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ABSTRACT OF THE DISSERTATION 

 

Computational Methods for Analyzing  

RNA Sequencing to Study 

Post-Transcriptional Gene Regulation  

 

by 

 

Ashley Anne Cass 

Doctor of Philosophy in Bioinformatics 

University of California, Los Angeles, 2018 

Professor Xinshu Xiao, Chair 

 

Since the completion of the Human Genome Project in 2003, massive DNA sequencing 

efforts enabled gene mapping and enhanced our understanding of genetic variation. However, 

exactly how the same DNA sequence in every cell of one individual leads to vast biological 

variation is still not fully understood. In particular, the DNA sequence does not directly contain 

information regarding which genes are expressed in different cell types, tissues, and disease 

states. With the advent of high-throughput RNA sequencing (RNA-Seq), gene expression and 

RNA isoform variation can be assayed cost- and time-efficiently in different conditions. In this 

work, we aimed to develop computational methods to analyze RNA-Seq for the purpose of 

elucidating mechanisms of post-transcriptional gene regulation. The first chapter briefly 

introduces RNA biology, including co- and post-transcriptional gene regulation concepts. The 

second chapter describes the identification of small cleavage-inducing RNAs and their RNA 

targets for degradation through bioinformatic integration of small RNA sequencing and 
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Degradome Sequencing, the latter capturing RNA degradation products. This work revealed an 

expanded repertoire of small cleavage-inducing RNAs (sciRNAs) and their targets, suggesting 

that small RNA-mediated cleavage is more widespread than previously appreciated. Post-

transcriptional regulation is often mediated by cis-regulatory elements in 5’ and 3’ untranslated 

regions (UTRs), including sciRNA target motifs. Thus, alternative transcription start sites (ATSS) 

and alternative polyadenylation (APA) often impact post-transcriptional gene regulation through 

the inclusion or exclusion of cis-regulatory elements in UTRs. In chapter three, we describe 

mountainClimber, a novel method that overcomes several limitations of existing approaches to 

identify ATSS and APA from RNA-Seq. In chapter four, we applied mountainClimber to thousands 

of RNA-Seq datasets derived from many human tissues in the largest study of ATSS and APA to 

date. In chapter five, we applied mountainClimber to chromatin-associated and poly(A)-selected 

RNA-Seq in murine macrophages with or without previous exposure to an endotoxin. This 

analysis revealed ATSS, APA, and alternative transcription end sites associated with tolerization 

of macrophages to endotoxins. Finally, we summarize our conclusions in chapter six.   
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Chapter 1: Introduction 

The central dogma of molecular biology describes the process of expressing genetic 

information from DNA to RNA to protein. In humans, the DNA sequence is three billion base pairs 

long, of which only 1-2% is comprised of 20,000 functional units called genes that code for 

proteins. Genes are transcribed into RNA messages that function as templates for protein 

production. RNA is further processed after transcription and before translation, including 5’ cap 

addition, intron removal, and finally 3’ cleavage and polyadenylation. After cleavage and 

polyadenylation, the RNA is localized, e.g. to the cytoplasm in the case of coding RNA. Although 

the DNA sequence is the same in every cell of an individual, differential gene expression and 

RNA processing lead to different RNA and protein contents in different biological contexts.  

Since the human genome project was completed 1,2, many efforts have focused on how 

genetic information is regulated to produce the observed variation in RNA and protein content. 

With the advent of high throughput sequencing (HTS) and mass spectrometry technologies, large-

scale studies of the genome, transcriptome, and proteome have begun to characterize this 

variation. While it was previously accepted that 1-2% of the genome is functional and the rest of 

the DNA is “junk”, The Encyclopedia of DNA Elements (ENCODE) project applied various HTS 

technologies to assay RNA, transcription factor binding on chromatin, chromatin structure, and 

histone modifications and concluded that 80% of the genome is functional and regulates the 1-

2% of coding genes 3. Much of these transcripts function in roles other than coding for a protein. 

Several long non-protein-coding RNAs (lncRNAs) function in heterochromatin formation and gene 

expression regulation (reviewed in 4). More recently, thousands of circular RNAs were discovered 

from RNA-Seq analyses and regulate gene expression, transcription, and splicing (reviewed in 5). 

Small RNAs, such as microRNAs which are typically 21-22 nucleotides long, specifically regulate 

mRNAs and lncRNAs through reverse complementary sequence matching. Nascent RNA, 
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including upstream antisense RNAs and enhancer RNAs, functions in promoter definition, gene 

expression enhancement, and recruitment of transcription factor and regulatory proteins 

(reviewed in 6). These discoveries, greatly facilitated by RNA-Seq, shifted the paradigm of RNAs 

from simple messengers between DNA and protein to complex molecules with a diverse array of 

functions.  

The protein-coding potential and stability of RNA are often determined by alternative RNA 

processing. Alternative promoters, or alternative transcription start sites (ATSSs), often affect 

translation through addition or removal of cis-regulatory sequence and structural motifs (reviewed 

in 7). Alternative transcription termination also functions in gene regulation; early termination can 

induce RNA degradation, while late termination may inhibit expression of a nearby downstream 

gene (reviewed in 8). Alternative 3’ cleavage and polyadenylation results in the alternative 

inclusion of 3’UTR sequences, which contain many cis-regulatory elements, leading to changes 

in RNA stability, localization, nuclear export, and translation, as well as protein localization and 

stability (reviewed in 9,10). These cis-acting elements, including microRNA-binding sites, are 

enriched between proximal and distal polyadenylation sites 11. Additionally, the 3’UTR is under 

higher selective pressure than other gene regions, supporting its functionality 12. Thus, ATSS and 

APA are functionally important in gene regulation. In this work, we aim to better understand some 

of these mechanisms of post-transcriptional gene regulation.  

Chapter two investigates the repertoires of small cleavage-inducing RNAs and their 

cognate targets in different murine tissues. Although 60% of protein-coding genes are microRNA 

targets 13, few are known to induce cleavage of target RNAs. However, the catalytic cleavage 

activity of Ago2, the small RNA-binding component of the RNA induced silencing complex, is 

conserved in mammals suggesting that small RNA-mediated cleavage may be more widespread 

than previously appreciated 14. Through integrative analysis of small RNA-Seq and Degradome-

Seq, we identified hundreds of small cleavage-inducing RNAs and their cognate targets, not 
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limited to microRNAs, demonstrating that small RNA-guided cleavage is more widespread than 

previously appreciated.  

ATSS and APA regulate the majority of human genes, often in a cell type-specific manner. 

Motivated by the plethora of publicly available RNA-Seq datasets, we developed a novel 

algorithm, mountainClimber, for ATSS and APA identification from RNA-Seq. Our approach, 

described in chapter 3, overcomes several limitations of similar existing methods; it is fully de 

novo, identifies multiple change points per gene, and detects change point downstream of the 

first exon and upstream of the last exon.  

Chapter 4 describes the application of mountainClimber to thousands of samples from 

human tissues generated by the GTEx consortium. Although previous studies identified tissue-

specific APA in RNA-Seq, they were limited to annotated poly(A) sites. In contrast to APA, tissue-

specific ATSS is less well studied. In the largest study of simultaneous ATSS and APA prediction 

to date, we describe the landscape of ATSS and APA in humans. Tissue specificity was the main 

driver of observed 5’ and 3’ end variation, and there were thousands of significantly differential 

ATSS and APA events.  

In chapter 5, we describe ATSS and APA identification in murine macrophages with or 

without re-exposure to an endotoxin. While exposure to a new toxin induces widespread changes 

in macrophage gene expression, re-exposure to the same toxin is characterized by poor induction 

of those same genes. We identified alternative 5’ and 3’ ends in both chromatin-associated and 

poly(A)-selected RNA-Seq in tolerized (re-exposed to an endotoxin) and naïve macrophages. 

Because mountainClimber is robust to high levels of RNA-Seq non-uniformity, we were able to 

predict change points in chromatin-associated RNA-Seq for the first time to our knowledge. This 

enabled identification of alternative transcription termination events in the chromatin-associated 

fraction in addition to ATSS and APA in poly(A)-selected RNA. We identified many alternative 5’ 

and 3’ events, suggesting that alternative RNA processing contributes to the tolerized phenotype.   
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Chapter 2: Global analyses of endonucleolytic cleavage in 

mammals reveal expanded repertoires of cleavage-inducing small 

RNAs and their targets 

2.1. Abstract 

In mammals, small RNAs are important players in post-transcriptional gene regulation. While their 

roles in mRNA destabilization and translational repression are well appreciated, their involvement 

in endonucleolytic cleavage of target RNAs is poorly understood. Very few microRNAs are known 

to guide RNA cleavage. Endogenous small interfering RNAs are expected to induce target 

cleavage, but their target genes remain largely unknown. We report a systematic study of small 

RNA-mediated endonucleolytic cleavage in mouse through integrative analysis of small RNA and 

degradome sequencing data without imposing any bias toward known small RNAs. Hundreds of 

small cleavage-inducing RNAs and their cognate target genes were identified, significantly 

expanding the repertoire of known small RNA-guided cleavage events. Strikingly, both small 

RNAs and their target sites demonstrated significant overlap with retrotransposons, providing 

evidence for the long-standing speculation that retrotransposable elements in mRNAs are 

leveraged as signals for gene targeting. Furthermore, our analysis showed that the RNA cleavage 

pathway is also present in human cells but affecting a different repertoire of retrotransposons. 

These results show that small RNA-guided cleavage is more widespread than previously 

appreciated. Their impact on retrotransposons in non-coding regions shed light on important 

aspects of mammalian gene regulation. * 

                                                

* The work appearing in this chapter is published: Cass AA, Bahn JH, Lee JH, Greer C, Lin X, Kim Y, Hsiao YH, Xiao 
X. Global analyses of endonucleolytic cleavage in mammals reveal expanded repertoires of cleavage-inducing small 
RNAs and their targets. Nucleic Acids Research, 2016. 44(7):3253-63. 10.1093/nar/gkw164 
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2.2. Introduction 

In mammals, the best known small RNA targeting pathways include destabilization or translational 

repression of target mRNAs 15,16. A third mechanism, small RNA-guided endonucleolytic cleavage 

of target RNAs, is assumed to be very rare in animals, although it is prevalent in plants 17. Thus 

far, only a small number of microRNAs (miRNAs) were predicted to have this function in mammals 

18–22, affecting a very small number of target genes. Endogenous small interfering RNAs (endo-

siRNAs) are expected to induce target cleavage (reviewed in 23). However, their targetome is not 

yet well characterized. 

The catalytic function of Ago2, which carries out the slicing reaction on mRNA targets, is 

highly conserved throughout mammals 14. This observation suggests that small RNA-directed 

cleavage may be an essential aspect of mammalian gene regulation and more widespread than 

currently appreciated. Three factors may have hindered progress in this research area. One is 

the possibility that small RNA-directed cleavage is highly cell type-specific. The specific cell types 

examined by previous studies may have failed to reveal the bulk of such events. Second, a diverse 

panel of small RNAs, not limited to miRNAs or siRNAs, may mediate mRNA cleavage, an aspect 

that has not been explored. Third, technical challenges, such as the enrichment of repetitive 

elements in the target sites or small RNAs, may have prevented discovery of the full spectrum of 

small RNA-mediated cleavage events.  

Our study aimed to address the above challenges and better characterize small RNA-

mediated cleavage in mammals. We analyzed a large amount of small RNA and Degradome 

Sequencing data (Deg-Seq, also known as PARE), with the latter capturing the 5' ends of RNA 

degradation products 24,25, in mouse embryonic stem cells (mESCs), testis and cerebellum. This 

analysis allowed a systematic characterization of small cleavage-inducing RNAs (sciRNAs) and 

their targets simultaneously. Our bioinformatic method captures any type of sciRNAs, unlimited 

to known RNA classes, and accommodates existence of repetitive sequences in the RNA. As a 
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result, we identified 398 sciRNAs and 810 cognate cleavage target genes, much more than 

previously known in the literature. Interestingly, about 40% of sciRNAs overlap known miRNAs, 

endo-siRNAs or piwi-interacting RNAs (piRNAs), revealing novel targets of these RNA regulators. 

This observation also indicates that sciRNAs, defined to conveniently refer to their function, may 

have diverse biogenesis pathways. sciRNAs demonstrated a high degree of cell type-specificity, 

developmental stage-specificity, and diversity in possible functional pathways. A striking feature 

of both sciRNAs and their target cleavage sites is their significant overlap with retrotransposable 

elements, providing evidence for the first time that retrotransposons in transcripts are leveraged 

as signals for gene targeting. Additionally, our analysis showed that the sciRNA pathway is also 

present in human cells but affecting a different repertoire of retrotransposons. Thus, sciRNA 

targeting is a conserved mechanism between human and mouse but involves different sciRNA 

molecules and targets, possibly reflecting the divergence of retrotransposons between the two 

genomes. 

 

2.3. Methods 

Bioinformatic prediction of sciRNAs and their targets 

Preprocessing: Deg-Seq and small RNA-Seq reads were trimmed with cutadapt 26 to remove 

adapters and PCR primers. For mESCs, Deg-Seq and small RNA-Seq datasets were acquired 

from GSE21975 22 and GSE35368 (SRR402760, SRR402761, SRR402762, SRR402766) 27, 

respectively, while other datasets were generated in-house. 3’ end regions with quality less than 

20 were also trimmed from Deg-Seq reads. A minimum length of 19 nt was required for small 

RNA-Seq since typical known small RNAs are longer than 19nt. A minimum length of 25 nt was 

required for Deg-Seq reads to ensure specific mapping to the genome while retaining as many 

reads as possible. The first step of the pipeline was the exclusion of small RNA-Seq and Deg-

Seq reads with low complexity since such reads tend to base-pair with each other by random 
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chance. Low complexity reads were defined as those with tandem repeats of mono-, di-, tri-, or 

quad-nucleotides of 5, 3, 2, 2 respectively. The length cutoffs were determined by examining 

repeat patterns of known functional small RNAs. Small RNA sequences were required to have 

length 19-24nt and read count ≥20.  

 

Gene Annotation: To define a comprehensive set of annotated mRNAs, we merged the following 

gene annotation databases: Ensembl, UCSC knowngene, RefSeq, VegaGene, GENCODE, 

Pseudogene.org, and NONCODEv4 28. 

 

Define significant peaks: Deg-Seq reads were aligned only to annotated regions (listed above) 

of genome mm10 or hg19 using Bowtie v.0.12.7 29 requiring no mismatches and reporting up to 

100 valid alignments. Reads that were mapped non-uniquely to the genome were counted as 1/n 

in calculating Deg-Seq coverage, where n is the total number of mapped loci. To identify Deg-

Seq peaks (i.e., high coverage sites), we applied a binomial test to each continuous stretch of ≤4 

nucleotides with ≥3 reads in each transcript. The expected probability of observing a Deg-Seq 

peak is 1/l where l is the total number of nucleotides in the transcript of interest with read coverage 

≥1. A p-value cutoff was determined as the smaller of the Bonferroni-corrected p-value or 0.05. 

These significant peaks were considered candidate cleavage sites.  

 

Small RNA-target alignment & parsing: The candidate cleavage sites with their upstream and 

downstream 25nt were aligned to unique small RNA-Seq reads that passed the length and 

coverage filters. This alignment was conducted using miRanda 30 requiring a score of at least 60. 

miRanda was chosen as a convenient local alignment tool that aligns sequences by 

complementary (as opposed to matching) nucleotides and allows GU wobbles. However, the 

scoring option for miRNA seed match was not used because we require complementarity beyond 
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the seed region for candidate sciRNAs. Additionally, the thermodynamic energy calculation was 

not used in order to minimize the number of assumptions we make and obtain a large initial list 

that can be later filtered using customized criteria. Nucleotides 9-11 relative to the 5’ end of the 

small RNA were required to match perfectly and overlap the Deg-Seq peak since this is required 

for cleavage-competent pairing 31. Gaps and G=U wobble base pairing were allowed, counting 

G=U base pairing as mismatch 0.5. Unique alignments with at most 4 mismatches were retained 

for further analyses, which we call “candidate sciRNAs” and their targets. 

 

100x shuffled sciRNAs: Given the large number of small RNAs and Deg-Seq peaks, control 

analyses were carried out to ensure that the base-pairing relationship was more significant than 

expected by chance. 100 shuffled controls were generated for each candidate sciRNA, 

maintaining di-nucleotide frequencies in the sciRNA and masking simple repeats. Simple repeats 

were defined as tandem repeats of mono-, di-, tri- or quad-nucleotides (number of repeats > 3, 2, 

2, 2, respectively). Unique controls were then aligned to the significant Deg-Seq peaks and their 

flanking regions followed by parsing as described above for the true small RNA-Seq data. 

Although it is desirable to use a larger number of shuffled controls, we found that the majority 

(mESCs, 73%; testis, 74%; cerebellum, 70%) of small RNAs had fewer than 100 unique shuffles 

due to low complexity and the constraints we imposed in shuffling (maintaining di-nt frequencies 

and simple repeats). Approximately half had less than 90 unique shuffled controls (mESCs, 50%; 

testis, 52%; cerebellum, 43%). These data suggest that the usage of 100 shuffled controls was a 

reasonable choice. 

 

Calculate signal-to-noise ratio (SNR): To identify sciRNAs with more targets than expected by 

chance, a signal-to-noise ratio was calculated using the true and control sciRNA-target 

alignments. First, an individual SNR (iSNR) was calculated for each candidate sciRNA at 
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mismatch cutoffs ranging from 0 to 4 at 0.5 intervals. iSNR is defined as the ratio of total targets 

of the candidate sciRNA to the total targets of all shuffled small RNAs (plus a pseudocount) 

normalized by the total number of unique shuffled small RNAs (required to be >10). To avoid 

over-counting targets due to sequence similarity among small RNAs, those small RNAs sharing 

at least one common 17-mer were grouped together. In other words, for a given group, at least 2 

small RNAs share a 17-mer. The results were not very sensitive to this parameter within the range 

of 15-18. For a range of iSNR cutoffs, a group SNR was calculated for each group of small RNAs 

as the ratio of total targets of candidate sciRNAs in the group to the total targets of all shuffled 

small RNAs in the group normalized by the total number of unique shuffled small RNAs. A 

minimum iSNR cutoff of 10 was chosen, although the resulting sciRNA-target predictions with 

less than 3 mismatches were insensitive to iSNR cutoffs. Finally, an average SNR was calculated 

for a given dataset as the average of all group SNRs. The output of this pipeline is the small RNAs 

that have significantly more targets compared to their controls, which we call “predicted sciRNAs,” 

and their targets. A signal-to-noise ratio was chosen as an alternative to, for example, an empirical 

p-value using the 100 shuffled controls as a null distribution. The SNR method affords higher 

resolution to detect highly confident sciRNA-target pairs, as most empirical p-values were very 

small.  

 

Total RNA samples 

Total RNA samples for whole brain embryo E10, cerebellum embryo E14, cerebellum embryo 

E18, cerebellum post-natal (PN) 3 weeks, cerebellum PN 6 months, testis embryo E14, testis 

embryo E18, testis PN 3 weeks and testis PN 6 month were purchased from Zyagen. All RNAs 

were obtained from the same BALB/C mouse strain. Total RNA of H1 cells was isolated using 

Trizol (Life Technologies). Additional column purification and DNaseI treatment were applied 

using Direct-zol RNA kit (Zymo Research).  
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Construction of small RNA sequencing libraries 

Spike-in RNAs (Exiqon) were added into 1µg total RNA before library construction for the 

normalization control between tissue samples. Small RNA sequencing libraries were generated 

using NEBNext Small RNA library Prep kit and NEBNext multiplex oligos for Illumina according 

to the manufacturer’s instructions (NEB). The final libraries were purified from 6% PAGE gel, and 

their concentrations were measured using Qubit fluorometric assay (Life Technologies).  

 

Construction of RNA sequencing libraries 

rRNA was depleted using RiboMinus Transcriptome isolation kit (Life Technologies) from 10µg 

total RNA. ERCC Spike-in RNA (Life Technologies) was added to 500 ng of rRNA depleted RNA. 

mRNA was isolated using the NEBNext Poly(A) mRNA magnetic isolation module. mRNA 

sequencing libraries were generated using the NEBNext Ultra Directional RNA library Prep kit 

and NEBNext multiplex oligos for Illumina according to the manufacturer’s instruction (NEB). Final 

libraries were examined using the Qubit fluorometric assay (Life Technologies) and Bioanalyzer 

(Agilent) for quality confirmation.  

 

Construction of Degradome sequencing libraries 

To generate the degradome sequencing libraries, we used the global 5’ RACE library preparation 

method 22 with some modifications. Briefly, poly(A)+ mRNA was isolated from 400-500 µg of total 

RNA using Dynabead Oligo(dT) (Life Technologies) according to the manufacturer’s instructions. 

This procedure was repeated to increase the effectiveness of poly(A) selection. The NEBNext 

Small RNA library Prep kit was used for 5' adapter ligation, followed by reverse transcription using 

random hexamer primers containing the 3’ SR adapter sequence 5’-

AGACGTGTGCTCTTCCGATCTNNNNNN. PCR was conducted in 25 cycles at 94°C 15s, 60°C 
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30s, 70°C 1min. The final libraries were purified from 6% PAGE gel followed by AMPure XP Beads 

size selection (Beckman Coulter).  

 

2.4. Results 

2.4.1. Prediction of sciRNA-mediated RNA cleavage events 

We first examined whether the Deg-Seq peaks identified in our study could be artifacts due to 

PCR amplification bias. Since PCR amplification bias is known to be associated with or reflected 

in biases in GC content, nucleotide composition and read length 32, we examined these features 

for reads overlapping Deg-Seq peaks and reads outside of Deg-Seq peaks. We further separated 

each group of reads into those that have unique sequences (compared to other reads in the same 

peak) and those that are duplicated. Overall, there appears to be very little PCR amplification bias 

(Fig. 2.S1).  

Next, to evaluate whether it is potentially feasible to identify RNA cleavage events using 

Deg-Seq and small RNA sequences, we aligned a set of predicted endo-siRNAs 33 to the +/- 25nt 

flanking sequence of significant Deg-Seq peaks in mESCs 22. At nucleotides 9-11 from the 5’ end 

of the endo-siRNA, there was an enrichment of Deg-Seq reads in wild type (WT) mESCs (Fig. 

2.S2, red) and a depletion of reads in Ago2-/- mESCs (Fig. 2.S2, grey). This result is consistent 

with the known biochemical properties of Ago2 which cleaves the phosphodiester bond 

corresponding to bases 10-11 of the small RNA 31,34, suggesting that combined usage of Deg-

Seq and small RNA-Seq with appropriate controls may enable identification of functional sciRNAs 

and their targets. 

To achieve the above goal, we analyzed Deg-Seq and small RNA-Seq data as illustrated 

in Fig. 2.1a (see Section 2.3 Methods). This analysis was carried out for three cell types: mESCs, 

adult mouse cerebellum post-natal 6 months (6M PN), and adult mouse testis (6M PN) (see Table 
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2.S1 for all datasets in this study). Cerebellum and testis were chosen in order to compare and 

contrast sciRNA-mediated RNA cleavage in a tissue containing mature non-dividing cells with a 

tissue containing frequently dividing germ cells, respectively. mESCs were included because 

previously published small RNA-Seq and Deg-Seq data were available. Since complementary 

base pairing along the small RNA is likely required to induce cleavage 18, mismatches were 

counted in the entire small RNA-target alignment rather than the seed region alone. Across all 

datasets, the optimal mismatch cutoff corresponding to the highest average SNR was at most 1.5 

(Fig. 2.1b, Fig. 2.S3). Thus, we allowed up to 1.5 mismatches for all downstream analyses.  

Table 2.1 summarizes the total small RNAs predicted to induce cleavage and the set of 

Deg-Seq peaks that they target. Notably, many sciRNAs had more than one target, resulting in 

more than 1,000 total sciRNA-target pairs. Table 2.S2 describes these sciRNAs and targets in 

detail. The relative scarcity of sciRNAs and targets in cerebellum is unlikely due to low sequencing 

depth since testis has the lowest number of Deg-Seq peaks and unique small RNA species in the 

initial sequencing data (Table 2.S1). The vast majority of sciRNAs were identified in only one cell 

type (Fig. 2.1c), suggesting either a high degree of cell type-specificity or that there are more 

sciRNAs to be discovered. In addition, about 40% of sciRNAs were known miRNAs, endo-

siRNAs, or piRNAs (Fig. 2.1d), with additional sciRNAs being novel small RNA species. Fig. 2.1e 

shows an example of a novel small RNA inducing Ago2-dependent cleavage of Mtrr. These 

results suggest that small RNA-mediated target cleavage in mouse may be much more 

widespread than previously appreciated. 

 

2.4.2. Experimental and genomic validations of sciRNA-target predictions 

To provide experimental support, we carried out in vitro cleavage assays for four predicted 

cleavage events using HeLa S100 extracts and synthetic sciRNAs (Fig. 2.1f, Table 2.S3). These 

events were picked to represent different types of target genes: a protein-coding gene (Kpna4) 



 13 

and non-coding genes including a lncRNA (NONMMUG002900), a pseudogene (Zfp389), and an 

antisense transcript of Traf3ip2. We observed an increasing amount of cleavage products with 

increasing S100, confirming the validity of the predicted targets.  

To further validate our predictions, we applied the pipeline to Deg-Seq of Ago2-/- mESCs 

22. This analysis yielded only 58 sciRNA-target pairs, about 5% of those predicted using WT Deg-

Seq (Table 2.1). This result is consistent with the expectation that Ago2 is the main executor of 

target RNA cleavage and serves as validation of our method. The false discovery rate of our 

method is at most 5%, which could be an over-estimate since the above 58 sciRNA-target pairs 

likely include true cleavage events mediated by proteins other than Ago2. 

To complement this analysis, we next examined whether sciRNAs were frequently bound 

by Ago2 in mESCs using Ago2 CLIP-Seq data 35. Compared to control small RNAs (see Section 

2.8 Supplementary Methods), sciRNAs were bound by Ago2 more often in wild type mESCs (Fig. 

2.2a). To rule out the possibility that canonical miRNAs were driving the observed sciRNA 

association with Ago2, we excluded miRNAs from the pool of sciRNAs. The remaining sciRNAs 

were still enriched in Ago2 CLIP (Fig. 2.2b). Again, these data confirm that sciRNA function is 

dependent on Ago2. 

