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BUILDING A NETWORK STACK FOR THE TWIZZLER OPERATING SYSTEM 

by Barbara Inez Moretto Dama 

Abstract  

This thesis describes the design and implementation of the first version of the 

Twizzler network stack. In this implementation, we focused on providing Twizzler 

developers with the network functionality that was immediately needed, while having 

flexibility that promotes growth and expansion. To encourage research in creating a 

data-centric network stack, we implemented the FLIP protocol as Layer 3 of the 

network stack, moving away from the traditional TCP/IP stack. FLIP allows for 

custom headers and its adaptability gives application developers control over which 

functions the network provides for their specific application. We also describe the 

implementation of ARP, the first network application using the Twizzler stack, which 

allows for network discovery. We expect that the future directions of this work will 

propel the development of a full-fledged network stack for the Twizzler operating 

system. 
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Chapter 1 

Introduction 

The Twizzler[1] operating system was designed to change the assumptions of 

the underlying memory format from those of traditional operating systems in order to 

adapt to newly-available technology, specifically byte-addressable non-volatile 

memory (NVM). To take the best advantage of what NVM has to offer, an operating 

system must change its persistent data path allowing user programs to directly access 

NVM, as we will describe in more detail in Chapter 2. By redesigning the persistent 

data path, Twizzler provides us with a true global object-ID space for NVM. This 

global object-ID space allows for persistent data to reside in any location, and as we 

start the design of the Twizzler network stack we must take this into consideration. 

As Twizzler becomes a distributed operating system, we envision that the network 

stack itself will assist in the management and movement of persistent data objects. 

We foresee the development of a new distributed network protocol which will run on 

both end-hosts and network devices, that will provide services for discovering the 

location of objects and will help manage the transfer of object data. The Twizzler 

network stack, which will run in user space, will be able to assist user programs as 

they attempt to access persistent data that is not local. 

An important research question is what the role of the network should be in 

relation to concerns such as coherency, replication and consistency. These 
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requirements create the need for lightweight messaging, where the network protocols 

do not add unnecessary overhead to the network communication. It is also important 

to note that the Twizzler network stack is still in the early stages of development; and 

thus, there is a great possibility that Twizzler will eventually need to support many 

different types of applications, some of which we have not even thought of yet. To 

prepare for these possibilities, our goal is to create a flexible network stack that will 

support current applications as well as new ones, supporting the growth and 

expansion of Twizzler. 

In order to carry out our vision we decided against implementing a traditional 

TCP/IP stack as our first version of the Twizzler network stack. Although we will 

eventually need a full TCP/IP stack for Twizzler to be compatible with other 

operating systems, our immediate focus is to create a stack for Twizzler that will 

support the needs of our envisioned user cases. For this reason, we have chosen to use 

the Flexible Interconnection Protocol (FLIP)[2] for our Twizzler network stack. FLIP 

allows for custom headers and will sit above the data-link layer. FLIP gives 

application developers control over which functions the network provides for their 

specific application. The flexibility of FLIP also allows us to meet different 

communication needs for future applications. 

In this thesis, we describe the design processes that we used and the work that 

was done to build the first two layers of the Twizzler network stack using the FLIP 

protocol architecture. When considering how the network will assist in the movement 

and management of objects, it became evident that we would need a mechanism to 
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discover the location of these objects. The Address Resolution Protocol (ARP) is a 

protocol that provides a mechanism for the discovery of addresses in a network by 

associating them to an IP address. For this reason, we decided to implement ARP 

with FLIP; this allows us to easily modify ARP to perform resolution on object-IDs, 

allowing for an object’s location to be discovered. Although we envision the network 

assisting in the resolution of object-IDs in the future, by implementing ARP as our 

first network application, we allow for early stages of testing to begin in the 

distribution of the object space. 

When designing the Twizzler network stack, we made all of our decisions 

while keeping in mind the necessity to have adaptability and extensibility that could 

foster future growth. This first version of the Twizzler network stack can now support 

a subset of FLIP functionalities. It can also be easily expanded to support a full FLIP 

implementation and to also support a TCP/IP stack on top of the data-link layer. We 

hope to see our work expand into a complete and distributed network stack, as we 

revolutionize the way FLIP is used to create a new data-centric network stack. 
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Chapter 2 

Background 

2.1 Twizzler, the Data-Centric Operating System  

Traditional operating systems were designed for a memory hierarchy with two 

regions; RAM, which is fast, volatile, and byte-addressable memory, and disk, which 

is slow, persistent and block-addressable. In contrast, NVM gives operating systems a 

main persistent memory that is low-latency and byte-addressable. NVM technology 

allows user processes to directly access persistent memory because of its uniqueness 

of being byte-addressable. In order to use NVM technology to its fullest potential, 

operating systems running on a machine that utilizes NVM technology should not 

interact with persistent storage as a traditional operating system would. This means 

that the operating system’s persistent data path must be modified, so that access to 

persistent memory is fast and direct. The Twizzler operating system does just that, as 

it provides a modified persistent data path that is meant to utilize the advantages 

provided by NVM technology. 

To truly understand why the persistent data path needs to be modified when 

using NVM, it is important to first understand how a traditional operating system 

manages persistent data. In a traditional operating system, any data that resides in 

persistent storage cannot be directly accessed or modified. Any user program that 

needs to write to or read from a file that is in persistent memory needs assistance from 
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the operating system. The file system (the set of functions in the operating system 

code that is responsible for moving data to and from persistent storage) is accountable 

for any read and write operations and for managing the data structures needed to 

perform these operations. These system calls to the file system tend to hog resources 

and hinder the performance of the CPU. 

