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Abstract

Applied Lattice Models for the Study of Configuration Thermodynamics of
Multicomponent Crystalline Materials

by

Luis Barroso-Luque

Doctor of Philosophy in Materials Science and Engineering

and the Designated Emphasis in

Computational and Data Science and Engineering

University of California, Berkeley

Professor Gerbrand Ceder, Chair

Computational methods that enable calculations of thermodynamic properties emergent
from the specific arrangements of distinct atomic species in materials have become indis-
pensable in the advent of flourishing research into materials with increasingly large num-
bers of components. Calculations involving lattice models fitted to the energies of a set
of representative atomic configurations of a material—predominantly by way of the cluster
expansion method—are now standard and commonly used by researchers. As researchers
explore materials with growing numbers of components, continued development of cluster
expansion-based methodology has ensued. Although substantial progress has been made,
the vast majority of developments have focused solely on statistical regression methodology
to fit expansions using the original underlying mathematical formalism largely unchanged.

In this thesis, we revisit the mathematical framework underlying the cluster expansion
method and re-establish it in a more general form as a representation for generalized lattice
Hamiltonians of atomic configuration. In doing so, we present two categories of representa-
tion that are found to be direct generalizations of the Ising and Potts models respectively.
We rigorously define Fourier cluster expansions—those used in the original formalism of the
cluster expansion method—and present some of their useful mathematical properties. We
then show how, regardless of the particular choice of basis, Fourier cluster expansions are
essentially expressions of a unique cluster decomposition. The intimate relation between the
cluster decomposition and well-established function decompositions used in statistics estab-
lishes an avenue to a formal interpretation of expansion terms as the mean of statistically
independent atomic interactions. The second representation, which we have named the gen-
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eralized Potts frame, involves a redundant representation by way of a mathematical frame.
By constructing a representation that is over-complete (more functions than dimensions)
additional robustness and expressiveness when estimating coefficients are obtained. We il-
lustrate the capability of the Potts frame representation to fit the most accurate Hamiltonian
for a system, which to the best of our knowledge, represents the largest configuration space
attempted to date. We also describe general and practical ways to implement the aforemen-
tioned representations of lattice Hamiltonian and methods to carry out calculations with
improved time complexity relative to other available cluster expansion implementations.

The formal structure of Fourier cluster expansions and Potts frame expansions are then used
to motivate and develop novel structured-sparsity-based linear regression methods that allow
robust parametrization of generalized lattice models from first principles electronic structure
calculations. The methods developed rely on establishing structural priors on the expansion
coefficients—some of which have previously been based on heuristics—which we motivate and
justify with more rigorous mathematical and statistical arguments. The regression methods
were developed with the goal of enabling accurate estimation of expansion coefficients in
high dimensional configuration spaces using relatively small samples of training structures.
We describe a series of practical implementations and auxiliary methods necessary for the
practical implementation and learning of applied lattice models of complex multi-component
materials. Finally, we demonstrate the successful application of the methodology developed
to learn lattice models of several Li transition metal oxides and medium entropy alloys
that have garnered considerable attention from researchers due to their remarkable and
technologically relevant properties.

The thesis is concluded by suggesting avenues for continued development of lattice-based
methods geared toward studying order and partial disordered in inorganic multi-component
materials. A general commentary on the suite of lattice-based methodology in the context
of the rapidly growing development of machine learning potentials is given.
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Chapter 1

Introduction

Science grows through accretion but becomes potent through distillation.

- Professor James P. Sethna [200]

The work in this thesis concerns the formal development of mathematical representations
of generalized Lattice models with discrete configurations. In addition, practical method-
ology to fit lattice models of real multi-component materials is developed and benchmark
applications are reported. These methods subsequently allow efficient thermodynamic cal-
culations of properties that depend on atomic ordering. We first briefly motivate this work
by highlighting both the scientific and technological value in deepening our understanding
of the roles of (partial) disorder of atomic configuration in the thermodynamic stability and
emergent properties of multi-component inorganic crystalline materials. Subsequently, we
provide a basic exposition of statistical mechanics and thermodynamics driven by atomic
configuration. Finally, we introduce and motivate the role of lattice models as a compelling
mathematical framework that enables practical statistical thermodynamic calculations in
complex multi-component crystalline materials of recent scientific and technological interest.

1.1 Multi-principal element materials

The mixing of different components—in the present case chemical species—with the goal of
tailoring physical properties of materials is at the very foundation of materials science and
engineering research. One might expect that a mixture of different components would sim-
ply yield materials with properties that are averages of the constituent properties. Notwith-
standing, the intricacy of atomic interactions between components results in a true materials
gestalt, where quite different and often remarkably enhanced properties can emerge.

In the last two decades the mixing of several elemental species in almost equal pro-
portions, in what are now referred to as high entropy or multi-principal element (MPE)
materials, has become predominant in materials research and novel materials design [143].
The combinatorial growth of composition spaces under the MPE paradigm has allowed the
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discovery and precise tuning of materials with properties of significant technological value
[76, 78, 163]. Among many applications, the MPE paradigm has led to the discovery of
several classes of materials with remarkable structural and functional properties. For ex-
ample, high entropy metallic alloys, such as the Cantor (CrMnFeCoNi) and related alloys
can exhibit both high strength and high ductility [78]. MPE CrMoNbVZr based nitrides
have been explored as supercapacitors due to their notably high capacitance [110]. CuS
based semiconductor MPEs have been found to have exceptionally high thermoelectric fig-
ures of merit (ZT) [257]. MPE materials involving LiMnOF have been also found to have
remarkable electrochemical properties when used as high-capacity battery electrodes [45].
Furthermore, a myriad of other MPE materials have been studied for several other techno-
logical applications including hydrogen storage, piezo-electrics, electronic transformers, soft
magnets, spintronics, and thermal insulators [76, 163].

The viability and promising properties of MPE materials are strongly dependent on
the nature of atomic interactions and the resulting energy landscape in terms of atomic
configurations. A multitude of relevant properties including stability and resulting phase
diagrams [3, 48, 118, 139, 160, 164, 182, 227], short-range order [41, 46, 67, 108, 136,
159, 204], ionic percolation [165, 224], among many others [143] are strongly driven by
the thermodynamics of atomic configuration. As a result, the development of accurate
computational thermodynamic methods is indispensable to deepen our understanding and
further explore the nature of these atomic interactions and the effects of different levels of
atomic disorder in determining the thermodynamic stability and emergent physical properties
of MPE materials.

1.2 A statistical thermodynamics primer

We begin by giving a brief distillation of the basic concepts of equilibrium statistical thermo-
dynamics that are necessary for the study of atomic configuration and disorder in materials
science. Although it is common practice to separate the subject into statistical mechanics
(the microscopic details of matter) and thermodynamics (the emerging macroscopic states
of matter), we attempt to give our exposition of some of the basic concepts in the thermal
physics of materials in a cohesive manner. This hopefully makes our exposition briefer and
helps to emphasize the practical value of (microscopic) first principles-based computational
methods in extending our understanding of technologically relevant (macroscopic) properties
of materials. In short, the essence of equilibrium statistical thermodynamics is to describe
the macroscopic states of matter, their properties, and their responses to changes in their en-
vironment, all of which emanate from the physical interactions of its microscopic constituents
and the fluctuations of said interactions at finite temperatures.
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Macroscopic and microscopic states

A macroscopic state of matter is specified by a small and finite set of extensive variables.1

Relevant extensive variables include the internal energy E, the number of chemical species
present Ni, total volume V , electric polarization P and magnetization M [71]. We univer-
sally denote an extensive variable with the scalar X and a set of several extensive variables
with the vector X. A macroscopic state of matter is fully specified by the values of all
relevant extensive variables. In addition, a conjugate intensive variable2—which we denote
with Y and Y—is associated with each extensive variable. Intensive variables include chem-
ical potentials µi, pressure P , electric fields E, and magnetic fields H . Conjugate pairs of
extensive and intensive variables represent means for matter to exchange energy with its
surroundings [26, 71]. Changes in the macroscopic states of matter and the accompanying
energy exchanges can be fully specified by the initial and final set of extensive variables X
and the values of their conjugate intensive variables Y . The set of pairs of conjugate variables
X, Y is collectively referred to as thermodynamic coordinates. Among the set of extensive
variables, the internal energy U plays a central role and must always be present to fully
specify any macroscopic state of matter [26, 71]. Changes in internal energy at a given tem-
perature constitute precisely what we call thermal interactions—that is energy transfer that
occurs as heat—which are essential to give rise to the emergent thermodynamic properties of
materials at finite temperatures. The internal energy U , along with its conjugate intensive
variable, inverse temperature 1/T , is thus imperative to obtain a complete description of the
equilibrium properties of macroscopic states interacting with their surroundings.

In contrast, microscopic states or microstates must be specified by a very large number
of mechanical variables. The specific mechanical variables depend on the physical principles
used in the description at hand. For example, in a classical system, the positions r and
momenta p of all particles specify a microscopic state. For a quantum mechanical system,
a microstate is specified by the precise components of an infinite dimensional state vector
|Ψ〉 in a suitable basis [112]. A theoretically formal treatment of matter requires a quantum
mechanical treatment, however, the framework of statistical thermodynamics is independent
of the specific mechanical description of microscopic constituents [71, 173]. In fact, many
practical approximations can be obtained from classical descriptions or from a mixture of
quantum and classical (semi-classical) descriptions. A semi-classical description of materials
is the foundation of the methods developed in this thesis. Specifically, we will label a
general microstate as s—with the implication that fully specifying it requires knowing a
large, sometimes infinite set of coordinates. The space of all possible microstates s of a
particular system is referred to as its phase space. Furthermore, any mechanical description
of a microstate in statistical thermodynamics must include a Hamiltonian function H that

1That is variables that are first-order homogeneous functions of the size of a system (commonly specified
by the number of particles).

2These are formally zeroth order homogeneous functions of the system size; meaning their values are
independent of system size.
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maps any possible microstate s to its total energy.3

Functions X̃(s) defined over phase space and which vary smoothly s with are referred
to as observables [173]. The connection between macroscopic and microscopic states lies

in the statistical relationship between extensive variables X and observables X̃(s). Specifi-
cally, the values of macroscopic extensive variables X are the expectation of thermodynamic
observables,

X = 〈X̃(s)〉 (1.1)

Notably, the internal energy E for a thermally interacting system is the expectation value
of its Hamiltonian, E = 〈H〉.

The fundamental postulate

Having described the formal connection between microscopic and macroscopic states as the
expectation of observables, we are still left with specifying the details of the probability
distribution over which the expectation in Equation 1.1 is taken. In reality, observables
measured in experimental measurements, are time averages over the dynamic evolution of
microstates.4 However, to do so computationally, we would need to specify the time evolution
of each of the large number of variables specifying the microstate of the system—an effort that
is intractable for all but the simplest systems. The situation is elegantly resolved in statistical
thermodynamics by replacing time averages with the expectation with respect to appropriate
probability distributions—referred to as thermodynamic ensembles—over accessible volumes
of phase space.5 The prescription to specify these thermodynamic ensembles rests on a
fundamental postulate, here named the fundamental postulate, that establishes a deeper
connection between macroscopic states and the consistent volume of phase space (i.e. sets
of microscopic states).

The fundamental postulate of statistical thermodynamics presupposes the existence of
the concept of entropy as a function of the total number of accessible microstates, or in
other words, the accessible volume of phase space [173]. Furthermore, the set of accessible
states is determined by the values of macroscopic variables set by the environment, which
are referred to as the thermodynamic boundary conditions. In light of this, the entropy can
also be considered an extensive function of the prescribed set of thermodynamic coordinates
which define the resulting macroscopic state.

A general expression for entropy is given by the Gibbs entropy formula [14, 112],

S(Γ(s)) = −kB
∑

s

P(s) lnP(s) (1.2)

3In classical and semi-classical descriptions H is usually a function. In quantum description it is an
operator [112].

4As governed by their Hamiltonian and associated equations of motion [112].
5Rigorous justification for the validity of doing so requires the phase space and dynamics of microstates

to satisfy certain conditions, such as ergodicity [113]. Fortunately, these conditions are favorably met in
almost all physical systems addressed in practice.
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where Γ(s) denotes the accessible phase space volume; kB is Boltzmann’s constant; and P(s)
is the thermodynamic ensemble distribution—that with respect to which the expectation
values to compute observables are taken with.

The maximization of entropy determines equilibrium macroscopic states and the distribu-
tion of the underlying thermodynamic ensemble of microstates as stated in the fundamental
postulate of statistical thermodynamics:

The values of the extensive parameters (E,X) which specify a macroscopic state
in thermodynamic equilibrium are those that maximize the entropy over all inter-
nal degrees of freedom—microscopic states—consistent with the thermodynamic
boundaries [26, 173]. Equivalently, the equilibrium thermodynamic ensemble
is the probability distribution over accessible microstates which maximizes the
entropy subject to constraints compatible with the thermodynamic boundaries.

When entropy is expressed as a function of extensive variables S = S(E,X), it is referred
to as the fundamental equation of thermodynamics since it contains a complete thermody-
namic description of the system considered [26, 173]. Apart from determining equilibrium
and stability conditions, all conjugate variables Y and thermodynamic material properties6

γ (i.e. heat capacities, compressibility, susceptibilities) can be obtained simply by taking
derivatives of the fundamental equation,

Y =

(
∂S

∂X

)

X\X

γ =

(
∂2S

∂X2

)

X\X

where X \X means all extensive variables of S except the variable X being differentiated
with respect to. We have lumped the energy E into the generic set of extensive variables X.
Explicitly, the derivative of entropy with respect to internal energy is the inverse temperature
1/T = (∂S/∂X)X , which indeed can be shown to correspond to our intuitive concept of
temperature [26].

A final requirement to complete the basis of statistical thermodynamics is the principle
of equal apriori probabilities [162]. The principle states that lacking further information, the
accessible microstates in an isolated system—all values of extensive variables fixed—in equi-
librium occur with equal probability [37, 173]. This implies that for isolated systems—in the
micro-canonical ensemble—the entropy and resulting thermodynamic ensemble distribution
are given by,

S(Γ(E)) = kB ln Γ(E)

P(s) = exp

(
S

kB

)
=

1

Γ(E)
(1.3)

6Materials properties are also known as response functions, since they can be measured experimentally
as a response to changes in thermodynamic coordinates [112].
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where Γ(E) represents the phase space volume or total number of micro-states with energy
equal to the fixed value of energy E: H(s) = E.

It is easy to check that the uniform probability distribution in Equation 1.3 gives the
solution to the maximization of entropy under no external constraints7, which implies fixed
extensive thermodynamic coordinates as boundary conditions. However, in many situations,
matter does not exist as an isolated system. Specifically, for a vast majority of cases, ma-
terials on earth exist in an environment (i.e. the atmosphere) that sets, at a minimum, the
values of temperature and pressure as boundary conditions.

Thermodynamic potentials and ensembles

Situations where matter is not isolated, meaning some thermodynamic boundary conditions
involve fixed values of intensive quantities, are described in statistical thermodynamics by
appealing to different thermodynamic potentials and their associated thermodynamic ensem-
bles. Conceptually, this requires treating the extensive variables conjugate to the intensive
quantities being fixed explicitly as observables X = 〈X̃(s)〉T . In order to find the respec-
tive distribution one now needs to maximize the entropy subject to constraints that will
ensure that observables correctly match the value of their corresponding extensive variable,
X = 〈X̃(s)〉T . This prescription is achieved by a constrained maximization of the entropy
over all possible distributions P(s) as follows,

argmax
P(s)

− kB
∑

s

P(s) lnP(s)− α
(∑

s

P(s)− 1

)
− λ>

(∑

s

P(s)X̃(s)−X
)

(1.4)

where α and λ are Lagrange multipliers for the normalization of the distribution and ther-
modynamic consistency constraints respectively.

The solutions of the above maximization are of the following form [112],

P(s) = e−λ
>X̃(s)−Ψ/kB (1.5)

Where the Lagrange multipliers λ are in fact the respective negative conjugate extensive
quantities8 normalized by the thermal unit of energy kBT , λ = −Y /kBT [14, 173]. The
remaining factor in the exponential, e−Ψ/kB , represents a normalization factor that depends
on the function Ψ which is determined based on the fluctuating extensive variables X.

Moreover, to account for thermal interactions, energy must be allowed to fluctuate
(〈H(s)〉T = E) such that writing it out explicitly in Equation 1.5 gives a more familiar
expression known as a Boltzmann distribution,

P(s) =
1

Z
exp

(
−βH(s) + βY >X̃(s))

)
(1.6)

7A normalization constraint is always necessary to ensure the solution is a valid probability distribution.
8Formally they correspond to conjugate extensive quantities in the thermodynamic representation of

entropy [26].



CHAPTER 1. INTRODUCTION 7

where β = 1/kBT is the inverse temperature in units of energy. Z is a re-writing of the
normalization factor e−Ψ/kB as what is known as the partition function. Explicitly, since Z
is used to ensure that P(s) is properly normalized, it is given by,

Z(β, βY ) =
∑

s

exp
(
−βH(s) + βY >X̃(s))

)
(1.7)

It is precisely a Boltzmann probability given in Equation 1.6 over which the thermody-
namic expectation values to compute observables 〈X̃(s)〉T are taken.

Using Equation 1.7 for the partition function, we can obtain the following expression for
the function Ψ,

Ψ(β, βY ) = kB lnZ(β, βY ) (1.8)

And based on the solution of the maximization of Equation 1.4 and additional thermo-
dynamic relations [26, 112], one can show that the function Ψ can also be expressed as,

Ψ(T,Y ,X
′
) = S(E,X,X

′
)− 1

T
E +

1

T
Y >X (1.9)

Where X
′
refers to the set of all extensive variables that are set as environmental bound-

ary conditions (i.e. not allowed to fluctuate). We recognize Equation 1.9 as a Legendre
transformation of the entropy S(E,X,X

′
) with respect to the intensive variables Y .

A rearrangement of Equation 1.9 results in what is known as the free energy or thermo-
dynamic potentials for the given thermodynamic system under the prescribed set of thermo-
dynamic boundary conditions,

F (T,Y ,X
′
) = −TΨ(T,Y ,X

′
) = E(S,X,X

′
)− TS − Y >X (1.10)

where now the equation represents a Legendre transformation of the internal energyE(S,X,X
′
)

with respect to the intensive variables Y [26, 37, 173].
Lastly, using Equations 1.8 and 1.10 we can also obtain the free energy in terms of the

partition function,
F (β, βY ,X

′
) = −kBT lnZ(β, βY ) (1.11)

The expression for free energy in terms of the partition function given in Equation 1.11 is
essentially what allows us to carry out thermodynamic calculations based on a microscopic
description of matter. In fact, an expression for free energy constitutes a fundamental ther-
modynamic equation in the sense that it also contains a complete description of a system’s
thermodynamics, by which fluctuating thermodynamic coordinates and response functions
can be computed by taking the appropriate derivatives.

The methodology developed in this thesis allows direct statistical thermodynamic calcu-
lations in the following two thermodynamic ensembles, which are commonly used thermo-
dynamic ensembles in materials research,

• The canonical ensemble where only energy is allowed to fluctuate. The corresponding
free energy F (T ) = A(T ) = E − TS is called the Helmholtz free energy.
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• The (semi) grand canonical ensemble where energy and species compositions are al-
lowed to fluctuate. The free energy F (T,µ) = Φ(T,µ) = E − TS −N∑µixi (where
µ are relative chemical potentials for the species whose compositions x are allowed to
fluctuate) is known as the Grand potential.

Specifically, the methods we develop enable statistical thermodynamic calculations for
micro-states of atomic configuration in multi-component crystalline materials. By config-
urations, we mean the precise arrangement of species in space. For inorganic crystalline
materials, this means the precise arrangement of chemical species over crystallographic sites;
or in other words the possible colorings or decorations of the sites in a crystal structure with
species chosen from prescribed sets of allowed species.

1.3 Generalized lattice models of atomic configuration

In order to make use of Equations 1.6 and 1.11 for statistical thermodynamic calculations,
we need a precise way to construct a Hamiltonian H(s) where the microstates s correspond
to atomic configurations. Such an endeavor, and precisely the one taken up in this work, can
be suitably achieved using lattice models. Lattice models have always played an essential
role in statistical physics since the very inception of the field. Their use has been crucial
to understanding and discovering a variety of complex physical phenomena, such as phase
transitions, critical phenomena, and universality classes [14, 200].

Methods based on generalized lattice models are also some of the most widely used tech-
niques in the computational study of configuration thermodynamics in materials. Specifi-
cally, the cluster expansion method [192] coupled with Monte Carlo sampling has become
an established tool in the computational study of first principles thermodynamics and sta-
tistical mechanics of multi-component metal alloys and ionic materials [212, 231]. The
mathematical framework of the cluster expansion method has been used to further establish
additional methods that have themselves become invaluable in the computational study of
multi-component materials. For example, special quasi-random structures (SQS) [263], spe-
cial quasi-ordered structures (SQoS) [135, 184], and small sets of ordered structures (SSOS)
[109], enable generation of representative structures for different levels of configurational
disorder within manageable supercell sizes, such that they are amenable to calculations with
highly accurate first-principles electronic structure methods. Additionally, cluster expansion-
based methods allow practical—and in some cases rigorously provable—generation of ground
state and near ground state configurations[100, 103, 128].

However, the development and applications of the aforementioned methods has been
mostly limited to binary and ternary metallic alloys and transition metal oxides. Recent
interest in applying such methods to higher dimensional and more complex configuration
spaces has required development of additional methodology to address many practical chal-
lenges [9, 150, 153, 253]. Despite several developments in parameter estimation and training
data sampling for building cluster expansions, scant attention has been given recently to the
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formal mathematical framework on which the vast majority of these methods are based. An
essential part of the present work is focused precisely on revisiting and extending the under-
lying formal mathematical framework for representing and fitting generalized Lattice models.
Before doing so, let us briefly contextualize and motivate the endeavor by introducing three
of the most prominent classical lattice models.

The Ising, lattice gas and Potts models

We briefly introduce three of the simplest yet most studied classical lattice models, the Ising
model, the lattice gas model, and the Potts model, because they are deeply connected to the
generalized representations that we develop later on.

The Ising model is one of the simplest but most heavily studied lattice models that
exhibits non-trivial statistical thermodynamic behavior. In its original form, which involves
only nearest neighbor interactions, the Ising model exhibits a phase transition at finite
temperature for spatial dimensions > 2 [22]. Such is the versatility of the Ising model, that
it can be used as a simple model for magnetism, ordering in binary alloys, and liquid-gas
transitions.

The Ising model Hamiltonian involves a collection of two-state spin variables si = ±1
located at sites on a specified lattice. The Ising Hamiltonian with nearest neighbor pair
interactions and a magnetic field is given as,

H(s) = −h
∑

i

si − J
∑

<ij>

sisj (1.12)

where s = s1, s2, . . . , sN is a particular configuration of N spins. The sum over < ij > is
done over all nearest neighbor sites i, j. h is the value of an externally applied field. And J
is a pair interaction parameter.

A variety of rich thermodynamic behavior of the Ising model results from considering dis-
tinct domains specified by lattices with different symmetries [15, 16, 44, 126]. Yet even when
considering the same lattice, the relative magnitudes of h and J can also drastically change
the resulting thermodynamic behavior. As an example exhibiting complex thermodynamic
behavior, Figure 1.1 shows a computed phase diagram and sampled configurations from
Monte Carlo calculations of a face-centered cubic (FCC) anti-ferromagnetic (AF) (J = −1)
Ising model. The simple FCC-AF Ising model exhibits first order (h = 0) and second order
(h > 0) phase transitions and two different states order. When used as a model for a binary
AB alloy (A = 1, B = -1, h ≥ 0) the model exhibits different ordering transitions based on
the magnitude of the field h (which in this case h can be thought of as a relative chemical
potential). Indeed, if the chemical pair interactions for a binary alloy are EAA, EBB and
EAB, then the interaction parameter is given by J = 1

4
(EAA +EBB − 2EAB) and the field as

h = z
4
(EAA − EBB) (z is the number of nearest neighbors per site).9

9We are assuming positive values of the parameters, that is E◦◦ > 0 represent attractive interactions
(i.e. they lower the energy) based on the form of Equation 1.12.
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Figure 1.1: Monte Carlo results of a face-centered cubic anti-ferromagnetic Ising model. The
top panel shows the phase diagram, relative internal energy, and heat capacities for different
values of magnetic field (relative chemical potentials) from Wang-Landau sampling in a 256-
site supercell. The bottom panel shows examples of ordered and disordered configurations
from Metropolis-Hastings simulated annealing of a 2048 site supercell.

The Ising model can also be used to model liquid-gas transitions simply by choosing a
spin value, say s = 1 to represent an occupied site and the other s = −1 to represent a vacant
site. However, it is much more explicit to instead use the change of variables n = (s+ 1)/2,
so that the resulting occupation variable n = {0, 1} is equal to 1 if the site is occupied and
zero otherwise. With this change of variables, one obtains the lattice gas model, and its
Hamiltonian is given by,

H(n) = −µ
∑

i

ni − ε
∑

<ij>

ninj (1.13)

where the parameters are related to the Ising model as follows, the chemical potential is
given by µ = 2(h− qJ) and the interaction energy by ε = 4J .

In fact, a lattice gas model can also be used to model a binary alloy. If we simply re-
interpret the occupation variables n to represent the presence of one of the species of the
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alloy, and the absence of said species implies the other allowed species is present. For example
ni = 1 means that species A sits at the i-th site, and ni = 0 that species A is not at the
i-th, implying that B is. In such a case the relationship between lattice gas interactions and
species interactions EAA, EBB and EAB are given by, µ = zEAB and ε = (EAA+EBB−2EAB).

The equivalence between the Ising model and the lattice gas model can be made more
evident by replacing the spin and occupation variables with a general site function φ : Ω→
[−1, 1]; where Ω = {A,B} is a set with two elements that represent the states each site can
have. In doing so, the Ising and the lattice gas Hamiltonian can be expressed in the following
general form,

H(σ) = −J1

∑

i

φ(σi)− J2

∑

<ij>

φ(σi)φ(σj) (1.14)

Where one can now think of the variables σ ∈ Ω abstractly as states—explicitly as species
for the binary alloy scenario σ ∈ {A,B}. For the case of the Ising model the site function can
be explicitly expressed as φ(σ) = 21A(σ)− 1. In the Lattice gas, the site function is simply
φ(σ) = 1A(σ). Where 1A(σ) is an singleton indicator function for state A (i.e. 1A(σ) = 1 if
σ = A and 1A(σ) = 0 if σ 6= A).

Using the above abstraction, we can trivially extend the model to allow more than 2 states
at each site, Ω = {A,B,C, . . .}. For example, we can express a Hamiltonian representing a
simplified ternary alloy with nearest neighbor interactions as follows,

H(σ) = −J
∑

<ij>

1A(σi)1A(σj) + 1B(σi)1B(σj) + 1C(σ)1C(σ) (1.15)

= −J
∑

<ij>

δσiσj (1.16)

The above is clearly still a simplified model. We have set all interactions between like
species to a single value parameter J and all interactions between different species to zero.
This simplified model of a ternary alloy corresponds to the 3-state standard Potts model.
The simple extension to q-states using the same Hamiltonian in Equation 1.16 is known as
the standard q-state Potts model [250].

The standard q-state Potts model (and a related version the planar Potts model), al-
though deceivingly simple, shows a variety of complex behavior based on the number of
states q and the lattice symmetry that is still an active research area in statistical physics
[13, 62, 125, 241]. Further extensions of the Hamiltonian in Equation 1.14 that allow longer
range, multi-body interactions, and random coupling constants are the foundation of the
modern field of spin glasses and disordered systems [19, 142, 173].

Generalized lattice models as coarse-grained models of atomic
configuration

We have introduced three simple yet quintessential examples of classical lattice models, the
Ising model, the lattice gas, and the Potts model; all of which can be used as models of
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atomic configuration. In these models, and more generally in the study of statistical physics
of lattice models, a specific form of the Hamiltonian is defined a-priori, and the focus is on
rigorously studying the rich behavior of these predetermined lattice models. This has led to
groundbreaking results and insights, particularly for the mathematical treatment of phase
transitions, which have had far-reaching impacts beyond statistical physics [142]. However,
the focus of the work presented here is to instead construct lattice models that approximate
a Hamiltonian of atomic configuration for a real material as faithfully as possible. Doing
so by only introducing constraints to the functional form of the Hamiltonian that can be
formally justified (i.e. those required by physical symmetry). The final objective is to be
able to use the fitted Hamiltonian to effectively compute thermodynamic properties of real
materials.

We start by adopting a generalized form for a classical lattice model and generalize the
geometry from a simple lattice to any crystallographic structure.10 We also generalize the
functional form of the Hamiltonian beyond just pair interactions and allow the Hamiltonian
to be any possible function of configuration.11 For this general case, we can intuitively write
the Hamiltonian as an expansion in terms of multiple body interactions between species
residing on the crystallographic sites,

H(σ) =
∑

S∈[N ]

HS(σS) (1.17)

where σ is a particular configuration specified by the species occupying each site. The sum
runs over subsets of sites S, which we will call clusters. And σS = {σi : ∀i ∈ S} are
the configuration variables for each of the sites in S. The interaction terms HS can be any
possible function of the configurations of cluster S. The most general form for a Hamiltonian
as expressed in Equation 1.17 will include an interaction term for every possible cluster
of sites,12 however, for the majority of physical systems, the general locality of physical
interactions usually requires only a subset of clusters with a small number of physically
compact sites from all the possible clusters.

Lattice models as coarse-grained models for real materials

Using generalized lattice models to study properties of a real material constitutes a coarse-
graining of the mechanical variables present in the full representation of the true physical
Hamiltonian. The general Hamiltonian for a crystalline solid can be written as a function of
the canonical coordinates of all valence electrons {pi, ri} and ion cores {Pi,Ri}. Addition-
ally, for multi-component systems, the chemical nature of each core {σi} must be specified.

10That is to say we generalize to the case of a lattice with a basis.
11We will have more to say about the structure of both the space of configurations and the space of

functions over them in Chapter 2.
12Formally the sum is over the elements of the powerset of the set of N sites. Which is a total of 2N

terms.
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The Hamiltonian can be generally expressed in the following general form,

H = H({pi, ri}, {Pi,Ri, σi}) (1.18)

The possible system excitations for the Hamiltonian above can be divided into two cat-
egories based on their characteristic time scales [70]. Those involving canonical coordi-
nates, which we label as dynamic excitations—these include electronic, magnetic, vibrational
excitations—and those involving the possible configurations of the chemical nature of the
ion cores which we call static excitations. Since the static excitations are considered to be
much slower than any of the dynamic excitations, we can re-write the Hamiltonian above
parametrized by configuration to a good approximation as follows,

H({pi, ri}, {Pi,Ri, σi}) = Hσ({pi, ri}, {Pi,Ri}) (1.19)

where the atomic configuration is given by the string σ = (σ1, σ2, . . . , σi, . . .) which specifies
the chemical nature of the i-th ion core. We note that Equation 1.20 does not represent a
decoupling of dynamic and static degrees of freedom, since the possible dynamic excitations
still depend on the given configuration [70]. The form of the Hamiltonian given in Equation
1.19 is precisely what most standard first-principles methods are able to approximate to a
very high degree of accuracy.

We will not discuss the effects of the ion core momenta {Pi}13, which requires an addi-
tional step involving phonon and/or force constant calculations. Although these vibrational
effects can play critical roles in the thermodynamic properties of many materials [166, 167,
231], their treatment are beyond the scope of this dissertation. We will simply ignore the
effects of the ion core momenta {Ri} by considering them to be static, or that they can be
effectively parameterized for each configuration, such that Equation 1.19 simplifies to,

H({pi, ri}, {Pi,Ri, σi}) = H({pi, ri}, {Ri};σ) (1.20)

There is an important distinction between how the positions of the ion cores {Ri} are
handled in the coarse-graining of the Hamiltonian in Equation 1.20. We can coarse grain
the Hamiltonian by minimizing the electronic degrees of freedom while keeping the ion cores
fixed (i.e. keeping the structure fixed),

HR(σ) = min
{ri,pi}

H({pi, ri};σ) (1.21)

where we have used the notation HR to represent the coarse-grained Hamiltonian of atomic
configuration for fixed positions of the ion cores {Ri}, or in other words for a rigid lattice.

Alternatively, we can obtain a full coarse-graining by minimizing over the positions {Ri}
of the ion cores as well (i.e. including structural relaxations),

H(σ) = min
{ri,pi},{Ri}

H({pi, ri}, {Ri};σ) (1.22)

13These are themselves coarse-grained in many electronic structure calculations following the Born-
Oppenheimer approximation [47, 203].
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Both Equation 1.21 and Equation 1.22 represent a perfectly valid starting point for fitting
applied lattice models to subsequently approximate thermodynamic properties that depend
on the atomic configuration of real materials. However, both approaches come with very
different fundamental and practical implications.

1. Using Equation 1.21 one obtains a formal separation of the structural (the positions of
the ion cores {Ri}) and the configurational (the atomic species at each site σ) degrees
of freedom. This separation results in expansions based on Equation 1.17 that are
of the same order as the underlying full Hamiltonian 1.2014. As a result, obtaining
well converged15 lattice models usually require fewer expansion terms and less training
data. However, since the final thermodynamic properties can be strongly influenced
by structural relaxations, one would need to incorporate these into the model, which
at least in a brute force manner, would require several lattice models fitted to the
configurational energy of different sets of structural parameters.

2. Using Equation 1.22 breaks the formal separation of structural and configurational
degrees of freedom [189], which may require expansions with terms of degree beyond
the order of the real Hamiltonian 1.20 to fully capture the influence of structural
relaxations on the configurational energy landscape. However, doing so allows one
to construct a lattice model that represents the ground state energy landscape as
a function of configuration. The end result is that computing final thermodynamic
properties of configuration can require only a single lattice model.

In the remainder of this work we will focus mostly on the second approach because it is
now the predominant approach for such calculations in materials research as it provides a
much more direct route to computing final thermodynamic properties, albeit at the cost of
having to put in a little more effort to construct sufficiently accurate models [212, 231].

1.4 Thermodynamic ensembles of generalized lattice

models

Finally, we briefly describe the link between the statistical thermodynamics presented and
the framework we explore for representing generalized lattice models. In order to carry out
statistical thermodynamic calculations of systems with configurational degrees of freedom
using a generalized lattice model, it is particularly useful to work with a semi-grand canonical
(SGC) ensemble. The SGC ensemble proves to be computationally simpler to implement
compared to other ensembles [72]. For example, Monte Carlo steps have fewer constraints in
the SGC ensemble compared to a canonical ensemble. Additionally, there is no need to deal

14A proof of this is given in Appendix B.1.
15This broadly means high predictive accuracy with a general trend of expansion coefficients decaying

with respect to the physical distance between sites and the number of interacting sites involved.
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with the intricacies of particle addition and removal when compared to a grand canonical
formalism. And unlike the grand canonical ensemble, an isobaric version of the SGC ensemble
formally exists [119]. Finally, and most importantly, many of the mathematical properties
of the representations of lattice Hamiltonians that we develop in this work only rigorously
hold in an SGC ensemble [187, 189].

To derive the formal expression of the pertinent SGC ensemble, we write the Helmholtz
free energy differential of a multi-component system with N total species and L substructures
each with nl allowed species at each site as follows [119],16

dA = −SdT +
L∑

l=1

nl∑

i=1

µ
(l)
i dN

(l)
i (1.23)

where for now we broadly define a substructure as the set of all sites that have the same set
of allowed species. By choosing a reference species for each substructure, Equation 1.23 can
be written as,

dA = −SdT +
L∑

l=1

(
µ(l)
r +

nl∑

i=1

µ̄
(l)
i dN

(l)
i

)
(1.24)

where the chemical potential differences are given as µ̄i = µi − µr. The total number of
sites in each substructure is fixed, N (l) =

∑nl
i N

(l)
i , and so is the total number of sites in the

structure, N =
∑L

l N
(l).

We obtain the semi-grand potential as a Legendre transformation of the free energy in
Equation 1.24,17

Y = A−
L∑

l=1

nl∑

i=1

µ̄
(l)
i N

(l)
i =

L∑

l=1

µ(l)
r N

(l) (1.25)

The SGC partition function can be written explicitly by summing over all possible atomic
configurations σ,

Z(β, µ̄) =
∑

σ

exp

(
β

L∑

l=1

nl∑

i=1

µ̄
(l)
i N

(l)
i (σ)

)
Zσ (1.26)

where the sum over configurations represents N total sums, one for each lattice site. The
number of species i in the l-th substructure can be represented as a function of the configu-
ration, N

(l)
i (σ). The canonical partition function for a given configuration is Zσ = tre−βH,

where the trace operation is taken over all dynamic degrees of freedom, i.e. all canonical
coordinates as done in Equation 1.22.

16Where we are ignoring any nuances regarding PV pressure/volume variables, which for cases considered
for 1 atmosphere of pressure can be practically justified by the negligible contribution that changes in volume
will have to the total energy of crystalline solids [55].

17One must be careful when the same chemical species is allowed in more than one substructure. In
those cases, equilibrium requires that the absolute chemical potentials for the same species in the different
substructures be equal.
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Finally, we introduce the fugacities, zi = eβµi and the fugacity fractions, ξi = zi/
∑n

i zi
as a direct link to the a-priori probability measure that we will use in our development of
function spaces over configuration spaces.18 We re-write the SGC partition function in terms
of fugacity fractions accordingly,

Z(β, µ̄) =
L∏

l

(
ξ(l)
r

)−N(l)∑

σ

L∏

l

nl∏

i

(
ξ

(l)
i

)N(l)
i (σ)

Zσ

=
∑

σ

L∏

l

nl∏

i

ρ
(l)
i (σ)Zσ (1.27)

=
∑

σ

ρ(σ)Zσ (1.28)

where we have dropped the constant term involving a product over reference fugacity frac-
tions, and have introduced the compact notation ρ(σ) to represent the product of all involved
fugacity fractions.

Furthermore, to tractably compute thermodynamic properties that depend on configu-
rational degrees of freedom, we can approximate the canonical partition function using the
maximum term method[14] as follows,

Zσ ≈ e−βH(σ) (1.29)

where the Hamiltonian, Hσ is the minimum of Equation 1.24 over canonical coordinates
for the corresponding configuration σ. With this approximation, which corresponds to the
coarse-grained Hamiltonian given in Equation 1.22, the SGC partition function in Equation
1.28 requires only a sum over all configurations,

Z(β,ρ) =
∑

σ

ρ(σ)e−βH(σ) (1.30)

And the associated Boltzmann distribution based on the SGC partition function above
is given by,

P(σ) =
ρ(σ)e−βH(σ)

∑
σ ρ(σ)e−βH(σ)

(1.31)

It is within the formalism of the SGC ensemble distribution given in Equation 1.31 that
the development of the mathematical framework to represent generalized lattice models will
be carried out in this work. That isn’t to say that once a Hamiltonian H(σ) is obtained, one
can only calculate statistical thermodynamic properties in the SGC ensemble. In practice,
it is perfectly valid, even trivial, to use H(σ) to define a canonical ensemble. However
many mathematical properties and resulting interpretations of the structure of H(σ) only
rigorously hold in an SGC ensemble.

18Additionally, it is practically useful to work with fugacity fractions since their values are bounded,
ξi ∈ [0, 1], are equal to zero when the corresponding species is absent from the substructure and equal to
one when the corresponding species is the only species present on the substructure.



CHAPTER 1. INTRODUCTION 17

1.5 Thesis overview

We have so far presented the technological and scientific motivation to develop methods that
enable the computational study of atomic disorder in multi-component or multi-principal
element materials. In addition, we gave a brief exposition of the basic fundamental concepts
required to carry out statistical thermodynamic calculations for systems with configurational
degrees of freedom. Finally, we motivated lattice models as a compelling, natural, and
effective framework to carry out such calculations in practice.

The rest of this thesis deals with developing a mathematical framework to construct
generalized Lattice models that can be used to represent the energy in terms of atomic
configurations by including interactions of any range and between any number of species.
Formally the framework involves defining mathematical representations for any multi-variate
function of discrete states that is invariant under the pertinent crystallographic symmetries.
The specific representations developed can be seen as direct generalizations of the Ising and
Potts models. We subsequently use the mathematical structure of these representations
to motivate, develop and justify linear regression estimation methods that allow efficient
parametrization of lattice models using first-principles electronic structure calculations. A
set of practical training data sampling and preparation methods are also presented, along
with select examples of fitted Hamiltonians for technologically relevant multi-component
ionic materials and medium entropy alloys. Finally, we conclude this thesis by presenting
open areas in which the work presented here can be used in novel ways to study complex
multi-component materials.

The work is organized into the following Chapters:

• Chapter 2 develops the formal representation of generalized Hamiltonians as symmet-
rically invariant functions of a multicomponent crystal’s atomic configuration. Two
different representations are developed: Fourier cluster expansions and Potts frame ex-
pansions. Fourier cluster expansions rely on orthonormal basis sets (as was originally
proposed in the cluster expansion method [192]), and can be seen as a generalization of
the Ising model. Fourier cluster expansions are then re-cast in a unique basis-agnostic
expansion that we call the cluster decomposition, which allows formal interpretation of
expansion terms. A Potts frame expansion is a direct generalization of the Potts model
to arbitrary interactions. Potts frame representations constitute a redundant expansion
which results in particularly useful properties for robust and accurate reconstruction
from limited data.

• Chapter 3 presents practical ways to numerically implement the mathematical frame-
work developed in Chapter 2. In addition, procedures to convert any representation to
a Fourier cluster expansion to enable model interpretation, as well as procedures to di-
rectly compute cluster occupation averages and probabilities from expansion function
values are derived. All methodology described has been implemented and is openly
available [11].
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• In Chapter 4 novel parameter estimation models are formulated to fit generalized lattice
Hamiltonians using data first principles calculated data. Structural priors of expansion
coefficients are derived and justified based on the representations established in Chapter
2. Novel regularized linear regression models that result in parameters that satisfy
these structural priors are presented. Finally, procedures to appropriately construct
generalized Lattice models mixed with empirical pair potentials, are described and
motivated for handling long-range electrostatic interactions in ionic materials.

• Chapter 5 describes training data sampling and data preparation methods necessary to
parametrize lattice Hamiltonians of complex materials with large numbers of allowed
species. In addition, applications of the methods developed are presented for lattice
models of several Li-transition metal-OF and NiCoCr alloys.

