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Abstract

Statistical Mechanics of Lipid Membranes and Data-Driven Reaction Learning

by

Clay H. Batton

Doctor of Philosophy in Chemical Engineering

University of California, Berkeley

Professor Kranthi K. Mandadapu, Chair

In this thesis, we apply a common set of tools to two problems that compose two separate
parts. Shared between them is the use of importance sampling, in which techniques such
as Monte Carlo and molecular dynamics evolve a system in a way that respects its physical
conditions under the effect of thermal fluctuations, and the use of techniques from the finite
element method, in which a combination of integration by parts and discretization on function
spaces allows one to turn strong differential conditions into weaker integral ones.

In the first part, we consider the modeling of biological membranes, complex materials formed
of lipids and proteins that serve as interfacial barriers in cells. At length scales beyond the
thickness of a membrane, membrane behavior can be understood using a phenomenological
model accounting for fluid in-plane and elastic out-of-plane behavior. A discretization of this
model is developed using techniques from the finite element method that is evolved using
Metropolis Monte Carlo. Compositional energetics are added to model phase separation into
liquid-disordered and liquid-ordered domains that are observed experimentally in multicom-
ponent biological membranes. By including the effect of proteins that can induce domains of
the thermodynamically disfavored phase it is found that competition between line tension
and curvature prevents macrophase separation and leads to stable microphases, providing a
possible explanation for nanoscopic domains hypothesized to exist in cells.

In the second part, we consider numerical methods to find representations of the committor
function in rare event processes. The committor function, the probability a configuration will
commit to the product state instead of the reactant state, encodes the complete mechanistic
information of a process but is costly to compute. Instead, the transition pathway is
homogeneously sampled with importance sampling methods in order to solve a variational
form of a partial differential equation the committor function satisfies. A neural network is
used as a basis function from which optimization informs the neural network parameters.
Coupling this process with fitting to empirical estimates of the committor function, the
procedure is found to yield accurate estimates of the committor function and reaction rates.
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Chapter 1

Introduction

In this thesis, we will consider two different topics analyzed using similar means. The tools we
use consist of statistical mechanics and the finite element method. With statistical mechanics,
tools from probability theory allow for the analysis of microscopic behavior in order to explain
macroscopic phenomena in systems of interest. In these systems we have access to the
configuration x and velocities v that give rise to a Hamiltonian H consisting of the kinetic
energy T (v) and potential energy V (x). Using various methods, such as looking at a large
system divided into subsystems, a system connected to a reservoir of energy, volume, and/or
number of particles, or maximum entropy arguments [1], one arrives at the probability of
observing a state (x,v) to be

ρ(x,v) =
exp(−βH(x,v))

Z
, (1.0.1)

Z =

∫
dx dv exp(−βH(x,v)) , (1.0.2)

where Z is known as the partition function, and Eq. (1.0.1) is known as the Boltzmann
distribution. Evaluating Z and having access to ρ(x,v) allows for the evaluation of quantities
such as thermodynamic variables, equilibrium properties, and, through the use of near-
equilibrium methods, non-equilibrium properties. As the kinetic energy for particles with
masses mi takes the form

T (v) =
∑

i

mi

2
vi · vi , (1.0.3)

the contribution of the velocities in Eq. (1.0.2) can be evaluated exactly. However, the
potential energy can take a many-body form for which an exact solution of Z is considered a
tour de force.

Fortunately one does not need to know the exact solution of Z in order to evaluate
quantities of interest using computational methods. One such technique, importance sampling,
allows for the generation of samples (x,v) according to ρ(x,v). Importance sampling consists
of evolving systems of interest using either molecular dynamics, in which modifications of
Hamilton’s equations of motion are integrated forward in time, and/or Monte Carlo, in which
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random trial moves modify the system’s state. In both methods, samples of the system are
generated according to ρ(x,v) and hence the observed samples are more statistically relevant
than that generated using truly random estimation of x and v. As the samples obey the
underlying probability distribution of the system, integrals involving ρ(x,v) can be evaluated
with simple averages about the generated samples. In the presence of free energy barriers,
the simple application of these sampling methods is not computationally feasible due to the
system being trapped in local minima of free energy, with transitions between minima being
rare events. Modifications to the importance sampling algorithms, such as umbrella sampling
and the finite-temperature string method [2], are then needed to provide efficient sample
generation and evaluation of integrals involving ρ(x,v).

The finite element method (FEM), on the other hand, is a methodology for solving differ-
ential equations. FEM consists of two major parts, in which we will follow the presentation
of Ref. [3]. The first part is the conversion of a partial differential equation into an integral
equation. As an example we consider Poisson’s equation

∆u = f , (1.0.4)

where ∆ is the Laplacian. A function u satisfying Eq. (1.0.4) is said to be a strong solution
of Poisson’s equation, as Eq. (1.0.4) is satisfied everywhere inside the domain of interest Ω.
Considering a Dirichlet boundary condition of u = 0 on ∂Ω, we multiply Eq. (1.0.4) by some
test function v also satisfying the Dirichlet boundary condition, integrate over Ω, and use
integration by parts to yield

−
∫

Ω

dx ∇u · ∇v =

∫

Ω

dx fv , (1.0.5)

where ∇ is the gradient operator. A function u satisfying Eq. (1.0.5) is said to be a weak
solution of Poisson’s equation as we satisfy Eq. (1.0.4) integral-wise over Ω. Weak solutions
have lower continuity requirements than strong solutions, allowing for the use of simpler
function spaces.

The second major part of FEM consists of the choice in function space of u. Traditionally
one uses the Galerkin method in which we represent u, v, and f using a finite-dimensional
space. This choice of basis functions allows for the evaluation of the coefficients in the basis
function representation of u by solving a linear system of equations given by Eq. (1.0.5).
A separate, variational approach is found by noting that the weak solution u of Poisson’s
equation can be obtained from the functional optimization of [3]

u(x) = arg min
w

1

2

∫

Ω

dx |∇w|2 +
∫

Ω

dx fw . (1.0.6)

Obtaining u through Eq. (1.0.6) is termed the Ritz method. Typically the function space
consists of local basis functions on a discretization of the domain, but it is noted that any
basis function, such as non-local functions or a neural network, could be used.
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1.1 Biological Membranes

In the first part of this thesis, we will use techniques from statistical mechanics and the finite
element method to model biological membranes. Biological membranes serve as the barrier
between the insides and outsides of the cell and some organelles. Composed of lipids and
proteins, we will be concerned primarily with protein-lipid organization inside the membrane
itself. It was originally proposed that biological membranes consist of a liquid-disordered
lipid membrane with randomly distributed proteins in the fluid mosaic model in 1972 [4],
which has been continually refined to account for the realities of experimental observation. In
one such refinement, the experimental observation that detergents selectively solubilized into
liquid-disordered regions enriched in unsaturated lipids and avoided liquid-ordered regions
enriched in saturated lipids and cholesterol [5] was codified in the proposal of biological
membranes having nanoscopic liquid-ordered regions termed lipid rafts [6]. Though indirect
experimental evidence has mounted for the existence of lipid rafts, they have yet to be directly
observed with microscopy due to the small length and time scales they are proposed to exist
on.

In this thesis, we extend prior work that developed a mechanism for lipid rafts from
protein-lipid interactions. Termed the orderphobic effect [7], it was demonstrated that
proteins with lengths matching that of the thermodynamically disfavored lipid phase can
induce that phase in a membrane otherwise in the thermodynamically favored phase. Doing
so creates interfaces around the protein domains which provide a free energy incentive for
protein assembly due to line tension. While this mechanism leads to complete domain
assembly and macrophase behavior, the orderphobic effect does not explain how lipid rafts
remain nanoscopic. Additionally, the orderphobic effect was demonstrated in a coarse-grained
molecular dynamics simulation of a single component lipid, with extensions to multicomponent
systems using coarse-grained molecular dynamics being difficult due to the relatively large
length scale of lipids rafts and equilibration of the compositional variables.

To bypass these issues, we extend the orderphobic effect to multicomponent lipid mem-
branes using computational modeling on triangulated surfaces with the needed length scales.
To do so we develop a computational model of a single component biological membrane in
Chapter 2, where the finite element method is used to develop a model that accounts for the
elastic behavior of lipid membranes out-of-plane, and Metropolis Monte Carlo moves is used
to account for the fluid behavior in-plane. Chapter 3 refines the single component model into
a multicomponent model accounting for the existence of liquid-disordered, liquid-ordered, and
protein-enriched domains. Sampling techniques are used to probe the interactions between
large protein domains in order to understand their interactions driven by compositional and
elastic energetics, and we explore how the competition between these interactions regulates
the domain sizes to yield microscopic phase separation.
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1.2 Data-Driven Reaction Learning

In the second part of this thesis, we will focus on data-driven reaction learning. In many kinetic
processes, there are free energy barriers that make the computational study of the transition
pathway between reactant and product states difficult. The usual approach to ameliorate
this issue is the use of collective variables, functions of x which give a low-dimensional
representation of the system that tracks the dynamical progress of the reaction. The use of
collective variables can allow for efficient evaluation of the reaction rate, but developing good
collective variables is not a trivial process. One methodology to verify the quality of collective
variables is the evaluation of the committor function, the probability that a trajectory starting
from some x will enter the product state before the reactant state. Good collective variables
will identify a transition state at which configurations have committor values dense around a
probability of 0.5. One can consider the committor function to be the ultimate collective
variable as it tracks the reaction progress exactly, but it is computationally expensive to
evaluate through naive evaluation by counting the number of trajectories starting from a
configuration that commits to the product state.

Recent work [8–10] has focused on an alternative approach to computing the committor
function. In these schemes, one uses a theoretical framework known as transition path theory
to establish a partial differential equation, the backward Kolmogorov equation, that the
committor function is a solution of. The Ritz method is then used to obtain the parameters of
a neural network representation of the committor function. In these prior works, importance
sampling is used to evaluate the needed integrals to perform the optimization in the Ritz
method. The needed integrals for optimization are also proportional to the reaction rate,
allowing for its evaluation. However, even with importance sampling, the evaluation of the
needed integrals is difficult and in most cases, one paradoxically needs a good collective
variable to perform adequate sampling. Reference [10] bypassed this issue using umbrella
sampling with respect to the neural network representation of the committor function,
providing a collective variable-free method to sample the transition pathway. To do so
requires judicious tuning of the umbrella sampling parameters in order to homogeneously
sample the transition pathway as the committor function can vary rapidly along it, and such
a process can be difficult and requires much tuning.

In this thesis, we improve upon the method in Ref. [10] by using supervised learning to
increase the accuracy of the neural network and the finite-temperature string method to
increase the accuracy of sampling. As the committor function can be obtained empirically
through running trajectories starting from a known configuration, we obtain these estimates
and use them as fitting data for the neural network representation of the committor function
in addition to applying the Ritz method to the backward Kolmogorov equation. The finite-
temperature string method, on the other hand, is a path-finding algorithm that obtains an
approximate transition pathway that bypasses sampling issues inherent to umbrella sampling,
and can be derived through transition path theory. We review transition-path theory and the
finite-temperature string method in Chapter 4. Chapter 5 reviews the algorithm of Ref. [10]
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along with our extensions. We test the algorithms on low-dimensional problems in which we
are able to evaluate the errors in both sampling and the neural network exactly, giving rise
to an error analysis in the sampling procedure that allows for the recovery of more accurate
reaction rate estimates. We then extend the method to a high-dimensional molecular system
in which a message-passing neural network is used to obtain both a collective-variable free
representation of the committor function and estimates of the reaction rate to high accuracy.
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Part A

Biological Membranes
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Chapter 2

Membrane Modeling

2.1 Introduction to Biological Membranes

Biological membranes serve as boundaries in both the cell and many of the organelles inside
the cell. They are composed of amphiphilic lipid molecules and proteins. While first described
as being composed of proteins randomly embedded inside the lipid bilayer per the fluid mosaic
model (see Fig. 2.1), this picture has been continuously refined with additional factors such
as lipid-lipid and lipid-protein interactions that drive membrane organization important in
many molecular phenomena [4, 11, 12]. These molecular phenomena include processes such as
cellular signaling [13, 14] and cellular trafficking [15–19], from which one hopes that modeling
their biophysical behavior can advance their understanding.

While biological membranes are composed of numerous types of lipid and protein species,
membrane systems have universal physical properties that can be utilized in their modeling.
The first of which is that biological membranes are elastic out-of-plane, producing resistance
to membrane deformations that produce curvature. Secondly, membranes are fluid in-plane,
leading to no resistance to shear and the free diffusion of individual molecules in the membrane.
These properties will be used to model membranes on length and time scales relevant to
larger-scale biological processes of interest.

Membrane modeling, at the time this thesis is written, is done typically at small length
scales corresponding to small membrane patches (O(10 nm)) or at large length scales matching
that of cells (O(10 µm)). At small length scales, individual lipid and protein molecules are
represented using molecular models that are simulated using molecular dynamics. While
capable of capturing local molecular features at either the atomistic [20–22] or coarse-grained
level [23–25], these methods are currently incapable of scaling to the large length and time
scales needed to model cellular behavior. On the other hand, continuum models can represent
the membrane as a two-dimensional surface and model its dynamics with phenomenological
models over large length and time scales [26–28]. However, these models typically do not
include thermal fluctuations which drive many molecular phenomena such as composition
dynamics.
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membrane proteins due to their transient interactions with membranes and their irrele-
vance to basic membrane nano-scale structure [3,15]. These membrane-associated proteins 
can include cytoskeletal and signaling structures at the inner cell membrane surface, or at 
the outer surface, they can include certain extracellular matrix and stromal components. 
Some cytoplasmic membrane-associated components are quite dynamic and can stabilize 
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they can also be involved in translocating membrane complexes via energy-dependent 
contracting movements, events that can eventually lead to cell polarity, endocytosis or 
other cellular processes. Membrane-associated proteins are especially important in main-
taining certain cellular activities, such as cell adhesion and motility, growth, endocytosis 
and other important cellular actions [3,4,15,18–22]. 
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Figure 1. The Singer–Nicolson Fluid–Mosaic Membrane Model of cell membrane structure as
proposed in 1972. In this view of a cell membrane, the solid bodies with stippled cut surfaces
represent globular integral membrane proteins randomly distributed in the plane of the membrane.
Some integral membrane proteins form specific integral protein complexes as shown in the figure.
Integral proteins are represented in a fluid lipid bilayer. The model does not contain other membrane-
associated structures or membrane domains (Modified from Singer and Nicolson [6]).

Cell membranes can be disturbed, distorted, deformed, compressed or expanded by
different forces, and diverse molecules can cause these physical perturbations [14–17]. For
example, certain peripheral membrane proteins can bind to and cause the deformation
of membranes by forming crescent-shaped, helical bundles that bind to membranes via
electrostatic and some hydrophobic forces, causing membrane curvature as a result of flex-
ing and bending membranes to fit these peripheral protein structures [16,17]. In contrast,
membrane-associated proteins, for the most part, act indirectly on membranes, usually
through intermediate protein or lipid attachments. Although some membrane-associated
proteins can be isolated with and loosely attached to cell membranes, they are not truly
membrane proteins due to their transient interactions with membranes and their irrele-
vance to basic membrane nano-scale structure [3,15]. These membrane-associated proteins
can include cytoskeletal and signaling structures at the inner cell membrane surface, or at
the outer surface, they can include certain extracellular matrix and stromal components.
Some cytoplasmic membrane-associated components are quite dynamic and can stabilize
or destabilize cellular membranes and connect to other intracellular structures and prevent
membrane components from undergoing rapid lateral movements. Alternatively, they
can also be involved in translocating membrane complexes via energy-dependent con-
tracting movements, events that can eventually lead to cell polarity, endocytosis or other
cellular processes. Membrane-associated proteins are especially important in maintaining
certain cellular activities, such as cell adhesion and motility, growth, endocytosis and other
important cellular actions [3,4,15,18–22].

