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Pangenome mining of the Streptomyces 
genus redefines species’ biosynthetic potential
Omkar S. Mohite1, Tue S. Jørgensen1, Thomas J. Booth1, Pep Charusanti1, Patrick V. Phaneuf1, 
Tilmann Weber1* and Bernhard O. Palsson1,2,3,4*    

Background:  Streptomyces is a highly diverse genus known for the production of sec-
ondary or specialized metabolites with a wide range of applications in the medical 
and agricultural industries. Several thousand complete or nearly complete Streptomyces 
genome sequences are now available, affording the opportunity to deeply investigate 
the biosynthetic potential within these organisms and to advance natural product 
discovery initiatives.

Results:  We perform pangenome analysis on 2371 Streptomyces genomes, includ-
ing approximately 1200 complete assemblies. Employing a data-driven approach 
based on genome similarities, the Streptomyces genus was classified into 7 primary 
and 42 secondary Mash-clusters, forming the basis for comprehensive pangenome 
mining. A refined workflow for grouping biosynthetic gene clusters (BGCs) redefines 
their diversity across different Mash-clusters. This workflow also reassigns 2729 known 
BGC families to only 440 families, a reduction caused by inaccuracies in BGC bound-
ary detections. When the genomic location of BGCs is included in the analysis, a con-
served genomic structure, or synteny, among BGCs becomes apparent within species 
and Mash-clusters. This synteny suggests that vertical inheritance is a major factor 
in the diversification of BGCs.

Conclusions:  Our analysis of a genomic dataset at a scale of thousands of genomes 
refines predictions of BGC diversity using Mash-clusters as a basis for pangenome 
analysis. The observed conservation in the order of BGCs’ genomic locations shows 
that the BGCs are vertically inherited. The presented workflow and the in-depth analy-
sis pave the way for large-scale pangenome investigations and enhance our under-
standing of the biosynthetic potential of the Streptomyces genus.

Keywords:  Pangenome analysis, Streptomyces, Genome mining, Biosynthetic Gene 
Clusters, Phylogenetic analysis, Metabolism

Background
Streptomyces, a genus of soil bacteria, is known for its ability to produce various natu-
ral products that have applications in medicine and biotechnology. These organisms 
are characterized by their complex and diverse biosynthetic gene clusters (BGCs), 
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which are responsible for the biosynthesis of these bioactive compounds [1, 2]. Over 
the past decades, several genomic studies have revealed that the full range of metabo-
lites produced by Streptomyces and the associated biosynthetic pathways are not yet 
fully known [3–5].

The same genomic studies have revealed extensive genomic diversity within the 
Streptomyces genus. This diversity provides a huge potential for natural product dis-
covery but at the same time complicates comparative analyses across different species 
and strains [6]. To mitigate this challenge, there is a growing consensus for the need 
to cluster Streptomyces into distinct smaller groups of closely related species [7, 8]. 
Such refined classification aims to facilitate more precise comparisons to understand 
the biosynthetic diversity and evolution within the genus.

Recent advances in sequencing technology and genome mining tools have allowed 
for the data-driven discovery of natural products [9]. Several genome mining and 
BGC clustering tools such as antiSMASH, BiG-SCAPE, and BiG-SLICE are available 
to assess the biosynthetic potential encoded in the genomes [10–13]. The genome 
mining tools have revealed that various bacterial species encode previously unknown 
biosynthetic potential [8, 14, 15]. While genome mining tools have significantly 
advanced our understanding of biosynthetic potential, there is a recognition that the 
estimates of diversity and novelty can be constrained by the inherent limitations of 
these individual tools and reference databases. These limitations include inaccurate 
definitions of BGC boundaries or incomplete entries in reference databases such as 
MIBiG [16]. The strategy of integrating results from different tools can partially miti-
gate these challenges [17].

Large-scale pangenome mining studies help to understand the evolutionary patterns 
of biosynthetic gene clusters (BGCs) along with a deep characterization of the biosyn-
thetic repertoire of a given bacterial species or genus [8, 14, 15, 18]. Earlier pangenomic 
investigations of Streptomyces, examining 121 genomes [19], 124 genomes [20], and 205 
genomes [18], respectively, have underscored that the pangenome of Streptomyces is 
open (a pangenome is said to be open if newly sequenced genomes appear to keep add-
ing novel genes [21]) and highly diverse. These analyses brought to light a limited num-
ber of core genes—633 [19], 1018 [20], and 304 [18]—found across all strains considered 
in each study, respectively. Recent sequencing efforts have significantly increased the 
publicly available high-quality genomes of Streptomyces [22]. In light of this explosion 
of sequencing data, there is an emerging need to re-investigate the Streptomyces pange-
nome and the biosynthetic diversity within these organisms.

Recently, there has been an increase in using whole genome similarity as a basis for 
grouping taxa. For example, a Mash-based approach revealed 14 distinct phylogroups 
of Escherichia coli species [23] and a genome similarity network of Pseudomonas genus 
revealed at least 14 divisions [24]. Tools like Mash [25] and FastANI [26] can be used 
to find the genome similarities with similar performance. Here, we use Mash to group 
the highly diverse members of the Streptomyces genus. Furthermore, we show that 
Mash-clusters can be defined in a hierarchical fashion at primary and secondary levels 
depending on the size of each cluster. This classification provides an objective metric 
for defining groups based on genome similarity that is not reliant on species definitions, 
which are often contentious in Streptomyces.
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This study constitutes the largest pangenome mining study of Streptomyces to date. 
By combining insights from the Mash-clustering with various genome mining tools, we 
have updated our understanding of the biosynthetic potential in this diverse genus.

Results
The dataset of Streptomyces genomes

In this study, we comprehensively analyzed genomes of the Streptomyces genus, sourc-
ing both from the public database and from our newly published dataset [22]. As of 30 
June 2023, we obtained accession IDs for 2938 Streptomycetaceae genomes of all quali-
ties from the NCBI RefSeq database (Additional file 1: Table S1, Fig. 1A). We also incor-
porated 902 newly sequenced [22] high-quality complete actinomycete genomes for a 
total of 3840 genomes (Additional file 2: Fig. S1). We note that all of these 902 newly 
sequenced genomes were assembled de-novo rather than based on a reference genome. 
These 902 sequences have also been deposited at RefSeq.