• Chapter 6 concludes this thesis. A handful of open areas to extend and improve meth-
ods and applications are suggested. Specifically, new lattice model learning paradigms,
improved special structure generation, ground state identification and methods for op-
timization, and machine learning-based thermodynamic inference are suggested.
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Chapter 2

Representation of generalized lattice
models

In this chapter, we give a detailed exposition of the mathematical representation of lattice
models. By representation we mean the framework necessary to precisely specify a class of
object. The objects we aim to specify are symmetrically invariant functions of configuration.
In order to do so, we will first precisely define the configuration spaces which compromise the
domain of said functions. Afterward, we will formally describe the function space in which
the Hamiltonian functions we seek are found. Finally, in order to represent a Hamiltonian
for real applications, we construct spanning sets of functions that allow us to expand any
such Hamiltonian. Specifically, we construct a particular class of basis sets, in addition to a
particular frame that span the aforementioned function space.

Succinctly, the subject of this chapter is then to formulate representations for a Hamil-
tonian function H with domain Ω (a configuration space) and codomain R,

H : Ω→ R (2.1)

The endeavor to specify representations of Hamiltonians of configuration lies in the realm
of functional analysis[5, 107, 243]. More specifically, for the subject matter here, it is the
realm of discrete harmonic analysis [30], and finite frame theory [43, 235]. Functional and
harmonic analysis and frame theory are rich and extensive fields, but for our purposes, we
only use a handful of basic concepts and results.

In this chapter, we focus on carefully defining what is meant by a configuration space Ω
in terms of a probability product space of individual elementary probability spaces associ-
ated with degrees of freedom of each crystallographic site, i.e. the allowed species and an
associated a priori probability. We also briefly discuss configuration spaces with composi-
tion constraints, which are necessary to work with ionic structures where only charge-neutral
configurations are of interest. We then move to formally describe the function space that
contains Hamiltonians of configuration H. Finally, we construct two general forms to rep-
resent Hamiltonians of configuration and describe some of their mathematical properties.
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Specifically, we treat the following representations:

• Fourier cluster expansions, which are constructed using an orthonormal basis and thus
allow several useful properties to compute norms, means, and variances.

– The cluster decomposition, which is essentially a re-expression of Fourier cluster
expansions that yields a basis agnostic and unique representation that in turn
allows further insight and interpretation of expansion terms.

• The generalized Potts frame, which is a redundant representation as an intuitive gen-
eralization of the Potts model, and allows both practical and robust learning even for
cases of insufficiently sampled training data.

Preliminary notation conventions and auxiliary definitions that we use in this and fol-
lowing Chapters are detailed in Appendix A.

2.1 Configuration spaces

The configurations we are concerned with here are all the possible decorations or colorings
of the sites in a given crystal structure constructed by choosing a specific species from a set
of allowed species at each site. The set of all the possible decorations of the sites in a crystal
structure makes up a configuration space. For example, in the Ising model, the configuration
space is relatively simple since there are only two choices of allowed species (or spins) for
any site. The total number of configurations for a lattice with N sites is, therefore, 2N 1. The
number of configurations for a Potts model is not much different, we simply need to change
the base 2 to the number n of allowed species, meaning there are nN configurations.

In both the Ising and Potts models, all sites share the same set of allowed species. In more
complex crystal structures, it is not uncommon to have sites with distinct sets of allowed
species2. In order to accurately describe these situations, we will formalize (and generalize)
the sets of allowed species to take the form of a discrete probability space3, which we call a
site space Ω.

Definition 2.1.1 (Site Space). A site space is a discrete probability space where the sample
space is the set of the species allowed at a given site ~p,4

(Ω, ρ)~p = ({σj, ρj : for j = 1, . . . , n}, )~p
1Although many of these configurations can be symmetrically equivalent based on the geometry/lattice

used.
2An example arising in practice, involves interstitial defects in a metal where the set of allowed species

at interstitial sites is different than that at regular sites. Another simple example is cation and anion sites
in ionic materials.

3For our purposes we always assume that the event space includes only elementary events.
4A (crystallographic) site can be specified by a point ~p ∈ R3 where one of a set of allowed chemical

species may reside. When dealing with materials of other dimensions sites are points in the corresponding
space Rn—i.e. ~p ∈ R2 for 2D materials.
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(a)

(b)

(c)

Figure 2.1: (a) Visual representation of a ternary site space. The colors represent the different
species and the relative fractions colored represent the values of the a-priori measure (species
concentrations). (b) An example of a rocksalt disordered crystal structure with a basis
including two different site spaces. (c) An example of a triplet site space cluster.

Each occupation variable σj is a specific chemical species. This is most often an elemental
species or ion, but in the general case can be polyatomic. ρ(σj) = ρj is an apriori measure
for the probabilities corresponding to each species. The size of a site space is the total number
of allowed species n = |Ω|.5

The a priori measure ρ describes the state over a particular site for a non-interacting
system, or in other words, in the random limit. This is to say, we can think of ρ as specifying
the concentrations of species, and the probability of finding a particular species at the i-th
site at very high temperatures T →∞. Figure 2.1a shows a graphical depiction of a ternary
site space. The different colors represent the different allowed species, and their relative
proportions represent the a-priori measure. For the most part we will assume the measure
ρ, of a site space is uniform6; and simply state that a site space is Ω~p = {σj, j = 1, . . . |Ω|}.

Remark 2.1.1 (Categorical occupation variables). In the present work, the occupation vari-
ables σ are considered categorical variables as opposed to numerical variables. Meaning they
directly represent a chemical species or ions, e.g. σ = Li+, in contrast to numerical spin
or occupation variables, as used in the original Ising model σ = ±1 or lattice gas models
σ = 0, 1.7

5We call site space with only one species, i.e. n = |Ω| = 1, inactive, since it does not have compositional
degrees of freedom.

6ρj = 1/n for all j
7This may seem esoteric, and more so considering that when implementing the method we in fact need
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By assigning site spaces instead of specific species to the crystallographic sites in a struc-
ture, we construct what we call a disordered crystal structure.

Definition 2.1.2 (Disordered Crystal Structure). A disordered crystal structure is a crystal
structure defined by a Bravais lattice and a crystallographic basis specifying the location of
all site spaces within a crystallographic unit cell.

Figure 2.1b shows the unit cell of a rocksalt disordered crystal structure. In the example
shown, the crystallographic basis includes two different site spaces.

Using the definition of a disordered crystal structure, we can define site space clusters,
which will be a necessary concept in the coming sections when we construct spanning func-
tions whose domains are essentially the configuration spaces of site space clusters only.

Definition 2.1.3 (Site Space Cluster). A site space cluster A = {(Ω, ρ)~pi : i = 1, . . . , NA}
is a set of site spaces. The size of the cluster is the number of sites spaces in the cluster,
NA = |A|.8

Figure 2.1c shows an example of a triplet site space cluster. In the case shown, there
are three site spaces, two of which are equivalent in the sense that they have the same set
of species and concentrations but are associated with different sites. In the remainder of
this work, we may use site cluster interchangeably to refer to a site space cluster, making it
implicit that the sites have associated site spaces.

Finally, a configuration space is a probability product space, constructed from the product
of all site spaces in a disordered crystal structure.

Definition 2.1.4 (Configuration space). A configuration space (Ω,ρ) is a probability product
space of N site spaces. Where the set Ω is the Cartesian product of each Ωi and ρ is a
corresponding product measure.

Ω =
N×
i=1

Ωi (2.2)

ρ(σ) =
N×
i=1

ρi(σi) (2.3)

In the notation above we have dropped the explicit reference to the position of the sites by
making it implicit that the i-th site has an associated position ~pi. For compactness, we will
continue to use this notation relying only on the site indices i.

to use numbers to encode the actual species. However, the choice of encoding depends on the details of the
implementation, so treating σ as a number in our analysis only obfuscates its real meaning in representing
a particular chemical species.

8The empty set with NA = 0 and the set of all sites NA →∞ are well-defined clusters.
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The size of a configuration space (Ω,ρ) is equal the total number of possible configura-
tions, |Ω| = ∏N

i |Ωi|, and the dimension of the configuration spaces is equal to the number
of sites N considered. In theory, for bulk structures, we take N → ∞, but for all practical
purposes, we can think of N as large enough and use periodic boundary conditions.

A configuration space Ω can be represented as a hypergrid. Figure 2.2 shows the con-
figuration space for a hypothetical finite three site structure with two ternary sites (A1,
A2) and one binary site (B). The configuration space is depicted as the representative dis-
ordered structure, and the corresponding three-dimensional configuration grid. Increasing
the number of allowed species at a site translates to adding vertices to the hypergrid along
the dimension corresponding to said site. Adding more sites to the structure increases the
dimension of the hypergrid since the dimension of the configuration space is equal to the
number of sites in the given system. For a structure with N sites, the configuration space
corresponds to a hypergrid in N dimensions.

Although a hypergrid is the formal mathematical representation of a configuration space,
it is also useful to simply represent a configuration space using the underlying disordered
crystal structure only. Specific configurations (vertices in the hypergrid) are all the possible
decorations of the N sites with a specific species chosen from their corresponding site spaces.
Furthermore, to simplify matters further, only a small set of distinct site spaces are needed
to define a configuration space for applications materials science. Such that the product

B
ΩB = {r = 0, g = 1}

A1

ΩA = {c = 0, b = 1, y = 2}

A2

A1

A2

B

Figure 2.2: Illustration of the configuration space as a hypergrid for a disordered structure
illustrated by the triangular figure shown on the left. The structure has two ternary sites
A1, A2 where the allowed species are represented by the colors green (g) and red (r); and
one binary site B with allowed species, cyan (t), blue (b), and yellow (y). The vertex of the
hypergrid corresponding to specific configuration, σ = (blue b=1, yellow y=2, green g=1),
is pointed out as an example of a point in the (A1, A2, B) configuration space.
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(a) (b)

Figure 2.3: Primitive cells of two disordered substructures in the disordered structure shown
in Figure 2.1b.

space in Equation 2.2 can be more compactly written as products over distinct site spaces
only,

Ω =
L×
l=1

ΩNl
l (2.4)

where L is the total number of distinct site spaces, and Nl is the number of sites with site
space Ωl.

The sets of sites with the same associated site spaces taken together can be used to define
substructures of the disordered structure.

Definition 2.1.5 (Disordered substructure). Given a disordered structure with L > 1 dis-
tinct site spaces, a disordered substructure is a crystallographic orbit generated by sites as-
sociated with a subset Ls of the L distinct site spaces such that 1 ≤ Ls < L.

Figure 2.3 shows the two distinct disordered substructures for the disordered substructure
shown in Figure 2.1b.

In the majority of the cluster expansion literature the disordered structure is referred to
as the lattice, and disordered substructures are referred to as sublattices. However, the use
of both words in the context of more complex crystallographic structures (i.e. those with
a two or more atom basis) does not follow their definition from crystallography. For this
reason, we will use disordered structure and substructure as previously defined to adhere to
their crystallographic definitions [154].
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Figure 2.4: An example ordered structure corresponding to a specific configuration σ ∈ Ω
for the disordered structure shown in Figure 2.1b.

Ionic materials are straightforward examples of structures that involve multiple disordered
substructures (i.e., those corresponding to distinct anion and cation substructures). For
example, in an ionic system with one anion and one cation disordered substructure, the
configuration space can be expressed as,

Ω =

(

×
i∈A

Ωi

)
×
(

×
i∈C

Ωi

)
(2.5)

= ΩNA
A × ΩNC

C = ΩA ×ΩC

where A and C denote the sites in the anion and cation substructure respectively, and NA

and NC refer to the number of anion and cation sites in their respective substructures.
Finally, a specific configuration is represented by an occupancy string, which is an element

of a configuration space σ ∈ Ω. The configuration σ represents an ordered structure, i.e. a
crystal structure with a specific species residing at each site. Meaning, for each site i in the
structure, we pick a specific species from its associated site spaces Ωi.

Definition 2.1.6 (Occupancy string). An occupancy string is an element of a configuration
space σ ∈ Ω. More explicitly it is a string of occupation variables where each occupation
variable is an element of the corresponding site space σi ∈ Ωi,

σ = (σ1, σ2, . . . , σN | σi ∈ Ωi for i = 1, . . . , N) (2.6)

Figure 2.4 shows the ordered structure for a given configuration σ with N = 64 sites. In
the figure, we assume periodic boundary conditions, so that the structure is representative
of a bulk material.
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Composition constraints

The configuration space for ionic materials, in particular, requires introducing the concept of
composition constraints on a configuration space. We will specifically focus on composition
constraints necessary to guarantee charge-neutral configurations of ionic materials. Because
the species in ionic materials are charged ions, the configurations that are considered for
the vast majority of practical applications are charge neutral configurations only. Charge
neutrality constraints on composition can be expressed as a sum of the oxidation states
associated with the species in a configuration string in the following manner,

∑

σi∈σ

z(σi) = 0 (2.7)

where z(σi) represents a mapping from the species represented by the occupation variable
σi to its corresponding oxidation state.

Although Equation 2.7 is straightforward, it has important repercussions in both the for-
malism for representing functions of configuration and in its practical application to ionic ma-
terial systems with heterovalent ions. Composition constraints formally change the domain
of valid configurations, such that the function space over the configurations of a heterova-
lent ionic material system is not the same as the product configuration space Ω introduced
in Equation 2.2. More specifically, the configuration space Ω̂ of an ionic material system
is a set of slices of the product configuration space—or equivalently a set of slices of the
configuration hypergrid, given as,

Ω̂ =

{
σ ∈ Ω :

∑

σi∈σ

z(σi) = 0

}
(2.8)

By construction |Ω̂| ≤ |Ω|. The constrained space Ω̂ is equal to the unconstrained space
only for cases where all species associated with each substructure in the system are iso-valent,
and thus every point in the full configuration space is charge neutral.

Figure 2.5 shows an example of the configuration space with composition constraints for
the previously introduced three-site system from Figure 2.2. The composition constraints
considered in the example reduce the total number of configurations in the unconstrained
configuration space from 18 configurations to only 8 charge-neutral configurations. Addition-
ally, since the configuration can be expressed by explicitly specifying the occupation of 2 out
of the 3 sites, the configuration grid can be represented in a lower dimension as shown. These
observations extend to higher dimensional configuration spaces such that when charge neu-
trality constraints are considered, the dimensionality of the constrained space is effectively
reduced, and the total number of configurations is in most cases substantially reduced.
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B
ΩB = {r = 0, g = 1}
zr = −2, zg = −3

A1

ΩA = {c = 0, b = 1, y = 2}
zc = 1, zb = 1, zy = 2

A2

A1

A2

B

A1

A2

B = 0

B = 1

Figure 2.5: Illustration of the configuration space as a slice of the hypergrid for the triangular
figure shown on the top. The figure has two ternary sites A1, A2 and one binary site B, and
the labeled ternary sites and the binary site have positive and negative oxidation states
respectively. The charge neutral slice of the original unconstrained 3D grid is shown as
the grid points intersected by the orange planes. The two-dimensional figures depict the
constrained space where the occupation of the binary site is implicit given the occupations
of the two ternary sites based on charge neutrality constraints.

2.2 Function spaces over configuration spaces

Having carefully defined what a configuration space is and how it relates to a disordered
crystal structure, we now move on to define and subsequently develop representations for the
function spaces over configurations. Following the definition of a configuration space, the
function spaces we will define are essentially function spaces over probability product spaces
[6, 157, 214], and so the product structure of configuration spaces extends in an analogous
fashion to a product structure of the function spaces over them. Following a similar recipe
as before we start by defining a function space over a single site space.

Definition 2.2.1 (Function space over a site space). The function space L2(Ω, ρ) over a site
space (Ω, ρ) is the space of all functions f : Ω→ R, such that 〈f 2〉ρ <∞. Where the inner
product 〈f, g〉ρ is defined as follows,

〈f, g〉ρ =
∑

σ∈Ω

ρ(σ)f(σ)g(σ) (2.9)
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The function space L2(Ω, ρ) is a Hilbert space of dimension: dimL2(Ω, ρ) = |Ω| [157,
243]. The inner product in Equation 2.9 has the following probabilistic interpretation when
f and g are considered random variables9,

〈f, g〉ρ = Eρ [fg] (2.10)

In other words, the inner product in Equation 2.9 can be thought of as an expectation over
the probability distribution with probability mass function ρ(σi). With this interpretation,
we recognize that the inner product with the constant function 1, represents the expectation
value of a function: 〈f, 1〉0 = E[f ]. We will continue to use the bracket notation, with the
underlying understanding that it represents an expectation under the a-priori distribution ρ.
Furthermore for the majority of the work presented we take ρ to be the uniform distribution,
such that the inner product in Equation 2.9 becomes,

〈f, g〉ρ =
1

|Ω|
∑

σi∈Ω

f(σi)g(σi) (2.11)

Using Definition 2.2.1, we can formally define the function space over configuration space
as the tensor product of function spaces over site spaces.

Definition 2.2.2 (Function space over configuration space). The function space over a con-
figuration space, L2(Ω,ρ) is the tensor product space taken over all function spaces L2(Ω, ρ)i
for i ∈ [N ] that make up the configuration space Ω,

L2(Ω,ρ) =
N⊗

i

L2(Ω, ρ)i (2.12)

Now, L2(Ω,ρ) is itself a Hilbert space of dimension10 dimL2(Ω,ρ) = |Ω|. An equivalent
way to define L2(Ω,ρ) such that its nature as a Hilbert space is more explicit is as follows,

L2(Ω,ρ) = {F : Ω→ R, 〈F 2〉ρ <∞} (2.13)

Where the inner product is defined as,

〈F,G〉ρ =
∑

σ∈Ω

ρ(σ)F (σ)G(σ) (2.14)

And for the frequent case where we take the distribution ρ to be uniform, the inner
product becomes,

〈F,G〉ρ =
1

|Ω|
∑

σ∈Ω

F (σ)G(σ) (2.15)

9Actually they are functions of the random variable s.
10Basically the dimension of L2(Ω,ρ) is equal to the total number of configurations in Ω.
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Similarly, we can extend the previous probabilistic interpretation to the inner product in
Equation 2.14,

〈F,G〉ρ = Eρ [FG] (2.16)

With this, we can interpret the inner product of a function of configuration with the constant
function 1, as the expectation value of that function over the a priori product distribution
ρ: 〈F, 1〉ρ = Eρ [F ]. Furthermore, considering that ρ represents the probability in the
non-interacting limit, we can further interpret 〈F, 1〉ρ as the expectation value of F in this
limit. This interpretation is then in direct accordance with the high-temperature limit of the
Boltzmann probability for the semi-grand canonical ensemble given in Equation 1.31 which
was derived in Chapter 1.

The inner product in Equation 2.15 is a generalization of the inner product used in the
original development of the cluster expansion method [192]. The Equation 2.14 is a gener-
alization of the concentration dependent inner product that was later introduced [187, 188].
And the generalization of configuration spaces with multiple substructures is a formalization
of configuration space used in the development of the so-called coupled cluster expansion
[215].

Finally, Hamiltonians of configuration H(σ) should be invariant to operations in the
symmetry group G of the underlying disordered crystal structure. Symmetry invariance
for a function of configuration means that all permutations Tπ ∀π ∈ G of the occupation
variables in σ should leave the value of H(σ) unchanged,

Tπ(H(σ)) = H(σπ) = H(σ) ∀π ∈ G (2.17)

where σπ = (σπ(1), . . . , σπ(N)) is a permutation of σ.
Based on our requirement of symmetry invariance, the lattice model Hamiltonians we

seek to represent are actually elements of symmetrically invariant subspaces of L2(Ω,ρ),
which we will denote L2(Ω,ρ)G.

Definition 2.2.3 (G-Invariant subspace of L2(Ω,ρ)). A G-invariant subspace of L2(Ω,ρ)
denoted by L2(Ω,ρ)G is the set of all permutation invariant functions for all permutation
operations in the symmetry group G in L2(Ω,ρ),

L2(Ω,ρ)G = {F ∈ L2(Ω,ρ) : Tπ(F (σ)) = F (σ) ∀π ∈ G} (2.18)

Having explicitly defined the function space L2(Ω,ρ) and a symmetrically invariant sub-
space L2(Ω,ρ)G, we have left to develop the actual representation of any function F ∈
L2(Ω,ρ), and more specifically of symmetrically invariant functions H ∈ L2(Ω,ρ)G for the
symmetry group G of a given disordered crystal structure. We will do so in two different
ways,
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• The first is by way of a symmetrized Fourier product basis [30].11 We will also extend
this formalism by showing how any expansion in any Fourier product basis corresponds
to a unique representation in what we call the cluster decomposition.

• The second form entails a redundant representation using a mathematical frame, which
we call the generalized Potts frame due to its evident connection to the original Potts
model introduced in Chapter 1.3.

2.3 Fourier cluster expansions

The recipe we will use to construct basis functions for L2(Ω,ρ) takes advantage of its tensor
product structure given in Equation 2.12. Precisely, it has been shown in the development of
the cluster expansion method [192], and is generally known from discrete harmonic analysis
[30, 157], that a basis for the function space L2(Ω,ρ) can be obtained by taking the tensor
product of basis functions over the included single site function spaces L2(Ω, ρ)i.

Standard site basis sets

Accordingly, we begin by constructing basis sets for functions over a single site space (Ω, ρ).
Any linearly independent set of functions {φ0, . . . , φn−1} of size equal to the dimension of
the corresponding space, n = |Ωi|, constitutes a basis for the space of functions L2(Ω, ρ) [30].
This implies that any site function f : Ω→ R can be expanded as follows,

f(σ) =
n−1∑

j=0

ajφj(σ) (2.19)

where aj are scalar expansion coefficients.
Although a variety of site basis generating schemes12 have been proposed in the cluster

expansion literature [192, 230, 258], we will instead focus on broad class of equivalent basis
sets that we call a standard site basis.

Definition 2.3.1 (Standard site basis). A standard site basis for L2(Ω, ρ), is a basis {φ0, . . . , φn−1},
that satisfies the following two properties,

1. φ0 := 1

2. 〈φj, φk〉ρ = δjk for all j, k ∈ {0, . . . , ni − 1}

That is, the basis includes the constant function φ0 := 1 and it is orthonormal.

11This is precisely the formalism underlying the cluster expansion method [188, 192].
12Expressions for such basis generating schemes are detailed in Appendix A.2.
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Under the probabilistic interpretation for the inner product in Equation 2.9, and the
expansion of a function given in Equation 2.19 using a standard basis, we obtain the following
properties [156, 157],

1. Eρ [f ] = 〈f〉ρ = a0

2. ||f ||22 = 〈f 2〉ρ =
∑n−1

i=0 a
2
i

3. Varρ[f ] = 〈f 2〉ρ − 〈f〉2ρ =
∑n−1

i=1 a
2
i

4. Covρ[f, g] = 〈f, g〉ρ − 〈f〉ρ〈g〉ρ =
∑n−1

i=1 aibi

A standard basis can be obtained from any basis (i.e. using any of the listed basis set
generating schemes in Appendix A.2), by ensuring that the constant function is included, and
carrying out a Graham-Schmidt orthonormalization procedure. As an example, lets consider
a binary site space |Ω| = 2. If we start with a basis {ψ0, ψ1} which is not a standard basis,
we can obtain a standard basis {φ0, φ1} as follows,

1. Define,
φ0 := 1

‘

2. And set

φ1(σ) =
ψ1(σ)− Eρ [ψ1(σ)]√

Varρ[ψ1(σ)]

A detailed derivation of this is given in Appendix A.2.
In the above procedure we could have also used ψ0 instead of ψ1 (if ψ0 6= 1) in the

Graham-Schmidt process in step 213. Furthermore, if we use σ = ±1, set the probability
ρ(+1) = c, and start from the basis set {ψ0 = 1, ψ1 = σ}, we obtain the following standard
basis,

φ0 = 1

φ1 =
σ − µ√
1− µ2

where µ = 2c− 1 is the expectation of Eρ [φ1] = Eρ [σ].
The expression above is exactly the expression proposed in the formulation of the cluster

expansion with concentration dependent basis functions [4, 187, 188]. However, to keep to
our precept of treating occupation variables σ as categorical, we note that one can always
remove the reliance on a specific choice of numerical encoding for occupation variables by
simply constructing an initial basis by taking φ0 = 1, extending the set using indicator

13Which goes to say that we need only a set of |Ω| − 1 linearly independent functions to construct a
standard basis, since we will include the constant function φ0 = 1.
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functions for each of |Ω| − 1 allowed species, and finally carrying out a Graham-Schmidt
process to obtain a standard basis.

Extending the example now to a ternary site space |Ω| = 3, we obtain a standard basis
{φ0, φ1, φ2} for L2(Ω, ρ) starting from the general basis {1, ψ1, ψ2} as follows,

φ0 = 1

φ1 =
ψ1(σ)− Eρ [ψ1(σ)]√

Varρ[ψ1(σ)]

φ2 =
ψ2 − Eρ [ψ2]− Covρ[ψ2ψ1]

Varρ[ψ1]
(ψ1 − Eρ [ψ1])

√
Varρ[ψ2]− Covρ[ψ2ψ1]2

Varρ[ψ1]

From which tt is clear that under the statistical interpretation of the inner product as
expectation values for the a priori probability ρ, constructing a standard basis amounts
to obtaining basis functions that are whitened in the statistical sense. In other words, the
non-constant basis functions {φi, i ≥ 1} are centered (have mean zero), uncorrelated, and
have unit variance. This is in fact what gives rise to the properties of standard site basis
sets listed above.

Fourier product basis sets

We now proceed to construct a tensor product basis for L2(Ω,ρ) following Equation 2.12
and using standard site basis functions. In following, discrete harmonic analysis, we call the
resulting basis a Fourier product basis [30, 157].

Definition 2.3.2 (Fourier product basis). A Fourier product basis {Φα : ∀α ∈ NN
<n} is a

tensor product basis for L2(Ω,ρ) constructed from standard site basis sets for all L2(Ω, ρ)i,
i ∈ [N ] in a configuration space of dimension |Ω| = N . The multi-indices α ∈ NN

<n for
n = (|Ωi| | ∀i ∈ [N ]) label each of the total |Ω| functions.

Since the domain of functions in L2(Ω,ρ) is discrete, the tensor product in Equation 2.12
simplifies to an N -fold product. As a result, a Fourier product basis includes all possible
N -fold products among site basis functions for each of the N site spaces in Ω. We can
therefore write the basis functions Φα explicitly as,

Φα(σ) =
N−1∏

i=0

φ(i)
αi

(σi) (2.20)

Figure 2.6 shows a schematic illustrating different N -fold products for constructing a
product basis for the function space over configurations of the three site system shown in
Figure 2.2. A few N -fold products are illustrated with colored arrows connecting the three
terms involved in the product. The total number of possible products in the example shown
is 18.

A Fourier product basis has the following properties,
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1. The basis includes the constant function Φ0 = 1

2. The basis is orthonormal,
〈Φα,Φη〉ρ = δαη

3. Basis functions have a cluster framework. Meaning they can be thought of as functions
only of the occupation variables in the support of their multi-index σsupp(α) = (σi | ∀i ∈
supp(α)),14

Φα(σ) =
∏

i∈supp(α)

φ(i)
αi

(σi)

Proofs for the properties are straightforward and given in Appendix B.2. Property (3) is
the tenet of the original cluster expansion method [192], in the sense that a basis function
Φα can be thought of as a function over the configuration of the site space cluster whose
sites are specified by the support of the function’s multi-index supp(α).

Furthermore, it will be useful in coming sections to consider just the non-zero values of
the multi-index α, as a contracted multi-index ctr(α) = (αi ∈ α | αi 6= 0).

Definition 2.3.3 (Contracted multi-index). A contracted multi-index ctr(α) is a multi-index
of non-zero index elements in a given multi-index α,

ctr(α) = αsupp(α) = (αi ∈ α | αi 6= 0) (2.21)

14All other site basis functions not in the support are constant, i.e. φ0 = 1

HB = L2(Ω, ρ)B

(
φ
(B)
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φ
(B)
1

)
×

HA = L2(Ω, ρ)A


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φ
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(A1)
1
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Figure 2.6: Schematic illustrating the construction of a product basis from a set of site
basis functions for functions over the configuration space illustrated in Figure 2.2. The
construction of subsets of product basis functions from the corresponding site basis functions
is depicted with colored arrows. The site spaces HA,HA and the product space HBA1A2 are
L2 Hilbert spaces over their respective domains.
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On occasion, we will use a hat to more compactly write a contracted multi-index α̂ ≡ ctr(α).

Using a Fourier product basis, any function of configuration F ∈ L2(Ω,ρ) can be ex-
panded as follows,

F (σ) =
∑

α∈NN<n

F̂αΦα(σ) (2.22)

Where the Fourier coefficients, F̂α are given by their projections of the function F onto
the respective basis function.

F̂α = 〈F (σ),Φα(σ)〉ρ (2.23)

In analogous fashion to the the properties of an expansion using site basis functions,
expansions based on Fourier product basis as given in Equation 2.22 will have the following
Fourier formulas [30, 157],

1. Eρ [F ] = 〈F (σ)〉ρ = F̂0

2. Eρ [F 2] = 〈F (σ)2〉ρ =
∑
α F̂

2
α

3. Varρ[F ] = 〈F (σ)2〉ρ − 〈F (σ)〉2ρ =
∑
α6=0 F̂

2
α

4. Covρ[FG] = 〈F (σ)G(σ)〉ρ − 〈F (σ)〉ρ〈G(σ)〉ρ =
∑
α 6=0 F̂αĜα

When using a Fourier product basis to represent or fit a Hamiltonian of configuration,
the above Fourier formulas give us direct access to statistical properties of the Hamiltonian
under the a-priori distribution. In applications this can be interpreted as having direct access
to thermodynamic properties in the random or equivalently the high-temperature limit.

Fourier correlation basis sets

A Fourier product basis can be used to represent any function of configuration, including
functions that are invariant to any set permutations as expressed in Equation 2.17. However,
since we will always require a Hamiltonian to be symmetrically invariant, it is advantageous
to construct a basis for L2(Ω,ρ)G as well.

The trick to obtaining a basis for L2(Ω,ρ)G is to use what is known as the Reynolds [74,
218] or averaging operator R,

R(Φα) =
1

|G|
∑

π∈G

Φαπ(σ) =
1

|G|
∑

π∈G

N∏

i=1

φ
(i)
π(αi)

(σi) (2.24)

However, the sum in Equation 2.24 will usually involve the same Fourier product basis
function Φα more than once from cases where a multi-index is mapped back to itself απ = α.
An equivalent expression can be obtained by averaging only over the unique terms, in other
words, those with multi-indices in the same orbit.
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Θ = ⟨ϕ ϕ ϕ ⟩

Figure 2.7: Schematic illustrations of a correlation function and its associated function orbit
β for a template disordered rocksalt structure. The site coloring in the images represent
non-constant site functions. In the illustration, there are two types of site spaces, one with
4 allowed species (3 non-constant site functions); and another with 3 allowed species (2
non-constant site functions).

Definition 2.3.4 (Multi-index orbit). A multi-index orbit β is a set of multi-indices α gen-
erated by permutations of its elements using the permutation operations in a given symmetry
group G.

β = {απ : ∀π ∈ G} (2.25)

Definition 2.3.5 (Function orbit). A function orbit represented, which we also denote by
β, is a set of product functions generated by the application of permutation operations of a
symmetry group G to the site functions in a product function Φα,

{Φαπ : ∀π ∈ G}α∈β (2.26)

We use multi-index orbits and function orbits almost interchangeably (unless explicitly
specified) since a multi-index orbit β is precisely how we specify the product functions that
are part of the corresponding function orbit.

We can simplify the action of the Reynolds operator using only averages over basis func-
tion orbits, and construct a basis for L2(Ω,ρ)G, which we call a Fourier correlation basis,
from the set of all symmetrically averaged Fourier basis functions.

Definition 2.3.6 (Fourier correlation basis). A Fourier correlation basis {Θβ}β∈G(NN<n) is the
set of correlation functions generated from all possible function orbits β of a given Fourier
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product basis {Φα}α∈NN<n generated by way of the permutations of a symmetry group G.
Correlation functions Θβ are given by,

Θβ(σ) =
1

|β|
∑

α∈β

Φα(σ) (2.27)

A schematic illustration of a triplet correlation function over a particular function orbit
β is shown in Figure 2.7, where the values of the contracted multi-index ctr(α) are depicted
by different colors. The function orbit is depicted as highlighted sites in a representative
unit cell colored by the values of their corresponding entry in ctr(α). The unit cell is a
representation of the underlying disordered crystal structure.

Intuitively, the procedure outlined above implies or equivalently can be also be derived
starting from the requirement that the expansion coefficients 〈H(σ),Φα(σ)〉ρ of a given
Hamiltonian H be invariant to all operations Tπ ∀π ∈ G [187, 188, 192].

Furthermore, since the main application will be bulk crystals (periodic systems), it is
customary to write the expression for a correlation basis function in Equation 2.27 as follows,

Θβ(σ) =
1

Nmβ

∑

α∈β

Φα(σ) (2.28)

where the multiplicity mβ is defined as a density of the size of function orbit β, mβ = |β|/N .
This expression allows practical calculations for periodic structures with different numbers
of sites N on equivalent grounds.

Figure 2.8 shows the two possible standard basis sets for a binary site space, and the
two possible resulting Fourier correlation basis sets for functions over the three distinct
configurations of the symmetric diatomic molecule pictured above.

The expansion of a symmetrically invariant functionH(σ) of configuration using a Fourier
correlation basis is called a Fourier cluster expansion.

Definition 2.3.7 (Fourier cluster expansion). A Fourier cluster expansion is a representa-
tion of a function H ∈ L2(Ω,ρ)G using a Fourier correlation basis {Θβ}β∈G(NN<n). We can
express the Fourier cluster expansion of H as follows,

H(σ) =
∑

β∈G(NN<n)

NmβJβΘβ(σ) (2.29)

where the sum is carried out over all multi-index orbits β generated by elements in the
symmetry group G of the underlying disordered crystal structure. The expansion coefficients
Jβ are known in the literature as effective cluster interactions15

15The use of the name effective cluster interactions is somewhat misleading as their magnitudes and sign
depend on the specific choice of basis; and as we will see in our development of the cluster decomposition,
the actual mean cluster interactions (which are invariant to the choice of basis) and represent contributions
of site clusters to the energy are not simply the expansion coefficients Jβ .
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ϕ1(σ) = σ

ϕ1(σ) = −σ

ϕ0(σ) = 1
Θ0,0(σ1, σ2) = 1

Θ0,1(σ1, σ2) =
1
2
(σ1 + σ2)

Θ1,1(σ1, σ2) = σ1σ2

Θ0,1(σ1, σ2) = −1
2
(σ1 + σ2)

Figure 2.8: Function space representations over the configurations of a single binary site
and a symmetric binary diatomic molecule. (a) Function space over a single binary site
space. The two different choices for standard site bases are colored blue and orange. Each
set also includes the purple φ0 ≡ 1 function. (b) Function space over symmetrically distinct
configurations of the molecule. The two possible Fourier correlation basis sets include the
constant Φ0,0 (red) and the Φ1,1 pair correlation function (brown) and either the blue colored
or the orange colored point function Φ0,1.

The effective cluster interactions Jβ are given by the projection of the function H onto
the respective correlation function,

Jβ = 〈H(σ),Θβ(σ)〉ρ (2.30)

Equivalently, it follows from the symmetry invariance of the Hamiltonian H that the effective
cluster interactions are also the projection onto any Fourier basis function Φα for α ∈ β.

The procedure outlined in constructing Fourier product basis functions from standard
site basis functions, and subsequently averaging Fourier product functions to obtain a Fourier
correlation basis, can be carried out starting from any arbitrary set of site basis functions.
However, if the set of site basis functions does not include the constant φ0 = 1 function, then
the resulting product basis set will not have a cluster framework and thus are not of much
practical use since all basis functions will depend on all occupation variables rather than just
those associated with site space clusters only. It is precisely the cluster framework that allows
one to obtain a useful correlation basis with which one can seek to express Hamiltonians using
only a small subset of the large (possibly infinite) set of all basis functions.

If however, the constant function is included in the site basis sets used, but the set is
not orthonormal, then one can still obtain practically useful product and correlation basis
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sets. Indeed two of the most commonly used site basis sets are not orthonormal [230, 258].16

In these cases, one does obtain a cluster framework as we have described, but the resulting
basis set will not result in the analytic/statistical properties outlined above. We will call
expansions in a correlation basis constructed from any type of site basis that includes φ0 = 1
simply as cluster expansions to emphasize the distinction with Fourier cluster expansions
which must be constructed using standard site basis sets.

Fourier cluster expansions over constrained spaces

We make a small digression to discuss some implications of using Fourier correlation basis
sets to represent functions over configuration spaces with charge neutrality constraints Ω̂ as
detailed in Equation 2.7. Since the total number of functions in a product basis over Ω is
precisely |Ω|, a set of product basis functions is over-complete for the function space over the
constrained configuration space Ω̂ of a heterovalent ionic system. Consequentially, orthonor-
mal/orthogonal product basis sets have no such orthogonality properties when restricted to
Ω̂.

The overcompleteness of the correlation basis sets for ionic materials does not formally
prevent their use, since the set still spans the functions over charge neutral configurations.
However, since it is over-complete, the set of all correlation functions is not linearly inde-
pendent. The result is that the use of an over-complete set to express functions over a
configuration space with composition constraints Ω̂ introduces linear dependencies between
correlation functions. This implies that—in contrast to systems without any active composi-
tion constraints such as metallic alloys—material properties of ionic materials as a function
of their configuration do not have a unique Fourier cluster expansion for any given set of
correlation functions.

The simplest case can be illustrated by considering the most trivial linear relation that
arises among the constant and single site cluster functions only,

∑

k

ρkΘk(σ) + ρ∅ = 0 (2.31)

where the sum runs over all orbits k with single site clusters only, and the constants ρk can
be obtained from the composition constraints in Equation 2.7, the respective multiplicities
associated with each point function, and the particular choice of site basis set used.

To further illustrate these linear dependencies, consider the constant and set of single
site correlation functions based on site indicator functions (see details in Appendix A.2) for
the system in Figure 2.5. The resulting linear constraint is,

〈1r(σ)〉 − 〈1t(σ)〉 − 〈1b(σ)〉 − 1 = 0 (2.32)

16The trigonometric basis [230] is orthonormal for binary site spaces, since it is exactly one of the 2 choices
for a standard basis. However, for |Ω| > 3 the resulting site basis is orthogonal but not normalized.
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The example constraint in Equation 2.32 results in linear dependencies that give rise to
infinitely many expressions for the same CE. This implies that, once a set of ECI coefficients
are obtained for a particular CE, the coefficients can be transformed accordingly,

J ′∅ = J∅ − x
J ′r = Jr + x

J ′t = Jt − x
J ′b = Jb − x

for any scalar x. The cluster expansion with transformed coefficients represents exactly the
same function as the one with the original set of coefficients.

Additional linear dependencies exist among higher-order correlation functions as well.
Referring again to the finite example in Figure 2.5, the following linear relationships exist
among pair functions,

〈1r(σ)1t(σ)〉 − 〈1t(σ)1t(σ)〉 − 1

2
〈1t(σ)1b(σ)〉 = 0

〈1r(σ)1b(σ)〉 − 〈1b(σ)1b(σ)〉 − 1

2
〈1t(σ)1b(σ)〉 = 0

In order to remove the resulting linear dependencies, one could in theory remove |Ω|−|Ω̂|
functions to obtain a linearly independent set. However, for real bulk ionic systems, obtaining
analytical expressions for the linear relationships among higher-order correlation functions
may be too lengthy of a task, let alone constructing an orthogonal basis set which is far from
trivial—as for example has been done for slices of the boolean hypercube [68]. Furthermore,
it is not clear that removing all linear dependencies is even necessary. The cluster basis still
spans the constrained configuration space, and correlation basis sets have been successfully
used as is to fit properties of ionic materials [34, 129, 130, 165, 182, 198, 199, 236, 245,
247]. Indeed, the deleterious effects of linear dependencies on expansion coefficients can be
managed with appropriate sampling strategies and choices of regularization during fitting,
which we will describe in Chapter 4.

2.4 The cluster decomposition

So far we have presented the formalism to construct Fourier or correlation basis sets as a
flexible representation of any lattice model Hamiltonian. This formalism so far corresponds
to that of the original cluster expansion method [187, 188, 192]. However, infinitely many
Fourier product basis sets that span the same function space L2(Ω,ρ) can be constructed
from different standard site basis choices. This in itself is not a practical problem, any
Hamiltonian representation is equally valid and will give the same results regardless of the
choice of standard basis.17 Yet different values of the expansion coefficients (or ECI) are

17In fact the site basis does not even need to be standard. Any site basis will do!



CHAPTER 2. REPRESENTATION OF GENERALIZED LATTICE MODELS 40

needed to represent the same Hamiltonian expansion with different bases. Further, since
the choice of site basis is arbitrary, then so are the associated expansion coefficients for a
particular Hamiltonian; and as a result, any effort to interpret expansion coefficients is going
to be tenuous at best. With a deeper consideration of the structure of Fourier correlation
basis sets, a Fourier cluster expansion can be re-written in a form that is both unique18 and
interpretable.

The basic idea to obtain a unique representation from a Fourier cluster expansion simply
requires one to group the correlation functions by the site space cluster orbits B = orb(A) for
A ⊆ [N ] over which they operate. The resulting Hamiltonian expansion will then essentially
be expressed in the form given in Equation 1.17 in our introduction for any general Hamil-
tonian up to arbitrary multiple body interactions. When this re-writing procedure is carried
out with a Fourier cluster expansion, it results in what we call a cluster decomposition.

Definition 2.4.1 (Cluster decomposition). The cluster decomposition of a lattice Hamil-
tonian H(σ) ∈ L2(Ω,ρ)G is an expansion of the following form,

H(σ) = N
∑

B∈G P([N ])

mB

∑

β∈L(B)

m̂βJβΘβ(σ) (2.33)

where L(B) = {β : supp(α) ∈ B ∀α ∈ β} are sets of function cluster orbits β containing
multi-indices α with symmetrically equivalent supports, i.e. with support that belongs to the
same orbit B of site space clusters. The constant mB is the multiplicity of the site-space
cluster orbit B per unit cell, and m̂β = |β̂| is the permutation multiplicity for the orbit β̂ of

contracted multi-indices α̂, i.e. β̂ = {ctr(α),∀α ∈ β}19.

A schematic illustrating the sets L(B) following the same conventions from Figure 2.7 is
shown in Figure 2.9. The set L(B) includes all symmetrically distinct function clusters β
that act over the orbit of site space clusters B. L(B) is depicted as highlighted sites that
are colored with all possible values that the entries of an associated contracted multi-index
α̂ (for any α ∈ β) can take.20

Mean cluster interactions

Each inner sum in the cluster decomposition in Equation 2.33 corresponds to a term that
acts over all of the clusters S in each orbit B included in the Hamiltonian. Each such term
constitutes a particular multi-body interaction term. Accordingly, we will refer to these
terms as mean cluster interactions.