When a user process requests access to a file, the file system needs to first 

open the file, thus requiring its information to be loaded into memory before it can be 

read. To open a file, the file system must first copy the hard disk’s directory, which 

will require another load operation. This operation allows the file system to find the 

directory entry of the file it is trying to access in the hard disk. The file directory is 

stored in a known location in the hard disk so that the file system knows where it is 

located and thus can be copied to memory and read from. The file directory contains 

information for each file stored in the hard disk, such as the file’s name, location in 

the hard disk, ownership, access rights, and so on. Once the file system has access to 

the directory and the entry for the specific file it needs to open, it must copy that entry 

into the System Wide Open File Table (SWOFT), which holds a copy of the directory 

entry for each file that is currently open by any user process. The SWOFT, which 

resides in memory, allows the file system to easily remember where the file is stored 

in the hard disk. This allows the file system to skip the step of referencing the 

directory during any consecutive read and write operations to a file that is open. The  
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file system also needs to create a per-process Open File Table (OFT), so that the user 

process can keep track of the logical byte number of any file it is currently trying to 

access. 

 
Figure 2: Reading and Writing to Persistent Data - Traditional OS 

Once a file has been opened, bytes are read from it using the read system call. 

It must be noted that any of the file’s bytes which a process needs to read must reside 

in memory during read or write operations to that file. The file system only loads an 

entire file into memory if the file is smaller than or equal to the size of a file block. 

Otherwise, the file system will load blocks of the file instead to conserve memory and 

allow multiple files to be open at the same time. Since a block holds several bytes, a 

system call is not necessary for each byte that needs to be read. As illustrated in 

Figure 1, anytime a read or write needs to be performed to a byte that is not part of a 

block which has been previously loaded into memory, the file system must first load 

that new block from the hard disk. The file system is also responsible for “page 

swapping,” a process that swaps blocks out of memory that are not currently being 
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used. This makes room for new blocks that may be needed if there is no more space 

in memory. Page swapping is a very expensive algorithm that hogs the CPU from 

user processes. After the file is no longer needed by any user processes, the file 

system needs to update all the data structures that were needed to keep track of these 

files. It is also the file system’s responsibility to update the hard disk directory in case 

a new file was created or if an existing file was written to. 

It is clear that the kernel is incredibly involved in the persistent data path of a 

traditional operating system, as it greatly affects pathways needed to access a file. 

The file system must keep the hard disk directory up to date, it must manage both the 

SWOFT and per-process OFT, and it must swap pages in and out of memory as they 

are needed. This process is a necessary one given that user processes cannot directly 

access the hard disk. NVM, in contrast, overrides this need by being a byte-

addressable persistent memory that allows user programs to have direct access to it. 

This diminishes the need for heavy kernel involvement in the persistent data path, 

which is preferable because it allows user processes to directly access persistent 

memory and increases CPU utilization. The Twizzler operating system enables this 

improvement by providing user programs with memory-style access to persistent data 

by rethinking the system stack. Twizzler exposes a data-centric programming model, 

where pointers to persistent data live as long as the data does. It also provides in-

memory data structures that are used by programs to manipulate NVM directly. Load 

and store system call operations in Twizzler are mediated via a user-space OS library, 

so the need for the kernel to get involved in persistent operations is minimized.  
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Twizzler breaks down NVM into pages, much like memory in a traditional 

operating system, and defines persistent objects, giving each object a unique object-

ID that is used as the unit of control to access NVM. Each object can consist of 4KiB 

(one page) to 1GB, and any larger data structures operate similar to a linked-list as 

they can span across multiple objects with references between them. The kernel’s 

responsibility with persistent memory in the NVM system is simply to manage these 

data objects by mapping, creating, and deleting them. We no longer need kernel 

involvement to enable programs to read from and write to these persistent objects 

because once a program has a mapping from a virtual address to an object-ID, it can 

access NVM much like a program in a traditional OS accesses memory. 

A persistent object consists of two parts: an FOT-index and the offset, which 

is shown in Figure 2. The FOT-index refers to an entry in the Foreign Object Table 

(FOT). The FOT, which resides in a known location of each object, holds references 

to foreign objects. Together, the persistent pointer and FOT make up an object-ID. If 

the FOT index is zero, the pointer is referencing data within its object, but if the FOT 

index has a different value, we then look up that value as an entry in the FOT. As 

shown in Figure 2, using this reference allows us to easily get data from foreign 

objects. 

Figure 2: Twizzler pointer format [1] 
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This design makes Twizzler very unique and allows for very large offsets. 

Since the pointer does not hold the reference to a foreign object, but simply a 

reference to an entry in the FOT, we can have very large object-IDs. This design 

enables a majority of the bits in a pointer to hold the offset value within the object. 

Having a very large object-ID space allows us to create machine-independent data 

references, where these cross-object pointers reference objects in different physical 

locations.  

As discussed, Twizzler is able to provide fast access to persistent memory 

without heavy kernel involvement. Twizzler is specifically designed to maximize 

usage of NVM’s advantages to their fullest extent, which includes permitting user 

programs to have direct access to low-latency persistent data. The natural 

consequence of this is to research and investigate how we can make the best use of 

the Twizzler design of object-IDs to create a true global object space that spans across 

multiple physical machines. 