These 3840 genomes were then curated further. To ensure a uniform taxonomic clas-
sification derived from whole genome sequences, we employed GTDB (version R214) 
[27, 28] for taxonomic assignments (Additional file 2: Fig. S2). Out of the 3840 genomes, 

Fig. 1  Dataset of Streptomyces genomes and BGC statistics. A Number of Streptomyces genomes from the 
NCBI RefSeq database as of 30 June 2023. The final bar includes newly sequenced high-quality genomes from 
our recent study [22]. Genomes are categorized by assembly quality: HQ (high-quality), MQ (medium-quality), 
and LQ (low-quality). B Scatter plot illustrating the relationship between genome length and the number 
of BGCs in 2371 genomes of the MQ and HQ categories. Annotations represent information on selected 
strains. C Breakdown of the common types of BGCs detected in the HQ and MQ genomes. Color-coded bars 
highlight BGC similarity percentages against the MIBiG database: gray for < 50%, light green for 50–80%, and 
green for > 80%. Bar annotations represent a tally of MIBiG entries with > 80% similarity for the detected BGCs. 
Abbreviation of BGC types: T1PKS, type 1 polyketide synthase; T2PKS, type 2 polyketide synthase; T3PKS, type 
3 polyketide synthase; Other PKS, hybrid BGCs with at least one PKS category BGC; NRPS, non-ribosomal 
peptide synthetase; NAPAA, non-alpha poly-amino acids like ε-polylysine; NI-siderophore, NRPS-independent 
siderophores; Other NRPS, hybrid BGCs with at least one NRPS category BGC; NRPS.T1PKS, hybrid BGC with 
one of NRPS and T1PKS BGCs; Other NRPS.PKS hybrids, hybrid BGC with PKS, NRPS, and other BGCs; RiPP, 
ribosomally synthesized and post-translationally modified peptide; Other RiPP, hybrid BGCs with one RiPP 
BGC; All other types, BGCs of other types than above
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3569 were identified as belonging to the Streptomyces genus. Using different assembly 
statistics, we grouped the selected 3569 Streptomyces genomes into high-quality (HQ, 
1215 genomes), medium-quality (MQ, 1156 genomes), and low-quality (LQ, 1198 
genomes) (Additional file 2: Fig. S1, S3). The final dataset, post-curation, included 2371 
genomes of sufficiently good quality (HQ or MQ).

We next classified the genomes at the species level. Of the 2371 good quality genomes, 
1956 were assigned to one of the 608 GTDB-defined species. The species annotation 
was carried out using GTDB-Tk v2.3 with GTDB database v214 [27, 28]. Four species 
were highly represented (> 30 genomes) in our dataset: S. albidoflavus (or S. albus) (109 
genomes), S. anulatus (58 genomes), S. olivaceus (46 genomes), and S. bacillaris (33 
genomes). There were 415 genomes that did not get assigned to any of the GTDB spe-
cies, representing potentially novel species beyond the GTDB catalog. To find the total 
number of species, we used genome similarity across the remaining 415 genomes. We 
calculated the whole genome similarity using Mash for these 415 genomes. The genomic 
similarity network was created where the edges represent similarity of greater than 95% 
(a typical threshold for species detection). We used the community detection method 
[29] to define the best partitions that were assigned different Mash-based species total-
ing up to 200 novel species. Combining GTDB and Mash-based assignments, the dataset 
encompasses at least 808 Streptomyces predicted species, with 468 species represented 
by a single genome. Overall, these statistics indicate that the dataset is highly diverse, 
necessitating the careful grouping of these genomes for pangenome analysis.

The Streptomyces pangenome exhibited wide-ranging genomic characteristics. 
Genome sizes spanned from 4.8 Mbp to 13.6 Mbp, with a median of 8.5 Mbp (Fig. 1B). 
Interestingly, the strains with the smallest genome sizes mainly belong to actinomyce-
toma-related pathogenic species of S. sudanensis and S. somaliensis [30]. In contrast, the 
largest-sized genomes primarily belong to S. rapamycinicus or other novel species. GC 
content ranged between 68.6 and 74.8%, with a median of 71.6%.

Types of BGCs identified and similarity to known BGCs

Utilizing antiSMASH v7 [10], we identified a total of 70,561 BGCs in the 2371 HQ or 
MQ genomes (Additional file 3: Table S4). It is essential to highlight that antiSMASH 
will report two adjacent unrelated BGCs as a single hit. In general, the genome quality 
can significantly influence the number of BGCs predicted for a particular genome. Spe-
cifically, when BGCs are located on contig edges, their count can be artificially increased 
when analyzed with antiSMASH as a broken BGC is likely to be counted twice. Thus, the 
number of BGCs on the contig edge is a metric of genome quality for BGC analysis [31]. 
We identified only 6524 BGCs (9.2%) situated at contig edges indicating a high quality of 
the collected dataset at capturing mostly complete BGCs [32]. Among the 1215 genomes 
with complete assemblies (HQ), the number of BGCs per genome ranged between 11 
and 56 with a median of 29 BGCs. To avoid sampling bias in number of genomes per 
species, we first calculated the means for each of the 808 species individually, which was 
then averaged to result in the mean of 29.9 BGCs in the Streptomyces genus (Additional 
file 1: Table S2). It should be noted that the set of HQ assemblies included several engi-
neered S. albidoflavus strains in which multiple BGCs had been deleted (e.g., [33]), thus 
explaining the lower BGC count. The number of BGCs increased with the size of the 
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genomes in accordance with prior observations (Fig. 1B) [3, 34]. Previous genome min-
ing studies of Streptomyces reported average BGCs in the genus to be 39.64 [3], 44 [19], 
and 31.8 [18]. The variation in the predicted numbers is likely due to different versions 
of antiSMASH and the quality of genome assemblies used in the different studies. Plas-
mids can also be source of BGCs [35]; however, there are limitations on the classification 
of plasmids,  for example circularity and highly diverse plasmid sizes. Of the 1215 HQ 
genomes, around 352 genomes had BGCs on plasmids with median of 2 BGCs sourced 
from plasmids among them. For this study, plasmid- and chromosome-encoded BGCs 
were analyzed together.