18That is agnostic to the choice of standard site bases.
19More straightforward, this multiplicity is simply the number of symmetrically equivalent permutations

of labels over the sites of a fixed cluster supp(α) with non-constant basis functions.
20In fact though the decoration, in this case, is with ”non-constant” basis functions, instead of site

spaces, both cases will have the same symmetry group G. So we will be a bit sloppy and use the two
concepts interchangeably.
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=

Figure 2.9: Schematic depicting a set L(B) for a triplet interaction. The colored sites
correspond to a site space cluster S, and the orbit of all symmetrically equivalent site clusters
is B = orb(S). The figures with different combinations of colors over the sites S represent
all the function clusters β that operate over the orbit of site space clusters B, i.e. β such
that supp(α) ∈ B ∀α ∈ β. There are two types of site spaces in the illustration: one
with 4 allowed species (3 non-constant site functions); and another with 3 allowed species
(2 non-constant site functions).

Definition 2.4.2 (Mean cluster interaction). A mean cluster interaction is a term in
a cluster decomposition that acts only over the clusters of sites in a particular orbit B,
and is given by,

HB(σ) =
∑

β∈L(B)

m̂βJβΘβ(σ) (2.34)

The cluster decomposition can be conveniently expressed in terms of mean cluster in-
teractions, making its resemblance to the general Hamiltonian in equation 1.17 much more
explicit21.

H(σ) = N
∑

B∈G P([N ])

mBHB(σ) (2.35)

21It is simply a re-grouping of the terms in Equation 1.17 that are symmetrically equivalent
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Each mean cluster interaction has an associated effective cluster weight determined by
the precise values of the ECI or Fourier expansion coefficients included.

Definition 2.4.3 (Effective cluster weight). The effective cluster weights, W[HB] are
weighted norms of the mean cluster interactions. The value of an effective cluster weight
W[HB] is,

W[HB] = mBN ||HB||22 (2.36)

We note that despite the explicit factor of N , W[HB] in fact does not scale with the
system size N ; this is because HB is itself normalized by N , i.e. the correlation functions
that make up HB are themselves normalized per Equation 2.27.

A simple, and quite useful, expression for the effective cluster weights follows from the
orthogonality of Fourier correlation functions,

W[HB] =
∑

β∈L(B)

m̂βJ
2
β (2.37)

We pause here to note that mean cluster interactions and their effective cluster weights as
given in Equations 2.34 and 2.37 are defined based on a particular Hamiltonian. In practice,
constructing mean cluster interactions requires both the expansion coefficients Jβ (which
are model specific) and the Fourier correlation functions. However, in what follows, we will
show that the actual resulting mean cluster interactions (the functions) and the associated
effective cluster weights (the function norms) are indeed independent of the particular choice
of standard basis.

The value of re-writing a cluster expansion as a cluster decomposition arises from two
important properties of the mean cluster interactions. Specifically, the mean cluster inter-
actions HB in the cluster decomposition have the following two properties,22

1. They are orthogonal,

〈HB, HD〉 =

{
||HB||22 if B = D

0 if B 6= D

2. They are unique,

∑

β∈L(B)

m̂βJ
(1)
β Θ

(1)
β (σ) =

∑

β∈L(B)

m̂βJ
(2)
β Θ

(2)
β (σ)

For any choice of Fourier correlation basis {Θ(1)
β } and {Θ(2)

β }.

The two properties above are noteworthy since they give way to a formal analysis and
interpretation of the terms in Fourier cluster expansion of any applied lattice model. As
a start, simply by the orthogonality of any mean cluster interaction HB with the constant

22Proofs for these properties are given in Appendix B.2.
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interaction H∅, we can identify effective cluster weights as a measure of the variance of a
mean cluster interaction,

Varρ[HB] = 〈HB, HB〉ρ − 〈HB, 1〉2ρ =
W[HB]

mBN
(2.38)

In fact, we will show that the mean cluster interactions and effective cluster weights
represent a unique decomposition of the variance of a Hamiltonian. Based on these results,
we will formalize and outline ways to effectively interpret lattice models by way of the cluster
decomposition in Section 2.4.

Site basis rotations and invariance of effective cluster weights

Before discussing the question of interpretation, we make a digression to show how effective
cluster weights are invariant to the specific choice of Fourier correlation basis. To do so
we will first derive a change of basis matrix between two different standard Fourier product
basis sets. We can do this by first considering the properties of standard site basis functions.
Since all standard site basis sets must include the constant function (φ0 ≡ 1) and must
be orthonormal, it follows that different standard site basis sets are related by rotations
orthogonal to the constant function23. Figure 2.10 shows the case of two site basis sets over
a ternary site space. In this case, the rotations are simply those about the orthogonal plane
[111].

For simplicity, let’s consider a simple lattice system,24 i.e. only one site space per lattice
point. We start with a set of Fourier product basis functions constructed from a standard
site basis {φi, i = 0, n− 1}, written out as follows,

Φα(σ) =
N∏

i

φαi

Any another standard site basis {ψi}, must be related to {φi} by some rotation R orthogonal
to φ0, i.e. ψi = Rφi, as depicted in Figure 2.10. The resulting product basis functions can
then be expressed as follows,

Ψα(σ) =
N∏

i

ψαi

=
N∏

i

Rφαi

23Explicitly these are rotations in a hyperplane of rotation orthogonal to the constant vector.
24Extending to the general case with different site spaces is straightforward.
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ϕ0(σ) = 1

ϕ1(σ)

ϕ2(σ)
ϕ1(σ)

ϕ2(σ)

Figure 2.10: Two different choices of standard site basis sets for functions of the configuration
for a ternary site space, and the rotation R relating them. Both basis sets by definition
include the constant φ0 = 1 colored in red. Any arbitrary rotation about φ0 results in a
standard site basis.

Now we can construct the change of basis matrix from Ψ→ Φ is Uγα = 〈Ψγ,Φα〉, starting
from the following expression for the relation between the basis functions,

Φα(σ) =
∑

γ

〈Ψγ ,Φα〉Ψγ(σ)

By expressing the un-rotated basis Φα in terms of the rotated basis Ψα we obtain the
following expression for the change of basis matrix elements,

〈Ψγ,Φα〉 = 〈
N∏

i

Rφγi ,
N∏

i

φαi〉

=
N∏

i

〈Rφγi , φαi〉

=

(
N∏

i

Rαi,γi

)
δsupp(γ) supp(α) (2.39)

where we used the fact that 〈Rφγi , φ0〉 = δγi0, since by definition all non-constant functions
must be orthogonal to φ0. We observe that the change of basis matrix is simply the product
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of elements of the site rotations matrix expressed in the {φi} basis for elements corresponding
to product functions that act over the same cluster of sites S.

Since it is a change of basis matrix, Uγ,α must be orthogonal. But more importantly, the
change of basis matrix Uγα, is block diagonal; where the blocks correspond to the product
functions acting over the same set of site space clusters S identified by the support of
their multi-indices (supp(α)). Furthermore, since Uγ,α is orthogonal, it follows that the
blocks themselves are orthogonal.25 The blocks being orthogonal implies that for a given
Hamiltonian H the norm of all the expansion terms in a given block is left unchanged from
a change of Fourier correlation basis,

〈
 ∑

γ : supp(γ)=S

J
′

γΨγ




2〉

ρ

=

〈
 ∑

α : supp(α)=S

JαΦα




2〉

ρ∑

γ : supp(γ)=S

J
′2
γ =

∑

α : supp(α)=S

J2
α (2.40)

The expression Equation 2.40 above applies to any function of configuration, however,
when dealing with a symmetrically invariant Hamiltonian, we can group the sums by site
space clusters B and obtain the following invariance relation,

∑

η∈L(B)

m̂ηJ
′2
η =

∑

β∈L(B)

m̂βJ
2
β (2.41)

which is simply an expression that the cluster weights W[HB] are invariant to the choice of
basis. This should not be a surprise considering that we have already stated that the mean
cluster interactions are unique.

As an example, Figure 2.11a shows vertical stems for the values of coefficients for cluster
correlation functions that act over three different orbits of clusters of three sites (triplets)
and three orbits of clusters of four sites (quads) in a faced-centered cubic ternary disordered
structure. Two standard site basis sets related by a rotation of 2π/3 radians are used to
construct two different sets of Fourier correlation functions, as shown in Figure 2.11b. A
shaded area with height corresponding to the corresponding effective cluster weight is overlaid
over each set of correlation functions. The values of the correlation functions, along with the
corresponding value of the mean cluster interaction for a randomly chosen configuration σ,
are also plotted. The change of basis matrix for the correlation functions shown is visualized
in Figure 2.11c.

As we have already mentioned, this invariace among mean cluster interactions is due to
the block diagonal and orthogonal nature of the change of basis matrix relating two Fourier
correlation basis sets as shown in Figure 2.11. It is evident from Figure 2.11, how the
effective cluster weights and the particular values of the mean cluster interactions remain

25Proofs are given in Appendix B.2.
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Figure 2.11: (a) Correlation function coefficients, effective cluster weights; and correlation
function and mean cluster interaction values for a randomly chosen configuration σ of a
ternary face-centered cubic disordered structure for functions acting over three (triplet and
four (quad) site cluster orbits. (b) The two standard site basis sets used to compute the values
plotted in (a). (c) Change of basis matrix relating the Fourier correlation basis functions
shown.

the same irrespective of the choice of site basis, and in effect represent the contribution to the
total energy from said interactions. In what follows, we reveal further meaning and possible
interpretations by establishing connections with well-known statistical decompositions of
functions of (discrete) random variables.26

Interpretation of mean cluster interactions

The cluster decomposition is, at its essence, an expansion of a Hamiltonian where the ex-
pansion terms are the energy contribution of all possible site space clusters. If symmetry
were ignored there are 2N site spaces clusters in a structure with N sites—essentially the
power set P([N ]) of the N sites. When symmetry is taken into consideration, we simply sum
all interactions associated with clusters in the same orbit (by symmetry these terms repre-
sent the same function over their respective sites) and obtain Expression 2.35. Furthermore,
since the mean cluster interactions are orthogonal and the cluster decomposition is unique,
it follows that the cluster decomposition is a symmetrized Sobol decomposition [206]. The

26These statistical decompositions are not actually limited to discrete variables, in fact, much of the
original development of such decompositions has been carried out for continuous random variables [96, 206].
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Sobol decomposition is also known as the functional ANOVA (f-ANOVA) decomposition27

We can thus leverage the fact that the cluster decomposition is a symmetrized form
of the Sobol decomposition to obtain a deeper understanding and enable interpretation of
the expansion terms of a generalized lattice Hamiltonian. As the name ANOVA—which
stands for analysis of variance [65, 96]—suggests, this connection provides deeper insight
into the variance structure of a Hamiltonian beyond the total variance Fourier formula given
in Section 2.3. Additionally, we can also leverage tools and results from the field of variance
based Sensitivity Analysis [65, 101, 186] to obtain further insight into the structure of a
lattice Hamiltonians by permitting us to formally rank the importance the included cluster
interactions.

We first list the formulation of the Sobol decomposition explicitly. The Sobol decomposi-
tion was originally derived for multivariate functions over the interior of the unit hypercube
in N dimensions, f : [0, 1]N → R. However, the decomposition can be used for any multi-
variate function in a Hilbert space (in the present case L2(Ω,ρ)). Any such function f has
a Sobol decomposition expressed as follows [96, 206],

f(x) =
∑

S∈[N ]

fS(x) (2.42)

The expansion is a f-ANOVA representation (and is unique) if the terms fS are mean
zero and orthogonal [96, 206], that is,

∫

[0,1]N
fS(x)ρ(x)dx = Eρ [fS(x)] = 0 ∀S 6= ∅ (2.43)

∫

[0,1]N
fS(x)fT (x)ρ(x)dx = Eρ [fS(x)fT (x)] = 0 ∀S 6= T (2.44)

where the expectation is taken using a product probability density, thus implying that the
elements of x are independently distributed.

Under the above properties, it follows that the terms fS can be constructed with the
following procedure [96, 206],

f∅ = Eρ [f(x)] (2.45)

f{i}(x) = Eρ [f(x)− f∅|xi] (2.46)

fS = Eρ

[
f(x)−

∑

T⊂U

fT (x)

∣∣∣∣xS
]

(2.47)

where the conditional expectations are taken over all elements of x except those listed, and
xS = (xi | ∀i ∈ S).

27The Sobol or f-ANOVA decomposition is used in a variety of fields and applications where it known
with many different names, including Hoeffding, Efron, and Stein decomposition [96, 97, 157, 208].
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Label the species red = 1 and blue = 2

Figure 2.12: A hypothetical symmetric diatomic molecule with binary degrees of freedom.

The first term f∅ given by Equation 2.45 is called the grand mean. The terms f{i} over a
single variable are called main effects. All other terms fS for |S| > 1 are called interactions
[65, 96]. From the prescription above, we see that the expansion terms fS represent the
portion of the function f arising only from the interactions of variables xS (resultant from
averaging out over all other elements), and that is not captured by any lower order terms fT
for T ⊂ S.

Moreover, an important consequence of the orthogonality of the terms fS and the sta-
tistical independence of each element of x is a guaranteed variance decomposition of the
following form,

Varρ[f(x)] =
∑

S∈[N ]

Varρ[fS(x)] (2.48)

Where the variance of each term Varρ[fS(x)] can be obtained using Equation 2.47 as
follows,

Varρ[fS(x)] = Varρ[Eρ [f(x)|xS]]−
∑

T⊂S

Varρ[Eρ [f(x)|xT ]] (2.49)

Similarly, we see that the variance of each term fS represents the variance from only
those variables in xS after averaging out all other variables, and so removing the variance
arising from all subsets of variables xT for T ⊂ S. Since they are disjoint, these variances
can be used to measure the importance of the interaction of the variables xS captured by the
term fS in the fANOVA expansion of f(x). In other words, the variance of fS can be used to
measure how sensitive the function f is to interactions of input variables xS. More precisely,
this is done by using global sensitivity indices, also known as Sobol indices τS; which are
given by,

τS =
Varρ[fS(x)]

Varρ[f(x)]
=

Varρ[fS(x)]∑
T∈[N ] Varρ[fT (x)]

(2.50)

Sobol indices make up an important tool in the field of variance based Sensitivity Analysis
[65, 101, 186], where they are used to rank the importance of input variables and their
interactions. Having established that the cluster decomposition is a Sobol decomposition,
means that we can directly leverage results from Sensitivity Analysis to obtain better insights
into the mean cluster interactions of a given lattice Hamiltonian.
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ANOVA of a diatomic molecule

Before discussing the general application of the Sobol/f-ANOVA decomposition and Sobol
indices to lattice Hamiltonians, let us provide further intuition and motivation by way of a
simple example. Consider the configurations of a symmetric diatomic molecule with binary
degrees of freedom Ω = {1, 2} as depicted in Figure 2.12. We can express the Hamiltonian,
i.e. the energy of each possible configuration, in a 2× 2 matrix,28

H(σ1, σ2) =

[
ε11 ε12

ε21 ε22

]

where the εij represents the energy of a configuration where the first site is in state σ1 = i
and the second in state σ2 = j. By our assumption that the molecule is symmetric ε12 = ε21.

The ANOVA decomposition of the molecule is expressed as follows,

H(σ) = H0 +H1(σ1) +H2(σ2) +H12(σ1, σ2) (2.51)

where each term is computed as,

mean: H0 = E [H(σ)] =
1

4
(ε11 + ε21 + ε12 + ε22)

main effect 1: H1(σ1) = E [H(σ)|σ1]−H0

main effect 2: H2(σ2) = E [H(σ)|σ2]−H0

interaction {1,2}: H12(σ1, σ2) = H(σ1, σ2)−H1(σ1)−H2(σ2)−H0

= H(σ1, σ2)− E [H(σ)|σ1]− E [H(σ)|σ2] + E [H(σ)]

Finally, computing the above values for the Hamiltonian matrix in Equation 2.4 gives
the following explicit expressions for each term,

mean: H0 =

[
1
4
(ε11 + 2ε12 + ε22) 1

4
(ε11 + 2ε12 + ε22)

1
4
(ε11 + 2ε12 + ε22) 1

4
(ε11 + 2ε12 + ε22)

]

main effect 1: H1(σ1) =

[
1
4
(ε11 − ε22) 1

4
(ε11 − ε22)

1
4
(ε22 − ε11) 1

4
(ε22 − ε11)

]

main effect 2: H2(σ1) =

[
1
4
(ε11 − ε22) 1

4
(ε22 − ε11)

1
4
(ε11 − ε22) 1

4
(ε22 − ε11)

]

interaction {1,2}: H12(σ1) =

[
1
4
(ε11 + ε22 − 2ε12) 1

4
(2ε12 − ε11 − ε22)

1
4
(2ε12 − ε11 − ε22) 1

4
(ε11 + ε22 − 2ε12)

]

28We do this to follow the convention used in the tabular ANOVA.



CHAPTER 2. REPRESENTATION OF GENERALIZED LATTICE MODELS 50

Now if we use the encoding (σi, σj) ∈ {±1}2 for the configuration string under a uniform
probability ρ = 1/2, the ANOVA expression can be expressed as follows,

H(σ) =
1

4
(ε11 + 2ε12 + ε22) +

1

4
(ε22 − ε11)(σ1 + σ2) +

1

4
(ε11 + ε22 − 2ε12)σ1σ2

= J0 + 2J◦
σ1 + σ2

2
+ J◦◦σ1σ2

= J0 + 2J◦Θ◦(σ) + J◦◦Θ◦◦(σ)

= J0 + 2H◦(σ) +H◦◦(σ)

where we can immediately recognize that the second-to-final expression above is the Fourier
cluster expansion of H(σ); which in the binary case is trivially re-written as the cluster
decomposition in the final line. In addition, by relying on the Fourier expressions for variance,
we can identify the meaning of the expansion coefficients as independent variances,

Varρ[H(σ)] = Varρ[H1(σ)] + Varρ[H2(σ)] + Varρ[H12(σ)] = 2J2
◦ + J2

◦◦

The resulting Sobol indices then follow directly from their definition in Equation 2.50:

τ1 = τ2 = J2
◦

J2
◦+J2

◦◦
and τ12 = J2

◦◦
J2
◦+J2

◦◦
. This means that our expansion coefficients—more

precisely the effective cluster weights W[HB] for the general case beyond a binary system—
directly give us the terms of a variance decomposition of the Hamiltonian.

Mean cluster interactions as independent energy contributions

Now that we have motivated the nature of the cluster decomposition as a Sobol decomposi-
tion and foreshadowed the meaning of expansion terms and coefficients, we now proceed to
describe them generally and illustrate how these concepts can be used to gain insight and to
interpret expansion terms of lattice Hamiltonians.

Based on the construction of f-ANOVA terms as conditional expectation values, we can
obtain a more specific understanding of the meaning of mean cluster interactions in a given
generalized lattice Hamiltonian. First, let us resolve the structure of main effects—those
terms that depend on a single occupation variable only. We can re-write the mean cluster
interactions HB1 for an orbit B1 of singleton site space clusters as follows,

HB1(σ) =
1

mB1N

∑

i∈B1

Eρ [H(σ)|σi] = Eρ [H(σ)|σi∈B1 ] (2.52)

where we have used the fact that all conditional expectations are equal by symmetry, and
there are a total of |B1| = mB1N sites in the orbit B1.

We can see from Equation 2.52 that the main effects in the cluster decomposition rep-
resent the conditional expectation of the Hamiltonian conditioned on the occupancy of a
single site. In other words, the main effects are the contribution that a specific occupancy
σi on the i-th site has on the total energy (normalized per unit cell). Taken altogether, all
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main effects or point terms of the cluster decomposition HB1 represent the portion of the
Hamiltonian H(σ) that depends on composition only.

Similarly, we can write out the f-ANOVA form of a higher order mean cluster interaction
HB as follows,

HB(σ) =
1

mBN

∑

S∈B

(Eρ [H(σ)|σS])−
∑

D@B

HD(σ) = Eρ [H(σ)|σS∈B]−
∑

D@B

HD(σ) (2.53)

where we subtract all of the mean cluster interactions for orbits D of subclusters of the
clusters in B.

Equation 2.53 clarifies the meaning of a mean cluster interaction HB as the contribution
to the total energy coming solely from a single cluster S ∈ B and none of its subclusters.
Thus we see that the terms in the cluster decomposition generally represent the energetic
interactions between species for all the configurations of sites in a cluster. These energetic
interacations are composed of chemical interactions and possibly elastic interactions when
structural relaxations are included during the expansion parameter estimation process.

In addition to allowing us to determine the energy contribution of each cluster, the cluster
decomposition allows us to formally rank the importance of each contribution by the same
prescription of Sobol’s indices [206], which we call cluster sensitivity indices.

Definition 2.4.4 (Total cluster sensitivity index). For a given Hamiltonian H ∈ L2(Ω,ρ)G,
the cluster sensitivity index τB is the fraction of the total variance of H contributed by the
mean cluster interaction HB multiplied by its multiplicity mB,

τB =
mBN Varρ[HB(σ)]

Varρ[H(σ)]
(2.54)

The total cluster sensitivity index τB represents the variance contributed by the inter-
actions of all clusters in the orbit B per unit cell. We can also define the effective cluster
sensitivity index which represents the portion of the variance carried by only a single cluster
in the given orbit normalized per unit cell.

Definition 2.4.5 (Effective cluster sensitivity index). For a given Hamiltonian H ∈ L2(Ω,ρ)G,
the effective cluster sensitivity index τ̄B is the fraction of the total variance of H carried by
only one cluster S ∈ B from the mean cluster interaction HB.

τ̄B =
τB
mB

=
N Varρ[HB(σ)]

Varρ[H(σ)]
(2.55)

More so, using Equation 2.38 cluster sensitivities can be calculated directly from a cluster
decomposition as the ratios of effective cluster weights,

τB =
mB W[HB]∑
BmB W[HB]

(2.56)
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Figure 2.13: (a) Main species effect, nearest neighbor pair, and triplet mean cluster interac-
tion tensors for a face-centered cubic ternary alloy (Ni Co Cr) cluster decomposition. The
contribution of each cluster configuration is shown by a symmetric color map centered at
0 (neutral/no contribution). The magnitudes of the interactions are of different orders of
magnitude; the main effect point term contributions are of eV magnitude, and higher degree
interactions are of meV magnitude. (b) Cluster sensitivity indices for the face-centered cubic
ternary alloy cluster decomposition. The point term main effects represent almost the en-
tirety of the energy variance. The most important higher degree terms are the second pair,
the triplet interactions.

As an example of interpreting a particular Hamiltonian using the terms of its cluster
decomposition, Figure 2.13a shows a visualization of the point, nearest neighbor pair, and a
triplet mean cluster interactions for a fitted cluster decomposition of a NiCoCr ternary alloy.
The relative magnitudes of the chemical interaction among species can be read directly from
the colors used. Values towards the blue (yellow) end of the spectrum give negative (positive)
energies and thus favorable (unfavorable) energetic interactions. We can observe the relative
importance of each interaction by the corresponding cluster sensitivity indices plotted in
Figure 2.13b, where the effective cluster sensitivities τ̄B are plotted with solid colors on top
of the total cluster sensitivities τB shown with transparency. In this example, the point
interactions carry are by far the most important, suggesting the biggest contribution to the
energy landscape for the NiCoCr ternary alloy is simply composition29. This can be further
corroborated by inspecting the ternary phase diagram shown in Appendix C.3 from energies
calculated with density functional theory and which were used to fit this Hamiltonian. The
most important contribution from higher order mean cluster interactions is from the second
pair shown, both by a single cluster (τ̄B) and by the total number of clusters per unit cell
(τB).

Lastly, having shown how the uniqueness, orthogonality, and the connection of the cluster
decomposition to the Sobol decomposition allows formal interpretation of expansion terms,

29As is most often the case in any physical system.
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we remark that when using a representation with a non-Fourier basis or a mathematical
frame we do not obtain these properties, as thus a rigorous interpretation of expansion
terms is not directly available. In practice, however, one can always re-write any expansion
in the form given in Equation 2.33 and thus have terms that operate over the clusters in
given orbits B as follows,

H(σ) =
∑

B∈G P([N ])

mBH̃B(σ) (2.57)

where each term H̃B(σ)v is computed according to Equation 2.34 but with functions that
are not strictly Fourier correlations.

We will refer to such a representation as an pseudo cluster decomposition and call the
terms mean pseudo cluster interactions. Nevertheless, the values of such terms for non-
Fourier basis expansions are basis dependent and will not have ANOVA properties, such
that making model interpretations would be insubstantial. However, as we will show in
Chapter 3 one can always transform any general cluster expansion into a Fourier cluster
expansion in order to allow formal interpretation of the energy contributions of site space
clusters.

Expected cluster energies at finite temperatures

We can obtain further insight from the decomposition of expectations and variances at finite
temperatures.30 For the expectation value of the energy (the internal energy) we still have
the same decomposition in terms of finite temperature mean cluster interactions,

〈H(σ)〉T = N
∑

B∈G P([N ])

mB〈HB(σ)〉T (2.58)

In contrast, we do not get a complete decomposition for the variance of the energy at finite
temperatures—which is proportional to the heat capacity—because we now need to account
for the covariances between mean cluster interactions. The finite temperature variance of a
Hamiltonian is explicitly given as follows,

VarT [H(σ)] = N2
∑

B∈G P([N ])

VarT [mBHB(σ)] +N2
∑

B 6=D

CovT [mBHB(σ),mDHD(σ)] (2.59)

Although a decomposition of variance in independent terms is not obtained at finite
temperatures, the expression in Equation 2.59 still allows a useful breakdown of the finite
temperature variance. Using such Equation 2.59 we can still gain insight into which cluster
interactions contribute most to the total energy at a particular temperature. Figure 2.14

30We are now using ensemble or thermodynamic averages with respect to the Boltzmann distribution at
finite temperature T .
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Figure 2.14: Internal energy 〈H〉, mean cluster decomposition of the internal energy into
point and pair interactions mi〈Hi〉 and mij〈Hij〉, total energy variance Var[H], variance
decomposition mi Var[Hi] and mij Var[Hij], and covariance 2mimij Cov[Hi, Hij] decomposi-
tion at finite temperatures for different values of an external field h in an antiferromagnetic
face-centered cubic Ising model. For lower fields the majority of the variance is carried by
the magnetic pair interactions

shows the internal energy and variance decomposition at finite temperatures for the FCC
antiferromagnetic Ising model introduced in Chapter 1.3 for select values of the field h.
We observe that for low values of h the energy and variance associated with pair interac-
tions make up the majority of the total values and the covariances remain relatively small.
For larger values of h the portion associated with the magnetization or single site energies
becomes more important until they fully dominate at the critical point h = 12.

We can qualitatively understand this behavior by considering the cluster indices for the
two expansion terms. Figure 2.15 shows the phase diagrams for BCC and FCC antiferro-
magnetic Ising models as well as the Sobol indices for the magnetization energy and the pair
interaction energy as a function of the field h. The importance of the effects of each term can
be understood, at least qualitatively, from the decay (growth) of the pair sensitivity index
(point sensitivity index).

Although our last example using the Ising model may be overly simple, the formal con-
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Figure 2.15: Computed phase diagrams and cluster sensitivity indices τ for BCC and FCC
antiferromagnetic Ising models

nection here between the cluster decomposition, the Sobol/ANOVA decomposition, and the
use of Sobol indices to gain further insight and interpretability of generalized lattice Hamil-
tonians should open up a realm of possible applications and new methodology development
by leveraging the many tools, results and developments of the various related fields, such as
Sensitivity Analysis, ANOVA and other statistical diagnostics [65, 84, 96, 97, 101, 206, 208].

2.5 Potts frame expansions

We have detailed a procedure to construct Fourier basis sets for the space of functions over
atomic configurations L2(Ω,ρ). We have further shown how Fourier basis sets have use-
ful formulas that allow us to immediately obtain statistical properties, such as the mean,
variance, and covariances between functions under an a-priori distribution and a finite tem-
perature semigrand canonical Boltzmann distribution. Additionally, we have shown that all
the possible Fourier basis sets represent the same decomposition for any given Hamiltonian,
which we have used to reveal how to obtain even more detailed statistical properties and
interpretability in applied lattice models.

Although the analytical properties and resulting interpretations permitted by Fourier
basis sets and the cluster decomposition are profoundly useful, using such representations to
fit a Hamiltonian in practice, can sometimes be difficult and inefficient; and in some cases,
can also limit the predictive accuracy of the fitted Hamiltonian. In broad terms, such effects
show up in practice precisely due to the restrictive conditions that provide useful analytic
properties. Specifically, the requirements of orthonormality and linear independence can be
over-restrictive in certain practical applications. For example, since correlation functions are
orthogonal/uncorrelated, the robustness of a fitted Hamiltonian can be severely compromised
if the coefficient for a single but important correlation function is not accurately recovered
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or missed altogether from a finite and imperfectly sampled training data set.
Many of the practical limitations of using basis sets can be addressed simply by dropping

the requirements of linear independence and orthonormality when constructing a spanning
set of functions, and instead using what is known as a mathematical frame. We can think
of a frame simply as a basis set with additional functions included, such that the set will
always span the original space, but allows some level of redundancy (i.e. more functions than
needed). Including redundancy in the representation of applied lattice Models can provide
additional robustness and in some cases less restrictive training data requirements.

Definition 2.5.1 (Frame). A countable sequence {Φγ}γ∈I is said to be a frame for a Hilbert
space H if there exist frame bounds A,B > 0 such that,

A||F ||2 ≤
∑

γ∈I

|〈F,Φγ〉|2 ≤ B||F ||2 ∀F ∈ H

The definition above implies that the frame {Φγ}γ∈I spansH. [43, 235]. For our purposes,
we will take the Hilbert space H to be L2(Ω,ρ). Since a frame by definition spans the space
of functions over configurations L2(Ω,ρ), any function can be expanded in terms of the
functions making up the frame,

F (σ) =
∑

γ∈I

JγΦγ(σ) (2.60)

In contrast to an expansion in an orthonormal basis, such as a Fourier expansion, the
expansion coefficients Jγ are not necessarily projections of the function F onto the expansion
functions Φγ. Furthermore, there are infinitely many sets of expansion coefficients that can
be used to represent the same function F with the same frame {Φγ}γ∈I . Actually, a basis
is itself a frame where the number of functions included is exactly the dimension of the
space being spanned, (in our case |I| = dim(L2(Ω,ρ))). However, in order to benefit from
redundancy, we will construct a frame that includes many more functions than the dimension
of the space, i.e. |I| > dim(L2(Ω,ρ)).

To get a better understanding and motivate the rest of this section, consider the simple
case of representing vectors in R2. We are well aware that we can uniquely represent any
vector ~v ∈ R2 using the canonical orthonormal basis {ı̂, ̂}, as shown on the left side in
Figure 2.16. But we can also use a set of 3 non-collinear vectors to represent the same
vector ~v. In particular we can use what is called the Mercedes-Benz (MB) frame [43, 235],
which is shown on the right in Figure 2.16. We only show one out of the infinitely many
possible sets of coefficients representing ~v with the MB frame. In Figure 2.16 an orange dot
is also shown on the ı̂ basis vector and on the ε̂2 vector. The orange dot represents the best
approximation of ~v if only that single vector was used; say for example if we were unable
to recover the coefficients of the other vectors properly. The approximation error in both
cases is equal to the length of the dotted line from the tip of ~v to the orange dot. In the
example, the approximation using the MB frame is substantially more robust since it has
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Figure 2.16: Canonical basis for R2 (left) and the Mercedes-Benz frame spanning R2 (right).
The same vector ~v is shown in orange, and a representation of ~v is depicted by the intersection
of the dotted lines from the tip of ~v to each of the spanning vectors. For the canonical basis,
the representation of ~v has two unique coefficients. In contrast, only one infinitely many sets
of coefficients that can be used to represent ~v are shown. An orange dot is shown for both
representations, as the best approximation to ~v if only the single vector depicted was used.

a much lower error. We can also interpret this example as an illustration of how a vector
can often have a much better sparse approximation when using a frame over a basis—in
this example, by using only one vector in two dimensions. Although this is only a single
example31, the general intuition is that more often than not a carefully chosen frame can
result in more robust and better sparse approximations of vectors, or in our present case
lattice Hamiltonians of atomic configuration.

In the remainder of this chapter, we construct a particular frame that spans the space
functions over configurations L2(Ω,ρ), and that closely resembles the Potts frame introduced
in Chapter 1.3. Using this redundant representation to fit Hamiltonians provides numerous
practical advantages, as we will discuss in Chapter 4.6, and show examples in Chapter 5.3.
However, since the redundancy implies a lack of uniqueness are forced to abandon the useful
analytic properties that a Fourier basis representation has. Nevertheless, we can always use
the Frame representation to fit a particular Hamiltonian when it is convenient and afterward
convert the Hamiltonian to its corresponding unique cluster decomposition when analytical

31We could certainly also come up with many examples where the representation using the basis comes
out as more robust/sparse
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expressions for statistical properties and interpretations are sought. We describe practical
procedures to convert any representation into a Fourier cluster expansion in Chapter 3.

Cluster expansions with site indicator basis functions

Before introducing the generalized Potts frame, we give a brief exposition of the process of
constructing a product basis using a particular choice of non-standard site basis. We focus
on one commonly used basis set composed of site indicator functions,32 [258].

Definition 2.5.2 (Site indicator function). A site indicator function 1σj ∈ L2(Ω, ρ) is a
function that indicates whether a given species occupies a site or not,

1σj(σi) =

{
1 if σi = σj

0 otherwise
(2.61)

Since the set of basis functions must include the constant function in order to yield basis
functions that follow a cluster framework, the constant function needs to replace an indicator
function for one of the species at each site. As a result, one of the total n allowed species at
each site will not have an associated indicator function [258]. The sets of site basis functions
{φj; j = 0, . . . , n− 1} in terms of site indicator functions are then given by,

φj(σi) =

{
1 if j = 0

1σj(σi) if j = 1, . . . , n− 1
(2.62)

Following the procedure described in Section 2.3, the correlation functions are constructed
from symmetry adapted averages of the following N -fold products of site indicator functions,

Φα(σ) =
∏

i s.t. αi 6=0

1σαi (σi), (2.63)

where we notice that by construction, the functions in Equation 2.63 will indicate whether a
specific occupancy of a given cluster represented by the nonzero elements of the multi-index
supp(α) is present in a structure. We can more briefly write Equation 2.63 as a cluster
indicator function.

Definition 2.5.3 (Cluster indicator function). A cluster indicator function 1α(σ) ∈ L2(α,ρ),
is an N-fold product function of site indicator functions,

1α(σ) =

{
1 if σsupp(α) = ctr(α)

0 otherwise
(2.64)

32Site indicator functions are also referred to as site occupancy functions.
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Furthermore, since the final correlation functions are constructed from averages of func-
tions given by Equation 2.64 over symmetrically equivalent clusters, the correlation functions
represent (up to multiplicity constants) the concentration of a specific occupancy of clusters
for the different crystallographic orbits.

Definition 2.5.4 (Cluster indicator correlation function). A cluster indicator correlation
function Iβ ∈ L2(Ω,ρ) is a symmetrically invariant average of cluster indicator functions
1α,

Iβ(σ) =
1

mβNσ

∑

α∈β

1α(σ) (2.65)

where β represents an orbit of site indicator function clusters (i.e. with each site labeled with
a particular indicator function), and mβNσ is the total number of labeled clusters in the orbit
β. The sum is carried over all labeled clusters α that are part of the orbit β.

We make two notable observations regarding correlation functions with site indicator
basis functions. The first is that the basis sets in Equation 2.62 are not orthogonal and as a
result, the resulting correlation functions in Equation 2.65 are not orthogonal either. This
lack of orthogonality can further complicate constructing highly incoherent measurement
matrices compared to using orthogonal/orthonormal basis sets.

The second observation is concerned with the set of clusters/orbits that are selected by
the correlation functions in Equation 2.65. The set of correlation functions in Equation 2.65
indeed represents a basis for the function space over all possible configurations σ and thus the
set is linearly independent [258]. As a consequence, however, the included functions do not
give the concentrations of all possible occupied clusters. Namely, the correlation functions
in Equation 2.65 never include any occupied clusters that involve the species that do not
have an associated indicator function in the corresponding site basis functions. Additionally,
the number of clusters not indicated for in the cluster indicator basis grows quickly with the
number of components. In fact, the number grows as O

(
nNα − (n− 1)Nα

)
, where n is the

number of allowed species at a site and Nα is the number of sites in a cluster.
Notwithstanding these observations, cluster expansions using site indicator functions for-

mally constitute a basis for function spaces over crystalline configurations, and have been
successfully used in the study of configurational thermodynamics for some time [165, 181,
258]. Such an expansion corresponds to direct generalizations of the lattice gas model.
However, as alluded to before, the lack of orthogonality complicates obtaining incoherent
measurements to maximize accurate ECI estimation from classical CS. Additionally, the
choice of species left out in site basis sets is mathematically meaningless, but can often
lead to precarious interpretations of fitted coefficients. This begs the question of whether
we can do away with using cluster indicator basis sets and seeking maximally incoherent
measurements, yet still obtain suitably sparse and accurate expansions by instead relying
on redundancy by including functions labeled for all possible occupations over the included
clusters.
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The generalized Potts frame

We introduce a specific redundant set of functions that spans the same function L2(Ω,ρ).
The redundant set of functions can be obtained simply by including cluster indicator func-
tions of the form in Equation 2.63 for all possible occupations. More formally we build all
the N -fold product functions from redundant site function sets that include φ0 ≡ 1 and site
indicator functions for all allowed species at each site, such that for each site with n allowed
species, we associate a redundant set of functions given by,

φj(σi) =

{
1 if j = 0

1σj(σi) if j = 1, . . . , n
(2.66)

This results in n+ 1 total functions for a space of dimension n, where the redundancy is
the trivial linear relation,

φ0(σ)−
n∑

i=1

1σi(σ) = 0 (2.67)

Carrying out the same operation of taking all possible N -fold products of functions
from each redundant set and taking symmetry adapted averages over crystallographic orbits
results in the set of symmetrized product functions which give concentrations for any possible
cluster occupancy. This resulting set is highly redundant since the total number of functions
obtained are of order O

(
(n+ 1)N

)
and the dimension of the function space is of order O(nN).

In other words the combinatorics [87] for identifying symmetrically equivalent clusters involve
n possible labels of basis functions for each site for all clusters in distinct orbits compared
with the n − 1 labels involved in a cluster indicator basis. Nonetheless, the resulting set of
functions spans the same function space L2(Ω,ρ) and therefore formally the set constitutes
a frame [43, 235]. We provide a derivation for a set of frame bounds in Appendix B.3, but
make no effort to optimize them. The resulting frame has a strong connection to the well-
known Potts model [176]. Indeed it is a (normalized) generalization in both spatial extent
and interaction size of the original nearest neighbor pair Potts model introduced in Chapter
1.3 [250]. Hence we refer to the proposed frame as the generalized Potts frame.

Definition 2.5.5 (Generalized Potts frame). The generalized Potts frame for L2(Ω,ρ) is
the sequence of all possible cluster indicator functions {1α | ∀α ∈ NN

≤n} constructed from
products of local site frames which include a constant function and site indicator functions
for each of the allowed species in the corresponding site space.

Definition 2.5.6 (Symmetrized Potts frame). A symmetrized Potts frame for a symmet-
rically invariant subspace of L2(Ω,ρ) to operations in a given symmetry group G is the
sequence of all possible cluster indicator correlation functions {Iβ | ∀β ∈ G(NN

≤n)}.
Any lattice Hamiltonian H ∈ L2(Ω,ρ)G can thus be expressed in terms of a symmetrized

Potts frame as,

H(σ) = N
∑

β∈G(NN≤n)

mβJβIβ(σ) (2.68)
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1 (·)

1 (·)

ϕ0(·) = 1
Φ∅(·) = 11 (·)

1 (·)
1 (·)

H(σ) = J∅ + J 1 (σ) + J 1 (σ)

H(σ) = J∅ + J 1 (σ) + J 1 (σ) + J 1 (σ) + J 1 (σ) + J 1 (σ)

Figure 2.17: Function space representations over the configurations of a single binary site
and a symmetric binary diatomic molecule. (a) Function space over a single binary site
space. The two different choices for site bases to construct a cluster expansion are colored
red and blue, and each set also includes the purple φ0 ≡ 1 function. (b) Function space over
symmetrically distinct configurations of the molecule. A cluster expansion basis includes
either the blue-colored or the red-colored functions. The generalized Potts frame includes
all colored functions (blue/red/yellow). All function sets also include the magenta-colored
constant function.

Where it is clear that the total number of expansion terms Iβ far surpasses the dimensional
of |G(NN

≤n)| > dim(L2(Ω,ρ)) = |G(NN
<n)|.

As a simple illustration of the geometry of a symmetrized Potts frame, consider a sym-
metric binary diatomic system. Figure 2.17a shows the corresponding site spaces and site
indicator functions along with the constant function φ0. Additionally, the resulting sym-
metrized product bases are also shown in Figure 2.17b. The basis functions in both cases
are colored to represent the possible cluster indicator function bases. The union of all basis
functions from these cluster indicator function bases corresponds to the symmetrized gen-
eralized Potts frame for this simple diatomic system. Again we highlight also the inclusion
of products of mixed site basis sets, which corresponds to the orange vector built from the



CHAPTER 2. REPRESENTATION OF GENERALIZED LATTICE MODELS 62

product of a red and blue basis function associated with each site respectively.
The generalized Potts frame can also be seen as the union of every possible cluster indi-

cator basis. All possible cluster indicator bases can be generated by cycling over the species
that is not indicated for in its corresponding site basis and building the corresponding cluster
indicator correlation basis for every possible combination of site basis sets. We make a spe-
cial note that apart from the normal cluster indicator basis sets, this includes correlations of
mixed products where symmetrically equivalent sites in the underlying random structure can
have distinct basis sets, i.e. a different subset of species with associated indicator functions.
Symbolically, the generalized Potts frame includes all the cluster indicator functions in the
following set, ⋃

σ

{
1α; ∀α s.t. ctr(α) 6= σsupp(α)

}
(2.69)

As alluded to previously, by using the generalized Potts Frame to represent Hamiltonians
of configuration we lose the useful properties of a Fourier cluster expansion, however, we will
see in Chapter 4.6 and the results given in Chapter 5.3 that using the generalized Potts Frame
in the process of learning a Hamiltonian for a real system can result in more accurate, more
robust and sparser approximations than can be obtained using a Fourier cluster expansion.
Additionally, we also show in Chapter 3.2 how one can convert a fitted Hamiltonian using
the generalized Potts Frame to its corresponding Fourier cluster expansion in order to allow
a formal analysis of the Hamiltonian using the methods we have developed in Chapter 2.4.
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Chapter 3

Practical numerical implementations

Before delving into the details of fitting generalized lattice models, we describe practical and
efficient ways to implement the mathematical framework and formalism developed in Chap-
ter 2. We propose implementations to numerically represent Hamiltonians of configuration
in applied lattice models, to efficiently convert between representations, and to obtain cluster
configuration statistics directly from expansion functions. The methodology and implemen-
tations discussed here represent only one of many ways to do so. However, we have found
that these implementations generalize, simplify and improve the space and time complexity
compared to most other available implementations [2, 38, 132, 177, 226, 230]. All of the
methodology described in this chapter has been implemented and is openly available [11].

