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Abstract

Dose delivery uncertainty is a major concern in proton therapy, adversely affecting the treatment 

precision and outcome. Recently, a promising technique, proton-acoustic (PA) imaging, has been 

developed to provide real-time in-vivo 3D dose verification. However, its dosimetry accuracy is 

limited due to the limited-angle view of the ultrasound transducer. In this study, we developed 

a deep learning-based method to address the limited-view issue in the PA reconstruction. A 

deep cascaded convolutional neural network (DC-CNN) was proposed to reconstruct 3D high-

quality radiation-induced pressures using PA signals detected by a matrix array, and then derive 

precise 3D dosimetry from pressures for dose verification in proton therapy. To validate its 

performance, we collected 81 prostate cancer patients’ proton therapy treatment plans. Dose 

was calculated using the commercial software RayStation and was normalized to the maximum 

dose. The proton-acoustic simulation was performed using the open-source k-wave package. A 

matrix ultrasound array with 64×64 sensors and 500kHz central frequency was simulated near 

the perineum to acquire radiofrequency (RF) signals during dose delivery. For realistic acoustic 

simulations, tissue heterogeneity and attenuation were considered, and Gaussian white noise 

was added to the acquired RF signals. The proposed DC-CNN was trained on 204 samples 

from 69 patients and tested on 26 samples from 12 other patients. Predicted 3D pressures and 

dose maps were compared against the ground truth qualitatively and quantitatively using root-

mean-squared-error (RMSE), gamma-index (GI), and Dice coefficient of isodose lines. Results 

demonstrated that the proposed method considerably improved the limited-view proton-acoustic 
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image quality, reconstructing pressures with clear and accurate structures and deriving doses with 

a high agreement with the ground truth. Quantitatively, the pressure accuracy achieved an RMSE 

of 0.061, and the dose accuracy achieved an RMSE of 0.044, GI (3%/3mm) of 93.71%, and 

90%-isodose line Dice of 0.922. The proposed method demonstrates the feasibility of achieving 

high-quality quantitative 3D dosimetry in proton-acoustic imaging using a matrix array, which 

potentially enables the online 3D dose verification for prostate proton therapy.

Keywords

3D dosimetry; prostate proton therapy; proton-acoustic imaging; matrix ultrasound array; deep 
learning

1. Introduction

Protons deposit more energy as they slow down, leading to a peak (known as the “Bragg 

Peak”) near the end of the range of the proton beam. Beyond the peak, dose falls off 

quickly. This characteristic allows proton therapy to potentially achieve significant healthy 

tissue sparing beyond the Bragg Peak with the dose concentrated to the target. However, 

proton therapy is highly susceptible to the delivery errors caused by patient positioning 

variations and anatomy motions/changes, as well as the systematic errors caused by range 

uncertainties in dose calculation. The sharp dose fall-off makes proton therapy much more 

sensitive to these errors than photon therapy, as a small delivery error can cause a significant 

underdose to the tumor or overdose to healthy tissues. Daily imaging and adaptive therapy 

can help alleviate the treatment uncertainties, but they all have their own limitations. Daily 

image, such as cone-beam CT (CBCT), is mostly acquired before the treatment; therefore, it 

cannot account for intrafraction motions or positioning changes. So far, there is no real-time 

3D imaging that can verify intrafraction treatment delivery accuracy. Adaptive therapy is 

done solely offline in practice due to various challenges for online adaptive proton therapy. 

Besides, offline adaptive therapy is only done when the anatomy has large deviations since 

it is a time-consuming and labor-intensive task; therefore, it does not fully address the 

impact of daily variations. In addition, neither daily CBCT nor adaptive therapy addresses 

the issue with proton dose calculation uncertainties. Due to all these remaining uncertainties, 

larger-than-desirable treatment margins are commonly added around the tumor in practice 

to ensure adequate dose coverage. These margins significantly increase the dose to adjacent 

healthy tissues (some may even receive the full treatment dose), leading to an increase in 

radiation-induced toxicities. Concerns of increased toxicities, in turn, constrain the dose 

