-way ANOVA for normal data, though the test results 

are not directly comparable to the indoor experiment. This analysis indicated a significant 

difference in absorbance with treatment (p = 0.0006), species (p < 0.001), and the plate used 

to measure the sample’s absorbance (p = 0.0012). No interactions were identified between 

any of these three factors. 

Indoor Experiment 

There was a significant treatment difference in specific UV absorbance at 254 nm (p 

= 0.0221) for the indoor experiment. UV + Visible treatment samples has 24% lower specific 

absorbance than Visible Pass samples, which had 14% lower specific absorbance than 

Radiation Block samples. A significant species effect was also identified (p < 0.001), and 

there was no significant plate effect (p = 0.3777; Table 9). Overall results should be 

interpreted with caution as they were obtained using the Kruskal-Wallis one-way ANOVA. 

By species, only Bromus exhibited significantly lower specific absorbance at 254 nm 

(p = 0.0039), although the trend was visually apparent for Hordeum (p = 0.1723) as well as 

Avena (p = 0.1142). As with the overall result, this is consistent with the results of the 

outdoor experiment. 
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Discussion 

Radiation impact on DOC 

 These results clearly demonstrate that radiation promotes DOC production in grass 

litter, with strongly significant and sizeable treatment differences apparent in both 

experiments and every species. This is in line with previous observations that DOC 

production is enhanced by exposure to radiation in other species (e.g., Vähätalo et al. 1998).  

In the indoor experiment, UV radiation was the main driver of DOC production, as 

differences between the Visible Pass and Radiation Block treatments were not significant for 

any species. Radiation in the indoor experiment was provided by UV lamps with low visible 

light output, so this does not reflect the relative importance of each wavelength range for 

field conditions. However, the outdoor experiment saw a greater increase in DOC between 

the Visible Pass treatment and Radiation Block treatment than between the Visible Pass and 

UV + Visible treatments, suggesting that visible light might contribute more to DOC 

production than UV radiation in the field. For Bromus and Hordeum litter, each wavelength 

range led to about the same amount of extra DOC, so the greater overall visible light impact 

appears to largely result from greater visible light impact on Avena DOC. Taken as a whole, 

the results of both experiments agree with prior observations that both UV and visible light 

are of similar importance for photodegradation (e.g., Austin & Ballaré, 2010), indicating that 

this is true for DOC production as well as for litter mass loss. 
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Bioavailability of DOC 

The outdoor experiment found weak evidence for my second hypothesis, that DOC 

from photodegraded litter stimulates more microbial activity. For both DOC consumption 

and CO2 production, trends were apparent but weak and not significant. Support for this 

hypothesis was stronger from the indoor experiment, though still less clear than for my first 

hypothesis. I suspect the lack of consistent evidence was due to variability of the incubation 

results, rather than the lack of an actual positive relationship between photodegradation and 

DOC bioavailability. There are several reasons for this. First, an increasing trend is visually 

apparent for most of the species, but with high variability relative to the treatment 

differences. Second, the indoor experiment was carried out for longer and under more 

controlled conditions than the outdoor experiment, and the treatment difference in the indoor 

experiment had greater statistical support. If my hypothesis about the relationship between 

bioavailability and radiation exposure is false, I would expect the longer, more controlled 

experiment to provide weaker evidence for the hypothesis or stronger evidence against it. 

However, several replicates had to be removed before analysis of the indoor experiment 

bioavailability data due to a likely failure to receive inoculum, and the incubation of indoor 

experiment samples took place before the outdoor one, suggesting that the outdoor samples 

may have experienced more consistent conditions during the incubation. It is likely that 

photodegraded litter DOC stimulates more microbial activity, but additional research, 

possibly with a longer treatment length, is necessary to identify this effect under field 

conditions. 
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Taken as a whole, my research indicates that DOC from photodegraded litter does 

stimulate more microbial activity. However, when the data is also normalized by the DOC 

concentration at the start of the incubation, the impact of greater radiation exposure is 

reversed. More radiation led to more CO2 produced and more DOC consumed, but the 

amount produced or consumed was smaller relative to the initial DOC concentration. While 

photodegradation resulted in DOC that stimulated more microbial activity, it did not do so 

because the compounds present were more accessible to microbes, but because the amount of 

DOC had increased. In fact, photodegradation seems to have reduced the average 

bioavailability of the compounds themselves. 