3.1 Reduced correlation tensors and cluster

interaction tensors

When implementing the different representations (cluster or frame expansions) of functions
in L2(Ω,ρ), it is advantageous to leverage the cluster-like framework and treat the product
functions introduced in Equations 2.20 and 2.64 explicitly as functions only over the sites
in their corresponding support supp(α), i.e. as functions over the configurations of a single
site space cluster S = supp(α). Furthermore, by symmetry we will have that product
functions with multi-indices in the same orbit β, are for practical purposes the exact same
function—they simply operate over the sites of another (symmetrically equivalent) site space
cluster. The practical implications of this formality allows one to only deal with a small set
of distinct functions—one for each multi-index orbit included in the expansion—of a small
number of variables only, regardless of the domain (supercell) size being used in applications.
In order to make this notion explicit, we refer to a correlation function of only the sites in
a cluster S as a reduced correlation function. The domain of a reduced correlation function
is the configuration space of a single site space cluster, whose set of site indices is equal
to the support of a multi-index S = supp(α) in a given multi-index orbit α ∈ β. Such a
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configuration space is explicitly expressed as follows,

Ωsupp(α) = ×
i:αi 6=0

Ωi (3.1)

where in the above equation we omitted the associated a-priori measure, however, it is
simply made up of the product of the corresponding site space measures ρi in the product.

Definition 3.1.1 (Reduced correlation function). A reduced correlation function Θ̂β is a
correlation function over the configuration space of a single site space cluster S = supp(α)
for any multi-index α ∈ β,

Θ̂β : Ωsupp(α) → R (3.2)

Equivalently, a reduced correlation function is an element of the function space over config-
urations of a single site space cluster, Θ̂β ∈ L2(Ωsupp(α))

The corresponding correlation function for a complete structure, can be computed simply
by averaging the reduced correlation functions over all of the site clusters in the associated
orbit B = {supp(α) : ∀α ∈ β},

Θβ(σ) =
1

|B|
∑

S∈B

Θ̂β(σS) (3.3)

Reduced correlation functions are practically useful because their input is only a small
set of variables, and so they are fast to compute and memory efficient. More importantly,
reduced correlation functions can be built efficiently and stored in memory such that their
evaluation is reduced to a simple data access operation. This can be made more precise by
considering the formal definition of the domain Ωsupp(α) for a given set of reduced correlation
functions, and re-invoking the construction of basis functions for any tensor product space
in Chapter 2. For the case of reduced correlation functions, the product space is relatively
manageable since it consists only of a few site spaces Ωi. As a result, it is straightforward
to compute the product functions Φctr(α) directly as tensor products of single site functions
as follows,

Φctr(α) =
⊗

αi∈ctr(α)

φ(i)
αi

(3.4)

where the product is now only over the elements of the reduced multi-index ctr(α). Further-
more, since we are dealing with discrete domains, each site function is isomorphic to a real
vector φ

(i)
αi ∈ R|Ωi|, where the dimension is the size of the site space |Ωi|. Accordingly, the

tensor products in Equation 3.4 can be computed efficiently using real space vectors. The
resulting product function is simply a Cartesian tensor Φctr(α) ∈ R×i∈supp(α) |Ωi|. Equivalently,
we can also think of the product function as a vector itself, Φctr(α) ∈ R|Ωsupp(α)| by simply
arranging all elements in a consistent manner—for example in lexicographical order.1

1In fact, Fourier product basis functions, correlation functions, cluster interactions, and full Hamiltonian
can be thought of as high dimensional real space vectors, H ∈ R|Ω|, where the dimension is the size of the

total configuration space Ω. Or equivalently high order Cartesian tensors in R×N
i |Ωi|.
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Following Chapter 2, a reduced correlation function is obtained by averaging over product
functions given by Equation 3.4 over symmetrically equivalent reduced multi-indices, i.e.
those belonging to the same orbit β̂ = {ctr(α) ∀α ∈ β}.2

Θ̂β =
1

|β̂|
∑

α̂∈β̂

Φα̂ (3.5)

Therefore, we can also think of reduced correlation functions as either tensors or vectors,
since they are explicitly constructed as linear combinations of tensors/vectors of the form
given in Equation 3.4. To make the nature of treating reduced correlation functions as

tensors more apparent, we will write them out between square brackets
[
Θ̂β

]
, and refer to

them as correlation tensors.
It is now evident that when using pre-computed correlation tensors evaluating a correla-

tion function reduces to a data access operation, specifically an array access operation. For
example, evaluating a reduced correlation function over a cluster of only three sites simplifies
to accessing an element of a rank three tensor (a three-dimensional array),

Θ̂β(σi, σj, σk) =
[
Θ̂β

]
σiσjσk

(3.6)

And correspondingly, to compute the value of a correlation function for an arbitrary config-
uration σ of a full structure, we simply average the reduced tensor entry for each site cluster
S ∈ B, where the orbit B = {supp(α), ∀α ∈ β}. For example, the value of a triplet cluster
correlation function is computed from its reduced correlation tensor as follows,

Θβ(σ) =
1

|B|
∑

{i,j,k}∈B

[
Θ̂β

]
σiσjσk

=
1

|B|
∑

S∈B

[
Θ̂β

]
σS

(3.7)

This practical implementation of correlation functions can be suitably extended to ex-
press cluster interactions in a similarly useful manner. In fact, we have already relied on
the concept of the interaction of single clusters in establishing the interpretation of cluster
interactions in Chapter 2.4. We can thus directly represent a single cluster interaction in
terms of reduced correlation functions.

Definition 3.1.2 (Cluster interaction). A cluster interaction ĤB represents the energy of
a single site space cluster S ∈ B for a given lattice Hamiltonian H. A reduced cluster

2The seemingly sloppy use of β vs β̂ as indices is intentional to highlight the fact that a reduced correlation
functions are independent of the precise site cluster S such that S = supp(α) for any α ∈ β. Thus when

used as indices the precise elements of the set β and β̂ are superfluous. However, we must use them carefully
in most other cases, such as sums over their respective elements since they are not the same set β 6= β̂.
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[
Ĥ
]

= J ×

[
Θ̂
]

+ J ×

[
Θ̂
]

+ J ×

[
Θ̂
]

+ J ×

[
Θ̂
]

Figure 3.1: Schematic depiction of an arbitrary triplet cluster interaction tensor as a linear
combination of reduced correlation tensors. In the depiction we have assumed that permu-
tation multiplicities have been absorbed into the expansion coefficients J .

interaction can be expressed as a sum of reduced correlation functions as follows,

ĤB(σS) =
∑

β̂∈L̂(S)

m̂βJβΘ̂β(σS) (3.8)

Where the set L̂(S) = {β̂ : supp(α) = S ∀α ∈ β} is the set of orbits of symmetrically
distinct contracted multi-indices ctr(α)—i.e. sets of symmetrically distinct permutations of
the possible site basis function choices for each site in S.

Correspondingly, cluster interaction tensors
[
ĤB

]
, can be directly computed as a linear

combination of correlation tensors,
[
ĤB

]
=
∑

β̂∈L(S)

m̂βJβ

[
Θ̂β

]
(3.9)

Figure 3.1 shows a schematic depiction of the cluster interaction tensor for a triplet cluster
as a linear combination of the corresponding reduced correlation tensors.

Similarly, the value of a mean cluster interaction HB for any configuration σ can be
computed by averaging the values of the cluster interactions for each site cluster S ∈ B,

HB(σ) =
1

|B|
∑

S∈B

[
ĤB

]
σS

(3.10)

Pre-computing all cluster interactions for the cluster decomposition of a given lattice
Hamiltonian using Equation 3.10, is particularly useful for applications that require many
evaluations of the lattice Hamiltonian, such as Monte Carlo sampling. By computing values
or differences in values of a lattice Hamiltonian using cluster interaction tensors directly,
the time complexity of the calculation becomes independent of the number of components
or species allowed per site as it will only depend on the number of orbits of site clusters S
present in the expansion. In other words, evaluating a lattice Hamiltonian for any arbitrary
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number of components is just as fast as doing so for a binary system with the same underlying
random crystal structure.

Further, the benefits of using cluster interactions are not limited only to expansions
that rigorously constitute a cluster decomposition. Tensors of the form given in equation
3.9 can certainly be constructed using non-orthonormal basis representations or the Potts
frame representation, which we have called pseudo cluster interactions, and will denote with
a tilde H̃B. Using pseudo cluster interaction tensors in turn also reduces the computation
complexity to be independent of the number of allowed components for any non-standard
cluster or Potts frame expansion.

Maximal cluster representations

Additional computation run-time improvements can be obtained by re-writing any expansion
of a lattice Hamiltonian in an expansion that includes only pseudo cluster interactions that
operate over maximal clusters. That is an expansion that does not include any term that
operates over sub-clusters of clusters associated with another term. This will result in a
representation that further reduces the number of terms that have to be evaluated to compute
properties or their changes from local configuration changes.

Formally, the procedure above represents another representation for a generalized lattice
Hamiltonian. We call such a representation a maximal cluster representation since it contains
functions over a set of maximal clusters only; such that an expansion function that acts over
sub-clusters of the clusters that an included function already acts on is never included in a
maximal cluster representation.

Definition 3.1.3 (Maximal cluster representation). A maximal cluster representation is an

expansion of a lattice Hamiltonian H ∈ L2(Ω,ρ) in terms of pseudo cluster interactions H̃B

such that B 6@ D for any terms H̃B and H̃D included in the expansion.

In order to appropriately account for terms H̃D that do not act over maximal clusters,
we can modify the calculation of mean (pseudo) cluster interactions H̃D based on Equation
3.10 by instead summing over an orbit of maximal clusters B, such that D @ B, as follows,

H̃D(σ) =
1

|D|
∑

S∈D

[
ĤD

]
σS

=
cDB
|B|

∑

S∈B

∑

T←S

[
ĤD

]
σT

(3.11)

where the notation T ← S, refers to clusters T in orbit D that are sub-clusters of cluster
S ∈ B, that is T ∈ {T ⊂ S for T ∈ D}. The counting factors cDB are given by,

cDB =
mD

NDBmB

(3.12)
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where NDB = |{T : ∀T ← S}| are the number of subclusters T contained in cluster S.
Although there exist infinitely many ways of re-writing an expansion in a maximal cluster

representation, the procedure to do so is simple to carry out in terms of (pseudo) correlation
tensors. In concept, one needs to appropriately broadcast the contributions of lower degree
terms into effective pseudo cluster interactions acting over maximal clusters only. This
involves identifying the set of maximal cluster orbitsM and for each orbit B ∈M identifying
all other orbits D such that D @ B. Subsequently each maximal pseudo interaction H̃B can
be computed as follows,

H̃B =
1

|B|
∑

S∈B

∑

DvB

cDB
nD

∑

T←S

[
ĤD

]
σT

(3.13)

where nD = |{B ∈ M : D @ B}| is the number of orbits of maximal clusters B ∈ M that
contain superclusters of the clusters in D. In other words how many maximal clusters will
share the contribution of HD.3

Finally, the inner sum in equation 3.13 can be used to define maximal pseudo cluster
interaction tensors for a practical implementation of a maximal cluster representation,

[
H̃B

]
σS

=
∑

DvB

cDB
nD

∑

T←S

[
ĤD

]
σT

(3.14)

Results showing the improved evaluation performance when using the tensor-based for-
mulations described earlier are plotted in Figure 3.2. Figure 3.2 shows the run-time for
evaluating the total energy for a given configuration in a ternary body-centered cubic sys-
tem using four different methods: (1) direct evaluation of correlation functions, (2) using
pre-computed correlation tensors, (3) using pre-computed cluster interactions, and (4) us-
ing pre-computed maximal cluster interactions. The run-time for calculating the change in
energy from changing the occupancy of a single site using the four methods is also shown.

Run-time scaling plots are shown for increasing the super-cell size (increasing the number
of sites) for an expansion with 1306 total correlation function terms. The results show that
the time complexity with respect to system size is the same (linear complexity for full energy
evaluations and constant time complexity for energy changes) for all evaluation methods.
However, the scaling pre-factor is substantially different to make all the tensor-based and in
particular the cluster interaction tensor method more than an order of magnitude faster.

In addition, run-time scaling with model size (the number of terms in the expansion)
shows that for both full energy evaluations and energy change evaluations using a cluster
interaction-based method noticeably improves the time complexity. This is no surprise since
cluster interaction-based methods scale with respect to the number of site space cluster
orbits, and not the total number of correlation functions. Furthermore, model evaluation
using cluster interactions is of considerable value for systems with a large number of allowed

3The equal partitioning of contributions of a non-maximal cluster interaction HD to each maximal cluster
is only one straightforward way of the infinitely many choices to partition such contributions.
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Figure 3.2: Run-time scaling curves for (top) full energy evaluations and (bottom) evaluation
of energy differences from a change of the occupancy at a single site. (Left) Run-time
scaling with respect to the number of sites (supercell size) for an expansion with 1306 terms
(corresponding to 154 cluster interactions). (Right) Run-time scaling curves with respect to
the number of correlation functions (model size). In all curves, the values are the average
run time of 2000 evaluations. The shaded regions denote one standard deviation. All runs
were done using an Intel Core i7-7700HQ 2.80 GHz processor.
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species considering that such evaluation only depends on the number of orbits and is thus
independent of the number of components.4

3.2 Converting expansions to Fourier representations

In Chapter 2 we developed two useful representation schemes for lattice Hamiltonians. Ad-
ditionally, several related basis function representations—such as those listed in Appendix
A.2—have been developed in the cluster expansion literature [188, 230, 258]. The differ-
ent representations have different properties and as a result different practical advantages
and limitations. Based on the different properties of lattice Hamiltonian representations, it
becomes of practical importance to be able to convert fitted expansions between different rep-
resentations. Doing so allows practitioners to leverage the strengths of each representation
based on the application at hand.

Notably, when fitting a lattice Hamiltonian a Potts frame or non-orthonormal representa-
tion using imperfectly sampled training data, may result in models with improved prediction
accuracy than those fitted using a Fourier cluster expansion [9, 258]—such as the example
given in Chapter 5.3 using a Potts frame reconstruct Hamiltonians over very high dimensional
configuration space. On the other hand, any serious attempt to characterize or interpret in-
teractions between species directly from a fitted expansion should be only carried out using
a Fourier cluster expansion and the resulting cluster decomposition. Then, for example,
one could fit a lattice Hamiltonian using the Potts frame and subsequently convert it to a
Fourier cluster expansion to permit interpretation of cluster interactions. As a solution, we
present an efficient method to convert any Hamiltonian representation to a Fourier cluster
expansion.

In theory, any transformation between two basis representations can be obtained by the
appropriate change of basis matrix. That is, by expressing the old correlation basis functions
Θ
′

β in terms of the new basis correlation functions Θβ,

Θ
′

β =
∑

γvβ

MγβΘβ (3.15)

It follows that expansion coefficients for a Hamiltonian can be computed from those
expressed in the old basis as follows,

Jγ =
∑

βwγ

MγβJ
′

β (3.16)

Specifically, when the new basis is a Fourier correlation basis, the entries of the change
of basis matrix are simply proportional to the projections of the old basis functions onto the
Fourier correlation basis functions,

Mγβ = mγ〈Θ
′

β,Θγ〉ρ (3.17)
4In other words this allows evaluation of the expansion of any multi-component material at the same

time-complexity of a binary system.
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However, in practice it is much more efficient, to use a pseudo cluster decomposition to
represent the Hamiltonian in the old basis, and obtain the Fourier coefficients by carrying out
projections of the pseudo cluster interactions H̃B onto the Fourier correlation basis. Thus,
the Fourier coefficients are computed as follows,5

Jγ = N
∑

BwD(γ)

mB〈H̃B,Θγ〉ρ (3.18)

where the notation D(γ) = OrbG(supp(γ)) represents the site space clusters D over which
the function Θγ acts on.

In practice, one can compute the inner products in equation 3.18 by computing only
the inner product between pseudo interaction tensors and Fourier correlation tensors. The
correlation tensors must be suitably expanded to match the dimensions of the interaction
tensor being projected onto; similar to what was done to broadcast lower interactions when
constructing the maximal cluster representation. Since the correlation functions involved in
Equation 3.18 always act over sub-clusters of the clusters that H̃B acts on, the broadcasted
reduced correlation functions Θ̂γB(σS) are represented as follows,

Θ̂γB(σS) =
∑

T←S

Θ̂γ(σT ) for any S ∈ B (3.19)

The inner product can be efficiently computed in terms of the (pseudo) cluster interaction

tensor
[
ĤB

]
and the broadcasted reduced correlation tensor

[
Θ̂γB

]
, such that the new

expansion coefficients—those appearing in Equation 3.18)—can be calculated as follows,6

Jγ =
∑

BwD(γ)

mB

mD(γ)|S|
[
ĤB

]
·
[
Θ̂γB

]
(3.20)

Using any site space cluster S ∈ B, and where the tensor dot product above is the sum
of all element wise-products.

Using pseudo cluster interactions allows converting any basis expansion as well as Potts
frame expansion coefficients to Fourier cluster expansions with the same procedure outlined
above. As an illustration, Figure 3.3 shows the expansion coefficients for the Hamiltonian of
a ternary alloy fitted with a using a Potts frame and the expansion coefficients for the same
Hamiltonian converted to a Fourier correlation basis representation.

An important observation to make is that the corresponding Fourier coefficients will
always have more weight on lower degree terms since all cluster indicator correlations have
nonzero projections onto lower degree Fourier correlation functions. In practice, fits using
a non-orthogonal basis will usually result in coefficients of larger magnitude and possibly

5We are essentially expanding each H̃B in its own Fourier cluster expansion and summing the coefficients
from each H̃B corresponding to the same correlation function.

6A derivation is given in Appendix B.4.
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Figure 3.3: Effective cluster interactions and root cluster weights for a Potts frame fit of a
CrCoNi alloy system, and the corresponding expansion coefficients converted to a Fourier
cluster expansion according to the procedure outlined using Equation 3.18

exhibit a weaker trend in the decay of coefficient magnitude with decay size as can be observed
in Figure 3.3. A handful of additional examples of this behavior are given in Chapter 5.2.
However, practitioners should understand that the corresponding Fourier cluster expansion
coefficients will most often reflect a much stronger decay versus the degree of expansion
coefficients. Based on this, practitioners should be wary of using arguments that rely on
heuristics that have been established based on Fourier cluster expansions when analyzing
trends in coefficients of a non-orthogonal cluster expansion.

Finally, we contend that there never really is a need to transform coefficients in the
reverse direction, i.e. from a Fourier cluster expansion to a non-Fourier representation. If a
sufficiently accurate fit has been obtained as a Fourier cluster expansion then, to the best of
our knowledge, there are few theoretical or practical benefits obtained by converting a Fourier
expansion to another representation. For the few cases where Boolean operations may be
important, such as determining ground-state configurations [100], any expansion expressed
as a (pseudo) cluster decomposition (including the maximal cluster representation), can
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trivially be expressed as a Potts frame simply by setting each term JβIβ(σ) as follows

JβIβ(σ) =
1

mβN

∑

α∈β

ĤB(β)(σα)1α(σ) (3.21)

where σα refers to the precise configuration the cluster indicator function 1α indicates for.
That is the expansion coefficients Jβ are just the values of the corresponding reduced corre-

lation function ĤB(β) evaluated at the configuration being indicated for.

3.3 Computing cluster occupation probabilities and

averages

In addition to predicting formation energies, which can, in turn, be used in calculations of
Free energies and thermodynamic properties of atomic configuration, the ability to resolve
atomic ordering statistics at finite temperatures permits a much deeper understanding of
the properties and behavior of materials exhibiting partial or full atomic disordering [36, 81,
159, 204]. As detailed in Chapter 1 short-range order parameters at finite temperatures have
an important role in the study of disordered materials [35, 50, 54, 81].

Short range order (SRO) parameters are computed in terms of cluster probabilities [36,
50, 54]. More explicitly, SRO parameters are computed using the marginal probabilities that
the site space clusters for a particular orbit B have a specific atomic configuration.

Definition 3.3.1 (Cluster probability). A cluster probability PS(σS) is the marginal of the
Boltzmann probability which gives the probability for the configuration σS of a given cluster
of sites S,

PS(σS | T ) =
∑

σ\σS

P(σ | T ) (3.22)

where the sum is carried over all possible configurations of the sites not in S; and P(σ | T )
is a generalized Boltzmann distribution as introduced in Chapter 1.4.

Many methods exist for calculating approximations to cluster probabilities [67, 114, 144,
192, 216]. A subset of these methods leverages the particular representation of the lattice
Hamiltonian [67, 192, 193] in terms of a Fourier cluster expansion.7 The main idea underlying
these methods is to represent the cluster probabilities themselves using a Fourier cluster
expansion. The notion is straightforward since cluster probabilities at a given temperature
PS(σS | T ) ∈ L2(ΩS) are themselves functions over configuration space.8 Moreover, since

7As a matter of fact, approximating cluster probabilities was the motivation to formalize the represen-
tation of lattice Hamiltonians using Fourier cluster expansions [192].

8And usually a very manageable configuration space since usually only small clusters S are important!
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the cluster probabilities for any cluster in the same orbit S ∈ B are equivalent by symmetry,
the cluster probability PB for all clusters S ∈ B can be expanded as follows,

PB(σS∈B | T ) =
∑

β∈G(NN<n)

mβξβ(T )Θβ(σ) (3.23)

where the expansion coefficients ξβ(T ) depend on the thermodynamic temperature T . When
Equation 3.23 is expressed in terms of a Fourier cluster expansion, then the expansion co-
efficients can be shown to correspond to the expected values of each correlation function as
follows [193],

ξβ(T ) = 〈PB(σS∈B | T ),Θβ〉ρ = 〈Θβ〉T (3.24)

Therefore, cluster probabilities can be directly computed from the thermodynamic expec-
tation values of Fourier correlation functions. For many practical calculations—in particular,
those based on Monte Carlo sampling—the above approach can be generalized by expressing
cluster probabilities as the sum of expectations over the indicator functions for each possible
configuration of a site space cluster S,

PS(σS | T ) =
∑

σ
′
S∈ΩS

〈1σ′S〉T1σ′S
(σS) (3.25)

And the probability for all clusters in an orbit S ∈ B can be obtained as the mean of all
probabilities for each cluster,

PB(σS∈B | T ) =
1

|B|
∑

S∈B

PS(σS | T )

=
1

|B|
∑

S∈B

∑

σ
′
S∈ΩS

〈1σ′S〉T1σ′S
(σS)

=
1

|B|
∑

S∈B

∑

β̂∈G(ΩS)

〈m̂βIβ〉T m̂β Îβ(σS) (3.26)

where G(ΩS) is the set of sets of symmetrically equivalent occupancy σS of a cluster S ∈ B.
We explicitly include the multiplicities m̂β, so that reduced cluster indicator correlations
give values of 1—opposed to 1/m̂β—for any of the symmetrically equivalent occupancies σS
included in β (i.e. they are symmetrized indicator functions).

Equation 3.26 is simply a re-expression of the canonical expansion of PB in a symmetrized
Potts frame written as follows,9

PB(σS∈B | T ) =
∑

β∈L(B)

〈m̂βIβ〉TmβIβ(σ) (3.27)

9From a more careful inspection, we can also see this as the mean pseudo cluster interaction of cluster
probabilities!
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where the set L(B) = {β : supp(α) ∈ B ∀α ∈ β} is constructed in the same way as done for
the cluster decomposition given in Equation 2.33. However, the multi-indices α are obtained
from the overcomplete set α ∈ NN

≤n used in the Potts frame construction (in contrast to the
multi-index set α ∈ NN

<n used in Fourier cluster expansions.
For practical purposes, the cluster indicator correlation functions in Equation 3.25 can

be suitably expressed in terms of reduced cluster correlation functions as follows,

m̂β Îβ(σS) =
∑

γ∈G(N|S|<n)

IγβΘ̂γB(σS) (3.28)

where Iγβ are expansion coefficients. Note that the left hand side is a Fourier cluster expan-

sion, hence the functions are indexed using multi-indices from the set G(N|S|<n); and Θ̂γB are
reduced correlation functions broadcasted to site space clusters S ∈ B(β) following Equation
3.19.

The set of equations as given in Equation 3.26 for all symmetrically distinct configurations
represented by β̂ ∈ G(ΩS) can be compactly expressed as the following matrix equation,10

ISS = VSIγβ (3.29)

where the columns of the matrix VS ∈ R|G(ΩS)|×|G(N|S|<n)| are the corresponding reduced corre-

lation functions expressed as vectors in R|ΩS |.11 The matrix Iγβ ∈ R|G(N|S|<n)|×|G(ΩS)| is made up
of columns with the expansion coefficients Iγβ for each reduced indicator correlation function

Îβ(σS). And ISS is a |G(ΩS)| × |G(ΩS)| identity matrix.
Before continuing, we make an important remark regarding Equation 3.29. Even though

we are considering symmetrically distinct configurations, this may not necessarily result in
a square V matrix for any given cluster S. For example any cluster S of symmetrically
equivalent sites under the space group G of a disordered crystal structure that are not
symmetrically equivalent with respect to its point group P will result in |G(N|S|<n)| < |G(ΩS)|.
Meaning that the set of reduced correlation functions constructed with the symmetry G of
the underlying lattice spans a lower dimensional space than the set of indicator functions
for all symmetrically distinct configurations. Nevertheless, this does not prevent the use of
Equation 3.29 to obtain a practical expression for the probability PB of clusters in an orbit
using Equation 3.26. Indeed, this is just a statement that the probability of the different
configurations of clusters of an orbit in Equation 3.26 must be symmetrically invariant under
operations of the symmetry group G.

Furthermore, the fact that VS may not be square, does not prevent the inversion of
Equation 3.29, since it will always be either square or overdetermined, and will always be

10This formulation is equivalent to the original V-matrix construction used in the solution of the CVM
by way of Fourier cluster expansions [33, 192, 193].

11In this case correlation functions over orbits γ @ β must be accordingly expanded to the dimension
|G(ΩS)| by an appropriate ordering of the corresponding site clusters.
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Figure 3.4: Nearest neighbor pair probabilities for a face-centered cubic antiferromagnetic
Ising model under different applied fields h calculated with Wang-Landau sampling using a
supercell with 256 sites.

full rank.12 Thus, the expansion coefficients for the reduced correlation indicator functions
are given by the right (pseudo)-inverse of VS,

Iγβ = (V>SVS)−1V>S = V+
S (3.30)

Consequently, the pseudo-inverse can be used to compute the occupation probabilities of
clusters in an orbit PB in terms of correlation functions using the following matrix-vector
equation,13

PB = MDBV
+
S 〈ΠB〉T (3.31)

where the elements of probability vector PB are the thermodynamic probability of sym-
metrically distinct configuration σS over all symmetrically equivalent clusters S ∈ B. The

elements of the vector 〈ΠB〉T ∈ R|G(N|S|<n)| are given by the expectation value of each corre-

lation function β ∈ G(N|S|<n), i.e. (〈ΠB〉T )β = 〈Θβ〉T . The matrix MDB ∈ R|G(N|S|<n)|×|G(N|S|<n)|

accounts for the over-counting factors between the broadcasted correlation functions used
to compute V based on Equations 3.28 and 3.29 and the full correlation functions in 〈ΠB〉T .

Equation 3.31 is quite useful for Monte Carlo sampling because it allows the thermody-
namic averages of correlation functions to be easily approximated without any additional
computing—computing the energy of each configuration already requires computing the cor-
relation function values for that configuration [216]. Figure 3.4 shows an example of the
nearest neighbor pair cluster probabilities as a function of temperature for an FCC antifer-
romagnetic Ising models calculated from Wang-Landau [237] Monte Carlo sampling using

12In fact, this was one of the main motivations to use such construction to find solutions to the cluster
variation method (CVM). Apart from guaranteeing that cluster probabilities satisfy marginality constraints,
this prescription guarantees that the probability functions are symmetrically invariant under the symmetry
of the disordered structure, thereby transforming the CVM problem into an unconstrained one over the
expansion coefficients ξβ(T ) [192, 193].

13A derivation is given in Appendix B.5.
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Equation 3.31 for several values of non-critical fields. An example illustrating the compu-
tation of short-range ordering for a real material using this method is given in Chapter
5.4.

Following the same reasoning, the cluster occupation averages for a specific configuration
σ can be suitably computed as,

S̄B(σ) = MDBV
+
SΠB(σ) (3.32)

Where now S̄B(σ) is made up of cluster occupation averages for the configuration σ, and
the elements of the vector ΠB(σ) are now simply the correlation functions evaluated for the
configuration σ, i.e. (ΠB(σ))β = Θβ(σ).
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Chapter 4

Learning applied lattice models

We have motivated their use and presented the formal representation and interpretation of
generalized lattice models for the study of thermodynamic properties of atomic configura-
tions in crystalline materials. In this chapter, we discuss several aspects that enable fitting a
generalized lattice model to a particular material system using training data computed from
first-principles calculations. We focus particularly on using training data calculated with
density functional theory (DFT) [120], since this is by far the most prevalent method used
in computational materials science research [23, 89]. There have been a handful of different
learning algorithms developed to parametrize applied lattice models since the cluster expan-
sion method was proposed. After only a brief description of some of these methods, we will
focus solely on regularized linear regression-based learning and in particular regularization
that results in structured sparsity. The majority methodology developed in this chapter is
based on our recently published work [9, 10, 253, 259].

4.1 Overview of learning algorithms

Learning or fitting an applied lattice model is the process by which to estimate expansion
coefficients for a lattice Hamiltonian that can most accurately predict a particular materi-
als property. Expansion coefficients are predominantly obtained by statistical estimation,
such that the predicted energy matches the energy calculated for a set of configurations by
first-principles calculations. However, we can also take a parametric approach [55], where
different sets of expansion coefficients for a prescribed set of correlation functions are used
to calculate thermodynamic properties. Particular Hamiltonians that match observed ther-
modynamic properties for the application at hand can subsequently be used to further probe
relevant phenomena. Additionally, some form of bench-marking with observed thermody-
namic properties should always be carried out when using calculations from an applied lattice
model obtained with either a fitting or a parametric approach to ensure a faithful represen-
tation of the Hamiltonian has been obtained. Furthermore, there are a variety of ways both
approaches can be used together. Nonetheless, in this chapter, we will only focus on the
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learning approach since it is the approach used predominantly in practice—though the for-
mer still comprises a worthwhile path to develop a powerful methodology for the study of
disordered materials.

A large number of different algorithms and methods for learning cluster expansions have
been proposed and bench-marked in literature. It would be overly ambitious to properly cover
them all in a single chapter. Nevertheless, we provide a high-level overview, by grouping
algorithms into general three categories based on the underlying conceptual approach. These
learning categories can be roughly summarized as follows [55],

1. Mean medium perturbation methods, such as the Generalized Perturbation method
[61], the concentration wave method [85] and the embedded cluster method [79], were
the first set of methods proposed. Broadly, in these methods, local concentration per-
turbations are introduced into an effective medium representing the non-interacting
(or fully random) electronic energy in a periodic potential (on a lattice). The expan-
sion coefficients are calculated directly from a perturbation treatment of an effective
medium theory, such as the coherent potential approximation [80]. Although these
methods can be regarded as the most formal, in the sense of their direct inclusion of
the electronic structure of a disordered solid in parameter estimation, they have mostly
fallen out of favor in practical calculations, in particular, because they lack structural
relaxations; so we will not discuss them further.

2. Direct configuration averaging involves directly estimating expansion coefficients
as empirical averages using the statistical interpretation given in Equation 2.14 [58] in
Chapter 2. This method has also fallen out of favor due to the large number of training
structures required to obtain accurate estimates of coefficients. However, we will briefly
discuss it since it may possibly have renewed interest in light of improvements in
computation power and recently developed methods to calculate training data. We give
some brief suggestions on how to revisit this method as an outlook in our conclusions
in Chapter 6.

3. Structure inversion methods are those that involve linear regression estimation of
expansion parameters [49]. These methods have become the de-facto method for fitting
Hamiltonians of configuration when constructing an applied lattice model. As such, we
will discuss them extensively, and focus on novel techniques and methodology that we
have found greatly improves the accuracy and robustness of the resulting Hamiltonians.

Direct configuration averaging

The method of direct configuration averaging (DCA) to fit a lattice Hamiltonian of config-
uration involves directly approximating the expansion parameters using the inner-product
given in Equation 2.14 [55, 58] under its statistical interpretation as an expectation. The
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concept is to simply approximate the expected value as an arithmetic mean,

Jβ = Eρ [H(σ)Θβ(σ)]

=
∑

σ∈Ω

ρ(σ)H(σ)Θβ(σ)

=
∑

σ∈Ω

ρ(σ)H(σ)Φα(σ) for α ∈ β (4.1)

≈ 1

|ΩT |
∑

σ∈ΩT

EσΦα(σ) for α ∈ β (4.2)

where we have used the fact that all projections of H(σ) onto any function in the orbit
of product functions {Φα}β are equal by symmetry. The approximation is made by using
only a set of configurations ΩT corresponding to a set of training structures for which the
corresponding energies Eσ have been computed.

The DCA method was originally developed and proposed only estimation under a uniform
apriori distribution ρ(σ) = 1/|Ω|, and not for any general product distribution as stated in
Equation 4.1.1 Yet generally, in order for the estimate given in Equation 4.2 to be accurate,
the set ΩT must be sampled according to the apriori distribution being targeted.2

DCA offers a mathematically rigorous method to estimate expansion coefficients. Further,
estimating a coefficient using DCA is done completely independently of all other coefficients
and expansion terms. However, as already mentioned, using DCA fell out of practice due
to the large number of structures required to obtain accurate expansions compared to the
structure inversion method [55, 246]. However, in light of the momentous advancements in
computing and methods to approximate the energy of crystalline materials, revisiting the
DCA may prove a worthwhile endeavor. We provide a few suggestions and remarks on doing
so in the outlook given in Chapter 6.

The structure inversion method

The structure inversion method (SIM) as originally proposed, involved solving for expansion
coefficients of a binary Fourier cluster expansion by inverting a set of linear equations in the
expansion coefficients [49]. In its original development, the SIM involved constructing a sys-
tem with the number of independent equations equal to the number of unknown coefficients.
This constituted an invertible square linear system, expressed as follows,

ΠJ = E (4.3)

where Π ∈ Rm×m is a square matrix, where each row Πσ ∈ Rm is a vector—referred to
as an correlation vector—made up of the values of a predefined set of Fourier correlation

1Actually, the DCA was used to some extent for other distributions by considering configurations σ at
a fixed concentration.

2The estimates can always be improved by including weights proportional to ρ(σ).
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basis functions evaluated for a given configuration σ. J ∈ Rm is a vector of the unknown
expansion coefficients, and E ∈ Rm is a vector of the energy Eσ of each configuration σ
computed by some appropriate method, e.g. DFT or a related first-principles electronic
structure method.

The estimated expansion coefficients can be determined by solving the linear system, i.e.
inverting the matrix Π,

J = Π−1E (4.4)

The structure inversion method quickly became popular for its simplicity and its accuracy
in predicting energies of binary alloys that often surpassed the accuracy of other learning
methods [246]. However, the original structure inversion is limited in two important aspects.
First, the expansion coefficients depend on the selected structures used to construct the
square linear system. Second, a pre-selected set of expansion functions needs to be selected
beforehand.

The first issue was promptly addressed by using Ordinary Least Squares (OLS) regres-
sion to estimate the coefficients instead of the direct inversion in Equation 4.4 [55]. Using
OLS regression, the process to obtain expansion coefficients becomes a statistical estima-
tion problem rather than an exact solution. The OLS regression optimization problem for
estimated expansion coefficients is written as follows,

J∗ = argmin
J

||ΠJ −E||22 (4.5)

where Π ∈ Rm×d is similarly a correlation matrix (also referred to as feature matrix) where
the rows are truncated correlation vectors Πσ ∈ Rd for m training structures. Notice now
that the number of training structures m does not need to equal the number of expansion
terms p. J ,J∗ ∈ Rd are vectors of the expansion coefficients. In the vector of expansion
coefficients, J ,J∗ ∈ Rd, the multiplicities for of the corresponding correlation function are
usually treated implicitly as J = (J0,mβ1Jβ1 , . . . ,mβd−1

Jβd−1
). However, the expansion co-

efficients can be fitted directly by accounting for the multiplicities in the feature matrix as
well.

The OLS estimation of expansion coefficients is still often referred to as the SIM. However
compared to the direct inversion original proposed, OLS allows estimation of coefficients for
both overdetermined cases—when there are more training structures than correlation func-
tions (m > d)—and for underdetermined scenarios—where there are more correlation func-
tions than training structures (m < d). To some extent, OLS also addresses the dependence
of expansion parameters on a particular set of training structures. However, it still requires
using a predefined set of expansion terms. Further, it suffers from all of the complexities
and limitations that can arise in OLS estimation, such as solutions that are highly sensitive
to changes in the training data, and a tendency to over-fit to training data [66, 90, 93].

These remaining obstacles have been addressed by resorting to regularized linear regres-
sion and/or including linear constraints in the regression optimization problem. A variety of
different regression models have been proposed and tested in the literature [2, 131, 148, 153,
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227]. In the rest of this chapter, we will focus on the basics of regularized regression. We
will then discuss how physically and mathematically motivated priors on the structure of the
expansion coefficients in lattice Hamiltonians can be introduced. Finally, we give examples
of how these methods can be used to fit accurate and robust Hamiltonians of configuration
for complex multi-component crystalline materials with an eye toward the growing number
of components in materials of technological interest.

4.2 Regularized linear regression

Regularized linear regression seeks to estimate coefficients by including a penalization or
regularization term to the OLS regression objective. A general regularized linear regression
estimation can be expressed as follows,

J∗ = argmin
J

||ΠJ −E||22 + ||J ||

where ||J || is the regularization term, which usually involves the power of a norm or com-
bination of norms of the coefficients J . The coefficient for the data offset, or formally the
empty cluster coefficient, is commonly not penalized in the regularization [90, 148]. Addi-
tional constraints can be added to the optimization problem in Equation 4.6, such as cluster
hierarchy constraints [99, 131] or constraints to preserve certain configurations as ground
states [99].

In current research into MPE or complex ionic materials, some form of regularized re-
gression is almost always used and necessary in practice when estimating expansion co-
efficients. Furthermore, regularized regression models can be derived and/or interpreted
under a Bayesian framework, such that the choice of regularization function is based on
the assumed prior distribution of coefficients [90, 148]. We will not discuss the details of a
Bayesian motivation or interpretation, but make note that such an interpretation in terms
of a prior distribution—that corresponds to the specific regularization used—always exists
[90, 93]. Instead, we focus on the practical and numerical benefits resulting from the use of
regularization.

Effects of regularization

In order to better understand the effects of including a regularization term in linear regres-
sion, it is important to first understand the basic properties and geometry of solutions in
OLS problems. The matrix-vector multiplication between the correlation matrix and the
expansion coefficient to be estimated can be understood as the expansion of a finite vector
in terms of the columns/features made up of the sampled values of the correlation functions
included,

ΠJ =
d∑

i=1

JiΠ
(i) (4.6)
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where Π(i) is a column or feature vector of Π ∈ Rn×d made up of the values of a corresponding
correlation function Θβ(i) evaluated for each of the configurations σ(i) for i = 1, . . . , n.

Equation 4.6 makes it explicit, that the approximation done when minimizing the OLS
objective (without regularization) in Equation 4.5 amounts to finding a vector that is closest
to E (in terms of the Euclidean distance in Rn) as a linear combination of feature vectors
Π(i), i.e. in the range of the correlation matrix Π, Ê = ΠJ∗ ∈ R(Π) [25, 180]. Further,
the dimension of the range of the correlation matrix dimR(Π), is equal to the number
of linearly independent features, and is bounded by dimR(Π) ≤ min(m, d). Whenever
dimR(Π) = min(m, d), we say that Π is full rank.

In addition to the fact that any ΠJ ∈ R(Π), any set of coefficients J∗ that are a solution
to Equation 4.5, satisfy the well-known normal equations [25, 66, 90, 180],

Π>ΠJ∗ = Π>E (4.7)

Whenever Π is full rank, a solution to the normal equations 4.7 can be obtained in terms
of the psuedo-inverse Π+ [25],

J∗ = Π+E (4.8)

The pseudo-inverse can be expressed explicitly as follows:

• For an overdetermined system, rank(Π) = d < m,

Π+ = (Π>Π)−1Π> (4.9)

• For an underdetermined system, rank(Π) = m < d,

Π+ = Π>(ΠΠ>)−1 (4.10)

When the system is overdetermined, the solution given by Equation 4.8 is the sole unique
solution to the OLS problem. In contrast, when the system is underdetermined, the solution
corresponds to the solution with minimum norm (||J∗||2), taken from the set of infinitely
many solutions [25].

Furthermore, by using the pseudo-inverse and considering ΠJ∗ as a linear combination
of the feature vectors, the OLS problem 4.5 can be seen as obtaining the projection of the
vector of calculated energies E onto the range of the correlation matrix R(Π) [25], such that
the distance or residual r∗ or equivalently the square of the residual minimum,

r2 = ||E −ΠJ∗||22
= ||E −ΠΠ+E||22 (4.11)

= ||E − PR(Π)(E)||22

where the projection onto R(Π), denoted PR(Π), is obtained using the projection matrix
H = ΠΠ+.
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The fact that OLS solutions must satisfy the normal equations 4.7 and the corresponding
in-sample prediction vector ΠJ∗ is the projection of the target vector E onto R(Π), helps to
motivate and better understand the use of regularization in linear regression and particularly
for learning Hamiltonians of configuration in applied lattice models.