2. Fluid–Mosaic Model of Membrane Structure

The most accepted rudimentary or nanometer scale model of cell membrane structure,
the Fluid–Mosaic Membrane Model, was first proposed in 1972 (Figure 1) [6]. Although
this is an oversimplified model that was never intended to explain all aspects of membrane
structure and dynamics, it was useful in describing some of the important elements of nano-
scale cell membrane architecture, continuity, cooperativity and asymmetry [6,9,13–25]. The
essential elements of the Fluid–Mosaic Membrane Model have proven to be remarkably
consistent with experimental results on the fundamental properties of biological mem-
branes, but it was inevitable that the original model could not explain all of the properties
of membrane structure and dynamics found in various cellular membranes [18–28]. For ex-
ample, the concept that membrane mosaic structures or membrane domains, such as lipid
rafts, as well as cell membrane-associated structures, such as actin-containing filaments,
microtubules and other structures, are important in controlling membrane properties and

Figure 2.1: The fluid mosaic model of a biological membrane, in which integral proteins
are randomly distributed in a disordered-liquid bilayer formed by lipids. Adapted from
G. L. Nicolson and G. Ferreira de Mattos, “A brief introduction to some aspects of the
fluid–mosaic model of cell membrane structure and its importance in membrane lipid
replacement”, Membranes 11, 10.3390/membranes11120947 (2021) licensed under CC BY
4.0 http://creativecommons.org/licenses/by/4.0/.

In Chapters 2 and 3, we will model biological membranes on length and time scales beyond
what can be done in standard molecular dynamics simulations and including thermal fluctua-
tions missing in standard continuum models. To do so, we will introduce a phenomenological
model of biological membranes that captures their in-plane fluidity and out-of-plane elasticity
in Section 2.2. This model will then be discretized in various forms on a triangulated surface
for use in Monte Carlo simulations in Section 2.3. The discretizations will then be tested in
Section 2.4 on two model problems, with the first testing the convergence properties of the
discretization on spheres and cylinders, and the second looking at the relation between the
height fluctuations of a planar periodic surface and the inputted membrane parameters.

2.2 Modeling Membranes on Long Length and Time
Scales

We are interested in modeling processes involving biological membranes that occur on relatively
long length and time scales. Lipid molecules and proteins can have important molecular
details essential to modeling some processes, but we consider large-scale processes in which we
utilize the separation of length scales between the thickness of the lipid bilayer, around 5 nm,
and the surface the bilayer spans, which can be micrometers. This disparity in length scales
allows for the modeling of membranes as a two-dimensional surface in three-dimensional
space. With this perspective, we model the energetics of this surface through its surface
invariants such as area and curvature, which are used in a way that respects the symmetries

https://doi.org/10.3390/membranes11120947
https://doi.org/10.3390/membranes11120947
http://creativecommons.org/licenses/by/4.0/
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and fundamental properties of the system as one does in a Landau expansion for a free energy
[29].

(a)
A practical guide to giant vesicles. Probing the membrane nanoregime via optical microscopy S1163

Figure 7. Snapshots of a budding vesicle (phase contrast microscopy). The vesicle has been
subjected to a solution of amphiphilic molecules (same as in figure 6 but at higher concentration)
which insert in the external leaflet of the membrane and induce a drastic increase in the spontaneous
curvature. The vesicle volume is osmotically stabilized and remains constant. The complete
budding event displayed in the snapshots takes place within about 5 s.

membrane leaflets through nanopores). Finally, a very slow relaxation process takes place with
characteristic time, τ3, of the order of 250 min. Presumably, this is the time needed to establish
the adsorption–desorption equilibrium between the internal leaflet of the vesicle membrane and
the encapsulated solution in the vesicle. The process establishes slowly, most probably because
the adsorption rate is much larger than the desorption rate (as demonstrated by τ1 and τ3).

A more dramatic manifestation of the change in the spontaneous curvature can be exhibited
in the evolution of the overall shape of the vesicle. For example, a prolate-to-oblate transition
provides evidence for a decrease in the spontaneous curvature, while the so-called vesicle
budding demonstrates an increase in the spontaneous curvature when the vesicle volume and
area are conserved; see figure 7. During budding, the vesicle expels a small satellite vesicle or
bud connected to the initial vesicle via a thin neck. In this case the spontaneous curvature of
the system can be determined from the size of the bud (Seifert et al 1991).

5. Phase transitions in lipid bilayers

5.1. Bending rigidity of membranes in the gel phase

In the gel phase, the bending rigidity of single component lipid membranes is significantly
larger than that of fluid membranes, and most of the classical methods for measuring κ

mentioned in the previous section cannot be applied. Recently a few new methods have been
developed for measuring the bending rigidity of membranes in the gel phase (Dimova et al
2000b, Lee et al 2001, Mecke et al 2003). For the first time the temperature dependence of κ of
a membrane in the gel phase was measured using optical dynamometry (Dimova et al 2000b,
Dimova and Pouligny 2006).

The method consists of attaching two latex microspheres of similar size to the (fluid) mem-
brane of a giant vesicle by means of two optical tweezers. When the bilayer is brought to the
gel phase, the particle motion is frozen. In typical experimental conditions the contact line
of the membrane on the bead is small and the particles are located more to the outside of the
vesicle (see figure 8(A)). Using two optical tweezers characterized by their trap stiffness, or the
trapping constant kRP, one applies a radiation pressure force, FRP, to displace one of these par-
ticles in the membrane plane by a mobile trap while holding the other one in the potential well
of an immobile or fixed trap. For particle–membrane configurations such as the one shown in
figure 8(A), the main membrane deformation caused by the particle’s displacement is bending
(see figure 8(C)). The experiment leads to measuring an apparent membrane spring constant,
kM (Dimova et al 2000b). The relation between kM and the membrane bending modulus, κ , is
given by the empirical expression kM

∼= 60κ/a2, where a is the particle radius (Dimova et al
2000b). The bending rigidity of the membrane in the gel phase deduced in this way shows a
considerable increase with lowering the temperature; see the open circles in figure 9. The data
are presented as a function of the reduced temperature, T − Tm, where Tm is the main phase

(b)

Figure 2.2: (a) Budding of a vesicle induced by insertion of amphiphilic molecules into the
external leaflet of a vesicle over the course of about 5 s, demonstrating the in-plane fluid
behavior of lipid membranes. Adapted from R. Dimova et al., “A practical guide to giant
vesicles. probing the membrane nanoregime via optical microscopy”, Journal of Physics:
Condensed Matter 18, S1151–S1176 (2006), reproduced with permission of IOP Publishing,
Ltd. in the format “Republish in a thesis/dissertation” via Copyright Clearance Center. (b)
Simulation snapshot of the Cooke-Kremer-Deserno model, a coarse-grained lipid model that
captures a lipid bilayer’s out-of-plane elastic behavior [23]. Rendered using Ovito [31].

With this model, we will capture the fundamental membrane properties of in-plane fluidity
and out-of-plane elasticity [27, 28]. The fluidity allows for molecular rearrangement in the
membrane, both at the scale of individual molecules through free diffusion and at the scale of
large-scale rearrangements such as budding (Fig. 2.2a). The elasticity, on the other hand, is
the primary source of the energetics with the membrane resisting deformations away from its
preferred curvature out-of-plane (Fig. 2.2b). We first focus on capturing the elastic energetics
and account for the fluidity in the subsequent numerical discretization.

The first elastic energy term is from the surface area A. Biological membranes, being
composed of amphiphilic materials, are capable of having a surface tension conjugate to
the surface area that can range from negligible values to values capable of rupturing the

https://doi.org/10.1088/0953-8984/18/28/s04
https://doi.org/10.1088/0953-8984/18/28/s04
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membrane [32]. It would seem sufficient to use a potential energy of the form

Vtension = γA , (2.2.1)

with γ being the surface tension. As previously mentioned, Eq. (2.2.1) can be interpreted
with γ serving as a conjugate variable to A. Additionally one can interpret γ as a Lagrange
multiplier that sets the area.

(a)

AV

(b)

A

Ap

Figure 2.3: (a) Example of a spherical system with area A and volume V . (b) Example of a
planar periodic system with area A and projected area Ap.

In the case of closed membrane surfaces and planar periodic membrane surfaces, there
are other surface invariants of the same order as the surface area. We first examine the
behavior of a lipid membrane enclosing a 3D surface, as shown in Fig. 2.3a. In this system,
one can consider the volume enclosed by the surface, V . The energy of the first order surface
invariants is then [33]

Vtension = γA−∆pV , (2.2.2)

where ∆p is the pressure difference between the inside and outside of the surface. The pressure
difference ∆p, similar to the surface tension γ, serves as a thermodynamic variable conjugate
to the enclosed volume. In the case of a planar periodic surface, as shown in Fig. 2.3b, an
equivalent term to ∆pV is needed of the form [33]

Vtension = γA− τAp , (2.2.3)

where τ is the frame tension and Ap is the projected area. Though γ is separate from τ
and p in the planar periodic and closed cases, respectively, they are related to each other by
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thermodynamic arguments [33]. In the case of a closed surface, this is through Laplace’s law

∆p = 2γ/Rc , (2.2.4)

where Rc is the effective radius of curvature given by 3V/A, and in the planar periodic case
γ and τ are related by

τ =
A

Ap

γ . (2.2.5)

For a taut membrane A ≈ Ap to a good approximation, which will be used throughout this
thesis.

Figure 2.4: The principle directions and normal associated at a point. The curvature
associated with principle direction X1 corresponds to the minimum normal curvature κ1
while the curvature associated with principle direction X2 corresponds to the maximum
normal curvature κ2. Adapted from Keenan Crane’s “Discrete Differential Geometry” [34].

The next contribution to the energy is composed of quantities involving the curvature
of the surface. As shown in Fig. 2.4 we associate to each point of the surface two principle
curvatures κ1 and κ2 that correspond to principle directions X1 and X2, respectively. The
principle directions correspond to the directions of minimal and maximal curvature of the
surface at that point. As the individual curvatures κ1 and κ2 are not invariant with respect to
rotations of the system, we compute quadratic quantities from κ1 and κ2 that are. One such
quantity is the square of the mean curvature given by H = 1

2
(κ1 + κ2), which can be shifted

by a spontaneous curvature term C to induce a preferred curvature. The other quantity is
the product of the principle curvatures yielding the Gaussian curvature K = κ1κ2. The use
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of these quantities yields the Helfrich energy [26] which has the form

Vb =

∫
da
[
kb(H − C)2 + kgK

]
, (2.2.6)

where kb is the bending rigidity, kg is the Gaussian modulus, and
∫
da indicates integration

over the surface. It is noted that ∫
da = A . (2.2.7)

For fixed surface topology the integral of K in Eq. (2.2.6) is constant by the Gauss-Bonnet
theorem [35, 36]. As we only consider surfaces with constant topology, the energy associated
with Gaussian curvature is fixed and hence we utilize a simpler potential energy for the rest
of this work of the form

Vb =

∫
da kb(H − C)2 . (2.2.8)

2.3 Discretizations of the Helfrich Model

Figure 2.5: Example of a triangulated surface. Note the varying number of edges per vertex.

Though the Helfrich model is amendable to analytical methods, we will be looking at
problems where computational methods are needed to compute quantities of interest. To
facilitate this, the Helfrich model is discretized on a surface triangulation (Fig. 2.5). In this
section, we introduce the methodology needed to evolve the membrane surface in a fluid
manner along with appropriate discretizations of the Helfrich model to include elasticity
Eq. (2.2.8).
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2.3.1 General Scheme on a Dynamically Triangulated Surface
Using Metropolis Monte Carlo

A surface, be it planar, cylindrical, spherical, etc., is discretized into a triangulated mesh
composed of vertices i, edges ij, and triangles ijk. An example of a vertex and its associated
edges and triangles is shown in Fig. 2.6a. Under most of these schemes, we discretize
Eqs. (2.2.3) and (2.2.8) for use on the triangulated surface to yield

Vmem =
∑

i

(
kb (Hi − Ci)

2 + γ
)
∆ai − τAp , (2.3.1)

where Hi, Ci, and ∆ai are the discrete mean curvature, spontaneous curvature, and discrete
area at a vertex, respectively. Vertices interact as hard spheres of diameter σ with all other
vertices to enforce self-avoidance and the edges have a maximum length of

√
2.8 σ to enforce

stability of the discretizations as will be discussed later [37, 38].
In order to evolve the triangulated surface and sample quantities of interest, we use

Metropolis Monte Carlo [39–41]. Metropolis Monte Carlo is a scheme in which a variety
of “moves” are used to evolve the system in a way that samples according to the system’s
underlying probability distribution. This is done by generating random moves on the system
that perform slight modifications on it, with the moves either being accepted or rejected
according to some criterion that is related to the system’s probability distribution. Denoting
the system’s state with Γ, containing the positions of the vertices xi and the triangulation T ,
and the probability distribution of the system as ρ (Γ), Metropolis Monte Carlo gives a mean
of evaluating the average of some quantity A with respect to ρ (Γ) by a finite sum computed
from samples obtained in simulation per

⟨A⟩ =
∫

dΓ ρ (Γ)A (Γ) ≈ 1

N

N∑

i=1

A (Γi) , (2.3.2)

where Γi are states generated through the Monte Carlo moves. This is done as Γ is typically
a high-dimensional space in which evaluation of the integral in Eq. (2.3.2) is not numerically
feasible using standard quadrature. Metropolis Monte Carlo is referred to as a form of
importance sampling with the moves allowing the sampling of Γ ∼ ρ (Γ) and hence observing
higher probability states more frequently that make larger contributions to the average in
Eq. (2.3.2).