We next asked whether the cleavage sites in predicted target genes were associated with 

Ago2. Compared to controls with similar read coverage (see Section 2.8 Supplementary 

Methods), we observed a highly significant enrichment of Ago2 CLIP-Seq reads for the target 

sites (Fig. 2.2c). In addition to Ago2-association, we examined whether the Deg-Seq abundance 

of the target sites was dependent on Ago2 using Deg-Seq of Ago2-/- mESCs 22. We observed 

that sciRNA targets sites had significantly reduced Deg-Seq abundance in Ago2-/- mESCs 

compared to wild type cells (Fig. 2.2d). Together, these results strongly support the validity of the 

predicted sciRNAs and their cleaved targets.  
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2.4.3. Small RNAs from diverse classes function as sciRNAs 

Since sciRNAs are defined based on a common function (i.e., target cleavage), we hypothesized 

that a universal pathway may not explain their biogenesis. Rather, sciRNAs may include multiple 

types of annotated or novel small RNAs. To better understand sciRNA biogenesis, we examined 

their i) annotation, ii) dependence on the microprocessor in mESCs 33, and iii) long hairpin RNA 

(hpRNA) structure (see Section 2.8 Supplementary Methods, Fig. 3a).  

In mESCs and testis, miRNAs only explained 18% and 9.7% of sciRNAs, respectively, 

whereas 76.2% of sciRNAs were miRNAs in cerebellum (Fig. 2.3a). In mESCs and cerebellum, 

many miRNAs had canonical microprocessor dependence (Dicer- and Dgcr8-dependent) based 

on data derived from mESCs 33. In contrast, no miRNAs in testis had the canonical microprocessor 

signature. These may be incorrectly annotated miRNAs, miRNAs generated by non-canonical 

pathways, or canonical miRNAs in testis but with no microprocessor dependence in mESCs 

(since microprocessor dependence was evaluated using data from mESCs). The 3 cell types also 

differed dramatically in the number of predicted endo-siRNAs (Dicer-dependent and Dgcr8-

independent), with mESCs having the most endo-siRNAs. Many (64%) of these endo-siRNAs in 

mESCs had long hairpin structure, consistent with their biogenesis model. Notably, an additional 

9.4% and 12.6% of sciRNAs in mESCs and testis, respectively, also had predicted long hairpin 

structure (Fig. 2.3a), thus are likely endo-siRNAs. Fig. 2.3b illustrates an example of sciRNA-

hosting long hairpin structure generated by inverted B1 sequences in mESCs.  

Another category of sciRNAs consists of those that appear to be shorter forms of full-

length non-coding RNAs from Rfam and piRNABank databases. For example, in testis, a large 

fraction (27.2%) of sciRNAs overlapped piRNA sequences, consistent with the high abundance 

of piRNAs in this tissue. piRNAs appeared to be trimmed from the 5’ end, 3’ end, or both, to 

generate sciRNAs (Fig. 2.S4), indicating existence of additional processing mechanisms. 

Similarly, tRNAs, snRNAs and rRNAs were also identified as possible sciRNA-generating RNAs, 
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all of which were reported previously to produce small RNAs 36,37. The last category of sciRNAs 

aligned to annotated genes that are not miRNA/endo-siRNA/Rfam/piRNA genes (“other genes” 

in Fig 2.3a). Their biogenesis mechanisms remain unknown. 

 

2.4.4. sciRNA expression varies during testis and cerebellum development 

Since sciRNA populations in mESCs, adult testis and adult cerebellum were largely distinct, we 

examined the divergence process of sciRNA profiles from mESCs to the adult cells during 

development. We obtained small RNA sequencing data to examine sciRNA expression in several 

developmental stages of testis and cerebellum. We then compared expression profiles of 

sciRNAs between mESCs and testis (Fig. 2.3c), or between mESCs and cerebellum (Fig. 2.3d). 

Specifically, sciRNAs identified in mESCs or the adult tissue (testis 6M PN or cerebellum 6M PN) 

were labeled as mESC-specific (if predicted in mESC data only), adult tissue-specific (if predicted 

in adult tissue only), or common to both. Interestingly, we observed reciprocal changes in the 

relative enrichment of expressed mESC-specific and adult tissue-specific sciRNAs during the 

development of both testis and cerebellum. Thus, mESC-specific sciRNAs were gradually 

replaced by tissue- and adult-specific sciRNAs as the cells mature.  

Notably, cerebellum and testis demonstrated different patterns of sciRNA expression 

during development. A considerable portion (25-30%) of sciRNAs in cerebellum was also present 

in mESCs, which was a general observation for all developmental stages (“Both,” Fig. 2.3d). In 

contrast, sciRNAs common to both mESCs and testis were rare in all developmental stages 

(“Both,” Fig. 2.3c). In testis stages embryonic day 18 (E18) and later, the majority of sciRNAs 

were testis-specific. On the other hand, there were few testis-specific sciRNAs at E14. This time 

point approximately precedes the development and proliferation of prospermatogonia 38. Thus, it 

is possible that sciRNAs in testis are primarily generated during spermatogenesis and largely 

distinct from those in mESCs or other tissues (e.g., brain). 
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In striking contrast to sciRNAs, miRNA profiles (excluding sciRNAs) were much more 

stable across all developmental stages included in this study (Fig. 2.S5). A much larger fraction 

of miRNAs was common to mESCs and different stages of testis or cerebellum. Additionally, the 

difference between testis and cerebellum was not as pronounced as that observed for sciRNAs. 

The considerable distinction in the developmental- and tissue-specific profiles of sciRNAs and 

non-sciRNA miRNAs indicates that these two classes of small RNAs may have distinct cellular 

functions. 

 

2.4.5. sciRNAs target non-coding regions of genes spanning diverse functional 

categories 

Target genes in the three cell types demonstrated little overlap, with only 40 genes in common 

between any two samples (Fig. 2.4a). This apparent tissue specificity is mainly due to the tissue-

specific expression of sciRNAs. The number of sciRNAs expressed in a particular tissue but not 

predicted to induce cleavage was a small minority (Table 2.S4). 

Strikingly, the majority of cleavage sites within coding genes was located in 3' UTRs in all 

cell types, much more than expected by chance (Fig. 2.4b). Since our search of cleavage sites 

was across the entire mRNAs, this 3’ UTR enrichment strongly testifies to the validity of our 

results. It should be noted that miRNAs are primarily known to target 3’ UTRs 39, which could 

arguably be partially due to the intense focus on 3’ UTRs in prediction algorithms and the usage 

of evolutionary conservation as a requirement of target sites. Thus, our study supports 3’ UTR 

targeting by small RNAs in an unbiased manner. 

Besides the non-coding 3’ UTRs, many of the sciRNA targets are non-coding transcripts, 

derived from lncRNAs, pseudogenes or other non-coding RNAs in GENCODE and NONCODE 

annotations (Fig. 2.4b,c). In all cell types, lncRNAs account for the majority of non-coding targets. 

A relatively large fraction of targets in testis and cerebellum was regulated by miRNAs (Fig. 2.S6), 
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whereas novel small RNAs derived from other genes account for the majority of targeting in 

mESCs. 

Among the predicted sciRNA target genes, many are associated with important functional 

relevance. Fig 2.4d shows a subset of such genes grouped into transcription factors 40, ubiquitin 

related genes, splicing related genes, and cancer-testis antigens 41. Importantly, most of these 

target genes demonstrated negative correlation in gene expression levels (measured by RNA-

Seq of testis samples at different developmental stages) relative to their corresponding sciRNA 

expression (Section 2.8 Supplementary Methods), further confirming the predicted functional 

relationship of sciRNAs and targets. 

We also carried out pathway, ontology, and Ingenuity network analyses for protein-coding 

and non-coding target genes to obtain a comprehensive view of functional relevance (Table 2.S5). 

Overall, sciRNA targets are involved in a diverse spectrum of functional categories, enriched with 

developmental-related processes and basic cellular function (cellular assembly and organization, 

cell morphology, and cell cycle).  

 

2.4.6. sciRNAs and target genes are enriched with repetitive elements 

Although the biogenesis pathways of sciRNAs appear diverse, a unifying feature of the sciRNAs 

and their targets is their substantial overlap with repetitive elements. The majority of sciRNAs in 

mESCs and testis are repetitive, with most aligned to SINE elements, especially the B1 subclass 

(comparable to human Alus) (Fig. 2.5a). Repetitive sciRNAs often target more RNAs than non-

repetitive sciRNAs (Fig. 2.S7a). Furthermore, we observed that B1-derived sciRNAs mapped to 

specific sub-regions of the consensus B1 sequence (Repbase 42) in both sense and antisense 

orientations (Fig. 2.S7b). Thus, many sciRNAs may be derived from pairs of inverted B1 repeats, 

as shown for Ccdc30 (Fig. 2.3b). Since the above observation applies to both mESCs and testis, 
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sciRNA biogenesis likely shares similar pathways and genomic features in the two cell types 

despite the involvement of different sciRNA species.  

Similar to sciRNAs, the majority of target cleavage sites were in B1 elements (Fig. 2.5b), 

and their +/- 5nt sequences mapped to similar regions of the consensus B1 sequence as sciRNAs 

(Fig. 2.S7b vs. S7c). Because the majority of sciRNA cleavage sites are located in SINEs, we 

next tested whether this is a unique feature of sciRNA-directed degradation or common in the 

global Degradome. In contrast to the significant enrichment of SINEs in sciRNA-targeted cleavage 

sites, the remaining cleavage sites in the rest of the Degradome were rarely in SINE regions (Fig. 

2.5c). The fraction in repetitive regions only slightly increased when all types of repeats were 

considered, suggesting that SINE elements are driving this phenomenon (Fig. 2.S7d). 

To ensure that the relative enrichment of SINEs in target sites was not artificially inflated 

as a result of non-unique mapping of the Deg-Seq reads, we examined the sequence uniqueness 

of the flanking regions of predicted cleavage sites. The majority of target sequences were unique 

among all predicted targets of a specific cell type regardless of the length of flanking regions, 

although targets in testis had the smallest level of uniqueness (Fig. 2.S7e). We then reexamined 

the overlap between target cleavage sites and repetitive elements after removing redundant target 

sequences. B1 elements were still enriched, confirming that SINE elements are enriched in the 

target pool (Fig. 2.S7f). Thus, SINE-targeting, especially B1-targeting, is a unique feature of 

sciRNA-mediated cleavage in mouse. 

 

2.4.7. Repetitive elements as signals for sciRNA targeting 

It was previously speculated that SINEs are used as signals for miRNA targeting 43–45. However, 

other studies presented evidence against this postulation, showing that canonical miRNA 

targeting avoided Alu elements 46. Here, we suggest that B1 elements in mice serve as signals 

for small RNA targeting through endonucleolytic cleavage instead of the canonical miRNA 
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pathway. If this speculation holds, then Ago2 should bind to sciRNA targets in B1 regions more 

often than to predicted canonical miRNA targets in B1 regions. To test this hypothesis, for miRNAs 

expressed in mESCs, we focused on their predicted canonical targets (as defined in microrna.org 

47) where the target sites are located in B1 elements. These targets were separated into two 

groups: those with target sites overlapping our predicted sciRNA target, and those that neither 

overlapped a sciRNA target nor contained a Deg-Seq peak (Section 2.8 Supplementary 

Methods). It should be noted that only 2% (68,005 / 3,316,252) of the predicted canonical miRNA 

targets were in B1 regions. We observed that Ago2 binds to the first group more often than the 

second (Fig. 2.S7g). The above results support our hypothesis that B1 elements are likely signals 

for sciRNA-mediated cleavage.  

Next, we asked whether sciRNA-mediated targeting of B1 elements is under evolutionary 

selection. Since repetitive regions are poorly conserved across species, a conventional multi-

species sequence conservation analysis was not feasible. Instead, we conducted an analysis of 

SNP enrichment in sciRNA target sites using known mouse SNPs (Section 2.8 Supplementary 

Methods). Strikingly, we observed that SNPs were significantly depleted in sciRNA-targeted B1 

sequences compared to the flanking B1 regions (Fig. 2.5d), suggesting that sciRNA targets are 

under selection for sequence conservation. This finding also indicates that sciRNA-mediated 

regulation has potential functional significance.  

 

2.4.8. Small RNA-guided endonucleolytic cleavage in human ESCs also targets 

retrotransposons 

To investigate sciRNA-guided cleavage in human cells, we obtained small RNA-Seq and Deg-

Seq data from human H1 ESCs (Table 2.S1) and conducted the same analysis as for the mouse 

datasets. A total of 34 sciRNAs and 23 target genes were identified (allowing up to two 

mismatches in the alignment), with about 50% sciRNAs being annotated miRNAs (Fig. 2.S8a). 
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The lower numbers of sciRNAs and targets compared to mESCs could be explained by lower 

depth of small RNA sequencing in human (Table 2.S1). Alternatively, differences in the repetitive 

sequences and their distribution in human and mouse genomes may also account for this 

difference. Nevertheless, these results allow an examination of the global properties of human 

sciRNAs and targets. Similar to their mouse counterparts, they were enriched with sequences 

overlapping retrotransposons (Fig. 2.S8b,c). However, in addition to SINE (Alu) elements, LINE 

(L2) elements were considerably enriched among human sciRNAs and their target sites. Similar 

to mouse sciRNA targets, human target sites were often located in non-coding genes or 3' UTRs 

of coding genes (Fig. 2.S8d). Furthermore, functional analysis of human targets revealed similar 

categories as for mouse targets (Fig. 2.S8e, Table 2.S5). 

Despite the above high similarities in general properties of sciRNA targeting between 

human and mouse, the specific types of retrotransposons enriched in the human data are different 

from those in mouse. This is likely explained by the apparent difference in abundance, sequence 

composition, and activity of retrotransposons across the two species 48,49. Thus, the sciRNA 

pathway is a conserved mechanism between human and mouse but leverages different sciRNA 

molecules, possibly to adapt to the divergence of retrotransposons between the two genomes. 

 

2.5. Discussion 

We report a global analysis of endonucleolytic RNA cleavage events in mouse ESCs, testis, and 

cerebellum. In mammals, mRNA cleavage was not previously considered a major pathway for 

small RNA-guided mRNA degradation, with a small number of genes predicted as targets of this 

mechanism 18–22. Our analysis revealed an expanded repertoire of hundreds of sciRNAs and their 

corresponding target genes in mouse and human, suggesting that this regulatory pathway is 

conserved and relatively prevalent in a cell-type specific manner. Given the potential functional 

significance of the target genes in development and essential cellular processes, sciRNA-
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mediated cleavage may have a much more profound impact on gene regulation and cellular 

function than previously appreciated. 

We defined sciRNAs based on a unifying function, that is, those that are predicted to 

cleave target RNAs via near perfect sequence complementarity. Thus, it is not surprising to find 

sciRNAs potentially reflecting diverse biogenesis mechanisms and overlapping known small 

RNAs of different categories (miRNAs, siRNAs, piRNAs). Despite this diversity, sciRNA 

expression appears to be under close regulation, as manifested by their striking expression 

specificity to developmental stages and cell types in contrast to all miRNAs (Fig. 2.3c,d, Fig. 2.S5). 

In addition to known categories of small RNAs, many sciRNAs were novel, with unknown 

biogenesis mechanisms and derived from genomic regions of known genes. These data suggest 

that the biogenesis and regulated expression of sciRNAs need further investigation. 

Despite their heterogeneity in biogenesis, a salient feature of sciRNAs and their target 

regions is the enrichment of repetitive sequences, especially of the B1 class in mouse. 

Retrotransposons are very prevalent in mammals, accounting for more than 40% of the human 

and mouse genomes. However, little is known regarding the functional implication of their 

presence within genes. It was speculated that miRNAs or other small RNAs may target SINE 

elements embedded in mRNAs, and therefore the SINEs are used as signals for gene targeting 

43–45. Yet, supporting data for this speculation was lacking. Studies that imposed the canonical 

miRNA targeting rules (requiring seed matching) predicted that Alu elements avoid targeting by 

miRNAs, thus providing data against the above speculation 46. Our results reconcile the seemingly 

conflicting hypotheses and data by supporting that B1 elements within murine RNA transcripts 

serve as signals for small RNA targeting, but through the endonucleolytic cleavage pathway 

instead of the canonical miRNA targeting based on seed matches alone. As retrotransposable 

elements spread across the genome and into non-coding regions of genes, sciRNA-mediated 



 22 

regulatory mechanisms may have evolved to leverage the abundant repetitive elements as 

signals for gene targeting, although this hypothesis remains to be tested. 

Capturing such targeting events may have been difficult due to the repetitive nature of the 

small RNAs and their target sites. Non-uniquely mapped reads in sequencing data analysis are 

often excluded because they are difficult to interpret. In this study, non-unique alignments of Deg-

Seq reads were retained, with their abundance normalized by total number of non-unique 

matches to the genome (Section 2.3 Methods). Nevertheless, we observed that the majority of 

cleavage site-flanking sequences were unique, suggesting that enrichment of repetitive targets 

was not overestimated (Fig. 2.S7e,f). The recognition of retrotransposons in RNA transcripts 

allows for targeting of multiple repeat-containing transcripts by a single sciRNA (Fig. 2.S7a). 

However, it should be noted that the number of targets of a typical sciRNA is much smaller than 

that of canonical miRNAs. sciRNAs are still highly specific to their respective targets given their 

extended sequence complementarity and the high degree of divergence and uniqueness among 

retrotransposable elements 50.  

It should be noted that our method imposed stringent criteria in predicting sciRNA-target 

relationships. In using the SNR approach, we assumed that sciRNAs should have more targets 

than expected by chance. Due to the requirement of extended sequence complementarity, many 

true sciRNAs may only target a small number of genes. As a result, a true sciRNA may not have 

a high SNR. Thus, it is possible that many more sciRNAs exist than presented in our study. 

In summary, we report the discovery of a large number of sciRNAs and their cognate 

targets in mouse and human cells. This mode of gene regulation was previously poorly 

characterized in mammals. We demonstrate that this pathway mainly targets retrotransposons in 

mammalian genomes, and likely plays essential roles in gene regulation in a developmental 

stage- and cell type-specific manner. 
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2.6. Figures 

 
Figure 2.1 | Prediction of sciRNA-mediated mRNA cleavage events.  
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(a) Bioinformatic pipeline schematic. (b) Left panel: average SNR for each mismatch cutoff in 
mESCs; right panel: optimal mismatch cutoff corresponding to the maximum average SNR for 
each dataset. (c) Venn diagram of sciRNAs identified in mESCs, testis 6M PN, and cerebellum 
6M PN. (d) Pie chart of sciRNA annotations (total = 398, combining sciRNAs from 3 cell types). 
(e) An example of predicted sciRNA-mediated cleavage. Read distributions are shown for the 
3’UTR of the Mtrr gene in Deg-Seq data of wild type (WT, red) and Ago2 knockout (blue) mESCs. 
Alignment of the sciRNA to the Deg-Seq peak is shown in a box, where a solid line indicates a 
base pair match, dotted line indicates a G=U wobble, X indicates a mismatch, and black arrow 
indicates location of the Deg-Seq peak. (f) Experimental validation of target RNA cleavage 
mediated by small RNAs. 200ng of Kpna4, NONMMUG002900, Zfp389, or NONMMUG003416 
(Trafip2-as) RNA were incubated with different amount of HeLa S100 loaded with 50 nM synthetic 
sciRNA at 37°C for 30 min. Arrows indicate cleaved 5’ RNA fragments (whose sizes are consistent 
with predicted cleavage products). Small RNA/target RNA sequences are shown with arrowheads 
indicating the predicted cleavage sites (4 sites identified as Deg-Seq peaks in Zfp389). 
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Figure 2.2 | Genomic data supporting the validity of sciRNA-target predictions. 
(a) Empirical cumulative frequency of abundance of Ago2 CLIP-Seq reads containing sciRNA 
sequences (blue) or control sequences randomly picked from Dicer-independent Dgcr8-
independent small RNAs (grey) in WT mESCs (P = 2.2e-16, two-sided Kolmogorov-Smirnov (KS) 
test, same below). (b) Similar to (a), excluding miRNAs (P = 2.1e-10). (c) Similar to (a), comparing 
abundance of CLIP reads covering Deg-Seq peaks in target genes (red) or controls (grey, see 
Section 2.8 Supplementary Methods) (P = 0.003). (d) Deg-Seq peak abundance in WT and Ago2 
knockout mESCs (P < 2.2e-16). 
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Figure 2.3 | Characterization of sciRNAs.  
(a) Categorization of sciRNAs in mESCs, testis and cerebellum according to: (i) annotation (inner 
circle), (ii) dependence on the microprocessor (outer circle, light blue) and (iii) long hpRNA 
structure (outer circle, pink). In mESCs, 1 unmapped sciRNA was excluded. (b) RNAfold structure 
of sciRNA 24792 (red) and flanking regions (within the Ccdc30 gene). This sciRNA was predicted 
in mESCs. Two inverted B1 repeats (Repeatmasker) are labeled. (c) Hierarchical clustering of 
sciRNA expression levels (reads per million, RPM) in mESCs and different stages of testis 
development. E14: embryonic day 14; E18: embryonomic day 18; 3wk PN: 3-week postnatal; 6M 
PN: 6-month postnatal. In the heatmap, RPM values of all sciRNAs that were identified originally 
in mESCs or 6M PN testis were visualized for each sample. Stacked bars on the right show the 
percentage of sciRNAs (among those with RPM ≥ 1) specific to mESCs (defined as those that 
were only identified in mESCs by the pipeline in Fig. 2.1A, but not in the testis 6M PN data), testis 
6M PN (similarly as defined above) or common to both. Note that some sciRNAs predicted 
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originally in mESCs or testis may be excluded in the stacked bars due to low RPM. (d) Similar to 
(c), for cerebellum development. E10: embryonic day 10. 
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Figure 2.4 | Characterization of sciRNA targets.  
(a) Venn diagram of target genes predicted in mESCs, testis and cerebellum. (b) Distribution of 
target cleavage sites (Deg-Seq peaks) in different types of regions of the transcriptome. CDS: 
coding sequence; NC exon: exon of non-coding transcript. Random: random positions from 
random transcripts (see Section 2.8 Supplementary Methods). (c) Types of non-coding transcripts 
among sciRNA targets, prioritized as pseudogene > lncRNA > other. (d) Pearson correlation of 
target mRNA expression and sciRNA expression for four example categories of target genes (see 
Section 2.8 Supplementary Methods). 
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Figure 2.5 | Small RNA guided endonucleolytic cleavage targets retrotransposons.  
(a) Distribution of sciRNAs in different types of repeats (Repeatmasker). If more than one 
Repeatmasker annotation was identified, the following prioritization was used: B1 > B2 > B4 > 
others. Random: similar to Fig. 2.4B. (b) Similar to (a), for target cleavage sites. (c) Percentage 
of Deg-Seq peaks overlapping SINE regions among all Deg-Seq peaks. Two groups of Deg-Seq 
peaks are shown: those targeted by sciRNAs (sciRNA-targeted) or otherwise (Not targeted). (d) 
Average SNP density per position in all B1 sequences bound by sciRNAs and their ±100 nt 
flanking region (chi-square P-value P < 2.2e-16). The y-axis is the average SNP density per 
nucleotide (see Section 2.8 Supplementary Methods). A smoothing window of 10nt was applied 
to all data points. The grey region indicates the sciRNA-binding region. It ranges from 0–14 
because the maximum length of targeted region was 24 and the smoothing window spanned 10 
nt. Red dashed lines indicate the average SNP density of the three corresponding regions. 
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2.7. Tables 

Table 2.1 | Summary of the final sets of predicted sciRNAs, targeted cleavage sites, and their 
combinations. 

  Mismatches 
allowed 

Predicted 
sciRNAs 

Predicted 
sciRNA 

cleavage sites 

Total sciRNA-
target pairs 

Cerebellum 1.5 21 8 30 
Testis 1.5 103 599 1,772 
mESC wild-type 1.5 289 315 1,108 
mESC Ago2-/-  1.5 53 23 58 
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2.8. Supplementary Methods 

Bioinformatic analysis of Ago2 dependence 

Ago2 CLIP-Seq in wild type mESCs (3 samples) were used (accession GSE25310: SRR072951, 

SRR072952, SRR072953, SRR072954, SRR072955) 35. To evaluate the presence of sciRNAs in 

Ago2 CLIP-Seq reads, the total number of CLIP reads containing each sciRNA was summed 

across the 3 samples. As a control, the presence of Dicer-independent, Dgcr8-independent small 

RNAs 33 in Ago2 CLIP-Seq reads was calculated similarly. 

To calculate the enrichment of Deg-Seq peak regions in Ago2 CLIP-Seq data, the total 

number of CLIP reads at each nucleotide of the Deg-Seq peak (up to 4 nucleotides) was summed 

across each of the 3 wild type samples and normalized by the length of the Deg-Seq peak. For 

each peak with non-zero CLIP coverage, 100 random peaks with the same abundance were 

chosen by Fisher-Yates shuffle, and normalized CLIP coverage was calculated similarly as 

described above. Then, the average CLIP-Seq coverage of the 100 random peaks was 

calculated. 

To calculate Deg-Seq abundance of sciRNA targets in wild type mESCs, the total number 

of Deg-Seq reads at the peak was normalized by the total number of reads in the gene. For each 

target gene, there is often no Deg-Seq peak present in Ago2-/- data, as expected. Thus, to 

calculate Deg-Seq abundance of targeted genes in Ago2-/- Deg-Seq (accession GSE21975 22), 

the maximum number of Deg-Seq reads at any position in the gene was normalized by the total 

Deg-Seq reads in the gene. 

 

RNA-Seq analysis  

The following public mESC RNA-Seq datasets were used: SRR921480, SRR921481, 

SRR921482, SRR921483 (GSE48252) 51. For both public and in-house RNA-Seq data, 

sequencing reads were aligned to mm10 using tophat2 52 with parameters -a 9 -g 1 for all 
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datasets. RPKM was calculated using in-house scripts for genes annotated in the databases 

described in Materials and Methods.  

 

Pearson correlation analysis: The Pearson correlation was calculated using RNA-Seq and 

small RNA-Seq data of the following samples: mESCs, testis E14, testis E18, testis 3 weeks post-

natal, testis 6 months post-natal. For mESCs, the average RPKM of the above four datasets from 

GSE48252 was used in the Pearson correlation analysis of target and sciRNA expression. If more 

than one sciRNA targeted a gene, the minimum Pearson correlation was kept. 