2.2 FLIP: Flexible Interconnection Protocol 

When the traditional TCP/IP stack was developed in the 1970s, networks 

consisted of interconnected machines whose processing power, storage, and 

communication capabilities were close to identical. But as the Internet grows and we 

envision the Internet of Things (IoT), we are moving towards a world where devices 

connected to the Internet range from very simple devices such as sensors, to devices 

that are extremely complex and powerful such as servers in a data center. The 

protocols in the TCP/IP stack were developed to ensure reliable data delivery over 
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extremely unreliable data paths, where end-hosts implemented most of the algorithms 

necessary to ensure that packets sent out the wire were received on the other end. The 

TCP/IP stack was developed with the End-to-End Argument[3] being held as a holy-

grail. This argument stated that the underlying network should provide the minimum 

functionalities necessary to support an application, which added a lot of strain on end-

hosts and required expensive resources to ensure reliable delivery.  

Although the TCP/IP stack was a great solution for interconnecting computers 

with similar technology, we need better solutions as end-hosts evolve. For example, 

sensors often have limited power and storage capabilities and cannot handle a full 

TCP/IP communication. In fact, many of the TCP features, such as reliability, end-to-

end connection setup, or even flow control, are not necessary in many new network 

topologies. In contrast, computers running on a server farm require reliable and fast 

communication that doesn’t have too much overhead. Recently developed network 

infrastructure is much more reliable than it was in the 1970s, and much of the 

connection setup isn’t necessary as the physical layer has become more reliable. With 

such reliable communication paths, much of the overhead previously included in 

traditional network protocols is no longer needed, and thus the assumptions made 

about the communication path needs to adapt to this change. 

The network stack has evolved over the years with protocols such as UDP that 

allow for unreliable communication over the network medium. Although UDP is a 

great protocol for applications such as video conferencing, it stands at the complete 

opposite of TCP, giving application developers no features to ensure reliability or 
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even correctness. As the network stack continues to evolve, many of the protocols 

being developed are not flexible enough to give application developers the flexibility 

needed to use a stack that best fits their specific applications.  

The Flexible Interconnection Protocol (FLIP) was developed at the University 

of California Santa Cruz to address needs of new networked environments that 

interconnect heterogeneous devices ranging from very simple sensors (e.g., 

temperature, humidity, etc.) to traditional computing devices such as laptops, 

desktops and servers. FLIP, which is meant to sit on top of the data-link layer, allows 

application developers to use custom headers for their applications; therefore, 

developers only use the functionalities that are needed up to the application layer. 

Due to the flexibility provided by its custom headers, FLIP can either be a very thin 

layer which provides minimum functionality, or it can be a heavy-duty protocol 

providing the functionality of TCP. Yet, what makes FLIP so unique is that the 

application developer has complete control over how much functionality is 

implemented on the network, removing the overhead that comes with unnecessary 

functionality. Not only is FLIP flexible, but its design allows new protocol functions 

to be easily added to an existing network, which promotes future growth and 

development for unforeseen application needs.   

As Twizzler developers we have recently started to explore the possibilities of 

moving Twizzler to a networked environment. One of the goals envisioned for the 

Twizzler operating system is to provide a seamless transfer of data between machines 

by taking advantage of the global object space provided by NVM. As we explore the 
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different possibilities of the applications that will run on Twizzler, and which 

functions Twizzler will need from the network stack, it is apparent that FLIP’s 

flexibility is a great option to serve not only the immediate, but also the future needs 

of the Twizzler stack. By using FLIP as the basis for Twizzler network stack we are 

providing the Twizzler developers with all the flexibility they need to explore new 

applications in a new data-centric operating system.  
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Chapter 3 

Related Work 

In order to keep up with new and emerging technologies in recent years, 

systems research has focused on improving both traditional operating systems and the 

network stack. In this section, we will discuss how the Twizzler operating system 

design is the product of research in operating systems and novel work in NVM 

support. We will also discuss various network stack designs and protocols that, much 

like FLIP, have been proposed to address the unique needs of emerging technologies 

which were not yet created when the TCP/IP was developed. 

3.1 Microkernels and NVM Support 

 The design of minimalistic microkernels, such as Mach[11], greatly 

influenced the system design of Twizzler. With microkernel designs, the operating 

system only provides the necessary resource protection; this allows for a large part of 

the operating system’s implementation to be placed in user space. Because kernel 

code runs as a single process and is not preemptable, the system’s performance can be 

greatly improved by moving operating system functionality to user space. This design 

model influenced the way the Twizzler system stack was designed, so as to create a 

minimalist kernel. As we will discuss in Chapter 4, this design model also led to the 

decision of placing the Twizzler network stack into user space. 
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 There have also been new storage system designs that provide operating 

system support for NVM. In the Moneta Project[12], a new hardware/software 

interface was designed to support applications running on a single-level store such as 

NVM. This approach aims to greatly improve performance for memory access by 

reducing the operating system overhead as much as possible. When redesigning the 

system stack, we leveraged these ideas to create a new-persistent data path into the 

Twizzler design. 