that can be prescribed to the tumor and thus limit the tumor control we can achieve. For 

example, proton radiation therapy (RT) for prostate cancer using standard margins (~1 cm) 

for treatment uncertainty mitigation resulted in ≥ grade 2 rectal toxicity rates of 15%–22% 
1,2. However, studies have shown that if margins could be reduced to ~2 mm, then rectal 

toxicity rates could be reduced by up to 50% 3. Therefore, it is important to verify the dose 

delivery of proton therapy so that treatment errors can be detected and corrected to minimize 

their impact, and treatment margins can be reduced to fully explore the true potential of 

proton therapy.
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To address this clinical need, various in-vivo dose verification techniques have been 

proposed to estimate the deposited dose. These techniques can be divided into direct and 

indirect methods based on the measured signals. (1) Direct methods verify the proton 

range by directly measuring the dose or fluence. For example, implantable dosimeters/

markers with wireless reading 4–6 have been investigated for range verification in proton 

therapy. These methods only provide limited point dose measurement without 3D volumetric 

information for dose verification, which is crucial for verifying the tumor and organ at 

risk (OAR) dose in proton therapy. Besides, these methods require the implantation of 

dosimeters, which is invasive. (2) Indirect methods verify proton range by measuring the 

surrogate signals induced by the proton irradiation. Positron emission tomography (PET) 
7–10 and prompt gamma (PG) imaging 11–15 have been developed to detect the gammas 

emitted from the positron emitters or excited nuclei generated along the proton beam path 

during treatment for range verification. Although annihilation gamma signal is initially 

correlated to dose deposition, the correlation of the resulting PET images to the delivered 

dose is severely degraded by biological washout and low signal intensity 16. PG imaging 

is still under investigation with challenges of the degradation of PG data caused by false 

events and misordering, and lack of true 3D information in the PG images 17,18. Magnetic 

resonance imaging (MRI) 19,20 is also utilized to detect the tissue constitution changes 

caused by radiation. However, the MRI device is expensive and not available in the proton 

therapy room, and therefore it cannot provide in vivo range verification during the treatment 

delivery.

Recently, acoustic imaging has been investigated to detect proton-induced radiofrequency 

(RF) signals. When tissues absorb heat from pulsed proton beams, they expand and result 

in the generation and propagation of acoustic waves, which can be detected by ultrasound 

transducers and used to reconstruct the radiation-induced pressures. This technique has 

drawn attention due to its low cost of devices, easy deployment, and capability of real-time 

dose verification. Ahmad et al. 21 used an analytical model to calculate the proton dose 

distribution and local pressure rise for beams of different energy (100 and 160 MeV) and 

spot widths (1, 5, and 10 mm) in a water phantom. Jones et al. 22 first observed acoustic 

emissions from proton beams using a clinical cyclotron, demonstrating possibilities of 

the in-vivo proton range verification in clinical settings. Assmann et al. 23 performed a 

simulation study to detect the Bragg Peak position by measuring the RF signals of single 

proton pulses and achieved sub-millimeter accuracy in localizing the Bragg Peak in a water 

phantom. However, this study only explored 1D range verification using a single ultrasound 

transducer without 3D dose volumetric information. Besides, using a water phantom, this 

study did not account for the heterogeneity of human tissues. Freijo et al. 24 developed 

a dictionary-based method to achieve proton range verification based on proton-acoustic 

signals. They performed a simulation study in the 2D computed tomography (CT) images, 

lacking 3D dose verification. Peng’s group conducted several simulation studies 25–27 

to verify proton range in 2D or 3D CT images using sparse-view ultrasound detectors 

distributed over a full 360-degree ring, demonstrating sub-millimeter Bragg peak errors. 

However, sparse-view detectors in a ring geometry are impractical to deploy during the 

dose delivery in proton therapy due to the mechanical clearance issue and interference with 

the treatment delivery. Recently, matrix array has been developed for ultrasound imaging 
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28. It enables real-time 3D imaging while being easy to deploy in clinical settings without 

mechanical issues or interference with the treatment. A study from our group 29 showed 

the feasibility of using a transperineal matrix ultrasound array for prostate dose verification. 