With Metropolis Monte Carlo we assume the process is in equilibrium, ergodic, i.e. given
enough Monte Carlo moves all possible states will be explored, and the Monte Carlo moves
generate a Markov chain, i.e. the moves only depend on the state obtained by the last move
performed. We now demonstrate the construction of Monte Carlo moves and their generation
and acceptance that is adapted from standard references [39, 41]. We consider discrete states
Γν and Monte Carlo moves that generate transitions between two states ν and µ. Under the
assumptions of equilibrium behavior and ergodicity, the transition probability between states
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ν and µ denoted as Rνµ and equilibrium probabilities are related by
∑

ν

Rνµρν = ρµ ∀µ , (2.3.3)

where ρν = ρ(Γν). There are many possible choices of Rνµ that satisfy Eq. (2.3.3), but we
choose a relation between values of Rνµ that implies that system is microscopically reversible.
This is done as equilibrium systems do not have fluxes between states that drive the system.
Microscopic reversibility is obtained by setting the fluxes between states to be equal to yield

Rνµρν = Rµνρµ . (2.3.4)

Equation (2.3.4) satisfies Eq. (2.3.3) per
∑

ν

Rνµρν =
∑

ν

Rµνρµ = ρµ , (2.3.5)

with
∑

ν Rµν = 1 by definition of a transition probability.
We now specify the acceptance condition behind the Monte Carlo moves. To do so, the

transition probability is decomposed into two different components. This decomposition takes
the form

Rνµ = TνµAνµ , (2.3.6)

where Tνµ is the probability of generating a move from ν to µ and Aνµ is the probability of
accepting a move from state ν to µ. The microscopic reversibility condition of Eq. (2.3.4) is
rewritten as

Aνµ

Aµν

=
Tµνρµ
Tνµρν

. (2.3.7)

To proceed, note that the probability distributions typically are in the form of the Boltzmann
distribution in which [1]

ρν =
exp(−βVν)

Q
, (2.3.8)

Q =

∫
dΓ exp(−βV (Γ)) , (2.3.9)

where β = 1
kBT

, with kB being the Boltzmann constant, T is the temperature, and Q is the
(configurational) partition function. Given this form of probability, Eq. (2.3.7) becomes

Aνµ

Aµν

=
Tµν

Tνµ

exp(−β(Vµ − Vν)) . (2.3.10)

The form of the acceptance ratios is now constructed. As we wish to sample states that are
more statistically significant, moves are automatically accepted from µ to ν if the energy
is lowered, i.e. Vµ − Vν < 0, and to satisfy Eq. (2.3.10) we accept it with probability
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exp(−β(Vµ − Vν)) if Vµ − Vν > 0. On a computer, the probabilities are generated using
a pseudorandom number generator as a number between [0, 1) to decide acceptance. As
exp(−β(Vµ − Vν)) > 1 if Vµ − Vν < 0, the acceptance probability is given by

Aνµ = min[1,
Tµν

Tνµ

exp(−β(Vµ − Vν))] . (2.3.11)

The criterion given by Eq. (2.3.11) is known as the Metropolis criterion.
We use three Monte Carlo moves for the evolution of Γ, which modify either the positions

x or the triangulation T . The Monte Carlo moves incorporate the fluidity of the membrane
into this model, allowing for the free diffusion of vertices through dynamically triangulating
the surface [37, 42–44]. The Monte Carlo moves are as follows

1. Displacement : a vertex i is selected at random, and its position is displaced randomly
within a cube with sides spanning from −δ to δ in all directions (Fig. 2.6b). As the vertex
is selected at random and displaced by a random amount, the transition probabilities
are equal to each other. The acceptance probability factor in Eq. (2.3.11) is then
exp(−β (Vµ − Vν)). This move leads to vertices diffusing in the current triangulation.

2. Edge Flip: a vertex i is selected at random, from which an edge ij is randomly selected
out of all the edges vertex i is part of. As the surfaces we consider have no free edges,
each edge is part of two triangles. Denoting these triangles as ijk and ijl, the edge flip
move attempts to “flip” the edge ij to edge kl (Fig. 2.6c). The acceptance probability
factor is evaluated as follows. Selecting the edge ij occurs either through choosing
vertex i or j and then selecting edge ij out of all possible edges i or j are part of. The
same reasoning holds for selecting edge kl in the new triangulation generated by the
edge flip move, in which the number of edges vertices k and l have is one greater than
in the old triangulation. Denoting Ni as the number of edges vertex i is part of, the
transition probability factor is

Tµν

Tνµ

=
1
N

(
(Nk + 1)−1 + (Nl + 1)−1)

1
N

(
(Ni)

−1 + (Nj)
−1) =

(Nk + 1)−1 + (Nl + 1)−1

(Ni)
−1 + (Nj)

−1 . (2.3.12)

This move allows vertices to diffuse throughout the entire system by modifying the
triangulation, and also allows for large deformations that change the local connectivity
such as budding.

An additional constraint is used with this move to maintain the topology of the system
[37, 45]. The minimum number of triangles a vertex is a part of is set to be three, and
the maximum number of triangles a vertex is a part of is set to be nine. Violations of
these constraints lead to automatic rejection of the proposed move.

3. Box Resizing : in planar periodic systems we allow the projected area to change. To
do so we use a Monte Carlo move that resizes the box size in the x and y directions,
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(a)

∆ai

xi

(b)

x
′
i

(c)

xi

xk xj
xl

(d)

xi

Figure 2.6: A vertex in a triangulated system with its neighbors demonstrating the possible
Monte Carlo moves used to maintain the fluidity of the membrane. (a) A vertex i with
position xi, neighboring vertices, and vertex area ∆ai. (b) Displacement of xi to generate a
trial position x

′
i. (c) Edge flip performed on an edge containing vertex i to yield a new trial

triangulation, with the edge in red being flipped to the new edge kl. (d) Resizing of the
plane to generate a new trial area.
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given by Lx and Ly respectively, which is related to the projected area by Ap = LxLy.
Letting Γ contain all degrees of freedom aside from Lx and Ly, the partition function
at T , number of vertices N , γ, and τ is then evaluated by

Q(T,N, γ, τ) =

∫ ∞

0

∫
dAp dΓ exp(−βVmem) (2.3.13)

=

∫ ∞

0

dAp Q(T,N,Ap, γ, τ) , (2.3.14)

where Q(T,N,Ap, γ, τ) is the partition function at fixed projected area.
To evaluate the transition probabilities and for computational convenience we set
L = Lx = Ly and use L as a scaling factor for the x and y directions [39, 46–48]. This
scaling factor leads to the positions in the x, y, and z directions being stored as

sx,i =
xi

L
, (2.3.15)

sy,i =
yi
L
, (2.3.16)

sz,i = zi . (2.3.17)

The differential volume element, dx, can then be written in terms of ds as

dx = AN
p ds . (2.3.18)

The box resizing move modifies L by adding to it random number between −δLmax

to δLmax. While the change in L can be reversed with a move having an equal and
opposite displacement in L, the resizing move also maps dx to an element with a
different volume. Intuitively larger values of L generate dx with more possible states.
The ratio of the transition probabilities is then evaluated as the ratio of the volume
elements

Tµν

Tνµ

=
dxµ

dxν

=
V N
µ

V N
ν

=

(
Lµ

Lν

)2N

. (2.3.19)

The acceptance probability is written as

Aνµ = min[1,
Tµν

Tνµ

exp(−β(Vµ − Vν)] (2.3.20)

= min[1,

(
Lµ

Lν

)2N

exp [−β (Vµ − Vν)]] . (2.3.21)

The box resizing move has the effect of allowing vertices to flow in the direction of
large deformations. For example, in the case of bud formation vertices are able to move
inwards by reducing the projected area while keeping the surface area constant. This
move can be extended to closed systems by storing zi in the same manner as xi and yi,

where the factor of
(

Lµ

Lν

)2N
is now

(
Lµ

Lν

)3N
instead.
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In a typical Monte Carlo simulation, the displacement and edge flip moves are attempted
more frequently than the box resizing move due to the former moves changing only local
environments while the box resizing is a global move requiring a full revaluation of the energy.
We perform serial simulations with the frequency of a box resizing move being N−1

vertices and
the frequency of the displacement and edge flip moves being 1

2

(
1−N−1

vertices

)
each.

2.3.1.1 Parallel Monte Carlo
J.A. Anderson et al. / Journal of Computational Physics 254 (2013) 27–38 29

Fig. 2. (a) In massively parallel Monte Carlo (MPMC), trial moves are concurrently applied to particles in a subset of the cells. Moves that leave the cell
are rejected. (b) Selected cells are separated by one row or one column of inactive cells. During the evaluation of the acceptance criterion, each active cell
reads the particles in the eight neighboring inactive cells. (c) Simultaneous trial moves do not interact when the cell width is greater than the interaction
range σ .

a decomposition is not directly applicable to traditional MC because each trial move depends on the state of the neighboring
particles.

In MPMC, we utilize the cell list data structure for parallel decomposition, as well as overlap checks in the case of hard
particles. A checkerboard decomposition permits many cells to be updated independently [19]. Although similar to applying
trial moves to particles in a particular sequential order, checkerboard decomposition differs from the serial algorithm in one
key way. Particle positions, not labels (or indices), determine the order of updates, so the order will change as particles
migrate. Consequently, careless choices can lead to erroneous simulations. We prove that our implementation of MPMC
obeys detailed balance to ensure that no incorrect choices are made in its design.

2.1. Checkerboard decomposition

The checkerboard domain decomposition scheme [19,23] divides the simulation volume into sets of square (cubic) cells
(see Fig. 2). Checkerboarding maps well to MC simulations because it allows parallel updates of each set, comprising one
quarter (one eighth in three dimensions) of the simulation volume. The x and y coordinates of the cell (and z in three
dimensions) determine its checkerboard set Q ∈ {a,b, c,d, . . .}:

Q =

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

a if (x ∈ Even) and (y ∈ Even),

b if (x ∈ Odd) and (y ∈ Even),

c if (x ∈ Even) and (y ∈ Odd),

d if (x ∈ Odd) and (y ∈ Odd),

. . . . . . ,

(1)

where a,b, . . . indicate labels of checkerboard sets.
The width of the cell w must be chosen greater than the diameter of the disk σ (generally, the pair interaction cutoff).

At the minimum w = σ , two particles separated by one cell can move without interacting (see Fig. 2(c)). Thus, the moves
available to particles in a cell are independent from those in other cells of the same checkerboard set.

Most previous parallel MC simulations with mobile particles use stripe domain decomposition [24–26], a one-
dimensional version of the checkerboard decomposition, which minimizes the interface (and therefore communication)
between domains. However, the number of stripes and therefore the number of trial moves that can be conducted in paral-
lel is low. This means stripe decomposition is not efficient for parallelization on more than a few cores.

2.2. Sweep structure

Algorithm 1 outlines the structure of MPMC. It splits each sweep over cells into sub-sweeps (four in two dimensions,
eight in three dimensions), one handling each checkerboard set. Line 2 shuffles the order of checkerboard sets using Fisher-

Figure 2.7: The checkerboard scheme used in the parallelization of Monte Carlo for a
two-dimensional system. The domain is divided into four subdomains given by the abcd
labels, such that when Monte Carlo moves are applied to subdomains of one type the
inactive subdomains (in white) are large enough to make the active subdomains (in grey)
independent of each other. Vertices cannot leave the subdomains they started in (see top
left for an example) during the parallel move cycle. Reprinted from “Massively parallel
Monte Carlo for many-particle simulations on GPUs”, 254, J. A. Anderson et al., 27–38,
Copyright of Elsevier (2013), with permission from Elsevier [49]

To enhance the speed of sampling, a parallelization scheme is used to decompose the
simulation domain into regions that can be modified in parallel with Monte Carlo moves.
This scheme, termed checkerboard decomposition [49], does so by decomposing the simulation
domain into a set of subdomains (Fig. 2.7). The subdomains are sized such that a displacement
or edge flip move in subdomains of one type does not affect the energies of other subdomains
of the same type. To allow for the diffusion of vertices, the subdomain centers generated in
each checkerboard decomposition are chosen randomly. In planar periodic systems, four sets
of subdomains spanning the xy plane are used, while in spherical and cylindrical systems
eight sets of subdomains are used.
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In the parallel Monte Carlo simulation, we choose with equal frequency either the box-
resizing move or a parallel checkerboard move. Note that the box-resizing move is trivially
parallelizable with the needed energy evaluation. The parallel checkerboard move proceeds
by generating the subdomains and the modification order of the subdomains. For each set of
subdomains, Metropolis Monte Carlo is performed in parallel by selecting vertices at random
in the local subdomains and then selecting either a displacement or edge flip move with equal
frequency. In order to satisfy microscopic reversibility in a subdomain, displacement moves
are rejected if a vertex is moved out of the subdomain it originated in, as the vertex would
not be able to be moved back into the subdomain during the remaining moves on that type of
subdomain, and edge flip moves are rejected if the new edge contains vertices outside of the
current subdomain. This is done for some amount of Metropolis Monte Carlo moves, with an
average of 3 Monte Carlo moves per vertex in a subdomain. The Saru pseudorandom number
generator is used to generate uncorrelated random number streams in parallel during the
parallel checkerboard move [50, 51]. While the parallel checkerboard move does not satisfy
microscopic reversibility at the level of every single move inside of one parallel checkerboard
move, as a parallel checkerboard move could reverse the previous move exactly, i.e. by
choosing the order of subdomain types, move types, and vertices in the reverse order of the
previous move, microscopic reversibility is achieved at the level of full parallel checkerboard
moves.

2.3.2 Kantor-Nelson Model

We now consider different discretizations of Eq. (2.3.1). The first model we consider is that
of Kantor and Nelson, for which the bending energy is [52, 53]

Vb =
1

2
kb
∑

⟨α,β⟩
|nα − nβ|2 = k

∑

⟨α,β⟩
(1− nα · nβ) , (2.3.22)

where ⟨α, β⟩ indicates a sum over all neighboring triangles and nα is the normal of triangle
α. Note nα · nβ = cos (θe), where θe is the dihedral angle between the two triangles (see
Fig. 2.10(right)). The form involving the dihedral angle can incorporate spontaneous curvature
by use of a preferred angle term θ0 that yields [54]

∑

i

kc [1− cos (θi − θ0)] . (2.3.23)

This model is justified informally by the normal terms penalizing deviation from a flat plane,
and formally by nα − nβ being proportional to the gradient of the normal vector field which
can be shown to be equivalent to H2 − 2K [53].

The primary issue of this model is the dependence of Eq. (2.3.22) on the shape of the
modeled triangulated surface. It has been shown that a factor of 1√

3
for a triangulated sphere

and
√
3
2

for a triangulated cylinder is needed to match analytical values [38, 53]. Additionally,
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the model has a dependence on the Gaussian curvature of the surface [53], which will be
shown to lead to deviations between the analytical Helfrich bending energy and that obtained
from Eq. (2.3.22).

2.3.3 Gompper-Kroll Model

To rectify the shape dependence of Eq. (2.3.22), we evaluate Eq. (2.3.1) using linear finite
elements on the triangulated surface. We begin with the relation [36]

∆Sx = −2Hn , (2.3.24)

where ∆S is the surface Laplacian. If one can evaluate ∆Sx, the mean curvature can then be
evaluated per

H = −1

2
∆Sx · n . (2.3.25)

We evaluate ∆Sx on a triangulated surface using techniques from linear finite elements, and
use this framework to evaluate Hi and ∆ai in Eq. (2.3.1). This model was first proposed by
Gompper and Kroll [38], though we note in its original context Hi and ∆ai were obtained
using different techniques from random geometry theory [55]. The following proof is adapted
from various references in the discrete differential geometry community [34, 56], along with
ideas from the finite element community [57, 58].