DOC chemistry changes 

Insight into changes in DOC composition can be gained from the absorbance proxy 

results. Absorbance at 410 nm is a proxy for the amount of sugars in the extract; therefore, 

the observed general trend of increasing absorbance at 410 nm with greater radiation 

exposure indicates that photodegradation is producing soluble sugars. No species showed a 

significant response in both experiments, and only one species showed a significant response 

in the outdoor experiment. Thus, it is possible that species differences in litter chemistry play 

a role in this response. 

Specific absorbance at 254 nm is a proxy for aromaticity of the sample. It is of 

interest since lignin, one of the main compounds affected by photodegradation in past 

studies, contains aromatic rings and might be expected to produce soluble aromatic 

compounds if broken down. For both experiments, the observed response was the opposite of 

my initial expectation. Photodegradation reduced rather than increased the aromaticity of 
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litter extract, despite increasing the total amount of DOC. This may be because aromatic 

compounds were more strongly impacted by radiation than I expected. I had anticipated that 

lignin would be broken down into smaller aromatic compounds, but based on my results it is 

possible that lignin was degraded into non-aromatic compounds, or that lignin breakdown 

into aromatics was outpaced by the destruction of soluble aromatic compounds. There are 

several possible explanations for this observation, and my experiment was not designed in a 

way that allows me to determine which is correct, but this result nonetheless highlights the 

importance of litter chemistry to photodegradation. 

Taken together, these proxy measurements clearly suggest that photodegradation 

causes noticeable chemical changes to litter DOC. Reduced abundance of aromatic 

compounds suggests a strong impact of radiation on aromatic linkages; although lignin is 

largely insoluble, this implies that it may also have been heavily impacted by radiation. The 

increased sugar content could result from breakdown of lignin, cellulose, or other plant 

compounds. However, if aromatic compounds were undergoing substantial breakdown due to 

radiation, then it seems likely that lignin breakdown contributed some of the additional 

sugars. This study thus provides some evidence of lignin breakdown, and less clear evidence 

that cellulose may also have been a source of DOC from photodegradation. These absorbance 

proxies are indirect approaches to understanding chemical changes and cannot conclusively 

confirm or reject my third hypothesis. Future photodegradation research with a more direct 

focus on litter and extract chemistry is needed. 

There are a few noteworthy species differences in the response of the absorbance 

metrics to radiation exposure. In the outdoor treatment, only Avena had a clearly significant 
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increase in absorbance at 410 nm, indicating a greater production of reducing sugars with 

higher radiation exposure. This increase is largely driven by visible light. Similarly, Bromus 

litter was the only litter type for which aromaticity responded significantly to light, and for 

both experiments the majority of the reduction in aromaticity appears to result from UV 

radiation. As mentioned above, each of the three species used in the experiment differs in 

litter chemistry, and these absorbance metrics are likely an indication that this translates into 

a difference in photodegradation-produced DOC chemistry. Further complicating this 

analysis, time since senescence affects litter chemistry. Lin et al. (2015) also report changes 

in the relative abundance of different C fractions in Bromus litter during radiation exposure, 

with lignin making up a greater percentage of the total after longer exposure. Field 

observations indicated that Bromus and Avena litter used in this study had been senesced for 

longer than Hordeum litter. It is possible that the greater pre-collection radiation exposure of 

Bromus litter contributed to Bromus litter’s strong aromaticity response in this study by 

increasing the relative proportion of lignin. 

Conclusions 

From this study, it seems clear that photodegradation makes litter carbon more water-

soluble. Although it appeared to be more recalcitrant on a per-molecule basis, DOC from 

more photodegraded litter did lead to more total microbial activity. This means that 

production of DOC is a possible mechanism for photopriming. I did not directly test whether 

the DOC-enhanced microbial activity leads to greater subsequent decomposition of litter, but 

I expect that it would, based on prior observations of links between water and photopriming. 
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If water serves to facilitate photopriming by making litter carbon more soluble, this 

has important implications for the functioning of dryland environments. Arid ecosystems 

receive little rainfall, and in some cases precipitation is highly seasonal. However, I observed 

that only a couple hours of exposure to moisture following radiation treatments led to 

detectable differences in DOC production and bioavailability. It is possible that sources of 

moisture other than precipitation, such as fog or dew, could also facilitate photopriming 

through this mechanism. This result is in line with Gliksman et al. (2017) who observed that 

photopriming in an arid system only took place when dew-sourced moisture was present, but 

not in treatments that remained dry.  