However, the reconstructed pressure maps are distorted due to the limited-angle view of the 

matrix array, adversely affecting the dose verification accuracy.

Reconstructing images from limited-angle acquisitions is essentially an ill-conditioned 

inverse problem, in which deep learning has demonstrated great merits 30–35. Huang et al. 36 

developed a deep learning model to reconstruct CT images from limited-angle acquisitions, 

achieving significantly improved root mean squared errors (RMSE). Our previous study 37 

demonstrated the effectiveness of deep learning in restoring volumetric information from 

limited-angle CBCT. Cheng et al. 38 showed the feasibility of deep learning to reconstruct 

the 2D speed of sound images for limited-angle ultrasound tomography using phantom data. 

The results are promising, although the image quality is still degraded.

Considering the advantages of deep learning in the limited-angle reconstruction, in this 

study, we developed a deep cascaded convolutional neural network (CNN) to generate 

high-quality 3D pressure maps from limited-angle view ultrasound acquisition, and then 

predict accurate 3D dose maps from pressure maps for proton therapy dose verification. The 

cascaded CNN was jointly trained to achieve an optimal end-to-end performance 39–41. Its 

performance was tested on the proton-acoustic acquisition simulated using the CT images 

and clinical treatment plans of prostate cancer patients who underwent proton therapy. 

To our knowledge, this is the first time that accurate 3D pressure maps are reconstructed 

from the RF signals acquired by a matrix ultrasound array, and the first time that precise 

quantitative 3D dosimetry is achieved in the proton-acoustic imaging. The proposed method 

potentially enables real-time 3D dose verification during proton therapy to significantly 

improve its precision and outcomes.

2. Methods

2.1 Problem Formulation

2.1.1 Principles—Principles of proton-acoustic signal generation and propagation have 

been widely investigated and discussed in previous works 42,43. In brief, proton deposits 

energy when traveling through tissues, which causes tissue temperature to rise and generates 

acoustic signals. Under the assumptions of thermal confinement, the process can be modeled 

as

∇2 − 1∂2

c2∂t2 p( r , t) = − βρ∂D( r , t)
Cp ∂t (1)

where p( r , t) denotes the acoustic pressure at location r  and time t, c is the speed of 

sound, β is the thermal expansion coefficient, ρ is the density of the medium, Cp denotes the 

medium’s heat capacity at a constant pressure, and D( r , t) is the dose deposition per unit 

time.
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The amplitude of the proton-induced acoustic signal is proportional to the proton dose 

deposition per unit time in tissue when both thermal confinement and stress confinement are 

satisfied 44. Therefore, for each proton pulse, the relationship between the initial pressure 

p0δ( r ) and the dose deposition rate Dδ( r ) can be expressed as

p0δ( r ) = ΓDδ( r )ρ (2)

where Γ = c2β/Cp is the Grüneisen parameter, which describes the thermodynamic property 

of material, Dδ( r ) is the dose deposition for each proton pencil beam, and ρ is the density of 

the material.

In this study, we aim to verify the fractional dose, D( r ), which is the sum of all the 

individual proton pencil beam dose deposition.

D( r ) = ∑Dδ( r ) (3)

Then the corresponding initial pressure p0( r ) can be expressed as:

p0( r ) = ΓD( r )ρ (4)

With the initial pressure map p0( r ), based on Eq (1), the acoustic wave propagation can be 

solved as

p( r , t) = Γρ∂
4πc∂t ( 1

ct∫S( r , t)
D r ′, t dS′(t)) (5)

where S′ (t) denotes a spherical surface that all points on the surface satisfy | r − r ′| = ct.

2.1.2 Formulation—Let x1 ∈ RI × J × K be the real-valued limited-angle reconstructed 

pressure map with dimension I × J × K voxels, and y1 ∈ RI × J × K be the corresponding 

ground truth pressure map, and y2 ∈ RI × J × K be the corresponding ground truth dose map. 