The predominant BGC types in our dataset are annotated as: terpene (11,095 BGCs), 
NRPS-independent (NI) siderophore (5711 BGCs), nonribosomal peptide synthetase 
(NRPS) (3599 BGCs), type1 polyketide synthase (T1PKS) (3092 BGCs), ribosomally syn-
thesized and post-translationally modified peptide like (RiPP-like) (2933 BGCs), T3PKS 
(2562 BGCs), ectoine (2458 BGCs), butyrolactone (2277 BGCs), melanin (2244 BGCs), 
T2PKS (1536 BGCs), and NRPS-T1PKS (1536 BGCs). One can estimate the number of 
BGCs that are experimentally linked with known secondary metabolites by comparing 
the BGCs against the curated MIBiG database [16]. This estimate is provided automati-
cally during antiSMASH analysis: the program generates “knownclusterblast” similarity 
scores that estimate how similar a certain region is to the BGCs in MIBiG by calculat-
ing a percentage of similar genes [10, 16]. A threshold on the knownclusterblast score 
of greater than 80% of similar genes led to 21,404 BGCs (~ 30%) that matched one of 
the 475 characterized BGCs from the MIBiG database. The most recurrent known 
BGCs were linked to the biosynthesis of compounds such as ectoine (2230), desferri-
oxamine (1685), geosmin (1412), hopene (1095), spore pigment (1083), isoreniera-
tene (852), albaflavenone (807), ε-Poly-L-lysine (730), and alkylresorcinol (708). These 
BGCs are known to be found commonly across the Streptomyces genus [36]. On aver-
age, 31% of the BGCs per genome matched to known BGCs in MIBiG. A further 8161 
BGCs (~ 11.6%) had similarity scores between 60 to 80%, dominated by 1116 hopene-
like BGCs, while as many as 27,029 (38.3%) BGCs had similarity scores of less than 30%. 
These high numbers also reflect the fact that 41.6% of the MIBiG entries originate from 
Actinobacteria.

While estimates of novel BGCs provide valuable insights, they inherently depend on 
the completeness of the MIBiG database, potentially introducing bias. To further dis-
sect this aspect, we examined the number of known BGCs across some of the abundant 
BGC types (Fig.  1C). We found that certain BGC types—ectoine, NRP-metallophore-
NRPS hybrid, T3PKS, T2PKS, lanthipeptide-class-iii, non-alpha polyamino group acids 
(NAPAA), and terpene—exhibited a significant similarity with the MIBiG database, as 
evidenced by over 40% of these BGCs having a knownclusterblast similarity of above 
80%. In contrast, BGC types such as RiPP-like, lanthipeptide-class-i, butyrolactone, 
NRPS, NRPS-like, T1PKS, and NRPS-like-T1PKS hybrid showed less than 15% of their 
BGCs aligning with the MIBiG database with the same similarity threshold. However, 
it is essential to recognize that some BGC types, such as ectoine or NAPAA, are natu-
rally less diverse and represent only a few compounds. For example, the majority of the 
ectoine-type BGCs (2173 in total) were primarily aligned with just two MIBiG entries, 
both coding for the same compound ectoine (BGC0000853 and BGC0002052). Similarly, 
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recognized BGC types like NAPAA, lanthipeptide-class-iii, melanin, and NI-siderophore 
matched fewer than eight MIBiG entries, and some of them are naturally less diverse.

Mash‑based analysis revealed 7 primary and 42 secondary Mash‑clusters

Here, we propose a Mash-based whole genome similarity metric to empower compara-
tive pangenome analysis by providing a numerical grouping of strains instead of the tax-
onomic delineations [23, 25]. Genomic distances were calculated using Mash across all 
pairs of genomes (Additional file 4: Table S6). The Mash distance is typically correlated 
with 1—ANI (average nucleotide identity) [25]. The Mash-clusters were generated by 
optimal K-means clustering in synergy with the highest average silhouette scores (Addi-
tional file 2: Fig. S4, Additional file 4: Table S7).

This analysis yielded seven primary Mash-clusters among 1999 genomes, termed 
M1 through M7 (Fig. 2, Additional file 4: Table S8). To ensure the robustness of these 
clusters, a stringent silhouette score cutoff (0.4) was iteratively employed, leading to 
the removal of 372 genomes (Additional file 2: Fig. S5). These filtered genomes are less 
likely to be part of one of the 7 major Mash-clusters and may form additional clusters 
upon future sequencing efforts of these clades (Fig. 2B). Venturing deeper, all primary 
Mash-clusters were subjected to an additional round of clustering, revealing 42 second-
ary Mash-clusters that encompassed 1670 genomes after refinement based on silhouette 
scores with the same cutoffs (Additional file 2: Fig. S6-S12). Mash-clusters M5_7, M1_5, 
and M5_8 were among those with largest number of BGCs per genome with median val-
ues being 43, 41.5, and 40, respectively, whereas Mash-clusters M3_5, M2_4, and M1_2 
harbored the fewest BGCs on average with median values of 18, 20, and 21, respectively 
(Additional file 1: Table S3).

Several Mash-clusters stood out in this analysis. M2 emerged as the largest primary 
Mash-cluster representing 871 genomes. M2 harbors key species such as S. coelicolor, 
S. rochei, and S. canus. The second largest Mash-cluster, M3, represented 510 genomes 
with species such as S. anulatus, S. bacillaris and S. papulosus. We note that a signifi-
cant portion of genomes from Mash-cluster M5 were excluded from the refined Mash-
clusters due to their low silhouette scores (Additional file 2: Fig. S5). Mash-cluster M4 
represented 119 genomes, mostly of the species S. albidoflavus (previously designated 
S. albus), and was noteworthy for its high average clustering score (Fig. 2D, Additional 
file 2: Fig. S9).