To begin, we note that if the mapping for the surface x is sufficiently differentiable ∆Sx
can be obtained directly. However, such a surface is computationally difficult due to the
number of degrees of freedom required for this differentiability [57]. We instead demonstrate
how the value of the surface Laplacian at a vertex can be obtained using a technique known
as projection. This is done by evaluating some linear function g that is set equal to ∆Sx at
all points such that

∆Sx = g . (2.3.26)

We proceed by multiplying with an admissible test function v and integrate over the surface
to yield ∫

da ∆Sx · v =

∫
da g · v . (2.3.27)

As v can take any form, including one where it is nonzero for only one spatial direction, we
use a simplified single-direction version of Eq. (2.3.27)

∫
da ∆Sxv =

∫
da gv , (2.3.28)

and generalize to all directions afterward. Integrating Eq. (2.3.28) by parts, approximating
the surface Laplacian with the regular Laplacian, and noting that the boundaries are either
periodic or closed yields

−
∫

da ∇x · ∇v =

∫
da gv . (2.3.29)
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Equation (2.3.29) is known as the weak formulation, in which we will seek a function g that
satisfies the integral equation of Eq. (2.3.29) instead of the differential equation per the strong
formulation of Eq. (2.3.26). This methodology in conjunction with setting x, g, and v to a
function space is known as projection in which the obtained g is the orthogonal projection of
∆Sx onto the function space g is on [58].

We now represent x, g, and v with continuous piecewise linear basis functions to yield
a computational framework to evaluate g numerically. Note that in this function space the
surface Laplacian is equivalent to the Laplacian [59]. The basis functions hi are constructed
such that they are equal to 1 at vertex i and go to zero on the edges opposite vertex i. Given
the value of x and g at the vertices are xi and gi, respectively, the linear approximation of x
and g has the form

x =
∑

i

xihi(x) , (2.3.30)

g =
∑

i

gihi(x) . (2.3.31)

The function v can be written as any linear combination of basis functions hj(x), and for
simplicity we set v = hi(x) for some index i. For the integral of gv in Eq. (2.3.29), this yields
the linear system

∫
da gv =

∫
da

(∑

j

gjhj(x)

)
hi(x) =

∑

j

gj

∫
da hi(x)hj(x) , (2.3.32)

and for the integral of ∇x · ∇v in Eq. (2.3.29), this yields the linear system
∫

da ∇x · ∇v =

∫
da

(∑

j

xj∇hj(x)

)
· ∇hi(x) =

∑

j

xj

∫
da ∇hi(x) · ∇hj(x) . (2.3.33)

Denoting the integrals of the basis functions in Eqs. (2.3.32) and (2.3.33) as

Aij =

∫
da ∇hi(x) · ∇hj(x) , (2.3.34)

Bij =

∫
da hi(x)hj(x) , (2.3.35)

one arrives at the linear equation
−Ax̂ = Bĝ , (2.3.36)

where x̂ and ĝ are vectors containing the coefficients xi and gi, respectively. Obtaining ĝ
yields the value of the surface Laplacian at each vertex and hence the mean curvature at a
vertex.

We now obtain Aij through the properties of linear basis functions and trigonometry. We
focus on a triangle lmn (Fig. 2.8a), and will establish general properties that hold for the
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Figure 2.8: Various figures to clarify the evaluation of Aij . (a) A triangle lmn. (b) The
angle of ∇hl relative to θm. (c) The height h of the triangle with edge mn as the base b.
(d) The relevant quantities for evaluating Aii. (e) The relevant quantities for evaluating Aij .
(f) Circumcenter and the angles associated with the perpendicular bisectors.
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linear interpolation of any function f(x). On this triangle the linear interpolation of f(x) is
given by

f(x) = f(xl)hl(x) + f(xm)hm(x) + f(xn)hn(x) , (2.3.37)

and setting f(x) = 1 yields the identity

hl(x) + hm(x) + hn(x) = 1 . (2.3.38)

Evaluating the gradient of Eq. (2.3.37) yields, noting that as the basis functions are linear
their gradients are constant

∇f(x) = (fl − fn)∇hl + (fm − fn)∇hn , (2.3.39)

where we have used the identity that ∇hn = −∇hl − ∇hm from Eq. (2.3.38). To find an
analytical form of the basis function gradients, we note that for basis function hl(x) that
hl(xl) = 1, hl(xm) = 0, and hl(xn) = 0. Hence the Taylor series of hl(x) about xm and xn

gives for the edges lm, ln, and nm

∇hl · (xl − xm) = 1 , (2.3.40)
∇hl · (xl − xn) = 1 , (2.3.41)
∇hl · (xn − xm) = 0 . (2.3.42)

Equation (2.3.42) specifies the direction of ∇hl to be orthogonal to xn − xm, which is found
by rotating xn−xm ninety degrees counterclockwise. This direction is denoted as (xn−xm)

⊥.
The magnitude is found from Eq. (2.3.40), which from the dot product (Fig. 2.8b)

1 = ∇hl · (xl − xm) = ∥hl∥∥xl − xm∥ cos
(π
2
− θm

)
. (2.3.43)

Denoting ∥xl − xm∥ as ℓlm, application of a trigonometric identity and rearrangement of
Eq. (2.3.43) to find ∥∇hl∥ yields

∥∇hl∥ =
1

ℓlm sin θm
=

1

h
, (2.3.44)

where h is the height of the triangle lmn if edge mn is taken as the base b (Fig. 2.8c). As the
area of triangle lmn is

Almn =
1

2
ℓmnh , (2.3.45)

the gradient ∇hl is then

∇hl =
1

2Almn

(xn − xm)
⊥ . (2.3.46)

Having obtained the gradients ∇hl, the entries of Aij can now be evaluated. To begin
the contribution of basis function ∇hi with itself to Aii are evaluated. Looking at the
contributions on a single triangle that contains vertex i yields

∫

triangle ijk

da ∇hi · ∇hi = Aijk∥∇hi∥2 =
Aijk

h2
=

ℓjk
2h

. (2.3.47)
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For computational convenience, Eq. (2.3.47) is rewritten in terms of cotangents inside triangle
ijk. To do so, we note that the edge jk can be divided by a perpendicular line originating
from vertex i (Fig. 2.8d). This divides ℓjk into lengths b1 and b2. Denoting the angle of vertex
j as θ1 and the angle of vertex k as θ2, we obtain

ℓjk = h
b1 + b2

h
= h cot θ1 + h cot θ2 . (2.3.48)

Substitution of Eq. (2.3.48) into Eq. (2.3.47) yields
∫

triangle ijk

da ∇hi · ∇hi =
1

2
(cot θ1 + cot θ2) . (2.3.49)

We proceed to evaluate the contribution of ∇hi with ∇hj for i ̸= j on triangle ijk. Use
of Eq. (2.3.46) obtains

∫

triangle ijk

da ∇hi · ∇hj =
1

4Aijk

(xj − xk)
⊥ · (xk − xi)

⊥ . (2.3.50)

We label the angles associated with vertices i, j, and k as α, β, and θ, respectively (Fig. 2.8e).
Expanding the dot product, setting the base to be edge ij with associated height h, and use
of trigonometric relations yields

∫

triangle ijk

da ∇hi · ∇hj = −
1

4Aijk

∥(xj − xk)
⊥∥∥(xk − xi)

⊥∥ cos θ (2.3.51)

= − 1

2bh

h

sin β

h

sinα
cos θ (2.3.52)

= −1

2

h cos θ

(h cotα + h cot β) sinα sin β
(2.3.53)

= −1

2

cos θ

cosα sin β + cos β sinα
(2.3.54)

= −1

2
cot θ . (2.3.55)

We evaluate the entries of Aij by computing Eqs. (2.3.49) and (2.3.55) on all triangles
sharing vertices i and j. To conclude, for Aii we obtain

Aii =

∫

triangles with vertex i

da ∇hi · ∇hi =
∑

j(i)

1

2
(cot θ1 + cot θ2) , (2.3.56)

where j(i) is a summation over all vertices j that share an edge with i, and θ1 and θ2 are the
angles opposite edge ij, and for Aij we obtain

Aij =

∫

triangles with vertices i,j

da ∇hi · ∇hj = −
1

2
(cot θ1 + cot θ2) . (2.3.57)
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Setting y = Ax̂ yields for y

yi =
∑

j(i)

1

2
(xi − xj)(cot θ1 + cot θ2) . (2.3.58)

The values of Bij are obtained by direct computation. This is done by evaluating the
integral of hihj using an isoparametric mapping on which the integral is evaluated on a
simplified space that is mapped to the true domain using the Jacobian of the mapping [57].
The reference space is taken to be a triangle with vertices 1, 2, and 3 where

x1 = [0, 0, 0]⊺ , (2.3.59)
x2 = [1, 0, 0]⊺ , (2.3.60)
x3 = [0, 1, 0]⊺ . (2.3.61)

On this triangle the basis function for h1(x) associated with vertex 1 and h2(x) associated
with vertex 2 are

h1(x) = 1− x− y , (2.3.62)
h2(x) = x . (2.3.63)

The relevant integrals for Bij are evaluated to obtain
∫

triangle 123

da h2
1(x) =

∫ 1

0

∫ 1−x

0

dy dx (1− x− y)2 =
1

12
, (2.3.64)

∫

triangle 123

da h1(x)h2(x) =

∫ 1

0

∫ 1−x

0

dy dx (1− x− y)x =
1

24
. (2.3.65)

To apply these results to general vertices i, j, k, we use the parameterization

x(u, v) = xi + (xj − xi)u+ (xk − xi)v , (2.3.66)

where 0 ≤ u, v, 1 − u − v ≤ 1, which corresponds in u, v space to the vertices specified by
Eqs. (2.3.59)–(2.3.61). Equation (2.3.66) is used to evaluate the needed integral for Bij

through change of variables, which yields for a general function f(x) [60]
∫

triangle ijk

da f(x) =

∫

triangle 123

du dv f(u, v)∥N(u, v)∥ , (2.3.67)

where N is the normal to the tangents of x(u, v) evaluated through

N(u, v) = ∂ux(u, v)× ∂vx(u, v) = (xj − xi)× (xk − xi) . (2.3.68)
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As ∥N(u, v)∥ = 2Aijk, Eq. (2.3.67) yields the generalizations of Eqs. (2.3.64) and (2.3.65) for
any triangle ijk

∫

triangle ijk

da h2
i (x) =

Aijk

6
, (2.3.69)

∫

triangle ijk

da hi(x)hj(x) =
Aijk

12
. (2.3.70)

One evaluates Bij using Eqs. (2.3.69) and (2.3.70) to yield

Bii =
∑

T (i)

1

6
Aij′k′ , (2.3.71)

Bij =
∑

T (i,j)

1

12
Aijk′ , (2.3.72)

where T (i) and T (i, j) are the sets of triangles containing vertex i and triangles containing
edge ij, respectively. Using the identity that

∑
i hi(x) = 1 for all x, the Bij factors yield the

surface area of the triangulation per
∫

da 1 =

∫
da
∑

j

hj (2.3.73)

=

∫
da
∑

j

hj

(∑

i

hi

)
(2.3.74)

=

∫
da
∑

ij

Bij = 1⊺B1 = A . (2.3.75)

Having schemes to compute A and B, one obtains the vertex-wise surface Laplacian by
inverting B in Eq. (2.3.36) to yield ĝ. However, the inversion of a matrix is a computationally
costly operation that scales cubically with the number of vertices and makes the vertex-wise
surface Laplacian a non-local operator due to the inverse matrix of B being dense [61].
However, the inversion of a matrix is a computationally costly operation that scales cubically
with the number of vertices, and as the inverse matrix of B is dense [61] the vertex-wise
surface Laplacian is non-local. To construct a vertex-wise surface Laplacian that depends
only on vertices that share an edge with vertex i, we use a lumping procedure to approximate
B with a diagonal matrix C [62]. In the lumping procedure, the diagonals of the new matrix
C correspond to the area associated with vertex i. Multiple choices for the areas are possible,
but due to the evaluation of Aij using many terms that serve useful in the following derivation,
we will evaluate C using the Voronoi cell areas constructed from the circumcenters of the
triangles (see Fig. 2.9a) [59].

To proceed, one uses the property that the perpendicular bisectors of each edge of a
triangle yield the Voronoi center [63]. Drawing lines from the vertices to the circumcenter,
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operator for the surface S. Note that in the remainder of this paper we
will make no distinction between an operator and the value of this operator
at a point as it will be clear from context. Gaussian curvature can also be
expressed as a limit:

κG = lim
diam(A)→0

AG

A (3)

where AG is the area of the image of the Gauss map (also called the spherical
image) associated with the infinitesimal surface A. The above definitions, as
well as many more details, can be found in various sources on Differential
Geometry [Gra98, DHKW92].
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Fig. 2. Local regions: (a) an infinitesimal neighborhood on a continuous surface
patch; (b) a finite-volume region on a triangulated surface using Voronoi cells, or
(c) Barycentric cells.

2.2 Discrete Properties as Spatial Averages

Most of the smooth definitions described above need to be reformulated for C0

surfaces. We can consider a mesh as either the limit of a family of smooth sur-
faces, or as a linear (yet assumedly “good”) approximation of an arbitrary
surface. We define properties (geometric quantities) of the surface at each
vertex as spatial averages around this vertex. If these averages are made con-
sistently, and given a few assumptions such as non-degeneracy of the triangle
mesh, a property at a given vertex will converge to the pointwise definition
as the local sampling increases. Thus, by using these spatial averages, we ex-
tend the definition of curvature or normal vector from the continuous case to
discrete meshes. Moreover, this definition is appropriate when, for example,
geometric flows must be integrated over time on a mesh as a vertex will be
updated according to the average behavior of the surface around it. There-
fore, the piecewise linear result of the flow will be a correct approximation of
the smoothed surface if the initial triangle mesh was a good approximation
of the initial surface. Since we make no assumption on the smoothness of the
surface, we will restrict the average to be within the immediately neighboring
triangles, often referred as the 1-ring or star neighborhood. For example, we
define the discrete Gaussian curvature, κ̂G, at a vertex P as:

(b)

Discrete Differential-Geometry Operators for Triangulated 2-Manifolds 5

operator for the surface S. Note that in the remainder of this paper we
will make no distinction between an operator and the value of this operator
at a point as it will be clear from context. Gaussian curvature can also be
expressed as a limit:

κG = lim
diam(A)→0

AG

A (3)

where AG is the area of the image of the Gauss map (also called the spherical
image) associated with the infinitesimal surface A. The above definitions, as
well as many more details, can be found in various sources on Differential
Geometry [Gra98, DHKW92].

n

1e1 
e2 2

(a) (b) (c)
Fig. 2. Local regions: (a) an infinitesimal neighborhood on a continuous surface
patch; (b) a finite-volume region on a triangulated surface using Voronoi cells, or
(c) Barycentric cells.