According to the above principles, the aimed task can be formulated as finding a pressure 

restoring pattern f1 between the limited-angle reconstructed pressure map x1 and the ground 

truth pressure map y1, and a dose correction pattern f2 between the intermediate dose map 

x2 =
f1 x1
ρ × Γ  (according to Eq(4)) and the ground truth dose map y2 so that

argmin
f1, f2

(λ1 f1 x1 − y1 2
2

pressure
restoration

+ λ2 f2 x2 − y2 2
2

dose correction

)
(6)

where ρ denotes the tissue density, Γ denotes the Grüneisen parameters defined in Eq (2), λ1 

and λ2 are the weighting factors for the pressure loss and the dose loss, respectively.
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2.2 Overall Workflow of the Proposed Proton-acoustic Reconstruction and Dose 
Verification

Based on the above problem formulation, a deep cascaded CNN is proposed in this study to 

reconstruct pressure and dose maps using a matrix ultrasound array. The overall workflow 

is shown in Fig. 1. Sequentially, 3D pressure maps are reconstructed using the iterative 

time-reversal (TR) algorithm 45 from the limited-view RF signals, and are fed into the 

first model to correct distortions and restore volumetric pressure information. And then the 

predicted pressure maps are divided by the dose coefficient to generate intermediate dose 

maps, whose residual errors are further corrected by the second model to achieve the final 

predicted 3D dose maps.

The two models are cascaded and work jointly for optimized end-to-end performance. 

For each model, the multi-scale U-Net architecture is used. Based on the original U-Net 
46, we made several major changes. (1) In order to restore volumetric information from 

the TR-based pressures, we adopted 3D convolutional layers instead of 2D convolutional 

layers. (2) Intensity distribution varies from sample to sample due to the anatomy and 

dose value changes. To standardize the inputs to each layer, we added batch normalization 

layers after convolutional layers. This technique has been widely discussed to be helpful in 

stabilizing and accelerating the training process with higher learning rates. (3) Limited-view 

reconstruction is severely ill-conditioned. To avoid overfitting, we used dropout layers in the 

bottom of the U shape. By randomly enabling the feature connections, dropout layers result 

in varied network architecture during the training process, which potentially helps improve 

the network robustness and reduce overfitting. More details about the U-shape network in 

this study are shown in Fig. 2.

3. Experiment Design

To validate the effectiveness of the proposed method in pressure reconstruction and dose 

verification, the model’s performance was evaluated using the proton prostate patient data.

3.1 Proton-acoustic Simulation

The proton-acoustic simulation workflow in this study is shown in Fig. 3. For each patient, 

CT images and the corresponding treatment plans were anonymized and collected. Dose 

map on each scan was calculated using a commercial software, the RayStation (RaySearch 

Laboratories, Stockholm/Sweden), and normalized to the maximum dose. The pressure 

map was calculated by multiplying the deposited dose, tissue density, and the Grüneisen 

parameter derived from the CT images. Generation and propagation of the proton-acoustic 

signals were simulated using the open-source k-wave toolbox 47. A 2D matrix ultrasound 

array was simulated to receive acoustic signals during dose delivery. It was placed right 

below the prostate and near the perineum, with a 30° tilt relative to the patient superior-

inferior direction to get a better acoustic window by avoiding the pelvic bones, as illustrated 

in Fig. 4. Pressure distribution within a volume of size 12 cm × 12 cm × 14 cm above the 

matrix array was reconstructed using the iterative TR algorithm (10 iterations), and was fed 

into the proposed model for quality enhancement and dose map generation. More details of 

the proton-acoustic simulation are discussed as follows.
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3.1.1 Patient Enrollment and Dose Calculation—Data of 81 patients who have 

prostate cancers and underwent proton therapy in our institution were anonymized and 

collected for this study under an IRB protocol. For each patient, the planning CT scan, the 

clinical treatment plan, and up to 8 CT-quality assurance (CT-QA) scans were collected. 