Comparison of Mash‑clusters with phylogenetic trees

The biggest drawback of using a similarity metric like Mash is the lack of an evolutionary 
model. Therefore, to evaluate the evolutionary relevance of the Mash-clusters, we com-
pared them to genome-scale phylogenetic trees (Fig. 2B). We constructed three trees by 
employing three distinct methodologies: autoMLST [37], GTDB-Tk (de novo workflow) 
[28], and getphylo [38] (Additional file 2: Fig. S13, Additional file 5). Upon comparison, a 
broad consensus was observed between the Mash-defined clusters and the clades deline-
ated by different phylogenetic trees. There were, however, some outliers, chiefly clus-
ters M1 and M7, which appeared to be paraphyletic (Additional file 2: Fig. S13). Upon 
closer inspection, however, these outliers fell within parts of the phylogenetic trees that 
were poorly supported and incongruent between the different methodologies. Further 
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analysis revealed a striking level of incongruence between the three phylogenies. Only 
62% of the branches were supported by a majority consensus and 33% by all three meth-
odologies. The genus Streptomyces and its two major clades (represented by M2 and M3) 
are fully congruent as well as many of the species and species complexes. However, line-
ages show a high degree of polytomy at the sub-generic level. This incongruence dem-
onstrates the potential fallibility of phylogenetic methods when studying the intra-genus 
level relationships of Streptomyces.

Finally, we also compared the Mash-clusters with the RED groups (relative evolu-
tionary divergence-based groups) defined in a recent study as bacterial groups analo-
gous to genera but characterized by equal evolutionary distance [8] (Additional file 2: 
Fig. S14). A consensus was observed for major groups except that the Mash-based 

Fig. 2  Mash-based clustering of the Streptomyces genus provides a basis for pangenome analysis. A The 
average silhouette scores of all samples against the number of primary clusters with hierarchical clustering 
based on the Mash distance matrix. The orange line represents the original dataset of 2371 genomes, 
whereas the blue represents the dataset after filtering poorly clustered samples. B A phylogenetic tree 
reconstructed using getphylo with K. setae strain KM-6054 as an outgroup. See Additional file 2: Fig. S13 for 
trees constructed using different methods and the consensus. The colored ranges represent the Mash-cluster 
assignment with gray color representing filtered genomes. The outer color strip represents the colors 
for secondary Mash-clusters (see Additional file 2: Fig. S6 to S12 for details). C Heatmap representing the 
Mash distances between the 2371 genomes. The rows and columns are clustered using the hierarchical 
clustering method where the colors on columns represent the seven primary Mash-clusters (with gray color 
representing filtered-out genomes). The highlighted text on the heatmap represents some of the abundant 
species. D Heatmap representing the Mash distances between the 119 genomes of the selected M4 cluster. 
The rows and columns are clustered using the hierarchical clustering method where the colors on columns 
represent the five secondary Mash-clusters (M4_1 to M4_5). M4_1 represents S. diastaticus whereas M4_2 to 
M4_5 represent different clusters within S. albidoflavus 
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method has split the RG_2 into two separate Mash-clusters, M3 and M6. In this fash-
ion, Mash-clustering proposed here complements the phylogenetic methods to pro-
duce statistically correlated groups.

BGC diversity predictions based on known cluster similarity

To assess the diverse biosynthetic potential across genomes, it is helpful to group 
BGCs into gene cluster families (GCFs). GCFs are groups of BGCs that are homolo-
gous to each other and thus are hypothesized to encode molecules that have similar 
chemical structures. GCFs are calculated by clustering BGCs using specialized tools 
such as BiG-SCAPE [11] or BiG-SLICE [12]. As a first step, we opted for BiG-SLICE 
(optimal with larger datasets) to execute this clustering across the entire dataset. Uti-
lizing default parameters, we identified a total of 11,528 GCFs from the 70,561 BGCs 
(Fig. 3A, Additional file 6: Table S9). However, as highlighted in previous work [17], 
integrating diverse genome mining tools can enhance GCF refinement. For instance, 
minor genetic variations in regions adjacent to, but not directly involved in, biosyn-
thesis can inadvertently lead to the classification of BGCs that code for identical sec-
ondary metabolites into disparate GCFs. To mitigate these issues, as a second step 
of defining GCFs, we used antiSMASH’s knownclusterblast results (with a similarity 

Fig. 3  Advanced clustering of BGCs redefines known GCFs with reduced diversity in specific types of BGCs. 
A Workflow used to detect BGCs, GCFs based on BiG-SLICE, and regrouping GCFs based on knownclusterblast 
similarity (> 80% of genes). Several examples of known GCFs are reported in the bottom boxes, classified 
into common, accessory, or unique GCFs to Mash-clusters. B Percentage abundance of the top twenty 
known GCFs across different primary Mash-clusters. Each row corresponds to a known compound (GCF). The 
number in parentheses denotes the number of BiG-SLICE detected GCFs that were regrouped into one GCF. 
C Overview of the number of GCFs that were regrouped across the twenty most abundant BGC types. Gray 
bars represent the number of GCFs detected using only BiG-SLICE, whereas blue bars represent the reduced 
number of GCFs after regrouping based on knownclusterblast 
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threshold of > 80% of genes) to regroup the GCFs with the presence of predicted 
known BGCs.

A total of 2729 GCFs predicted by BiG-SLICE in the first step were associated with 
known secondary metabolites according to knownclusterblast results. After regrouping 
these GCFs at the second step, we effectively reduced the count of known GCFs from 
2729 to 440 (Fig.  3A, Additional file  6: Table  S10-S11). For instance, BGCs that code 
for spore pigment, alkylresorcinol, coelichelin, and isorenieratene (in the second step) 
were detected as 153, 151, 138, and 138 different GCFs (in the first step), respectively 
(Fig.  3B). We investigated whether these reductions of GCF diversity predictions are 
dependent on the type of BGCs (Fig. 3C). For example, BGC types such as lanthipep-
tide-class-iii, terpene, NRP_metallophore-NRPS hybrid, and T3PKS showed a high level 
of reduction in the diversity of GCFs when knownclusterblast results were integrated. In 
contrast, types such as NRPS or T1PKS showed a relatively lower reduction in the diver-
sity of GCFs as was predicted in the first step using BiG-SLICE (Fig. 3C).