2.2 Discrete Properties as Spatial Averages

Most of the smooth definitions described above need to be reformulated for C0

surfaces. We can consider a mesh as either the limit of a family of smooth sur-
faces, or as a linear (yet assumedly “good”) approximation of an arbitrary
surface. We define properties (geometric quantities) of the surface at each
vertex as spatial averages around this vertex. If these averages are made con-
sistently, and given a few assumptions such as non-degeneracy of the triangle
mesh, a property at a given vertex will converge to the pointwise definition
as the local sampling increases. Thus, by using these spatial averages, we ex-
tend the definition of curvature or normal vector from the continuous case to
discrete meshes. Moreover, this definition is appropriate when, for example,
geometric flows must be integrated over time on a mesh as a vertex will be
updated according to the average behavior of the surface around it. There-
fore, the piecewise linear result of the flow will be a correct approximation of
the smoothed surface if the initial triangle mesh was a good approximation
of the initial surface. Since we make no assumption on the smoothness of the
surface, we will restrict the average to be within the immediately neighboring
triangles, often referred as the 1-ring or star neighborhood. For example, we
define the discrete Gaussian curvature, κ̂G, at a vertex P as:

Figure 2.9: Examples of the Voronoi and barycentric cell constructions. Reprinted/adapted
by permission from Springer Nature Customer Service Centre GmbH: Springer Nature,
“Discrete Differential-Geometry Operators for Triangulated 2-Manifolds” Mark Meyer et
al., Copyright Springer-Verlag Berlin Heidelberg (2003) [59]. (a) The Voronoi cell around
a vertex, formed from the circumcenters of the triangles that vertex is part of. (b) The
barycentric cell around a vertex, formed from the centroids of the triangles that vertex is
part of.

three triangles are generated (Fig. 2.8f). The angles of these subtriangles are related to that
of triangle ijk by

∠i = a+ b , (2.3.76)
∠j = a+ c , (2.3.77)
∠k = b+ c . (2.3.78)

The angles a, b, and c satisfy the relation

a+ b+ c =
π

2
, (2.3.79)

which is used with Eqs. (2.3.77) and (2.3.78) to obtain

a =
π

2
− ∠k , (2.3.80)

b =
π

2
− ∠j . (2.3.81)
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To find the area associated with vertex i in triangle ijk, we find the subareas associated with
angle a and b. The subarea associated with angle b, Ab, is

Ab =
1

2

ℓik
2

ℓik
2

tan
(π
2
− ∠j

)
=

ℓ2ik
8

cot∠j , (2.3.82)

where the subarea associated with angle a, Aa, is found similarly. We obtain the area
associated with vertex i in triangle ijk by summing over all triangles vertex i is part of to
yield

Ci =
1

8

∑

j(i)

ℓ2ij (cot θ1 + cot θ2) . (2.3.83)

Approximating B as C, the component-wise surface Laplacian ĝ is

gi =

∑
j(i)

1
2
(xj − xi) (cot θ1 + cot θ2)

1
8

∑
j(i) ℓ

2
ij(cot θ1 + cot θ2)

. (2.3.84)

Defining the cotangent dependent terms as

σij =
lij
2
(cot (θ1) + cot (θ2)) , (2.3.85)

∆ai = σi =
1

4

∑

j(i)

lijσij , (2.3.86)

one obtains for gi

gi =
1

σi

∑

j(i)

σij

ℓij
(xj − xi) . (2.3.87)

As Eq. (2.3.87) holds for any spatial dimensions, its extension to three dimensional space
yields for the surface Laplacian at xi

g(xi) =
1

σi

∑

j(i)

σij

ℓij
(xj − xi) . (2.3.88)

Substitution of Eq. (2.3.88) into Eq. (2.3.25) obtains the vertex-wise mean curvature as

Hi =
1

2


 1

σi

∑

j(i)

σij

ℓij
(xi − xj)


 · ni , (2.3.89)

where ni is the vertex-wise surface normal. The vertex-wise surface normal is evaluated as
the area-weighted average of all triangle normals that vertex i is on to yield

ni =

∑
T (i) Aij′k′nij′k′∑

T (i) Aij′k′
. (2.3.90)
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Other choices of vertex-wise surface normals are possible, but the area-weighted average
is used as it provides both good speed and accuracy [56]. Equations (2.3.86) and (2.3.89)
constitute the terms used in the discrete Helfrich model Eq. (2.3.1) for the Gompper-Kroll
model [38].

We now discuss the use of a maximum edge length of
√
2.8 σ. This condition along with

the hard sphere conditions sets the maximum angle obtainable on the triangles to be 104
degrees [38]. Obtuse angles can cause σij to be negative per Eq. (2.3.85) σij, and the sum of
both positive and negative σij can yield σi ≤ 0. As the overall energy given by the sum of
σiH

2
i terms scales inversely with σi, values of σi = 0 causes the Gompper-Kroll model to be

numerically unstable. This is hence avoided by the use of hard spheres and maximum edge
length constraints which limit the obtuseness of the triangles.

Using the σij and σi terms Eq. (2.3.22) can be made shape-independent. This yields [38]

Vb =
1

2
kb
∑

i

∑

j(i)

lij
σij

(nijk − nijl)
2 , (2.3.91)

where ijk and ijl are the two triangles that share edge ij. While this corrects for the shape-
dependent issues in Eq. (2.3.22), it is possible that σij ≈ 0 which leads to this discretization
being numerically unstable. Note that the prefactor of

√
3
2

needed for use of Eq. (2.3.22) on a
cylinder can be recovered from Eq. (2.3.91) by assuming that all triangles are equilateral.
Under this assumption σij =

1√
3
lij, and hence

Vb =
1

2
k

′
b

∑

i

∑

j(i)

√
3 (nijk − nijk)

2 =

√
3

2
k

′
b

∑

⟨α,β⟩
(1− nα · nβ) , (2.3.92)

as wanted.

2.3.4 Jülicher Model

We will now consider a shape-independent discretization of Eq. (2.3.1) that relies on the
dihedral angles of the triangles. This model, the Jülicher model, was first derived by Jülicher
[65] and then discussed in more detail by Atilgan and Sun [64]. The curvature at vertex i in
this model is given by

Hi =
1

2∆ai

∑

j(i)

[
tan

(
θij
2

)
+ sin

(
θij
2

)]
ℓij
2

, (2.3.93)

where ∆ai is given by the barycentric cell area (see Fig. 2.9b), which is obtained as

∆ai =
1

3

∑

T (i)

Aij′k′ , (2.3.94)

and θij is the dihedral angle across edge ij.
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with protein conformational fluctuations. In this work, we
take Ks=200kBT, modeling a relatively rigid protein. At zero
temperature, the midplane surface becomes an equilateral
hexagonal pyramid defined by angle �0. Geometry gives
�0=2 sin−1�cos��0� /2�. Therefore, the parameter �0 and
equilibrium edge length b together with the stiffness con-
stant, Ks, are the minimum parameters needed to define the
energy associated with a protein vertex. The total protein
energy is the sum of all protein vertices: Ep=
i=1

np Ep
�i�.

Each membrane vertex is associated with an area indi-
cated by dashed lines in Fig. 1. The dashed line bisects an
edge if the edge connects to another membrane vertex �ver-
tex 2 in the figure�. If the edge is between a membrane vertex
and a protein vertex, then the area is defined by taking into
account the protein geometry around the protein vertex. In
Fig. 1, the vertex marked by number 3 exemplifies such a
situation. Note the difference between the areas around
points 2 and 3. After these definitions, the elastic energy of
the membrane area around vertex i, or a discretized version
of the Helfrich-Canham model, can be written as

Em
�i� = �2�Hi

2 + �̄Ki�ai + Es
�i�,

Hi =
1

2ai



j
�tan��ij

2
� + sin��ij

2
�	lij� ,

Ki =
1

ai
�2� − 


j

�ij� ,

lij� = lij/2 if j connects to a membrane vertex, �4�

lij� = lij −
d

cos �0
if j connects to a protein vertex,

Es
�i� = ��ai − a0

a0
�2

if system is closed,

Es
�i� = �ai if connected to reservoir, �5�

where ai is the area associated with each membrane vertex.
lij is the length of the edge connecting the ith vertex to its
neighboring jth vertex. �ij is the angle between triangles
sharing the edge lij. In the case of a vesicle, the bending
direction is determined by a vector going from the inside to
the outside of the vesicle: �ij is positive if bending is towards
the outside. In the case of a flat membrane, the z axis of a
laboratory frame determines the direction of bending. In ad-
dition to bending energies, Es

�i� is added to account for
stretching and surface area changes: a0 is the area of the
equilibrium triangle and � is the stretching modulus for de-
formations that change the area. In our model, the parameter
� is adjusted so that the total membrane surface area, 
iai,
fluctuates around the equilibrium value by 1%. If the mem-
brane is not in a closed system but connected to a large lipid
reservoir such as in a cell, the stretching energy is replaced
by Eq. �5� where, in this case, � plays the role of a chemical
potential that is held constant.

The average mean curvature, Hi, is defined over the dis-
crete area elements ai and can be expressed as

Hi =
1

ai
�

ai

c1 + c2

2
dS . �6�

If we partition the surface �Fig. 2� into stripes with width x
and flat triangles spanning between the stripes, the total
mean curvature integral is simply a sum over the mean cur-
vatures of the stripes only �curvatures of flat triangles are
zero�. Hence, the above integral becomes

Hi = lim
x→0

1

ai



j
�

lij�

c1 + c2

2
2xdlij� �7�

where the sum is over all edges connected to vertex i. Along
a stripe, one of the principle curvatures is zero, say, c2=0.
The other curvature, c1, can be approximated as the average
curvature of inner and outer circular arcs tangent to the stripe
surface, or c1= �1/�1+1/�2� /2. By geometry, c1

= �tan��ij /2�+sin��ij /2�� /2. If we insert this expression for
c1 into above equation, we obtain

Hi = lim
x→0

1

ai



j
�

lij�

tan��ij/2� + sin��ij/2�
4x

2xdlij� �8�

which gives Eq. �4�. If �ij is small, Hi��1/2ai�
 j�ijlij� . Deri-
vation of Gaussian curvature term, Ki, is obtained using the
Gauss-Bonnet theorem.25 Again, the total membrane energy
Em is obtained by summing over membrane vertices: Em

=
i=1
nm Em

�i�.

III. JUSTIFICATION OF THE MODEL
AND COMPUTATION OF FREE ENERGIES

In this section, we examine a simple system, namely, a
single protein embedded in a flat infinitely large membrane.
Using the small deformation approximation, analytic results
for the membrane shape and energy changes are available.36

Here, we attempt to justify our model by comparing the ana-
lytic results with model predictions. This simple system al-
lows us to compute the effects of fluctuations and introduce a
methodology to compute protein solvation energy.

For a rigid protein with geometry �0 embedded in a
plane membrane, the system is cylindrically symmetric.
Small deformation approximation and mechanical equilib-
rium give the energy cost of deforming the membrane by the
protein as

FIG. 2. Definition of the mean curvature in the discrete model. x is the
width of a thin stripe around the edge lij. Mean curvature is obtained by
averaging 1/�1 and 1/�2 �see text�.

095102-3 Vesicle fusion and fission J. Chem. Phys. 126, 095102 �2007�

Figure 2.10: Integration setup to derive the Jülicher model. (Left) The triangulation about
a vertex i with edge ij, and the thin stripes of width x that the integration is performed on.
(Right) The short and long components of the principle direction perpendicular to the edge
ij. Reprinted from E. Atilgan and S. X. Sun, “Shape transitions in lipid membranes and
protein mediated vesicle fusion and fission”, The Journal of Chemical Physics 126, 03B604
(2007), with the permission of AIP Publishing [64].

To obtain Eq. (2.3.93) we will evaluate the mean curvature of each vertex about its
barycentric cell area. This is evaluated as

Hi =
1

∆ai

∫

∆ai

da
κ1 + κ2

2
. (2.3.95)

On a triangulated surface, we select the principle directions to be along the edge ij and
the direction perpendicular to the edge ij. Integration of Eq. (2.3.95) is 0 on much of the
triangulated surface as it is flat. The parts of the triangle that have a nonzero contribution to
Eq. (2.3.95) are the edges, which we target by integrating about them with an infinitesimal
width x (Fig. 2.10(left)). The integration in Eq. (2.3.95) is then evaluated as

Hi = lim
x→0

1

∆ai

∫

1
2
ℓij

2x dℓij
κ1 + κ2

2
. (2.3.96)

The curvature along the first principle direction, κ1, is 0 due to the edge being flat. The
curvature along the second principle direction, κ2, is related to the dihedral angle of edge

https://doi.org/10.1063/1.2483862
https://doi.org/10.1063/1.2483862
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ij (Fig. 2.10(right)). This contribution is approximated as two parts, with a longer inner
contribution ρ1 and a shorter outer contribution ρ2. These terms can be evaluated using
trigonometry to yield for κ1

ρ1 =
x

sin
θij
2

, (2.3.97)

ρ2 =
x

tan
θij
2

, (2.3.98)

κ1 =
1

2

(
ρ−1
1 + ρ−1

2

)
. (2.3.99)

Substitution of Eqs. (2.3.97)–(2.3.99) into Eq. (2.3.96) yields Eq. (2.3.93).

2.4 Testings of the Discretizations

We now test the various discretizations of the Helfrich model on two separate model problems.
The first problem is a convergence study of the area and bending energy on a cylinder and a
sphere. The second problem will look at the height fluctuations of a planar periodic surface,
where tools from statistical mechanics will be used to relate the height fluctuations to a
measure of the bending rigidity and surface tension. The second study will also look at the
interconnection between different area ensembles, the surface tension, and the frame tension,
and see what contributes to the fluctuating surface tension that is measured from the height
fluctuations.

2.4.1 Energies of Cylinders and Spheres

We now evaluate the bending energy and area expressions of the Kantor-Nelson, Gompper-
Kroll, and Jülicher model on triangulations of cylinders and spheres for which analytical
results can be computed. For a cylinder, the area and bending energy are given by

Acylinder = 2πRL , (2.4.1)

Vb,cylinder =

∫
da kbH

2 =

∫
da kb(

1

2R
)2 =

πkbL

2R
, (2.4.2)

where R and L are the radius and length of the cylinder, respectively. For a sphere, the area
and bending energy are given by

Asphere = 4πR2 , (2.4.3)

Vb,sphere =

∫
da kbH

2 =

∫
da kb(

1

R
)2 = 4πkb , (2.4.4)

where R is the radius of the sphere.
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(a) (b)

(c)

Figure 2.11: (a) Lengthwise-view of a triangulation of a cylinder with 196 vertices. (b)
Radialwise-view of a triangulation of a cylinder with 196 vertices. (c) View of a triangulation
of a sphere with 162 vertices.

The triangulation of a cylinder is generated with NL vertices in the length direction
(Fig. 2.11a) and NR vertices in the radial direction (Fig. 2.11b). Equilateral triangles are
created using alternating radial spacings of vertices in the length direction. To do so, we
index a vertex in the length and radial-wise directions with indices i and j, respectively, to
yield the total index as n = j + iNR. The coordinates of vertex n are then given by

xn = L
i

NL

, (2.4.5)

yn = R cos

(
2π

j + ωj

NR

)
, (2.4.6)

zn = R sin

(
2π

j + ωj

NR

)
, (2.4.7)

where ωj is 0.25 for i even and 0.75 for i odd.
The triangulation of a sphere is generated using Loop subdivision [66]. In this scheme,

an initial coarse triangulation on an icosahedron is refined to yield finer triangulations by
iteratively subdividing the triangles. The subdivision occurs by introducing the midpoints of
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each triangle as new vertices. Connecting the new vertices into new triangles generates 3
additional triangles per original triangle. The spherical shape is maintained by projecting
the position of the vertices onto that of a sphere, yielding triangulations such as that of
Fig. 2.11c. As we initialize the spherical triangulation from an icosahedron, each triangulation
has 12 vertices with 5 edges while all other vertices have 6 edges. As the total number
of vertices, edges, and triangles is related to the integrated Gaussian curvature via the
Gauss-Bonnet theorem [35], the presence of vertices with 5 edges instead of 6 edges on a
spherical triangulation is unavoidable.

(a) (b)

(c) (d)

Figure 2.12: Hi and ∆ai on a sphere with 163842 vertices. (a) Hi for the Gompper-Kroll
model. (b) Hi for the Jülicher model. (c) ∆ai for the Gompper-Kroll model. (d) ∆ai for
the Jülicher model.