The enrolled treatment plans have two opposite lateral beams delivering all prescribed doses 

to the prostate. An example is shown in Fig. 4(a). QA scans were rigidly registered to the 

planning CT scan. Dose maps were calculated using a commercial software, the RayStation 

(RaySearch Laboratories, Stockholm/Sweden), and were normalized to the maximum dose.

3.1.2 Volume Segmentation—In this study, the CT volume was segmented into four 

kinds of materials, including air, fat, soft tissue, and bone, based on HU value thresholding. 

Air in the pelvis region was overwritten to water to avoid acoustic impedance mismatch 48. 

The tissue-specific parameters used in this simulation are shown in the Table 1 49,50.

3.1.3 Acoustic Simulation—All the acoustic simulation was performed using the 

open-source k-wave toolbox 47 on Matlab (R2019b). The initial pressure maps (P0) were 

calculated based on the dose maps, the patient CT segmentation, and the tissue acoustic 

properties (shown in Table 1) according to Eq (4).

A planar ultrasound transducer array with 64 × 64 transducer elements was placed near the 

perineum area as shown in Fig. 4(b). The total size of the planar array is 8cm × 8 cm, 

which is large enough to cover the whole prostate area. To simulate realistic acquisitions, 

the central frequency of the transducer element was set to 500kHz with 100% bandwidth 

and a sampling rate of 5MHz. Tissue heterogeneity and attenuation (shown in Table 1) were 

considered during the simulation of the acoustic signal propagation. A Gaussian white noise 

(10dB signal-to-noise ratio (SNR)) was added to the acquired RF signals.

To balance between the image resolution and memory consumption, all the volume data 

were resampled to 1.25 mm × 1.25 mm × 1.25mm. Thus, the grid size was set to 96 × 96 × 

112. In addition, a 6-pixel perfectly matched layer (PML) was adopted in the simulation.

3.1.4 TR-based Pressure Reconstruction—The pressure maps, which were used as 

the input of the proposed DC-CNN, were reconstructed from the RF signals acquired by the 

matrix array using the TR algorithm 45 in the k-wave toolbox. Compared to the conventional 

universal back-projection (UBP) algorithm 51, TR further considers the tissue heterogeneity, 

reconstructing more accurate results. In this study, CT-segmented structure maps were used 

in the TR reconstruction to account for the heterogeneous tissue acoustic properties.

To further improve the model input quality, an iterative TR algorithm was used for the 

pressure reconstruction. In each iteration, RF signal detection was calculated based on the 

reconstructed pressure map, and was compared to the real acquired RF signals. The RF 

signal differences were back-projected to reconstruct a residual pressure which was added to 

the current pressure to update the pressure map. The iteration was ended by either reaching 

the maximum iteration number of 10 or meeting the stopping criteria that the RF signal 

difference was less than 10%.
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3.2 Model Training

The proposed model was trained on a dataset containing 204 samples from 69 patients. 10% 

of the samples in the training dataset were used as validation data to monitor the training 

process and determine the best checkpoint.

In the training process, the TR-reconstructed limited-angle pressure maps and dose 

coefficient maps were used as inputs to the proposed model, as demonstrated in Fig. 1. 

Model weights were optimized by minimizing the mean squared error (MSE) between the 

predicted and ground truth pressure maps and MSE between the predicted and ground truth 

dose maps. The loss weights in Eq (6) were empirically set to 2×10−6 and 1 for the pressure 

loss and the dose loss, respectively, according to the dynamic range of their values. The 

optimizer was set to “Adam” 52. The learning rate was set to 0.001 and was gradually 

reduced to 0.0001. The batch size was set to 1 due to the memory limitation.

3.3 Model Evaluation

3.3.1 Evaluation of the Enhancement Performance—The proposed model was 

tested on 26 samples from another 12 patients. Dose calculation and acoustic simulation 

followed the process mentioned in section 3.1. For each testing case, initial pressure map 

was reconstructed from the RF signals using the iterative TR algorithm and was then fed into 

the trained model to predict enhanced pressure maps and dose maps, which were compared 

to the corresponding ground truth for evaluation.