We also note that these regrouped GCFs could contain minor internal variations. For a 
more precise investigation, we constructed a similarity network of two regrouped GCFs 
coding for spore pigment (153 originally predicted GCFs) and isorenieratene (138 origi-
nally predicted GCFs). We used a BiG-SCAPE generated distance matrix to create this 
network (more optimal for a relatively small dataset) (Additional file 2: Fig. S15A, and 
S15C). We also aligned the selected BGCs, which showed that the overestimated diver-
sity of these known BGCs can be attributed to inaccurate BGC boundaries. For instance, 
variation in BGCs from different Mash-clusters was largely due to differences in the 
neighboring regions of the detected BGCs. The differential neighboring regions causing 
variation within the regrouped GCF were generally conserved within genomes from the 
same Mash-clusters (Additional file 2: Fig. S15B and S15D). In general, we observed that 
the types requiring fewer genes for core biosynthesis, such as terpene, T2PKS, T3PKS, 
siderophore, or RiPPs, were also among the most affected by these variations in neigh-
boring regions.

The regrouping of 2729 known GCFs was carried out on the basis of the similarity to 
nearest MIBiG BGCs. For the remaining 8799 unknown GCFs, this analysis was not pos-
sible at this stage. This diversity of unknown GCFs is also likely an overestimation which 
cannot yet be tested by our approach.

Diversity of GCFs across genomes from different Mash‑clusters

Subsequently, we examined the distribution patterns of GCFs across the genomes delin-
eated by the seven primary Mash-clusters to identify BGCs associated with specific 
Mash-clusters (Fig. 3B). Mash-cluster M2 contained 2606 GCFs that did not appear in 
any other Mash-cluster. Similarly, Mash-clusters M3 and M6 contained 811 and 648 
GCFs, respectively, that were specific to those Mash-clusters (Additional file  2: Fig. 
S16). We also note that a total of 2338 GCFs were specific to the 372 genomes that were 
dropped from the Mash-cluster definitions and are likely to represent further diversity. It 
is imperative to note that Mash-clusters M2 and M3 constitute the most populous clades 
which may explain their apparent diversity of GCFs.

To gain deeper insights into the biosynthetic signatures of different Mash-clusters, 
we analyzed all GCFs containing at least five BGCs. This encompassed 289 GCFs with 
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experimentally linked compounds from the MIBiG database and 1457 putatively novel 
GCFs. We found that 48 of the “known” GCFs (such as ectoine, hopene, and desferriox-
amine) displayed a widespread genomic distribution, being present in genomes across 
all Mash-clusters. We detected 174 known GCFs (such as germicidin, streptamidine, 
and SGR-PTM) in the genomes across multiple, but not all, Mash-clusters. Finally, 67 of 
the “known” GCFs (such as informatipeptin, 5-DMAIAN, and echoside) were specific to 
genomes from only one of the major Mash-clusters, representing the biosynthetic signa-
tures of these groups of genomes (Additional file 2: Fig. S17). We also observed the same 
pattern of conservation of unknown GCFs in specific Mash-clusters (Additional file 2: 
Fig. S18). This observed presence of GCFs across Mash-clusters implies certain BGCs 
are likely to be found in certain Mash-clusters at primary or secondary levels (Additional 
file 2: Fig. S17-S18).

Conservation of chromosomal synteny of BGCs

Finally, we present a novel workflow to capture BGC diversity by analyzing synteny 
within a Mash-cluster. The diversity of the BGCs and their functions is computation-
ally predicted using similarity metrics and by visualization of the similarity networks 
(e.g., using BiG-SCAPE detected similarity scores). To explore the syntenic relationship 
between BGCs, we extended this network by adding edges between the BGCs that are 
neighbors on the chromosomes. Thus, all BGCs in any genome would be connected by 
edges in the order of presence on chromosomes.

As an example, we selected 49 complete genomes from Mash-cluster M4 that were 
further grouped into five secondary Mash-clusters (M4_1 to M4_5) (Fig. 4A, Additional 
file 7). These strains primarily belonged to S. albidoflavus (M4_2 to M4_5) and S. dia-
staticus species. The resulting network of BGCs showed remarkable conservation of 
the order in which the BGCs have evolved on the chromosomal location (Fig. 4B). We 
observed that different BGCs are either inserted or deleted from specific locations while 
maintaining the order of the seven commonly present BGCs across the M4 Mash-cluster 
genomes. We also observed that these differences are conserved within the secondary 
Mash-clusters (Fig. 4B). This observation implicates the vertical inheritance of BGCs as 
strains evolve across different clades or groups.

We focused on a specific region between two of the conserved BGCs coding for a type 
2 lanthipeptide and NI-siderophore (Fig. 4C). The genomes belonging to Mash-clusters 
M4_1 and M4_4 did not possess any BGCs in this chromosomal region, along with some 
of the M4_3 genomes. The majority of the M4_2 genomes harbored an NRPS BGC cod-
ing for the known molecule cyclofaulknamycin (Fig.  4D). The genomes of the M4_5 
Mash-cluster showed interesting variation in this region. Two genomes were observed 
to harbor a reduced version of the cyclofaulknamycin BGC that could have a differential 
or loss of function, whereas the other M4_5 genome has acquired a completely different 
T1PKS BGC in the same region, one that codes for neoabyssomicin (Fig. 4D) [39]. The 
genomes in M4_5 also harbor a yet uncharacterized T1PKS-NRPS hybrid BGC in the 
region. Some of the M4_2 genomes have additional BGCs in the region coding for the 
known PKS-like molecule paulomycin, whereas the others from M4_3 have a T1PKS-
PKS-like hybrid BGC that codes for arsono-polyketide, which is widespread across 
Streptomyces sp. [40].
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In another example, we selected genomes from a more diverse Mash-cluster, M6, that 
consists of as many as 63 species, compared to the M4 Mash-cluster with only two spe-
cies. The similarity network of BGCs displayed high diversity across genomes of the M6 
Mash-cluster (Fig. 5, Additional file 2: Fig. S19 to S26); however, a conserved structure 
could still be observed. Common BGCs forming the most abundant GCFs were found 
to generally follow a chromosomal order with variations appearing between differ-
ent secondary Mash-clusters. Conservation is clearer when comparing subclusters as 
genomes belonging to the same secondary Mash-cluster share a higher number of com-
mon BGCs. For example, a similarity network of genomes from 8 different species from 
Mash-cluster M6_1 reveals the conserved and variable regions on the chromosomes 
across species (Additional file  2: Fig. S20). Higher silhouette scores indicated greater 
conservation of BGCs. M6_1 and M6_2 that had higher silhouette scores displayed high 