3.2 Network Stacks Designs 

One user case example where we’ve seen new research on network stacks is 

that of time-sensitive applications. In Time-Sensitive Networking for Robotics[4], the 

authors reveal a compelling trend; in order to achieve higher determinism, where 

packets are sent out as best-effort, real-time applications have substituted the TCP/IP 

stack with custom stacks. By examining protocols such as EtherCAT[5] and SERCOS 

III[6], we see that protocols have become increasingly specialized to meet specific 

requirements or tasks needed by sensors and actuators. However, efforts to achieve 

higher determinism have made protocols become too domain specific, which has 

resulted in their inability to meet all application needs of a network. This creates the 

need for overly-complicated network stacks that implement a variety of protocols. We 

must be aware of this trend as we design the Twizzler network stack so that we are 

not limiting the network’s support for new applications that may be developed to run 

on the Twizzler operating system. 
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It is also important for us to consider work with user space network stack 

designs. Fast userspace packet processing[7] analyzes and compares different 

techniques for user space packet processing. This analysis demonstrated that kernel 

bypassing techniques cause a performance drawback because they hinder the line 

speed of high-speed links. However, there are solutions to address this performance 

drawback, such as Netmap, which delivers raw packet buffers straight to the user 

space. This technique is something that we must consider as we design our network 

stack, so as to achieve the best performance possible. 

3.3 Protocols with non-fixed headers 

In attempts to reduce network overhead, some researchers have experimented 

with various compression techniques, allowing protocols to define header 

compression. The Unified Header Compression Framework [8] is one such technique; 

unlike FLIP, however, these header compression techniques require a persistent state 

between the sender and receiver. Another drawback that comes with these 

compression techniques is that, due to end-hosts needing to keep state, they are only 

appropriate for point-to-point links. FLIP takes away the need for a persistent state 

with its meta-headers, creating a simpler protocol that can be interpreted by network 

devices. 
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Chapter 4 

Twizzler Network Stack Design 

The Twizzler design model involves the creation of a minimalist microkernel 

where the complexity of the system is implemented in user space; this simplifies the 

design of the kernel itself. As we will show, we implement as much of the network 

stack as possible in user space to keep the Twizzler kernel simple and minimalistic. 

The network stack’s current implementation was specifically developed to meet the 

immediate needs of Twizzler. Future extensions to the Twizzler network stack and its 

protocols will be discussed in Chapter 7.  

 There were two key factors that drove our decisions while designing the 

Twizzler network stack: first, support for a distributed object-ID space that spans 

across multiple machines; second, designing the network stack to be flexible enough 

to fulfill the needs of future applications. We envisioned a user-level network stack 

program that would be responsible for moving objects around the network by sending 

requests for foreign objects and responding to requests coming in from the network 

for local objects. The protocols that would enable this type of object movement could 

not only run on the Twizzler end-hosts but could also hand off some of their 

functionalities to the network by using programmable switches. Because of these 

features, user programs no longer need to send explicit network request for data that 
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is not local; in fact, they do not even need to be aware that the target object was not 

local.  

As we began designing the Twizzler network stack, our first focus was to get 

Twizzler to a point where it could simply push bits out the wire. Or next goal was to 

add some structure to this data we were pushing out the wire so that it could be 

interpreted by the network. As previously discussed, this led to the decision of 

implementing Ethernet as our data-link layer protocol and FLIP as our Layer 3 

protocol, which gave us a great starting point for our stack design. It is important to 

note that the current design is meant for a Local Area Network (LAN) environment 

and that more functionality will need to be added so that we can support Wide Area 

Networks (WAN).  

 
Figure 3: Traditional Network Stack vs Twizzler Network Stack 

Figure 3 shows a side by side comparison between a traditional network stack 

and the Twizzler network stack. The Twizzler network stack has four layers: physical, 
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data-link, FLIP, and Application. Unlike a traditional network stack, the Twizzler 

stack implements all functionality in user space down to the framing functionality of 

the data-link layer. The user space program that implements networking will 

encapsulate the packet with the source and destination L2 addresses and the protocol 

type and place the packet in the NIC buffer. The NIC will then encapsulate the packet 

with the Preamble, Start of Frame Delimiter (SFD), and the Cyclic Redundancy 

Check (CRC) header fields. With a traditional network stack, the application layer 

communicates with the Socket API to send and receive network data, while the 

Twizzler stack proves the user application with a FLIP custom API for this same 

purpose. The FLIP layer has not yet been fully implemented, but current functionality 

meets the immediate needs of Twizzler and is described in detail in Chapter 5 below. 

4.1 Data-Link Layer 

As shown in Figure 4, the data-link layer follows the Ethernet IEEE 802.3 

standard. The Preamble, SFD, and the CRC are implemented by the NIC itself. The 

destination and source addresses, along with the length and payload, are handled by 

the network stack user program. 

Figure 4: Ethernet packet 

The source and destination addresses are six-byte fields used to represent a 

48-bit MAC address. The source MAC address of a NIC card is exposed by the NIC 

to the Ethernet layer through an API, and the destination MAC address is learned 
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dynamically through the ARP protocol. The FLIP layer is responsible for providing 

the destination MAC address to the Ethernet layer. We decided to have the FLIP layer 

specify the destination MAC address, while the Ethernet layer encapsulates the packet 

with the correct destination MAC address because the FLIP layer knows which type 

of L3 destination address we are using. If we are using an IP address, FLIP can use 

the ARP protocol to perform address resolution, but if we use a different L3 address, 

we cannot use ARP to find the destination MAC. For this reason, and because L2 is 

not aware of the L3 address being used, we gave that responsibility to the FLIP layer.  

4.2 FLIP Layer 

The original developers of the FLIP protocol split the design into two layers: 

the first was the FLIP layer, which implemented Layer 3 functionality; the second 

was the Generic Transport Protocol (GTP), which implemented Layer 4 functionality. 

GTP has the same design as FLIP; for this reason, FLIP can be easily expanded to 

include all the features of GTP. Our immediate focus was to design and implement 

FLIP’s Layer 3 functionality; this design allows for growth and expansion to support 

additional functions in the future. 