 

sciRNA characterization and expression 

sciRNAs were aligned to genome mm10 or hg19 using Bowtie 0.12.7 29 with parameters -v 1 -a -

-best --strata. Because many sciRNAs may align to thousands of genomic locations, a stepwise 

prioritization process was used to annotate them (listed in descending priority): [1] the sciRNA 

was found to be Dicer-dependent and Dgcr8-independent 33, [2] the sciRNA overlaps a miRBase 

53 miRNA or Rfam 54 pre-miRNA +/- 3nt, [3] the sciRNA overlaps a non-miRNA Rfam annotation 

+/- 3nt, [4] the sciRNA is a sub-sequence of a piRNABank 55 annotated piRNA, [5] the sciRNA 

overlaps a region from our custom merged annotation described earlier, [6] no annotation, [7] 

unmapped. If a category had 3 or fewer members, it was labeled as “other” in Fig. 2.3a. 

We next predicted whether a sciRNA was derived from a long hairpin RNA (hpRNA) 

structure. For each sciRNA, we applied RNAfold 56 to the region flanking its genomic alignment 

(+/-500nt). If the sciRNA was aligned to multiple genomic locations, the region (+/-500nt) with the 

highest read coverage was used. Then, RNAfold’s dot bracket notation was used to examine 

whether the sciRNA aligned to the stem of a long secondary structure, i.e. “long hpRNA.” Namely, 

two criteria were used: stem length ≥70, and ≥70% of the sciRNA nucleotides (length 19-24) were 

structured (brackets). Stem length was calculated as the distance to the next opposite-facing 
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bracket (equal to zero if the sciRNA contained two opposite facing brackets). These thresholds 

were chosen by checking that previously identified endo-siRNAs (e.g. miR-1195 and miR-1965) 

in mESCs were included and manually checking the RNAfold structure prediction for some novel 

examples (e.g. Ccdc30 shown in Fig 2.3b). In addition, several thresholds were tested, and 

although stem length ≥70 and ≥70% structured were the optimal thresholds, the results were 

largely robust to choice of stem length and percent nucleotides structured. 

Small RNA expression was calculated using reads per million (RPM), where sequencing 

depth for each sample only included small RNAs that passed the preprocessing steps in the 

pipeline (i.e. masked small repeats and length [19,24]). sciRNAs identified in mESCs and/or testis 

6M PN were clustered across all testis developmental stages, and similarly for mESCs and/or 

cerebellum 6M PN. sciRNAs with RPM ≥ 1 were grouped based on whether they targeted a 

transcript in mESCs, adult tissue, or both. 

miRNAs with minimum read count 20 in at least one sample were clustered since this 

minimum read count was used in the preprocessing pipeline to identify sciRNAs. miRNAs with 

RPM ≥ 1 were labeled as adult tissue, mESCs, or both based on read count ≥ 20 in these samples. 

R function heatmap.2 was used for hierarchical clustering with Euclidean distance and 

complete linkage. 

 

Target characterization 

Cleavage sites (Deg-Seq peaks) were characterized by genic location and by type of transcript. 

If the Deg-Seq peak overlapped multiple transcripts, the genic regions were prioritized as follows: 

coding exon (CDS exon) > 5’UTR exon > 3’UTR exon > exon in non-coding transcripts (NC exon) 

> intron in coding genes > 5’UTR intron > 3’UTR intron > intron in non-coding transcripts. 

Transcripts harboring the cleavage sites were also examined for their types: coding, pseudogene, 

lncRNA, or other non-coding RNAs. Finally, Repeatmasker was used to decide whether a 
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cleavage site overlaps a repetitive sequence. To test if the observed gene region and 

Repeatmasker enrichment at cleavage sites significantly differed from the transcriptome overall, 

100 random positions per Deg-Seq peak were chosen from any annotated transcript. If a random 

position overlapped multiple transcripts, the genic regions were prioritized using the above 

prioritization schemes (Fig. 2.4b, 2.5b).  

 

Functional analysis of target genes 

Gene set enrichment: Ingenuity pathway analysis was conducted for sciRNA targets in the 

mouse and human datasets (IPA®, QIAGEN Redwood City, www.qiagen.com/ingenuity) using the 

default parameters. Gene Ontology (GO) analysis was carried out with our previous approach 57 

for non-coding genes according to the functional annotations provided by NONCODEv4 28.  

 

SNP enrichment: The union of all sciRNA binding sites located within B1 regions (i.e. the Alu 

Repeatmasker family) in predicted target genes of mESC, testis, and cerebellum were used (n = 

1,510). Each position in the targeted region and 100 nt flanking region were interrogated for SNPs 

(dbSNP 138 58). To calculate a SNP density per nucleotide, the sum of SNPs at each position 

was normalized by the total sequences interrogated at that position. These values were smoothed 

using a sliding window of size 10nt and step size 1nt (Fig. 2.5b). The smoothed values were 

anchored on the rightmost nucleotide (e.g. the smoothed SNP density at position -100 is the 

average SNP density of the window -100 to -90). A chi-square p-value was calculated using a 

contingency table of total SNPs vs. the sum of length of B1 annotation (up to 100 nt) within vs. 

outside the target region.  

 

Ago2 binding in canonical miRNA targets: Predicted canonical miRNA target sites were 

downloaded from microrna.org 47. Targets of expressed miRNAs in mESCs (miRNA read count ≥ 
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20) located within B1 (Alu family) regions were separated into two groups based on whether or 

not they overlapped a sciRNA target sequence. A total of 102 unique miRNA targets overlapped 

a sciRNA target, and 54,766 did not. Among the latter, 53,333 (97%) did not contain a Deg-Seq 

peak, as expected. We refer to these 53,333 targets as “putative canonical miRNA B1 targets” 

and the 102 unique miRNA targets overlapping a sciRNA target as “putative sciRNA targets”. To 

compare Ago2 CLIP-Seq overlap between the two groups, one “putative canonical miRNA B1 

target” was randomly chosen for each “putative sciRNA target” (i.e. 102 vs. 102), and this process 

was repeated 1,000 times. Ago2 CLIP-Seq overlap was calculated as the sum of reads in the 

target site, divided by the length of target sequence. For each of the 1,001 total target and control 

sets, targets with zero Ago2 CLIP-Seq overlap were excluded and the average CLIP-Seq overlap 

of the remaining targets was calculated. An empirical p-value was calculated by counting the total 

sets of random “putative canonical miRNA B1 targets” with higher average Ago2 CLIP-Seq 

density than the “putative sciRNA targets.” 

 

In Vitro Transcription 

sciRNA targets were amplified using OneTaq DNA polymerase (NEB) from mouse genomic DNA 

followed by TOPO TA cloning (Life Technologies). The target-specific primers are listed in Table 

2.S3. The TOPO cloning products were then transformed into DH5α competent cells and were 

later plated for overnight incubation at 37°C. PCR and Sanger sequencing were used to verify the 

constructs. 

Target RNAs were in vitro transcribed using 1 μg of template DNA and the HiScribe™ T7 

High Yield RNA Synthesis Kit (NEB). To remove template DNA, 20U RNase-free DNase I (Roche 

Diagnostics) was applied for 15 min at 37°C followed by phenol extraction. In vitro transcribed 

RNA was purified from 10% PAGE gel. RNA was dephosphorylated by 10U calf intestinal alkaline 

phosphatase (NEB) at 37°C for 60 min and then purified by phenol-chloroform extraction. Two μg 
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dephosphorylated RNA was labeled with γ-32P ATP 150Ci (MPbio) by T4 Polynucleotide Kinase 

(NEB) at 37°C for 60 min followed by 12% PAGE gel isolation. 

 

In Vitro Cleavage Assays 

In vitro cleavage assays were performed as described previously 21. HeLa cytoplasmic S100 

extract was obtained from Speed BioSystems. For endogenous sciRNA cleavage (miR-708-5p 

and miR-29c-3p), HeLa cytoplasmic S100 extract (0, 0.1, 0.5, and 2 μg respectively) was 

incubated with 200 ng of 32P-labeled target RNA at 37°C for 30 min in the cleavage buffer (20mM 

HEPES KOH pH7.9, 100mM KCl, 1.5mM MgCl2, 0.5mM DTT, 0.5mM PMSF, 1mM ATP, 0.2mM 

GTP). The cleavage reaction was terminated by adding 2X RNA gel loading buffer and incubated 

at 60°C for 5 min. Cleaved RNA was loaded onto 10-12% PAGE gel and exposed to X-ray film at 

–80°C.  

For cleavage of Traf3ip2-as and Zfp389 target genes, endogenous sciRNA levels were 

relatively low. Thus, sciRNA +/- strands were annealed to form sciRNA duplexes as follows: [1] 

prepare the +/- strand sciRNAs (Table 2.S3) at a final concentration of 100 μM; [2] mix 2 μL of 

the two sciRNA strands with 5μL 10X Annealing Buffer (100 mM Tris-HCl, pH 7.5, 1 M NaCl, 10 

mM EDTA); [3] add nuclease-free H2O to reach a total volume of 50 μL; [4] heat at 94°C in water 

bath for 4 min, 70°C for 10 min, and then allow cooling to room temperature; [5] annealed sciRNA 

duplex was further purified by 10% PAGE gel and precipitated with 2.5 volumes of absolute 

ethanol. HeLa cytoplasmic S100 extract was then preincubated with 50 nM purified sciRNA 

duplex at 37°C for 30 min before adding the 32P-labeled target RNA. The cleavage reaction was 

otherwise carried out in the same way as described above. 
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2.9. Supplementary Figures 

 
Figure 2.S1 | PCR amplification bias detection.  
All reads in each Deg-Seq library were separated into four groups: unique reads within Deg-Seq 
peaks, duplicate reads within Deg-Seq peaks, unique reads outside of Deg-Seq peaks, and 
duplicate reads outside of Deg-Seq peaks. Three criteria were used for comparison: (a) GC 
content, (b) read length after trimming adapters, and (c-e) nucleotide composition. 
  



 38 

 
Figure 2.S2 | Alignment of predicted endo-siRNAs to Degradome-Seq supports existence of 
small RNA-guided cleavage.  
Deg-Seq peak abundance (total reads in the Deg-Seq peak / total mapped reads) per nucleotide 
along predicted predicted endo-siRNAs 33 from 5’ to 3’ (left to right on the x-axis) in wild type (WT, 
red) and Ago2 knockout mESCs (Ago2-/-, grey). Results are shown for Deg-Seq peaks that 
aligned to endo-siRNAs with up to 1 mismatch. The enrichment of reads at nt 9-11 in WT is 
eliminated in Ago2-/-. Moreover, the Deg-Seq abundance is within the level of background noise 
for most positions in AGO2-/- with the exception of nt 18 and 22. These could be due to unknown 
artifacts or mechanisms. 
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Figure 2.S3 | sciRNA-target prediction at varying mismatch cutoffs.  
The average SNR (Methods), total sciRNAs, total targets, and total sciRNA groups for each 
mismatch (mm) cutoff varying from 0 to 4 in 0.5 intervals in (a) mESCs, (b) testis, and (c) 
cerebellum. 
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Figure 2.S4 | Characterization of piRNA-derived sciRNAs.  
piRNA-derived sciRNAs grouped by the sciRNA's relative location in the piRNA in mESCs and 
testis. 5' end: sciRNA starts at the first nt of the piRNA; 3' end: sciRNA ends at the last nt of the 
piRNA; middle: sciRNA starts and ends at internal nt of the piRNA. 
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Figure 2.S5 | miRNA expression in testis and cerebellum development.  
Similar to Fig. 2.3c and 2.3d, but instead clustering all non-sciRNA miRNAs and labeling them 
based on having read count ≥ 20 in adult tissue (Testis 6M PN or Cerebellum 6M PN), mESCs, 
or both. 
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Figure 2.S6 | Characterization of sciRNA targets.  
The type of sciRNAs targeting each type of gene region is shown for each sciRNA-target 
alignment. CDS: coding sequence; NC exon: exon in non-coding transcript. The total number of 
sciRNA-target alignments is shown above each bar. 
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Figure 2.S7 | Repetitive nature of sciRNAs and targets.  
(a) Total number of targets per sciRNA separated by the subtype and repetitive vs. non-repetitive 
nature (Repeatmasker) of sciRNAs. Alignment of sciRNA (b) or Deg-Seq peak +/-5nt (c) to the 
B1 consensus sequence using BLASTN. Dark (light) green and positive (negative) values indicate 
sense (antisense) alignment. (d) Percentage of Deg-Seq peaks overlapping repetitive regions 
(any type in Repeatmasker) among all Deg-Seq peaks. Two groups of Deg-Seq peaks are shown: 
those targeted by sciRNAs (sciRNA-targeted) or otherwise (Not targeted). (e) Percent of total 
targeted cleavage sites with unique flanking sequence. Results shown for varying +/-12 to 25 nt. 
(f) Distribution of Repeatmasker annotations for target cleavage sites with unique flanking 



 44 

sequence for varying flanking sequence length (x-axis). For targets with the same flanking 
sequence, the following prioritization was used: B1 > B2 > B4 > others. (g) Histogram of 1,001 
sets of 102 microrna.org miRNA targets based on their average Ago2 CLIP-Seq density (empirical 
P = 0.049). 1,000 controls in grey; sciRNA target-overlapping miRNA targets in red. 
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Figure 2.S8 | Small RNA guided endonucleolytic cleavage in H1 ESCs.  
(a) sciRNA annotation. One unmapped sciRNA was excluded. (b) Repeatmasker family 
annotation of sciRNAs (c) Repeatmasker family annotation of target cleavage sites. Random: 
random positions from any transcript were chosen as a control cleavage site (see Section 2.3 
Methods). (d) Distribution of target cleavage sites (Deg-Seq peaks) in different regions of the 
transcriptome. CDS: coding sequence; NC exon: exon in non-coding transcript. Random: similarly 
defined as in (c). (e) One network was identified by Ingenuity Pathway Analysis of sciRNA targets. 
Grey-shaded nodes: sciRNA targets; magenta-outlined nodes: sciRNA targets associated with 
the top three diseases/functions shown below the network. 
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2.10. Supplementary Tables 

Table 2.S1 | Datasets used in this study. 
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Table 2.S2 | List of sciRNAs and target genes identified in mouse ESCs, adult testis and 
cerebellum. 

Please refer to the published article for Table 2.S2. 
  



 49 

Table 2.S3 | Primers used in this study. 

PCR primers for in vitro Cleavage Assay 

Primer name Sequence (5’to 3’) 

KPNA4-T7-Fw GAAATAATACGACTCACTATAGGGTCTATAGTATCTGTTCACTCATTG 

KPNA4-Rv GAACTCATGGTACCTTCACG 
NONMMUG002900-T7-

Fw GCGTAATACGACTCACTATAGGGCACAAGGTTCTGAGGCTGGTG 

NONMMUG002900-Rv GTTCAGAGTCTGTTTTTGTCTAGC 

TRAF3IP2-as-T7-Fw GCGTAATACGACTCACTATAGGGACCTTTAATCCCAGCACTCGG 

TRAF3IP2-as-Rv TCATGCAGTTGAGGTTTTGTGA 

Zfp389-T7-Fw GCGTAATACGACTCACTATAGGGAGAAGACTATAATAAAGGCAGGCC 

Zfp389-Rv TCATGCACAGTGAGGGTTGA 

Annealing primers for sciRNAs 

Primer name Sequence (5’to 3’) 

miR-3470b- UCACUCUGUAGACCAGGCUGGCUU 

miR-3470b+ GCCAGCCUGGUCUACAGAGUGAUU 

4933404O12RIK- UGUGAAUUCUCUGACGUUGAAUGUU 

4933404O12RIK+ CAUUCAACGUCAGAGAAUUCACAUU 
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Table 2.S4 | sciRNA expression vs. targeting. 

cerebellum expressed not expressed 
targeting 21 0 

not targeting 2 375 
   

mESCs expressed not expressed 
targeting 289 0 

not targeting 9 100 
   

testis expressed not expressed 
targeting 103 0 

not targeting 3 292 
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Table 2.S5 | Functional analysis of target genes of sciRNAs. 

Please refer to the published article for Table 2.S5. 
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Chapter 3: De novo identification of alternative transcription start 

and polyadenylation sites in RNA-Seq 

3.1. Abstract 

Alternative transcription start sites (ATSSs) and alternative polyadenylation sites (APAs) 

modulate transcriptional and post-transcriptional gene regulation, often in a tissue-specific 

manner. Several methods are available for identifying APA from RNA-Seq through change point 

detection, but most are limited by requiring a 3’UTR annotation and/or only identifying one APA 

site among other limitations. Additionally, most change point detection methods ignore the 5’ end. 

Here, we developed mountainClimber, a de novo approach for the simultaneous identification of 

ATSS and APA that overcomes several limitations of existing approaches and outperforms a 

similar method. In the subsequent chapters, we apply this approach to poly(A)-selected RNA from 

a variety of human tissues (Chapter 4) and both chromatin-associated RNA and poly(A)-selected 

RNA in murine macrophages (Chapter 5). Upon publication, the software will become publicly 

available. 

 

3.2. Introduction 

Alternative polyadenylation and alternative promoter usage are well-appreciated mechanisms of 

gene regulation. More than 70% of mammalian genes utilize APA sites, which can affect mRNA 

stability, mRNA translation, mRNA nuclear export, mRNA localization, and protein localization 

through addition or removal of RNA binding protein sites, miRNA target sites, and other regulatory 

motifs in the 3’ untranslated region (UTR) (reviewed in 9,10). Additionally, poly(A) site usage can 

influence transcription, as it occurs co-transcriptionally 59. The choice of polyadenylation (poly(A)) 

site has been associated with polyadenylation factors, nucleosome density, splicing activity 
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(especially U1 snRNP), and other factors including TSS (reviewed in 9). ATSS occurs in 40-50% 

of mammalian genes, which can affect translation through addition or removal of upstream open 

reading frames, secondary structure motifs, and RNA binding protein recognition sites in the 

5’UTR 60–62. Thus, identification and characterization of APA and ATSS in different biological 

conditions will enhance our understanding of gene regulation.  

Recent advances in sequencing technologies improved detection of ATSS and APA. The 

FANTOM consortium, among others, identified TSSs with CAGE-Seq 63 while others developed 

approaches to sequence poly(A) sites including PolyA-Seq 64, 3’READS 65, and 3’-Seq 66. These 

assays revealed ATSS and APA are more widespread than previously appreciated. In particular, 

APA is not only tandem (i.e. in the last exon), but also frequently in exons and introns upstream 

of the 3’UTR 65. Still, RNA-Seq is significantly more widely used than these approaches, 

motivating the development of methods for ATSS and APA identification from RNA-Seq. While 

several methods exist for identifying APA from RNA-Seq, they have one or more of the following 

limitations: reliance on gene annotation, searching for tandem APA within last exons only, 

identifying no more than one change point (i.e. two poly(A) sites), requiring two biological 

conditions, or handling only one sample 67–73. 

To identify both ATSS and APA while overcoming the aforementioned limitations, we 

developed mountainClimber, a novel de novo approach for change point identification. In contrast 

to existing methods, our approach is de novo, scans the entire transcription unit (TU), can identify 

any number of change points, works on single samples, and tests for differential ATSS and APA 

across biological conditions. Thus, mountainClimber identifies not only APA within 3’UTRs, but 

also ATSS in 5’UTRs, intronic APA, and coding sequence APA. We demonstrate it outperforms 

an existing approach, IsoSCM70.  
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3.3. Methods 

de novo change point identification 

There are three major steps of the mountainClimber approach: defining de novo TUs in each 

sample with mountainClimberTU, calling change points in TUs of each sample with 

mountainClimberCP, and detecting differential ATSS and APA usage with mountainClimberTest. 

The pipeline is written in Python 2.7.2 and R 3.4.3, and relies on python modules pybedtools74,75, 

scipy, numpy, peakutils, bisect, itertools, sklearn76, and pysam, and R packages ggplot2 77, 

reshape2 78, and dplyr. Module and package versions used were: pybedtools 0.6.2, scipy 0.15.1, 

numpy 1.10.4, peakutils 1.0.3, sklearn 0.18.1, pysam 0.9.0, ggplot 2.2.1, reshape2 1.4.3, and 

dplyr 0.7.4. Each step can optionally be used in isolation. 

 

mountainClimberTU(c, n, p, w): Define TUs de novo based on RNA sequencing. Given an input 

bedgraph file, consecutive windows of size w (default = 1000) are joined if at least p percent 

(default = 100%) of both windows have at least n average reads per base pair (bp) (default = 10). 

After merging consecutive windows, ends are extended or trimmed until there are no zero-

coverage bases. If a bed or bedgraph file of split reads is input (see get_junction_counts below), 

then introns spanned by at least c exon-exon junction read counts (default = 2) will be included in 

order to join exons from the same transcript in the same TU.  

 

mountainClimberCP(a, d, w, t, l, e, f, s, u, n, z): Given one or two bedgraph files for non-strand-

specific and strand-specific RNA-Seq libraries respectively, a bed file of split reads (see 

get_junction_counts below), and the TUs from mountainClimberTU, change points are called in 

each TU with length ≥ l (default = 1000) and average reads/bp in exons ≥ e (default = 10). The 

Cumulative Read Sum (CRS) is defined as: 

v" = |x" − x"'(| 
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CRS" =
1

max
"
CRS

/v0

"

01(

 

Where xi is the total reads at position i in a TU. The Kolmogorov-Smirnov (KS) test is used to test 

whether the CRS significantly deviates from the uniform distribution (i.e. the diagonal line in Fig. 

3.1b “1. Calculate CRS”). If the KS test p-value < t (default = 0.001), then proceed with calling 

change points. To identify the elbows in this distribution, i.e. candidate change points, the distance 

between the CRS and the diagonal line is calculated and denoised using a median filter with 

window size w. Then, the peakutils module is used to call local maxima and minima in this 

distribution with parameters a and d, the normalized amplitude threshold and minimum distance 

between neighboring change points respectively. Since the CRS is a cumulative value, significant 

change points that follow a long segment of low coverage (e.g. a partially retained intron) do not 

appear to be local maxima or minima (Fig. 3.1b “2. Identify local extrema”). This motivates the 

weighted CRS (wCRS), which effectively amplifies this signal at these positions:  

w" =
v"3

max
"
v
 

wCVS" =
1

max
"
wCVS

/|w" − w"'(|
"

01(

 

On the other hand, change points in last exons are more gradual due to the end-effect of the 

reads. Thus, we call change points in two steps: (1) wCRS to call junction change points, and (2) 

CRS in UTRs to call UTR change points. Finally, the change points are called again in a +/- w 

window in the non-denoised data to regain any resolution lost by denoising.  

After calling all change points, five filters are imposed consecutively: (1) T-test p < t of the 

reads per bp, x, in the 2w bps before vs. after each of the predicted change points, (2) fold change 

of the first w bp of neighboring change points to be at least f (default = 1.5), (3) require that the 

segments in the first and last exon have strictly increasing and decreasing average coverage 
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respectively, (4) distal segment expression > s (default = 1), (5) fold change of entire neighboring 

segments before vs. after is ≥ f.  

To optimize parameters w, a, and d, mountainClimber considers different values (w = 100 

up to min(l/100, 500) with step size 100; a = 0.05, 0.1, 0.15; d = 10, 50) and leverages the exon-

intron junction information by choosing the combination that maximizes the total exon-intron 

junctions with at least n reads (default = 2) predicted within u bp (default = 10). If non-strand-

specific RNA-Seq is used, then the strand is inferred by choosing the strand with the maximum 

number of supporting GT-AG splice site signals at exon-intron junctions. After choosing the 

optimal parameters, terminal segments are removed if they have < z relative usage (default = 

0.01), where relative usage is defined as the terminal segment coverage / maximum segment 

coverage in the TU, to remove transcriptional noise. 

Finally, change points are labeled as follows: DistalTSS, DistalPolyA, TandemTSS, 

TandemAPA, Junction (if the change point is within u bp of an exon-exon junction with ≥ n reads; 

default u = 10; default n = 2), Exon, and Intron if RNA-Seq was strand-specific or strand was able 

to be inferred from non-strand-specific RNA-Seq; DistalLeft, DistalRight, TandemLeft, 

TandemRight, Exon, and Intron if strand could not be inferred. 

 

mountainClimberTest: Cluster change points across replicates and conditions and test for 

differential change point usage. This is comprised of three major steps: (1) 

mountainClimberTest_cluster, (2) mountainClimberTest_ru, (3) mountainClimberTest_diff. While 

any number of conditions can be clustered in the first step, the last step tests for differential end 

usage between only two conditions. 

 

mountainClimberTest_cluster(n, e, f, d, m): Cluster change points first across replicates, then 

across conditions using sklearn.cluster DBSCAN and report the median position of each cluster. 
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DBSCAN was chosen because it is not parameterized by the total number of clusters, but rather 

by the minimum number of points n and neighborhood size e. If e = -1.0 (default), then use the 

optimal window size, w, from mountainClimberCP. Users can also filter change points using 

minimum fold change f and average reads/bp in exons m, though these are not considered by 

default. If clustering across multiple conditions, then require at least d conditions to be clustered 

together (default = 1) and use the minimum n across all conditions. For example, let’s say we 

have five replicates in two conditions. If d = 2 and n = 4, and a DBSCAN cluster contained 4 

replicates from condition A but only 2 replicates from condition B, then this cluster is ignored 

because it was not reproducible in n replicates in condition B. However, if the DBSCAN cluster 

contained 4 replicates from condition A and none from condition B, then this cluster is retained 

because it represents a condition-specific change point. Change point labels are prioritized as 

follows: Junction > DistalTSS > DistalPolyA > TandemTSS > TandemAPA > DistalLeft > 

DistalRight > Exon > Intron > TandemRight > TandemLeft.  

 

mountainClimberTest_readCounts: Calculate the average reads/bp for each segment after 

clustering. 

 

mountainClimberTest_ru: Given the output segments and change points from 

mountainClimberTest_cluster and bed file of average read counts per segment from 

mountainClimberTest_readCounts, define transcript ends and calculate their relative usage (RU) 

for each condition. Genes with no clustered change points and/or less than 4 segments are 

excluded. End segments are defined as (1) all distal ends regardless of their change point label, 

(2) all DistalLeft, DistalRight, DistalTSS, TandemTSS, DistalPolyA, TandemAPA change points, 

(3) all change points before the first and after the last Junction change points, and (4) any 

condition-specific non-Junction change points between the first and last Junction change points. 
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Ambiguous segments that could not be assigned to either 5’ or 3’ end are ignored. If a proximal 

segment has lower coverage than the distal segment (e.g. in the case of intron retention) then the 

RU is set to 0 for the proximal (e.g. intronic) segment. Otherwise,  

RU6 =
1
n
/

µ6,:
µ6'(,:

;

:1<

 

Where µk,s is the average reads/bp in each segment k in proximal to distal order in sample s, and 

n is the total number of samples.  