The values of Hi and ∆ai are constant for both the Gompper-Kroll and Jülicher model
on a cylindrical triangulation due to the triangulation consisting of identical equilateral
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environments. For a spherical triangulation, the triangulation scheme leads to non-constant
Hi and ∆ai on the surface (Fig. 2.12). For Hi, the Gompper-Kroll model yields relatively
constant values of Hi (Fig. 2.12a) while the Jülicher model shows slight variance between the
12 five-edge vertices and the other six-edge vertices (Fig. 2.12b). For ∆ai, both the Voronoi
cell areas in the Gompper-Kroll model (Fig. 2.12c) and the barycentric cell areas in the
Jülicher model yield a pattern in their values due to the Loop subdivision method as shown
in Fig. 2.12d.
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Figure 2.13: The bending energy and area of cylindrical and spherical membrane systems
with kb = 20 kBT for varying number of vertices. The cylinder is of length 100

√
3
2 and

radius 50
π , and the sphere is of radius 69.1.

The bending energy and total area are computed for each method on the cylindrical and
spherical triangulations (Fig. 2.13). For the cylindrical bending energy, all models converge
to the correct limit given by Eq. (2.4.2) with the Kantor-Nelson model value of kb being
weighted by a factor of

√
3
2

as noted in Section 2.3.2. For the spherical bending energy, the
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Figure 2.14: The error in the bending energy and area of cylindrical and spherical membrane
systems with kb = 20 kBT for varying number of vertices. The cylinder is of length 100

√
3
2

and radius 50
π , and the sphere is of radius 69.1.

Gompper-Kroll and Jülicher models converge to the correct limit given by Eq. (2.4.4) while the
Kantor-Nelson model converges to a different limit even after rescaling by a factor 1√

3
. This

is due to the sphere having a global non-zero Gaussian curvature which the Kantor-Nelson
model will have contributions from. The same area is obtained using both schemes on the
triangulations which converges to the area of a smooth surface as the number of vertices
increases (Fig. 2.13(c)–(d)). We analyze these trends by looking at the relative error between
the exact quantities and the discrete quantities in Fig. 2.14. For the models and systems
that converge to the correct limits, the convergence has linear scaling with respect to the
number of vertices. For the Gompper-Kroll model, this is the expected scaling with linear
finite elements [3].
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2.4.2 Fluctuations of a Planar Periodic Surface

We now analyze the Gompper-Kroll model using its height fluctuations via results from
capillary wave theory [67, 68]. Capillary wave theory relates the height fluctuations of the
membrane surface, induced through the Monte Carlo moves, to the bending rigidity and
surface tension of the membrane. To do so, we begin with a planar periodic system with a
fixed projected area. The potential energy of this system is given by the sum of Eqs. (2.2.3)
and (2.2.8) to yield

Vfluct =

∫
da
(
kbH

2 + r
)
, (2.4.8)

where r is the surface tension of this model. To obtain a form of Eq. (2.4.8) where integrals
involving exp(−βVfluct) can be done analytically, the Monge parameterization of the membrane
surface is used in which the z coordinate is given by a height-field h(x, y) [69]. The Monge
parameterization has area element

A =

∫
dA

√
1 +

(
∂h(x, y)

∂x

)2

+

(
∂h(x, y)

∂y

)2

=

∫
dA

√
1 + (∇h(x, y))2 , (2.4.9)

where dA indicates integration over the xy plane in which
∫

dA = L2 = Ap , (2.4.10)

where L is the length of the system in both the x and y direction. The Monge parameterization
is suitable when the membrane does not map to more than one part per (x, y) value, which
is satisfied for sufficiently high values of bending rigidity or surface tension.

We proceed by expanding Eq. (2.4.8) to quadratic order about a small perturbation to
the membrane surface of the form

h(x, y) = h0 + δh(x, y) . (2.4.11)

The O(δh(x, y)) expansion of H from Eq. (2.3.25) is

H ≈ −1

2
∇2h(x, y) = −1

2
∇2δh(x, y) , (2.4.12)

and the O(δh(x, y)2) expansion of the area element is
√

1 + (∇h(x, y))2 ≈ 1 +
1

2
(∇δh(x, y))2 . (2.4.13)

Hence, the quadratic expansion of Vfluct is

Vfluct ≈ rL2 +

∫
dA

[
1

4
kb
(
∇2δh(x, y)

)2
+

r

2
(∇δh(x, y))2

]
. (2.4.14)
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To evaluate the partition function corresponding to Eq. (2.4.14), δh(x, y) is written in terms
of a Fourier series

δh(x, y) =
∑

km

∑

kn

δhke
ikmx+ikny , (2.4.15)

where km = 2πm
L

and kn = 2πn
L

are the wavevectors in the x and y directions, respectively.
We obtain for the area term

∫
dA

[(
∂δh(x, y)

∂x

)2

+

(
∂δh(x, y)

∂y

)2
]

(2.4.16)

=

∫
dA



(∑

km

∑

kn

ikmδhke
ikmx+ikny

)2

+

(∑

km

∑

kn

iknδhke
ikmx+ikny

)2

 (2.4.17)

= −
∫

dA
∑

km

∑

k′m

∑

kn

∑

k′n

δhkδh
′
k(kmk

′
m + knk

′
n)e

i(km+k
′
m)x+i(kn+k

′
n)y (2.4.18)

= −L2
∑

km

∑

k′m

∑

kn

∑

k′n

δhkδh
′
k(kmk

′
m + knk

′
n)δ(km + k′

m)δ(kn + k′
n) (2.4.19)

= L2
∑

km

∑

kn

|δhk|2(k2
m + k2

n) , (2.4.20)

where δ
(
km + k

′
m

)
is the Kronecker delta and |δhk|2 = δhkδh−k. For the mean curvature

term, we obtain∫
dA

[
∇2δh(x, y)

]2 (2.4.21)

=

∫
dA

[
−
∑

km

∑

kn

(k2
m + k2

n)δhke
ikmx+ikny

]2
(2.4.22)

=

∫
dA

∑

km

∑

k′m

∑

kn

∑

k′n

δhkδh
′
k(k

2
m + k2

n)(k
′2
m + k

′2
n )e

i(km+k
′
m)x+i(kn+k

′
n)y (2.4.23)

= L2
∑

km

∑

k′m

∑

kn

∑

k′n

δhkδh
′
k(k

2
m + k2

n)(k
′2
m + k

′2
n )δ(km + k′

m)δ(kn + k′
n) (2.4.24)

= L2
∑

km

∑

kn

|δhk|2(k2
m + k2

n)
2 . (2.4.25)

The sum of Eqs. (2.4.20) and (2.4.25) yields an energy quadratic in |δhk|

Vfluct = L2

(
r +

r

2

∑

k

|δhk|2(k2
m + k2

n) +
1

4
kb
∑

k

|δhk|2(k2
m + k2

n)
2

)
(2.4.26)

= L2

(
r +

∑

k

|δhk|2
[
r

2
k2 +

kb
4
k4

])
, (2.4.27)
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where the summation is over all wavevectors k2 = k2
m + k2

n.
We now evaluate the height fluctuations ⟨|δhk|2⟩. The partition function of Eq. (2.4.27) is

evaluated using properties of Gaussian integrals [70] as

Q =

∫ ∏

k

dδhk exp(−βVfluct) (2.4.28)

= exp
[
−βrL2

] ∫ ∏

k

dδhk exp(−βL2|δhk|2
[
r

2
k2 +

kb
4
k4

]
) (2.4.29)

= exp
[
−βrL2

]∏

k

√
π

βL2
(
r
2
k2 + kb

4
k4
) . (2.4.30)

The height fluctuations are then found through Eq. (2.3.2)

⟨|δhk|2⟩ =
1

Q

∫ ∏

k′

dδhk′ |δhk|2 exp (−βVfluct) (2.4.31)

=
1

βL2(1
2
kbk4 + rk2)

. (2.4.32)

Defining k
′
b = 2kb, we arrive at the formula found in the literature [67, 71]

⟨|δhk|2⟩ =
1

βL2(k
′
bk

4 + rk2)
. (2.4.33)

Fitting Eq. (2.4.32) to height fluctuation data obtained in simulation yields estimates of
the bending rigidity and surface tension. To do so the membrane surface is binned spatially to
yield a discrete version of h(x, y). This discrete version, h(i1ℓ, i2ℓ), where ℓ = L

N
, is obtained

with Nx x grid points and Ny y grid points. This is done by finding all vertices between
x ∈ ( i1L

Nx
, (i1+1)L

Nx
] and y ∈ ( i2L

Ny
, (i2+1)L

Ny
], which we denote with the setM, and evaluating

h(i1ℓ, i2ℓ) =
1

|M|
∑

xi∈M
zi . (2.4.34)

We then convert h(i1ℓ, i2ℓ) to Fourier space using FFTW [72]. The forward Fourier transform
is evaluated by, denoting the wavevectors as kx ∈ [0, 2π(Nx−1)/L] and ky ∈ [0, 2π(Ny−1)/L],

ĥ(kx, ky) =
Nx−1∑

i1=0

Ny−1∑

i2=0

h(i1ℓ, i2ℓ)e
−i(kxi1ℓ+kyi2ℓ) , (2.4.35)

with the backward Fourier transform evaluated by

h(x, y) =
Nx−1∑

i1=0

Ny−1∑

i2=0

ĥ(ki1 , ki2)e
i(ki1x+ki2y) . (2.4.36)
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Applying the forward and backward Fourier transforms multiplies the input data by a factor
of NxNy. In the case of Nx = Ny = N , we find in terms of kx and ky the factors needed for
the height fluctuations computed by FFTW are

⟨|δhk|2⟩FFTW =
N4

βL2(kbk4
x,y + rk2

x,y)
, (2.4.37)

where k2
x,y = k2

x + k2
y. In practice we use integer wave vectors such that kx ∈ [0, Nx − 1] and

ky ∈ [0, Ny − 1]. The proper factors to compare the numerically computed height fluctuations
to the analytical expression in Eq. (2.4.32) is thus

⟨|δhk|2⟩FFTW =
N4

βL2(
(
2π
L

)4
kbk4

x,y +
(
2π
L

)2
rk2

x,y)
. (2.4.38)

(a) (b)

(c) (d)

(e)

Figure 2.15: Planar periodic membrane systems with 10000 vertices, kb = 80 kBT , and
γ = 0 at various fixed box lengths. (a) L = 100. (b) L = 110. (c) L = 120. (d) L = 130. (e)
L = 140.

We now evaluate the fluctuation spectrum of a planar periodic system with fixed boundaries
using the Gompper-Kroll model. Images of such systems for various box lengths are found in
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Fig. 2.15. At small box lengths, the membrane system develops large wrinkles due to the
excess area of the membrane relative to the projected area (Figs. 2.15a and 2.15b), while at
larger box sizes the membrane is held taut (Fig. 2.15e). Figure 2.16(a) shows the average
area of such systems at varying γ, with the smaller box lengths having a noticeable change in
the area at larger γ values while the larger box lengths have relatively constant area across γ
values.
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Figure 2.16: Average area of a planar periodic membrane system with 40000 vertices,
kb = 80 kBT , and varying surface tension with the Gompper-Kroll model. (a) The average
area for fixed box length. (b) The average area for nonfixed box length.

Figure 2.17 shows the height fluctuation spectrums obtained in simulation for varying
fixed box lengths and surface tensions. The spectrums at low box sizes have spurious height
fluctuations for the lower wave vectors. For all box sizes, the spectrums saturate at high
wave vectors due to protrusions [73, 74]. Estimates of the bending rigidity and the surface
tension r are obtained by fitting Eq. (2.4.38) to the spectrum as shown in Tables 2.1 and 2.2.
The bending rigidity estimates differ from the true values for the lower box sizes of 200 and
220 for low tensions, with increasing agreement at larger box sizes and surface tensions. The
surface tension r estimates follow a similar pattern for the lower box sizes, except with the
larger box sizes of 260 and 280 having a measured nonzero surface tension for low values of γ.

We now simulate the Gompper-Kroll model in a planar periodic system at nonfixed box
sizes. This is done in the case of varying γ at τ = 0, varying τ at γ = 0, and varying γ and τ
for γ = τ in order to test the effects of the surface tension and frame tension on the measured
kb and r. Figure 2.16(b) shows that the average area of the membrane decreases with varying
γ, as this setting penalizes area, increases with varying τ , as this setting promotes projected
area, and is constant for γ = τ .

Figure 2.18 shows the fluctuation spectrums obtained with the previous combinations
of varying surface tension and frame tension. The spectrums from simulations with varying
frame tension are found to have noticeable contributions from surface tension at low wave
vectors, while the spectrums from varying γ at τ = 0 have no such behavior. This is quantified
by fitting Eq. (2.4.38) to the data, yielding the data in Tables 2.3 and 2.4. Relatively accurate
estimates of kb are obtained in all cases, though better agreement is seen in the cases of
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Figure 2.17: Height fluctuations for a planar periodic membrane using the Gompper-
Kroll model with kb = 80 kBT and varying γ at fixed box lengths for 40000 vertices and
Nx = Ny = 128.

L γ = 0 γ = 0.005 γ = 0.05 γ = 0.5 γ = 5
L = 200 (5± 1)e-1 (2± 1)e-1 (8± 3)e-1 (5± 2)e-1 (8± 2)e0
L = 220 (4± 1)e0 (7± 2)e0 (6± 1)e0 (1.5± 0.1)e0 (7.1± 0.1)e1
L = 240 (6.2± 0.1)e1 (6.2± 0.2)e1 (6.5± 0.2)e1 (6.9± 0.1)e1 (8.1± 0.1)e1
L = 260 (7.8± 0.1)e1 (8.0± 0.2)e1 (8.1± 0.1)e1 (8.25± 0.07)e1 (7.9± 0.1)e1
L = 280 (8.0± 0.3)e1 (7.6± 0.2)e1 (8.7± 0.5)e1 (8.3± 0.6)e1 (8.1± 0.2)e1

Table 2.1: kb values obtained from the fitting procedure corresponding to data in Fig. 2.17.
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L γ = 0 γ = 0.005 γ = 0.05 γ = 0.5 γ = 5
L = 200 (0± 2)e-3 (3.6± 0.8)e-2 (1.7± 0.8)e-2 (5± 1)e-2 (2.4± 0.5)e-1
L = 220 (1.8± 0.3)e-1 (1.5± 0.3)e-1 (2.6± 0.3)e-1 (1.5± 0.3)e-1 (0± 2)e-2
L = 240 (0± 2)e-2 (0± 6)e-2 (0± 4)e-2 (2.2± 0.2)e-1 (4.47± 0.02)e0
L = 260 (2.26± 0.03)e0 (2.16± 0.07)e0 (2.22± 0.03)e0 (2.62± 0.01)e0 (7.40± 0.05)e0
L = 280 (2.84± 0.05)e0 (3.01± 0.03)e0 (2.76± 0.07)e0 (3.30± 0.07)e0 (7.83± 0.05)e0

Table 2.2: r values obtained from the fitting procedure corresponding to data in Fig. 2.17.
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Figure 2.18: Height fluctuations for a planar periodic membrane using the Gompper-Kroll
model with kb = 80 kBT and varying various surface tensions at nonfixed box size for 40000
vertices and Nx = Ny = 128.