This research serves as a first step in a mechanistic differentiation between 

photodegradation and photopriming that could be incorporated into future photodegradation 

models. As mentioned above, Adair et al. (2017) found that their best-performing 

photodegradation model did not include photopriming. This is at odds with field and 

laboratory studies that have observed photopriming to occur, and in some cases to contribute 

a substantial fraction of the total photodegradation effect. Notably, Adair et al. (2017)’s 

models also included inhibition of microbial activity by radiation, but did not include any 

mechanism to temporally separate photopriming and microbial inhibition. Other studies 

indicate this time distinction is critical to photopriming. Lin et al. (2018) observed that 

alternating periods of light exposure and darkness facilitated photopriming even in cases 

where continuous light exposure did not. Gliksman et al. (2017) further observed that dew 

formation was needed for photopriming to happen; dew formation is most likely to happen at 

night when UV inhibition would not take place or in early morning when any inhibiting 

effect is minimal. My results suggest dew-induced photopriming happens because 
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photodegradation leads more litter carbon to dissolve in dew water, resulting in more 

microbial activity. Therefore, there is reason to believe that a model which separates 

inhibition and photopriming temporally, and accounts for this study’s observation that 

photodegradation enhances water solubility of litter carbon, would more closely reflect the 

importance of photopriming observed in field experiments. 
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Appendix 1: Experimental Setup Photos 

 

Figure A1-1: An example of a sample bag containing Avena litter, affixed by hook-and-loop 

fasteners to the wood backing boards used in the outdoor experiment. Sample bags in the 

outdoor experiment were not removed from these backing boards until the end of the 

experiment, as separating the hook and loop fasteners repeatedly would likely have caused 

physical damage to the litter in the bags. As a result, the side of the bag (and litter within) 

that was facing upwards at the start of the experiment is the side that faced upwards for the 

entire experiment. Samples in the indoor experiment were not affixed in place by hook-and-

loop fasteners, and were flipped each week. 
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Figure A1-2: The indoor experiment setup. Visible in this picture are two of the three 

radiation treatments in the indoor experiment. The Visible Pass treatment screen, as well as 

one of the two rows of sample bags for this treatment, are visible on the left of the image. 

Slightly to the right of center, behind the cardboard divider, a portion of the UV + Visible 

treatment is visible. A second cardboard divider beyond the UV + Visible treatment obscures 

the Radiation Block treatment from view entirely. On the right side of the image is a shade 

cloth that was draped over the shelves where the experiment was set up. 
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Figure A1-3: The outdoor experiment, during morning. All three radiation treatments are 

visible; each consists of two screens adjacent to each other, and sample bags are affixed to 

the wooden boards beneath the screens. See figure A1-1 for a close-up view of a sample bag 

affixed to one of these boards. The treatments, in order from closest to farthest, are the 

Radiation Block treatment, the UV + Visible treatment, and the Visible Pass treatment. 

Bricks were used to weigh down the screens and keep them in place. In the morning, the 
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treatment closest to the camera in this photo is in shade for the longest time, and the 

treatment closest to the far wall enters the shade earliest in the evening. However, each 

treatment (including all the samples as well as both screens) was moved between these three 

locations weekly to ensure the greatest possible similarity between treatments of shadow 

influence. Screens were cleaned with water weekly in order to remove dust. 

Appendix 2 - Dissolved Organic Carbon Pre-Treatment 

Table A2-1: Approximate pre-treatment extract DOC concentration for each species 

Species Avena Bromus Hordeum Extraction Blanks 

Dissolved 

organic carbon 

concentration 

Avg. +/- 

Standard Error 

138.7 +/- 13.7 

mg/L (n = 6) 

152.7 +/- 6.5 

mg/L (n = 6) 

96.0 +/- 9.8 

mg/L (n = 6) 

3.779 +/- 0.5 mg/L 

(n = 4) 

 

 

 

Table A2-1: Approximate pre-treatment extract DOC concentration, for each species. Values were 

measured on a TOC analyzer on October 2nd – 3rd, 2018, but the litter extract used had been extracted 

around the time the two experiments started and frozen until measurement. Extraction blanks were water 

that had been passed through a pre-combusted glass fiber filter at the same time as these extracts were 

filtered. 