 

mountainClimberTest_diff (d, p, t, m): Test for differential usage of 5’ and 3’ ends in two 

conditions. Only consider TUs for which change points were called in both conditions (otherwise, 

the gene was either not expressed or was too noisy to cluster change points). TUs are ignored if: 

the distal segment is the same in both conditions and RU = 1 (no difference between conditions), 

mean distal segment coverage < d (default = 5) in all conditions, proximal coverage is < p in at 

least one condition, or coverage is increasing from proximal to distal. If two segments are 

consecutive in at least one condition, then that change point is tested for differential usage; 

otherwise, the RU is reported without testing. See Table 3.S1 for all scenarios. 

Given two conditions, a change point is considered differential if there is a significant 

difference in mean read counts of the distal segment. In order for the distal segments to be 

comparable, the distal segment coverage ds	in sample s is first scaled to the maximum proximal 

coverage ps across all samples. Formally, each ds is multiplied by ls: 

λ: =
max
:
p: + 1

p: + 1
 

Because the number of replicates per condition is typically small in a given experiment, a standard 

t-test is underpowered to detect a difference between two means. Instead, we use a data-driven 

estimation of expected variance across all tested distal segments. LOESS regression was used 

to predict CVc
2: 
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CVA3 = B
σA
µA
D
3
 

given the log2µc where µc and sc are the mean and standard deviation of ls ds in condition c 

respectively. As described in voom79, the normal distribution is appropriate to model read count 

data. Assuming a normal distribution and two conditions A and B, a p-value is then calculated by 

testing the probability of observing min(µG, µH) from distribution:  

NKmax(µG, µH) , argmax
NO

(µG, µH)P 

These p-values are corrected with the Benjamini-Hochberg (BH) procedure. Change points with 

BH-corrected p-value < t (default = 0.05) and |RU6,G − RU6,H| > m (default = 0.05) are considered 

significantly differential. 

If only a single sample is input, then mountainClimberTest_diff will label each 5’ and 3’ 

end as follows. The distal ends are labeled Distal or DistalOnly if there were or were not alternative 

ends, respectively. If strand could be inferred, then proximal ends are labeled alternative first exon 

(AFE) or alternative last exon (ALE) when segments are non-consecutive, and TandemTSS or 

TandemAPA when segments are consecutive. If strand could not be inferred, then proximal ends 

are either alternative terminal exon (ATE) or Tandem.  

 

Methods supporting the change point identification pipeline 

annotate_change_points(j): Annotate mountainClimberCP output with gene regions given an 

annotation file. If a change point is within j bp (default = 10) of an annotated TSS, poly(A) site, or 

exon-intron junction, then it is labeled TSS, POLYA, and JXN respectively; otherwise, it is given 

one of the other labels. Prioritization of annotation is as follows: JXN/TSS (overlapping both JXN 

and TSS) > JXN/POLYA > JXN > TSS > POLYA > CDS (coding exon) > 3UTR > 5UTR > NC 

(exon in non-coding gene) > INTRON > INTERGENIC (outside of annotated TUs). 

 



 60 

get_junction_counts(h, m, a): Given an input bam file, identify exon-exon junction reads that 

cover ≥ h bp in each exon (default = 8), and span introns ≥ m (default = 30) and ≤ a (default = 

500,000) bps long. 

 

merge_tus: Merge TUs that overlap across samples and merge those within the same gene 

annotation.  

 

Mapping pipeline 

There are two mapping pipeline options: (1) aligning to the genome and calling all de novo TUs 

followed by change point identification, or (2) skip genome alignment and align directly to the 

transcriptome. In both pipelines, RSEM 80 was used to assign the most likely location for multi-

mapped reads. While pipeline #1 will yield more (unannotated) TUs, pipeline #2 is significantly 

faster because there’s only one alignment instead of two, and the RSEM reference is only built 

once instead of once per biological condition. See Fig. 3.S1 for a stepwise summary of the two 

pipelines. MAQC was run with both mapping pipelines for comparison: pipeline #1 with STAR 

v2.5.2a 81 and GENCODE v25, and pipeline #2 with hisat2 v2.0.5 82 and Ensembl release 75, 

both aligned to hg19. Simulated RNA-Seq reads were aligned with pipeline #1 using hisat2 and 

mm10 with Ensembl release 84.  

 

Alignment to genome: For MAQC, STAR was run with the following parameters: --

outSAMunmapped Within --outFilterType BySJout --outSAMattributes NH HI AS NM MD --

outFilterMultimapNmax 200 --outFilterMismatchNmax 999 --outFilterMismatchNoverLmax 0.04 -

-alignIntronMin 20 --alignIntronMax 1000000 --alignMatesGapMax 1000000 --

alignSJoverhangMin 8 --alignSJDBoverhangMin 1 --sjdbScore 1 --runThreadN 8 --genomeLoad 

NoSharedMemory --outSAMtype BAM Unsorted --outSAMheaderHD @HD VN:1.4 SO:unsorted. 
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After alignment to the genome, bam files were converted to bedgraphs using bedtools 

genomecov, get_junction_counts, mountainClimberTU, and merge_tus (see above).  

 For simulations, hisat2 was run with the following parameters: --dta-cufflinks --mp 6,4 --

no-softclip --no-mixed --no-discordant --add-chrname -k 100.  

 

Prepare RSEM reference: The RSEM reference is prepared with rsem-prepare-reference from 

the gtf file output from merge_tus in pipeline #1 or from a gtf of annotated transcripts +/-10kb in 

pipeline #2. It is recommended to merge de novo TUs with an existing annotation so that the 

aligner can better identify splice sites, as the de novo TUs do not contain splice site information. 

 

Alignment to transcriptome: For MAQC alignment with pipeline #1, STAR was used with the 

following parameters to allow 200 multi-mapped reads and be compatible with RSEM: --

outSAMunmapped Within –outFilterType BySJout –outSAMattributes NH HI AS NM MD –

outFilterMultimapNmax 200 –outFilterMismatchNmax 999 –outFilterMismatchNoverLmax 0.04 –

alignIntronMin 20 –alignIntronMax 1000000 –alignMatesGapMax 1000000 –alignSJoverhangMin 

8 –alignSJDBoverhangMin 1 –sjdbScore 1 –runThreadN 8 –genomeLoad NoSharedMemory –

outSAMtype BAM Unsorted –quantMode TranscriptomeSAM –outSAMheaderHD @HD VN:1.4 

SO:unsorted.  

 For MAQC alignment with pipeline #2 and simulation alignment with pipeline #1, hisat2 

was used with the following parameters to allow 100 multi-mapped reads and be compatible with 

RSEM (i.e. force hisat2 not to report indels): --mp 6,4 --no-softclip --no-unal --no-mixed --no-

discordant --no-spliced-alignment --end-to-end --rdg 100000,100000 --rfg 100000,100000 -k 100.  
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RSEM: rsem-calculate-expression was run with arguments --paired-end --append-names --seed 

0 --estimate-rspd --sampling-for-bam --output-genome-bam, and the alignment with maximum 

posterior probability was kept for each multi-mapped read.  

 

Simulations 

We used Flux Simulator 83 with default parameters to simulate 100bp paired-end RNA-Seq of 

annotated TandemUTRs downloaded from the MISO website and derived from PolyA DB 84,85. 

TandemUTR transcript isoforms were simulated with 1, 2, or 3 change points with varying distal / 

proximal expression (Fig. 3.S2a,b). Fasta files were generated and reads were aligned using the 

mapping pipeline #1 with hisat2 as described above. Transcripts with at least 10 average reads 

per bp in exons were considered for precision and recall calculations. Predicted DistalPolyA and 

TandemAPA change points were considered for precision and recall calculations. To compare 

varying degrees of difficulty in identifying 3’ ends, we created equal sized bins by fold change of 

(proximal + 1) / (distal + 1) at true and predicted change points for recall and precision 

respectively. A predicted change point was a true positive if the closest true simulated change 

point was within 50bp. For recall, once a predicted change point was matched with a true change 

point, it could no longer be matched to another true change point. For precision, once a true 

change point was matched with a predicted change point, it could no longer be matched to another 

predicted change point. 

IsoSCM was run with default parameters. To calculate the fold change of (proximal + 1) / 

(distal + 1), we used the coverage reported in the coverage.gtf file, which represents the median 

read coverage of each segment. Predicted ‘3p_exon’ change points were considered for precision 

and recall calculations (‘5p_exon’ and ‘internal_exons’ were ignored). To assign true fold changes 

of annotated genes to IsoSCM’s predictions, we overlapped the predictions with the true 

TandemUTR 3’ ends +/-51bp.  
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MicroArray/Sequencing Quality Control (MAQC)  

Ambion Human Brain Reference RNA (HBRR) and Universal Human Reference RNA (UHRR) 

total RNA sequencing (RNA-Seq) data were downloaded from GEO accession GSE49712 86. 

PolyA-Seq sites were downloaded from the UCSC Genome Browser: MAQC UHR 1, UHR 2, 

Brain 1, Brain 2 64. Polyadenylation sites with at least 1 RPM were considered.  

RNA-Seq reads were mapped as described below, except junction reads were not used 

in mountainClimberTU due to many split reads spanning multiple genes for unknown reasons. 

Adapters were trimmed with cutadapt -a AGATCGGAAGAG -n 5 -m 35 -O 5 -e 0.2 -q 20 26. After 

calling TUs with mountainClimberTU and merging overlapping TUs across samples, change 

points were called with mountainClimberCP only in TUs with at most one annotated gene and at 

least 10 average reads per bp. Predicted 5’ and 3’ ends of multi-exon genes for which the strand 

could be inferred were interrogated for FANTOM CAT TSSs 63 and PolyA-Seq poly(A) sites within 

200bp on the same strand at the 5’ and 3’ ends respectively. If a prediction was close to multiple 

FANTOM CAT or PolyA-Seq sites, only the closest one was counted to avoid counting any 

predictions, FANTOM CAT, or PolyA-Seq sites more than once. Similar to the simulation analysis, 

we reported the precision binned by fold change at the predicted change points, with PolyA-Seq 

poly(A) sites or FANTOM CAT sites considered as true positives.  

 

3.4. Results 

3.4.1 A de novo approach for change point detection in RNA-Seq 

Our approach is based on a notion of measuring non-uniformity in RNA-Seq and finding positions 

where the degree of non-uniformity changes significantly. By measuring the non-uniformity, we 

are inherently robust to it when calling change points (Fig. 3.1 and Fig. 3.S1). This process is 
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comprised of three major steps: (1) identifying de novo TUs by finding all continuous regions with 

RNA-Seq reads in each sample with mountainClimberTU (Fig. 3.1a), (2) identifying change points 

in the entire TU in each sample without restricting to either 5’ or 3’ end with mountainClimberCP 

(Fig. 3.1b), and (3) combining replicates and testing for differential 5’ and 3’ end usage with 

mountainClimberTest (Fig. 3.1c) (Section 3.3 Methods).  

mountainClimberTU identifies de novo TUs by merging consecutive 1kb bins that meet 

specified RNA-Seq depth and breadth criteria (Section 3.3 Methods). By identifying TUs de novo, 

we are not limited by gene annotation, which may exclude TSSs or poly(A) sites outside of the 

gene annotation. Additionally, transcriptional read-through may be detected, depending on the 

RNA-Seq library type (for example in chromatin-associated RNA-Seq).  

To call change points while maintaining robustness to RNA-Seq non-uniformity, 

mountainClimberCP leverages the non-uniformity by calculating the Cumulative Read Sum (CRS) 

and finding positions where the CRS significantly deviates from the uniform distribution. The 

premise of this approach is similar to that of the classical CUSUM approach 87 in that it measures 

the cumulative sum of differences in read counts of neighboring base pairs, but differs in the 

following capacities: (1) it does not require any weights to be assigned to each base pair, (2) RNA-

Seq features including exon-exon junction reads are leveraged to optimize parameters, and (3) 

the change point detection approach differs. While change points are presented as elbows in the 

CRS as a function of position (Fig. 3.1b “1. Calculate CRS”), highly non-uniform RNA-Seq will not 

significantly deviate from the uniform distribution (diagonal line in Fig. 3.1b “1. Calculate CRS”). 

Since we expect to identify significant change points at exon-exon junctions, the parameters are 

optimized by maximizing the number of exon-exon junctions with predicted change points. 

Additionally, because this approach is inherently robust to RNA-Seq non-uniformity, it can be 

used in chromatin-associated RNA-Seq which is more non-uniform or “spiky” than poly(A)-

selected RNA-Seq 88 (see Chapter 5). 
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mountainClimberTest is comprised of three major steps: (1) cluster change points within 

and across any number of experimental conditions using DBSCAN, (2) calculate the relative 

usage (RU), a value between 0 and 1 indicating the usage of each change point at the 5’ and 3’ 

ends relative to the proximal-most segment, and (3) test for differential change point usage in two 

conditions. Because change points are identified in the entire TU, mountainClimber identifies 

differential 5’ and 3’ ends that other methods cannot capture, e.g. intronic APA and alternative 

first or last exons (Fig. 3.2g). 

 

3.4.2 mountainClimber performance evaluation 

To evaluate the performance of mountainClimber, we simulated known alternative 3’ ends 

(TandemUTRs downloaded from MISO and derived from PolyA DB) with Flux Simulator 83 with 

up to three change points per gene and with varying levels of distal vs. proximal 3’ end usage 

(Section 3.3 Methods; Fig. 3.S2a,b). As expected, recall and precision both increased with higher 

fold change at the 3’ end (Fig. 3.2a,b and Fig. 3.S2c,d). We chose to compare mountainClimber 

with IsoSCM 70 because it identifies both 5’ and 3’ ends while many other existing methods identify 

alternative 3’ ends only. While mountainClimber and IsoSCM obtained similar recall, 

mountainClimber outperformed IsoSCM in terms of precision. Upon manual investigation of some 

examples, this appears to be caused by IsoSCM predicting multiple 3’ ends very close together 

in the same TU. 

To further evaluate the performance of mountainClimber on real data, we analyzed RNA-

Seq from MAQC Universal Human Reference RNA and Ambion Human Brain Reference RNA 

with paired poly(A) sites experimentally identified with PolyA-Seq 64 (Section 3.3 Methods). 18,964 

total TUs were called, 13,977 (74%) of which were annotated and 10,513 (55%) of which had at 

most one gene annotation. From these 10,513, an average 49,610 change points per sample 
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were identified, 75% of which were exon-exon junctions (Table 3.S1). On average, we found 

2,565 TandemAPA and 776 TandemTSS cases per sample.  

mountainClimberCP achieved higher precision than IsoSCM (Fig. 3.2c,d). In the highest 

fold change bin, mountainClimberCP reached a maximum precision of 75% while IsoSCM 

reached 56%. This was especially apparent for 3’ ends with lower fold change, where 

mountainClimberCP and IsoSCM reached a maximum precision of 42% and 23% respectively. 

This maximum achieved precision is lower than what Shenker et al. reported (approximately 

80%), which may be due to the difference in bin definitions or the use of different MAQC datasets. 

Moreover, mountainClimberCP identified an average of 2.34 fold (2,259 vs. 964) more 3’ ends 

overlapping PolyA-Seq compared to IsoSCM (Table 3.S2). The precision of TandemAPA and 

DistalPolyA sites was highest in annotated poly(A) sites and 3’UTRs (Fig. 3.S2e). Similar to 

PolyA-Seq, the poly(A) signal motif A[A/T]TAAA was enriched at predicted 3’ ends with higher 

fold change (Fig. 3.S2f). Cases that were missed by mountainClimberCP may be due to 

differences in limitations of both RNA-Seq and PolyA-Seq. PolyA-Seq may detect smaller 

magnitude APA events that are undetectable in RNA-Seq. On the other hand, 

mountainClimberCP may have higher sensitivity in other cases such as regions with multi-

mapped reads, as PolyA-Seq only considered uniquely mapped reads. 

Analogous to PolyA-Seq at the 3’ end, we used FANTOM CAT 63 to evaluate 

mountainClimberCP predictions at the 5’ end (Section 3.3 Methods) and again found that it 

outperforms IsoSCM (Fig. 3.2e,f). Both methods had lower precision at the 5’ end compared to 

the 3’ end, which may be due to biases in RNA-Seq and CAGE. Considering that TSS regions 

are hard to predict given RNA-Seq alone, mountainClimberCP performs reasonably well.  

To test whether accuracy suffers by skipping the genome alignment step and aligning 

directly to the transcriptome (Fig. 3.S1), and to additionally compare aligners, we compared STAR 

with genome alignment to hisat2 with transcriptome alignment only. Evaluation of MAQC PolyA-
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Seq and FANTOM CAT TSS enrichment in hisat2 with transcriptome alignment showed no 

distinguishable difference compared to STAR with genome alignment, suggesting that 

mountainClimberCP does not suffer by excluding the genome alignment step for poly(A)-selected 

RNA-Seq (Fig. 3.S2g,h).  

Finally, mountainClimberTest was used to test for significant differential end usage across 

the two conditions (Section 3.3 Methods). 942 / 6,854 total ends met the criteria for testing: at 

least 5 average reads/bp in the distal segment in at least 1 condition, non-zero proximal coverage 

in all samples, and strictly decreasing average reads/bp from proximal to distal. 867 of these were 

tandem in at least one condition and tested for significant alternative end usage. 348 had BH-

corrected p-value < 0.05, and 246 of these additionally had an absolute relative usage (RU) 

difference > 0.05 (Fig. 3.2g). The top ATSS and APA examples were supported by the annotation, 

supporting the validity of our approach (Fig. 3.2h,i).  

 

3.5. Discussion 

Here, we presented mountainClimber, a novel de novo approach for identifying alternative 5’ and 

3’ ends from RNA-Seq. Unlike several existing approaches, it identifies change points anywhere 

in a transcription unit and identifies more than two change points67–69,71–73. Compared to another 

approach that identifies change points in the entire TU, IsoSCM70, mountainClimber achieved 

higher precision. Additionally, mountainClimberTest tests for significant differential change points 

across two groups of samples, while IsoSCM handles only one sample per group and 

recommends pooling bam files from replicate samples, thereby potentially diminishing useful 

signal. 

 One limitation of our approach as well as all other existing alternative 5’ and 3’ end 

identification approaches is that they focus on ATSS and APA but ignore alternative splicing. 

Many tools are built for alternative splicing analysis, but these do not identify ATSS or APA 84,89,90. 
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Recently, full-length isoform sequencing revealed that >60% of genes with multiple transcripts 

showed coupling between TSS, poly(A) sites, and splicing 91. In the future, it will be useful to build 

software that simultaneously detects alternative splicing, ATSS, and APA. While transcriptome 

assembly-based approaches such as Cufflinks and Scripture 92,93 can theoretically achieve this, 

methods specifically build for ATSS and APA identification typically outperform them in terms of 

ATSS and APA accuracy 70, suggesting that there is much room for improvement. 
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3.6. Figures 

 
Figure 3.1 | Schematic of the complete de novo change point identification pipeline. 
(a) The mountainClimberTU approach for calling de novo transcription units (TUs). Blue double-
headed arrows indicate 1kb bins in step #1, and ultimately TUs in step #3. (b) The 
mountainClimberCP approach for identifying change points in each TU in each sample. The first 
panel shows poly(A)-selected RNA-Seq reads per base pair in an example gene. Step #1 shows 
the cumulative read sum (CRS) distribution in black compared to the uniform distribution (diagonal 
line y = x) in grey. Step #2 shows the identification of elbows in the CRS distribution by calculating 
the distance from the CRS and weighted CRS (wCRS) to the diagonal line y = x in black and 
green respectively. Note that wCRS is needed to observe elbows corresponding to both exon-
intron junctions for each exon. Step #3 shows the final results after filtering, where red lines 
indicate change points identified from the RNA-Seq read distribution in black. (c) The 
mountainClimberTest approach for identifying differential 5’ and 3’ end usage for a toy example 
in conditions A & B with two replicates each. Step #1 shows the change points (orange asterisks) 
identified in each sample above the corresponding read distributions (one outlier in sample A was 
not clustered). Step #2 shows a cartoon example of relative usage (RU) calculation based on 
average reads/bp in each segment. Finally, step #3 is the test for significant differential 5’ and 3’ 
end usage. For more details, see Section 3.3 Methods and Fig. 3.S1.  
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Figure 3.2 | mountainClimber performance evaluation.  
(a) Recall of simulated 3’ ends stratified by the fold change of average reads/bp of proximal vs. 
distal segments at the true simulated change points (CPs). Point size indicates the number of 
predicted 3’ ends. (b) Precision of simulated 3’ ends stratified by the fold change of average 
reads/bp of proximal vs. distal segments at the predicted 3’ ends. Point size indicates the number 
of predicted 3’ ends. (c, d) Overlap of 3’ end predictions from RNA-Seq with PolyA-Seq for 
mountainClimberCP (c) and IsoSCM (d). The x-axis indicates the positional difference between 
predicted and PolyA-Seq sites, so positive (negative) values mean the prediction is downstream 
(upstream) of the PolyA-Seq site. The y-axis indicates the total predictions with PolyA-Seq within 
+/-20bp as a fraction of the total predictions within 200bp for each bin. The inset indicates the 
minimum fold change for each bin and the number of change points in each bin. (e, f) Overlap of 
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5’ end predictions from RNA-Seq with FANTOM CAT TSSs for mountainClimberCP (e) and 
IsoSCM (f), similar to (c,d). (g) Volcano plot of mountainClimberTest BH-corrected p-value vs. 
relative usage (RU) difference in brain vs. UHR for 867 tandem ends. (h,i) Top examples of ATSS 
and APA by BH-corrected p-value. Genomic coordinates in the top panel are reported on 
megabase scale. The top five read distributions are UHR and the bottom five are Brain. Black 
dashed vertical lines indicate change points identified.(h) ATSS in Scg2 (BH-corrected p = 2.61e-
10, RU difference = 0.23), and (i) APA in Arpp19 (BH-corrected p-value = 4.57e-85; RU difference 
= 0.46). 
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3.7. Supplementary Figures 

 
Figure 3.S1 | Mapping and change point identification pipeline. 
(a) Approach with genome alignment (used for MAQC in Chapter 3). This approach is slower but 
identifies more novel transcription units. (b) Approach without genome alignment (used for GTEx 
in Chapter 4). This approach is faster and identifies change points in annotated genes. 
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Figure 3.S2 | mountainClimberCP performance evaluation. 
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(a) Schematic of the simulation approach. “Distal / proximal” indicates the expression of the distal 
segment relative to the proximal. (b) Examples of simulated change points (CPs) for chromatin-
associated RNA-Seq (carna) and poly(A)-selected RNA-Seq (polya). (c, d) Recall (c) and 
precision (d) of carna and polya simulations stratified by whether the true 3’ end was a tandem 
proximal change point (cp) or distal end (distal). (e) Overlap of 3’ end predictions from RNA-Seq 
with PolyA-Seq as in Fig. 3.2c, stratified by change point label (rows) and overlap with GENCODE 
v25 (columns). Inset text indicates the total number of predicted change points. GENCODE 
regions with less than 5 DistalPolyA or TandemAPA were excluded (these included JXN/POLYA 
and TSS). (f) Similar to Fig 3.2c, but plotting poly(A) signal (PAS) motif overlap (A[A/T]TAAA). 
(g,h) PolyA-Seq (g) and FANTOM CAT TSS (h) overlap using hisat2 and Ensembl 75 alignment 
directly to the transcriptome (Fig. 3.S1b). 
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3.8. Supplementary Tables 

Table 3.S1 | mountainClimberTest_diff cases given two conditions, A and B.  

Distal A Proximal 
A Distal B Proximal 

B 
Segments 

Consecutive Description 

X X X X X Test if min distal ≥ d in A or B & 
proximal ≥ p in both A & B. 

X X X X  Output without testing. 

X X X  X Test if min distal ≥ d in A or B & 
proximal ≥ p in both A & B. 

X X X   Output without testing. 

X  X X X Test if min distal ≥ d in A or B & 
proximal ≥ p in both A & B. 

X  X X  Output without testing. 

X X   X Test if min distal ≥ d in A or B & 
proximal ≥ p in both A & B. 

X X    
Output A only if any CPs were called in 
this gene in B (otherwise, gene not 
expressed in B à do not output). 

X     
Output A only if any CPs were called in 
this gene in B (otherwise, gene not 
expressed in B à do not output). 

  X X X Test if min distal ≥ d in A or B & 
proximal ≥ p in both A & B. 

  X X  
Output B only if any CPs were called in 
this gene in A (otherwise, gene not 
expressed in A à do not output). 

  X   
Output B only if any CPs were called in 
this gene in A (otherwise, gene not 
expressed in A à do not output). 

X  X   No difference. Do no output. 
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Table 3.S2 | MAQC mountainClimberCP total change points. 
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Table 3.S3 | MAQC mountainClimberCP vs. IsoSCM. 
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Chapter 4: The landscape of alternative transcription start and 

polyadenylation sites in human tissues 

4.1. Abstract 

As described in Section 3.1, alternative transcription start sites (ATSS) and alternative 

polyadenylation (APA) affect the majority of mammalian genes, often in a tissue-specific manner. 

However, most prior studies of tissue-specific APA were limited to annotated poly(A) sites. 

Additionally, tissue-specific ATSS is less well studied compared to APA. We discovered ATSS 

and APA in 2,342 GTEx samples (36 tissues, 215 individuals) with mountainClimber, constituting 

the largest study of ATSS and APA to our knowledge. 70% and 56% of tested transcription units 

(TUs) exhibited differential APA and ATSS respectively across tissues. Globally, 3’UTRs were 

longest in the brain and shortest in blood and testis, consistent with previous studies. On the other 

hand, 5’UTRs were longest in testis and shortest in skeletal muscle, which was not previously 

reported. Interestingly, we found that the cerebellum was distinct from other brain regions in both 

5’ and 3’ ends. Overall, this study reports the most comprehensive characterization of 5’ and 3’ 

ends across human tissues to date.  