The first reason to use regularization, as the name suggests, is for improving the stability
of the solution to small disturbances of the sampled correlation functions. We can obtain
a measure of the sensibility of a solution to disturbances in the calculated energies E by
considering a bound on the norm of the corresponding change in the obtained coefficients
J∗. Such a bound can be obtained directly from the fact J∗ satisfies the normal equations,
and is given by the condition number of the matrix Π>Π [25],

κ(Π>Π) =
smax

smin

= κ2(Π) (4.12)

where smax and smin are the singular values of the matrix Π>Π, and are each equal to the
square of the corresponding maximum and minimum singular values of Π.

When the smallest singular value of the matrix Π is small relative to the largest, the
condition number will be large; and when the matrix is singular (i.e. smin = 0), its condition
number diverges, κ(Π) = ∞. Regularization prevents the linear system from being close
to singular. Due to sampling complications which are discussed in detail in Chapter 5.1,
correlation matrices can often be poorly conditioned. Regularization directly improves the
condition number by modifying the matrix in the normal equations to one where all the
original singular values are shifted by a positive value proportional to the regularization. By
improving the condition number of the regression problem, more numerically stable solutions
can be obtained [25, 90].

The second purpose of regularization is that of shrinkage, which entails forcing solutions
to have a small norm. The motivation for seeking regularization and shrinkage can be
succinctly summed up in the bias-variance trade-off ; where introducing a regularization
term will increase the model bias—or its flexibility to represent the training data—but lower
the model variance and as a result yield more stable model coefficients [90]. The bias-variance
trade-off usually leads to better out-of-sample prediction accuracy at the cost of lowering
in-sample prediction accuracy, or in other words, preventing over-fitting.

Another way to understand shrinkage of regression solutions with regularization norms, is
to consider the geometry of solutions in terms of the elliptical OLS level sets (isosurfaces),3

and the level sets of the regularization norm (also known as norm-balls). The solution
geometry for regularized regression using `2 (Ridge ||J |22) and `1 (Lasso ||J ||1) regularization
in R3 is shown in Figure 4.2. Shrinkage can be understood as arising from the monotonically
increasing nature of the regularizing norm. This means that the level sets for any of the
norm balls depicted are physically larger for increasing values of the norm. Hence the norm
penalization will tend to drive solutions closer to the origin compared to the OLS solution,
which in turn increases model bias but decreases model variance.

3A level set or isosurface is the locus of points where the value of a function is equal to a constant k,
f(x) = k.
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(a) Ridge (`2 norm) (b) Lasso (`1 norm)

Figure 4.1: Regularized regression solution geometry for J ∈ R3. (a) Ridge (`2) solution
geometry. (b) Lasso (`1) solution geometry.

Sparsity inducing regularization norms

Another especially important reason for using regularization involves feature selection. The
use of specific sparsity-inducing norms for regularization results in feature selection by shrink-
ing coefficients for less important features exactly to zero. This allows fitting much sparser
applied lattice models in one shot. Although there exist other methods for feature selec-
tion that do not rely on regularization [88, 91], feature selection by regularization is now
overwhelmingly used over other methods for fitting applied lattice models [2, 148, 153, 227].

Although shrinkage and regularization can be obtained with any norm, even if its norm-
ball is smooth everywhere, feature selection from regularization can only be obtained by
regularizing with non-smooth norms. Feature selection occurs when the elliptical level sets
(isosurfaces) of the least squares objective in Equation 4.6 impinge on singular points (sharp
edges or vertices) of the norm-ball for the regularization term used. Solutions for problems
using non-smooth norms will appear with very high probability at a singular point [7]. This
behavior yields sparse solutions precisely because many elements of the solution vector are
exactly zero at those singular points. This solution geometry is shown in R3 for the case of
the Lasso in Figure 4.1b, where sections of the isosurfaces of the least squares objective are
shown in different colors. Additional norms with different feature selection properties are
also shown in Figure 4.2; where one can observe that sharp edges and vertices occur at axes
and/or planes spanned by the axes.

To further understand feature selection in regularized regression problems, it is useful to
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ℓ0 pseudo-norm Lasso (ℓ1) Elastic Net (ℓ2ℓ1)

Figure 4.2: Unit norm-balls for the solution vector J ∈ R3 for three different types of
regularization: The `0 pseudo-norm, Lasso (`1 norm) and Elastic net (convex combination
of `2 and `1 norms).

introduce the `0 pseudo-norm of a vector in Rn, which is shown in Figure 4.2 for R3. The `0

pseudo-norm can be formally defined by the following limiting procedure [64],

||J ||0 = lim
p→0
||J ||pp = |{i, : Ji 6= 0 ∀i ∈ [n]}|

The `0 norm essentially counts the number of non-zero coefficients in a vector4 and so is
a direct measurement of sparsity. However, the regression problem with `0 regularization is
non-convex, which is a direct result of the non-convexity of the `0 norm-ball shown in Figure
4.2b. As a result, obtaining solutions constitutes a complex combinatorial search and is in
general an NP-hard problem [63].

The most common approach to obtain an approximate solution to `0 regularized regres-
sion is to solve the corresponding convex relaxation of the problem by replacing the `0 norm
with an `1 norm. In this sense, feature selection via regularization can be thought of as a
convex relaxation of `0 selection. Linear regression using an `1 norm for regularization is
known as the Least Absolute Shrinkage and Selection Operator (Lasso) [220]. The Lasso
has become a popular and efficient method for fitting sparse cluster expansions [9, 152,

4It is not formally a norm, since it does not satisfy all of the mathematical requirements for a norm.
Most notable it is not sensitive to scale, ||kJ ||0 = ||J ||0 for any scalar k.
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153]. However, the Lasso has some notable limitations, including its lack of strict convexity
and selection irregularity. In addition, the Lasso can have reduced prediction performance
(compared to the Ridge) in cases with highly correlated features [262].

The Elastic Net, which uses a convex combination of the `2 and `1 norms as shown in
Figure 4.2, has been specifically developed to address some of these shortcomings. Although
the Elastic Net has not seen much use for fitting applied lattice models, the use of an `2

norm along with a norm resulting in feature selection is usually beneficial. Apart from
further improving the conditioning of the regression problem, it also makes the regression
problem strictly convex [90, 93]. Further, an `2-norm can also be motivated from a physical
feasibility ansatz. The ansatz requires that the total variance of a Hamiltonian be bounded
by a reasonable value. In particular, as we have shown in Chapter 2.3, the square of the `2

norm (without including the offset term J0) of the Fourier correlation function coefficients
corresponds exactly to the variance of the fitted Hamiltonian, ||J ||22 = Varρ[H(σ)]. As
a result, one can think of any regression that includes an `2 regularization term, as the
equivalent regression problem with a prescribed bound on the total energy variance, written
out as follows,

J∗ = argmin
J

||ΠJ −E||22 + γ||J ||22
= argmin

J
||ΠJ −E||22 (4.13)

subject to Varρ[H(σ)] ≤ s2
max

where s2
max is the maximum variance that the resulting Hamiltonian can have; and there is

a one-to-one correspondence between the values of the hyper-parameter λ and the values of
s2

max [90]. In general terms, we insist that an `2 regularization should be used when fitting the
majority of applied lattice models, with perhaps the exception of redundant representations
and those dealing with very well-conditioned linear systems.

Hyper-parameter selection

Regularized regression models will have at least one hyper-parameter associated with the
regularization term, and models that mix more than one norm, such as the Elastic-Net,
have two hyper-parameters. Selecting appropriate hyper-parameters is critically important
because the hyper-parameters control the importance given to a regularization term, and
consequently the resulting amount of shrinkage and/or feature selection. Accordingly, the
hyper-parameters strongly affect the resulting prediction accuracy. The standard way to
determine these hyper-parameters is by using Cross-Validation (CV) optimization [90, 93].

Determining a hyper-parameter value using CV optimization involves minimizing a CV
score, most commonly the root mean square error (RMSE), with respect to the relevant
hyper-parameter. CV involves splitting the available training data randomly into k sets of
equal size. Subsequently, k fits are computed using the data from all combinations involving
k − 1 sets. The CV score is the average RMSE for all k fits computed with respect to the
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Figure 4.3: CV score regularization paths for Sparse Group Lasso fits of an LMTOF rocksalt
system. The top plot shows the path for a fit using pairs up to 7Å, triplets up to 4.2Å, and
quadruplets up to 4.2Å. The bottom plot shows the path for a fit using pairs up to 7Å,
triplets up to 5.6Å, and quadruplets up to 5.6Å.

k-th set that was not included in each fit. When using k sets, the procedure is called k-fold
CV, and the most commonly used values of k are 1, 5, and 10. For k = 1 the procedure is
known as Leave-One-Out CV (LOOCV), and its use in learning applied lattice models has
been extensively discussed [149, 227].

Choosing the number of folds for CV is a choice left to the practitioner, and there are no
hard rules on which and when to choose a particular value of k. Nevertheless, we can say that
in general smaller values of k tend to produce models with lower bias (and higher variance)
and may have a tendency to exhibit over-fitting. Larger values of k will show lower variance
but higher bias which may affect overall model performance, particularly considering the fact
that training data for CEs is expensive and often scant. A good recommended compromise
for the number of folds is 5 or 10 [91].

In addition, we emphasize what is known as the one-standard error rule [91], because it is
particularly applicable to CE fitting. The one-standard error rule states that when choosing
a hyper-parameter with feature selection (sparsity) as one of the goals, it is recommended
to choose the largest value of the hyper-parameter for which the CV-RMSE is within one
standard deviation of the minimum CV-RMSE [91] and results in better sparsity. The
reason behind this is that the hyper-parameter value that minimizes CV error optimizes
for prediction accuracy but not for feature selection, and a sufficient reduction in model
complexity may be well worth the cost of a slightly larger CV-RMSE.

Figure 4.3 shows the regularization paths for two fits of a LiMnO2-Li2TiO3-LiF system
using Sparse Group Lasso regression with different sets of cutoffs. The mean CV score is
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shown in blue, and the standard deviation is shaded. The minimum CV score is marked
in yellow, and the corresponding standard deviation region is marked with dashed lines.
According to the one-standard error rule, the models that should be chosen are marked with
a red star.

Although the one-standard error rule by itself should not be taken as a definitive rule
for applied lattice model selection, it serves as general guidance for practitioners to select
models that are both accurate and parsimonious, rather than solely optimizing CV-score
at the cost of sparsity. This is particularly important to keep in mind for the commonly
occurring CV-plateau scenario, which is present in the top plot of Figure 4.3. In systems
exhibiting a CV-plateau the CV minimum can often occur at hyper-parameter values far into
the plateau region, and as a result, using the hyper-parameters for the CV minimum results
in models with severely compromised sparsity and only marginal improvements in CV score
compared to those obtained following the one-standard error rule.

4.3 Structured sparsity

The feature selection discussed thus far leads to unstructured sparsity, meaning that co-
efficients are set to zero individually without regard to the degree of the corresponding
correlation function or any relationships between correlation functions. However, having
thoroughly explored details of representation and implementations of lattice Hamiltonians
in Chapters 2 and 3, we can motivate the use of structural priors or patterns that expansion
coefficients should follow. Feature selection that follows structural priors leads to regression
solutions that exhibit structured sparsity. A wide variety of structural priors on coefficients
can be obtained by generalizing norms over disjoint or overlapping groups of coefficients [8]
or equivalently by introducing linear constraints between coefficients. We will first introduce
regression methodology based on the Group Lasso and mixed integer quadratic program-
ming (MIQP) formulations of `0 regularization that can be used to introduce such structural
priors. Subsequently, we will introduce specific structural priors that we have found to yield
sparser and more accurate applied lattice models for complex multi-component materials
compared to models with unstructured sparsity.

The first structured sparsity regression model we consider is the Group Lasso. The Group
Lasso is a generalization of the Lasso, where feature selection occurs in groups, such that all
coefficients in a group are zero or all are nonzero. The Group Lasso problem uses a sum of
`2 norms of groups of coefficients as follows,

J∗ = argmin
J

||ΠJ −E||22 + λ
∑

g∈G

√
|g||Jg||2, (4.14)

where G is a set of groups of coefficient indices g. Jg ∈ R|g| is a vector of only the coefficients

in group g. The scaling
√
|g| is commonly used to consider all groups equally regardless of

size, however other weighting schemes can be used [93].
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Group Lasso Sparse Group Lasso Overlap Group Lasso

Figure 4.4: Unit norm-balls for the solution vector J corresponding to each of the regular-
ization models described. Feature selection occurs when the OLS problem level sets contact
singular points of the corresponding norm-ball. The figure for the `0 pseudo-norm is actually
for a small value of `p, p→ 0 and not exactly 0. When the value of p = 0 exactly, the surface
becomes 6 singular points only at values of ±1 along each of the axes.

When the groups G in Equation 4.14 are individual coefficients, the Group Lasso reduces
to the Lasso. However, when groups include more than one coefficient, feature selection
occurs in a group-wise manner, where either all of the coefficients in a group g are non-zero
or all of them are exactly zero. This can be visualized in the corresponding Group-Lasso
regularization norm-ball shown in Figure 4.4. In the Figure, two coefficients are grouped
and thus the norm-ball has a continuous (circular) locus of singular points on the plane that
they span.

The Group Lasso objective is convex [255], but not necessarily strictly so. In order for
the Group Lasso to have unique solutions, each group must be full column rank (i.e. the
feature vectors in a group must be linearly independent) [201].

A further extension of the Group Lasso that allows for in-group sparsity, called the
Sparse Group Lasso [73, 202] can yield results with improved sparsity and provide within-
group regularization. In Sparse Group Lasso, an `1 norm over all coefficients is added to the
`2 norm over groups as a convex combination of regularization terms as follows,

J∗ = argmin
J

||ΠJ −E||22 + (1− α)λ
∑

g∈G

√
|g||Jg||2 + αλ||J ||1 (4.15)
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Intuitively, the Sparse Group Lasso combines both the regular Lasso and the Group Lasso,
as seen in both the curved edges on a group plane and the sharp vertices on all axes in the
respective norm-ball in Figure 4.4. Within-group sparsity can be particularly useful for large
complex lattice models where charge neutrality constraints, inaccessible configurations, or
simply insufficient sampling give rise to rank deficiencies within groups. The `1 penalization
at the individual correlation level yields an additional level of regularization that improves the
conditioning of the overall regression problem [253]. `2 penalization within groups has also
been proposed for this reason [201]. We make note, however, that when estimating expansion
coefficients for a Potts frame expansion, any structural priors must result in within-group
sparsity to effectively make use of the redundancy in the representation and permit sparse
reconstruction of coefficients within a compressed sensing framework, as we detail in Section
4.6.

Another extension of the Group Lasso, known as the Overlap Group Lasso allows for
structure with overlapping groups [102]. In order to achieve this, variables are replicated
depending on the number of groups they are part of, and their final value is the sum of all
replicated or latent variables. Whenever a coefficient Ji appears in n groups, each group

contains a replicated variable J̃
(gj)
i ; and the final value of the coefficient is the sum of all the

replicated variables,5

Ji =
n∑

j=1

J̃
(gj)
i (4.16)

Accordingly, norm-balls for the overlap lasso penalty will have intersecting loci of singular
points, as shown for the case of three overlapping groups of two coefficients in R3 in Figure
4.4.

The overlap group lasso can be used to enforce hierarchical relationships between co-
efficients. This allows the inclusion of coefficients or groups of coefficients only if another
group of coefficients is also included in the resulting model [93]. For example, if a group of
coefficients in a group g2 are only allowed to be included if the set of coefficients in another
group g1 are also included, then a group of replicated coefficients for group g1 and a new
group of replicated variables that includes variables for both groups g1,2 is used to determine
the final set of coefficients. Doing so means that coefficients associated with group g1 can be
nonzero independently, but if coefficients in group g2 are nonzero then so will those in g1,
by virtue of including replicated latent variables in group g1,2. These hierarchical patterns
can be constructed by staggering the overlap of groups of replicated variables [133].

Grouped and hierarchical structural priors can also be obtained by a mixed integer
quadratic programming (MIQP) formulation of the `0 regularized regression problem. How-
ever, since the `0 norm only provides feature selection but no shrinkage or regularization,
including a convex combination of a norm that does so, is practically advantageous [98, 259],
and is also motivated by the bounded variance ansatz given in Equation 4.13. Furthermore,

5This formulation is slightly different than the original [102] where a latent vector vgRp is used for all
groups, and each vg is constrained to be zero in all elements i 6= g.
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the `0-norm can trivially be generalized to count the number of nonzero groups of coefficients
Jg for all groups g ∈ G in a set of groups G, by generalizing Equation 4.2 as follows,

||J ||0,G = |{g : Jg 6= 0 ∀g ∈ G}| (4.17)

Using the `0-norm over groups, a resulting generalized `2`0-regularized regression problem
can be expressed as follows,

J∗ = argmin
J

||ΠJ −E||22 + αλ||J ||0,G + (1− α)λ||J ||2 (4.18)

where the regularization hyper-parameter α ∈ [0, 1] is constrained to lie between zero and
one.

The `0 regularized regression problem in Equation 4.18 is an NP-hard problem, but
suitable near-optimal solutions can be found for moderately sized applied lattice models (up
to 500 groups of coefficients6) using a MIQP formulation [17, 21]. The problem in Equation
4.18 transformed to a MIQP takes the following form,

min
J

J>
(
Π>Π + (1− α)λI

)
J − 2E>S ΠSJ + αλ

∑

g∈G

zg (4.19)

subject to Mzg ≥ Ji ∀i ∈ g
Mzg ≥ −Ji ∀i ∈ g
zg ∈ {0, 1}

where I is the identity matrix; and zg is slack variable that describes whether a group
of coefficients Jg is zero or non-zero, or equivalently if a group of correlation functions
Θβ(i) ∀i ∈ g is active (zg 6= 0) or inactive (zg = 0).

This transformation of the regression problem into a MIQP is also what allows the in-
troduction of hierarchical constraints as linear constraints on the auxiliary slack variables
zg. Since we have that zg ∈ {0, 1}, hierarchical constraints can be expressed as inequality
constraints between slack variables. For example, if a group of coefficients Jg2 can only
be nonzero if another group of coefficients Jg1 is also nonzero, one would add the follow-
ing constraint between their corresponding slack variables to the problem in Equation 4.19:
zg2 ≤ zg1 .

Having described two effective methods that allow the incorporation of a wide variety
of different structural priors to sparse linear regression, we will now motivate and described
two useful structural priors that result in robust, accurate, and sparse expansions of lattice
Hamiltonians. In doing so will use the mathematical structure, properties, and statistical
interpretations of the cluster decomposition detailed in Chapter 2.4 to derive, motivate and
rationalize these structural priors. In Chapter 5 we show examples of improved fits of ternary
alloys and lithium transition metal oxyfluorides using the structured sparsity-based methods
described.

6At the time of writing this number is more than sufficient for any of the applied lattice models reported
in the literature.
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Figure 4.5: Illustration of group regularization by grouping correlation functions that act
over the same orbits of site space clusters. g labels group of correlation functions. Each
circled figure in the sum represents a different group of correlation functions, analogous to
the one shown in (b). G is the set of all groups considered in the expansion (i.e. all cluster
interactions). The same convention as Figures 2.7 and 2.9 are used: site coloring in the
images represent non-constant site functions. In the illustration, there are two types of site
spaces, one with 4 allowed species (3 non-constant site functions); and another with 3 allowed
species (2 non-constant site functions).

Group sparsity

Selecting coefficients based on grouping correlation functions that make up each cluster
interaction term HB, or more generally in any representation, by the orbits of site space
clusters B over which they operate on, is a judicious form of structured sparsity. Broadly, this
approach to structure sparsity is mathematically and physically motivated to regularize over
groups of correlation functions that represent a single multiple-body term in the expansion of
a lattice Hamiltonian. The concept of grouped sparsity by correlation interactions is shown
schematically in Figure 4.5 following the same conventions introduced in Figure 2.9, where
the circled figures represent groups g of correlation functions that operate over the same
orbit of site space clusters B—that is that make up the same cluster interaction HB,

We have formally shown that the particular choice of standard basis used to represent
a particular lattice Hamiltonian is irrelevant since the underlying unique cluster decomposi-
tion is invariant to any arbitrary transformation between standard basis sets. However, in
practice, one has to choose a particular standard basis set in order to estimate expansion
coefficients. Hence it is worthwile to seek out regression methods that result in the same
(up to the available estimation accuracy) cluster decomposition irrespective of the standard
basis sets used to construct the Fourier correlation functions.

Group regularization can be used precisely to construct an estimation algorithm that
is independent of the particular choice of standard site basis. Based on the fact that the
effective cluster weights W[HB] are invariant to standard basis transformations as is shown
in Chapter 2.4, regularization penalties written in terms of W[HB] will likewise be invariant.
This can be trivially introduced into `2 regularization by including a diagonal weighting
matrix Wm with the appropriate cluster multiplicities such that each element of the vector
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used for regularization is given by,7

(WmJ)i =
√
m̂βiJβi (4.20)

When doing so, the resulting `2 norm squared ||WmJ ||22 will correspond to the sum of
effective cluster weights,

||WmJ ||22 =
∑

β

m̂βiJ
2
βi

=
∑

B

∑

β∈B

m̂βiJ
2
βi

=
∑

B

W[HB]

Furthermore, structured sparsity involving the selection of cluster interaction terms HB

that is agnostic the choice of standard site basis can be obtained by the Group Lasso in the
following manner,

J∗ = argmin
J

||ΠJ −E||22 + λ
∑

B∈G

w(B)||WmBJB||2 (4.21)

where w(B) is a scalar weight associated with the site space cluster B (i.e. such as its
multiplicity mB, the size of the clusters in B or a product of both). WmB is a diagonal block
of Wm for the rows and columns corresponding to the correlation functions that make up
the cluster interaction HB. Similarly, JB is a vector of the coefficients for said correlation
functions.

An equivalent site basis agnostic estimation of coefficients can be obtained using the
grouped `2`0 MIQP regression as follows,

min
J

J>
(
Π>Π + (1− α)λW 2

m

)
J − 2E>S ΠSJ + αλ

∑

B

zB (4.22)

subject to MzB ≥ Jβ ∀β ∈ B
MzB ≥ −Jβ ∀β ∈ B
zB ∈ {0, 1}

When using a cluster group type regularization penalty with representations other than
a Fourier cluster expansion, such as the Potts frame or a non-orthonormal correlation basis,
the resulting regression problem will no longer give basis agnostic solutions. However, the
use of cluster group regularization can still be heuristically motivated by the selection of
multiple-body terms in the expansion, i.e. those that operate over the same orbits of sites.
Doing so in practice may also result in increased sparsity and accuracy for complex materials
with high dimensional configuration spaces [253].

7In fact this would correspond to the more general Tikhonov regularization [222].



CHAPTER 4. LEARNING APPLIED LATTICE MODELS 95

Hierarchically constrained sparsity

Another compelling form of structured sparsity involves establishing hierarchical relations
between correlation functions. This can be used to enforce physically motivated heuristics,
such as the inclusion of correlation functions over larger clusters only if correlation functions
over all subclusters are included. These heuristic based structural priors have been known
and discussed to great length in the cluster expansion literature [98, 131, 227, 256, 259].

Apart from intuition and practical heuristics, establishing hierarchical relationships that
ensure large degree expansion functions (i.e. those that operate over clusters with many sites)
are included only if certain smaller degree functions are also included can be motivated by
appealing to a notion of stability or smoothness of the resulting lattice Hamiltonian. In
broad terms, we say a function of configuration is stable when the values predicted for
two configurations that are different only by relatively few occupation variables are similar
relative to the total variance of the function. For a given value of the total variance, a
function where most of the variance is concentrated on low degree terms is more stable than
one with more variance carried by higher degree terms. Although we will not do so here,
this line of argument can be formally constructed using the notions of noise stability and
noise sensitivity of functions over probability product spaces [146, 157].

We can further rationalize and justify including hierarchical priors by invoking the ac-
cepted statistical principle that interaction terms should only be included in a model if
their main effects are already included. These hierarchy structural priors have been devel-
oped for various statistical applications under names including, the heredity principle [42,
86], marginality constraints [140], and well-formulated models [172]. Under these principles,
there is a notion of weak hierarchy and strong hierarchy. Weak hierarchy is satisfied when at
least one of the main effects of an interaction is included when that interaction is included
the resulting expansion. Strong hierarchy, on the other hand, is only satisfied if all main
effects are included along with an interaction [18].8.

The principle of hierarchically well-formulated models is almost self-evident in the connec-
tion of the cluster decomposition and functional ANOVA. With the aforementioned reasoning
of establishing hierarchical priors to obtain stable and well-formulated models, we describe
two different forms of hierarchically constrained sparsity that prove to be quite effective for
fitting applied lattice models of complex multi-component materials.

The first involves imposing hierarchical constraints between higher degree correlation
functions and their lower degree factors. Higher degree correlation functions are only allowed
to have nonzero coefficients if all of their lower degree factors do so too. This form of
structured sparsity is shown schematically in Figure 4.6a, where the constraints between
correlation functions and their factors are represented by edges connecting them. This form
of hierarchically constrained sparse regression has been recently shown to be quite promising
for fitting applied lattice models of ternary alloys and disordered ionic materials [98, 131, 259].
However, this form of hierarchy prior only satisfies weak hierarchy. Additionally, hierarchical

8Many argue that models that violate strong hierarchy are not statistically sensible and violating strong
hierarchy amounts to postulating a special position to the origin [18, 140].
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(a) (b)

Figure 4.6: Schematic illustrations of hierarchically constrained sparsity. The site coloring
in the images represents non-constant site functions. In the illustration, there are two types
of site spaces, one with 4 allowed species (3 non-constant site functions); and another with
3 allowed species (2 non-constant site functions). (a) Hierarchical relations for a specific
quadruplet correlation function and all its possible factors ensure the recovery of a model
with weak hierarchy. (b) Hierarchical relations between quadruplet cluster interactions and
lower order interactions; or equivalently between groups of correlation functions acting over
the same orbits of quadruplet clusters and all correlation function groups acting over the
orbits of sub-clusters of the quadruplet cluster. These illustrated constraints result in a
model with strong hierarchy.

constraints between correlation functions and their factors result in the estimation of Fourier
cluster expansion coefficients that depend on the choice of standard site basis.

An alternative form of hierarchy constraints that satisfies strong hierarchy and leads to
coefficient estimates that are invariant to the choice of standard site basis, is obtained by es-
tablishing hierarchy constraints among cluster interactions HB. In this case, the hierarchical
constraints are between the groups of correlation functions that are grouped according to
the group structure previously described and shown in Figure 4.5. A representation of this
hierarchy structure is shown in Figure 4.6b as a graph representing the hierarchical relations
between cluster interactions (orbit of correlation functions). To the best of our knowledge,
this regression model has not been previously used for fitting applied lattice models9.

9For binary cluster expansions there is no distinction between the two forms of hierarchical constraints
described since there is only one correlation function associated with each orbit of site space clusters.
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Weak hierarchy constraints can be obtained using `2`0 regression by including slack vari-
ables for every correlation function Θβ considered in the fit (i.e. using singleton groups
g = {β}), and including inequality constraints between each correlation function Θβ of de-
gree d and all correlation functions Θγ involving clusters of degree d−1 which are its factors,
as follows,

zβ ≤ zγ ∀γ s.t. ctr(η) ⊂ ctr(α) ∀η ∈ γ and α ∈ β
Similarly, strong hierarchy constraints can be obtained by using a slack variable zB per

group of correlation functions associated with the same orbit of sites B, and including in-
equality constraints between a slack variable zB, and all slack variables zD for site orbits D
of clusters that are subclusters of the clusters in B, denoted D @ B,

zB ≤ zD ∀D s.t. D @ B

Weak and strong hierarchy constraints can also be obtained by using the Overlap Group
Lasso and using staggered groups of replicated variables to introduce the same structural
priors [133] as depicted in Figure 4.7.

The particular implementation of the regression model that ensures weak or strong hier-
archy constraints by way of an `0 MIQP formulation or an Overlap Group Lasso formulation
is a practical choice only. Both implementations can effectively introduce the structural
priors we have described. However, using the Overlap Group Lasso, which is a convex opti-
mization problem, for obtaining lattice Hamiltonian fits for materials with complex and very
large configuration spaces may be more appropriate when NP-hard `0 MIQP near-optimal
solutions are not practical. On the other hand, when near-optimal solutions to `2`0 can be
obtained in a reasonable time, such a formulation can result in improved sparsity and in
some cases also improved accuracy.

4.4 Adaptive regularization

Adaptive or iteratively re-weighted regularization in Lasso and Group Lasso regression has
been shown to lead to enhanced sparsity, improved model selection consistency, with possibly
improved prediction accuracy [28, 238, 240]. The adaptive form of a Group Lasso estimator
consists of using a weighted norm in the regularization term. The adaptive norm can be
written as follows,

||J || =
∑

g∈G

wg||Jg||2 (4.23)

where wg are the components of the corresponding weight vector. When the groups g are
singletons, the index i runs over the individual elements of the coefficient vector J for the
case of the standard adaptive Lasso [28, 261]. More generally, when g are groups with more
than one coefficient regularization corresponds to the adaptive variant for Group Lasso [240].
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Figure 4.7: Illustration of how site space cluster orbit hierarchical constraints can be estab-
lished by way of latent variables using the Overlap Group Lasso. In the example shown if
coefficients corresponding to orbit C are nonzero, then coefficients for orbits B and A are
nonzero as well by virtue of selecting the latent variable Jg3 ; and if coefficients for orbit B
are nonzero, coefficients for orbit A are necessarily non-zero as well from latent variable Jg2 .
This would respect the hierarchy A @ B @ C. Coefficients for orbit D are independent of
the rest.
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Figure 4.8: Fit metrics for Adaptive Lasso variants and standard Lasso variants using 3
different cutoff sets for generating cluster expansion terms of a LiMnO2-Li2TiO3-LiF material.
(L) Lasso, (GL) Group Lasso, (SGL) Sparse Group Lasso, (OGL) Overlap Group Lasso, (A-)
are adaptive variants.
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During the fitting process, the weights are updated iteratively using a decreasing function
of the norm of the current estimate of the coefficients Jg. The most common form used in
practice is given by,

w(l+1)
g =

1

||J (l)
g ||2 + ε

where l is the current iteration in the iterative fitting and ε > 0 is a small offset to allow
||Ji||2 to take on values of zero [28].

Results comparing root mean squared error (RMSE) accuracy and sparsity metrics for
standard and adaptive versions of Lasso-based estimators for a set of fitted Hamiltonians of
a LiMnO2-Li2TiO3-LiF ceramic material are shown in Figure 4.8. In all cases, we see that
the adaptive versions give substantial improvements in sparsity with minimal to no change
in accuracy.

4.5 Fitting mixed models with explicit pair potentials

Although in theory any materials property of crystalline configuration can be fitted to any
of the representations introduced in Chapter 2, certain properties, in particular those that
involve long-range atomic interactions, require expansion terms up to very high spatial cutoffs
and a large number of training configurations for large supercell structures that quickly
becomes prohibitively expensive to compute by most first-principles electronic structure
methods.

In many cases, long-range interactions can be mostly captured as pair-wise interactions
only. In those cases using a mixed model that includes an empirical pair potential in addition
to the lattice Hamiltonian, can prove to be an effective means to obtain a lattice model that
includes fewer expansion terms and can be fitted with smaller supercell structures and often
results in higher predictive accuracy. A mixed model of this kind is expressed as follows,

H(σ) =
∑

β

mβJβΘβ(σ) + λEP (σ) (4.24)

Where the first term is any representation of a lattice Hamiltonian. EP (σ) is a pair
potential that possibly includes structural parameters which are treated as constants deter-
mined by the underlying random crystal structure.10 And λ is a mixing parameter, which
depending on the particular pair potential used, can have an effective physical meaning.

Particularly, using a mixed model with a Coulomb electrostatic potential term has been
shown to be a very effective way to construct applied lattice models of ionic materials with
substantially improved prediction accuracy [181, 196]. In what follows we will focus our
discussion specifically on the practical benefits of using a Coulomb pair electrostatic potential
in addition to a lattice Hamiltonian expansion, and how to appropriately estimate model
parameters using the previously presented regression methods.

10A pair potential may also include additional model parameters that must also be estimated, however,
we do not discuss this more complicated scenario.
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Explicit electrostatic pair potentials

The physical nature of long-range electrostatic interactions complicates a critical underlying
premise for fitting lattice Hamiltonians under which an expansion truncation is justified by
the rapid decay of correlations with respect to the physical distance between sites. For
example, in the case of a system with only Coulomb interactions on a rigid lattice, the terms
of the Fourier cluster expansion can be easily solved for analytically [31]. For the specific
case of a binary system with sites with either positive charge q+ or negative charge q−, an
expansion using a polynomial site basis will have pair correlation terms with coefficients
given by,

Jij =
κ(q+ − q−)2

4rij
(4.25)

The coefficients for pair terms decay slowly as the underlying Coulomb potential ∼ r−1.
This slow decay in theory requires longer pair clusters to be included in a cluster expansion
to correctly capture the long-range electrostatic interactions.

It was demonstrated that when only structures with electrostatic energy below a pre-
scribed energy cutoff are considered for the simple binary system with only +q and −q
charged species, an expansion with rapidly converging coefficients can be obtained [31]. Fur-
thermore, such CE was shown to have low prediction error for out-of-sample structures below
the prescribed energy cutoff [31]. This can be attributed to the locally neutral environments
associated with low electrostatic energy structures [31].

For more complex ionic systems, such as those with hetero-valent species and/or cases
including the effects of structural relaxations, considering only low electrostatic energy con-
figurations and simply truncating the CE is usually not sufficient to ensure accurate and
sufficiently sparse applied lattice models with only short-range terms [196]. Even applied
lattice models with acceptable cross-validation (CV) scores may result in erroneous MC
sampling—such as states with unphysical charge segregation—for large supercells when long-
range interactions are not correctly accounted for.

A very effective way to handle systems with strong electrostatic interactions has been
proposed and tested empirically [181, 196, 228]. By including an electrostatic term along
with the CE Hamiltonian, a sparse and accurate applied lattice model can be constructed
much more reliably, and MC sampling is improved by more accurately computing long-range
electrostatics even in large supercell sizes that were absent in the training set. To do so, the
CE and electrostatic interaction Hamiltonian is expressed as the following mixture model,

H(σ) =
∑

β

mβJβΘβ(σ) +
1

εr
EC(σ) (4.26)

where EC represents the point electrostatic energy for a Coulomb potential, which can be
computed efficiently and with high accuracy using the Ewald summation method [223] or
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Figure 4.9: Prediction accuracy metrics for CE fits of empirical pair potentials of hetero-
valent (+1, +3 cation) and (-1, -2 anion) charges in a rocksalt structure. The metrics
shown are RMSE cross-validation score (CV), in sample RMSE (in), and out of sample
RMSE (out) with supercells with the same number of sites as the listed training structure
size, and extrapolation RMSE to larger supercell sizes up to 144 sites (ext). Shaded areas
denote ± one standard deviation for 50 different fits. (a) Accuracy metrics for CE fits
of a Coulomb potential only. (b) Accuracy metrics for CE fits of a Buckingham-Coulomb
potential. (c) Accuracy metrics for a Fourier cluster expansion and electrostatic model fits
of a Buckingham-Coulomb potential.

the Fast Multipole Method [82]. The constant εr, which can be interpreted as an effective di-
electric constant, should be fitted simultaneously by including the electrostatic term directly
as a feature in the regression problem.

To illustrate the shortcomings of a cluster expansion in capturing electrostatics in hetero-
valent systems and the improvements obtained when including an explicit electrostatic term,
we carried out several cluster expansion fits of a Coulomb electrostatic potential, as well as
a sum of a Coulomb and a Buckingham pair potential. Both potentials were computed for a
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system with hetero-valent (+1,+3 cation) and (−1,−2 anion) charges in a rocksalt structure.
Further details, parameters, and results of the calculations are given in Appendix C.4.

Figure 4.9 shows curves for the resulting prediction accuracy metrics with their corre-
sponding standard deviation for the previously described fits. Based on Figure 4.9 (a) and
(b), we see that including longer range pairs in the applied lattice models without explicit
electrostatics monotonically improves prediction accuracy for samples of similar-sized su-
percells. However, the extrapolation prediction of longer-period superstructures is severely
compromised. The extrapolation prediction accuracy can only be reduced by adding pairs
with distances up to those sampled in the training set structures. Including pairs with longer
distances that are not present in the training, set ruins the extrapolation accuracy.

Figure 4.9 also shows that including larger period superstructures in training improves
fits, as previously suggested in similar work [196]. However, doing so, such that the resulting
CE converges to an acceptable level of accuracy, requires very large (and in many cases
prohibitively large) data sets that must include large supercell structures. Furthermore,
when fitting applied lattice models of ionic systems with more complex physical interactions
in addition to long-range electrostatics, these issues can become worse such that fitting
a reliable cluster expansion that captures both short and long-range interactions is not
straightforward.

In contrast, Figure 4.9(c) shows fit metrics for the same Buckingham-Coulomb potential
as 4.9(b), but for a fit using the mixed model cluster expansion with an explicit point
electrostatic term computed with the Ewald summation method. The results show that the
addition of the point electrostatic term in the cluster expansion substantially improves the
resulting accuracy. Furthermore, by setting the cutoff for cluster expansion terms relatively
shorter (≤ 8 Å), the resulting fit is substantially improved and has high prediction accuracy
even for longer period superstructures. These results are also consistent with previous results
computed for a similar point charge system with a spinel structure [196].

In addition, Figure 4.10 shows prediction accuracy metrics, the fitted value for the ef-
fective dielectric constant, and the in terms of the regularization hyper-parameter for a fit
using Ridge (`2) regression. As the error in the fit converges, the value of the fitted dielectric
constant approaches the true value used in the Buckingham-Coulomb potential, meaning
that the electrostatic interactions are exactly captured by the electrostatic term, and the
cluster expansion needs only to capture the short-range Buckingham interactions.

In the case of this simple additive potential, the convergence of the dielectric is only
illustrative and the use of regularization is actually not necessary since the fit converges
at the lowest values of the regularization hyper-parameter. In fact, ordinary least squares
(OLS) can be used to correctly fit the Buckingham-Coulomb potential, since the short-
ranged Buckingham interactions can be almost exactly captured by short-range correlation
functions, and the electrostatic energy is exactly captured by the Ewald summation. Table
4.1 lists the fitted dielectric values and accuracy metrics for the same CE + point electrostatic
term using OLS, Ridge regression, and the Lasso.

The results in Figures 4.9 and 4.10 show convincing evidence that including a point elec-
trostatic term in a cluster expansion effectively captures the long-range point electrostatics
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Figure 4.10: Convergence of error, correlation coefficients, and effective dielectric constant
with respect to hyperparameter selection for a Ridge regression fit of a Buckingham-Coulomb
potential.

Regression Fitted dielectric CV score In RMSE Out RMSE Extrapolation RMSE
OLS 4.494 NA 0.235 0.242 0.365
Lasso 4.543 0.372 0.297 0.347 0.343
Ridge 4.502 0.314 0.263 0.272 0.337

Table 4.1: Fitted dielectric constant and accuracy metrics in meV/f.u. using ordinary least
squares (OLS), Ridge and Lasso regression. The exact dielectric value in the model is 4.5.

and allows the CE to represent short-range interactions. While we cannot expect to recover
a true dielectric constant when using first-principles calculations of a real material, it can be
considered an effective dielectric constant for the model. Further, the addition of the point
electrostatic term has been shown to substantially improve the stability and performance of
a cluster expansion fit using DFT energies, particularly for prediction values of longer period
superstructures [181, 196].

Regularization and centering in mixed models

We have shown for the case of electrostatic interactions how using a mixed model that
includes a Coulomb interaction pair potential can result in significantly better-converged
Hamiltonians with substantially improved prediction accuracy, especially for longer period
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(b) Buckingham-Coulomb fit subtracting out
exact Coulomb term and centering data

Figure 4.11: Coefficient regularization paths for fits of a Buckingham-Coulomb potential
with an electrostatic term, and a Buckingham-Coulomb potential by subtracting the exact
coulomb potentials and centering the remaining training data.

superstructures. In the simple example of a Buckingham-Coulomb potential, the fitted mixed
model converges to the exact underlying dielectric. This indicates that since the electrostatic
interactions are captured exactly, the cluster expansion terms are left to capture the shorter-
range Buckingham interactions.

Stronger evidence showing that the Buckingham interactions are captured entirely by
cluster expansion terms is shown in Figure 4.11. Figure 4.11 shows the convergence of
accuracy metrics and cluster expansion coefficients for (a) the fit of the Buckingham-Coulomb
potential using a mixed model with a Coulomb electrostatic term and (b) for the fit of only
the Buckingham potential (by subtracting the exact electrostatic interaction term) using
only a cluster expansion. The converged values of all coefficients for both cases and their
respective selection paths with respect to hyper-parameter match almost exactly for both
cases; which implies that the cluster expansion portion of the mixed model ends up capturing
the Buckingham interactions only.
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The above results, and the effective use of an electrostatic pair term in a system fit to
DFT energies, requires that the fitting data be centered appropriately. Centering target
data and centering/normalizing features is often standard and recommended practice in
regularized linear regression [66, 90]. Centering target data E amounts to subtracting an
offset such that the centered target data has mean zero. Similarly, centering features amounts
to subtracting their mean. In a like manner, standardizing features requires centering them
and normalizing them to have unit norm. Standardization is recommended, particularly
when using regularization and when features are measured in different units, in order to
treat all features equally [90].

Although the cluster correlation functions and the pair potential in a mixed model clearly
have different units—correlation functions are unit-less, and pair potentials have units of
energy—we contend that standardization is not appropriate. Correlation functions are unit-
less and Fourier correlations are essentially already standardized, in fact, they are whitened
with respect to the product distribution ρ.11 Furthermore, normalizing the target values of
the external pair potential EP (σ) to lie in the same range as that of correlation functions
amounts to claiming that the pair potential captures a similar amount of information as
that captured by a single correlation function. This in a sense contradicts the very reason
motivating the inclusion of a pair potential in the mixed model. Namely, one must keep in
mind the mixed model concept, and treat the whole cluster expansion and the same grounds
as the additional pair potential.