3.3.2 Evaluation of the Robustness against SNR—The SNR of RF signals can 

vary due to the background noise variations. In previous proton-acoustic studies 21,26,53,54, 

most SNRs were set to 5~30dB. Thus, in this study, SNR was set to 5dB, 10dB, 15dB, 

20dB, and 30dB for each testing case to further validate the method’s robustness against 

the signal noise levels. The other simulation configurations except the SNR were kept the 

same as described in section 3.1. The predicted pressure and dose maps were compared 

among different SNRs as well as to the ground truth. Note that the proposed deep learning 

framework was trained on the data with an SNR of 10dB. Once the framework was trained, 

no further re-training or finetuning was performed to adapt to the new noise levels in the 

testing process.

3.4 Evaluation Metrics

The predicted pressure and dose maps were compared to the corresponding ground truth 

maps both qualitatively and quantitatively using root mean squared errors (RMSE). To 

further validate the performance of the proposed method in dose verification, we evaluated 

the predicted dose maps using the isodose line Dice coefficient and the gamma index.

The Dice coefficient, which is also referred to as the overlap index, is a widely used metric 

in validating segmentation accuracy. In this study, we extracted the isodose lines (including 

10%, 25%, 50%, 75%, and 90%) from dose maps and calculated the Dice coefficients of the 

areas within isodose lines between the predicted and ground truth dose maps.
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The gamma index is used to evaluate the coincidence between the predicted and the ground 

truth dose maps by calculating both the dose difference and the distance difference. In this 

study, the global gamma index analysis was performed with 3%/3mm, 2%/3mm, 3%/5mm 

and 2%/5mm thresholds.

4. Results

4.1 Pressure Enhancement and Dose Prediction

Fig. 5 shows a representative case in different slices and the 3D views. Due to the limited 

view of the ultrasound matrix array, pressures reconstructed by the iterative TR algorithm 

showed severe distortions, in which structures can hardly be distinguished from the artifacts. 

Our proposed method effectively removed artifacts and corrected distortions, considerably 

improving the pressure map quality with accurate and clear structures and edges. Compared 

to the ground truth pressure maps, our method restored most of the volumetric information 

precisely. And the predicted dose maps based on the predicted pressures agreed very well 

with the ground truth dose maps.

Table 2 shows the quantitative results of the predicted pressure and dose maps of our 

proposed method. Metric values are calculated from all the 26 cases from 12 testing patients. 

Both the predicted pressure maps and the dose maps showed low-intensity errors compared 

to the ground truth. The predicted dose maps showed a high similarity of the isodose lines 

compared with the ground truth, as indicated by the isodose line Dice coefficients. Results 

also showed a high agreement between the predicted and the ground truth 3D dose maps, as 

indicated by the high gamma index. Quantitative results further confirmed the effectiveness 

of the proposed method.

4.2 Robustness against SNRs

Fig. 6 shows representative slices of a testing case with different SNRs. For both the 

pressure maps and the dose maps, little changes were observed as SNR increased from 5dB 

to 30dB. Fig. 7 shows the boxplot of the evaluation metrics of all testing cases. Marginal 

variations were shown among different SNRs. Both the qualitative and quantitative results 

demonstrated the robustness of the proposed method against the SNRs.

The robustness results from two main reasons. First, the input pressure maps to the proposed 

method are reconstructed using the iterative time-reversal algorithm, whose performance is 

relatively stable as noise level varies. Second, the proposed models were trained to enhance 

the noisy data to match with the noise-free ground truth data, which enabled the models to 

address the noises in the input images.

4.3 Runtime

The proposed cascaded deep learning model was implemented using the Keras framework 

with Tensorflow backend. The model training and testing were performed on a computer 

equipped with a CPU of Intel Xeon and 32GB memory and a GPU of NVIDIA Titan RTX 

(24GB memory). The pressure enhancement and dose prediction with the proposed method 

are fully automatic, which takes about 0.22 second in total.
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5. Discussion

Proton-acoustic imaging is a promising technique to achieve real-time dose verification 

to reduce the delivery uncertainties of proton therapy. Although the matrix array-based 

ultrasound reconstruction enables real-time 3D imaging of the target, it inevitably introduces 

distortions to the images due to its limited-angle views. In this study, we proposed a 

deep learning-based method to restore volumetric pressure and dose information from the 

limited-view acquisition of a matrix array. Our study demonstrated the effectiveness and 

efficiency of the proposed deep cascaded CNN model in predicting high-quality pressure 

maps using the pressure maps reconstructed from RF signals acquired by a matrix array and 

in deriving precise 3D dose maps from the predicted pressure maps.