Fig. 4  Synteny of BGCs across Mash-clusters M4_1 to M4_5 showed conserved and variable regions. A 
Phylogenetic tree (top) of all 2371 genomes with highlighted M4 primary Mash-cluster. Phylogenetic 
tree (bottom) of complete HQ genomes from the M4 primary Mash-cluster grouped into five secondary 
Mash-clusters M4_1 through M4_5. M4_1 represents S. diastaticus whereas M4_2 to M4_5 represent different 
clusters within S. albidoflavus. B Synteny network view of GCFs where the nodes represent detected BGCs 
across 49 high-quality complete genomes from M4. Seven of the BGCs were present across all 49 genomes 
and in the same order. The edges with solid lines represent BiG-SCAPE-based similarity between BGCs. C 
A selected portion of the synteny network from part B. The leftmost BGC is a type 2 lanthipeptide and the 
rightmost BGC is a NI-siderophore. They are two of the seven BGCs conserved in all genomes. The middle 
BGCs are variable. D Alignment of several variable BGCs from part C across strains from different secondary 
Mash-clusters



Page 12 of 20Mohite et al. Genome Biology            (2025) 26:9 

conservation of the BGCs as well as the chromosomal order of BGCs (Additional file 2: 
Fig. S19). Conversely, M6_3 and M6_7 had the most divergent BGCs in comparison to 
other Mash-clusters (Fig. 5, Additional file 8). These two secondary Mash-clusters had 
lower silhouette scores and thus represent poorly clustered groups (Additional file 2: Fig. 
S11). As with the above example, dot plots can be used to visualize this relationship in 
a pairwise fashion (Additional file 2: Fig. S27-S28)—notably, the terminal regions of the 
genome are much less conserved than in M4.

We observed a similar pattern of conservation of the chromosomal order of common 
BGCs within all secondary Mash-clusters of M6, with the pattern being the most evident 
at species level (Additional file 2: Fig. S21-S28). In addition, we also found a similar pat-
tern among the five species within the M2_3 secondary Mash-cluster, which includes the 
model strain S. coelicolor A3(2) (Additional file 2: Fig. S29). Thus, the strategy to inte-
grate BGC similarity and synteny provides an effective way to select different levels of 
Mash-clusters and investigate them individually.

Discussion
In this study, we conducted pangenome mining of the biosynthetic potential inherent 
in the Streptomyces genus, leveraging a dataset totaling over 2370 genomes. Our inves-
tigative approach was underpinned by a comprehensive workflow that encompassed 
crucial steps for robust analysis. These steps included taxonomic identification, data 
quality checks, and Mash-based clustering as well as the detection of BGCs and GCFs. 

Fig. 5  Synteny of BGCs across diverse Mash-clusters M6_1 to M6_7 showed high-level conservation of 
chromosomal order. Different colors of nodes represent secondary Mash-clusters from M6_1 to M6_7 which 
are also shown on the phylogenetic tree by the color bar. The top 40 most common GCFs across and specific 
to Mash-clusters are annotated by open red circles that enclose the GCFs (nodes)
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Furthermore, our methodology involved the regrouping of known GCFs to discern func-
tional diversity and a thorough examination of synteny among BGCs distributed across 
the chromosomes. This comprehensive analytical framework has provided insights into 
both genomic architecture and the functional diversity inherent in these prolific second-
ary metabolite producers.

We emphasized the critical role of data curation as the foundational step in compara-
tive genomic analysis, ensuring the establishment of a consistent dataset. Our workflow 
included an assessment of critical assembly metrics such as the number of contigs, N50 
score, completeness, and contamination, enabling the classification of genomes into 
high, medium, and low quality. Within the vast genomic landscape of the Streptomy-
ces genus, the clearly defined classification of strains is essential for comparative analy-
sis. Historically, comparative genome mining studies have predominantly centered on 
examining single species. However, this approach is limiting, especially in a genus like 
Streptomyces where many species are represented by a single genome sequence in public 
databases. This limitation has often necessitated a broader lens, encompassing genomes 
from the entire genus [8, 18, 19]. As valuable as genus-level insights are, the detection 
of over 800 species of Streptomyces demands a more focused approach. Accordingly, 
we sought to define distinct, sub-genus level groups based on clustering Mash-based 
similarities. This methodology not only facilitated the grouping of genomes into distinct 
clusters but also prioritized those that were consistently clustered. While acknowledging 
the inherent limitations of clustering algorithms, we employed a strict silhouette score 
as a necessary metric, recognizing that these algorithms have their drawbacks, especially 
when dealing with unevenly distributed starting datasets. Consequently, we omitted 372 
strains from Mash-cluster assignments, prioritizing the integrity of our analytical frame-
work. Validation of the Mash-cluster definitions against different phylogenetic trees 
underscored the robustness of this grouping strategy for comparative analysis.