 

4.2. Introduction 

APA and ATSS affect the majority of genes in mammals. APA often results in changes in mRNA 

stability, translation, nuclear export, and localization (reviewed in 9,10). For example, shorter 

3’UTRs were observed in tumors compared to normal cells and were associated with more stable 

mRNA 69. APA can also affect membrane protein localization; for example, the long 3’UTR isoform 

of CD47 localizes to the cell surface while the shorter 3’UTR isoform localizes to the endoplasmic 

reticulum 94. In terms of nuclear export, shorter 3’UTRs were observed in the cytoplasmic 
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compared to the nucleoplasmic cell fraction95. While APA often occurs in the last exon, termed 

tandem APA, it was recently shown that there are also many intronic APA events, especially in 

blood-derived immune cells 96. This was reported to often remove significant portions of the coding 

region leading to either truncated proteins or non-coding transcripts. While tissue-specific APA 

isoforms in human were previously observed in RNA-Seq, these studies were limited by restricting 

to annotated poly(A) sites 97,98. Other smaller scale studies of tissue-specific APA employed RNA 

sequencing protocols to specifically identify poly(A) sites 64,66. 

 While APA often affects mRNA levels, localization, and translation, ATSS most often 

results in translational changes. Various sequence and structural motifs in the 5’UTR can affect 

translation including upstream open reading frames, internal ribosomal entry sites, as well as 

binding sites for long non-coding RNAs and RNA binding proteins 7,60. Additionally, upstream TSS 

usage often inhibits translation of the canonical translation start site. For example, differential 

ATSS isoform expression drives protein level changes at different stages of meiosis 99. In this 

way, different transcription factors can orchestrate usage of different TSSs to control protein levels 

without necessarily changing mRNA levels.  

 Here, we conducted the largest study of tissue-specific ATSS and APA to our knowledge 

using GTEx RNA-Seq 12 and the mountainClimber pipeline described in Section 3.3. Our findings 

expand the repertoire of tissue-specific APA and ATSS sites in humans.  

 

4.3. Methods 

GTEx sample selection  

GTEx 100 RNA-Seq was downloaded through dbGaP under accession phs000424.v6.p1, except 

for metadata which was downloaded under accessions phs000424.v7.pht002742.v7.p2.c1 

(subject phenotypes) and phs000424.v7.pht002743.v7.p2.c1 (sample attributes). A subset of 

GTEx samples were chosen as follows to maximize the number of tissues available per donor: 
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individuals with at least 20 tissues (excluding Cells), tissues with less than 20 samples, excluding 

esophagus, artery, skin sun-exposed, nerve – tibial, and minor salivary gland. Up to 100 

individuals from each tissue were chosen, excluding those with different numbers of reads in 

read1 and read2 or too few reads, and those tissues from the same individual that were released 

multiple times (the most recent release was kept). Those with read length other than 76bp, median 

transcript integrity (TIN) score < 70 (calculated using tin.py from RSeQC101), and mapping rate < 

50% were retained, resulting in 2,342 samples from 36 tissues and 215 individuals (Table 4.S1).  

 

Mapping pipeline and change point identification 

Adapter trimming and quality check: Adapters were trimmed with cutadapt 26 -m 35 -n 3 -a 

AGATCGGAAGAGC -a CAAGCAGAAGACGGCATACGAG -g 

AGATCGGAAGAGCACACGTCTGAACTCCAGTCAC -A AGATCGGAAGAGC -A 

CAAGCAGAAGACGGCATACGAG -G AGATCGGAAGAGCACACGTCTGAACTCCAGTCAC, 

adding the following parameters if FastQC returned “WARN” or “FAIL” for respective categories: 

adapter content, per-base sequence quality, -q 20,20; sequence content, --trim-n 

(http://www.bioinformatics.babraham.ac.uk/projects/fastqc/).  

 

Change point identification: The mountainClimber mapping pipeline #2 was used (Fig. 3.S1) 

with hisat2 v2.0.582 and Ensembl release 75 aligned to hg19 standard chromosomes.  

 

Overlap between Ensembl and mountainClimberTU TUs 

Ensembl TUs were compared with mountainClimberTU TUs to assess whether the total number 

of mountainClimberTU TUs containing a single annotated gene was reasonable (Fig. 4.S1a). 

Because the GTEx RNA-Seq is non-strand-specific, we first merged all overlapping genes on 

either strand, resulting in 34,008 total Ensembl TUs. Next, mountainClimberTU TUs were 
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stratified based on whether they overlapped one or multiple Ensembl TUs. Those overlapping 

one Ensembl TU were further stratified by whether the Ensembl TU contained one or multiple 

genes. The distance between Ensembl TUs within the same mountainClimberTU TU are shown 

in Fig. 4.S1b. Manual inspection of some examples of non-overlapping Ensembl TUs in the same 

mountainClimberTU TU revealed high levels of RNA-Seq reads between Ensembl TUs, 

suggesting that the genes could not be confidently separated into separate TUs based on RNA-

Seq. 

 

GTEx weighted mean extension length (WMEL) calculation & downstream analysis 

Relative usage calculation for each sample: mountainClimberTest_ru was modified to 

calculate relative usage (RU) of individual change points rather than change points clustered 

across replicates. Because only one sample was considered, there were by definition no 

condition-specific internal change points, so this step was ignored (see Section 3.3 for more 

details). Finally, mountainClimberTest_diff was used on each sample to label ends as 

TandemTSS, TandemAPA, Distal, or ATE (alternative terminal exon).  

 

5’ and 3’ end grouping and weighted mean length: After labeling the 5’ and 3’ end segments 

as Tandem, Distal, or ATE (alternative terminal exon), TUs were separated into four categories 

for 5’ and 3’ ends separately: [1] alternative terminal exon (ATE) within a single sample, [2] ATE 

across different samples, [3] the last segment is disrupted by an annotated intron, [4] tandem and 

distal UTRs (Fig. 4.S3a). To check for ATE within and across samples, segments were clustered 

across all 2,342 samples with bedtools cluster. If multiple clusters were identified and any of the 

clusters contained ≥ 10 members, then the cluster with the maximum number of members was 

considered for grouping into either group 3 or 4. For group 3, only intronic regions with no exon 

overlap in any transcript isoform were considered for overlap with TUs. If the cumulative overlap 
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with introns was at most 10bp or the last segment was entirely contained within an intron, then 

the segment was assigned to group #4. Otherwise, the end was considered disrupted by an intron 

and placed in group #3.  

For each end segment in groups 2, 3, and 4, the weighted mean length (WML) was defined 

as the weighted mean of each segment length, weighted by each segment’s RU. Finally, the 

weighted mean extension length (WMEL) was calculated by subtracting the minimum WML 

across all 2,342 samples from each WML (Fig. 4.S2b). 

 

Covariate correction: 14 covariates selected in a previous study to correct gene expression 

were used to correct WMEL 102: AGE, HGHT, WGHT, BMI, ETHNCTY, SEX, MHCANCERNM, 

SMRIN, SMATSSCR, SMCAT, SMCENTER, TRTPTREF, SMNABTCH, COHORT. We used the 

lm function in R (wmel_lm = lm(wmel ~ covariates)) and residuals(wmel_lm) as the corrected 

values.  

 

Analysis of the contribution of tissue and individual to WMEL variation: To assess the 

contribution of either tissue or individual to the observed variation in WMEL, we adopted an 

approach similar to 103. Briefly, a linear mixed model was used to model log2(WMEL) with tissue 

and subject modeled as random effects, and AGE, ETHNCTY and SEX as fixed effects. The lmer 

function from the lme4 package in R 104 as follows: lmer(log2(WMEL) ~ (1|tissue) + (1|subject) + 

AGE + ETHNCTY + SEX). To calculate the contribution of tissue and subject, we divided their 

REML-estimated variance by the sum of the estimated variance of tissue + individual + residual.  

 

GTEx tissue specificity analysis 

WMEL variation per TU across tissues: To identify the subset of TUs with varying WMEL across 

tissues, we tested for differential log2(WMEL) using the R pairwise.t.test() function across all pairs 
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of tissues for each 5’ and 3’ end. A maximum Bonferroni-adjusted p-value of 0.01 was required, 

resulting in 301 and 321 total TUs for 5’ and 3’ ends respectively. Tissue-wise correlation of the 

301 5’ and 321 3’ end lengths was conducted using the mean WMEL across individuals in each 

tissue. R2 was calculated with R’s cor(method = “spearman”, use = “complete.obs”) ** 2. To 

visualize global tissue-wise WMEL mean and variance, we took the mean and variance of WMEL 

across individuals for all TUs in each tissue. TU complexity was defined as the mean number of 

change points with RU ≥ 10% across individuals in each tissue. 

 

mountainClimberTest: To identify significantly differential change points,  mountainClimberTest 

was run for all pairwise tissue comparisons. For chrY, only males were clustered. Default 

parameters were used for mountainClimberTest_cluster, except the minimum number of points 

required for DBSCAN to call a cluster, -n, was set to 50% of the number of individuals in that 

tissue.  

 

Gene ontology analysis 

Gene ontology (GO) analysis was performed controlling for gene length and GC content as 

described previously 57. The union of all genes that were differential in each of the five tissues 

with the most differential genes (Whole-Blood, Testis, Muscle-Skeletal, Brain-Cerebellum, and 

Brain-Cerebellar-Hemisphere) compared to all 35 other tissues were combined for GO analyses 

at the 5’ and 3’ ends. Background gene lists were chosen from the 516 and 420 genes with 

ubiquitous expression and tandem UTRs respectively. Empirical p-values were corrected with the 

Benjamini-Hochberg procedure.  
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4.4. Results 

4.4.1. Identification of alternative 5’ and 3’ ends in human tissues 

To investigate ATSS and APA in humans, we analyzed 2,342 samples from 36 tissues and 215 

individuals from GTEx 100 after excluding samples with low mapping rate and median TIN scores 

(Section 4.3 Methods and Table 4.S1). To align thousands of samples in a reasonable amount of 

time and focus on analyzing alternative 5’ and 3’ ends of annotated genes, we used mapping 

pipeline #2 described in Section 3.3.  

30,442 total TUs were identified over all GTEx samples. 21,231 overlapped at most one 

gene annotation. The remaining 9,211 TUs contained more than one gene annotation, most often 

because they either overlap in the Ensembl annotation (Fig. 4.S1a) or were in close proximity and 

joined due to high RNA-Seq levels (Fig. 4.S1b). Of the 21,231 with at most one gene annotation, 

12,720 (7,367 annotated) were at least 1kb long and eligible for calling change points with 

mountainClimber. Although we were only able to analyze ATSS and APA in 7,367 annotated 

genes which may be lower than expected, this is mainly due to closely spaced or overlapping 

genes and is not a reflection of our method’s sensitivity.  

Out of 12,720 total TUs, 11,993 were expressed highly enough to call change points and 

9,283 had at least three segments in order to calculate RU of 5’ and 3’ ends (Section 3.3 

Methods). Overall, DistalPolyA and TandemAPA predictions most often overlapped annotated 

3’UTRs and DistalPolyA sites, while DistalTSS and TandemTSS predictions most often 

overlapped annotated DistalTSS and 5’UTRs, as expected (Fig. 4.S2a,b). DistalTSS and 

DistalPolyA were often predicted within 10bp of an annotated TSS and poly(A) sites respectively, 

but many were within annotated UTRs or intergenic (Fig. 4.S2c) and may indicate ATSS within 

closely spaced promoters105 or 3’ transcriptional readthrough due to incomplete selection of 

polyadenylated RNA. Many TUs utilized TandemAPA and TandemTSS as well, primarily in 
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3’UTRs and 5’UTRs respectively. Additionally, some poly(A) sites and TSSs were in coding exons 

and introns, which has been reported but is rarely observed 9,10,96. Overall, most TUs utilize one 

TSS, but many use multiple APA sites (Fig. 4.1a).  

 

4.4.2. Tissue type drives the observed variation in 5’ and 3’ end length 

To systematically compare 5’ and 3’ ends across all samples, we summarized the change point 

information in each tandem 5’ and 3’ end in each sample by calculating the weighted mean 

extension length (WMEL), weighting by the relative usage (RU) in each sample (Section 4.3 

Methods and Fig. 4.S3a,b). It should be noted that other methods that require two conditions 

defined a priori to identify APA, such as DaPars 69, would not support this type of single-sample 

analysis. Because the WMEL is not interpretable in ATE ends, 5’ and 3’ ends were separated into 

4 groups based on their ATE status across all 2,342 samples: [1] ATE within a single sample, [2] 

ATE in different samples, [3] the last segment overlaps an annotated intron, [4] tandem and distal 

ends (Section 4.3 Methods and Fig. 4.S3a,b,c). Most TUs were in group #4 in the vast majority of 

samples (Fig. 4.1b, Fig. 4.S3d), consistent with previous observations (reviewed in 9,10). In total, 

4,655 and 4,731 TUs were in group #4 for the 5’ and 3’ UTRs respectively. Interestingly, there are 

more ATE across samples at the 5’ end than the 3’ end, suggesting that ATSS influences exon 

inclusion more often than APA (Fig. 4.1b and Fig. 4.S3e). Because group #4 was most prevalent 

and WMEL is easily interpretable in this case, we focused on tandem and distal ends for the 

remaining analysis.  

 To first check whether variation in WMEL is driven by tissue or individual, we used a linear 

mixed model similar to the approach used in 103. We focused this analysis on ubiquitously 

expressed TUs in group #4, as it was previously shown that APA occurs more often in ubiquitously 

expressed genes than in tissue-specifically expressed genes 66. Ubiquitously expressed TUs 

(group #4 in ≥ 90% of samples) with strand successfully inferred were considered, resulting in 
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420 TUs at the 5’ end and 516 at the 3’ end. Overall, tissue was the driver of WMEL variation for 

both 5’ and 3’ ends for the vast majority of TUs (Fig. 4.1c,d), affirming previous observations that 

APA and ATSS are tissue-specific 9,106. Interestingly, subject was the driver for a small subset of 

genes including HLA-C, which is known to contain many polymorphisms.  

Consistent with the linear modeling results, clustering of WMEL in ubiquitously expressed 

TUs showed primary clustering by tissue for both 5’ and 3’ ends (Fig. 4.S4a,b). Brain, Heart, 

Muscle-Skeletal, Whole-Blood, and Testis have especially tissue-specific 5’ and 3’ end lengths, 

while other tissues have more similar 5’ and 3’ WMELs. To exclude the possibility that covariates 

such as age, sex, ethnicity, batch, and sample quality contribute to these patterns, we regressed 

out 14 covariates and found that samples still largely clustered the same way (Fig. 4.S4c,d and 

Section 4.3 Methods). Because covariate regression did not appreciably change the clustering 

pattern, and 5’ and 3’ end lengths are not interpretable after covariate correction, all downstream 

analyses were conducted without regressing out covariates.  

 

4.4.3. Global patterns of 5’ and 3’ end lengths across tissues 

Given that tissue specificity is driving the observed variation, we sought to identify tissue-specific 

patterns of 5’ and 3’ WMEL. On a global scale, it was previously shown that 3’UTRs are shorter 

in cancer, proliferating cells, testis, blood, ovaries, placenta, and early developmental stages, 

while longer 3’UTRs are utilized in neuronal cells and in later developmental stages 10,69. 

Consistent with these observations, Brain samples were longest, and Testis and Whole-Blood 

3’UTRs were among the shortest (Fig. 4.2a). Additionally, we make several novel observations. 

First, Brain-Cerebellum and Brain-Cerebellar-Hemisphere 3’ ends were the longest among all 

tissues. Second, although Testis had among the shortest 3’ ends, it had the longest 5’ ends (Fig. 

4.2b). Third, Brain samples had the most variable 5’ and 3’ lengths across individuals (Fig. 

4.S5a,b). Neither median TIN nor RIN scores correlated with the global trends in 5’ and 3’ lengths 
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across tissues, suggesting that the observed differences across tissues are biological rather than 

technical artifact (Fig. 4.S5c,d).  

Because mountainClimberCP identifies change points in single samples, the degree of 5’ 

and 3’ complexity in an individual sample can be interrogated. Complexity was defined as the 

average number of 5’ or 3’ ends per TU with at least 10% relative usage across individuals in 

each tissue. Across all tissues, the 3’ end was more complex than the 5’ end (Fig. 4.S5e,f). Testis 

and cerebellum had the most complex 5’ ends. Interestingly, genes with an average of 1.5+ 5’ 

ends in Testis and Brain-Cerebellum were enriched for similar GO terms, including ubiquitin 

protein ligase, intracellular protein transport, and GTPase-related gene sets (Table S4.2). On the 

other hand, protein dephosphorylation was specific to Brain-Cerebellum, while transcription- and 

splicing-related gene sets were specific to Testis. Whole-Blood had the most complex 3’ ends, 

and genes with 2+ change points were enriched for proliferation and viral-related GO terms (Table 

S4.3). Because the data is bulk RNA-Seq, it should be noted that 5’ and 3’ end complexity likely 

reflects the cell type heterogeneity in each tissue.  

After identifying global patterns of 5’ and 3’ end length differences, we next aimed to 

compare TU lengths across tissues. We restricted our analysis to 301 and 321 ubiquitously 

expressed TUs with highly variable lengths across tissues in the 5’ and 3’ ends respectively 

(Section 4.3 Methods). Strikingly, the majority of TU’s with variable 5’ ends had significantly 

different lengths in testis compared to other tissues (Fig. 4.S6a), while five tissues stood out at 

the 3’ end: Whole-Blood, Muscle-Skeletal, Testis, Brain-Cerebellum, and Brain-Cerebellar-

Hemisphere (Fig. 4.S6b). Still, there were many TUs that had different lengths in only a small 

number of pairwise tissue comparisons (Fig. 4.S6c,d). 

WMEL correlation of highly variable 5’ and 3’ ends across tissues recapitulated the 

findings that testis stands out at the 5’ end, and the five tissues mentioned above stood out at the 

3’ end (Section 5.3 Methods and Fig. 4.2c,d). Interestingly, brain regions clustered together, with 
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the exception of cerebellar regions, in both 5’ and 3’ ends. The cerebellum was also distinct from 

other brain regions in previous GTEx studies of RNA editing 107 and gene expression 103. On the 

other hand, the patterns of tissue similarity in the 5’ and 3’ ends differ in some tissues such as 

Testis, which stands alone at the 5’ end but clusters with Muscle-Skeletal and Whole-Blood at the 

3’ end. Additionally, Prostate and Thyroid cluster together at the 5’ end but not at the 3’ end. 

These results suggest that some tissues have similar transcriptional mechanisms (reflected by 

their 5’ end similarity) and simultaneously different post-transcriptional control mechanisms 

(reflected by their 3’ end dissimilarity).  

 

4.4.4. Alternative transcription start sites and polyadenylation sites across tissues 

Since there are tissue-specific patterns of 5’ and 3’ end length, we next used 

mountainClimberTest to identify significantly differential ATSS and APA sites in all pairwise 

tissues (Section 4.3 Methods). To focus on events driven by tissue specificity, change points were 

required to be reproducible (i.e. clustered by mountainClimberTest) in at least 50% of individuals. 

On average, change points were reproducible in at least 50% of individuals in 1,420 / 2,597 (55%) 

total TUs in each pairwise comparison. This suggests that in addition to tissue-specific ATSS and 

APA, there is a substantial amount of individual variability. For the purpose of this study, we 

focused on tissue-specific events.  

In a given pairwise tissue comparison, up to 266 differential change points were identified 

(Fig. 4.S7a,b and Fig. 4.3a,b). Of these TUs, 1,707 contained at least 3 segments and were tested 

for differential change points, corresponding to 1,069 and 618 tested APA and ATSS events 

respectively. 745 / 1,069 (70%) and 347 / 618 (56%) of TUs had significantly differential APA and 

ATSS respectively (BH-corrected p-value ≤ 0.05 and absolute RU difference ≥ 0.05), consistent 
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with the previous observations that 70% of mammalian genes utilize APA and 40-50% utilize 

ATSS 9,10,60,62,108.  

 To characterize ATSS and APA sites, we focused on the five main tissues of interest 

identified previously: Brain-Cerebellar-Hemisphere, Brain-Cerebellum, Muscle-Skeletal, Testis, 

and Whole-Blood. Most of the change points identified in these tissues vs. all 35 other tissues 

were tandem change points (Fig. 4.S7c). Significantly differential tandem change points were 

most often APA events in 3’UTRs, with the exception of Testis which additionally had many 

differential ATSS change points (Fig. 4.3c and Fig. 4.S7d). APA in Samd4a illustrates a typical 

example of APA in a 3’UTR, where an annotated proximal poly(A) site is utilized in Testis, while 

the distal poly(A) site is utilized in Heart-Atrial-Appendage (Fig. 4.3d). A typical ATSS example is 

illustrated by Cpne5 in Brain-Cortex vs. Heart-Atrial-Appendage (Fig. 4.3e). Both of these 

examples are known events annotated in Ensembl, supporting the validity of our approach.  

Recently, intronic polyadenylation was reported to be more widespread than previously 

appreciated 96, so the ability to identify it from RNA-seq is an important advantage our approach 

has compared to other approaches. A minority of significantly differential tandem change points 

overlapped annotated introns (Fig. 4.S7e). Because this RNA-Seq is derived from bulk tissue, 

intronic APA in more distinct cell types within a tissue may not be detectable. Still, some examples 

of significant tissue-specific APA were detectable, such as Spdl1 in Brain-Frontal-Cortex-BA9 vs. 

Brain-Spinal-cord-cervical-c-1 (Fig. 4.3g). While both tissues express the intronic APA isoform, it 

is the primary expressed isoform in Brain-Spinal-cord-cervical-c-1, while Brain-Frontal-Cortex-

BA9 additionally expresses the isoform skipping this exon.  

Another advantage of our approach is the ability to identify more than two APA sites. Out 

of 67,789 total 5’ and 3’ ends with significantly differential change points in union across all 

pairwise tissue comparisons, 4,435 (7%) had two significantly differential change points and 88 

(0.1%) had 3 significantly differential change points (illustrated for the 5 tissues of interest in Fig. 
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4.S7f). Ube2j1 is one example with three differential change points, where the distal poly(A) sites 

are preferentially used in Breast-Mammary-Tissue while the proximal-most poly(A) site is 

preferred in Testis (Fig. 4.3f).  

To test whether APA or ATSS affects biological functions, we performed Gene Ontology 

(GO) analysis on genes with APA or ATSS. APA- and ATSS-containing genes were defined as 

those with significantly differential WMEL by t-test in a pairwise tissue comparison. With this 

definition, as opposed to a mountainClimberTest-based definition, gene sets could be grouped 

by whether their WMEL was longer or shorter. The five tissues with the most differential WMELs 

described above were considered (Fig. 4.S6a,b, Table S4.5-7, and Sections 4.3 Methods). 

Membrane-related genes had shorter 3’ ends in Muscle-Skeletal compared to other tissues (Table 

S4.6). Recently, it was shown that the 3’UTR can affect the localization of membrane proteins, 

e.g. CD47 from the endoplasmic reticulum membrane to the cell membrane 94. Thus, it is possible 

that genes with shorter 3’ ends in skeletal muscle have different cellular localization compared to 

other tissues. Nucleotide-excision repair was also enriched in genes with longer 5’ ends in testis, 

which may be related to DNA damage repair in spermatogenesis, where reactive oxygen species, 

sperm chromatin packaging, and apoptosis were proposed to contribute to infertility (reviewed in 

109). Transcription-related terms were enriched for genes that had shorter 3’ ends and longer 5’ 

ends in Testis compared to other tissues (Tables 4.S6,S7). This suggests that 5’ and 3’ end usage 

may be correlated for subsets of genes. 

 

4.5. Discussion 

Here, we applied mountainClimber, a novel de novo approach for identifying alternative 5’ and 3’ 

ends from RNA-Seq, to 2,342 human tissue samples from the GTEx consortium. 56% and 70% 

of tested TUs were regulated by ATSS and APA respectively, consistent with previous reports 

that 50% and 70% of mammalian genes are regulated by ATSS and APA 9,10,62. Consistent with 
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our findings, ATSS and APA were recently shown to drive isoform differences across human 

tissues 98. The study presented here enhances these findings through application of a novel 

approach, mountainClimber, and novel observations summarized below.  

Most strikingly, Testis, Brain-Cerebellum, Brain-Cerebellar-Hemisphere, Muscle-Skeletal, 

and Whole-Blood had significantly different 3’ ends compared to all other tissues. This suggests 

that alternative 3’ ends are acting on different sets of genes to contribute to tissue specificity. This 

notion was supported by GO analysis, which revealed different gene sets enriched in different 

tissues.  

On the other hand, Testis had the most distinct 5’ ends compared to all other tissues. In 

contrast to APA, which has been extensively studied, ATSS identification in RNA-Seq is less well 

studied. This may be due to the difficulty in change point detection at 5’ ends in RNA-Seq, which 

mountainClimberCP improves (Fig. 3.2e,f). In particular, Testis’ distinction from all other tissues 

is a phenomenon that was not previously appreciated. Interestingly, GO analysis of genes with 

different lengths in testis compared to other tissues revealed similar gene sets enriched at both 

5’ and 3’ ends, suggesting some level of coordination between 5’ and 3’ ends in testis. While 

coordination among 5’ and 3’ ends was reported in the Drosophila nervous system 110 and MCF-

7 breast cancer cells 91, it was not previously reported in human testis. As APA often affects 

stability and localization of RNA while ATSS often affects translation, this coordination may have 

a significant impact on gene regulation and will be interesting to pursue in the future.  