The proposed method can provide a valuable tool for the online dose verification of prostate 

proton therapy during the treatment delivery. The transperineal ultrasound matrix array is 

convenient to deploy in the current RT workflow and has minimal impact on the treatment 

beam planning. During the treatment, radiation-induced RF signals can be acquired by the 

ultrasound array and used to reconstruct pressure maps, from which dose deposition maps 

are derived for dose verification. In this study, we focused on validating the feasibility of 

the proposed method in generating the 3D accumulated fractional dose for interfraction 

treatment verification, which is crucial for daily treatment assessment and adaptive therapy 

in the clinical RT workflow. In the future, we would like to further investigate the 

capabilities of the method for verifying the dose delivered by individual proton pencil 

beams for intrafraction treatment verification, which can be valuable for minimizing dose 

deviations caused by intrafraction variations.

In this study, since the reconstructed pressure map is used as the input of the pressure 

map prediction model, the quality of the input reconstructed map directly affects the 

output accuracy of the model. The iterative TR algorithm was used for the initial 

pressure map reconstruction since it achieved superior image quality compared to the TR 

algorithm. Compared to TR, despite little improvements in correcting distortions, iterative 

TR reconstructs pressures with higher SNR, which gives us a better starting image and 

thus leads to a more accurate prediction of the deep learning model. Similar image quality 

improvement has also been observed in our previous study 34. In future studies, advanced 

data-preprocess techniques can be employed to further improve the RF signal quality and/or 

input image quality, which can further improve the performance of our proposed method.

Besides the dose verification, the proposed method is potentially feasible for the 3D 

ultrasound image reconstruction using a matrix array, which suffers the same limited-view 

acquisition issue as this study.

There are some limitations of this study. First, no absolute dose values were achieved by 

the proposed method. Due to the inter-patient dose variations and the severely degraded 

pressure quality caused by distortions and noises, it is challenging to restore the absolute 

dose values. As an alternative, we normalized the dose to its maximum values in this study, 

and achieved accurate relative dose verification. In future studies, we can take advantages 

of the patient-specific learning 37,55 to incorporate the patient-specific prior knowledge into 
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the deep learning models to address this challenge. This strategy has shown effectiveness in 

addressing severe distortions and pixel value errors from the ill-conditioned reconstruction, 

and thus can help achieve more accurate absolute dose verification in our tasks. Second, 

dose coefficient and structure maps are designed to be derived from the in-room CT or 

onboard CBCT. Regarding onboard CBCT, although its image quality is generally inferior 

to the CT, numerous methods have been developed to enhance CBCT image quality to 

be comparable to CT 56–58. In addition, the HU value variations have a limited impact 

on the dose coefficient accuracy. As described in section 3.1.2, four kinds of tissues are 

segmented based on HU value thresholding. As long as the tissue HU value falls into the 

corresponding range, the segmentation results are accurate, and thus the dose coefficients 

are correctly assigned. Thirdly, in this simulation study, the air in the pelvis region was 

overwritten to water to avoid acoustic impedance mismatch, similar to previous studies 48. 

In clinical practice, the influence of air can be minimized by adjusting ultrasound array 

position and orientation, drinking water to fill the bladder, and filling rectum balloons. In 

future studies, the application of deep learning can be further explored in addressing the 

air-induced acoustic image quality degradation.