In contrast, centering target energies and features is appropriate, and essentially necessary
to allow the pair potential to fully account for its respective interactions and leave the
remaining portion of the energy to be captured by the expansion terms in the Hamiltonian
representation. To make this explicit, we can re-write the OLS objective problem in terms
of the centered energies Ẽ, the centered correlation matrix Π̃ and the centered values of the
additional pair potential ẼP , where each of its elements is given by,

Ẽi = Ei −
1

n

n∑

j=1

Ej = Ei − Ē1 (4.27)

ẼPi = EPi −
1

n

n∑

j=1

EPj = EPi − ĒP1 (4.28)

Π̃ij = Πij −
1

n

n∑

i=1

Πij = Πij − Π̄j (4.29)

where Ē, ĒP ∈ R are the average of the individual energies in the vector E ∈ Rn and the
evaluated pair potentials in the vector EP ∈ Rn respectively. 1 ∈ Rn is a vector of all ones.
Π̄ ∈ Rp−1 is a vector where each element is the average of each of the p − 1 nonconstant
correlation function samples that make up the columns of the correlation matrix Π.

11Fourier correlation functions are by construction centered in expectation, i.e. Eρ [Θβ ] = 0; and stan-

dardized Eρ
[
Θ2
β

]
= 1.
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We can re-write the OLS objective for centered inputs and data as follows [93],

||ΠJ + λEp + J01−E||22 = ||Π̃J + λẼp − Ẽ + (J0 + Π̄>J + λĒP − Ē)1)||22 (4.30)

where the coefficient vector J ∈ Rp−1 only contains coefficients for non-constant correlation
functions (the constant J0 is included separately).

Minimizing the objective on the left-hand side of Equation 4.30 over J can be done by
minimizing the least squares of the centered inputs and data,

J∗, λ∗ = argmin
J ,λ

||Π̃J + λẼp − Ẽ||22 (4.31)

And the resulting constant coefficient J0 can be then set to,

J∗0 = Ē − Π̄>J∗ − λ∗ĒP (4.32)

Apart from the general statistical estimation benefits, solving for mixed model coefficients
according to Equations 4.31 and 4.32 has two particular practical benefits. First, including
a regularization penalty in terms of J ∈ Rp−1 avoids penalizing both the offset J0 and the
pair potential parameter λ. And setting the offset J0 according to Equation 4.32, in contrast
to setting it equal to the mean of the uncentered data J0 = Ē, allows for the pair potential
term to fully capture the interactions it corresponds to, leaving the correlation functions
to capture the rest. Furthermore, according to Equation 4.32, J0 is the mean energy not
accounted for by the external pair potential.12 In other words, J0 captures the expectation of
the energy represented by the Fourier cluster expansion which is congruent with its statistical
interpretation given in Chapter 2.3. Precisely, this form of centering is how the correctly
converging results shown in Figure 4.11 were obtained.

4.6 Compressed sensing

The regression models we have introduced can be used for learning lattice models using
overdetermined (more training structures than correlation functions) and underdetermined
(more correlation functions than training structures) linear systems. Many linear regression
algorithms have been proposed and benchmarked in literature [2, 148, 153, 227]. However,
the formal analysis of solutions and mathematical guarantees on the accuracy of coefficients
can be very different and are for the most part carried out for each type of linear system
separately [25, 92]. The motivation for using an overdetermined system comes from several
studies showing decreasing cross-validation errors with an increasing number of training
structures [2, 131]. The case of underdetermined systems is usually motivated as a way
to avoid a nearsighted pre-selection of correlation functions. In this section, we will focus
solely on reconstructing lattice Hamiltonians from underdetermined linear systems, and often

12Shifted by a sampling bias Π̄>J∗, which should be much smaller than λ∗ĒP .
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severely so. Additional considerations for fitting lattice Hamiltonians using overdetermined
linear systems are treated in Chapter 5.1.

For relatively small dimensional systems, such as binary or ternary alloys, that allow
accurate fits using only a small number of short-range clusters of low degree (number of sites
in a cluster) such that the number of total correlation functions is manageable, practitioners
have the option to choose between using an overdetermined system or an underdetermined
system approach. However, for more complex high-dimensional systems there will often be
no such choice. Since the number of expansion terms that need to be considered for an
acceptable fit quickly becomes too large, computing DFT energies for enough structures to
obtain an overdetermined system becomes untenable. The reason for this is twofold. First
of all, the number of terms in a truncated expansion grows polynomially with the number of
allowed species at each site. Additionally, complex physical interactions may require longer
range and/or higher degree clusters. For example, these situations frequently occur in the
study of high entropy materials which has recently gained much attention in the design of
metallic alloys [78] and ceramic materials [136]. Although theoretically the representations
developed in Chapter 2 are well suited for the study of high entropy materials, the large
high dimensional configuration spaces involved render an overdetermined system approach
prohibitive. For such scenarios, there is no choice but to work with underdetermined systems
only and hope that betting on sparsity [92] applies favorably to high dimensional cluster ex-
pansions for the increasing number of materials being studied that require fits using severely
underdetermined systems. This approach can be formally cast and analyzed within the
framework of Compressed Sensing (CS) [27, 29].

The focus of CS is to recover a signal or function from a very small set of measure-
ments. The key idea behind CS is that the function sought has a sparse representation in an
appropriate basis. Although any given underdetermined linear system has infinitely many
solutions, if the function indeed is sparse, the true underlying sparse set of coefficients can
be recovered exactly (up to measurement accuracy) under suitable constraints on the sam-
ples [27, 53]. In fact, classical CS guarantees that for a suitable set of n measurements the
sought coefficients can be recovered exactly using an `1 minimization problem if n is of order
s log p where p is the number of basis functions measured, and s is the number of nonzero
basis function coefficients [27, 53]. The classical CS `1 minimization problem is expressed as
follows,

Ĵ = argmin
J̃

||J̃ ||1 subject to ||AΠJ̃ −E||2 ≤ ε (4.33)

where the measurement matrix M = AΠ ∈ Rn×p, with n� p is made up of the values of a
relatively small set of p truncated correlation vectors for each of the n training structures.

The notion of classical CS has been previously shown to yield accurate cluster expansions
of metallic alloys [152, 153]. Classical CS relies strictly on the concept of incoherence [27] in
order to guarantee accurate recovery of the underlying coefficients. The need for incoherent
measurements—which in the present case correspond to correlation function values evaluated
for selected training structures—is clear when the goal is to accurately recover the exact
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coefficients in the expansion of a function. This requirement can be made intuitive by
thinking of coherence as a measurement of how similar correlation function samples (i.e.,
columns of ΠS) are to each other. High incoherence (low coherence), means that the set
of correlation function samples used are more uniformly spread out in their span (they are
closer to mutually orthogonal), and as a result, the portion of the energy represented by
each, can be easily distinguished.

In the limit of zero coherence, the correlation matrix is orthogonal, and in principle, the
portion of the energy for each correlation function can be identified exactly. For the cases
with high coherence, correlation function samples will be much more closely correlated and
it is no longer possible to distinguish which correlation function a specific portion of the
energy comes from.

Formally, the coherence of a measurement matrix M—which for an applied lattice model
corresponds to the truncated correlation matrix ΠS—is defined as [53],

µ(M) = max
i<j

|〈Mi,Mj〉|
||Mi||2||Mj||2

(4.34)

where Mi and Mj are columns of matrix M . The normalized definition given above bounds
the coherence of a measurement matrix to values between zero and one, 0 ≤ µ(M) ≤ 1.

The guarantees of classical compressed sensing depend on the coherence of the mea-
surement matrix M being as close to zero as possible in order to maximize the probability
of accurate reconstruction of coefficients. As suggested above, incoherent measurements
improve the chances of accurate recovery of coefficients, specifically by requiring a lower
number of necessary training structures for a given level of accuracy [27]. Furthermore, it
is necessary for M to satisfy the restricted isometry property (RIP) with a small isometry
constant δ [27]. In broad terms, the RIP is a condition that ensures that most of the possible
sparse solutions for the linear system lie outside the nullspace of the measurement matrix
M [53].

It has been shown that matrices made up of random measurements, such as those com-
posed of Gaussian vectors on the unit hypersphere, satisfy the RIP with overwhelming proba-
bility and lead to high levels of incoherence [27]. Random measurements have been previously
reported to lead to effective training structure selection and resulting accurate underdeter-
mined fits of cluster expansions for binary metallic alloys [152, 153]. Nevertheless, selecting
training structures such that the resultant measurement matrix has high incoherence and
ideally satisfies the RIP with a small constant, becomes difficult and in some cases almost im-
possible for materials systems with more complex physics. This can be generally understood
as a result of physically imposed sampling constraints. Usually, the vast majority of all pos-
sible configurations will have high energies that are complicated if not impossible to compute
with first principles methods. For example, systems with configurations that undergo large
structural relaxations can no longer be mapped back to the fixed structure underlying the
lattice model. As another example, certain cluster occupations in ionic systems are difficult
to access when very high electrostatic repulsion exists. Finally, charge neutrality constraints
in heterovalent ionic systems restrict the possible configurations that can be sampled. These
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Figure 4.12: Schematic of different domains involved in compressed sensing. Classical CS
seeks to approximate the set of exact coefficients J . CS with redundancy seeks to recover
function H in the function domain in the center. Adapted from Candes et al [29].

phenomena complicate and in many cases prevent the possibility of obtaining appropriate
correlation matrices with minimal coherence required for classical CS recovery, even with
previously proposed methods, such as the aforementioned use of uniformly random vectors
over the hypersphere.

Compressed sensing with coherency and redundancy

A variant of compressed sensing has been shown to give accurate reconstructions of sparse or
compressible signals with only a small set of coherent measurements by including redundancy
in these measurements [29]. The essence of CS with coherent and redundant measurements
is not to recover the model coefficients as accurately as possible, but rather to recover
an approximation for the actual function as accurately as possible by way of a redundant
representation and possibly highly coherent measurements [29]. For systems constructed
using measurements with high coherence and a redundant representation, solutions will
always be highly degenerate, but again the focus is on the accuracy of predictions obtained
using the recovered expansion and not the exact values of the fitted coefficients. However,
we will still seek only sparse solutions such that the large degeneracy of solutions becomes
manageable and the resulting expansion can be used efficiently for subsequent predictions
and simulations such as in Monte Carlo studies. Figure 4.12 shows a schematic of the
pertinent mathematical objects, the corresponding domains, and their relationships as it
pertains to CS. For the purposes of CS with coherent and redundant measurements, we seek
an accurate representation in the function domain made up of a small number of coefficients
but without much regard to whether or not the obtained coefficients correspond to those of
any underlying exact expansion.

In contrast to classical CS, the goal of CS with redundant and coherent representations is
to reconstruct a sparse representation or approximation of a function by solving the following
optimization problem.

Ĥ = argmin
H̃

||Π∗H̃||1 subject to ||AH̃ −E||2 ≤ ε (4.35)
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where H is the function sought—in our case a function of atomic configuration. Π is a linear
operator mapping coefficients J to the function H as depicted in Figure 4.12. In the case of
an applied lattice model, Π is the matrix of all correlation basis functions. A is a sensing
matrix used in selecting the training data, and E is the measured value of the function H
for the training configurations. The measurements are of the form E = AH + z, where z
represents an additive noise with some upper bound ||z||2 ≤ ε.

The main theorem of CS with coherency and redundancy gives the following error bounds
for an s-sparse reconstruction of H,

||Ĥ −H||2 ≤ C0ε+ C1
||Π∗H − (Π∗H)s||1√

s
(4.36)

where Ĥ is the s-sparse approximation to H. (Π∗H)s denotes a vector with the largest
s nonzero coefficients of H and zeros elsewhere. C0 and C1 are constants that depend only
on the sensing matrix A. The theorem holds if the measurement matrix satisfies a restricted
isometry property (D-RIP) adapted to the union of the span of all sets of s columns of Π with
isometry constant δ2d < 0.08 [29]. The D-RIP prevents possible solutions from being highly
distorted by the measurement matrix, and similarly to the standard RIP, also prevents them
from falling in its null space.

The theorem from Equation 4.36 essentially says that the solution to the optimization
problem in Equation 4.35 gives accurate reconstructions of the function H, when the coeffi-
cients Π∗H are sparse and/or decay rapidly—i.e., H is compressible. These results suggest
that if functions of configuration for multicomponent materials are indeed compressible,
meaning they can be represented with only a small set of functions, then accurate recon-
structions can be obtained with coherent and redundant measurements. Although a rigorous
proof along with bounds on the compressibility of functions of configuration—which to the
best of our knowledge has not been reported in literature—would be of immense value, it is
beyond the scope of the present work. We do however provide a numerical indication that
such functions are indeed favorably compressible. This result is not unanticipated consider-
ing established knowledge regarding the physics of locality, the success of atomic potentials
with small numbers of multiple body terms, and the general tenet of parsimony in physics.
This translates to our intuition that such expansions of atomic configuration should have low
degree and small associated cluster diameters, and as such, we should be able to represent
them using a small number of terms. The crux is finding an optimal subspace spanned by a
small set of functions that allows an accurate and sparse representation.

In the context of learning applied lattice models, the generalized Potts frame constitutes
a redundant representation that permits successful recovery of lattice Hamiltonians. Since
the generalized Potts frame is highly redundant, the motivation is that introducing more
expansion functions than strictly necessary and using an appropriate algorithm—such as
for solving Equation 4.35—can yield both accurate and sparse representations of functions
of crystalline configurations without the need of maximally incoherent measurements. An
intuition for this can be formed by picturing the union of all subspaces spanned by size s
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Figure 4.13: Function space representations over the configurations of a single binary site
and a symmetric binary diatomic molecule. (a) Function space over a single binary site
space. The two different choices for site bases to construct a standard CE are colored red
and blue, and each set also includes the purple φ0 ≡ 1 function. (b) Function space over
symmetrically distinct configurations of the molecule. The generalized Potts frame includes
all colored functions (blue/red/yellow). All function sets also include the magenta-colored
constant function. The D-RIP for a 2-sparse representation, in this case, is adapted to the
union of all colored planes in (b).

subsets of functions in the generalized Potts frame. If the function sought lies on any of
these subspaces or close enough, then the function can be accurately represented by only s
terms.

As an illustration, let us reconsider the example of the binary diatomic molecule. The site
function space and resulting symmetrically invariant product space L2(Ω,ρ)G are depicted
again in Figure 4.13. Additionally, the subspaces spanned by all possible sets of two cluster
indicator correlation functions (2D planes) are highlighted. These 2D planes, constitute
s = 2-dimensional subspaces. In this case, the function space over configurations of the
binary diatomic molecule has three dimensions, however, when a function lies close to or on
any of the highlighted planes that function can be well approximated using only two terms. In
Chapter 5.3, we show how using the Potts frame under the context of redundant and coherent
CS, indeed permits successful recovery of lattice Hamiltonians with underdetermined linear
systems—sometimes severely so—that often surpass accuracy and sparsity compared to fits
using a basis representation.
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Chapter 5

Training data preparation &
applications

The regularized regression methodology developed in Chapter 4 requires a series of data
preparation and prepossessing steps to ensure that the fitted lattice Hamiltonian is an ac-
curate representation of the material under study. In light of the growing interest in multi-
principal element alloy and ionic materials, training data preparation and processing methods
have been undergoing continuous reevaluation and new development in order to allow accu-
rate lattice Hamiltonian fits for increasingly large configuration spaces. In this chapter, we
present a handful of data preparation and pre-processing methods that result in accurate
and sparse fits using the linear regression models presented in Chapter 4. The methodology
discussed here is not meant to be exhaustive or conclusive. More so, it represents methodol-
ogy that can be further optimized, but that we have found particularly effective in dealing
with challenges that occur when fitting applied lattice models over high dimensional config-
uration spaces. Subsequently, we provide various results illustrating relevant methodology
using technologically relevant materials under active study. Several results and illustrative
applications given in this chapter are based on published work [9, 10, 253, 259].

5.1 Training data generation & preprocessing

The overall process necessary to obtain a converged, sparse, and accurate lattice Hamiltonian
for a complex multi-component material usually requires an iterative procedure. Figure 5.1
shows a general workflow diagram of the steps necessary to successfully fit an applied lattice
model. Obtaining an adequate feature matrix Π to fit a cluster expansion of a real system,
requires a sequence of nuanced preparation steps that are still the subject of active study.
Additionally, the choice of the regularization is of critical importance such that recovered
expansion coefficients should in principle follow predefined priors, sparsity patterns, and/or
hierarchical relations.

In this section, we will first describe the training data preparation and pre-processing
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Figure 5.1: General workflow diagram depicting the necessary steps required to generate and
prepare training data and successfully fit a converged, sparse, and accurate cluster expansion
of a complex ionic material.

necessary to obtain an appropriate training set consisting of a correlation matrix and its
corresponding target energy vector (Π,E). In particular, we will briefly introduce structure
sampling methods geared to obtaining well-conditioned feature matrices. We also touch
on methodology to effectively assign oxidation states in ionic systems using DFT magnetic
moment results. We additionally describe structure matching methodology to account for
large structure relaxations that commonly occur in materials that include vacancies and ionic
materials systems that may also include oxidation states. We also discuss the effects and
offer practical solutions for handling systems with physically inaccessible configurations, such
as those that undergo substantial relaxation and can no longer be mapped to the underlying
disordered structure.
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Training structure sampling

The sampling of representative training structures is a critical step to obtain useful lattice
Hamiltonians for real materials. Ideally, structure sampling can cover all of the relevant areas
of configuration space—areas such that predictions are interpolating rather than extrapo-
lating. However, completely covering all relevant areas of very large configuration spaces is
usually not possible.

The vast majority of all possible configurations tend to be concentrated at particular
correlation function values [197]. These have been previously named majority structures.
And structures far from those correlation values have been named minority structures [197].
The values of orthogonal correlation functions concentrate at the origin for uniformly sampled
configurations in systems without any composition constraints. This has been well known in
studies of metal alloys [197]. However, this is not the case in ionic systems because charge
neutrality constraints reduce the number of allowed points in configuration space as detailed
in Chapter 2.1. Instead, correlation functions in ionic systems, or more generally systems
with composition constraints, will concentrate on different values based on the particular set
of constraints.

Figure 5.2 shows the number of structures in a disordered rocksalt material system for
several different correlation function values for a set of charge neutral and a set of uncon-
strained (including charged structures) uniformly randomly sampled structures. The vast
majority of structures are concentrated around particular correlation values. These distribu-
tions of correlation function values can differ substantially between the case of unconstrained
and constrained configuration spaces. The highly biased distribution of correlation functions
in ionic systems, which results in higher coherence/similarity between correlation functions,
should be considered when using structure sampling mechanisms that have developed con-
sidering unconstrained configuration spaces only [149, 152, 153, 195, 197, 227].

Structure sampling approaches generally depend on the relationship between the number
of structures m and the number of correlation functions d that will be used in fitting a lattice
Hamiltonian. Based on relationship between m and d (i.e. the shape of the correlation matrix
Π) the linear system in Equation 4.6 can be categorized as an overdetermined problem
(m > d) or an underdetermined one (m < d). For an ionic material, the full linear system
is always underdetermined; but based on the cluster cutoffs used to truncate the expansion,
the resulting linear system can be made overdetermined. Structure sampling methods and
their mathematical rationalization differ accordingly based on the relationship between m
and d.

Most theoretical properties as well as the practical stability of regression depend on the
correlation matrix Π being full rank, rank(Π) = min(m, d). In other words, the rank is
equal to the number of columns for the overdetermined case (when m > d), and it is equal
to the number of rows in the underdetermined case (when m < d). We briefly discuss the two
situations and how they pertain to structure sampling to effectively fit applied lattice models.
Figure 5.3 shows overview flow diagrams for sampling procedures in underdetermined and
overdetermined cases.



CHAPTER 5. TRAINING DATA PREPARATION & APPLICATIONS 115

0

10

20

30

Diameter: 2.10 Diameter: 2.97 Diameter: 2.97 Diameter: 3.64 Diameter: 4.20

0

10

20

30

40

50

60
Diameter: 2.97 Diameter: 2.97 Diameter: 2.97 Diameter: 2.97 Diameter: 3.64

0.4 0.2 0.0 0.2 0.40

20

40

60

80
Diameter: 2.97

0.4 0.2 0.0 0.2 0.4

Diameter: 2.97

0.4 0.2 0.0 0.2 0.4

Diameter: 2.97

0.4 0.2 0.0 0.2 0.4

Diameter: 2.97

0.4 0.2 0.0 0.2 0.4

Diameter: 2.97

Pairs

Triplets

Quads

Correlation function values

De
ns

ity
 o

f c
on

fig
ur

at
io

ns

Figure 5.2: Histograms of pair, triplet, and quadruplet correlation function values for uni-
formly random sampled structures basis correlation values for charge-neutral configurations
only and unconstrained (any possible) configurations.

For the overdetermined case, a full rank matrix is one in which the sampled values for
each correlation function (i.e feature vectors) are linearly independent. For any finite set of
samples there is likely to be a combination of insufficient sampling and in the case of ionic
materials intrinsic linear dependencies (those introduced in Chapter 2.1) that contribute to
rank deficiencies in Π. Rank deficiency can be further aggravated by configurations with
energies that are inaccessible to first principle calculations, which we address in more detail
in Section 5.1. Further, based on the aforementioned effects of charge neutrality constraints,
obtaining a full rank overdetermined feature matrix in ionic systems is technically never
possible (unless as previously mentioned correlation functions that give rise to intrinsic linear
dependencies are removed). Appropriate sampling should seek to minimize the former effects
and improve the overall rank of the correlation matrix.

Sampling in overdetermined linear systems

In overdetermined cases, even though m > d, the rank(Π) can be smaller than d. Under
such circumstances, the rank(Π) can be increased by adding more structures to cover a wider
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Figure 5.3: (a) Sampling procedure for overdetermined problems, including initialization of
inputs for DFT calculations, fit of the lattice Hamiltonian, convergence checks, and addition
of probe (additional) structures [195]. The probe structures are selected by maximizing the
reduction of leverage score (uncertainty) between the previous set S and the new set Ŝ. (b)
Sampling procedure for the compressive sensing cluster expansion. In such a procedure,
structures are selected by selecting correlation vectors Πσ that most closely align with uni-
formly random vectors over the hyper-sphere ~π [153].

range of correlation values, and/or including additional correlation functions that introduce
new linear independent features. In simple systems, this can minimize the rank deficiency up
to only the trivial linear dependency between point functions from the constraint of charge
neutrality, but for more complex high dimensional systems this procedure may not be tenable
based on the large number of structures that would be required to appropriately sample the
fast-growing charge constrained configuration space.

Nevertheless, overdetermined penalized linear regression, in particular variants of the
Lasso (`1-norm regularization), with rank deficient matrices still yield valid solutions with
which useful cluster expansions can be constructed. As explained previously, the solutions
will be degenerate (i.e., certain linear transformations of the estimated coefficients will rep-
resent the exact same cluster expansion) [93, 221], but this degeneracy is not by itself a
practical point of concern. Instead, the focus of structure sampling should be on improving
the predictions and variances for a fitted lattice Hamiltonian for any acceptable estimates of
expansion coefficients.

To simplify our analysis of prediction variance, we assume that a fitted lattice Hamil-
tonian is fitted with an overdetermined, full rank correlation matrix and captures the real
target energy as follows,

E(σ) = ΠσJ + ε (5.1)

where E(σ) is the real energy, and ε is a random error with heteroskedastic uncorrelated
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variances, cov(ε) = s2I.
Under the assumptions above, the variance of the predicted energy by a cluster expansion

fitted with least squares regression can be expressed as [148, 195, 227],

Var[ECE(σ)] = s2Π>σ(Π>Π)−1Πσ (5.2)

where s2 represents the variance from intrinsic noise in the DFT calculations for a given pop-
ulation of structures, and Πσ is the truncated correlation vector for the particular occupancy
σ used in prediction. The expression above can be adjusted for penalized regression models
under a Bayesian interpretation [148]. However, for the purpose of our current explanation,
Equation 5.2 is sufficient.

According to Equation 5.2, the average variance for predicted energies is given as,

〈Var[ECE(σ)]〉 =
σ2

|S|
∑

σ∈S

Π>σ(Π>Π)−1Πσ

=
σ2

|S| trace(H) (5.3)

where S is the number of training structures. H = Π>(Π>Π)−1Π is the so-called hat matrix
[66], and its diagonal elementsHii are the predicted variances for a particular structure; which
are also known in the statistics literature as leverage scores. The leverage score ranks the
uncertainty of the corresponding probe occupancy σ into high-leverage or low-leverage points
according to regression diagnostics [59]. A handful of methods for structure sampling have
been proposed that seek to minimize the average leverage score, or equivalently maximize
the reduction in average predicted variance, for each additional structure included [148, 195,
227]. These methods can lead to improved robustness and accuracy in cluster expansion fits
of complex multicomponent materials.

Sampling in underdetermined linear systems

For the underdetermined linear regression case (m < d), obtaining a full rank correlation
matrix is much more straightforward. An underdetermined system has full rank when all
correlation vectors (rows of Π are linearly independent), as opposed to linearly independent
correlation functions. In such a case, maximizing the rank(Π) ≤ m instead requires obtaining
m structures with linearly independent correlation vectors.

Since there are more unknowns than samples, sampling and regression for an underde-
termined linear system are suitably addressed within the framework of Compressive Sens-
ing (CS). As described in Chapter 4.6, a CS approach to cluster expansions can result in
accurate and sparse solutions of coefficients using a relatively small amount of DFT mea-
surements compared to the number of correlation functions (m � d) [9, 153]. However,
the necessary structure sampling for classical CS that maximizes the probability of accurate
coefficient recovery has strict requirements based on the coherence—a measure of the degree
of similarity—among the sampled correlation functions [27, 152].
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(b) LiMnO2-Li2TiO3-LiF

Figure 5.4: Gram matrices (coherence) for randomly sampled structures and Gaussian sam-
pled orthogonal correlation vectors for a ternary alloy system and an ionic rocksalt system.
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Sampling methods resulting in correlation matrices appropriate for CS have been pro-
posed in the context of the cluster expansion method for metallic alloys. Specifically, corre-
lation matrices appropriate for CS can be obtained by sampling correlation vectors that are
random, independent, and identically distributed (i.i.d.) over the unit hyper-sphere [152,
153]. Figure 5.4a shows two normalized Gram matrices G = Π>Π for the correlation func-
tions of a Ni-Co-Cr ternary alloy structures for a case of random sampling from a large set
of enumerated structures and for a case of i.i.d. random sampling over the hypersphere. The
elements Gij of Gram matrices are the dot product of sampled correlation function values i
and j, which measure the level of coherence between correlation functions i and j. High co-
herence or similarity between sampled correlation functions is visualized as the off-diagonal
yellow pixels. From left to right, a clear reduction in the overall coherence—pixel colors
closer to the blue end of the spectrum—is visible when using the i.i.d. sampling proposed
for classical CS cluster expansion fits [152, 153].

However, charge neutrality constraints and strong electrostatic interactions complicate
such random sampling in ionic systems. As an illustration of this, Figure 5.4b shows the two
Gram matrices for a LiMnO2-Li2TiO3-LiF rocksalt system. The left-hand matrix corresponds
to low electrostatic energy enumeration for cells up to 64 atoms, and the right-hand matrix
corresponds to structures with correlations as close as possible to i.i.d. random vectors unit
hyper-sphere. From left to right, although a slight decrease of the coherence values between
sampled correlation vectors is successfully obtained, the maximal coherence, which is often
taken as the coherence value for the full matrix, remains unchanged; and the coherence
is likely too high to reliably use CS recovery of expansion coefficients. The comparison
indicates that generating structures to obtain correlation matrices that approximate i.i.d.
random matrices, may not be an effective way to minimize the coherence for classical CS.
Nonetheless, as described in Chapter 4.6 the over-complete nature of the correlation basis
can be leveraged under a newer variant of CS that relies on redundant expansion terms[29].
This form of CS with redundancy can be used to fit sparse and accurate CEs even with
highly coherent sampling [9].

Sampling for group-wise structured sparsity

Though it is hard to obtain a full-rank feature matrix for overdetermined systems or a low-
coherency matrix for compressive sensing in an overdetermined system, it is still feasible to
obtain accurate and well-converged lattice Hamiltonians by also relying on the appropriate
use of the previously described group-wise and hierarchically constrained structured sparsity
regularization. By classifying correlation functions into groups based on orbits B as described
in Chapter 4.3, the correlation matrix can be analyzed in terms of orbit sub-matrices. An
orbit sub-matrix of a given correlation matrix is made up of all the column vectors that corre-
spond to the same orbit B of site space clusters. Figure 5.5 shows a schematic illustration of
a correlation matrix and its orbit sub-matrices. For such regularization, structure sampling
should strive to keep the orbit sub-matrices of the training correlation matrix Π full rank
or as close to full rank as possible. Without full rank (or near full rank) orbit sub-matrices



CHAPTER 5. TRAINING DATA PREPARATION & APPLICATIONS 120

0 100 200
Orbit index

0

10

20

30

Ra
nk

 d
ef

ici
en

cy
 (%

)
Figure 5.5: Illustration of orbit sub-matrices making up a correlation matrix. Orbit sub-
matrices correspond to all correlation functions that act over the same set of symmetrically
equivalent clusters, as depicted by the schematic triplet cluster below. Orbit submatrix rank
deficiency for a set of sampled correlation vectors for a template rocksalt system

grouped regularized regression may result in poorly conditioned problems and non-unique
solutions. In cases where this is unavoidable, group-level and within-group regularized re-
gression, such as using the Sparse Group Lasso or Ridged Group Lasso, can be used to help
avoid degenerate solutions [201, 202, 253]. Figure 5.5 also shows the orbit rank degeneracy
(defined as one minus the ratio between the sub-matrix orbit rank and the total number of
correlation functions in the orbit) for a set of structures of a LiMnO2-Li2TiO3-LiF disordered
rocksalt material system. In this example, only 3/248 orbits show a small amount of rank
deficiency (≤ 25%), which is sufficient to obtain accurate fits with grouped regularization as
detailed in Chapter 4.3.

Oxidation State Assignment

In ionic materials containing hetero-valent transition metals, it is necessary to assign formal
valence to ions, since the same ion can behave differently when it has a different valence.
For instance, according to crystal field theory, valence electron d-filling of the transition
metal-oxygen states is one factor controlling whether a transition metal ion prefers tetrahe-
dral or octahedral coordination. Furthermore, size and charge effects can cause metal ions
to have different kinds of short-range order [108]. This thermodynamic preference arising
from different formal valence necessitates treating ions with hetero-valent oxidation states
as different species.

However, in determining the formal valence of an ion, the DFT charge density on a metal
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Figure 5.6: (a) The magnetization distribution of Mn calculated with GGA+U in the system
of Li1.2Mn0.6Nb0.2O2.0. The valence of each Mn atom is determined by the on-site Bohr
magnetization µB. From the histogram, we can manually estimate the boundary for Mn4+/3+

and Mn3+/2+ classification to be 3.6µB and 4.2µB. (b) The magnetization distribution of
Mn is calculated with the SCAN density functional in the system of Li-Mn-O-F, and a more
continuous distribution is observed. The boundary for Mn4+/3+ and Mn3+/2+ classification
is 3.22µB and 4.08µB, determined by Bayesian optimization via Gaussian Processes.

cannot be directly used as it is invariant to the valence state due to hybridization with the
anion [32]. Instead, we can rely on the magnetic moment for a given metal site to assign a
formal charge and can either use the sum of s, p, and d local orbital contributions or the
individual d orbital contribution to assign this charge state. This local contribution can be
obtained by integrating the spin up minus spin down magnetic moment around each atom.

Figure 5.6(a) presents a histogram of the magnetic moments on the ions in structures
with composition Li1.2Mn0.6Nb0.2O2.0, by taking the sum of s, p, and d orbital contributions.
In this example, the values ≈ 3.6 µB (differentiates Mn4+ from Mn3+) and ≈ 4.2 µB (Mn3+

from Mn2+), is enough separation in the magnetic moments to clearly delineate oxidation
states.

In other cases, the separation of oxidation states is not as obvious. For example, the
histogram of Mn d-orbital magnetic moment in the Li-Mn-O-F system [253] is shown in
Figure 5.6(b). It is not straightforward to define cut-off values to classify the different
Mn oxidation states. In this case, one can use black-box optimization approaches (such
as Bayesian optimization via Gaussian Processes [205]) to assign oxidation states that are
optimally consistent with a maximal number of charge-neutral structures.

More specifically, the loss function for Bayesian oxidation state assignment can be for-
mulated as the sum of the absolute value of each structure’s charge, taken over all structures
in a DFT computed dataset. The loss function depends on a black box function f , which is
the mapping function between any local magnetic moment for a metal to its formal valence.
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Table 5.1: Magnetic moments for Mn in three configurations of Li7Mn7O12F2 calculated
with DFT-SCAN [211], and sorted into their oxidation states as determined by Bayesian
optimization. The d orbital magnetic moments and energy above hull (eV/atom) are listed.

configuration Mn2+ Mn3+ Mn4+ Energy above hull (eV/atom)
A 4.207, 4.26, 4.31 3.602, 3.629, 4.017 2.916 0.133
B 4.169, 4.208, 4.264, 3.615, 3.65, 3.982 3.217 0.137
C 4.169, 4.278, 4.33, 4.366 4.07 2.703, 2.974 0.157

The exact form of f is neither known nor differentiable, but it depends solely on the mag-
netic moment upper cutoff for each different metal species of interest. For the dataset used
in Figure 5.6(b) the function is f(c1, c2, c3) where c1, c2, and c3 are three upper magnetic
moment cutoffs for Mn2+, Mn3+ and Mn4+. After black-box optimization, the upper cutoffs,
corresponding to a minimal loss of structures with non-zero total charge for a given DFT
dataset, can be used to assign the formal valence for any structure.

Table 5.1 additionally shows three configurations of Li7Mn7O12F2, with oxidation states
assigned using the recently published Bayesian optimized solution [253]. The cutoffs are 3.228
µB (differentiating Mn4+ from Mn3+) and 4.0815 µB (differentiating Mn3+ from Mn2+).

Configurations A and B both have three Mn2+, three Mn3+, and one Mn4+. It is less
straightforward to determine where the Mn3+ and Mn2+ cutoff lies for configuration A be-
cause 4.017 µB is closer to the magnetic moments assigned to Mn2+ atoms (4.207 µB, 4.26
µB, 4.31 µB) than to the moments assigned to Mn3+ atoms (3.602 µB, 3.629 µB). Using
Bayesian optimization circumvents this complication.

Interestingly, within configuration B the magnetic moments are more clearly separated,
as the ranges of magnetic moments for Mn2+ and Mn3+ are notably less than that for configu-
ration A, but this is not associated with a lower energy since configuration B is 4 meV/atom
higher in energy. Configuration C has an entirely different set of charge orderings (four
Mn2+, one Mn3+, and two Mn4+) which can be recognized and assigned by the algorithm.

This optimization approach to assign charge states was successfully used in other chem-
ical systems, including Li-Mn2+/3+/4+-Ti-O [40], and Li-V4+/5+-O [104], further supporting
how Bayesian optimization can find non-trivial solutions for charge state assignments onto
magnetic moments and increase the efficiency of using DFT-calculated configurations to
train ionic CE.

Structure Mapping

In practice, DFT calculations performed to obtain a set of training structures for fitting an
applied lattice model involve calculations for structures that have different supercell sizes and
shapes. In many available packages [231], initial structures of the ab initio calculations are
generated from the cluster expansion, the occupancy strings are obtained from the cluster
expansion-generated initial structures, and the energies (or other properties) are obtained
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Figure 5.7: Schematics of an input structure corresponding to an occupancy string σ, the
resulting relaxed (DFT-calculated) structure and a refined structure. The refined structure
is represented by the sites of the relaxed structure mapped to the locations of the sites of
the rigid disordered structure underlying the CE. The different colors represent multiple
species on the lattice. The empty boxes are explicit representations of vacancies (which in
the lattice model are treated as a species). (a) An example case where the refined structure
effectively maps back to the initial structure and occupancy string. (b) An example case
where the refined structure does correspond to the initial structure or occupancy string due
to substantial relaxation.

from the relaxation of the ionic and electronic structure. However, doing so requires that the
relaxed structure still corresponds to the occupancy string from which the initial unrelaxed
structure was obtained. In many cases encountered in ionic systems, ions relax too far away
from their initial site, such that re-assigning them to sites corresponding to the unrelaxed
initial structure is infeasible. This is especially noticeable in systems containing vacancies,
which allow atoms to relax towards the vacant lattice site. This is also common in structures
with large electrostatic or repulsive interactions because the strong interactions often force
ions to maximize the distance between the interacting ions.

In cases where the structure relaxation is significant, converting the relaxed structure
itself (after ab initio relaxation) to an occupancy string is a more appropriate way to capture
the configurational energy landscape. A practical implementation of this requires a mapping
between sites of the underlying disordered crystal structure and the training structure that
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has been relaxed by first-principles calculations. We call the ordered structure that has been
appropriately mapped to the rigid lattice the refined structure. This mapping can then be
used to construct the corresponding configuration strings σ for the relaxed structures. A
schematic illustration of the relationship between the initial, relaxed, and refined structures
is shown in Figure 5.7.

Formally, the procedure of structure mapping for purposes of fitting an applied lattice
model can be stated as follows. We represent the disordered structure (that represents the

domain of the Hamiltonian) using a set of lattice vectors LU =
[
~l1 ~l2 ~l3

]
and a set of fractional

coordinates PU = {~pi, . . . , ~pNU | ~pi ∈ [0, 1]3} for NU sites. To each site, we assign a site space
Ωi. Similarly, for a given ordered structure, we label the set of fractional coordinates PQ for
NQ sites and refer to the corresponding set of lattice vectors as LQ. Each site in the ordered
structure is occupied by a specific species σi. A supercell of the disordered primitive cell
must be obtained to enable a one-to-one mapping between the sites of an ordered structure
and the sites of the corresponding supercell of the disordered structure. We write the lattice
vectors of this supercell LUQ. The number of atomic sites, or equivalently the set of fractional
coordinates PUQ of the disordered supercell must be the same as in the ordered structure
|PUQ| = |PQ|. Having obtained the disordered supercell LPQ, a map between the sites PQ of
an ordered structure and the sites PUQ of the appropriate disordered supercell is represented
by the following bijection,

A : PQ → PUQ s.t. σi ∈ ΩA(i) ∀i ∈ {1, . . . , NQ} (5.4)

The map A can be practically established within reasonable tolerances for structural defor-
mations of the lattice LQ. In practice, performing these two steps (finding the disordered
structure supercell, and finding the map between sites of the ordered structure and the
disordered supercell) requires a crystallographic structure matching algorithm, such as the
StructureMatcher in the pymatgen library [161]. A handful of other effective algorithms
for crystallographic matching are freely available [94, 209, 218].

However, most approaches treat the inputs of allowed tolerances for all sites on equivalent
grounds. For many ionic systems, and in particular, those including vacancies, cations tend
to undergo larger displacement than anions during DFT relaxation. Usually, the anion
sublattice undergoes less distortion, and as a result, can be more easily mapped with the
predefined primitive cell. This practical observation can be revealed by comparing the drift
force in DFT outputs for cations and anions, respectively. As a result structure mapping
methods may fail for many ordered structures that may still have well-defined structure
mappings A. One method for correcting this during mapping involves first performing a
search over varying lattices to map the relaxed anions to the fixed anion sublattice sites
within a fractional tolerance. Subsequently, cation centers within anion polyhedra (based on
the relaxed anion to anion lattice site mapping) can be used to map the cation sublattice
sites [253].

Effective structure mapping methods allow practical calculations of the minimum or re-
laxed energy landscape in terms of atomic configuration. However, it is well known—and
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has been numerically quantified—that the extent of structural relaxations affects the num-
ber of correlation functions required to obtain a robust and well-converged cluster expansion
[155]. Rigorous quantification of strain and a corresponding metric for structure mapping
may prove very useful to further establish a formal understanding of the effects of structural
relaxations when fitting lattice Hamiltonians of configuration. The majority of available crys-
tallographic matching algorithms lack a rigorous quantification of the strains and symmetry
breaking involved. This has only been recently addressed in a newly proposed matching algo-
rithm [218], where cost functions for lattice strain and atomic displacement are constructed
for scale-invariant geometric distortions and symmetric breaking distortions.

Physically Inaccessible Configurations

When fitting a lattice Hamiltonian of a complex material, there will usually exist configura-
tions that cannot be reached due to convergence issues in DFT calculations. Inaccessibility
can arise in metallic alloys and ionic materials. For the most part, we will focus our attention
on issues arising in ionic materials. There are two main categories of configurations that can
be inaccessible to DFT: geometrical inaccessibility and charge-valence inaccessibility.

Geometrical inaccessibility occurs when the DFT-relaxed structures drift far from their
original lattice sites and cannot be correctly mapped. Although Section 5.1 addresses some
ways to find mappings when the cations relax substantially, large anion drift can make
the mapping impossible. Consider, for example, anion drift that destroys the FCC anion
framework of a rock-salt. Although the initial configuration may have been in the rock-salt
configuration space, the resulting relaxed structure no longer is. This becomes a very notable
problem when considering configurations with a large number of vacancies.

Charge-valence inaccessibility happens when the DFT-relaxed configuration can be ap-
propriately mapped back to a lattice model with oxidation-assigned ionic species; however,
charge transfer prevents specific oxidation states for particular configurations of the prede-
fined lattice model. This happens mostly in transition metal oxides when the valence of
the transition metal cannot be well assigned and results in non-charge-balanced configura-
tions. This can also be the result of internal charge transfer in configurations with very high
electrostatic energy.

The efficiency of structure sampling is thus reduced depending on how many physically
inaccessible states occur in the sampled training configurations. For example, as shown in
Figure 5.8, the blue sites in the cluster figures are occupied by high-valent transition metal
(such as Nb5+, Mo6+), which have strong repulsion in a single tetrahedron. Such features
cannot be appropriately computed by DFT calculations. The effect on sampling is most
clear when using an indicator basis since this will result in a void correlation function in
the feature matrix Π. The void correlation function manifests itself as a column with all
elements equal to zero. This happens since no information has been obtained for those
particular configurations, such that this correlation function is rendered uninformative and
should be removed prior to fitting. For lattice Hamiltonians with orthogonal correlation
functions, the effect manifests itself more subtly. In the orthogonal case, inaccessible states
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configurations

/  Void   Correlation Functions

Figure 5.8: Illustration of feature matrix Π with inaccessible (non-sampled) configurations
using an indicator basis. The red columns represent the correlation functions that are covered
by DFT calculations, while the gray (shaded) columns represent the inaccessible atomic
configurations. (e.g., the blue sites are occupied by high-valent transition metals such as
Nb5+, Mo6+, which have strong repulsion in one tetrahedron and cannot be well evaluated
via DFT. And the blue row represents the correlation vector of one specific structure.

will manifest as linear dependencies or equivalently rank deficiency of the corresponding
orbit sub-matrix.