Figure 5: FLIP Packet 

As shown in Figure 5, the FLIP protocol has two separate headers. The meta-

header is a bitmap that tells us which fields are present and being used for 

encapsulation in the header. Figure 6 shows how the bitmap is split into three separate 
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bytes. The application programmer must provide the FLIP API with the meta-headers 

for their application, thus specifying which communication functions are needed. The 

FLIP protocol will then take these meta-headers and encapsulate the data accordingly. 

The continuation bit is the first bit of each byte of the meta-header, and it tells 

us whether there is another byte of the meta-header following the current byte. The 

flexibility in the meta-header design helps reduce unwanted overhead while also 

allowing for more functionality to be added as needed. Although we have kept the 

original order of the meta-header fields, which was chosen by FLIP designers for 

simple applications and devices, we have the ability to move them around in the 

future as we see fit. 

Figure 6: FLIP meta-header structure [2] 
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Currently, we don’t support all fields of the FLIP packet; however, we have 

implemented the necessary features that will support the implementation of the ARP 

protocol. The definition of the FLIP packet fields are as follows: 

● Version: this is a one byte field, where the higher four bits represent the 

version and the lower four bits represent the packet priority. The current FLIP 

verison is 0, and the priority is assumed to be zero for all packets. 

● Destination: this two bit field represents the destination address, where 00 

means that the destination field is not present, 01 represents a two-byte 

address, 10 represents a four-byte address, and 11 indicates a 16-byte address. 

Although the original FLIP design indicated a 11 as a variable length address, 

we chose to use 11 to represent a 16-byte address; this allows us to use an 

object-ID as an L3 destination address.  

● Type: the type field has also been modified from the original FLIP design, 

which was a one-byte field to indicate the protocol type. We increased this 

field to be a two-byte field in the FLIP header. Currently, there isn’t much 

distinction between the L2 type field in the Ethernet header and the type field 

in the FLIP header; however, we expect this to change as we create more 

applications and protocols to run on the FLIP stack.  

● Time to Live (TTL): this is a one byte field meant to control how long a 

packet can travel the network. This feature is not yet supported by our FLIP 

implementation, but it can easily be enabled when and if the need arises. 

● Flow: the flow field is a four-byte header that will be used for flow control.  
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● Source: the source address is implemented using the same protocols as the 

destination address, with 01 representing a two-byte address, 10 representing a 

four-byte address, and 11 indicating a 16-byte address 

● Length: this two-byte field represents the length of the payload encapsulated 

in the FLIP packet. 

● Checksum: this two-byte field will be used in the future for error checking of 

the packet payload. 

● Don’t fragment, fragment offset, and last fragment: the field of fragmentation 

is not yet supported by the Twizzler network stack. 

● Reserved: the field of reserved bits are not yet defined and are one mechanism 

which will support future growth. We used reserved bits on the second byte of 

the meta-header for the ARP protocol implementation, but this usage is only 

relevant for an ARP packet type. 

As shown in Figure 6, the second field of the meta-header’s first byte corresponds to 

an Extra Simple Packet (ESP). This special packet was defined by FLIP designers as 

a short packet that only carries data. If the ESP field is set on the first byte without a 

continuation bit, then the responsibility of holding the packet’s payload falls upon the 

rest of the bits in the meta-header. In contrast, if the continuation bit and the ESP bit 

are set, then the next 14 bits represent the payload. While it’s beneficial to have a 

simple ESP design, it does not provide us with any L3 functionality. We decided to 

keep the first bit of the meta-header solely for ESP use but have not fully 

implemented encapsulation and decapsulation of ESP packets. We also left the bit 
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there to allow future developers, who may want to send ESP packets into a Twizzler 

network, to test the network stack.  

Figure 7: FLIP design, splitting L3 and L4 meta-headers 

Figure 8: FLIP design, combining L3 and L4 meta-headers 

The current design of the FLIP protocol can also be modified to include 

transport layer functionality. Figure 7 shows that we can add a second set of meta-

headers, following the FLIP headers, to represent the transport layer. Another 

possibility is to simply expand the fields of the FLIP meta-headers, as shown in 

Figure 8. The first design option follows a more traditional network stack, where 

there is a clear handoff from the network layer functionality to the transport layer 

functionality. Using the design of Figure 7, allows for both the network and transport 

layers to have headers that can vary in length. 

In contrast, the second design option is easier to program because of FLIP’s 

flexible�rather than fixed�headers. Having all meta-headers available in the first layer 

of encapsulation makes it easier to calculate the packet length and allocate enough 

buffer space for all headers. However, there are certain challenges with this design, 

like not knowing which bits of the meta-headers correspond to L3 header fields and 

which ones correspond to L4 header fields. A viable solution to this challenge is to 

have a reserved bit on each byte of the L3 meta-headers, much like the continuation 

bit; this could tell us the subsequent byte is a L4 meta-header. Both designs are viable 
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options, but we ultimately aim to choose the design based on two factors: if we need a 

distinct separation of L3 and L4, or if we need the simplicity of having a single FLIP 

layer that provides both functionalities. Since Twizzler will eventually have two 

network stacks (a traditional TCP/IP stack, and a data-centric stack using FLIP) we 

may choose to have one FLIP layer that provides all the needed functionality for our 

data-centric applications. 

4.3 ARP Protocol Implementation using FLIP 

As previously discussed, by adding ARP as our first network application we 

provide the FLIP stack with the ability to perform address resolution. By 

implementing ARP with FLIP, we can easily modify ARP to perform resolution on 

object-IDs, allowing for an object’s location to be discovered and therefore 

encouraging the early stages of testing to begin in the distribution of the object space. 