Additionally, some tissues exhibited similar 5’ end lengths and simultaneously dissimilar 

3’ end lengths, suggesting that some tissues utilize similar transcriptional mechanisms and 

simultaneously different post-transcriptional control mechanisms. Similar transcriptional 

mechanisms may possibly be driven by similar transcription factor expression while dissimilar 3’ 

processing may be driven by differential expression of cleavage and polyadenylation factors or 

differential stability of alternative 3’ isoforms. 
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In this study, tissue type drove the observed variation in 5’ and 3’ end length in ubiquitously 

expressed genes. Still, individual variation is a significant factor. This was apparent in 

mountainClimberTest analysis, where requiring that the change point was observed in 50% of 

individuals led to exclusion of 55% of TUs. While the scope of this study includes tissue specificity, 

it will be interesting to investigate individual variability in APA and ATSS in the future. 
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4.6. Figures 

 

 
Figure 4.1 | Identification of alternative 5’ and 3’ ends in human tissues.  
(a) Proportion of each type of change point with maximum relative usage (distal, alternative 
terminal exon (ATE), or tandem) at each end. (b) Total genes summed over all samples in each 
of the 4 categories (Section 4.3 Methods and Fig. 4.S3). (c, d) Contribution of tissue and individual 
to length variation for 5’ ends (c) and 3’ ends (d) in ubiquitously expressed TUs with tandem ends. 
The numbers in the axes labels indicate the number of genes for which the tissue explained more 
variation than the individual (y-axis) or vice versa (x-axis).  
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Figure 4.2 | Global trends of tandem 5’ and 3’ end lengths across human tissues.  
(a) Mean weighted mean extension length (WMEL) across all subjects per TU and all TUs per 
tissue for 2,274 3’ ends that were tandem in ≥ 12 tissues and ≥ 71 subjects. Color indicates -
log10(KS test p-value) (grey indicates p >= 0.05) of mean WMELs of each tissue vs. Brain-
Cerebellar-Hemisphere. (b) Similar to (a), but for 2,204 5’ ends. Top panel, KS test p-value of 
each tissue vs. Testis. (c, d) Hierarchical clustering of Spearman correlation r2 of WMEL for 321 
genes with highly variable 3’ WMELs (c) and 301 highly variable 5’ WMELs (d).   
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Figure 4.3 | Differential ATSS and APA sites across human tissues. 
(a,b) Total significantly differential change points identified by mountainClimberTest in each 
pairwise comparison in the 3’ (a) and 5’ (b) ends. (c) Volcano plot of mountainClimberTest_diff 
results where the x-axis indicates RU difference in tissue1 (the tissue of interest indicated in each 
panel) vs. tissue2 (all 35 other tissues). (d-g) Examples of alternative 5’ and 3’ ends. Each read 
coverage line indicates one individual, and change points are indicated by black dashed lines. (d) 
APA in Samd4a in Testis vs. Heart-Atrial-Appendage (p = 2e-314, RU difference = -0.51). (e) 
ATSS in Cpne5 in Brain-Cortex vs. Heart-Atrial-Appendage (p = 7.49e-236, RU difference = 0.59). 
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(f) Three APA change points in Ube2j1 in Breast-Mammary-Tissue vs. Testis. (g) Intronic APA in 
Spdl1 in Brain-Frontal-Cortex-BA9 vs. Brain-Spinal-cord-cervical-c-1 (p = 4.72e-43, RU difference 
= -0.39).  
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4.7. Supplementary Figures 

 
Figure 4.S1 | Overlap between mountainClimberTU and Ensembl transcription units. 
(a) Flow chart indicating the overlap of Ensembl TUs with mountainClimberTU TUs (Section 4.3 
Methods). (b) Histogram of 5,634 pairwise distances among the 3,836 mountainClimberTU TUs 
that overlapped more than one Ensembl TU. The inset text describes the total within 1 or 2kb. 
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Figure 4.S2 | Identification of alternative 5’ and 3’ ends in human tissues.  
(a, b) Median total number of change points per TU in individuals with each change point label 
(colored in (a), rows in (b) and overlapping Ensembl 75 gene regions (rows in (a), colored in (b)). 
(c) The total change points per TU in all individuals stratified by each change point label (columns) 
and colored by Ensembl 75 gene region.   
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Figure 4.S3 | Grouping of 5’ and 3’ ends into four categories.  
(a) Schematic outlining the grouping into 4 categories (left) with cartoon examples (right). ATE, 
alternative terminal exon (Section 4.3 Methods). (b) Toy example illustrating clustering, weighted 
mean length (WML), and weighted mean extension length (WMEL) calculations. In this case, 
there is ATE because there is >1 cluster, but since Cluster 2 contains < 10 members, we ignore 
it and only consider Cluster 1 (Section 4.3 Methods). (c) End type and change point type identified 
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by mountainClimberCP (DistalPolyA, TandemAPA, TandemTSS, DistalTSS, or otherwise Other) 
of Group #4: tandem genes for the end with maximum relative usage (RU), colored by overlap 
with Ensembl 75. (d) Total genes in each group. Note that groups are not mutually exclusive - a 
gene is often in a different group in a different sample. (e) Two-dimensional histogram of total 
individuals vs. total clusters in Group #2: ATE across samples, excluding change points in non-
strand-specific TUs.  
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Figure 4.S4 | Tissue specificity of 5’ and 3’ ends across human tissues.  
(a, b) Heatmap of row-scaled log2(relative weighted mean extension length (WMEL)) for all 516 
ubiquitously expressed 3’ ends (a) and 420 5’ ends (b). Column colors indicate tissue and 
individual. (c, d) Similar to (a) and (b), but with covariates regressed out.  



 102 

 
Figure 4.S5 | Variation in 5’ and 3’ ends across human tissues.  
(a, b) Variance of relative weighted mean length of all 2,274 3’ (a) and 2,204 5’ (b) ends for each 
TU across individuals within each tissue, sorted from low to high variance. (c, d) median TIN 
score across all transcripts (c) and RIN score (d) for each sample in each tissue. Only the 2,342 
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samples analyzed are shown, so all have median TIN ≥ 70 in (c). (e, f) Mean number of change 
points with at least 10% relative usage in 3’ (e) and 5’ (f) ends for each TU across individuals 
within each tissue, sorted from low to high mean number of change points.  
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Figure 4.S6 | Identification of TUs with highly variable 5’ or 3’ end lengths. 
(a, b) Total genes with differential 3’ (a) and 5’ (b) WMEL by t-test. Yellow stars indicate the 
tissues that were most different compared to all other tissues. (c, d) Total tissues with differential 
WMEL in at least one pairwise comparison for 3’ ends (c) and 5’ ends (d). 
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Figure 4.S7 | Significantly differential change points identified by mountainClimberTest.  
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(a) Total change points identified at each step of mountainClimberTest_diff over all pairwise tissue 
comparisons (see Section 4.3 Methods for details on these steps). (b) Total change points 
identified in either 5’ or 3’ ends, i.e. Fig. 4.3a and 4.3b combined. (c) Types of change points 
identified by mountainClimberTest_diff across all 35 comparisons for each tissue colored by 
whether they were significant (see mountainClimberTest methods in Section 3.3 for more details 
on the x-axis labels). (d, e) Annotation of all significantly differential change points across all 35 
comparisons that were tandem in at least one condition (d) and those in introns only (e). (f) Total 
significantly differential change points in each TU vs. all 35 other tissues. 
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4.8. Supplementary Tables 

Table 4.S1 | GTEx Sample Totals. 

Tissue 
Total 

samples 
downloaded 

Filtered samples Total 
samples 
analyzed Low 

median TIN 
Read 

length != 
76 

Mapping 
rate < 50% 

Adipose - Subcutaneous 99 3 6 5 85 
Adrenal gland 78 1   77 

Brain - Amygdala 44 6  6 32 
Brain - Anterior cingulate 

cortex (BA24) 54 9  4 41 

Brain - Caudate (basal ganglia) 67 3  5 59 
Brain - Cerebellar Hemisphere 67 1 3 2 61 

Brain - Cerebellum 81  9 2 70 
Brain - Cortex 70 4 4 1 61 

Brain - Frontal Cortex (BA9) 64 7 3 2 52 
Brain - Hippocampus 59 13  4 42 
Brain - Hypothalamus 56 8  5 43 

Brain - Nucleus accumbens 
(basal ganglia) 65 8  3 54 

Brain - Putamen (basal 
ganglia) 60 14  5 41 

Brain - Spinal cord (cervical c-
1) 37 5  3 29 

Brain - Substantia nigra 41 7  3 31 
Breast - Mammary Tissue 104 1   103 

Colon - Sigmoid 105 2  1 102 
Heart - Atrial Appendage 99 1  2 96 

Heart - Left Ventricle 94 22 3 5 64 
Kidney - Cortex 36 2   34 

Liver 64 14   50 
Lung 70 2 5 3 60 

Muscle - Skeletal 97 2  3 92 
Ovary 63    63 

Pancreas 107 2 4  101 
Pituitary 71 1  2 68 
Prostate 59 1  1 57 

Skin - Not Sun Exposed 
(Suprapubic) 99 3   96 

Small Intestine - Terminal 
Ileum 69 1   68 

Spleen 67 3   64 
Stomach 108    108 

Testis 95  4  91 
Thyroid 99  6 7 86 
Uterus 55    55 
Vagina 54    54 

Whole Blood 99 39 6 2 52 
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Table 4.S2 | Gene Onotology analysis of complex 5’ ends. 

GO term pBF Total 
genes Gene list Com-

parison 
positive regulation of NF-

kappaB transcription factor 
activity 

<1e-04 4 CAT,MAP3K7,NFKBIA,PRDX3 Testis 
longer 

negative regulation of 
transcription, DNA-dependent <1e-04 4 CITED2,COMMD7,NR2C1,ZNF282 Testis 

longer 
positive regulation of 

transcription from RNA 
polymerase II promoter 

<1e-04 11 
CALCOCO1,CDK7,CITED2,ERCC3,
FOS,HSF2,MED10,NFKBIA,PARP1,

STAT3,TFE3 

Testis 
longer 

endoplasmic reticulum <1e-04 16 

APOD,ATL2,CAMLG,CAT,CYB5A,E
MC2,FOS,PDIA4,RCN2,RRBP1,SR
P72,STT3B,TRAPPC3,UBXN4,VIMP

,YIPF6 

Testis 
longer 

protein C-terminus binding <1e-04 6 CALCOCO1,CDK7,ERCC3,IFT52,K
PNA3,PRDX3 

Testis 
longer 

transcription initiation from RNA 
polymerase II promoter <1e-04 6 CDK7,ERCC3,GTF2B,MED10,NR2C

1,PARP1 
Testis 
longer 

DNA replication <1e-04 4 MCM3,ORC5,RPA2,WRNIP1 Testis 
longer 

molecular function <1e-04 8 DHRS7B,MKRN1,MRPS10,ORC5,P
TTG1IP,TMEM128,TMEM57,VPS45 

Testis 
longer 

nucleotide-excision repair <1e-04 4 CDK7,ERCC3,RAD23B,RPA2 Testis 
longer 

biological process <1e-04 11 
BCL7B,DHRS7B,FAM3C,MKRN1,M
RPS10,PROSC,SDC4,SGTA,TMEM

128,TMEM57,ZNF330 

Testis 
longer 

transforming growth factor beta 
receptor signaling pathway <1e-04 4 CITED2,FOS,MAP3K7,PARP1 Testis 

longer 

cellular component <1e-04 7 BCL7B,COMMD7,DHRS7B,MKRN1,
PIP4K2A,TMEM128,VPS45 

Testis 
longer 

transcription regulatory region 
DNA binding <1e-04 4 CALCOCO1,FOS,STAT3,TFE3 Testis 

longer 

aging <1e-04 4 APOD,CAT,FOS,IGFBP2 Testis 
longer 

nucleobase-containing small 
molecule metabolic process <1e-04 4 ATIC,CAT,CMPK1,NUDT9 Testis 

longer 

endocytosis <1e-04 4 LMBR1L,NECAP1,RAC1,USP33 Testis 
longer 

protein serine/threonine kinase 
activity <1e-04 5 CDK7,CSNK2A1,MAP3K7,OXSR1,S

TK40 
Testis 
longer 

transcription elongation from 
RNA polymerase II promoter <1e-04 4 CDK7,ELP3,ERCC3,GTF2B Testis 

longer 

protein phosphorylation <1e-04 6 CDK7,CSNK2A1,ERCC3,MAP3K7,O
XSR1,STK40 

Testis 
longer 

positive regulation of type I 
interferon production <1e-04 4 DHX36,DHX9,NFKBIA,POLR3E Testis 

longer 

modulation by virus of host 
morphology or physiology <1e-04 9 

CAMLG,ERCC3,GTF2B,KPNA3,NF
KBIA,SGTA,SLC25A4,STAT3,YWH

AE 

Testis 
longer 

protein kinase activity <1e-04 6 CDK7,CSNK2A1,ERCC3,MAP3K7,O
XSR1,STK40 

Testis 
longer 
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Fc-epsilon receptor signaling 
pathway <1e-04 4 FOS,MAP3K7,NFKBIA,RAC1 Testis 

longer 
nucleotide-excision repair, DNA 

damage removal <1e-04 4 CDK7,ERCC3,RAD23B,RPA2 Testis 
longer 

cytoplasmic vesicle <1e-04 4 BICD2,IGFBP2,RAB13,RAC1 Testis 
longer 

intracellular 0.0418 14 
APOD,BIRC2,CAPN2,IFT27,NUDT9,
PICALM,PROSC,RAB13,RAC1,RPL
19,RPL22L1,RPS19,UBL3,ZNF282 

Testis 
longer 

protein transport <1e-04 5 AP2S1,RAB9A,SELENBP1,SNX12,T
IMM50 

Testis 
shorter 

microtubule <1e-04 4 CCT2,DYNC1LI1,MAP2K2,SPRY2 Testis 
shorter 

plasma membrane 0.0187 10 

ADIPOR1,ANXA1,AP2S1,DYNC1LI1
,HLA-

DRA,MGLL,PKM,RAB9A,SLC2A3,S
PRY2 

Testis 
shorter 

GO Term, Gene Ontology Term; pBF, Bonferroni-corrected p-value; Total genes, total genes from the test set in the 
enriched term; Gene list, genes from the test set in the enriched term; Comparison, indicates the tissue of interest and 
whether the genes in the test set were significantly longer or shorter in the tissue of interest compared to at least one 
other tissue.  
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Table 4.S3 | Gene Onotology analysis of complex 3’ ends. 

GO term pBF Total 
genes Gene list Comparison 

ribosome <1e-04 7 DNAJC21,MRPL22,MRPS10,MRPS2
1,RPL29,RPS14,RPS19 

Brain-Cereb 
longer 

ribosome <1e-04 4 DNAJC21,MRPL22,RPL29,RPS14 Muscle-
Skeletal shorter 

ribosome <1e-04 6 DNAJC21,MRPL22,MRPS10,MRPS2
1,RPS14,RPS19 Testis shorter 

ribosome <1e-04 4 DNAJC21,MRPS21,RPL29,RPS14 Whole-Blood 
shorter 

condensed 
chromosome 
kinetochore 

<1e-04 4 BOD1,BUB3,DYNC1LI1,PPP1CC Brain-Cereb 
longer 

condensed 
chromosome 
kinetochore 

<1e-04 4 BOD1,BUB3,DYNC1LI1,PPP1CC Testis shorter 

mitosis <1e-04 4 ARPP19,BOD1,DYNC1LI1,RAN Brain-Cereb 
longer 

mitosis <1e-04 4 ARPP19,BOD1,DYNC1LI1,RAN Testis shorter 

protein kinase binding <1e-04 5 CDK5RAP1,MAP2K3,PPP1CC,RAC1
,RPS19 Testis shorter 

protein kinase binding <1e-04 4 MAP2K3,PPP1CC,RAC1,RPS19 Whole-Blood 
longer 

RNA metabolic process <1e-04 4 EIF4A3,PSMD12,RPL29,RPS14 Brain-Cereb vs 
Brain longer 

RNA metabolic process <1e-04 5 EIF4A3,LSM5,PSMD12,RPL29,RPS1
4 

Whole-Blood 
shorter 

small molecule 
metabolic process <1e-04 25 

ACSS1,AKR1B1,ALAD,AMD1,B4GAL
T5,CERK,CMPK1,COX5A,COX7B,C
YB5A,FH,GLUL,HADH,LPCAT4,MAR
CKS,MGLL,NDUFB4,NUDT9,PPP1C
C,PSMB2,PSMD12,RAN,SDC2,SLC2

5A4,SLC2A3 

Brain-Cereb 
longer 

small molecule 
metabolic process <1e-04 16 

AKR1B1,B4GALT5,COX7B,FH,GLUL
,HADH,MGLL,PHYH,PPP1CC,PSMB
2,PSMD12,RAN,SDC2,SDHB,SLC25

A4,SUCLG1 

Muscle-
Skeletal longer 

transcription, DNA-
templated <1e-04 15 

ARGLU1,CALCOCO1,DNTTIP2,ETS
2,HINFP,KLF9,MAP3K7,PARP1,PHF
2,POLR3E,PWP1,SFPQ,SUV420H1,

TXNIP,YBX3 
Testis shorter 

transcription, DNA-
templated <1e-04 7 ARGLU1,HTATSF1,MLXIP,PARP1,P

HF2,SP1,TXNIP 
Whole-Blood 

longer 

viral process <1e-04 8 GTF2B,PSMB2,PSMD12,RAC1,RAN,
RPS14,RPS19,SLC25A4 Testis shorter 

viral process 0.036 6 GTF2B,PSMD12,RAN,RPL29,RPS14
,SLC25A4 

Whole-Blood 
shorter 

cell differentiation <1e-04 4 FHL1,GADD45B,HTATIP2,NUS1 Brain-Cereb 
longer 

centrosome <1e-04 4 FBXW11,NFU1,PCGF5,PCM1 Muscle-
Skeletal longer 
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cytosol <1e-04 11 
CTSH,FHL1,GLUL,LSM4,MAP2K3,P
PP1CC,RAC1,RPL19,RPS19,TRAPP

C3,TXNIP 

Whole-Blood 
longer 

endoplasmic reticulum 
membrane <1e-04 11 

CYB5A,LPCAT4,MTDH,NUS1,PJA2,
SSR2,TMED9,TMEM106C,UBE2J1,V

APB,VMA21 

Muscle-
Skeletal shorter 

enzyme binding <1e-04 5 CTNNBL1,CYB5A,HINFP,PARP1,VA
PB 

Brain-Cereb vs 
Brain longer 

histone deacetylase 
binding <1e-04 4 GMNN,HES1,NR2C1,YWHAE Testis longer 

hydrolase activity <1e-04 4 MGLL,NUDT9,PPP2CB,PSMC6 Testis longer 
intracellular protein 

transport 0.0318 6 RAB13,RAN,RHOU,TIMM17A,VPS18
,VPS45 Testis longer 

mRNA metabolic 
process <1e-04 4 EIF4A3,PSMD12,RPL29,RPS14 Brain-Cereb vs 

Brain longer 
negative regulation of 

transcription from RNA 
polymerase II promoter 

<1e-04 7 MTDH,NR2C1,PARP1,RPS14,SFPQ,
TXNIP,YBX3 Testis shorter 

nuclear membrane <1e-04 4 AKIRIN1,MTDH,RANGAP1,SEPHS1 Muscle-
Skeletal shorter 

nucleolus <1e-04 5 MTDH,PARP1,PHF2,PPP1CC,RPS1
9 

Whole-Blood 
longer 

oxidoreductase activity <1e-04 5 AKR1B1,CREG1,CYB5R1,HADH,SD
HB 

Muscle-
Skeletal longer 

peptidase activity <1e-04 4 CTSH,LGMN,PEPD,THOP1 Muscle-
Skeletal shorter 

protein 
polyubiquitination <1e-04 4 FBXW11,PSMB2,PSMD12,UBE2V2 Muscle-

Skeletal longer 

protein transport <1e-04 7 GOSR1,IFT27,NECAP1,RAB18,RAB
9A,RAC1,RAN Testis shorter 

proteolysis <1e-04 7 ABHD10,ADAMTS1,CTSH,CTSL,LG
MN,PEPD,THOP1 

Muscle-
Skeletal shorter 

regulation of 
transcription, DNA-

dependent 
<1e-04 11 

ARGLU1,CLPX,DNTTIP2,ETS2,GTF
2B,HINFP,HSF2,KLF9,NR2C1,SUV4

20H1,YBX3 
Testis shorter 

sequence-specific DNA 
binding 0.0382 4 CALCOCO1,ETS2,HSF2,NR2C1 Testis shorter 

SRP-dependent 
cotranslational protein 
targeting to membrane 

<1e-04 4 RPL29,RPS14,SRP9,SSR2 Muscle-
Skeletal shorter 

structural constituent of 
ribosome <1e-04 4 MRPL15,MRPS21,RPL29,RPS14 Whole-Blood 

shorter 
transcription coactivator 

activity <1e-04 7 CALCOCO1,HINFP,HSF2,HTATIP2,
MTDH,PHF2,RAN Testis shorter 

transcription factor 
complex <1e-04 4 CREG1,LMO4,NFIC,SKI Testis longer 

zinc ion binding <1e-04 11 
ALAD,CRIP2,GTF2B,LMO4,MT1E,N
R2C1,PJA2,SKI,ZMIZ2,ZMYM3,ZNF3

30 
Testis longer 

GO Term, Gene Ontology Term; pBF, Bonferroni-corrected p-value; Total genes, total genes from the test set in the 
enriched term; Gene list, genes from the test set in the enriched term; Comparison, indicates the tissue of interest and 
whether the genes in the test set were significantly longer or shorter in the tissue of interest compared to at least one 
other tissue.  
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Table 4.S4 | mountainClimberTest_cluster totals. 

Tissue1 Tissue2 
Total 

Sample
s 

--
minpt

s 

Total 
Gene

s 

Total 
genes 

clustere
d per 

conditio
n 

Total 
genes 

clustered 
across 

condition
s 

% 
Clustere
d / Total 
Genes 

Adipose-
Subcutaneous 

All but Ovary, 
Uterus, Vagina 2,008 992 2,585 1,517 1,517 59% 

Adipose-
Subcutaneous 

Ovary, Uterus, 
Vagina 2,040 1,008 2,585 1,517 1,517 59% 

Adrenal-Gland All but Ovary, 
Uterus, Vagina 1,806 891 2,260 1,421 1,421 63% 

Adrenal-Gland Ovary, Uterus, 
Vagina 1,848 912 2,260 1,419 1,419 63% 

Brain-Amygdala All but Ovary, 
Uterus, Vagina 756 378 2,199 1,358 1,358 62% 

Brain-Amygdala Ovary, Uterus, 
Vagina 768 384 2,199 1,358 1,358 62% 

Brain-Anterior-
cingulate-cortex-

BA24 

All but Ovary, 
Uterus, Vagina 972 474 2,406 1,432 1,432 60% 

Brain-Anterior-
cingulate-cortex-

BA24 

Ovary, Uterus, 
Vagina 984 480 2,406 1,432 1,432 60% 

Brain-Caudate-
basal-ganglia 

All but Ovary, 
Uterus, Vagina 1,397 687 2,566 1,450 1,450 57% 

Brain-Caudate-
basal-ganglia 

Ovary, Uterus, 
Vagina 1,416 696 2,566 1,450 1,450 57% 

Brain-Cerebellar-
Hemisphere 

All but Ovary, 
Uterus, Vagina 1,445 711 2,986 1,442 1,442 48% 

Brain-Cerebellar-
Hemisphere 

Ovary, Uterus, 
Vagina 1,464 720 2,986 1,442 1,442 48% 

Brain-Cerebellum All but Ovary, 
Uterus, Vagina 1,657 828 2,641 1,401 1,401 53% 

Brain-Cerebellum Ovary, Uterus, 
Vagina 1,680 840 2,641 1,401 1,401 53% 

Brain-Cortex All but Ovary, 
Uterus, Vagina 1,444 710 2,523 1,413 1,413 56% 

Brain-Cortex Ovary, Uterus, 
Vagina 1,464 720 2,523 1,413 1,413 56% 

Brain-Frontal-
Cortex-BA9 

All but Ovary, 
Uterus, Vagina 1,230 615 2,443 1,449 1,449 59% 

Brain-Frontal-
Cortex-BA9 

Ovary, Uterus, 
Vagina 1,248 624 2,443 1,449 1,449 59% 

Brain-
Hippocampus 

All but Ovary, 
Uterus, Vagina 995 497 2,520 1,395 1,395 55% 

Brain-
Hippocampus 

Ovary, Uterus, 
Vagina 1,008 504 2,520 1,395 1,395 55% 

Brain-
Hypothalamus 

All but Ovary, 
Uterus, Vagina 1,020 498 2,573 1,501 1,501 58% 

Brain-
Hypothalamus 

Ovary, Uterus, 
Vagina 1,032 504 2,573 1,500 1,500 58% 



 113 

Brain-Nucleus-
accumbens-basal-

ganglia 

All but Ovary, 
Uterus, Vagina 1,277 638 2,752 1,498 1,498 54% 

Brain-Nucleus-
accumbens-basal-

ganglia 

Ovary, Uterus, 
Vagina 1,296 648 2,752 1,498 1,498 54% 

Brain-Putamen-
basal-ganglia 

All but Ovary, 
Uterus, Vagina 969 473 2,427 1,404 1,404 58% 

Brain-Putamen-
basal-ganglia 

Ovary, Uterus, 
Vagina 984 480 2,427 1,404 1,404 58% 

Brain-Spinal-cord-
cervical-c-1 

All but Ovary, 
Uterus, Vagina 686 331 2,326 1,389 1,389 60% 

Brain-Spinal-cord-
cervical-c-1 

Ovary, Uterus, 
Vagina 696 336 2,326 1,388 1,388 60% 

Brain-Substantia-
nigra 

All but Ovary, 
Uterus, Vagina 731 354 2,505 1,404 1,404 56% 

Brain-Substantia-
nigra 

Ovary, Uterus, 
Vagina 744 360 2,505 1,404 1,404 56% 

Breast-Mammary-
Tissue 

All but Ovary, 
Uterus, Vagina 2,423 1,200 2,908 1,524 1,524 52% 

Breast-Mammary-
Tissue 

Ovary, Uterus, 
Vagina 2,472 1,224 2,908 1,524 1,524 52% 

Colon-Sigmoid All but Ovary, 
Uterus, Vagina 2,405 1,202 2,784 1,432 1,432 51% 

Colon-Sigmoid Ovary, Uterus, 
Vagina 2,448 1,224 2,784 1,432 1,432 51% 

Heart-Atrial-
Appendage 

All but Ovary, 
Uterus, Vagina 2,266 1,133 2,249 1,289 1,289 57% 

Heart-Atrial-
Appendage 

Ovary, Uterus, 
Vagina 2,304 1,152 2,249 1,289 1,289 57% 

Heart-Left-
Ventricle 

All but Ovary, 
Uterus, Vagina 1,505 752 2,105 1,212 1,212 58% 

Heart-Left-
Ventricle 

Ovary, Uterus, 
Vagina 1,536 768 2,105 1,212 1,212 58% 

Kidney-Cortex All but Ovary, 
Uterus, Vagina 809 404 2,627 1,407 1,407 54% 

Kidney-Cortex Ovary, Uterus, 
Vagina 816 408 2,627 1,407 1,407 54% 

Liver All but Ovary, 
Uterus, Vagina 1,181 590 2,241 1,174 1,174 52% 

Liver Ovary, Uterus, 
Vagina 1,200 600 2,241 1,174 1,174 52% 

Lung All but Ovary, 
Uterus, Vagina 1,416 708 2,773 1,585 1,585 57% 

Lung Ovary, Uterus, 
Vagina 1,440 720 2,773 1,585 1,585 57% 

Muscle-Skeletal All but Ovary, 
Uterus, Vagina 2,169 1,084 1,953 1,019 1,019 52% 

Muscle-Skeletal Ovary, Uterus, 
Vagina 2,208 1,104 1,953 1,019 1,019 52% 

Ovary  1,512 744 2,438 1,430 1,430 59% 

Pancreas All but Ovary, 
Uterus, Vagina 2,375 1,176 2,231 1,088 1,088 49% 
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Pancreas Ovary, Uterus, 
Vagina 2,424 1,200 2,231 1,086 1,086 49% 