Varied
value 0 0.005 0.05 0.5 5
γ, τ (7.5± 0.2)e1 (7.8± 0.2)e1 (8.1± 0.2)e1 (7.7± 0.1)e1 (7.8± 0.1)e1
γ (6.6± 0.2)e1 (6.7± 0.3)e1 (7.7± 0.1)e1 (6.2± 0.6)e1 (7.0± 0.8)e1
τ (6.8± 0.2)e1 (7.5± 0.1)e1 (8.0± 0.1)e1 (7.0± 0.2)e1 (8.1± 0.2)e1

Table 2.3: kb values obtained from the fitting procedure corresponding to data in Fig. 2.18.
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Varied
value 0 0.005 0.05 0.5 5
γ, τ (0± 3)e-2 (0± 2)e-2 (1.8± 0.2)e-1 (5.1± 0.2)e-1 (5.02± 0.03)e0
γ (0± 3)e-2 (0± 4)e-2 (0± 2)e-2 (0± 8)e-2 (0± 4)e-2
τ (0± 1)e-2 (0± 8)e-3 (1.0± 0.1)e-1 (5.6± 0.2)e-1 (3.59± 0.03)e0

Table 2.4: r values obtained from the fitting procedure corresponding to data in Fig. 2.18.

varying τ at γ = 0 and varying γ and τ . Varying γ at τ = 0 yields r values near 0 for all γ
values. Varying τ at γ = 0 and varying γ and τ produces non-zero r values, with the case of
varying γ and τ producing the best agreement. These results demonstrate that the surface
tension in the fluctuation analysis r is equivalent to τ in the discrete membrane models we
consider and not γ as one would expect. This is in agreement with previous theoretical
[75–78] and numerical [79] studies.
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Chapter 3

Lipid Rafts

3.1 Introduction to the Multicomponent Nature of
Biological Membranes

Sphingolipid
A class of lipids that comprise 
a long-chain sphingosine base 
coupled to a fatty acid chain 
and often a large polar 
head group.

Glycosylphosphatidylinositol 
(GPI)-anchored proteins
Cell surface proteins that are 
post-translationally modified 
to carry a GPI moiety 
as an anchor to the membrane.

Studying lipid rafts
The definition of rafts has been influenced, in large part, 
by the development of methodologies available for their 
investigation. The term ‘lipid rafts’ has been applied 
generically to many distinct, although potentially related, 
types of membrane assemblies (FIG. 2a). The techniques 
and tools used to visualize and study membrane hetero
geneity have evolved considerably since the introduction 
of the concept (FIG. 2b–d), and with the recent advent of 
superresolution optical microscopy (Supplementary 
information S2 (box)) we may now have a key tool for 
resolving the continuing controversy.

Biochemical tools. The first evidence for a laterally 
hetero geneous cell membrane came from the obser
vation of differential solubilization of membrane lipids 
and proteins by detergents in the 1970s2. The basis of 

the assay is that cellular membranes can be separated 
into distinct fractions — containing detergentsoluble 
membranes (DSMs) or detergentresistant membranes 
(DRMs) — following extraction with nonionic deter
gents under specific conditions (most notably, cold 
temperatures) (FIG. 2b). These fractions have clearly 
distinct compositions, with DRMs enriched in choles
terol, sphingolipids17,18 and glycosylphosphatidylinositol 
(GPI)-anchored proteins5. Although extraction of DRMs 
became the method of choice for probing membrane 
raft composition, it quickly became clear that DRMs do 
not reflect the native composition and organization of 
lipid rafts in living cells. For example, the protein com
position of DRMs varies widely depending on the choice 
of detergent used for isolation19. Similarly, subtle vari
ations in temperature or detergent concentration yield 
different results and considerably modify the organiza
tion of membrane proteins20, which has led to contra
dictory reports about the protein composition of rafts. 
Thus, although DRM assays may provide information 
about the propensity of some molecules to associate with 
specialized membrane regions21,22, they do not faithfully 
reflect the native molecular or biophysical composi
tion and organization of rafts23; therefore, the findings 
from these assays require confirmation by more robust 
and consistent methods such as those discussed below 
(for an excellent recent example, see REF. 22).

Biophysical tools. In parallel with studies of DRMs iso
lated from cells, artificial model membranes have been 
developed and used to study the liquid–liquid phase 
separ ation that is believed to underlie the physical 
principle behind lipid raft formation24 (FIG. 2b). Across 
various experimental setups, membranes that consist 
of relatively saturated lipids with a high melting tem
perature, unsaturated phospholipid species with a low 
melting temperature and cholesterol can separate into 
two distinct liquid phases: a relatively packed, ordered 
phase enriched in saturated lipid species and choles
terol25 (termed the liquidordered (Lo) phase), and a 
more fluid, disordered phase comprising mainly the 
unsaturated lipids26,27 (termed the liquiddisordered 
(Ld) phase). Owing to its tight molecular packing and 
enrichment of sterol and saturated lipids, the Lo phase 
is considered to be the model for lipid rafts. Biomimetic 
monolayers28, supported lipid bilayers29, nanoscopic 
bilayer vesicles30 and giant unilamellar vesicles (GUVs)26 
have all been used to elucidate the molecular details of 
this phase separation31,32; however, despite their impor
tant role in revealing the physical principles of Lo domain 
formation, a number of caveats and limitations prevent 
direct translation of findings from these model mem
branes to biological ones. First, most of these experi
ments are performed in lipidonly systems, and although 
there are methods for incorporating integral membrane 
proteins into artificial systems33,34, they are complex, 
inefficient and very rarely result in high protein/lipid 
ratios. This is in contrast to biological membranes, in 
which proteins are estimated to constitute up to 25% 
of the cross sectional area of the membrane35. Second, 
perhaps because of the scarcity (or even a complete lack) 
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Figure 1 | General overview of lateral heterogeneity in the plasma membrane. 
a | Lipid raft domains are usually defined as small, highly dynamic and transient plasma 
membrane entities that are enriched in saturated phospholipids, sphingolipids, 
glycolipids, cholesterol, lipidated proteins and glycosylphosphatidylinositol 
(GPI)-anchored proteins. Enrichment of these hydrophobic components endows these 
lipid domains with distinct physical properties; these include increased lipid packing and 
order, and decreased fluidity. In addition to membrane components, cortical actin plays 
an active part in domain maintenance and remodelling. Furthermore, membrane lipids 
are asymmetrically distributed in the inner and outer leaflets, which may further affect 
membrane organization. b | It is likely that membrane organization is not binary (that is, 
highly distinct raft and non-raft regions), but instead membranes consist of various 
raft-like and non-raft domains with distinct compositions and properties.
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Figure 3.1: Schematic of a lipid raft, in which small, liquid-ordered domains composed of saturated
lipids and cholesterol form in an otherwise liquid-disordered domain of unsaturated lipids. Proteins
will have different affinities for domain types, giving lipid rafts the capability of clustering proteins
involved in processes such as cell signaling. Reprinted by permission from Springer Nature Customer
Service Centre GmbH: Springer Nature, Nature Reviews Molecular Cell Biology, “The mystery of
membrane organization: composition, regulation and roles of lipid rafts”, E. Sezgin et al., Copyright
Nature Publishing Group (2017) [80]

The fluid mosaic model, when first developed [4], hypothesized that biological membranes
were composed of lipid molecules forming a bilayer with randomly distributed proteins. One
of the many refinements to the fluid mosaic model, the lipid raft hypothesis [6], allows for
heterogeneous phase behavior within the membrane. In the lipid raft hypothesis proteins and
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budding domains, however, this fusion step seems to be impeded,
because domains tend to repel each other upon approach, avoiding
high curvature build-up. Indeed, equatorial section images through
GUVs with multiple caps (Fig. 1d–f; in these images the Lo phase is
continuous and contains separated spheroidal Ld phase caps), as
well as stacks of focal plane images of vesicle hemispheres showing
domains of similar size (Fig. 2a and b) reveal approximate long-
range ordering patterns of cap-shaped domains. Figure 2a and b
shows arrangements into both hexagonal and inverted hexagonal
patterns, depending onmembrane composition. Long-range order-

ing of fluid membrane domains is clearly matched by a curvature
pattern (Figs 1d–f, and 2a and b).
Domains imaged at room temperature are circular (Fig. 2a and

b)3,4,21. When temperature was increased to values several degrees
below the mixing/demixing transition temperature Tm, in vesicles
with and without excess curvature, we observed both Lo phase and
Ld phase circular domains to undulate laterally, indicating reduced
line tension at higher temperatures. Further temperature increase
led to the formation of a homogeneous membrane. Thermally
excited lateral domain undulations have normal mean square
amplitudes ku2nl¼ kBT=ðprojðn

2 2 1ÞÞ, where kB is Boltzmann’s
constant, T is temperature, r0 is the average domain radius and n
is themode number. Accordingly, domains with a radius r0 < 5 mm,
which visibly undulate with optically resolvable amplitudes, indi-
cate a line tension below j < 10214 N (at high temperatures), which
is two orders of magnitude smaller than the room-temperature
value determined from our shape fitting. In-plane fluctuations
of domains at temperatures close to, but below, Tm tend
to increase when approaching a composition range (mole
fractions of sphingomyelin/DOPC/cholesterol) of 0.63 ^ 0.035/
0.07 ^ 0.035/0.3 ^ 0.05. From preliminary data on the tempera-
ture dependence of Lo þ Ld phase coexistence (see Supplementary
Information for further details), we assume this region to be near an
upper critical mixing/demixing point, where line tension is
expected to decrease as j / (T c 2 T)l (here T c is the critical
temperature, and the critical exponent l ¼ 1; refs 5, 16).
Within this composition range, where Ld phase domains in a

continuous Lo matrix are found, at temperatures less than one
degree belowTm, in vesicles with excess area (compared to a sphere),
the undulating domains tend to assume strongly prolate elliptical
shapes; upon further increasing T, a shape instability leads to a
stripe-out7, that is, the formation of numerous thin stripes, with
varying (fluctuating) lengths, which rapidly undulate in the plane of
the membrane, and can span the whole liposome. We observed
multiple stripe domains to arrange into laterally undulating pat-
terns of locally parallel stripes. Close to Tm, scanning microscopy
was difficult to apply to image these fluctuating patterns. In
favourable cases, however, rapid cooling by several degrees led to
a sufficient suppression of stripe pattern undulations (and a slight
thickness increase of stripes) that the patterns could be imaged
(Fig. 2c). Again, an equatorial section through the same GUV
(Fig. 2d) shows a pattern of membrane curvature matching the
phase pattern. Two different pattern defects are observed (Fig. 2c),
namely the formation of loops and bifurcations with an angle near
1208. The relative thickness of stripes depends on membrane
composition and temperature (Fig. 2e).
The stripe-out that we describe here resembles the rippling

instability of collapsing bubbles22, but differs from stripe phase
formation in polar lipid monolayers at the air/water interface23, as
the long-range dipolar interaction of zwitterionic lipids is signifi-
cantly screened in the aqueous environment. Both an increase in
total membrane area and the reduced line tension around buds near
the main transition temperature will reduce lateral tension within
the membrane, and favour the instability described above. Equilib-
rium stripe phases associated with membrane deformation were
also predicted6,9,10. Further theoretical study and systematic experi-
ments are clearly required to fully understand the physics of this
complex phenomenon. Fusion of the ends of a stripe is frequently
observed, which upon cooling (and thereby increasing the line
tension) leads to (possibly metastable) liposome-spanning ring
domains (Fig. 2e and f), where the line tension dominates the
shape of these vesicles.
Homogenous membranes with periodic curvature modulation,

such as pearling states in tubular membranes24 and ‘starfish’
vesicles25 at high s/v ratios, have previously been reported. We
frequently observed these types of homogeneous membranes at
temperatures above Tm. Cooling slightly below Tm leads to the

Figure 2 Two-photon microscopy images of GUVs with Lo þ Ld phase coexistence. All

are superpositions of red and blue channels (for separations see Supplementary Fig. 2
0
),

except c (red channel only). d, Equatorial section of the same vesicle as in c.

a, b, e, Hemispherical projections of image stacks taken at 0.5mm spacing. Image in c is

focused on vesicle top; d, f, g and h show equatorial sections. Dashed lines in f indicate

an axially symmetric ring domain. Images are obtained at: a and b, 25 8C; c and d, 40 8C;

e, 30 8C; f, 25 8C; g, 44 8C; h, 50 8C. Scale bars, 5mm.
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the undulating domains tend to assume strongly prolate elliptical
shapes; upon further increasing T, a shape instability leads to a
stripe-out7, that is, the formation of numerous thin stripes, with
varying (fluctuating) lengths, which rapidly undulate in the plane of
the membrane, and can span the whole liposome. We observed
multiple stripe domains to arrange into laterally undulating pat-
terns of locally parallel stripes. Close to Tm, scanning microscopy
was difficult to apply to image these fluctuating patterns. In
favourable cases, however, rapid cooling by several degrees led to
a sufficient suppression of stripe pattern undulations (and a slight
thickness increase of stripes) that the patterns could be imaged
(Fig. 2c). Again, an equatorial section through the same GUV
(Fig. 2d) shows a pattern of membrane curvature matching the
phase pattern. Two different pattern defects are observed (Fig. 2c),
namely the formation of loops and bifurcations with an angle near
1208. The relative thickness of stripes depends on membrane
composition and temperature (Fig. 2e).
The stripe-out that we describe here resembles the rippling

instability of collapsing bubbles22, but differs from stripe phase
formation in polar lipid monolayers at the air/water interface23, as
the long-range dipolar interaction of zwitterionic lipids is signifi-
cantly screened in the aqueous environment. Both an increase in
total membrane area and the reduced line tension around buds near
the main transition temperature will reduce lateral tension within
the membrane, and favour the instability described above. Equilib-
rium stripe phases associated with membrane deformation were
also predicted6,9,10. Further theoretical study and systematic experi-
ments are clearly required to fully understand the physics of this
complex phenomenon. Fusion of the ends of a stripe is frequently
observed, which upon cooling (and thereby increasing the line
tension) leads to (possibly metastable) liposome-spanning ring
domains (Fig. 2e and f), where the line tension dominates the
shape of these vesicles.
Homogenous membranes with periodic curvature modulation,

such as pearling states in tubular membranes24 and ‘starfish’
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Figure 3.2: Two-photon fluorescence microscopy images of giant unilamellar vesicles composed of
sphingomyelin, DOPC, and cholesterol in which microphase separation is observed. Reprinted by
permission from Springer Nature Customer Service Centre GmbH: Springer Nature, Nature, “Imaging
coexisting fluid domains in biomembrane models coupling curvature and line tension”, T. Baumgart
et al., Copyright Macmillan Magazines (2003) [81].
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lipids form liquid-ordered (Lo) nanoscopic domains enriched in saturated lipids and cholesterol
in an otherwise liquid-disordered (Ld) lipid membrane enriched in unsaturated lipids (see
Fig. 3.1 for a schematic). This hypothesis has importance in many cellular phenomena such
as signaling and cellular trafficking due to the ability of lipid rafts to cluster select lipids
and proteins [6, 82–85]. Indirect evidence of lipid rafts was first observed through the use of
detergents preferentially avoiding the hypothesized lipid raft domains of a cell membrane [5],
and more indirect evidence has been found through other experimental techniques such as
Förster resonance energy transfer [86, 87], measurement of molecular diffusion by stimulated
emission depletion microscopy [88, 89], mass spectrometry [90–92], and single particle tracking
[93, 94]. Despite this, lipid rafts remain poorly understood as their small length and time
scales, corresponding to being on the order of 10− 200 nanometers and less than a second
respectively [95], cause direct observation to be difficult in live systems. In comparison,
the existence of a first-order phase transition between Lo–Ld phases is well understood in
artificial lipid membrane systems that possess multiple lipid species and proteins due to
the larger domain sizes in these systems that allow direct observation of the domains with
optical microscopy, with an example shown in Fig. 3.2 [81, 96–99]. While recent cryogenic
electron microscopy studies have shown probe-free observation of phase separation in model
systems on the necessary spatial scale [100, 101], this technique has not yet been applied to
live cells for direct observation of lipid raft domains. In this chapter, we will further develop
the models described in Chapter 2 to elucidate the properties of lipid rafts by addressing
their biophysical properties that can lead to their formation.