We can leverage our existing FLIP design to easily implement ARP without having to 

define separate ARP headers. Because of FLIP’s unique ability to allow developers to 

control meta-headers, we are able to send FLIP packets to perform full address 

resolution without needing to send any payload. Figure 9 shows how the FLIP meta-

headers have been hard-coded for ARP request and reply messages, with only the 

necessary fields being included for address resolution. 
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Figure 9: ARP meta-headers. Image adapted. [2] 

  ARP messages have a type field of 0x0806 for both the Ethernet and the FLIP 

layers. When packets are received with this type field, they are processed by the ARP 

protocol and the last two bits of the meta-header, which were previously reserved 

bits, are now used to decipher between an ARP reply and an ARP request message. 

We will discuss the details of the ARP protocol implementation and the interactions 

between the different layers of the Twizzler network stack with the ARP protocol in 

Chapter 5. 
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Chapter 5  

Implementation 

The network stack for the Twizzler operating system was designed using 

packet buffers, thus making the hand off from one layer of the network stack to the 

next an easy and seamless process. When implementing the system stack, we started 

with the Ethernet layer and then moved onto the FLIP layer. For simplicity, we tie 

these implementations together and examine a packet’s ingress and egress journey 

through the Twizzler network stack. 

5.1 Initialization of Network Objects 

There are three Twizzler persistent objects that need to be initialized before 

any packets can be sent or received: Interface, Tx-queue, and Rx-queue. The Interface 

object holds a data structure that is used to keep track of the various interfaces’ 

network properties, such as its MAC address and its IP address. The Interface data 

structure is populated through an API that initializes the MAC and IP address fields. 

The MAC address is exposed to the API by the NIC, and an IP address is provided as 

a program argument when the network program is initialized.  

The Rx and Tx-queue objects are used by the NIC to process packets. The 

Ethernet layer will place packets into the Tx-queue and remove packets from the Rx-

queue. In our current implementation, an important feature that will need to be 

changed is how the reference to the Rx-queue object is passed between layers and 
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down the stack. This feature is desirable for testing purposes because we have not 

restricted which layer it can place a packet into the Rx-buffer, which means any layer 

of the stack can place data into the network for experimental purposes. For security 

reasons, this will need to change as we get the network stack ready for use by 

application developers.  

5.2 Packet Encapsulation 

Once the persistent objects have been initialized, the network stack is ready to 

send and receive data. The FLIP layer, which is exposed to applications by a Send-

FLIP API, must be provided with the following: 

• FLIP meta-header bitmaps with the functionally needed for this 

communication. Note that the Send-FLIP API must be provided at least 

the first byte of the bitmap and that the second and third bytes are optional 

fields. 

• A reference to the interface-object holding the network properties of the 

physical interface that will be used to push data out the wire. The FLIP 

stack currently supports a single NIC, but it can be improved upon by 

implementing routing and incrementing the number of interfaces a single 

machine can have. Instead of having the application layer specify the 

interface that will be used for communication, we can automate this 

process by having the FLIP layer choose the correct interface based on the 

subnet an interface is assigned to and its destination address.  
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• Destination address. This is an optional field for applications that require 

this functionality, which will be indicated by the meta-header bitmap.  

• The protocol type. This field is not optional and is needed by our 

implementation. Since we are using the same protocol type for L2 and L3, 

the Ethernet layer will not know how to decapsulate a packet at the 

receiving end if the type is not provided by the sender. The FLIP protocol 

type that we have chosen is 0x2020.  

• If a broadcast message is being sent, a boolean flag must be passed to the 

FLIP layer to indicate the encapsulation of a broadcast packet.  

• If a payload is to be encapsulated, the application must pass that data to 

the FLIP layer in the form of a character pointer. 

Figure 10: A packet’s egress journey 
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 The FLIP layer will take the provided meta-headers and calculate the size of 

the FLIP header based on the functionality set by the meta-header bitmap. Once the 

size of the FLIP header is calculated, the size of the complete packet is then allocated 

as the packet buffer. The packet buffer will be big enough to fit the payload, the FLIP 

header and meta-header, and the Ethernet header. Once the packet buffer is created, 

the payload is placed into the right-most end, leaving empty space to the left of the 

buffer for encapsulation by all layers. 

The FLIP layer then creates a pointer that will reference the byte in the packet 

buffer where the first meta-header should be placed. There will be just enough space 

to the left of this pointer to place the Ethernet headers. Next, the FLIP layer can 

encapsulate the payload by placing the meta-headers and necessary header fields at 

the starting pointer position. As shown in Figure 10, if the FLIP header has a set four-

byte destination address, it is assumed that this is an IPv4 address. Unless this is a 

broadcast packet, address resolution must be done to find the destination MAC 

address based on the destination IPv4 address provided. Before the FLIP layer can 

pass a pointer to the packet buffer and down to the Ethernet layer, it must successfully 

resolve the MAC address. If the MAC address cannot be resolved, this packet cannot 

be processed any further and will be dropped. 