Pituitary All but Ovary, 
Uterus, Vagina 1,613 806 2,864 1,441 1,441 50% 

Pituitary Ovary, Uterus, 
Vagina 1,632 816 2,864 1,441 1,441 50% 

Prostate All but Ovary, 
Uterus, Vagina 1,368 672 2,678 1,504 1,504 56% 

Skin-Not-Sun-
Exposed-

Suprapubic 
Ovary, Uterus, 

Vagina 2,271 1,135 2,709 1,516 1,516 56% 

Skin-Not-Sun-
Exposed-

Suprapubic 

All but Ovary, 
Uterus, Vagina 2,304 1,152 2,709 1,516 1,516 56% 

Small-Intestine-
Terminal-Ileum 

Ovary, Uterus, 
Vagina 1,605 802 2,888 1,581 1,581 55% 

Small-Intestine-
Terminal-Ileum 

All but Ovary, 
Uterus, Vagina 1,605 802 2,888 1,581 1,580 55% 

Small-Intestine-
Terminal-Ileum 

Ovary, Uterus, 
Vagina 1,632 816 2,888 1,581 1,581 55% 

Small-Intestine-
Terminal-Ileum 

All but Ovary, 
Uterus, Vagina 1,632 816 2,888 1,581 1,580 55% 

Spleen Ovary, Uterus, 
Vagina 1,504 752 2,604 1,528 1,528 59% 

Spleen All but Ovary, 
Uterus, Vagina 1,536 768 2,604 1,528 1,528 59% 

Stomach Ovary, Uterus, 
Vagina 2,541 1,270 2,634 1,262 1,262 48% 

Stomach All but Ovary, 
Uterus, Vagina 2,592 1,296 2,634 1,261 1,261 48% 

Testis  2,184 1,080 4,784 2,020 2,020 42% 

Thyroid Ovary, Uterus, 
Vagina 2,030 1,015 2,856 1,577 1,577 55% 

Thyroid All but Ovary, 
Uterus, Vagina 2,064 1,032 2,856 1,577 1,577 55% 

Uterus  1,320 648 2,468 1,508 1,508 61% 
Vagina  1,296 648 2,695 1,573 1,573 58% 

Whole-Blood Ovary, Uterus, 
Vagina 1,224 612 2,297 983 983 43% 

Whole-Blood All but Ovary, 
Uterus, Vagina 1,248 624 2,297 983 983 43% 
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Table 4.S5 | Gene ontology analysis of differential WMEL. 
Br

ai
n -

Ce
re

b*
 v

s.
 

al
l o

th
er

 
tis

su
es

 

3’
 

51
6  

50
3 

15
2 

30
 

19
3 

42
 

Br
ai

n-
Ce

re
b*

 v
s.

 
al

l o
th

er
 

Br
ai

n 

3’
 

51
6 

50
3 

38
 

12
 

45
 

16
 

M
us

cl
e-

Sk
el

et
al

 v
s.

 
al

l o
th

er
 

tis
su

es
 

3’
 

51
6 

50
3 

87
 

12
0 

10
9 

14
1 

Te
st

is
 v

s.
 

al
l o

th
er

 
tis

su
es

 

3’
 

51
6 

50
3 

77
 

10
9  

98
 

12
9 

W
ho

le
-B

lo
od

 v
s.

 
al

l o
th

er
 ti

ss
ue

s 

3’
 

51
6 

50
3 

30
 

96
 

37
 

12
0  

Te
st

is
 v

s.
 

al
l o

th
er

s 

5’
 

42
0 

41
0 

16
0 

41
 

21
0 

50
 

Co
m

pa
ris

on
 

En
d  

Ba
ck

gr
ou

nd
 g

en
es

 to
 

ch
oo

se
 fr

om
: u

bi
qu

ito
us

ly
 

ex
pr

es
se

d 
ge

ne
s  

To
ta

l b
ac

kg
ro

un
d 

ge
ne

s 
w

ith
 G

O
 te

rm
s 

To
ta

l b
ac

kg
ro

un
d 

ge
ne

s 
w

ith
 s

im
ila

r G
C 

co
nt

en
t &

 
le

ng
th

: l
on

ge
r 

To
ta

l b
ac

kg
ro

un
d 

ge
ne

s 
w

ith
 s

im
ila

r G
C 

co
nt

en
t &

 
le

ng
th

: s
ho

rte
r 

To
ta

l g
en

es
 lo

ng
er

 in
 

tis
su

e 
of

 in
te

re
st

 (p
BF

 <
= 

0.
01

) 

To
ta

l g
en

es
 s

ho
rte

r i
n 

tis
su

e 
of

 in
te

re
st

 (p
BF

 <
= 

0.
01

) 

 

  



 116 

Table 4.S6 | Gene ontology analysis of differential WMEL: 3’ end. 

GO term pBF Total 
genes Gene list Comparison 

ribosome <1e-04 7 DNAJC21,MRPL22,MRPS10,MRPS
21,RPL29,RPS14,RPS19 

Brain-Cereb 
longer 

ribosome <1e-04 4 DNAJC21,MRPL22,RPL29,RPS14 
Muscle-
Skeletal 
shorter 

ribosome <1e-04 6 DNAJC21,MRPL22,MRPS10,MRPS
21,RPS14,RPS19 Testis shorter 

ribosome <1e-04 4 DNAJC21,MRPS21,RPL29,RPS14 Whole-Blood 
shorter 

condensed chromosome 
kinetochore <1e-04 4 BOD1,BUB3,DYNC1LI1,PPP1CC Brain-Cereb 

longer 
condensed chromosome 

kinetochore <1e-04 4 BOD1,BUB3,DYNC1LI1,PPP1CC Testis shorter 

cytosol 0.0339 22 

AKR1B1,BUB3,FBXW11,FHL1,GLU
L,LSM4,MAP2K3,NFU1,PCM1,POL
R3E,POMP,PPP1CC,PPP2CB,PSM
B2,PSMD12,RAN,RARS,RPL19,RP

S19,SMAD7,SNRPE,TXNIP 

Muscle-
Skeletal longer 

cytosol <1e-04 11 
CTSH,FHL1,GLUL,LSM4,MAP2K3,P
PP1CC,RAC1,RPL19,RPS19,TRAP

PC3,TXNIP 

Whole-Blood 
longer 

mitosis <1e-04 4 ARPP19,BOD1,DYNC1LI1,RAN Brain-Cereb 
longer 

mitosis <1e-04 4 ARPP19,BOD1,DYNC1LI1,RAN Testis shorter 

protein kinase binding 0.0384 5 CDK5RAP1,MAP2K3,PPP1CC,RAC
1,RPS19 Testis shorter 

protein kinase binding <1e-04 4 MAP2K3,PPP1CC,RAC1,RPS19 Whole-Blood 
longer 

RNA metabolic process <1e-04 4 EIF4A3,PSMD12,RPL29,RPS14 Brain-Cereb vs 
Brain longer 

RNA metabolic process 0.0361 5 EIF4A3,LSM5,PSMD12,RPL29,RPS
14 

Whole-Blood 
shorter 

transcription, DNA-
templated <1e-04 15 

ARGLU1,CALCOCO1,DNTTIP2,ETS
2,HINFP,KLF9,MAP3K7,PARP1,PH
F2,POLR3E,PWP1,SFPQ,SUV420H

1,TXNIP,YBX3 

Testis shorter 

transcription, DNA-
templated 0.0204 7 ARGLU1,HTATSF1,MLXIP,PARP1,P

HF2,SP1,TXNIP 
Whole-Blood 

longer 

cell differentiation <1e-04 4 FHL1,GADD45B,HTATIP2,NUS1 Brain-Cereb 
longer 

centrosome <1e-04 4 FBXW11,NFU1,PCGF5,PCM1 Muscle-
Skeletal longer 

endoplasmic reticulum 
membrane <1e-04 11 

CYB5A,LPCAT4,MTDH,NUS1,PJA2,
SSR2,TMED9,TMEM106C,UBE2J1,

VAPB,VMA21 

Muscle-
Skeletal 
shorter 

enzyme binding <1e-04 5 CTNNBL1,CYB5A,HINFP,PARP1,V
APB 

Brain-Cereb vs 
Brain longer 

histone deacetylase 
binding <1e-04 4 GMNN,HES1,NR2C1,YWHAE Testis longer 
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hydrolase activity <1e-04 4 MGLL,NUDT9,PPP2CB,PSMC6 Testis longer 

mRNA metabolic process <1e-04 4 EIF4A3,PSMD12,RPL29,RPS14 Brain-Cereb vs 
Brain longer 

negative regulation of 
transcription from RNA 
polymerase II promoter 

<1e-04 7 MTDH,NR2C1,PARP1,RPS14,SFPQ
,TXNIP,YBX3 Testis shorter 

nuclear membrane <1e-04 4 AKIRIN1,MTDH,RANGAP1,SEPHS1 
Muscle-
Skeletal 
shorter 

nucleolus <1e-04 5 MTDH,PARP1,PHF2,PPP1CC,RPS1
9 

Whole-Blood 
longer 

oxidation-reduction 
process <1e-04 5 CREG1,CYB5R1,FADS3,HADH,SD

HB 
Muscle-

Skeletal longer 

oxidoreductase activity <1e-04 5 AKR1B1,CREG1,CYB5R1,HADH,SD
HB 

Muscle-
Skeletal longer 

peptidase activity <1e-04 4 CTSH,LGMN,PEPD,THOP1 
Muscle-
Skeletal 
shorter 

protein polyubiquitination <1e-04 4 FBXW11,PSMB2,PSMD12,UBE2V2 Muscle-
Skeletal longer 

protein transport <1e-04 7 GOSR1,IFT27,NECAP1,RAB18,RAB
9A,RAC1,RAN Testis shorter 

proteolysis <1e-04 7 ABHD10,ADAMTS1,CTSH,CTSL,LG
MN,PEPD,THOP1 

Muscle-
Skeletal 
shorter 

regulation of 
transcription, DNA-

dependent 
0.0384 11 

ARGLU1,CLPX,DNTTIP2,ETS2,GTF
2B,HINFP,HSF2,KLF9,NR2C1,SUV4

20H1,YBX3 
Testis shorter 

sequence-specific DNA 
binding 0.0384 4 CALCOCO1,ETS2,HSF2,NR2C1 Testis shorter 

small molecule metabolic 
process <1e-04 16 

AKR1B1,B4GALT5,COX7B,FH,GLU
L,HADH,MGLL,PHYH,PPP1CC,PSM
B2,PSMD12,RAN,SDC2,SDHB,SLC

25A4,SUCLG1 

Muscle-
Skeletal longer 

SRP-dependent 
cotranslational protein 
targeting to membrane 

<1e-04 4 RPL29,RPS14,SRP9,SSR2 
Muscle-
Skeletal 
shorter 

structural constituent of 
ribosome <1e-04 4 MRPL15,MRPS21,RPL29,RPS14 Whole-Blood 

shorter 
transcription coactivator 

activity <1e-04 7 CALCOCO1,HINFP,HSF2,HTATIP2,
MTDH,PHF2,RAN Testis shorter 

transcription factor 
complex <1e-04 4 CREG1,LMO4,NFIC,SKI Testis longer 

viral process <1e-04 8 GTF2B,PSMB2,PSMD12,RAC1,RAN
,RPS14,RPS19,SLC25A4 Testis shorter 

zinc ion binding <1e-04 11 
ALAD,CRIP2,GTF2B,LMO4,MT1E,N
R2C1,PJA2,SKI,ZMIZ2,ZMYM3,ZNF

330 
Testis longer 

GO Term, Gene Ontology Term; pBF, Bonferroni-corrected p-value; Total genes, total genes from the test set in the 
enriched term; Gene list, genes from the test set in the enriched term; Comparison, indicates the tissue of interest and 
whether the genes in the test set were significantly longer or shorter in the tissue of interest compared to at least one 
other tissue.  
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Table 4.S7 | Gene ontology analysis of differential WMEL: 5’ end. 

GO term pBF Total 
genes Gene list Compa

rison 

endoplasmic reticulum <1e-04 16 
APOD,ATL2,CAMLG,CAT,CYB5A,EMC
2,FOS,PDIA4,RCN2,RRBP1,SRP72,ST

T3B,TRAPPC3,UBXN4,VIMP,YIPF6 

Testis 
longer 

endoplasmic reticulum <1e-04 16 
APOD,ATL2,CAMLG,CAT,CYB5A,EMC
2,FOS,PDIA4,RCN2,RRBP1,SRP72,ST

T3B,TRAPPC3,UBXN4,VIMP,YIPF6 

Testis 
longer 

intracellular 0.0418 14 
APOD,BIRC2,CAPN2,IFT27,NUDT9,PI
CALM,PROSC,RAB13,RAC1,RPL19,R

PL22L1,RPS19,UBL3,ZNF282 

Testis 
longer 

positive regulation of 
transcription from RNA 
polymerase II promoter 

<1e-04 11 
CALCOCO1,CDK7,CITED2,ERCC3,FO
S,HSF2,MED10,NFKBIA,PARP1,STAT

3,TFE3 

Testis 
longer 

biological process <1e-04 11 
BCL7B,DHRS7B,FAM3C,MKRN1,MRP
S10,PROSC,SDC4,SGTA,TMEM128,T

MEM57,ZNF330 
Testis 
longer 

plasma membrane 0.0187 10 

ADIPOR1,ANXA1,AP2S1,DYNC1LI1,H
LA-

DRA,MGLL,PKM,RAB9A,SLC2A3,SPR
Y2 

Testis 
shorter 

modulation by virus of host 
morphology or physiology <1e-04 9 CAMLG,ERCC3,GTF2B,KPNA3,NFKBI

A,SGTA,SLC25A4,STAT3,YWHAE 
Testis 
longer 

molecular function <1e-04 8 DHRS7B,MKRN1,MRPS10,ORC5,PTT
G1IP,TMEM128,TMEM57,VPS45 

Testis 
longer 

cellular component <1e-04 7 BCL7B,COMMD7,DHRS7B,MKRN1,PI
P4K2A,TMEM128,VPS45 

Testis 
longer 

protein C-terminus binding <1e-04 6 CALCOCO1,CDK7,ERCC3,IFT52,KPN
A3,PRDX3 

Testis 
longer 

transcription initiation from 
RNA polymerase II promoter <1e-04 6 CDK7,ERCC3,GTF2B,MED10,NR2C1,

PARP1 
Testis 
longer 

protein phosphorylation <1e-04 6 CDK7,CSNK2A1,ERCC3,MAP3K7,OXS
R1,STK40 

Testis 
longer 

protein kinase activity <1e-04 6 CDK7,CSNK2A1,ERCC3,MAP3K7,OXS
R1,STK40 

Testis 
longer 

protein serine/threonine kinase 
activity <1e-04 5 CDK7,CSNK2A1,MAP3K7,OXSR1,STK

40 
Testis 
longer 

protein transport <1e-04 5 AP2S1,RAB9A,SELENBP1,SNX12,TIM
M50 

Testis 
shorter 

positive regulation of NF-
kappaB transcription factor 

activity 
<1e-04 4 CAT,MAP3K7,NFKBIA,PRDX3 Testis 

longer 

negative regulation of 
transcription, DNA-dependent <1e-04 4 CITED2,COMMD7,NR2C1,ZNF282 Testis 

longer 

DNA replication <1e-04 4 MCM3,ORC5,RPA2,WRNIP1 Testis 
longer 

nucleotide-excision repair <1e-04 4 CDK7,ERCC3,RAD23B,RPA2 Testis 
longer 

transforming growth factor beta 
receptor signaling pathway <1e-04 4 CITED2,FOS,MAP3K7,PARP1 Testis 

longer 
transcription regulatory region 

DNA binding <1e-04 4 CALCOCO1,FOS,STAT3,TFE3 Testis 
longer 
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aging <1e-04 4 APOD,CAT,FOS,IGFBP2 Testis 
longer 

nucleobase-containing small 
molecule metabolic process <1e-04 4 ATIC,CAT,CMPK1,NUDT9 Testis 

longer 

endocytosis <1e-04 4 LMBR1L,NECAP1,RAC1,USP33 Testis 
longer 

transcription elongation from 
RNA polymerase II promoter <1e-04 4 CDK7,ELP3,ERCC3,GTF2B Testis 

longer 
positive regulation of type I 

interferon production <1e-04 4 DHX36,DHX9,NFKBIA,POLR3E Testis 
longer 

Fc-epsilon receptor signaling 
pathway <1e-04 4 FOS,MAP3K7,NFKBIA,RAC1 Testis 

longer 
nucleotide-excision repair, 

DNA damage removal <1e-04 4 CDK7,ERCC3,RAD23B,RPA2 Testis 
longer 

cytoplasmic vesicle <1e-04 4 BICD2,IGFBP2,RAB13,RAC1 Testis 
longer 

microtubule <1e-04 4 CCT2,DYNC1LI1,MAP2K2,SPRY2 Testis 
shorter 

GO Term, Gene Ontology Term; pBF, Bonferroni-corrected p-value; Total genes, total genes from the test set in the 
enriched term; Gene list, genes from the test set in the enriched term; Comparison, indicates the tissue of interest and 
whether the genes in the test set were significantly longer or shorter in the tissue of interest compared to at least one 
other tissue.  
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Chapter 5: Alternative RNA processing in macrophages upon 

endotoxin re-exposure 

5.1. Abstract 

Upon exposure to a new pathogen, widespread epigenetic transcriptional changes are induced in 

macrophages. However, upon re-exposure to the same pathogen, the same genes are poorly 

induced, constituting a form of innate immune memory referred to as tolerization. Although the 

lack of transcriptional response is well appreciated in tolerized macrophages, its mechanism is 

poorly understood. Here, we identified alternative transcription start sites (ATSS) and alternative 

polyadenylation sites (APA) in poly(A)+ and chromatin-associated RNA of macrophages naïve 

(previously unexposed) and tolerized to Lipid A (LPA), the active component of lipopolysaccharide 

(LPS). In the chromatin-associated cell fraction, APA is interpreted as alternative transcription 

termination (ATT), as this fraction contains both new transcripts and transcripts that remain 

associated with the chromatin after transcription terminates. While APA has been studied in the 

macrophage response to LPS, bacteria, and virus, this is to our knowledge the first study of ATSS 

and APA in tolerized cells, and the first time predicting ATSS and ATT in chromatin-associated 

RNA. We identified many APA and some TSS events in tolerized vs. naïve macrophages. In the 

subset of APA events, transcription typically terminated after the distal poly(A) site, suggesting 

that transcription termination has little influence on APA definition. Overall, this study suggests 

that APA and ATSS contribute to the tolerized phenotype.  

 

5.2. Introduction 

Macrophages, a type of white blood cell in the immune system, undergo extensive transcriptional 

changes upon exposure to a new pathogen or toxin, including expression induction of many 
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inflammatory genes. Upon repeated or prolonged exposure to the same pathogen, macrophages 

develop a tolerance to the pathogen to avoid overstimulation. Premature or prolonged tolerization 

may lead to immune system suppression, e.g. in some sepsis patients, which can lead to higher 

incidence of infection and is sometimes fatal 111. LPS, a component of the outer membrane in 

Gram-negative bacteria, is an example toxin that can induce macrophage tolerization. Compared 

to naïve macrophages, i.e. those that were not previously exposed to LPS, tolerized macrophages 

are associated with poor induction of genes induced in the naïve state, including genes involved 

in the inflammatory NFkB and MAPK pathways 112. Tolerization was also previously associated 

with epigenetic changes due to microRNA-mediated regulation of chromatin remodeling factors 

113,114. In addition to epigenetic and transcriptional changes, inefficient splicing and alternative 3’ 

end regulation are other possible mechanisms underlying poor inflammatory gene induction in 

the tolerized state. 

Changes in 3’ end regulation were recently associated with different immune response 

phenotypes. Shorter 3’UTRs due to APA were observed transcriptome-wide in macrophages 

upon bacterial or viral infection 115,116 and in LPS-stimulated human monocyte-derived 

macrophages 117. In addition to APA, transcription termination efficiency can change in response 

to stress. While transcription termination typically occurs soon after cleavage and polyadenylation 

(reviewed in 8), various cell stresses including oxidative stress specifically reduced transcription 

termination efficiency in mouse fibroblasts 118.  

 In addition to alternative 3’ end regulation, ATSS may also contribute to the immune 

response. Generally, promoters in close proximity can give rise to new alternative TSSs 105, often 

leading to translational changes 7,60,99. Many alternative promoter events were observed in LPA-

stimulated human monocyte-derived macrophages, often changing the coding sequence by 

>100bp 117.  
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Based on this evidence, we hypothesize that ATSS and APA may contribute to the 

tolerized macrophage phenotype. Previously, cellular fractionation into cytoplasmic, 

nucleoplasmic, and chromatin-associated RNA-Seq in time series following LPA treatment 

revealed novel insights into gene regulation in the LPS response 88,119. In particular, transcripts 

remain on the chromatin until splicing has completed, even after transcription completion. Here, 

we used a similar time series experiment to identify ATSS and alternative 3’ end regulation in 

chromatin-associated and whole cell poly(A)+ cellular fractions of naïve and tolerized 

macrophages. Because the algorithm described in Section 3.3 is inherently robust to RNA-Seq 

non-uniformity and identifies change points in de novo TUs, our algorithm is well-poised to 

robustly predict ATSS and ATT events in chromatin-associated RNA-Seq, which is highly non-

uniform compared to poly(A)+ RNA-Seq and may exhibit ATSS or 3’ readthrough far beyond the 

annotated gene. We identified several ATSS and APA events that may contribute to the tolerized 

phenotype. 

 

5.3. Methods 

Cell fractionation and RNA sequencing 

Bone marrow-derived macrophages (BMDMs) were established and RNA was isolated from 

cellular fractions as previously described 88,119. Briefly, red-blood-cell-depleted murine bone 

marrow cells were cultured with M-CSF-containing medium (L929 cell conditioned medium) for 7 

days, followed by replating for an additional 2 days. BMDMs were stimulated with 100 ng/ml Lipid 

A (Invivogen) and harvested at 0, 10, 15, 20, 25, 30, 40, 50, 60, 75, 90, and 120 minutes after 

stimulation for chromatin-associated RNA, and at 0, 30, 60, 120, 180, 300, and 480 minutes after 

stimulation for whole cell poly(A)-selected RNA. Lipid A-tolerized BMDMs were generated by 

stimulation with Lipid A for 24 hours starting 8 hours after replating, followed by 16 hours of rest. 
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Then, cells were additionally stimulated with Lipid A and harvested at the time points described 

above (Fig. 5.1). 

 

RNA-Seq pre-processing and alignment 

The mountainClimber tool suite and mapping pipeline described in Section 3.3 was used. 

 

Adapter trimming: The Illumina Universal Human Adapter was trimmed from both poly(A)+ and 

chromatin cell fractionation RNA-Seq with cutadapt 26 as follows: cutadapt -a AGATCGGAAGAG 

-n 5 -m 35 -O 5 -e 0.2. For poly(A)+, poly(A) and poly(T) sequences were additionally trimmed. 

 

Genome alignment: Reads were aligned to the mm10 genome with hisat2 82 and the following 

parameters: --dta-cufflinks --mp 6,4 --no-softclip --no-mixed --no-discordant --add-chrname -k 

100. After alignment, exon-exon junction reads were retrieved from the bam files. 

 

de novo change point identification 

mountainClimberTU: TUs were called using mountainClimberTU. For poly(A)+ RNA, the default 

parameters were used. Due to the high degree of non-uniformity in chromatin-associated RNA, 

depth and breadth parameters were relaxed to -n 3 (3 average reads per bp in 1kb windows) and 

-p 0.5 (50% of the 1kb window must contain reads). TUs identified in all samples from both 

fractions were merged to create the RSEM reference.  

 

Transcriptome alignment and RSEM: hisat2 and RSEM were used with the GENCODE vM10 

annotation as described in Section 3.3.  
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mountainClimberCP: 5’ and 3’ ends may be vastly different in the chromatin fraction in different 

conditions, for example due to 3’ readthrough into downstream genes. For simplicity, we only 

analyze change points in TUs with a single annotated gene. Therefore, change points were called 

in TUs merged across replicates rather than merged across all samples in order to maximize the 

number of TUs with a single annotated gene. mountainClimberCP was run with default 

parameters for poly(A)+ RNA-Seq and with relaxed expression minimum -e 3 and stringent fold 

change minimum -f 3 for chromatin-associated RNA-Seq due to the high degree of non-uniformity.  

 

mountainClimberTest: Differential change points were tested between all pairwise conditions 

with two samples after removing outliers and only testing between the same batch (see “Batch 

effect identification and outlier removal” below). First, TUs were merged among all samples in the 

two sample groups of interest (e.g. tolerized vs. naïve or time point vs. time point) and filtered to 

include only TUs with one annotated gene. Because there were some sample quality issues 

(described below), mountainClimberTest_cluster was run with parameters -n 2 and -d 2 to 

stringently require that change points were observed in both replicates and both conditions, 

respectively. Because the chromatin fraction distal ends are noisier across replicates (data not 

shown), we set the DBSCAN neighborhood size to the maximum optimal mountainClimberCP 

window size across replicates, while the minimum across replicates was used for poly(A)+ RNA-

Seq (see Section 3.3 for further mountainClimberTest details). mountainClimberTest_readCounts 

and mountainClimberTest_ru were run with default parameters as described in Section 3.3. 