The description of bacterial species requires the adoption of strict criteria on the nam-
ing, genotyping and phenotyping of the organism of interest [41]. Bacterial taxonomy is 
extremely valuable to our understanding of diversity but is time consuming and requires 
specific expertise and resources not available to many labs. Given the vast rate at which 
new genomes are acquired (now on the order of 1000 s [22]), it is not possible to gain 
complete taxonomic classification for entire collections expediently. Mash-clustering 
does not obviate the need for proper taxonomic analysis; however, it provides an objec-
tive measure to create useful groupings for comparative analysis. We found the diversity 
and classification of GCFs to be notably influenced by several factors, including the type 
of BGC, the definition of BGC boundaries, and the completeness of the MIBiG data-
base. This observation emphasizes the crucial role of manual inspection and refinement 
of existing genome mining tools in accurately characterizing the inherent diversity of 
detected BGCs. In the course of our study, the integration of similarity scores derived 
from knownclusterblast with the BiG-SLICE-based network highlighted a noteworthy 
finding—that the diversity of computationally predicted BGCs may be considerably 
lower, especially in BGC types where the core biosynthetic regions are notably smaller 
than the predicted boundary regions. While we anticipate that improvements in GCF 
detection algorithms may yield more accurate predictions, the prediction of boundaries 
remains a substantial challenge in the genome mining field.
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Leveraging the definition of Mash-clusters in our analysis, we identified GCFs dem-
onstrating specificity or commonality across distinct Mash-clusters. Some of the com-
mon GCFs putatively coded for secondary metabolites such as ectoine, hopene, and 
desferrioxamine among others. This approach also facilitated the discernment of signa-
ture BGCs associated with groups of strains at different Mash-cluster levels. It is crucial 
to note that the variable size of Mash-clusters introduced variability in the number of 
signature BGCs observed across different clusters. As genome mining advances, these 
insights contribute to the ongoing refinement of methodologies, paving the way for 
more accurate and comprehensive assessments of biosynthetic potential across micro-
bial genomes.

A detailed exploration of BGCs within Mash-cluster M4, which was further catego-
rized into five secondary Mash-clusters, uncovered a striking observation—BGC order 
along the chromosome appears to be conserved. We observed shared genomic events 
such as deletions, insertions, and modifications of BGCs in specific chromosomal 
regions across distinct secondary Mash-clusters. Importantly, these patterns extend 
beyond M4, resonating across various Mash-clusters and species. Our investigation 
extends to the various secondary Mash-clusters M6_1 to M6_7. We observed that the 
pattern of conserved chromosomal organization of common BGCs becomes clearer as 
one goes from primary to secondary Mash-clusters and is most prominent at the species 
level. Generally, the Mash-clusters with higher average silhouette scores presented a pat-
tern of the conserved organization of BGCs more evidently. Furthermore, this pattern 
is exemplified by a comparative analysis involving five species, including S. coelicolor, 
within the secondary Mash-cluster M2_3 (Additional file  2: Fig. S29). Over and over 
again, the similarity networks of closely related genomes from species or Mash-clusters 
showed conserved order of common BGCs and variable BGCs in the neighborhoods 
between conserved BGCs. Such representation could help to show how neighboring 
species, or closely related genomes, have evolved to harbor diverse BGCs at specific 
chromosomal positions.

There has been significant debate over the role of horizontal gene transfer (HGT) ver-
sus vertical inheritance in the evolution of BGCs [42, 43]. Previous genomic analyses 
suggested that HGT plays an important role in the evolution of BGCs [43–46]. However, 
evidence is building that horizontal gene transfer is much rarer than previously thought 
in Streptomyces spp. [42]. Conversely, there is mounting evidence that processes asso-
ciated with vertical inheritance such as gene duplications and intragenomic recombi-
nation play an important role in the diversification of BGCs [47]. The observation that 
BGCs belonging to related GCFs share conserved synteny across the Mash-clusters adds 
additional evidence to the argument that vertical inheritance is more important than 
previously thought. Our findings underscore the role of vertical descent in the evolution 
of BGCs across species and Mash-clusters, aligning with a growing body of evidence in 
the literature [14, 48, 49].

With the exponential growth of genome sequencing, the influence of vertical descent 
is becoming increasingly apparent in the evolution of BGCs. The findings from this 
study significantly contribute to our understanding of these vertical inheritance mech-
anisms along with a need for manual inspection to more accurately capture the func-
tional diversity of GCFs. These insights have broader implications for understanding the 
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adaptive strategies employed by these prolific secondary metabolite producers in diverse 
ecological niches and environments.

Conclusions
In conclusion, our study presents a pangenome analysis of the biosynthetic diver-
sity of Streptomyces, a genus of high industrial importance. Data-driven clustering of 
nearly 2400 Streptomyces genomes into Mash-clusters revealed (1) the diversity (or lack 
thereof ) of computationally predicted BGCs, especially when automatically grouped 
into GCFs, (2) that certain BGCs/GCFs are specific to certain Mash-clusters, thus act-
ing as potential biosynthetic signatures for the Mash-cluster, and (3) that synteny among 
BGCs are conserved, implying that vertical inheritance plays a major role in the evolu-
tion of BGCs. Our results on GCF conservation at taxonomic levels support that the 
BGCs are key traits of species defining their ecotypes. Taken together, our work not 
only contributes to advancing our understanding of secondary metabolite biosynthesis 
in Streptomyces but also highlights the evolving capabilities of pangenome analytics for 
biosynthetic diversity exploration.

Methods
Data collection, taxonomy detection, and quality check

The starting dataset to select Streptomyces genomes was gathered from two sources: 
NCBI and from those presented in a recent study [22]. As of 30 June 2023, we collected 
a total of 2938 genomes of all assembly levels from NCBI RefSeq belonging to the family 
Streptomycetaceae (Additional file 1: Table S1). We used this broader family of Strepto-
mycetaceae with the aim of assigning taxonomy based on GTDB consistently (version 
R214) [27, 28]. We collected an additional 902 of the 1034 actinomycete genomes from 
a recent study [22] (Additional file 1: Table S1). We note that 121 genomes of the 1034 
were already available on NCBI on 30 June 2023, and 11 were added later to the other 
study [22]. These genomes were processed through BGCFlow, and different tools to 
assess the quality of the genomes were run [17]. Out of these 3840 genomes, 3569 were 
identified as belonging to the Streptomyces genus as per GTDB definitions (Additional 
file 1: Table S1, Additional file 2: Fig. S2).

The Streptomyces dataset of 3569 genomes was processed with multiple qual-
ity checks. We calculated genome completeness and contamination metrics using 
CheckM [50]. When cutoffs of greater than 90% completeness and less than 5% 
contamination were used, 59 genomes were found to have low-quality assemblies 
(Additional file 2: Fig. S3). We also used the assembly statistics on the contigs and 
N50 scores for further curation. The genomes designated as complete or chromo-
some-level assembly as per NCBI were classified as high-quality (HQ). From the 
remaining genomes with scaffold or contig level assembly, we further annotated the 
genomes with more than 100 contigs or N50 score of less than 100 kb as low-quality 
(LQ). Genomes with fewer than 100 contigs were classified as medium-quality (MQ) 
(Additional file 2: Fig. S3).
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For the 415 genomes that lacked species assignments in GTDB-Tk analysis, we cal-
culated the Mash-based similarity network where the edges represent genome-wide 
similarity of greater than 95% (typical threshold for species detection). We used the 
community detection method [29] to define the best partitions that were assigned differ-
ent Mash-based species.