6. Conclusion

The proposed deep cascaded CNN demonstrated the effectiveness and efficiency in 

substantially enhancing the image quality of the radiation-induced pressures acquired from 

a limited-view matrix array, as well as in deriving 3D precise quantitative dose deposition 

maps for in-vivo proton therapy dose verification. Besides, the proposed method presented 

a general workflow for enhancing limited-view image reconstruction, which is potentially 

applicable for matrix array-based 3D ultrasound imaging for applications in radiology and 

radiation oncology.
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Fig. 1. 
Overall workflow of the proton-acoustic pressure and dose map reconstruction using a 

cascaded 3D U-Net. Numbers under the network layers indicate the data channels.
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Fig. 2. 
The architecture of the U-Net used for the localization model and the enhancement model.
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Fig. 3. 
Overall workflow of the proton-acoustic simulation.
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Fig. 4. 
Experiment setup. (a) is the volume rendering of the CT images and planning dose of a 

proton prostate patient. The dose is rendered using the ‘jet’ colormap, where red indicates 

high dose and blue indicates low dose. (b) shows the matrix ultrasound array placed near the 

perineum to receive acoustic signals during dose delivery.
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Fig. 5. 
Representative slices of the pressure and dose maps. (a) are the pressure maps (P0) 

reconstructed using the iterative time-reversal (TR) algorithm. (b) are the pressure maps 

predicted by the proposed method. (c) are the ground truth pressure maps. (d) are the dose 

maps predicted by the proposed method. (e) are the ground truth dose maps. The ‘jet’ color 

map is used for (1–3) which is shown as the right-side color bar. For the 3D view rendering 

shown in (4), the pressures shown in (a4-c4) are rendered using the same color/opacity map, 

the doses shown in (d4-e4) are rendered using the same color/opacity map. The ‘jet’ color 

map is used for (4) where red indicates high intensities and blue low.
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Fig. 6. 
Representative slices of (A) the pressure maps and (B) the dose maps predicted by the 

proposed method from signals of different SNRs. (a) SNR = 5dB, (b) SNR = 10dB, (c) SNR 

= 15dB, (d) SNR = 20dB, (e) SNR = 30dB, and (f) are the ground truth pressure maps. Color 

map is shown as the right-side color bar.
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Fig. 7. 
Boxplot of the (a) root mean squared error (RMSE) of the predicted pressure maps and 

predicted dose maps, (b) gamma index of the predicted dose maps, and (c) Dice coefficient 

of the predicted dose maps using data with SNR of 5dB, 10dB, 15dB, 20dB, and 30dB.
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Table. 1.

HU values and thermoacoustic parameters of different tissues.

Tissue HU value v (m/s)* ρ (kg/m3)
+ Γ^ ρ×Γ (kg/m3) α (dB/cm/MHz)

#

Air [−1000, −200) - - - - -

Water air overwritten 1500 1000 0.11 110 0.0022

Fat [−200, −50) 1480 920 0.80 736 0.5

Soft tissue [−50, 100) 1540 1040 0.30 312 1

Bone [100, max) 2000 1900 0.80 1520 10

*
Speed of sound.

+
Tissue density.

^
Grüneisen parameter.

#
Attenuation coefficient.

Phys Med Biol. Author manuscript; available in PMC 2023 October 27.



A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Jiang et al. Page 23

Table. 2.

Quantitative analysis of the pressure and dose maps. Metric values are calculated from all 26 testing cases.

Modality Metric Value *

Pressure RMSE 0.062 ± 0.009

Dose

RMSE 0.046 ± 0.013

90% isodose line Dice 0.923 ± 0.017

75% isodose line Dice 0.932 ± 0.018

50% isodose line Dice 0.940 ± 0.014

25% isodose line Dice 0.963 ± 0.009

10% isodose line Dice 0.966 ± 0.010

Gamma index (3%/3mm) 93.30% ± 3.09%

Gamma index (2%/3mm) 91.89% ± 3.36%

Gamma index (3%/5mm) 97.34% ± 1.98%

Gamma index (2%/5mm) 96.72% ± 2.12%

Intensities of pressure and dose maps are normalized to [0, 1] to calculate the metrics.

*
Numbers in the table are expressed as mean±standard deviation.
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