Finally, mountainClimberTest_diff was run with maximum p-value -t 0.01 and minimum relative 

usage difference -m 0.1 for added stringency in both cell fractions. For poly(A)+ RNA, we 

additionally set the mountainClimberTest_diff minimum mean reads/bp in the proximal segment -

p to 50 for added stringency. -p 50 was not required in the chromatin-associated RNA given the 

high degree of non-uniformity. 
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Change point annotation: Change point annotation was done as described in Section 3.3 with 

GENCODE vM10.  

 

Relative usage calculation for each sample: To calculate the relative usage for each sample, 

we used a similar approach as described in Section 3.3.  

 

Weighted 3’ length analyses 

Weighted average end calculation: The weighted average end is defined as the weighted 

average of the 5’ or 3’ end in each sample, using the relative usage of each end as the weights. 

To calculate the relative weighted 3’ length in poly(A)+ RNA, the weighted 3’ end is compared to 

a reference sample.  

 

Batch effect identification and outlier removal: Poly(A)+ samples were clustered by weighted 

3’ length relative to PolyA.Naive.000.b2 (i.e. poly(A)+ RNA naïve macrophage at time 0, replicate 

#2) to systematically identify sample outliers. This revealed five candidate outlier samples. Upon 

manual inspection of the read distribution in the housekeeping gene ACTB across all samples, 

we observed that the RNA-Seq was apparently artificially non-uniform in these five samples, and 

additionally in the reference sample PolyA.Naive.000.b2. Therefore, the following six samples 

were removed from all downstream analysis: PolyA.LPA.000.b2, PolyA.LPA.000.b3, 

PolyA.LPA.120.b3, PolyA.LPA.480.b2, PolyA.Naive.000.b2, and PolyA.Naive.300.b3. Because 

there were batch effects, we kept all batches separate (replicates b0 and b1 in batch “b0b1”, and 

replicates b2 and b3 in batch “b2b3”) for all mountainClimberTest analysis. 

 

Gene Ontology 
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Gene Ontology (GO) analysis was performed as described previously 57. Briefly, background gene 

sets with similar gene length and GC content were chosen from all genes with change points 

called in the comparison.  

 

Comparison of chromatin-associated vs. poly(A)+ 5’ and 3’ ends 

To compare the 5’ and 3’ ends across fractions, we calculated the median distal 5’ and 3’ ends 

across replicates in each fraction and the distance between them for each time both with both 

fractions available (times 0, 30, 60, and 120). Only annotated TUs were considered. To ensure 

reproducibility across replicates, TUs with distal ends having at least 200bp standard deviation 

were ignored. In total, 209,022 / 291,670 (91%) and 204,790 / 281,670 (89%) total TUs across all 

samples were analyzed at the 3’ and 5’ ends respectively (i.e. ~10% of TUs were ignored) 

To compare significantly differential APA in poly(A)+ with the chromatin-associated 3’ end, 

we separated genes in to two categories: (1) genes with change points detected in the chromatin, 

and (2) genes with no change points detected in the chromatin. The two fractions were compared 

by subtracting the proximal and distal poly(A) 3’ end from either the proximal 3’ end (category 1) 

or the distal 3’ end (category 2). Plotting the difference between chromatin 3’ and proximal poly(A) 

vs. the difference between chromatin 3’ and distal poly(A) allows us to interpret each of the four 

quadrants as follows: quadrant 1, the chromatin 3’ end is past both APA sites; quadrant 3, the 

chromatin 3’ end is before both APA sites; quadrant 4, the chromatin 3’ end is between the APA 

sites (quadrant 2 is always empty).  
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5.4. Results 

5.4.1 Identification of alternative 5’ and 3’ ends 

Prior evidence of alternative 5’ and 3’ ends in naïve macrophages and transcriptional changes in 

tolerized immune cells suggest that alternative 5’ and 3’ ends may contribute to the tolerized 

phenotype. Analogous to previous splicing studies in cellular fractions of macrophages after LPA 

treatment, here we identified alternative 5’ and 3’ ends in cellular fractions of tolerized and naïve 

macrophages (Fig. 5.1). Overall, there were approximately 20 to 70 million reads per poly(A)+ 

sample after merging sequencing lanes and 50 to 125 million reads per chromatin-associated 

RNA sample (data not shown). We observed an average of 90% and 74% mapping rate in 

poly(A)+ and chromatin-associated RNA respectively.  

We first applied mountainClimberTU to identify TUs in each sample (Fig. 5.S1a) and identified 

80,130 TUs after merging across all samples. Of these, 65,705 (82%) were at least 1kb long and 

eligible for calling change points with mountainClimber. Of those, 51,789 (79%) were 

unannotated, and 47,739 (92%) of these were specific to the chromatin-associated fraction, 

suggesting that we captured many TUs that may be enhancer RNAs, upstream antisense 

transcription in the promoter region, or other unannotated transcriptional products. Of the 13,916 

annotated TUs, 8,713 (63%) overlapped one gene while the rest contained more than one gene. 

To gain more TUs overlapping a single gene, we only merged TUs across replicates instead of 

across all samples (see Section 5.3 Methods).  

After calling TUs, we identified change points in each sample with mountainClimberCP. 

Similar to our observations in poly(A)+ RNA from human tissues in Section 4.4, most predicted 

distal and tandem poly(A) sites were near annotated poly(A) sites or within annotated 3’UTRs 

(Fig. 5.2a and Fig. 5.S1b). Briefly, tandem APA sites were defined as change points predicted 

after the last observed exon-exon junction. Analogously, predicted distal and tandem TSS were 
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most often overlapping annotated distal TSS or within annotated 5’UTRs. As expected, most 

predicted exon-exon junctions overlapped annotated junctions within 10bp. Additionally, similar 

to the results across human tissues, APA was observed more often than ATSS (Fig. 5.2b) and 

most change points were tandem events (Fig. 5.S1c).  

On the other hand, distal 3’ and 5’ ends were often intergenic in the chromatin-associated 

fraction (Fig. 5.2c and Fig. 5.S1d). Due to known 3’ readthrough beyond the cleavage and 

polyadenylation site, this level of intergenic 3’ ends is not surprising. Additionally, there were 

relatively fewer exon-exon junctions identified compared to the poly(A)+ fraction (Fig. 5.2c) and 

relatively more change points in segments containing introns in the chromatin-associated fraction 

than the poly(A)+ fraction (Fig. 5.S1e). These observations are reasonable, as the chromatin-

associated fraction contains many short unannotated TUs (described above), intermediate 

splicing products, and may capture RNA prior to transcription completion. In contrast to APA in 

the poly(A)+ fraction, there were fewer alternative transcription end sites (Fig. 5.2d). Still, some 

tandem ATT events (labeled TandemAPA) are predicted in the chromatin-associated fraction, 

suggesting observable cleavage and polyadenylation followed by 3’ readthrough. This is 

investigated further below.  

 

5.4.2 Batch effect identification and outlier removal 

To compare the combined effects of ATSS, ATT, and APA across all samples from both fractions, 

we clustered samples by TU length, defined as the distance from the weighted average 5’ end to 

weighted average 3’ end (see Section 5.3 Methods). As expected, the chromatin-associated and 

poly(A)+ fractions are distinct (Fig. 5.2e). Interestingly, the chromatin-associated samples cluster 

primarily by time, and secondarily by condition, indicating alternative transcription over time after 

LPA treatment. Chromatin-associated samples did not strongly cluster by sequencing library date, 

library preparation maker, or RNA isolation, indicating there were no observable batch effects in 
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the chromatin-associated RNA-Seq. On the other hand, the poly(A)+ samples primarily cluster by 

library preparation, date, and RNA isolation, indicating presence of batch effects.  

Because sample clustering by weighted TU length revealed apparent batch effects in the 

poly(A)+ RNA-Seq, and 3’ end bias is often observed in poor quality RNA-Seq data, we clustered 

poly(A)+ samples by weighted 3’ length relative to PolyA.Naive.000.b2 (i.e. poly(A)+ RNA naïve 

macrophage at time 0, replicate #2) to systematically identify sample outliers (Fig. 5.S2). This 

analysis combined with manual inspection of the RNA-Seq in a housekeeping gene (data not 

shown) revealed six sample outliers which were excluded from all downstream analysis. 

Intriguingly, there were no strong observable batch effects based on gene expression (data not 

shown). This suggests that while gene expression may not necessarily be affected by poor quality 

RNA-Seq, high quality RNA-Seq is essential for change point identification. For the remaining 

analysis, we will refer to two batches based on the library preparation / date / RNA isolation batch: 

batch b0b1 (containing replicates b0 and b1) and batch b2b3 (containing replicates b2 and b3).  

 

5.4.3 Alternative transcription start and polyadenylation sites in tolerized vs. naïve 

macrophages  

After excluding the six problematic samples, we tested for differential change points in tolerized 

vs. naïve macrophages at each time point. While there were few significantly differential ATSSs, 

there were several tandem APA events observed in poly(A)+ RNA between tolerized and naïve 

macrophages at each time point (Fig. 5.3a). 3’UTR shortening was more frequent than 3’UTR 

lengthening in tolerized cells compared to naïve, though both were observed. One of the most 

significant differential ATSS was in Ubl7, ubiquitin-like 7 (bone marrow stromal cell-derived) (Fig. 

5.3b). One of the most significant differential APA sites in poly(A)+ samples was in Papd4, a 

cytoplasmic poly(A) RNA polymerase in (Fig. 5.3c). As post-transcriptional polyadenylation by 
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Papd4 can influence stability and translation of target mRNAs, its APA may have widespread 

downstream effects.  

GO analysis revealed that APA and ATSS events were enriched in membrane- and 

vesicle-related genes e.g. APA in endoplasmic reticulum membrane, COPI vesicle coat, exocyst, 

and intracellular membrane-bounded organelle, and ATSS in phagocytic membrane vesicle (Fig. 

5.3d). Alternative polyadenylation can affect membrane protein localization 94, suggesting the 

possibility that membrane proteins may be differentially localized in tolerized cells. Additionally, 

both APA and ATSS were enriched with immune pathways (e.g. APA in genes related to positive 

regulation of NF-kappaB import into nucleus and positive regulation of interferon-beta biosynthetic 

process, and ATSS in genes related to defense response and cytokine activity) (Fig. 5.3d,e). Two 

of the 4 genes enriched in the GO term positive regulation of NF-kappaB import into nucleus, 

Ptgs2 and Tnf, were also induced upon LPA treatment in naive cells. APA in genes related to 

endoplasmic reticulum, vesicle, and Golgi may affect cytokine release, as cytokines with signal 

peptides are trafficked from the ER through the Golgi to the cell surface (reviewed in 120). 

Intriguingly, siRNA binding was also enriched with alternative polyadenylation, including the 

genes Ago2, Tarbp2, Tlr7, and Tlr9. Ago2, the catalytic component of the RNA induced silencing 

complex, is essential for microRNA-mediated mRNA silencing. Thus, APA of Ago2 may contribute 

to differential gene silencing in tolerized vs. naïve cells. Together, these results suggest that APA 

and ATSS may be additional previously unappreciated mechanisms of differential response to 

toxins in naïve and tolerized cells. 

Analogous to the poly(A)+ RNA, change points were also identified in the chromatin-

associated RNA. 287 total differential events were identified in tolerized vs. naïve cells across all 

time points (Fig. 5.3f). For example, Gramd1b exhibited ATSS in tolerized time 30 vs. 120, 

illustrating that mountainClimber is robust to the RNA-Seq non-uniformity in the chromatin-

associated fraction (Fig. 5.3g). Note that many other change point detection approaches that only 
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identify tandem events would miss the ATSS shown in Fig. 5.3g as the proximal TSS is several 

exons away from the distal TSS. 

 

5.4.4 Comparison of cellular fractions reveals kinetics of alternative 

polyadenylation regulation  

Previous studies across cellular fractions revealed that transcription terminates close to the 

cleavage and polyadenylation site for most genes, with some exceptional genes having extensive 

3’ readthrough 88. Here, we first compared chromatin-associated and poly(A)+ 3’ ends as before, 

but with more precise de novo TU definitions. Next, we tested whether ATT co-occurs with APA, 

which has not been previously addressed with cell fractionation data to our knowledge.  

 To compare the chromatin-associated vs. poly(A)+ 5’ and 3’ ends, we calculated the 

median distal 5’ and 3’ ends across fractions (see Section 5.3 Methods). As expected, the TSS 

was highly consistent across both fractions; 25,464 / 31,308 (81%) total TSSs across all samples 

were within +/-200bp (Fig. 5.4a). At the 3’ end, most genes terminated transcription near the 

cleavage and polyadenylation site, consistent with previous observations 88. Still, there was 

observable 3’ readthrough for many genes; 13,756 / 32,238 (43%) total 3’ ends across all samples 

extended > 1kb beyond the 3’ end observed in the poly(A)+ fraction (Fig. 5.4b). There was 

apparent negative readthrough for some genes; upon manual inspection of some examples, we 

found that longer TUs may be identified in poly(A)+ than chromatin-associated RNA if exon-exon 

junction reads were present poly(A)+ but not chromatin-associated RNA. However, these were a 

minority of cases. Overall, the 5’ and 3’ consistency across fractions for most genes as well as 

3’readthrough for a significant portion of genes was expected. 

 Since we were able to predict change points in both chromatin-associated and poly(A)+ 

fractions, we next tested for concordance between ATT and APA (see Section 5.3 Methods). If 

transcription extends beyond the distal poly(A) site, then trans factor activity drives the observed 
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APA. On the other hand, if ATT is detected between the APA sites in the mature mRNA, then 

transcription rate influences APA. Out of 2,212 total significantly differential change points across 

all comparisons, a corresponding change point was identified in the same TU in the same 

comparison in the chromatin fraction for 23 cases. For 78% (18 / 23) cases, the chromatin 3’ end 

surpassed both APA sites (quadrant 1 Fig 5.3c). Of the remaining 2,189 change points without a 

corresponding change point identified in the chromatin fraction, 1,293 (59%) had a corresponding 

distal 3’ end in the chromatin fraction. This set excludes, for example, those TUs in the chromatin 

containing multiple annotated genes. Comparing the distal chromatin 3’ end to each APA site 

identified in the poly(A)+ fraction, including non-differential APA sites, revealed a similar pattern; 

1,064 / 1,293 (82%) were in quadrant 1, often with transcription terminating soon after the distal 

poly(A) site (Fig. 5.4d). This suggests that transcription terminates near or beyond the distal APA 

site, and trans factors are responsible for the observed APA. Wdr18 is one example from quadrant 

1 of APA in tolerized vs. naïve at time 30, and the chromatin 3’ end is near the distal end identified 

in poly(A) (Fig. 5.4e). Interestingly, there was 3’ readthrough several kb downstream of Papd4 

into the next gene (Fig. 5.4f). Because the chromatin TU contained multiple annotated genes, 

Papd4 was not considered in the analysis across cell fractions. Thus, the results reported here 

are likely a lower limit of the total TUs with extended 3’ readthrough relative to APA.  

 

5.5. Discussion 

In summary, we report de novo TU definition and alternative 5’ and 3’ end prediction in tolerized 

and naïve macrophages. To our knowledge, this is the first report of ATSS and APA observed in 

tolerized macrophages. While epigenetic and transcriptional changes in tolerized macrophages 

are well established, we provide evidence that alternative polyadenylation and alternative 

transcription start site usage may additionally contribute to the tolerized phenotype.  
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 Alternative transcription events in tolerized vs. naïve macrophages were dominated by 

tandem APA events. While the magnitude of total APA events identified was less than, for 

example, tissue-specific APA described in Section 4, we identified APA in several genes that may 

lead to widespread downstream effects. In particular, we highlight APA in Papd4 and Ago2. APA 

of these genes may remove cis-regulatory elements and lead to changes in translation efficiency, 

localization, or stability (reviewed in Section 1). Papd4 was recently shown to regulate cell cycle 

and senescence (mediated by CPEB or QKI) by influencing stability and translation of target 

mRNAs 121,122. Although the APA events we identified are both known poly(A) sites, the functional 

consequence of APA in Papd4 is still poorly understood. Recently, two microRNAs were reported 

to regulate murine macrophage tolerization by targeting chromatin remodeling factors, thereby 

leading to transcriptional silencing of inflammatory genes 114. Because this functionality is 

dependent on Ago2, APA-induced changes of Ago2 may widely disrupt microRNA-mediated gene 

silencing. In the future, further investigation of the impact of APA in Papd4 and Ago2 may add 

further insight into the mechanism of macrophage tolerization.  

 For the first time, to our knowledge, we applied change point prediction to chromatin-

associated RNA. We suspect this was not done previously due to technical difficulties in 

identifying change points in highly non-uniform data. With this capability, we were able to analyze 

co-occurrence of ATT and APA events and determine whether transcription termination or trans 

factors dominate the definition of APA sites. Although the role of trans factors in regulating APA 

is well appreciated, the role of transcription rate was not previously well understood. We 

concluded that transcription termination likely plays little role in APA definition compared to trans 

factors. This may be related to the fact that proximal poly(A) sites typically lack the canonical 

polyadenylation signal motif (reviewed in 10), which has been implicated in transcription 

termination (reviewed in 8). Still, 3’ readthrough has been associated with other functional roles. 

Recently, unspliced nascent transcripts were reported to have extended 3’ readthrough and 
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increased degradation in the nucleus in S. pombe, suggesting that splicing efficiency and 3’ 

readthrough can control the transcriptional response 123. In the future, de novo TU definition and 

change point identification in chromatin-associated RNA-Seq will help elucidate the functional 

roles of 3’ readthrough.  

While this dataset in time series after LPA treatment lends itself to kinetic studies and 

lengthening or shortening of TUs over time, we focused on comparing tolerized vs. naïve 

macrophages in this study. Due to batch effects and sample outliers, batch b0b1 only contained 

two time points, while batch b2b3 did not contain the baseline timepoint 0. Thus, interpretation of 

kinetic studies proved difficult. In the future, kinetic studies of ATSS and APA, analogous to 

splicing kinetic studies done previously, will provide further insight into how these mechanisms 

impact gene regulation.  
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5.6. Figures 

 
Figure 5.1 | Experimental overview. 
Top: overview of the experimental protocol for macrophage tolerization. Bottom: table of 
chromatin-associated RNA-Seq (caRNA) and poly(A)+ RNA-Seq across different replicates (b0, 
b1, b2, b3) and time points measured in minutes (columns). Yellow T and blue N indicate tolerized 
and naïve samples respectively. Grey crossed out samples indicate those samples were removed 
due to poor quality. 
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Figure 5.2 | Identification of alternative 5’ and 3’ ends in macrophage cellular fractions. 
(a, c) The total change points per TU in all samples stratified by each change point type (x-axis) 
and colored by GENCODE vM10 region in poly(A)+ (a) and chromatin-associated RNA (c). (b, d) 
Total 5’ and 3’ ends per TU with at least 10% RU colored by the change point type of the end with 
maximum RU in poly(A)+ (b) and chromatin-associated RNA (d), prioritized as follows: Tandem 
> Distal > Other. (e) Clustering of all samples by TU length from weighted 5’ end to weighted 3’ 
end, including only group #4 for poly(A)+ and group #3+4 genes for chromatin (see Fig. 5.S1c,e).   
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Figure 5.3 | Alternative transcription start and polyadenylation site usage in tolerized vs. naïve 
macrophages. 
(a) Volcano plot of change points in tolerized vs. naïve poly(A)+ samples at each time point. For 
each panel, the top label indicates the time point and the bottom label indicates the batch. The x-
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axis is the RU difference (negative indicates shorter UTR in tolerized cells) and the y-axis is the -
log10(BH-corrected p-value) from mountainClimberTest. Change points are colored by change 
point type (grey indicates non-significant). (b) Alternative TSS in Ubl7 in poly(A)+ tolerized vs. 
naïve at time 180 (BH-corrected p = 6.25e-22, RU difference = 0.56). The black dotted line 
indicates the predicted change point. (c) Alternative polyadenylation in Papd4 in poly(A)+ 
tolerized vs. naïve at time 000 (BH-corrected p = 2.64-15, RU difference = -0.41).The black dotted 
line indicates the predicted change point. (d, e) Top enriched Gene Ontology (GO) terms with ≥ 
3 genes and -log10(Bonferroni-corrected p-value) ≤ 0.05 in tolerized vs. naïve in poly(A)+ RNA at 
any time point the 3’ end (d) and 5’ end (e). Bars are colored by the total genes enriched per GO 
term. (f) Volcano plot of change points in tolerized vs. naïve chromatin-associated samples, 
combining all time points. (g) Alternative TSS in chromatin-associated tolerized time 30 vs. 120 
in Gramd1b (BH-corrected p = 2.45e-28, RU difference = -0.6). The black dotted line indicates 
the predicted change point. 
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Figure 5.4 | Chromatin-associated vs. poly(A)+ 5’ and 3’ ends.  
(a, b) Median distal 5’ (a) and 3’ (b) end across replicates in chromatin-associated vs. poly(A)+ 
RNA, zoomed in to +/- 500bp (a) and -1kb to +10kb (b). (c) chromatin-associated change point 3’ 
end (proximal, by definition) relative to significantly differential 3’ end in poly(A)+ in the same 
pairwise comparison. (d) distal 3’ end in chromatin-associated RNA relative to all change points 
in poly(A)+, excluding those genes with change points in the chromatin-associated RNA (i.e. 
excluding the genes shown in (c)). (e) Wdr18, an example of a significantly differential 3’ end 
(pBH = 2.65e-06, RU difference = -0.29) in quadrant 1 in panel (d). (f) Papd4, as in Fig. 5.3d 
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shown with corresponding chromatin-associated RNA-Seq. T, tolerized; N, naïve. Both proximal 
and distal change points are shown in dashed black lines. 
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5.7. Supplementary Figures 
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Figure 5.S1 | Overview of mountainClimberTU and mountainClimberCP results.  
(a) Total transcription units at least 1kb long in each sample, colored by the number of overlapping 
genes. -1 indicates TUs with no annotation on the sense strand, but with overlap on the antisense 
strand. (b, d) Median total change points per TU in each sample with each change point label 
(rows) and overlapping GENCODE vM10 gene regions (colored) in poly(A)+ (b) and chromatin-
associated (d) fractions. (c, e) Total TUs across all samples in poly(A)+ (c) or chromatin-
associated RNA (e) in each of the four categories described in Section 3.3 (see Fig. 4.S3a for 
further change point category descriptions). ATE across, alternative terminal (first- or last-) exon 
across different samples; ATE single, ATE within the same sample; intron-containing, the last 
segment contains an annotated intron; tandem, the last segment does not overlap any annotated 
intron.  
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Figure 5.S2 | Poly(A)+ sample clustering by relative weighted 3’ length.  
Clustering of the weighted 3’ length relative to PolyA.Naïve.000.b2 for 2,673 TUs with change 
points identified, at most 5 missing samples per gene, and abs(rowMax) ≤ 1000 for visualization 
purposes. Rows are scaled. 
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Chapter 6: Conclusions 

As the cost of high throughput sequencing decreases, more datasets and new high throughput 

experimental protocols continue to be developed. The development of bioinformatic tools to not 

only analyze new types of data but also integrate different types of data together is imperative to 

understand biology. In this dissertation, this we described computational pipelines developed for 

analyzing different types of RNA-Seq to understand post-transcriptional mechanisms of gene 

regulation.  

 In chapter two, we reported hundreds of sciRNAs and their cognate targets through 

integrative analysis of small RNA-Seq and Degradome-Seq. By using Degradome-Seq as a 

functional readout of RNA cleavage and developing an analysis pipeline to consider unannotated 

small RNAs, we were able to identify many novel sciRNAs. Additionally, we found that sciRNAs 

primarily target retrotransposons, suggesting that retrotransposons may be leveraged as signals 

for small-RNA mediated cleavage. This work illustrates how novel biological insights can be drawn 

through integrative analysis of different types of high throughput sequencing.  

 In chapter three, we developed a novel algorithm, mountainClimber, for change point 

identification in RNA-Seq based on a notion of measuring signal non-uniformity. It outperformed 

an existing method and overcame several limitations of other existing approaches. Importantly, it 

simultaneously identifies alternative transcription start sites (ATSS) and alternative 

polyadenylation (APA) while other methods ignore ATSS prediction.  

 The mountainClimber pipeline was applied to GTEx RNA-Seq to identify ATSS and APA 

in human tissues in chapter four. Because mountainClimber was applied to single samples prior 

to testing across two biological conditions, we were able to estimate the contribution of individual 

and tissue to the observed ATSS and APA variability. Additionally, we estimated the length of 

each 5’ and 3’ end in each individual sample and demonstrated tissue-specific differences in 



 145 

global 5’ and 3’ lengths over all genes. Genes with shorter or longer 5’ and 3’ ends in different 

tissues were enriched in different functional categories, suggesting that ATSS and APA 

functionally regulate different gene sets in different biological contexts. These analyses of single 

samples are not possible with other existing approaches that require two biological conditions to 

be defined a priori in order to identify ATSS and APA. From our analysis of differential change 

points across pairwise tissues, we estimated 70% and 56% of genes utilize ATSS and APA in 

different tissues, consistent with previous reports. In summary, we reported the largest 

characterization of 5’ and 3’ ends in human tissues.  

 In chapter five, we demonstrated the applicability of the mountainClimber pipeline to 

different types of RNA-Seq due to its inherent robustness to RNA-Seq non-uniformity. By 

predicting ATSS and alternative transcription termination in chromatin-associated RNA as well as 

ATSS and APA in poly(A)-selected RNA, we provided a more complete picture of RNA processing 

from the chromatin to the mature RNA product. For the first time, we identified several alternative 

5’ and 3’ ends in macrophages tolerized to toxin exposure compared to naïve cells. While APA is 

known to be regulated by trans factors, the role of transcription termination in APA was not 

previously well understood. We showed that transcription typically terminates beyond the distal 

poly(A) site, suggesting that transcription is not a primary factor in proximal poly(A) site definition.  

In summary, our computational pipelines were used to expand the known repertoire of 

small cleavage-inducing RNAs, alternative transcription start sites, and alternative 

polyadenylation sites, thereby providing a more complete picture of post-transcriptional gene 

regulation. Although previous methods existed for these types of analyses, we overcame several 

limitations and were able to draw novel insights. While we generated new sequencing datasets 

for parts of these studies, it should also be noted that our methods were able to draw novel 

insights from existing publicly available datasets as well. As more datasets become available, 

their re-analysis by novel bioinformatic algorithms will enrich our understanding of biology.   
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