Such inaccessibility can further induce configuration sampling problems in Monte Carlo
simulations. This occurs because the lattice Hamiltonian, fitted as described above, has no
information regarding the coefficients associated with the inaccessible high-energy configura-
tions. Consider the case in which a configuration with one or more inaccessible features lies
close in configuration space to a low-energy configuration (i.e., a few MC steps away). The
configuration with inaccessible features may be accepted since its energy will be incorrectly
predicted. The end result is that unfavorable configurations can be incorrectly sampled in
MC and will distort ensemble statistics and computed thermodynamic properties.

To resolve this issue, one should include as many configurations to reduce the number
of under-sampled correlation functions. However, since inaccessible states are in principle
caused by DFT instability, under-sampled correlation functions may remain. We suggest two
approaches that are useful to deal with the remaining inaccessible sampling issues. First, the
coefficients can be regularized with more importance given to those corresponding to lower
degree clusters (such as pair-wise interactions). This can be achieved by using hierarchy
constraints or group-wise regularization as detailed in Chapter 4.3. These fitting strategies
are effective when the configuration energy can be well depicted by correlations of clusters
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with small support, therefore void or under-sampled correlation functions for clusters with
larger support will contribute minimally to the total energy.

If the resulting lattice Hamiltonian still under-predicts the energy of configurations that
are likely to be high energy, rejection of these configurations can be easily achieved in MC.
The rejection can be done by including a cluster indicator function of the orbit β associated
with such inaccessible atomic configurations. The probability evaluated in Monte Carlo that
guarantees the rejection of inaccessible configurations is,

p ∝ exp

(
− 1

kBT
(ECE +

∑

β∈void

M · 1β)

)
, (5.5)

where ECE is the predicted energy evaluated with actual coefficients, M is a large positive
number, and 1β is the indicating function of orbit β. Since the cluster indicator function
will only be nonzero when the specific inaccessible cluster configuration is present, all other
configurations that do not include such configuration will not be affected. However, this
approach requires practitioners to explicitly detect the inaccessible configurations in the first
place.

5.2 Structured-sparsity fits of LiMnO2-Li2TiO3-LiF

ceramics

Cluster expansion fits of the LiMnO2-Li2TiO3-LiF (LMTOF) disordered rocksalt system
were computed using standard Lasso and the structured sparsity-based regression models
previously introduced. The LMTOF rocksalt system comprises a binary face-centered cubic
(FCC) anion lattice with O2– and F– disorder, and a FCC cation lattice with Li+, Mn3+ and
Ti4+ disorder. All fits include an explicit electrostatic term as expressed in Equation 4.25
which is computed using the Ewald summation method. We compare the resulting model
prediction accuracy, sparsity, and ECI structure of the various fits using a training set of
DFT calculated energies for 983 structures with supercells up to 72 atoms. An additional test
set of 247 structures of supercell sizes 128 and 132 atoms is used for validation. Additional
details of the DFT training structure calculations and fitting are reported in Appendix C.2.

Figure 5.9 shows prediction accuracy metrics for fits using each regression model with
three different sets of cluster size cutoffs for pair, triplet, and quadruplet clusters respectively.
Hyper-parameter tuning curves for the various regression models are given in Appendix C.2.

From the results in Figure 5.9 we see that all regression models yield similar levels of
predictive accuracy. However, although all regression models achieve some degree of feature
selection, Sparse Group Lasso and `2`0 regression are the most effective in reducing the total
number of features required to achieve similar levels of accuracy. We make note specifically
that Overlap Group Lasso has the worst performance in feature selection due to the restrictive
hierarchical constraints imposed, as described in Chapter 4.3. However, this structure-
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Figure 5.9: Fitted LMTOF CE accuracy metrics and resulting model sparsity using Lasso
and structured sparsity-based regression algorithms. (A-) adaptive variants, (L) Lasso, (GL)
Group Lasso, (SGL) Sparse Group Lasso, (OGL) Overlap Group Lasso. All fits shown
were done using correlation functions for cluster size cutoffs for pair (P), triplet (T), and
quadruplet (Q) clusters listed above the figures using a primitive cell of the rocksalt structure
with lattice parameter a = 3 Å.

sparsity form yields solutions that are competitively accurate and better aligned with physical
heuristics.

Figure 5.10 shows the resulting sets of fitted ECI J and effective cluster weights W[HB]
for each regression model. There are some notable observations and trends regarding Figure
5.10. Structured sparsity models on average result in lower magnitude coefficients compared
to the Lasso. Furthermore, although the solutions obtained with these regression models
are not unique since the ionic configuration space has charge neutrality constraints, the
different models tend to identify a few apparently important correlation functions, in par-
ticular short-range pair correlations and some larger diameter triplet correlations. Lastly,
hierarchy-based regularization, and in particular the orbit level hierarchy implemented with
the Overlap Group Lasso, results in coefficients that much better align with physical intu-
ition and heuristics (i.e., decay with physical distance and cluster size) and the principles of
a statistically well-formulated model [172].

All in all, the results from the fitted expansions for the LMTOF system shown in Figures
5.9 and 5.10 and the accompanying results in Appendix C.2 demonstrate how expansions
with structured sparsity have similar or improved levels of accuracy as those from the Lasso,
and additionally tend to have higher sparsity and trends in the resulting coefficients that
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Figure 5.10: Fitted LMTOF effective cluster interactions and square root effective clus-
ter weights using adaptive Lasso and structured sparsity-based regression algorithms. (A-)
adaptive variants, (L) Lasso, (GL) Group Lasso, (SGL) Sparse Group Lasso, (OGL) Overlap
Group Lasso. All fits shown were done using correlation functions for cluster size cutoffs of
7 Å, 4.2 Å, and 4.2 Å for pair, triplet, and quadruplet clusters respectively using a primitive
cell of the rocksalt structure with lattice parameter a = 3 Å.
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(a) 2-2 LiMnOF binary-
binary rocksalt

(b) 3-2 LiMnTiOF ternary-
binary rocksalt

(c) 5-3-2 LiMnOF quinary-
ternary-binary spinel-like

Figure 5.11: (a) System 2-2: Li-Mn-O-F rocksalt system with binary (Li+/Mn3+) cation
sites and binary (O2-/F-) anion sites. (b) System 3-2: Li-Ti-Mn-O-F rocksalt system with
ternary (Li+/Mn3+/Ti4+) cation sites and binary (O2-/F-) anion sites. (c) System 5-3-2:
Li-Mn-O-F spinel-like system with quinary (Li/Mn2+/Mn3+/Mn4+/vacancy) octahedral
cation sites, ternary (Li/Mn2+/vacancy) tetrahedral cation sites, binary (O2-/F-) anion
sites.

much better align with physical priors and heuristics.

5.3 Compressed sensing fits of Li-(M1M2)-OF

ceramics

We demonstrate the performance of the generalized Potts frame by comparing fits for three
fluorinated lithium-transition metal oxide systems with fits obtained using a site indicator-
based cluster expansion (with site basis functions given in Equation 2.62), and a cluster
expansion using orthogonal sinusoid site basis functions [230]. The configuration spaces for
the materials considered increase in both size and complexity (larger number of allowed
species and number of symmetrically distinct sites) as shown in Figure 5.11.

The total number of expansion terms considered for each fit is listed as the model size in
Table 5.2. The total number of terms is obtained by using the same cutoff radius for clusters
with up to four sites. Functions that evaluate to the same value (remain constant) for the
training structures used in the corresponding fit are subsequently removed from the final
measurement matrix used for each fit. Particularly, removal of constant functions was only
required for the 5-3-2 system, for which the total number of columns in the measurement
matrix ended up being 4194 and 17350 for the indicator basis correlation basis based and
Potts frame models respectively. Additionally, we include an electrostatic energy term [181,
196] as an additional feature in every fit. Finally, for the fits using the Potts frame, we
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System Expansion Type Training Set Size Test Set Size Model Size

2-2
Correlation basis 112 337 121

Potts frame 112 337 520

3-2
Correlation basis 195 456 312

Potts frame 195 456 1040

5-3-2
Correlation basis 312 56 7030∗

Potts frame 312 56 23070∗

Table 5.2: Regression model and training/test data size specifications for the three fluo-
rinated lithium-transition metal oxide systems. ∗Removal of correlation functions that re-
mained constant for structures in the training set reduced the number of columns in the
measurement matrices in 5-3-2 system to 4194 and 17350 for the indicator basis and Potts
frame models respectively.

remove one cluster indicator function from each set associated with the same orbit; this
is simply to do away with the trivial linear relation in Equation 2.67 applied to cluster
concentrations. Doing so has a minimal effect in reducing redundancy, however, we found
this slightly improved efficiency for obtaining full rank measurement matrices. It is clear by
construction that for the same spatial cutoffs, the number of terms in the generalized Potts
frame far exceeds the number of terms in a standard cluster expansion, and this difference
grows exponentially with the configuration space complexity.

A total of 50 different fits for each system are computed by selecting a random set of
training structures that gives a full rank underdetermined system. The remaining structures
are used as a test set. The Lasso solutions were obtained for each fit in a two-step process.
First, a 10-fold hyperparameter cross-validation optimization search is done with the training
set. Subsequently, a finer hyperparameter search is done centered at the previously obtained
value now optimizing for out-of-sample error with respect to the test set but training only
with the training set data. From the resulting fits, those with sparsity (number of nonzero
coefficients) above the third quartile of the set are considered outliers and removed from the
results.

Values for accuracy metrics and sparsity results for the fitted expansion obtained from
the set of fits for each of the three expansion types and for each of the three materials
systems are shown in boxplots in Figure 5.12. The average prediction accuracy metrics
given include cross-validation root mean squared error (CV RMSE) for the initial cross-
validation hyperparameter search, the out-of-sample RMSE for the final fit (test structures
only), and the full data RMSE for both the training and test structures combined. The
average sparsity value for the resulting fits is also listed.

Figure 5.12 shows boxplots depicting the resulting fit statistics in terms of cross-validation,
out-of-sample and full sample (both training and testing structures) root mean squared er-
rors, along with the corresponding model sparsity values. The results depicted in Figure 5.12
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Figure 5.12: Fit metric statistics for the systems tested using standard correlation basis with
sinusoid site basis, indicator site basis, and generalized Potts frame. The plotted metrics
include cross validation RMSE (CV score), out-of-sample RMSE (Out RMSE), full data
RMSE (Full RMSE) for both the training and test structures combined, and the number
of nonzero ECI in the fits (sparsity). LiMnOF binary-binary with two sites per formula
unit (top), LiMnTiOF ternary-binary with two sites per formula unit (middle), LiMnOF
quinary-ternary-binary with four sites per formula unit (bottom).

show that for all systems, the expansions resulting from the Potts frame tend to have either
a lower minimum, median, and mean accuracy metrics, a lower spread in these accuracy
metrics, or both. In all cases, the accuracy metrics are either very competitive (very close
to standard cluster expansions), or better. As for the resulting model sparsity, although
considerably more terms are included in the Potts frame fit, the resulting expansions have
similar sparsity along with lower spread in sparsity values. These results demonstrate the
applicability of using coherency and redundancy to obtain expansions that match and even
exceed the accuracy and sparsity of those obtained with standard cluster expansion basis
sets.

The boxplots in Figure 5.12 provide a summary of the average values obtained for each
type of fit, however, they do not allow us to see which models have both high accuracy
and high sparsity (low number of terms). Tables 5.3 and 5.4 list the same fit metrics as
Figure 5.12 but for the single sparsest (smallest number of nonzero coefficients) fit and the
fit resulting in the highest accuracy in terms of the full data RMSE for each materials system.

From Table 5.3, we see that for the sparsest expansions obtained, the ones fitted using
the Potts frame result in the lowest error metrics with only a few exceptions where the Potts
frame fits are still of comparable accuracy. Furthermore, the expansions based on the Potts
frame result in the lowest or second lowest sparsity for all three systems. The results for
the most accurate models in terms of full dataset RMSE in Table 5.4 show that the Potts
frame results in both sparse and accurate models. For the cases where one of the correlation
basis-based fits results in a lower full RMSE, the sparsity of that model is compromised
and substantially worse than the corresponding Potts frame fit. This behavior can also be
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System Expansion CV RMSE Out RMSE Full RMSE Sparsity

2-2
Sinusoid 34.10 25.26 26.36 7
Indicator 23.16 19.37 18.79 19

Potts Frame 23.82 22.31 21.5 13

3-2
Sinusoid 24.13 27.62 24.14 56
Indicator 25.14 21.69 19.55 54

Potts Frame 22.26 23.43 20.93 49

5-3-2
Sinusoid 131.76 158.16 68.80 77
Indicator 45.52 49.99 52.12 29

Potts Frame 44.58 40.51 39.65 69

Table 5.3: Fitted model accuracy metrics and sparsity of sparsest models. Cross-validation
RMSE (CV RMSE), out of sample RMSE (out RMSE), and full dataset RMSE (full RMSE)
in meV per formula unit (random structure primitive cell).

System Expansion CV RMSE Out RMSE Full RMSE Sparsity

2-2
Sinusoid 25.68 18.42 16.66 50
Indicator 18.63 17.87 15.76 121

Potts Frame 21.42 16.11 14.89 43

3-2
Sinusoid 23.10 18.88 16.44 105
Indicator 28.02 17.89 15.07 310

Potts Frame 23.09 17.77 16.06 72

5-3-2
Sinusoid 104.39 36.72 17.24 291
Indicator 55.69 27.45 20.38 147

Potts Frame 115.42 24.52 18.98 192

Table 5.4: Fitted model accuracy metrics and sparsity of most accurate models in terms of
the root mean squared error on the whole dataset. Cross-validation RMSE (CV RMSE), out
of sample RMSE (out RMSE), and full dataset RMSE (full RMSE) in formula unit (random
structure primitive cell).
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observed in the results in Figure 5.12, where the box plot for sparsity obtained with the Potts
frame has a smaller interquartile range than that of the correlation basis-based fits (with the
exception of the 5-3-2 system where it is only slightly larger than that of the indicator based
cluster expansion).

Figure 5.13a shows the sorted magnitudes of the fitted coefficients (magnitude of the
ECI times the multiplicity of the correlation function) for each expansion type and mate-
rials system for both the sparsest models and most accurate models obtained. Based on
the adequacy of the resulting fit error metrics and the fast decay of coefficients shown in
Figure 5.13a, we can conclude that the configuration energy if not exactly sparse is highly
compressible—since signals or functions with power-law decaying (or faster) coefficients can
be well approximated by a small subset of terms [53]. Specifically, a series of coefficients
obey a power law decay if the sorted sequence satisfies the following,

|ci| ≤ Ci−q (5.6)

where ci are the coefficients and C, q > 0 are constants. For all expansion types, we see that
the coefficient magnitude decay is faster than the power law decay shown.

We also see that in the results in Figure 5.13a, the coefficient decay of fits using the
Potts frame are, at worst, the second fastest decaying series for both the sparsest and most
accurate fits, such that expansions using the Potts frame are arguably more reliable in
yielding sparser models than standard cluster expansions. This seems surprising considering
that the total number of terms in the underdetermined system is exceedingly larger than
that of the standard cluster expansions. However, considering the geometry of the union of
s-dimensional subspaces as illustrated in Figure 4.13 in Chapter 4.6, we posit that indeed
functions of configurational energy lie close to one of these subspaces with high probability,
and we can therefore accurately represent the function with a much smaller number of
terms than the total considered in the underdetermined system. Additionally, in light of the
Theorem in Equation 4.36, the rapid decay of coefficients suggests that an s-sparse set of
coefficients is close to the real coefficients and as a result, the second term in the function
approximation error is likely to be very small.

We can take the previous results as ex post facto evidence that configuration energy is a
compressible function and that CS with redundancy and coherent measurements works well
for fitting expansions of configuration energy. Additionally, we observed that expansions fit-
ted using the Potts frame also tend to follow expectations driven by physical considerations.
Figure 5.13b shows the number of nonzero coefficients for each crystallographic orbit con-
sidered for the most accurate indicator basis and Potts frame-based models with respect to
the number of nonzero coefficients obtained in the most accurate sinusoid basis-based model.
We notice from the plots, that using the Potts frame, despite having a much larger number
of total coefficients associated with each orbit, results in fits that set a similar number of
nonzero coefficients within each orbit and never exceed three additional coefficients per orbit
when compared with the sinusoid correlation basis fit. The significance is that, not only
do we recover accurate and sparse models, but the models themselves also have a similar
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Figure 5.13: (a) Sorted fitted coefficient magnitudes (multiplicity times ECI) for the spars-
est and most accurate model (Full RMSE). (b) Number of nonzero coefficients relative to
the sinusoid basis fit for each orbit, and norm of coefficients for each orbit for the most
accurate models (Full RMSE). The vertical dotted lines separate the degree of the orbit
(pairs/triplets/quadruplets). In both (a) and (b) LiMnOF binary-binary (top), LiMnTiOF
ternary-binary (middle), LiMnOF quinary-ternary-binary (bottom).
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sparsity structure to the correlation basis-based models. Figure 5.13b also shows the root
sum of squares or norm of the fitted ECI for each orbit. We observed that for the most ac-
curate models the fitted coefficient weight associated with each orbit is less erratic than that
of the indicator-based cluster expansion. Additionally, the fitted coefficients tend to follow
the heuristic of coefficient decay with orbit size more fittingly than the indicator-based clus-
ter expansion. The aforementioned observations again demonstrate using the Potts frame
can result in fitted expansions that are not only accurate and sparse but also produce well-
behaved coefficients that align with practices and heuristics based on physical insights used
in the field.

5.4 Structured-sparsity fits of NiCoCr alloys

As an application demonstrating how the uniqueness of a cluster decomposition can be
leveraged with invariant regression algorithms developed in Chapter 4 to obtain expansions
with improved accuracy and sparsity, we have fitted Fourier cluster expansion Hamiltonians
for a NiCoCr alloy system. Expansion fits were carried out using the Lasso [220], and `2`0

estimation with a correlation function hierarchy prior [259] and a cluster interaction hierarchy
as detailed in Chapter 4.3. Fits were carried out using two sets of cutoffs: a set including only
pairs up to 8 Å(501 training structures), and a set with pairs up to 10 Åand triplets up to 6
Å(502 training structures). Training structure sampling was done by random sampling over
a unit-hypersphere as detailed in Chapter 5.1 [152]. A holdout test set of 1000 structures
was used for model validation. Additional details on DFT calculations and fits are reported
in Appendix C.3.

Estimator CV RMSE (meV/site) Out RMSE (meV/site) Cluster Interaction Sparsity
Lasso 17.72 32.35 11
`2`0 17.94 32.11 11

Grouped-`2`0 17.78 32.22 8

Table 5.5: Cross validation root mean squared error (CV RMSE), out of sample root mean
squared error (Out RMSE) and number of nonzero cluster interactions (Cluster Interaction
Sparsity) for Fourier cluster expansion fits of a NiCoCr with pairs up to 8 Åwhich amounted
to a total of 11 pair cluster interactions consisting of 33 pair correlation functions.

All models resulted in basically the same cross-validation root mean squared error ( 18
meV/site) and out-of-sample root mean squared error ( 30 meV/site) regardless of the re-
gression algorithm used. The resulting model cross-validation root mean squared error,
out-of-sample error, and orbit sparsity (number of orbits with nonzero coefficients) are listed
in Tables 5.5 and 5.6. The accuracy metrics obtained are consistent with those reported pre-
viously for a NiCoCr cluster expansion [171]. Beyond the comparable prediction accuracy, a
substantial improvement in sparsity is obtained by using hierarchically structured sparsity
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Estimator CV RMSE (meV/site) Out RMSE (meV/site) Cluster Interaction Sparsity
Lasso 18.85 31.38 36
`2`0 19.36 31.34 26

Grouped-`2`0 18.43 31.38 5

Table 5.6: Cross validation root mean squared error (CV RMSE), out of sample root mean
squared error (Out RMSE) and number of nonzero cluster interactions (Cluster Interaction
Sparsity) for Fourier cluster expansion fits of a NiCoCr with pairs up to 10 Åand triplets up
to 6 Åwhich amounted to a total of 37 pair and triplet cluster interactions consisting of 180
pair and triplet correlation functions.

priors. Overall the best fit is obtained using the cluster interaction hierarchical prior (i.e.
a well-formulated mode with strong hierarchy) which obtains the best sparsity for both the
expansion with pairs only and the expansion with pairs and triplets.

Additionally, the resulting parameter structure shows some level of selection similarity
for each of the regression models used. But in particular, for the expansion using pair and
triplet correlation functions, the resulting structure satisfying strong, weak, and no hierar-
chical constraints has some noticeable feature selection differences. The models with weak
and strong hierarchy lead to visibly improved selection of the interactions with the largest
cluster sensitivity (i.e. the most expressive features). Figure 5.14 shows the resulting expan-
sion parameters (effective cluster interactions) and corresponding effective cluster weights.
Considering the comparable accuracy obtained with all regression models, the model with
cluster interaction hierarchy (grouped `2`0), that satisfies the strong hierarchy prior results in
the sparsest model and only selects cluster interactions with the largest cluster sensitivities.
These highly informative cluster interactions are captured by all regression models, but both
Lasso and `2`0 with correlation hierarchy (weak hierarchy) end up selecting substantially
more features that make little difference in improving predictive accuracy.

The two fits (pairs only and pairs + triplets) using cluster interaction hierarchical con-
straints result in a quite competitive prediction accuracy and sparsity. However, the resulting
thermodynamic behavior can still be noticeably different. In the present example, it indeed
happens to result in slightly different thermodynamic behavior. Figure 5.15 shows the near-
est neighbor and second nearest neighbor cluster probabilities, as well as the cluster energies
for temperatures between 100 to 1000 K using Wang-Landau density of states sampling [237].
In addition, the fitted nearest neighbor and second nearest neighbor interaction values for
both expansions are shown.

The results show that the atomic ordering behavior with temperature exhibits broadly
similar trends but noticeable differences in the finer details. Both expansions exhibit a phase
transition near 600 K, however, the expansion including triplets also exhibits a transition
at a lower temperature of around 200 K. The nearest neighbor probabilities show somewhat
similar trends as well, but the second nearest neighbor probabilities are noticeably distinct.
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Figure 5.14: Fourier cluster expansion parameters (effective cluster interactions) and root
effective cluster weights for three fits of an expansion involving pair and triplet terms up
to 10 Åand 6 Årespectively. using the Lasso, and `2`0 regression with correlation function
hierarchical constraints (`2`0) and cluster interaction constraints (grouped `2`0).

This can be rationalized to some extent simply by considering the relative differences in
cluster interactions. Both expansions result in very similar nearest neighbor interactions,
but relatively different second nearest neighbor pair interactions. The pair expansion results
in a Co Co and Ni Ni second nearest neighbor interactions that are more favorable than
their mixed counterparts. In contrast, second nearest neighbor interactions in the pair +
triplet expansion give more favorable Co Ni interactions.

More careful inspection of Figure 5.15 shows that at least another cluster, in addition
to the first and second nearest neighbors, plays an important role in the thermodynamic
behavior. The cluster energies for the remaining clusters are shown as dashed curves in
Figure 5.15. In both expansions, there is a dashed curve that appears to contribute an
important part of the total energy.

We can readily identify and gain further understanding of the relative importance of the
contributions of the different interactions by looking at the corresponding cluster sensitivity
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with a solid blue curve, the total energy with a solid red curve, and the remaining cluster
energies are plotted with dashed curves

indices. Figure 5.16 shows the effective (solid color) and total (translucent) cluster sensitivity
indices. We can observe that the most important interactions in both expansions indeed
come from the first and second nearest neighbors. However, the longest range pair in the
pair-only expansion and the triplets in the other expansion have also comparable sensitivity
values. The longest range pair and the largest triplet are the clusters contributing to those
unidentified interactions in Figure 5.15. The resulting modulation of short-range ordering by
longer range or higher degree clusters has been previously observed and used to rationalize
the phase transition of NiCoCr medium entropy alloys [171].

This example serves as a basic illustration of the additional insight into the energetic
contributions and resulting atomic ordering of different clusters that can be obtained from
the cluster decomposition and cluster sensitivity indices presented in Chapter 2.4. We have
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Figure 5.16: Effective (solid color) and total (translucent) cluster sensitivity indices for two
expansions of a NiCoCr medium entropy alloy.

no doubt these concepts can be used in a variety of different and novel ways beyond what we
have illustrated here to analyze additional details and provide much richer insight into the
effects of partial and full atomic disorder in the thermodynamics of complex multi-component
crystals.
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Chapter 6

Conclusion & outlook

In this work, we investigated the formal representation of generalized Lattice models and
developed novel regression methods as a means to effectively capture the energy of multi-
component crystalline materials in terms of their atomic configuration. The cluster expansion
method [188, 192] is an essential part of the core formalism developed in this work. However,
we have further formalized and extended the methodology. In doing so, we have added further
insight into the mathematical structure and established its connection to well-developed
mathematical fields including discrete harmonic analysis, analysis of variance, sensitivity
analysis, and frame theory.

Two main representations of generalized lattice models were established. Fourier cluster
expansions—which correspond to the original formalism of the cluster expansion method—
were constructed from a symmetrized tensor product basis constructed from standard site
basis sets. We further recast Fourier cluster expansions into a unique cluster decomposition,
which we have shown constitutes a symmetrized version of the Sobol decomposition otherwise
known as the functional ANOVA [96, 206]. This connection allows a formal interpretation
of expansion terms as the conditional expectation of energy contributions from interactions
between sites in a cluster. The second representation we have developed is a departure from
the original cluster expansion method and involves a redundant representation in terms of a
mathematical frame. We formulated the Potts frame expansion as a direct generalization of
the Potts model to arbitrary interactions. The motivation behind the Potts frame is that its
redundant nature allows robust and highly sparse estimation of applied lattice Hamiltonians
from scant data.

Fourier cluster expansions and Potts frame expansions were then used to develop novel
structured-sparsity-based regression methods that enable accurate, robust, and interpretable
expansions of lattice Hamiltonians. The regression methods have been developed with the
goal of allowing accurate estimation in high dimensional configuration spaces using relatively
small samples of training structures and their respective energies computed by way of density
functional theory. In addition, a series of practical implementations and auxiliary methods
suitable for the effective implementation and learning of applied lattice models were pre-
sented. Finally, we have illustrated the successful application of the methodology to learn
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lattice models of several technologically and scientifically relevant Li transition metal oxides
and medium entropy alloys.

The ability to accurately capture the high dimensional configurational energy landscapes
as lattice models permits the use of well-developed and efficient Monte Carlo sampling and
related methodology to calculate thermodynamic properties of multi-principal element ma-
terials. Indeed, the cluster expansion method coupled with Monte Carlo (CE-MC) sampling
has become a standard tool in the study of disordered and partially disordered metal alloy
and ceramic materials [185, 212, 231, 232]. The continued exploration of materials with a
larger number of components has compelled the continued innovation and development of
statistical estimation and data sampling methods [2, 131, 148, 152, 153, 195, 226] (some that
we presented in this work) to keep up with the increasing gap between the combinatorial
growth of configuration spaces, and the relatively fixed number of training structures for
which electronic calculations can be realistically computed to a sufficient level of accuracy.
In accordance with such efforts, we have also focused in the presented work on refining
and extending the underlying mathematical formalism that can be used to represent lat-
tice Hamiltonians in ways that further enable novel high-dimensional parameter estimation
methods and subsequent statistical thermodynamic calculations.

Although the work presented in this dissertation, along with a large body of previous
work cited herein, has addressed to a great extent the construction and parametrization
of lattice Hamiltonians for complex multi-component materials, we must acknowledge that
(apart from a few exceptions) not much has been done that departs from the (now standard)
CE-MC recipe to study disordered materials; namely: fit a lattice model to first-principles
calculated data using generalized linear regression and use Metropolis Monte Carlo sampling
to calculate statistical thermodynamic properties. Some notable exceptions that have estab-
lished methodology beyond the standard recipe include aforementioned special quasi-random
structures (SQS) [263] (methodology which itself has been establishes for a long time), the
related special quasi-ordered structures (SQoS) [135, 184] and (SSOS) small sets of ordered
structures [109], (provable) ground state search algorithms [100, 103, 128], and the use of
Wang-Landau sampling [170, 171, 213].

6.1 Enhancements, extensions and new directions

We end this dissertation with a few suggestions on possible improvements to the methods
listed above by leveraging the work presented in this dissertation. Finally, we also suggest
new learning and thermodynamic inference paradigms that extend the use of applied lattice
models beyond the standard CE-MC recipe.
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Enhanced structure generation

Special structures

As already mentioned, using representative structures that approximate disordered or par-
tially disordered materials is now a well-established computational method in studying multi-
component materials. For the most part, pertinent methodology, including SQS [263], SQoS
[135, 184] and SSOS [109], is based on searching for structures that match the values of cor-
relation functions of fully disordered or partially disordered states. As we have discussed at
length, any such property, such as a material’s energy, at any temperature can be expanded
in a suitable representation as follows,

〈H(σ)〉T =
∑

β

mβJβ〈Θβ(σ)〉T (6.1)

The essence of special structure-based methods is to approximate the properties of a
thermally disordered state using a single or a small set of representative structures. This
objective can be achieved by searching for structures that minimize the difference between
the thermodynamic internal energy sought and the corresponding energy of one or a few
specific configurations. This objective can be written as an optimization problem as follows,

min
{(wi,σ(i))}

∣∣∣∣∣〈H(σ)〉T −
m∑

i=1

wiH(σ(i))

∣∣∣∣∣ = min
{(wi,σ(i))}

∑

β 6=∅

|mβJβ|
∣∣∣∣∣〈Θβ(σ)〉T −

m∑

i=1

wiΘβ(σ(i))

∣∣∣∣∣

= min
{(wi,σ(i))}

∑

β 6=∅

∣∣∣∣∣〈Θβ(σ)〉T −
m∑

i=1

wiΘβ(σ(i))

∣∣∣∣∣ (6.2)

where the minimization can be any suitable positive valued objective function, such as the
square of the difference instead of the absolute value used above.

When the number of representative structures in Equation 6.2 is m = 1 and the fully
disordered energy (T →∞) is sought, the above problem is the SQS objective [263]. When
m = 1, but the correlations are matched to those at a finite temperature the SQoS objective
is obtained [135, 184]. Finally, when m > 1 and T → ∞ the problem represents the SSOS
objective [109].

As we have established in Chapter 2, when using a Fourier correlation basis1, the fully
disordered correlation functions are equal to zero 〈Θβ(σ)〉T→∞ = 〈Θβ(σ)〉ρ = 0. Such
that the minimization in Equation 6.2 simply involves making correlation functions Θβ(σ)
as close to zero as possible. Indeed, this is how special structures are most commonly
generated for equiatomic compositions [229, 263]. However, for all other compositions, the
practice is to use the values of correlation functions 〈Θβ〉T in the random (i.e. non-interacting
state) but still under a uniform (equiatomic) apriori measure only, which results in nonzero
target correlation function values. Although there is nothing formally unsound in using this

1One can actually get away with using an orthogonal cluster correlation basis as well.
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approach, the correlation function values in the non-interacting limit need to be computed
for the particular basis chosen, and their distributions may be generally centered at non-zero
values. By instead using Fourier correlation basis under an apriori measure corresponding
to the composition sought as detailed in Chapter 2.3, the correlation function expectation
values will always be zero and the optimization problem is the same as that for equiatomic
compositions (uniform apriori distributions).

Perhaps even more importantly, the size of the problem (the number of correlation func-
tions optimized over) as stated in Equation 6.2, scales polynomially with the number of
components or species. Furthermore, there is no reason to purport special importance to
minimizing any subset of correlation functions acting over the same site space clusters. These
two factors can be directly addressed by simply re-casting the optimization problem in terms
of a cluster decomposition as follows,

min
{(wi,σ(i))}

∑

B 6=∅

∣∣∣∣∣〈HB(σ)〉T −
m∑

i=1

wiHB(σ(i))

∣∣∣∣∣ (6.3)

where the problem in Equation 6.3 is now constant in the number of components. As we
have shown in Chapter 2.4, the expected cluster interactions 〈HB(σ)〉T are equal to zero
in the random limit. However, the expansion coefficients m̂βJβ are now included implicitly
in the cluster interactions HB, and cannot simply be factored out of the new objective as
done in Equation 6.2. Although this is a nonissue, since the expected cluster interactions are
equal to zero in the random limit, irrespective of specific values of the coefficients Jβ. This
fact can instead be used to control the importance of cluster interactions in the optimization
problem. For example, one can simply set all Jβ = 1/m̂p

β with p > 1 to set the importance
of interactions inversely proportional to their degree.

Finally, to obtain representative partially disordered structures, without the need of
fitting a lattice model and running MC sampling to obtain values of correlation functions
for partially disordered states, one can directly use the methods described in Chapter B.5
to seek out structures with specific short-range ordering, by instead minimizing the sum of
differences of cluster probabilities and the cluster averages for representative structures,

min
{(wi,σ(i))}

∑

B

∣∣∣∣∣PB(σS | T )−
m∑

i=1

wiMDBV
+
SΠB(σ(i))

∣∣∣∣∣ (6.4)

The above optimization allows using target short-range order values obtained from other
means rather than from fitting and sampling a cluster expansion. The same objective func-
tion in Equation 6.4 can also be suitably written using a Potts frame in terms of cluster
indicator correlation functions.

Ground states

The ground-state problem in lattice models has been an ongoing research effort and a notably
challenging problem for generalized lattice models [100]. The problem is concerned with
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finding the lowest energy configurations for a given generalized lattice model in some suitable
representation. Several approaches have been proposed to generate ground states or near
ground states for lattice models of varying complexity [60, 69, 100, 103, 111, 217]. State-of-
the-art methods are now able to find exact ground state configurations over finite domains
and in some cases provably exact ground state configurations for bulk structures [100]. In the
majority of methods, specifically, those most recently proposed [100, 103], the ground state
problem is expressed in a generalized lattice gas representation2 which allows the problem to
be converted into a pseudo-Boolean or integer optimization problem. Such a transformation
allows leveraging significant recent advancements in Boolean and integer optimization solvers
[100, 103].

However, the constraint to using lattice gas representations has limited the application of
such methods to binary lattice models [103], or to generalized models fit solely in a lattice gas
representation [99]. The main impediment in using such methods with other representations
is not fundamental, it has been simply a lack of practical transformation procedures between
general representations of lattice models. Although in this work, we have only detailed a
practical way to transform any representation to a Fourier cluster expansion, we have stated
how any lattice model represented as a (pseudo) cluster decomposition, can be trivially
rewritten as a symmetrized Potts model. To be more precise, one can express Equation 3.21
from Chapter 3.2 in terms of reduced cluster indicator correlation tensors as follows,

mBNJβIβ(σ) =
∑

S∈B

[
ĤB(β)

]
σβ
× m̂β Îβ(σS) (6.5)

where σβ represents the cluster configuration indicated by Iβ(σ). The terms on the left-

hand-side of Equation 6.5 are effectively Boolean variables, m̂β Îβ(σS) ∈ {0, 1}.
By using Equation 6.5 the ground state problem can be written for any generalized

representation as follows,

min
Xβ

∑

S∈[N ]

∑

S∈B

[
ĤB(β)

]
σβ
×Xβ (6.6)

where the Boolean variables Xβ are shorthand for the reduced cluster indicator functions

Xβ = m̂β Îβ(σS).
The expression in Equation 6.6 can be directly used in the recently proposed linear mixed

integer programming method [103]. Further, by simply expanding Xβ as products of species
indicator functions corresponding to the sites given by the support of the multi-indices in β,
the problem can be re-written as a satisfiability problem and provable ground states searches
can be carried out according to recently developed MAX-SAT methodology [100]. The above
prescription allows leveraging state-of-the-art ground state search methods using any lattice
Hamiltonian representation.

2Equivalently in a cluster expansion using site indicator functions.
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New learning paradigms

Revisiting direct configurational averaging

In Chapter 4 the method of direct configurational averaging (DCA) was briefly described in
the historical context of the development of learning methodology for applied lattice models.
As mentioned, the DCA has been mostly abandoned due to the comparably larger number
of training structures required to obtain similar levels of accuracy compared to the linear
regression-based structure inversion method. However, the DCA provides a mathematically
rigorous avenue for estimating expansion coefficients independently. Revisiting the DCA
may be a worth-wile endeavor to rigorously explore the extent and limitations of learning
applied lattice models as well as some of the unsettled subtleties in doing so, such as the
effects of structural relaxations [155], species concentrations [147, 187, 191], re-normalized
interactions [190], and long-range interactions.

In light of the substantial advancements in computing energies of materials, specifically
by way of machine learning methods, it is now possible to obtain substantially larger training
sets with levels of accuracy that are quickly approaching those of density functional theory
(DFT). By using recently developed and highly accurate machine learning potentials (MLPs)
[12, 39, 57] energies for configurations with a fixed structure can be obtained to similar
levels of accuracy but orders of magnitude faster than DFT [265]. In addition, energies
for structurally relaxed configurations can be obtained by coupling MLPs with molecular
dynamics or one of many available structural relaxation algorithms [20, 77, 168, 264]. This
approach has very recently been undertaken to explore the convergence and predictions of
cluster expansion models trained using linear regression with respect to varying training set
sizes [251].

Using substantially larger MLP-generated training sets may well be an opportune ap-
proach to leverage the DCA as a revitalized learning algorithm that can be used to obtain
theoretical guarantees on the resulting accuracy and structure of the estimated coefficients.
As a matter of fact, the DCA can be analyzed within the probably approximately correct
(PAC) learning framework [158]. Specifically, probabilistic bounds on the accuracy of DCA
estimation of expansion coefficients following Equation 4.2, can be obtained by way of a
Chernoff bound under the a-priori distribution ρ as follows [138],

P
[
|Jβ − J̃β| ≤ ε

]
≤ 2e−2mε2/r2β (6.7)

where Jβ, J̃β are the ground-truth and DCA estimated expansion coefficients respectively.
ε is an arbitrary accuracy bound; rβ = b − a is the range the expansion coefficient lies in

a ≥ Jβ ≤ b, and m is the number of training structures used to estimate J̃β
By requiring that the probability in Equation 6.7 be at most some value δ < 1, the

following PAC bound on the number of training samples is obtained,

m ≥ log(2/δ)
r2
β

2ε2
(6.8)
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Meaning that with m satisfying the above, the estimated coefficient J̃β will be within ε of
the ground truth with probability at least 1− δ.

In this manner, using DCA allows the estimation of expansion coefficients with guar-
anteed theoretical bounds. Finally, if the goal is to increase the convergence or accuracy
concerning the number of training samples, the DCA approach can be suitably extended by
way of established non-parametric estimation, such as using modulation [242]. Introducing
modulation allows further optimization of prediction accuracy by estimating expansion coeffi-
cients as Jβ ≈ bβJ̃β and optimizing the modulated estimator over the modulation parameters
bβ using suitable risk functions [242].

Thermodynamic inference

Optimization based inference

Sampling-based inference of applied lattice models by way of Monte Carlo has become the de
facto method for computing free energies and associated thermodynamic properties. Under-
standingly so, Monte Carlo sampling is a straightforward, general and effective computation
technique. However, Monte Carlo can also be computationally expensive (millions of sam-
ples are usually necessary for sufficiently accurate calculations), inefficient at exploring rough
energy landscapes, suffers from critical slowing down near phase transitions [127], and often
does not allow direct calculations of free energy functions. In many situations, more efficient
exploration—computationally faster and/or with improved coverage of phase space—or di-
rect approximations of free energy may be necessary to obtain a better understanding of the
thermodynamic behavior of materials. In such cases, inference based on optimization can be
a compelling computation technique complementary to sampling-based inference.

The original motivation behind constructing a rigorous basis for functions of atomic
configuration in crystals was to develop a way to solve the cluster variation method (CVM)
[192, 193]. The CVM, which is a generalization of the Bethe approximation beyond pair-wise
interactions [174], entails a variational approximation to the free energy [114]. Therefore,
the CVM is essentially an optimization-based (mean-field) inference method. Although the
CVM has been largely abandoned in computational materials research, contemporaneous
development of optimization-based inference has continued and expanded in the statistics
community. Furthermore, a formal connection between prominent inference algorithms, such
as belief propagation and generalized belief propagation and the Bethe approximation and
CVM has been established [254], and now a rich class of optimization inference methods,
generally known as region-based free energy approximations, has been developed in statistics
[121, 234].

Optimization-based inference in statistics is used in the context of probabilistic graphical
models, which are multivariate probabilistic models represented by graphs where variables
are expressed as nodes and statistical dependence is represented by edges [121]. It should
be no surprise, that applied lattice models are distinctly amenable for use with modern
variational inference algorithms since they fall squarely within the definition of probabilis-
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tic graphical models. The applied lattice models presented in this work can be trivially
expressed as undirected graphical models, otherwise known as Markov random fields [121,
234]. Undirected graphical models are usually expressed as follows,

P(σ) =
1

Z

∏

S∈M

ψS(σS) (6.9)

where the functions ψS are called potentials andM a set of cliques in the undirected graph
representation of the model.

Equation 6.9 can be written as a Boltzmann distribution simply by setting ψσS =
e−βHS(σS), in which case the graphical model is referred to as a member of an exponen-
tial family [121, 234]. More specifically, thermodynamic ensembles defined by a Fourier
cluster expansion or a Potts frame expansion are linear exponential families [121]. Fourier
cluster expansions are minimal exponential families since there is exactly one set of expan-
sion coefficients to express a particular distribution given a set of correlation functions. On
the other hand, Potts frame expansions are overcomplete exponential families since there
always exists an affine transformation between sets of coefficients that represent the exact
same distribution [234].

Directly using many of the now well-developed tools for optimization-based inference is
a straightforward avenue to extend the applicability of applied lattice models in materials
research. Specific benefits from doing so include substantial improvement in computation
time by using iterative message passing algorithms such as loopy belief propagation (BP) and
generalized belief propagation (GBP), which have been shown to provide over an order of
magnitude speed-up compared to the natural iteration method originally proposed to solve
the CVM [114, 174]. Furthermore, despite the approximate nature of such methods, in some
cases, such as with belief propagation, guaranteed bounds on the free energy can be obtained
[234]. On the other hand, notable weaknesses are that BP and GBP have no convergence
guarantees for graphs with loops (basically any applied lattice model); and although GBP
can provide much better approximations there are no guarantees that the approximation
is an upper or lower bound on the free energy. Nevertheless, progress in addressing these
issues has been achieved as of late. The recently proposed neural-enhanced BP and BP neural
networks rely on a neural network to correct messages and thus obtain much tighter lower
bounds on the free energy with faster convergence time [124, 194]. Other alternatives have
been developed that do not rely on iterative message passing altogether, and instead perform
direct minimization of BP using gradient descent [244, 252], as well as direct minimization
of GBP using region-based neural networks [134]. Finally, a most recent proposal which aims
to directly account for invariance/equivariance of the underlying graphical model [210], may
be notably applicable for use with applied lattice models.