The ARP protocol is invoked when an IPv4 destination address is a field in 

the FLIP header; the first step in this protocol is for the ARP-table to be checked to 

see if the MAC address associated with the provided IP address is known. The ARP-

table is simply a volatile hash table that maps IP addresses to MAC addresses. If the 
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MAC address is unknown, the ARP protocol will send out an ARP request message 

using the FLIP protocol and the message will be set for the 0x0806 ARP type with the 

meta-headers for an ARP-request message. Since this message will be a broadcast 

message, FLIP will not attempt any address resolution with the destination IPv4 

address; this prevents the FLIP protocol from being stuck in a loop state where it 

continuously attempts to resolve the IP address. The ARP protocol will then wait for 

two seconds before doing another lookup on its ARP table (note that the time the 

ARP waits for resolution will need to change in the future to reflect a network’s 

RTT). If the address cannot be resolved, the packet will be dropped by the FLIP layer 

and an error message will be displayed; but, if ARP resolution is successful, the 

packet will continue its egress journey. 

Once the FLIP layer is done encapsulating the packet, it is ready for the 

Ethernet layer to add its headers. With packet-buffers, a pointer reference is passed 

between layers to where the next layer’s headers should be placed. In the case of the 

FLIP layer, it must give the Ethernet layer a pointer to the beginning of the packet 

buffer where the Ethernet header will be placed. FLIP must ensure that its headers 

and meta-headers are placed to the right side of the packet buffer, preceding the 

payload.  

In order for the Ethernet layer to encapsulate the packet, it must be provided 

with the protocol type, the destination MAC address, and the length of the packet 

buffer, which must be passed to the NIC. The Ethernet layer will place its header at 

the location of the pointer provided by the FLIP layer. It will then use the interface’s 
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object to populate the header with the source MAC address and information provided 

by the FLIP layer to populate the destination MAC address and packet type. A packet 

queue entry data structure is then created. This data structure must be provided with 

the pointer that references the packet buffer, along with its length; this data structure 

is then placed in the Tx-buffer to be processed by the NIC. 

5.3 Packet Decapsulation 

When a packet is received by the NIC, it is encapsulated with a NIC specific 

header data structure, which contains control information added by the NIC itself, and 

is then followed by the actual Ethernet header. The Ethernet layer moves the pointer 

from the beginning of the NIC’s header to the beginning of the Ethernet packet. Next, 

it creates another pointer that it will pass to the upper layers, which references the 

beginning of the Ethernet payload. Then, the Ethernet layer checks protocol type in 

the Ethernet header: if it’s a FLIP type (0x2020), the payload pointer is passed to the 

FLIP layer; if it’s an ARP type (0x0806), the packet will be processed by the ARP 

protocol and received by the ARP API. The Ethernet layer must also provide the 

upper layers with a reference to the object of the receiving interface and the source 

MAC address. 

If the message received is an ARP message, it will be processed by the ARP 

protocol. First, the source IP address must be added to the ARP table. If the ARP 

table already has an entry for that IP address, it will be overwritten to ensure the latest 

MAC-to-IP mapping. If this message was an ARP reply message, the ARP protocol 

has completed its handshake and no further processing is needed. In contrast, if it was 
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an ARP request message, then an ARP reply message would be sent using the FLIP 

layer and include the corresponding meta-headers for an ARP Reply message. The 

ARP reply message is a unicast message, where the source MAC and IP addresses of 

the incoming message now become the destination MAC and IP address of the 

outgoing message. 

If the received message is a FLIP type, the header is decapsulated based on 

the active fields of the meta-header by the FLIP layer. If the header has an IPv4 

source address, an entry is added to the ARP table using the source MAC provided by 

the Ethernet layer and the source IPv4 address in the FLIP header. At this point, we 

have reached the end of the network stack and the payload of the FLIP packet is 

displayed to the user. As we develop applications that will use the network stack, we 

can simply pass a pointer that references the beginning of the payload to the correct 

application. To be able to support multiple applications receiving data from the FLIP 

layer, we will need to implement port numbers as part of the FLIP protocol. 

  

 

 

 

 

 

 

 



 33 

 

 

Chapter 6 

Testing 

As each layer of the Twizzler network stack was implemented, we ran manual 

tests to ensure correctness of our protocol. In this section, we will go through the tests 

executed through each stage of the network stack. 

Test 1: Ethernet Header Implementation Test 

The first test that was done to verify the network stack’s successful 

implementation was to execute encapsulation and decapsulation of Ethernet packets. 

The test was run on a non-Twizzler machine using standard sockets as messages were 

passed between processes. Although the code for the Ethernet layer needed to be 

modified when we transferred it to a Twizzler machine, running the test in this way 

allowed us to assess our understanding of the Ethernet layer implementation and 

ensured that we were able to correctly encapsulate and decapsulate Ethernet data 

packets. 

Test 2: Producer/Consumer Buffers 

The producer/consumer buffers test was created to verify the Ethernet code in 

the Twizzler OS. It involved transferring the Ethernet code previously implemented 

in a non-Twizzler OS to the Twizzler OS. The producer/consumer buffer was also 

created as a destination where Ethernet packets could be placed, to ensure that two 

processes could communicate and interpret Ethernet packets. Encapsulated messages 
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were put into the buffer and then the consumer removed the messages and 

decapsulated them. We ensured the payload from the sender process was the same 

received by the receiver process and that it contained hard-coded fields of the 

Ethernet header. 

Test 3: Testing NIC Tx-buffer 

To test the communication between the Ethernet layer and the NIC, the 

Ethernet layer was modified to place packets into the Tx-queue. Packet captures were 

taken using Wireshark to ensure that the NIC was able to push the packets in the Tx-

queue out the wire. This test was also helpful in ensuring that the Ethernet packets 

met the IEEE standards by ensuring that a third-party software could also interpret it. 