Mash‑based clustering analysis to group Streptomyces species

We used a whole genome sequence similarity-based workflow to cluster the genomes 
into different subgroups of the Streptomyces genus. A similar workflow with Mash-based 
analysis was shown to capture the phylogroups previously [23]. Following this method, 
we calculated Mash-distance for all pairs of genomes in the dataset using a BGCFlow 
rule that runs Mash with K-mer size of 21 (Additional file 4: Table S4) [25]. We com-
puted pairwise distances using Pearson’s correlation coefficient and performed hierar-
chical clustering using the ward.D2 method.

We added additional steps to the Mash-based analysis method [23] to identify the 
optimal number of clusters. We followed the elbow method to find the optimal num-
ber of k-means clusters and validated them using the average silhouette scores. We 
detected 7 optimal clusters based on both adjusted inertia for the K-means method 
and the high average silhouette score across the given dataset (Additional file 2: Fig. 
S4). The heatmap visualizations represented the diverse Mash-clusters defined here 
(Additional file  2: Fig. S4). Next, we visualized the silhouette scores across differ-
ent Mash-clusters to validate the clustering using swarm plots (Additional file 2: Fig. 
S5). A random cutoff of 0.4 was chosen to select the genomes that have good cluster 
assignments. This cutoff results in the majority of the dataset being clustered consist-
ently (except for Mash-cluster M5 that appears to be poorly clustered). We iteratively 
removed the poorly clustered genomes from the dataset until all genomes consistently 
scored above 0.4 on silhouette scores.

These curated steps resulted in the assignment of 1999 genomes to a valid Mash-clus-
ter (Additional file 4: Table S8). We further identified Mash-clusters within each of the 
above-defined primary Mash-clusters. This secondary level of analysis led to the iden-
tification of 42 consistent secondary Mash-clusters across 1670 of the 1999 genomes. 
We note that the assignment of the Mash-clusters is dependent on the abundance of 
genomes collected in each cluster and will likely change as the number of genomes 
increases.

Comparing Mash‑clusters against phylogenetic trees

Phylogenetic trees were inferred from all 2371 curated Streptomyces genomes using an 
outgroup genome of the Kitasatospora genus (K. setae strain KM-6054). We used 3 dif-
ferent methods: GTDB-Tk [28], autoMLST [37], and getphylo [38]. The consensus tree 
was calculated using IQ-Tree2 [51]. RED groups (relative evolutionary distance) were 
calculated in a prior phylogenetic study based on GTDB [8]. The tree visualizations were 
generated using iTOL [52].
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Genome mining to detect BGCs

All genomes were annotated or reannotated using prokka v1.14.6 [53]. We also used 
a list of seven selected genomes with high-quality manually curated annotations as a 
priority while running prokka using the parameter “–proteins”. We used antiSMASH 
v7.0.0 on the annotated genomes to detect secondary metabolite BGCs (Additional 
file  3: Table  S4) [10]. The knownclusterblast results were used for primary assess-
ment of whether the detected BGC regions show substantial similarity against the 
BGCs from MIBiG database [54]. We used a strict cutoff of greater than 80% known-
clusterblast similarity to tentatively identify BGCs that produce known secondary 
metabolites (Fig.  1C, Additional file  3: Table  S5). BGCs with 50 to 80% similarity 
were similarly marked as producers of known secondary metabolites but with lower 
confidence.

Detection of GCFs

We used BiG-SLICE to calculate gene cluster families (GCFs) from identified BGCs 
using the default parameters (threshold of 900) [12] (Additional file  6: Table  S9). 
We further annotated the GCFs as known if they had BGCs with knowncluster-
blast similarity above 80%. Different GCFs that contained BGCs with hits against 
the same MIBiG entry were combined into a single “regrouped” GCF and putatively 
associated with known BGCs (Additional file  6: Table  S10-S11). The abundance of 
some of the common GCFs (after regrouping) was calculated across different Mash-
clusters (Fig. 3B). The UpSet plot was used to visualize the overlap of GCFs across 
Mash-clusters (Additional file 2: Fig. S16). Selected BGCs from two GCFs putatively 
coding for spore pigment and isorenieratene were further extracted for in-depth 
comparison. For more accurate similarity calculation, we used BiG-SCAPE to gener-
ate a similarity network with a default threshold of 0.3 on the distance metric [11]. 
The network was visualized using Cytoscape where node colors represented differ-
ent Mash-clusters [55]. Representative BGCs from different BiG-SCAPE predicted 
GCFs were further chosen to visualize the BGC region alignment using clinker tool 
[56] (Additional file 2: Fig. S15).

Integrated network of BGCs similarity and chromosomal order

We developed a custom workflow to simultaneously visualize BGC diversity and the 
order of BGCs along the chromosome. As a case study, we selected BGCs from 49 
high-quality complete genomes from Mash-cluster M4 that spanned 5 secondary-level 
Mash-clusters (Additional file  7). Each node in the network represents a BGC, and 
nodes were connected with two types of edges. The first type represented BiG-SCAPE-
based similarity. The second type reflected the order of BGCs present on the chromo-
some. A specific region of the chromosome with two conserved BGCs was extracted 
for manual inspection of the variation of this region. The selected BGCs were visualized 
using the clinker [56] to observe the alignments. A similar integrated network was also 
reconstructed for 23 genomes from 5 different GTDB-defined species that belonged to 
Mash-cluster M2_3. Dot plots were generated using a custom Python package “dotplot-
ter” v 1.0.0 that was created for this study to plot the results of a pairwise blastn searches 
(https://​github.​com/​drboo​thtj/​dotpl​otter [57]).

https://github.com/drboothtj/dotplotter
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