Generative models

As a fundamentally related modeling paradigm to variational inference methods, generative
modeling represents a further route for advancing how applied lattice models can be used in
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statistical thermodynamic calculations, and some cases even obtaining improved learning of
model coefficients.

Generative modeling, in particular deep generative modeling, has generated much atten-
tion in machine learning research and has recently received an enormous level of hype from
the general public with the recent release of several language, audio, and image genera-
tion algorithms [183]. As the name suggests, a generative model is a model that can be
used to generate samples from a target probability distribution that is usually unknown or
intractable. In deep generative modeling, neural networks with several layers are used to
approximate these complex high-dimensional probability distributions [183]. A variety of
recently developed algorithms and methods including variational autoencoders (VAE) [115,
179], generative adversarial networks [51], autoregressive networks [83], normalizing flows
[116, 178], and probabilistic diffusion models [95, 117, 207], have shown exceptional, flexible,
and tractable sample generation capabilities from arbitrarily complex distributions.

A majority of these methods are almost directly applicable to use with generalized lattice
models. The use of generative models with lattice models has already led to the development
of intriguing computation techniques for sampling and variational inference. For example,
deep generative models have been recently explored as a way to improve MC sampling ef-
ficiency by generating transition proposals from actively learned (latent) distributions. Im-
provements in MC sampling using VAEs [141, 145], autoregressive neural networks [248],
and normalizing flows [75] have been recently studied in classical and spin-glass lattice mod-
els. We can expect similar improvements to translate for MC sampling of generalized lattice
models, which may be a fruitful way to address slow Markov chain mixing and inefficient
sampling that can occur in rugged energy landscapes associated with more complex lattice
hamiltonians.

In addition, generative models can be used as an alternative to MC sampling altogether,
either by generating samples directly or by providing variational free energy approxima-
tions. Likewise, initial work is already underway paving new directions for methodological
extensions in lattice model inference. For instance, autoregressive neural networks have been
shown to give accurate free energy approximations and provide approximate but unbiased
sampling from Boltzman distributions for a handful of (binary) lattice models and moder-
ately sized system sizes [52, 249]. Furthermore, hierarchical variational models have been
proposed as a means to scale generative sampling and free energy approximations to much
larger system sizes [1]. Although the usage of deep generative modeling in materials science
and in particular with lattice models is still nascent and limited in scale, when coupled with
the framework of generalized lattice models we have presented in this dissertation, it may well
constitute another powerful paradigm to extend and/or complement CE-MC calculations.

6.2 Closing remarks

With the continued growth of available data and the advent of highly accurate, transferable,
and general machine learning (ML) models, we must ask ourselves: Are methods based on
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applied lattice models still relevant? Indeed, state-of-the-art machine learning potentials
(MLPs) have been shown to predict a variety of properties of multi-component systems and
their derivatives with respect to structural parameters to extraordinary levels of accuracy
[12, 39, 57]. Furthermore, these MLPs can be used with molecular dynamics to perform
statistical thermodynamic calculations. These MLPs have been shown to yield substan-
tial improvements in accuracy compared to classical molecular dynamics, and substantial
performance improvements compared to ab-initio molecular dynamics [12, 40, 137].

Nevertheless, we maintain that applied lattice models are still quite relevant and will prob-
ably remain so for the foreseeable future. First off, MLPs and molecular dynamics are not
effective alternatives to computing equilibrium properties of atomic configuration. Despite
the exceptional increase in performance and accuracy, the time scales that are attainable by
molecular dynamics are in many cases on completely different scales to that of excitations of
atomic configuration. In contrast, Monte Carlo and variational inference methods based on
applied lattice models deal (almost) directly with the equilibrium distributions of atomic con-
figuration. Though one could consider using Monte Carlo directly with an MLP, structural
coordinates must still be accounted for, either directly with Monte Carlo or by performing
a structural relaxation for each new atomic configuration. All in all, the simple, extensible,
and robust nature of applied lattice models, coupled with sampling or optimization-based
inference, renders them a valuable method in the study of multi-component materials that
is unlikely to be superseded anytime soon.

Perhaps even more importantly, lattice models provide an avenue to improve machine
learning models. Applied lattice models have already been used as direct input features
to neural network models [151]. And as a matter of fact, the mathematical formalism of
Fourier expansions over product spaces underlying cluster expansions of configuration has
been directly used in the development of the atomic cluster expansion [56], which at its core
is an extension of a configuration cluster expansion that includes the positions of sites by
introducing R3 vector spaces into the product space in Equation 2.2.

On account of their simple, effective, and established use in statistical thermodynamics
calculations, the many possible methodological extensions and enhancements, and many
promising ways to compliment and inspire novel state-of-the-art ML models, applied Lattice
models are indispensable to our ability to compute thermodynamic properties of atomic
configuration and advance our understanding of disordered and partially disordered multi-
component materials. We expect that the mathematical formalism and framework we have
established, as well as the practical data preparation and structured sparsity linear regression
methods we have presented, serve as a further foundation from which continued progress can
be made.
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Appendix A

Notation & auxiliary definitions

A.1 Notation conventions

Notion conventions that are not formally introduced in the main text are listed here.

• We denote tensor products with
⊗

, and Cartesian products with×.

• We write [N ] = {1, . . . , N} for the set of all positive integers up to N .

• We use multi-indices to index a specific sequence from a set of sequences. When the
choices for each element in the sequences are finite we can write a multi-index as

– α ∈ NN
<n where each element αi ∈ {0, . . . , n− 1}.

– α ∈ NN
<n where each element αi ∈ {0, . . . , ni − 1}, with n = (n1, n2, . . . , nN).

• The support of a multi-index is the set of indices of multi-index elements that are
nonzero: supp(α) = {i : αi 6= 0}.

• We usually use α and η to denote multi-indices unless otherwise noted.

• We write the powerset of set X, as P(X) = {Y : ∀Y ⊆ X}

• We will use the concept of an orbit generated by the operations of a symmetry group
G on elements of a set X. The orbit generated from an element A ∈ X by G is the set
of all symmetrically equivalent elements to A,

B = OrbG(A) = {g · A : ∀g ∈ G}

• We will write the multiplicity of an orbit B normalized by a stated unit N as mB = |B|
N

• When dealing with a finite domain—i.e. a crystal supercell with N sites specified by
a primitive cell and 3× 3 integer supercell matrix—we will use |B| to denote the total
number of elements A ∈ B, where A is a subset of sites A ⊆ [N ].
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• We use the notation G(X) = {OrbG(x) : ∀x ∈ X}, for the set of all orbits generated
by each of the elements x in the set X by symmetry operations of the group G.

– We write the set of all orbits generated from the elements in the powerset of a set
X as G P(X).

• We use the binary relation symbol D @ B, to denote the relationship between an orbit
D whose elements are subsets of an element in B. Meaning,

D @ B ⇐⇒ ∀ T ∈ D, ∃S ∈ B s.t. T ⊂ S

• We will often work with orbits of multi-indices β = OrbG(α) and orbits of subsets of
indices S ⊂ [N ], B = OrbG(S). We will use the notation B(β) to refer to the orbit of
indices generated from the support of a multi-index α ∈ β, i.e. B(β) = OrbG(supp(α)).

• We usually use β and γ to denote orbits of multi-indices unless otherwise noted.

• We usually use B and D to denote orbits of subsets of indices S ⊂ [N ] for a given N ,
which we use to specify orbits of site clusters.

A.2 Site basis generation recipes

Any recipe can be used to obtain an initial basis set and subsequently converted to a standard
basis set by a Gram-Schmidt orthonormalization process. Further, as discussed in the main
text, all standard site basis sets are equivalent, such that whatever recipe was used to build
the basis set has no theoretical importance. Nevertheless, we list the most commonly used
recipes to generate site basis sets for fitting cluster expansions in practice, since these recipes
are widely used by practitioners without orthonormalizing.

• Polynomial [192] (is a standard basis)

φj(σi) =

{∑j/2
k=0 ckσ

2k
i if j is even∑(j−1)/2

k=0 ckσ
2k+1
i if j is odd

Where the coefficients ck are chosen to satisfy conditions (1) and (2) for a standard
site basis.

• Trigonometric [225] (is an orthogonal basis, but is not normalized for functions over
site spaces |Ωi| > 2)

φj(σi) =





1 if j = 0

− cos
(
π(j+1)σi

ni

)
if j is odd

− sin
(
πjσi
ni

)
if j is even
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• Indicator [258] (also referred to as occupancy basis; is not a standard basis, since basis
functions are not orthogonal to φ0 = 1)

φj(σi) =

{
1 if j = 0

1σj(σi) if j > 0

Here we use σj ∈ enc(Ωi) for j = 1, . . . , ni − 1. That means we use indicators for all
but one species in the encoded site space.1

1In this case, since we use indicator functions we could just use the site space Ωi without any encoding.
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Appendix B

Additional proofs & derivations

B.1 Degree of fixed lattice expansions

Under the ansatz that any multi-body Hamiltonian H({pi, ri}, {Ri};σ) can be expressed as
a sum of multi-body terms Vi, for example in the case of a structure with all symmetrically
equivalent sites,

H({Ri};σ) = V0 +
∑

i

V1(Ri;σi) +
∑

i<j

V2(Ri,Rj;σi, σj) +
∑

i<j<k

V3(Ri,Rj,Rk;σi, σj, σk) + . . .

= V0 +
∑

S

V|S|({Ri, i ∈ S};σS)

We can compute the Fourier expansion by computing the expansion for each multi-body
term Vi individually, and subsequently, sum the computed expansions for each term to
obtain the expansion for the multi-body Hamiltonian. Moreover, for a fixed structure S,
{Ri} = RS , each multi-body term is a discrete function of the possible configurations σS,

V|S|({Ri, i ∈ S};σS)→ V|S|(σS)

And so each V|S|(σS) can always be represented by a Fourier expansion where the largest
possible degree is d = |S|, i.e. the order of the multi-body term.

It follows that the maximum degree term in Fourier cluster expansion of a multi-body
Hamiltonian will be at most equal to the highest order multi-body term in the Hamiltonian.

This does hold however when structural relaxations are allowed because the values of
relaxed structural parameters depend on the full configuration σ and so one can construct
the total Hamiltonian from a sum of individual Fourier expansions for each multi-body term.
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B.2 Fourier basis sets

Standard site basis

Let the expression of f ∈ L2(Ω, ρ) in a standard site basis {φi, i ∈ [n]} (where n = |Ω|) be,

f(σ) =
n−1∑

i=0

aiφi(σ)

The proofs for the properties of the expansion of f listed in Chapter 2.3 are as follows,

1.

Eρ [f ] = Eρ

[
n−1∑

i=0

aiφi(σ)

]

=
n−1∑

i=0

aiEρ [φi(σ)]

= a0

Where we have used the fact that Eρ [φi] = 〈φ, 1〉ρ = 0 for all i > 0 by orthogonality
of a standard basis.

2. This is Parseval’s theorem,

||f ||22 = 〈f 2〉ρ

=

〈(
n−1∑

i=0

aiφi(σ)

)2〉

ρ

=

〈
n−1∑

i=0

n−1∑

j=0

aiajφi(σ)φj(σ)

〉

ρ

=
n−1∑

i=0

n−1∑

j=0

aiaj〈φi(σ), φj(σ)〉ρ

=
n−1∑

i=0

n−1∑

j=0

aiajδij

=
n−1∑

i=0

a2
i

〈φi, φj〉ρ = δij by orthonormality of a standard basis.
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3. Using formulas (1) and (2),

Varρ[f ] = 〈f 2〉ρ − 〈f〉2ρ

=
n−1∑

i=0

a2
i − a0

=
n−1∑

i=1

a2
i

4. First we show Plancherel’s theorem following (2), using g(σ) =
∑n−1

i=0 biφi(σ),

〈f, g〉ρ =

〈
n−1∑

i=0

aiφi(σ),
n−1∑

i=0

biφi(σ)

〉

ρ

=

〈
n−1∑

i=0

n−1∑

j=0

aibjφi(σ)φj(σ)

〉

ρ

=
n−1∑

i=0

n−1∑

j=0

aibj〈φi(σ), φj(σ)〉ρ

=
n−1∑

i=0

n−1∑

j=0

aibjδij

=
n−1∑

i=0

aibi

Now using Parseval’s and Plancherel’s theorem,

Covρ[f, g] = 〈f, g〉ρ − 〈f〉ρ〈g〉ρ

=
n−1∑

i=0

aibi − a0b0

=
n−1∑

i=1

aibi

Graham-Schmidt process to obtain binary and ternary standard
site basis sets

We can obtain a standard site basis for a binary site space |Ω| = 1, starting from any other
basis {ψ0, ψ1} as follows:

1. Set φ0(σ) = 1
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2. Choose any of ψ0, ψ1 that is not constant for the remainder of the Graham-Schmidt
process,

a) Compute the projection of ψ1 onto φ0,

Eρ [ψ1φ0]

Eρ [φ0φ0]
φ0 =

Eρ [ψ1 × 1]

Eρ [1× 1]
× 1

= Eρ [ψ1]

b) Compute the norm squared of ψ1 − Eρ [ψ1],

Eρ
[
(ψ1 − Eρ [ψ1])2

]
= Eρ

[
ψ2

1

]
− 2Eρ [ψ1]2 + Eρ [ψ1]2

= Eρ
[
ψ2

1

]
− Eρ [ψ1]2

= Varρ[ψ1]

c) Set,

φ1(σ) =
ψ1(σ)− Eρ [ψ1(σ)]√

Varρ[ψ1(σ)]

In order to obtain a standard basis for a ternary site starting from another basis {ψ0, ψ1, ψ2},
we simply follow the steps above for the binary case and carry out an additional Graham-
Schmidt step to obtain φ2.

1. The projection of ψ2 onto φ0 is Eρ [ψ2].

2. Compute the projection of ψ2 onto φ1,

Eρ [ψ2φ1]

Eρ [φ1φ1]
φ1 = Eρ [ψ2φ1]φ1

=
Eρ [ψ2(ψ1 − Eρ [ψ1])]√

Varρ[ψ1]
φ1

=
Covρ[ψ2ψ1]√

Varρ[ψ1]
φ1

Where we have used the fact that φ1 is normalized, and we will keep φ1 as is.
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3. Compute the norm squared of u = ψ2 − Eρ [ψ2]− Eρ [ψ2φ1]φ1,

Eρ

[
(ψ2 − Eρ [ψ2]− Covρ[ψ2ψ1]√

Varρ[ψ1]
φ1)2

]

= Eρ

[
ψ2

2 − 2Eρ [ψ2]ψ2 + Eρ [ψ2]2 +
Covρ[ψ2ψ1]2

Varρ[φ1]
φ2

1 −
2 Covρ[ψ2ψ1]√

Varρ[ψ1]
ψ2φ1 +

2 Covρ[ψ2ψ1]√
Varρ[ψ1]

Eρ [ψ2]φ1

]

= Eρ
[
(ψ2 − Eρ [ψ2])2

]
+

Covρ[ψ2ψ1]2

Varρ[ψ1]
Eρ
[
φ2

1

]
− 2 Covρ[ψ2ψ1]√

Varρ[ψ1]
Eρ [ψ2φ1]

= Varρ[ψ2] +
Covρ[ψ2ψ1]2

Varρ[ψ1]
− 2 Covρ[ψ2ψ1]

Varρ[ψ1]
Eρ [ψ2ψ1 − Eρ [ψ1]ψ2]

= Varρ[ψ2]− Covρ[ψ2ψ1]2

Varρ[ψ1]

4. Set φ2 = u
||u||2 ,

φ2 =
ψ2 − Eρ [ψ2]− Covρ[ψ2ψ1]

Varρ[ψ1]
(ψ1 − Eρ [ψ1])

√
Varρ[ψ2]− Covρ[ψ2ψ1]2

Varρ[ψ1]

Fourier product basis

Normalized: First we show that Fourier product basis functions Φα for L2(Ω,ρ) (with
|Ω| = ∏N

i=1 |Ωi|) are normalized,

〈Φα,Φα〉ρ =

〈
N−1∏

i=0

φ(i)
αi

(σi),
N−1∏

i=0

φ(i)
αi

(σi)

〉

ρ

=

〈
N−1∏

i=0

φ(i)
αi

(σi)φ
(i)
αi

(σi)

〉

ρ

=
N−1∏

i=0

〈φ(i)
αi
, φ(i)

αi
〉ρ

= 1

Where we have used the fact that sums over configurations commute with products of site
basis functions1, and site basis functions are orthonormal.

1Which means that site basis functions are uncorrelated under a probabilistic interpretation
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Orthogonal: Now we show that Fourier basis functions are orthogonal following the
same procedure,

〈Φα,Φη〉ρ =

〈
N−1∏

i=0

φ(i)
αi

(σi),
N−1∏

i=0

φ(i)
ηi

(σi)

〉

ρ

=

〈
N−1∏

i=0

φ(i)
αi

(σi)φ
(i)
ηi

(σi)

〉

ρ

=
N−1∏

i=0

〈φ(i)
αi
, φ(i)

ηi
〉ρ

=
N−1∏

i=0

δαi,ηi

= δα,η

Complete: Finally, it follows that the set of all possible {Φα : ∀α ∈ NN
<n} is a

basis2 for L2(Ω,ρ), since all Φα are linearly independent (orthogonal), and there are a total
|NN

<n| =
∏N

i=1 |Ωi| = |Ω| such functions, which is precisely the dimension of L2(Ω,ρ) [157].
Fourier formulas for an expansion of F ∈ L2(Ω): The Fourier formulas for a function

expanded using a Fourier product basis listed in Chapter 2.3 can be derived following the
same procedure as done for the analogous formulas for a site function given in Appendix
2.19.

Orthogonality of Fourier correlation functions

Fourier correlation functions can be shown to be orthogonal simply by expanding them in
terms of Fourier product basis functions and using their orthonormality.

〈Θβ,Θγ〉ρ =
1

N2

〈
1

mβ

∑

α∈β

Φα(σ),
1

mγ

∑

η∈γ

Φη(σ)

〉

ρ

=
1

N2mβmγ

∑

α∈β

∑

η∈γ

〈Φα(σ),Φη(σ)〉ρ

=
1

N2mβmγ

∑

α∈β

∑

η∈γ

δα,η

=
δβ,γ
Nmβ

For which we used the fact that a multi-index α never appears in two different orbits
β 6= γ.

2In other words is complete or spans L2(Ω,ρ)
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Orthogonality of cluster interactions

The proof of orthogonality of cluster interactions follows almost directly from the orthogo-
nality of Fourier correlation basis functions,

〈HB, HD〉 =

〈 ∑

β∈L(B)

m̂βJβΘβ(σ),
∑

γ∈L(D)

m̂γJγΘγ(σ)

〉

=
∑

β∈L(B)

∑

γ∈L(D)

m̂βm̂γJβJγ〈Θβ(σ),Θγ(σ)〉

=
∑

β∈L(B)

∑

γ∈L(D)

m̂βm̂γJβJγ
δβγ

mBm̂βN

=

{
||HB||22 if B = D

0 if B 6= D

Additionally, a cluster interaction HB is orthogonal to any function F ∈ L2(Ω,ρ)G that
can be expressed with correlation functions for γ ∈ ⋃D L(D) ∀D 6= B. To show this we
need to simply expand such a function in a Fourier correlation basis and use the fact that
all basis functions will be orthogonal to those in the expansion of HB.

Uniqueness of cluster decomposition

The proof of the uniqueness of a cluster decomposition is simple and follows established
proofs for the uniqueness of the Sobol and the functional ANOVA decomposition [96, 206].
The proof is by contradiction, so we start by considering two different cluster decompositions
for the same Hamiltonian H ∈ L2(Ω,ρ)G,

H(σ) = N
∑

G P([N ])

mBHB(σ)

H(σ) = N
∑

G P([N ])

mBH̃B(σ)

We can use the two expression above as an expansion of a function everywhere zero,
F (σ) = 0 ∀σ,

F (σ) = N


 ∑

G P([N ])

mBHB(σ)−
∑

G P([N ])

mBH̃B(σ)




= N
∑

G P([N ])

mB

(
HB(σ)− H̃B(σ)

)



APPENDIX B. ADDITIONAL PROOFS & DERIVATIONS 183

Now, if we consider the norm squared of each term in the expansion F of the zero function,
〈(
HB(σ)− H̃B(σ)

)
,
(
HD(σ)− H̃D(σ)

)〉
ρ

= 〈H2
B(σ)〉ρ − 〈H̃2

B(σ)〉ρ
= 0

Where we used the orthogonality properties of cluster interactions, and that the norms of
cluster interactions are invariant: 〈H2

B(σ)〉ρ = 〈H̃2
B(σ)〉ρ from Chapter 2.4.

Finally, since the norm of each term is equal to zero, then each term in the expansion is
itself a zero function,

HB(σ)− H̃B(σ) = 0

HB(σ) = H̃B(σ)

This shows that the cluster decomposition of H(σ) is unique.

Change of basis matrix

Proving that the change of basis matrix between two Fourier basis sets is orthogonal follows
the fact that it is constructed from rotation matrices, which are themselves orthogonal,

(UTU)αβ =
∑

γ

UαγUγβ

=
∑

γ

N∏

i

〈φαi , Rφγi〉〈Rφγi , φβi〉

=
N∏

i

∑

γi

〈φαi , Rφγi〉〈Rφγi , φβi〉

=
N∏

i

〈φαi , φβi〉

= δαβ

=⇒ UT = U−1

Where we have used the resolution of the identity.
To prove that the blocks are diagonal we can follow the same prescription above. However,

it actually follows that a block diagonal matrix is orthogonal if and only if the blocks are
orthogonal. The proof is straightforward.

Write U in terms of the diagonal blocks US, . . . , UT ,

U =



US 0

. . .

0 UT



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Then U orthogonal means UTU = I, and thus by expanding,

UTU =



UT
S 0

. . .

0 UT
T






US 0

. . .

0 UT




=



UT
S US 0

. . .

0 UT
T UT




=⇒ UT
V UV = I ∀V ∈ {S, . . . , T}

To prove the reverse, we simply go backward starting from UT
V UV = I ∀V ∈ {S, . . . , T}.
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B.3 Frame bounds for the generalized Potts frame

To derive frame bounds for the generalized Potts frame, we work with the product-basis of
cluster indicator functions without taking symmetry-adapted averages. The bounds obtained
apply equally to the functions obtained from symmetry-adapted averages. The lower frame
bound A is obtained by splitting up the sum of projections into the frame elements as follows,

∑

γ∈I

|〈H,1γ〉|2 =
∑

γmax

|〈H,1γmax〉|2 +
∑

γ∈I\{γmax}

|〈H,1γ〉|2

= ||H||2 +
∑

γ∈I\{γmax}

|〈H,1γ〉|2

≥ ||H||2

Where {γmax} denotes the set of all maximal clusters and thus represents the canonical
orthonormal basis for the Hilbert space H. The second sum over all smaller clusters is
always greater than or equal to zero, and so the obtained lower frame bound is A = 1.

To obtain an upper frame bound we start by writing the Fourier expansion for cluster
indicator functions,

1γ(σ) =
∑

α

〈1γ,Φα〉Φα(σ)

=
∑

α

∏

i

〈1γi , φαi〉Φα(σ)

=
∑

α;
supp(α)⊆supp(γ)

1

n#γ

∏

i

φαi(σγi)Φα(σ)

=
∑

α;
supp(α)⊆supp(γ)

1

n#γ
Φα(σγ)Φα(σ)

where supp(·) represents the support or indices of the nonzero entries of α or γ, and #γ
represents the total number of nonzero entries—i.e. the number of sites in a cluster. n is the
number of species allowed at a site and σγ is any occupancy string that includes the cluster
represented by γ. Note the above expression is for a system with a single type of site (i.e.
with the same set of allowed species in all sites). The general expression simply involves one
over the product of the different number of species for each site instead of the factor 1/n#γ.

Using the expansion given above for cluster indicator functions, we obtain an upper frame
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bound as follows,

∑

γ∈I

|〈H,1γ〉|2 =
∑

γ∈I

∣∣∣∣∣∣∣

〈
H,

∑

α;
supp(α)⊆supp(γ)

1

n#γ
Φα(σγ)Φα(σ)

〉∣∣∣∣∣∣∣

2

=
∑

γ∈I

(
1

n#γ

)2

∣∣∣∣∣∣∣

∑

α;
supp(α)⊆supp(γ)

ĤαΦα(σγ)

∣∣∣∣∣∣∣

2

=
∑

S

1

n2|S|

∑

σγ ;
supp(γ)=S

∣∣∣∣∣∣∣

∑

α;
supp(α)⊆S

ĤαΦα(σγ)

∣∣∣∣∣∣∣

2

=
∑

S

1

n|S|

∑

α;
supp(α)⊆S

Ĥ2
α

=
∑

α


 ∑

S⊇supp(α)

1

n|S|


 Ĥ2

α

≤
(∑

S

1

n|S|

)
||H||2

=
(
1 + n−1

)N ||H||2

where Ĥα are the Fourier coefficients of H. The sets S contain site indices and the sum
over these contains all possible subsets of site indices—i.e. all clusters of un-labeled sites.
The upper frame bound obtained is B = (1 + n−1)

N
, where N is the total number of sites

in the structure. The bound obtained is an improvement over the bound 2N given by the
Cauchy-Schwarz inequality.
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B.4 Reduced correlations and cluster interactions

As discussed in Chapter 3 correlation functions and mean cluster interaction can be prac-
tically computed using a different expression than the expressions used to define them in
Chapter 2. For convenience, we reproduce Equation 2.27 used to define a correlation func-
tion,

Θβ(σ) =
1

|β|
∑

α∈β

Φα(σ)

However, for practical purposes, it is more effective to use reduced correlation functions
following Equation 3.3, which we can obtain as follows,

Θβ(σ) =
1

|β|
∑

α∈β

Φα(σ)

=
1

|B|
∑

S∈B

1

m̂β

∑

α̂∈β̂

Φα̂(σS)

=
1

|B|
∑

S∈B

Θ̂β(σS)

Where the site cluster B = B(β) = orb(G(supp(α))) for any α ∈ β; α̂ = ctr(α) are
contracted multi-indices; and m̂β = |β̂| is the number of symmetrically equivalent contracted
multi-indices α̂.

Many of the expressions given in Chapter 3 for practical calculations and their derivations
are based on computing correlation functions or cluster interactions that act over a given
orbit D of site space clusters T as averages over clusters S ∈ B that contain the clusters
T ∈ D, i.e. any T ∈ D is a sub-cluster T ⊆ S of one of the clusters S ∈ B. This practical
transformation is derived based on the expression given in Equation 3.3 (reproduced above)
to compute a correlation, cluster interaction, or any function that is symmetrized over an
equivalent set of site space clusters.

FD(σ) =
1

|D|
∑

S∈D

F̂D(σS)

=
1

|B|
|D|
|B| ×

1

NDB

∑

S∈B

∑

T←S

F̂D(σT )

=
cDB
|B|

∑

S∈B

∑

T←S

F̂D(σT )

Where T ← S, refers to all clusters T in orbit D that are sub-clusters of cluster S ∈ B, i.e.
T ∈ {T ⊂ S for T ∈ D}. NDB = |{T : ∀T ← S}| are the number of subclusters T ∈ D
contained in cluster S ∈ B.
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The counting factor cDB is the inverse of the number of times a cluster T ∈ D was
included in the sum over clusters S ∈ B, and can be expressed as,

cDB =
|D|

NDB|B|
=

mD

NDBmB

Where we used the definition of a site cluster multiplicity: mB = |B|/N
For practical purposes, it is useful to express the inner sum over subclusters T ← S

as a broadcasted tensor of dimensions ×i∈S|Ωi|. Broadcasting simply amounts to aligning
the indices of the clusters T to their counterpart of the subset of indices of cluster S, i.e.
following the mapping between sites in T to those in S. This must be done for all T ← S
and then each broad-casted array is summed element-wise, such that evaluating the inner
sum over T ← S amounts to accessing the corresponding configuration σS,

∑

T←S

F̂D(σT ) =
[
F̂DB

]
σS

(B.1)

Where
[
F̂DB

]
is the final broadcasted tensor of the reduced function F̂D that operates over

clusters T ∈ D broadcasted to a reduced function F̂DB acting over a cluster S ∈ B.
Using the above expressions, we can now derive the inner products used in Equation 3.20,

to compute the projections of a (pseudo) mean cluster interaction H̃B onto a correlation
function Θγ, where every supp(α) ∈ γ is a subcluster supp(α) ⊆ S of some cluster S ∈ B.

mBN〈H̃B,Θγ〉ρ = mBN

〈
1

|B|
∑

S∈B

ĤB(σS)
1

|D(γ)|
∑

T∈D(γ)

Θ̂γ(σT )

〉

ρ

=
mBN

|B||D(γ)|
∑

S∈B

∑

T∈D(γ)

〈
ĤB(σS)Θ̂γ(σT )

〉
ρ

(1)
=

mB

mD|B|
∑

S∈B

〈
ĤB(σS)

∑

T←S

Θ̂γ(σT )

〉

ρ

=
mB

mD|B|
∑

S∈B

〈
ĤB(σS)Θ̂γB(σS)

〉
ρ

=
mB

mD

〈
ĤB(σS)Θ̂γB(σS)

〉
ρ

Where to obtain (1) we use the fact that the inner product of any function ĤB(σS) with
a reduced correlation over a site cluster T 6⊆ S is zero. The last line can be calculated in
practice using reduced tensors following Equation 3.20, which is what we sought to derive.
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B.5 Cluster probabilities from correlation function

expectations

In order to derive Equation 3.31, which allows computing cluster concentrations and prob-
abilities using any correlation function basis, let us first derive the cluster expansion of a
cluster indicator correlation function.

m̂βIβ(σ) =
1

|B|
∑

S∈B

m̂β Îβ(σS)

(1)
=

1

|B|
∑

S∈B

∑

γ∈G(N|S|<n)

IγβΘ̂γB(σS)

=
1

|B|
∑

S∈B

∑

γ∈G(N|S|<n)

Iγβ
∑

T←S

Θ̂γ(σT )

(2)
=

∑

γ∈G(N|S|<n)

Iγβ
1

|B|
∑

S∈B

∑

T←S

Θ̂γ(σT )

=
∑

γ∈G(N|S|<n)

Iγβ
1

cDB|B|
∑

T∈D(γ)

Θ̂γ(σT )

=
∑

γ∈G(N|S|<n)

Iγβ
NDB

|D|
∑

T∈D(γ)

Θ̂γ(σT )

=
∑

γ∈G(N|S|<n)

NDBIγβΘγ(σ)

Where B(β) and D(γ) are the orbits of site clusters given by the support of the multi-
indices in β and γ respectively. (1) Where we used the expansion of a reduced indicator
correlation given in Equation 3.28. (2) The sums are rearranged since |S| is constant for any
S ∈ B. By taking thermodynamic expectations, we obtain the probability of the clusters σS
that are included in the orbit of reduced multi-indices β̂ (see Equation 3.27),

PB(σS ∈ β̂|T ) = 〈m̂βIβ(σ)〉T =
∑

γ∈G(N|S|<n)

NDBIγβ〈Θγ(σ)〉T

Finally, by using the last expression for all symmetrically distinct cluster occupancies
indicated by each Iβ expressed in vector form, we obtain,

PB = diag(NDB)V+
S 〈ΠB〉T

Which is precisely Equation 3.31, where we identify MDB = diag(NDB) as a diagonal
matrix with the number of clusters of orbit D(γ) that are sub-clusters of clusters in the orbit
B(β).
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Appendix C

Numerical calculations & expansion
fits

C.1 Li transition metal oxifluorides

Density functional theory calculations

The 2-2 LiMnOF binary-binary rocksalt and 3-2 LiMnTiOF ternary-binary rocksalt struc-
tures were generated using Monte Carlo with an electrostatic potential to sample configu-
rations with low electrostatic energy. Formation energy was computed using a plane-wave
basis set with an energy cutoff of 520 eV, and reciprocal space discretization of 25 k -points
per Å. All calculations were converged to 10−6 eV in total energy for electronic loops and
0.02 eV/Åin interatomic forces for ionic loops using the Perdew–Burke–Ernzerhof (PBE)
generalized gradient approximation exchange-correlation functional[175] with rotationally-
averaged Hubbard U correction (GGA+U) to compensate for the self-interaction errors as
done for the LMTOF rocksalt.

The Li-Mn-O-F spinel-like structures were generated by using an initial set of structures
from the Materials Project[105], and subsequently using this set and Monte Carlo to gener-
ate additional structures of up to 216 atoms. The formation energy for each training/test
structure using the projector augmented wave (PAW) method,[123] with reciprocal space
discretization of 25 k-points per Å and a plane wave energy cutoff of 520 eV. Spin-polarized
calculations were done using the SCAN meta-GGA exchange-correlation [211] and pseudopo-
tentials which include semicore states: Li sv, Mn pv, O, and F. Structures are converged to
10−6 eV in total energy and 0.01 eV/Å on atomic forces.

Cluster and Potts frame expansion fits

A total of 50 different fits for each system listed in Table 5.2 were computed by selecting
a random set of training structures that gives a full rank underdetermined system with the
given number of training structures. The remaining structures listed are used as a test set.
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The fits were all carried out using the Lasso regression model implemented in the Python
package scikit-learn [169].

C.2 LiMnO2-Li2TiO3-LiF ceramics

Density functional theory calculations

DFT calculations were performed with the Vienna ab initio simulation package (VASP)
using the projector-augmented wave method[122, 123], a plane-wave basis set with an energy
cutoff of 520 eV, and a reciprocal space discretization of 25 k -points per Å. All calculations
were converged to 10−6 eV in total energy for electronic loops and 0.02 eV/Åin interatomic
forces for ionic loops. We used the Perdew–Burke–Ernzerhof (PBE) generalized gradient
approximation exchange-correlation functional[175] with rotationally-averaged Hubbard U
correction (GGA+U) to compensate for the self-interaction error on all transition metal
atoms except titanium[239]. The U parameters were obtained from the literature, where they
were calibrated to transition metal oxide formation energies (3.9 eV for Mn). The GGA+U
computational framework is believed to be reliable in determining the formation enthalpies
of similar compounds[106]. DFT calculations were done for a total of 1230 structures with
supercells ranging from 4 atoms to 132 atoms.

Cluster expansion fits

In the construction of CE, models with different numbers of ECIs were considered. The
number of ECIs is set by changing the radii cutoffs for different interactions. The CE models
are labeled with (pair, triplet, quadruplet) in Å to represent the cutoff radius of different
types of interactions. Consequently, (7, 4, 4) results in 83 ECIs, (7, 4.2, 4.2) results in 143
ECIs, (7, 5.6, 4.2) results in 235 ECIs, and (7, 5.6, 5.6) results in 995 ECIs. All CE models
are constructed based on a primitive cell of rocksalt structure with lattice parameter a = 3
Å. All models include an explicit electrostatic term computed using the Ewald summation
method as implemented in pymatgen [161]. Fits with `2`0 regression were only carried out
with the first two sets of cutoffs based on the substantial compute time necessary compared
to Lasso-based regression. All fits were carried out with a training set of 983 structures with
supercells up to 72 atoms. A test set of 247 structures of supercell sizes 128 and 132 atoms
was used for validation.

The hyper-parameter tuning paths for all linear regression models used are shown in
Figure C.1. We observe that a plateau region exists for most models for the two shorter
sets of cluster cutoffs. For the fits with the largest set of cutoffs, all regression models show
a clear cross-validation score minimum. Further, the location of the minimum is relatively
constant for all regression models.
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Figure C.1: Regularization paths for LMTOF CE fits.



APPENDIX C. NUMERICAL CALCULATIONS & EXPANSION FITS 193

NiCoNi17Co2Ni15

Cr3Ni7 Co3Ni7CoNi2Co3Ni5

Co7Ni3

Co9NiCr19NiCr17Co Cr3Co17CrCo14CoCr2Co17Cr19CoCr

Figure C.2: Ternary phase diagram of compositions sampled for NiCoCr training structures

C.3 NiCoCr alloys

Density functional theory calculations

DFT calculations for NiCoCr structures were performed following the Materials Project [105]
MetalRelaxSet defined in the pymatgen package [161]. Calculations were done using Vienna
ab initio simulation package (VASP) using the projector-augmented wave method[122, 123],
a plane-wave basis set with an energy cutoff of 520 eV, and a reciprocal space discretization
of 200 k -points per Å. Electronic exchange-correlation effects are described using used the
Perdew–Burke–Ernzerhof (PBE) generalized gradient approximation exchange-correlation
functional [175]. All calculations were converged to 10−5 eV in total energy for electronic
loops and 0.01 eV/Å.

DFT calculations were done for training structures covering a wide range of composi-
tions. Figure C.2 shows a ternary composition diagram of compositions for which electronic
structure calculations were performed. At least 4 distinct structures were computed at each
composition.
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Figure C.3: Fourier cluster expansion parameters (effective cluster interactions) and root
effective cluster weights for three fits of an expansion involving only pair terms using the
Lasso, and `2`0 regression with correlation function hierarchical constraints (`2`0) and cluster
interaction constraints (Grouped `2`0).

Cluster Expansion Fits

Expansion parameters were fitted using the Lasso, `2`0 regression with correlation function
hierarchy constraints (i.e. singleton groups in Equation 4.19), and Grouped `2`0 regression
with cluster interaction (per orbit) hierarchy constraints. Fits were done with terms including
only pairs up to 8 Å(501 training structures), and terms including pairs up to 10 Åand
triplets up to 6 Å(502 training structures). Training structure sampling was done by random
sampling over a unit-hyper-sphere as detailed in Chapter 5.1 [152]. A holdout test set of
1000 structures was used for model validation. Hyperparameter optimization was done using
10-fold cross-validation with a two-dimensional grid search to determine the two hyper-
parameters in Equation 4.19, a single parameter grid search for the Lasso fits.

Figure C.3 shows the resulting expansion parameters (effective cluster interactions) and
corresponding effective cluster weights for the expansion using only pair terms. Feature
selection remains constant for all regression methods. However Grouped `2`0 is the only
method that fully sets to zero some of the interactions, resulting in a sparser model.
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Figure C.4: Disordered rocksalt structure used in computing Coulomb and Buckingham/-
Coulomb interaction potentials. The structure includes an FCC anion lattice with allowed
species having oxidation -1 or -2 and an FCC cation lattice with allowed species having
oxidation +1 or +3.

C.4 Empirical ionic potentials

Coulomb and Buckingham-Coulomb empirical potentials

The Coulomb point electrostatic and Buckingham/Coulomb pair potentials were calculated
using LAMMPS [219] for a point charge structure with a FCC binary positive charge substruc-
ture of +1 and +3 charges, and a FCC binary negative charge substructure of −1 and −2,
as shown in Figure C.4. A total of 3470 ordered structures for supercells ranging from 4 to
144 atoms were enumerated, and the energy based on the two pair potentials was computed
for each ordered structure.

The electrostatic calculations were calculated using an Ewald summation method for a
Coulomb pair interaction potential.

The Buckingham-Coulomb potential is a commonly used atomic pair potential in the
study of ceramic materials. The pair interaction potential between two particles is,

Φ(rij) = A exp(−rij/ρ)− C

r6
ij

+
κqiqj
εrij

(C.1)

where A (eV ), ρ (Å), C (eV × Å
6
) are interaction constants, κ = 1/4πε0, and ε is a dielectric
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Interaction A (eV ) ρ (Å) C (eV × Å
6
)

(+1)↔ (+1) 968.4720 0.2277 94.7183
(+3)↔ (+3) 4999.2056 0.1685 14.2347
(−1)↔ (−1) 1206.1667 0.1488 34.3060
(−2)↔ (−2) 22956.6158 0.2510 11.2060
(+1)↔ (+3) 4966.7186 0.1085 6.1160
(+1)↔ (−1) 506.6165 0.2284 62.2407
(+1)↔ (−2) 476.8532 0.2408 9.9168
(+3)↔ (−1) 499.0849 0.1990 100.0
(+3)↔ (−2) 708.8818 0.2103 27.6586
(−1)↔ (−2) 4987.3754 0.2738 99.2494

Table C.1: Buckingham potential interaction parameters.

constant. The dielectric constant value used in the calculations is ε = 4.4892. The parameters
corresponding to Buckingham pair interaction are listed in Table C.1.

The interaction parameters in Table C.1 were obtained from a multivariate fit to a set
of DFT calculated configurations of a Li+/Fe3+/O2−/F− rocksalt structure. The mean
squared error between the Buckingham/Coulomb computed energy via LAMMPS and the DFT
energy was used as the optimization objective function. The fit was done using the lim-
ited memory Broyden–Fletcher–Goldfarb–Shanno algorithm with box constraints (L-BFGS-
B)[24, 260] algorithm via the scipy.optimize Python module [233]. The obtained fit has
root mean squared error 40.259 meV/atom. The actual accuracy of the fit is not particularly
meaningful. The fit was only carried out to obtain a set of parameters that would result
in energy values and variances within an applicable range. The obtained parametrization
for the Buckingham/Coulomb potential is taken as a ground truth model for the purpose of
precisely quantifying the accuracy and fitted coefficient values of cluster expansions.

Cluster expansion fits

The expansions used to fit the Coulomb potential included correlation functions only (i.e
no explicit electrostatic term). An expansion with correlation functions only and one with
correlation functions and an electrostatic term were used to fit the Buckingham-Coulomb
potential. All fits were carried out including the constant term, all point correlations, and
various sets of pair correlations with increasing pair distance. Fits were also done with 3
different training sets: one with structures only up to 16 sites, another with structures up to
36 sites, and the last one with structures up to 64 sites. In all cases, an out-of-sample set of
structures with up to the same number of sites used in training was kept for validation. An
additional set with structures up to 144 sites was used to test the accuracy of extrapolated
predictions to larger super-structures. For all the cases a total of 50 fits randomly shuffling
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training and validation structures were carried out.
The Buckingham-Coulomb model is simple enough that feature selection and regulariza-

tion is not necessary. This can be seen from the results comparing ordinary least squares
(OLS), ridge regression, and lasso listed in the main text. Furthermore, the convergence
of the model and resulting dielectric at very low hyperparameter values for the regularized
regression shown in Figure C.5, similarly suggests that for this simple case regularization is
not necessary since both Lasso and Ridge regression converge to effectively the same solution
at very low values of the regularization hyperparameter.
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Figure C.5: Convergence of error, correlation function coefficients, and effective dielectric
constant with respect to hyperparameter selection for Lasso and Ridge regression models.
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