Test 4: Testing NIC Rx-buffer 

To test the NIC’s Rx-buffer and its communication to the Ethernet layer, we 

connected two Twizzler machines together in order to send Ethernet traffic back and 

forth. Figure 11 shows how we connected the two Twizzler VMs together through an 

Open vSwitch using virtual bridge NICs; a suggested configuration from Software-

Defined Networking (SDN) with OpenStack[9]. This topology setup allowed us to not 

only send traffic between the Twizzler VMs, but to also ensure correctness by 

capturing the traffic with Wireshark. This ensured that we could connect Twizzler to 

a virtual switch, which will be a great advantage as we run virtual tests with more 

complex topologies using network emulators such as Mininet. 
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Figure 11: Twizzler test topology 

Test 5: Testing FLIP 

Once the FLIP layer was implemented, we tested the communication between 

the Ethernet and FLIP layers both up the stack and down the stack by sending FLIP 

messages between the two VMs. Wireshark could not interpret FLIP headers since 

doing so is not a standardized protocol. This requires us to manually check the 

packets bit-by-bit to ensure that the FLIP headers and meta-headers were correctly 

implemented. 

Test 6: ARP Learning  

If an incoming FLIP message contained an IPv4 source address, we tested to 

verify that MAC addresses were being learned and that the ARP table was being 

populated. Given that address resolution was not yet implemented, we hard-coded the 

destination MAC addresses to allow us to execute this test. 

Test 7: ARP exchange 

In the last implementation and testing stage, we tested our implementation of 

the ARP protocol to ensure it would send ARP request messages and reply to 

received ARP requests. At this point, we were no longer providing the network stack 

with the destination MAC address for unicast messages, but instead letting the ARP 

protocol find it for us. We captured this message exchange on Wireshark and 
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confirmed an ARP hand-shake was executed before a message was sent. We then 

manually checked these packets’ MAC and IP addresses to verify that the ARP 

exchange was correctly implemented. 
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Chapter 7 

Future Work 

The Twizzler network stack has evolved significantly since its early days of 

not having the ability to push bits out the wire, and we hope our work will propel this 

technology forward towards creating a full-fledged network stack. There are many 

different directions we can focus on to continue in the expansion of the network 

stack. We may choose to explore how we want to push the data bus into the network 

stack, to move Twizzler closer to our vision of a global object space. We must also 

keep improving the network stack and the functionalities it provides so that we can 

support a variety of Twizzler’s application needs.  

 One area that still needs to be improved upon is the implementation of the 

FLIP layer itself. Many of the functionalities we discussed in Chapter 4 are not yet 

supported and will need to be implemented in the near future. However, we should 

prioritize the functions we chose to implement, following the procedure we used for 

implementing the functions needed to support ARP protocol. We must also consider 

the implementation of Layer 4 functionality to the FLIP protocol. Figure 11 shows an 

example of the Layer 4 meta-header used by the FLIP developers when they 

implemented GTP. When implementing Layer 4 using meta-headers, we can benefit 

in the same way as we did when implementing the Layer 3 functionality. As 

previously discussed, we must decide whether we want a single layer implementation, 
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which will provide all the functionality needed between the Data-link layer and the 

Application layer, or if we want to create a distinction between the two layers, which 

would resemble a more traditional network stack. 

Figure 11: GTP meta-header [2] 

 By implementing ARP we are now able to send requests for MAC addresses, 

and we can expand this protocol to send requests for object-IDs. The Twizzler 

operating system throws a fault when a user attempts to access an object that is not 

local. The network stack helps by catching this fault and sending out a modified ARP 

request, where the resolution is for an object-ID rather than for a MAC address. By 

connecting Twizzler machines to programmable switches, our switches can learn the 

location of object-IDs and cache them for future requests; this minimizes the time a 

user program needs to wait to access a piece of persistent data that is not locally 

available.  
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 Since we are able to discover objects that exist in different locations within 

the network, we can now consider options for dealing with these persistent objects. 

There are many research questions that should be answered as we move forward:  

● Do we want to move an object to the local machine when it is discovered, or 

do we make a copy of it?  

● How much of the object do we move: a page, or the entire object?  

● If parts of our object are in different locations, how do we address these 

multiple copies and should an object get a new object-ID as it relocates 

around the network?  

● What about keeping replicas of objects consistent?  

● How much of the network’s functionality will be used to assist in the 

implementation of a consensus protocol?  

● Do we want to implement a protocol such as NOPaxos [10] where we 

decapsulate the responsibilities of the Paxos protocol by relying on the 

network for ordering?  

These are just some of the research questions that need investigating as we continue 

to expand our new and innovative data-centric network stack. 
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Chapter 8 

Conclusion 

 This report presents the design and steps taken to implement the first version 

of Twizzler’s network stack. With this network stack, we were able to use FLIP in a 

new and unforeseen use case then intended by the original FLIP designers. This 

implementation has provided Twizzler developers a flexible network stack, where 

custom headers can be used to support specific application needs. We also 

implemented the first network application using FLIP and the ARP protocol. This is 

able to resolve IPv4 addresses but can be easily modified to resolve object-IDs. By 

implementing ARP, we have provided developers with the necessary tools to start 

working on the research of distributing the object space. 

We laid the groundwork that is necessary to expand the Twizzler network 

stacks into multiple directions to address various research questions. The FLIP layer 

can be expanded to provide new network functionality as the need arises and it allows 

for new applications to be developed to utilize the network stack. We are at a point 

where we can start expanding the data-bus into the network. We hope that with this 

groundwork laid out, developers are encouraged to expand this work as we continue 

to revolutionize our data-centric network stack. 
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