To extend the previously described membrane models we will consider the nature of a
multicomponent lipid membrane along with the interaction of proteins with lipids. The
behavior of multicomponent lipid membranes is well described by modifying the Helfrich model
to allow for compositional dependence in the bending parameters along with compositional
interactions between Lo and Ld domains. Proteins can have many potential interactions
with their surrounding lipid environment [102, 103], but we will focus on an effect caused by
the difference between a transmembrane protein’s length and the membrane thickness. In
a previous coarse-grained molecular dynamics study of S. Katira et. al [7], the behavior of
model proteins with set protein lengths in a single component lipid membrane demonstrated
that the proteins are capable of controlling local phase behavior, which is of relevance to
the heterogeneity described in the lipid raft hypothesis. The DPPC membrane used in the
study has a first-order phase transition between a liquid-disordered state (Fig. 3.3a) and a
solid-ordered state (Fig. 3.3b) with the two phases having different membrane thicknesses.
By inserting a protein with a length matching the thermodynamically disfavored phase’s
thickness, the protein leverages pre-transition phenomena by inducing a local region of the
thermodynamically disfavored phase (Fig. 3.3c). The interface formed by this region was
found to have identical line tension to that of a bulk interface despite the region being
nanoscopic. The interface formation creates a free energy incentive for the assembly of
proteins to reduce the interfacial perimeter, and it was demonstrated in a two-protein system
that assembly occurs on the physiological timescale of microseconds as shown in Fig. 3.3d.
This behavior was termed the orderphobic effect due to its similarity to the hydrophobic
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(a) (b)

(c)

(d)

Figure 3.3: Overview of the orderphobic effect. Adapted from S. Katira et al., “Pre-transition
effects mediate forces of assembly between transmembrane proteins”, eLife 5, e13150 (2016), licensed
under CC0 1.0 https://creativecommons.org/publicdomain/zero/1.0/. (a) DPPC in the liquid-
disordered state. (b) DPPC in the solid-ordered state. (c) An orderphobic protein, as set by its
hydrophobic thickness, induces a disordered domain around it. (d) The assembly of two orderphobic
proteins on the timescale of microseconds. The snapshot is a top view of the tail-end particles of
each lipid in one monolayer.

https://doi.org/10.7554/eLife.13150
https://creativecommons.org/publicdomain/zero/1.0/
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effect, in which hydrophobic solutes assemble on large length scales because of similar free
energy incentives driven by surface tension [104]. Though the orderphobic effect has not been
experimentally verified, protein length has been identified experimentally as a key parameter
for protein domain preference [103, 105, 106].

The orderphobic effect provides a mechanism for the macroscopic assembly of proteins
driven by line tension, but as previously described lipid rafts are believed to exhibit microphase
behavior in which they exist in distinct nanoscopic domains. In this chapter, we will resolve
this paradox by considering the additional tunable parameters in a multicomponent lipid
membrane with protein system. A computational model is developed in Section 3.2 based
on the Gompper-Kroll model discussed in Section 2.3.3 that accounts for the energetics of
a multicomponent lipid membrane in terms of both bending and compositional energies
along with the effect of proteins that are either orderphobic (preferring the Ld phase) or
orderphilic (preferring the Lo phase). To perform studies in which phase diagrams and
the energetics of protein domains are evaluated, the basics of free energy sampling using
low-dimensional representations of a configuration, termed collective variables (CVs), are
discussed in Section 3.3. Using these tools the compositional and elastic interactions of
protein domains are quantified in Sections 3.4 and 3.5, respectively, to yield a mechanistic
understanding of lipid rafts existing due to the competition of line tension, which drives
macrophase behavior, with the spontaneous curvature of induced domains, which drives
microphase behavior. We conclude with further discussions and potential directions for future
work in Section 3.6.

3.2 Modeling Multicomponent Membranes

We extend the modeling framework of Sections 2.2 and 2.3 to develop a computational model
that describes the physics of multicomponent membranes with proteins on large length and
time scales. The main contributions to the membrane-protein energetics on these scales are
from the composition energy and the bending energy, with the effect of the proteins being
handled by an adaptation of the orderphobic effect. Over long length scales the membrane-
protein system can be represented by a two-dimensional surface in three-dimensional space,
in which we will use the triangulated surface framework of Section 2.3 for the computational
model. On the surface, the energy of the system V is decomposed into

V = Vc + Vb , (3.2.1)

where Vc and Vb are the compositional and bending energetics, respectively. We will now
describe the energetics in detail.

For the compositional energetics, it has been found experimentally that the behavior of
coexisting Lo–Ld phases is described by the two-dimensional Ising universality class [107].
Thus, we use the Ising model to describe the compositional energetics of the system [108].
Within the framework of a triangulated surface, each vertex will represent a region of the
membrane consisting of either the Lo phase, Ld phase, or the protein-enriched phase. The
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composition of a vertex is denoted by a scalar, ϕi, that returns different values depending on
the identity of the vertex, which is given by

ϕi =

{
−1, if Ld or orderphobic protein vertex ,
1, if Lo or orderphilic protein vertex .

(3.2.2)

The form of Vc is that of the Ising model [109]

Vc = −
J

2

∑

i

∑

j(i)

ϕiϕj − µ
∑

i

ϕi , (3.2.3)

where J is the coupling parameter and µ is the chemical potential.
The bending energetics are described by the Gompper-Kroll model of Section 2.3.3, which

will be modified to account for multicomponent behavior along with a slight modification
to make the model in line with what is more commonly used in the literature. This slight
modification is the calculation of Hi as

Hi =


 1

σi

∑

j(i)

σij

ℓij
(xi − xj)


 · ni , (3.2.4)

which is twice that of the form used in Eq. (2.3.89) and in line with the forms found in the
literature [38, 110]. To construct a version of the Helfrich model for multicomponent lipids,
it is noted that membrane bending parameters of kb and γ can vary between the Lo and Ld

phases [81]. The membrane bending parameters are also dependent on if a vertex is a protein
vertex, which is labeled with the variable ni such that

ni =

{
0, if not a protein vertex ,
1, if protein vertex .

(3.2.5)

The bending energy Vb is then given by a modified version of the single component version of
Eq. (2.3.1) [111, 112]

Vb =
∑

i

∆ai
[
kb (ϕi, ni) (Hi − C (ϕi, ni))

2 + γ (ϕi, ni)
]
− τAp , (3.2.6)

where ∆ai is the Voronoi cell area of a vertex given by Eq. (2.3.86), kb(ϕi, ni) is the composition-
dependent bending rigidity, Hi is the mean curvature given by Eq. (3.2.4), C(ϕi, ni) is the
composition-dependent spontaneous curvature, and γ(ϕi, ni) is the composition-dependent
surface tension. It is assumed that the topology of the membrane is constant and the Gaussian
moduli for the Lo–Ld phases are equal, fixing the Gaussian curvature contribution in the
Helfrich model per the Gauss-Bonnet theorem [36].

The relevant length scale and value of parameters for simulation are now discussed. The
fundamental length scale of the system is set by the hard sphere size σ, which is at least greater
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than the membrane thickness (O(5 nm)) for the surface approximation of a lipid bilayer to
hold. The contributions in the energy due to mean curvature and the Ising model are length
scale-independent, while surface and frame tension are length scale-dependent. However,
while the Ising model parameters are length scale-independent, the Ising model below the
critical temperature, in which phase separation occurs, generates a length scale-dependent
line tension, λ. Physiologically the values of γ and τ are between 10−4 − 1 kBT/nm

2 [32],
and the value of λ is between 0 kBT/nm at the critical temperature and O (1) kBT/nm
at physiological temperatures [113, 114]. We take γ = τ to enforce approximate surface
incompressibility across varying surface tension values as seen in Fig. 2.16(b). Values of the
spontaneous curvature of a monolayer vary between near 0 nm−1 to 1 nm−1 [115–117]. The
spontaneous curvature of a bilayer is set by the difference between the inner and outer leaflet
spontaneous curvatures, with only asymmetric membranes having a non-zero spontaneous
curvature [116]. Spontaneous curvature can also be driven by proteins due to a variety of
mechanisms such as shape, insertion, scaffolding, or inducing locally asymmetric compositions
[116, 118–120]. The value of the bending rigidity for a Ld system is around 20 kBT [121], while
the addition of cholesterol to create a Lo system can increase the bending rigidity to 100 kBT
with typically values being around 60 kBT [122–127]. We use values of kb(Ld) = 20 kBT and
kb(Lo) = 60 kBT throughout the rest of this chapter unless specified otherwise. Similarly,
we set the spontaneous curvature of the Lo–Ld vertices to be zero and vary the spontaneous
curvature of the protein vertices, labeled as C = C (ϕi = 1, ni = 1), unless specified otherwise.

This triangulated surface model is used in Monte Carlo simulations with the Metropolis
algorithm of Eq. (2.3.11). The previously described displacement, edge flip, and box resizing
moves of Section 2.3.1 will be used along with additional moves to evolve ϕi and ni. Note
that in all cases we consider the protein vertices to be all of one type with the number of
protein vertices fixed, and as such all Monte Carlo moves will conserve the number of protein
vertices. The moves that evolve ϕi and ni are as follows.

1. Mass conserving move on ϕi or ni: a vertex i is selected at random, and its identity
(either ϕi or ni) is swapped with another vertex. The other vertex can either be selected
locally by randomly selecting from vertices that share an edge with vertex i, or selected
non-locally by randomly selecting another vertex that is not vertex i. If vertex i and
the other vertex have the same identity, the move is automatically accepted as the
energy does not change and the transition probabilities are equal, as will now be shown.
Labeling the other vertex as j, the move can be reversed by performing another mass
conserving move by selecting vertex i and then vertex j or vertex j and then vertex
i. As such, the transition probabilities are equal to each other and this leads to the
acceptance probability factor in Eq. (2.3.11) being exp(−β (Vµ − Vν)).

2. Non-mass conserving move on ϕi: a vertex i is selected at random and then ϕi is changed
to the opposite value. If vertex i is a protein vertex, the move is automatically rejected.
As the vertex is selected at random, the transition probabilities are equal to each other
and hence the acceptance probability factor in Eq. (2.3.11) is exp(−β (Vµ − Vν)).
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3. Non-mass conserving move on ϕi with local mass conserving moves on ni: a vertex i is
selected at random, and ϕi is changed to the opposite value. If vertex i is not a protein
vertex, it proceeds as in the case of a standard non-mass conserving move on ϕi. If
instead vertex i is a protein vertex, an exchange of ni with a randomly selected vertex
sharing an edge with vertex i is attempted instead. As the vertex i and its neighbor j
are selected at random, the reverse move requires the vertex j to be randomly selected
and then vertex i to be randomly selected out of the edges of vertex j. This leads to
the ratio of the transition probabilities being

Tµν

Tνµ

=

1
NNj

1
NNi

=
Ni

Nj

. (3.2.7)

This move allows for the simultaneous evolution of non-mass conserved ϕi with the
evolution of mass conserved ni.

The Monte Carlo moves on the compositional variables are extendable to the parallel
checkerboard Monte Carlo scheme of Section 2.3.1.1. For the local moves, a similar constraint
to the displacement and edge flip moves is used with identity exchange attempts between
vertices in different subdomains being automatically rejected. For the non-local moves, this
is extended by randomly pairing subdomains of one type together. The non-local moves are
then made between vertices of the paired subdomains.

3.3 Methods to Compute Free Energies

Throughout the rest of this thesis, we will be interested in processes with free energy barriers
that lead to a slow sampling of configuration space using standard importance sampling
methods. Correspondingly, averages computed through Eq. (2.3.2) are likely inaccurate due
to the inefficiency of sampling, with potentially prohibitive amounts of simulation time being
needed for high accuracy. To improve upon this we will use umbrella sampling (US) [128–130].
In umbrella sampling, many independent simulations, termed replicas, run in parallel with
different bias potentials to efficiently sample the wanted configuration space. Enumerating
the replicas with indexing variable α ∈ {1, . . . ,M}, the bias potential for each replica Wα (x)
is

Vα(x) = V (x) +Wα(x) . (3.3.1)

The bias potentials take a form that makes the system explore the collective variables of
interest, such as the average ϕ value or the distance between two protein domains. Denoting
the collective variables as Θ(x), the biasing potentials used are that of harmonic potentials

Wα (x) =
κα

2
(Θ (x)−Θα)

2 , (3.3.2)

where κα and Θα are the biasing strength and target CV values for replica α, respectively.
The biasing potential allows for the sampling of values of Θ that are uncommon in unbiased
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simulations, with the values of κα and Θα chosen such that values near Θα for all α are
adequately sampled and replicas achieve overlap in the obtained distributions of Θ with
neighboring replicas. As the potentials bias the simulation results, an unbiasing scheme
is required to compute unbiased averages or to obtain the probability of observing certain
values of Θ in an unbiased simulation. We will find that the factors necessary to perform
this unbiasing procedure are related to the free energies of the replicas. In what follows, we
describe a method to compute the free energies, the multistate Bennett acceptance ratio
(MBAR) [131, 132]. We follow the presentation of Ref. [132] to provide a self-contained
introduction to MBAR.

To begin, we define the free energy of replica i as

Fi = −β−1
i lnQi , (3.3.3)

where βi is the inverse temperature of replica i and Qi is the partition function of replica i per
Eq. (2.3.9). It is difficult to compute Fi in simulation via evaluating the partition function
via Eq. (2.3.2). An easier method is to evaluate the free energy difference between replica i
and another replica j, which can be done through the reweighting of samples obtained in
one replica to the other replica. To do so, denoting the probability distribution functions of
replicas i and j as ρi(x) and ρj(x), respectively, we note that in importance sampling with
respect to replica j samples are generated as x ∼ ρj(x). To reweight averages from samples
obtained in replica j to that of replica i, one computes a modified form of Eq. (2.3.2) for an
observable A

⟨A⟩i =
∫

dx A(x)ρi(x) =
∫

dx A(x)ρi(x)
ρj(x)

ρj(x) (3.3.4)

≈ 1

N

N∑

n=1

A (xn)
ρi (xn)

ρj (xn)
=

1

N

N∑

n=1

A (xn)
Qj exp [−βiVi(xn)]

Qi exp [−βjVj(xn)]
. (3.3.5)

By setting A(x) = 1, one obtains

Qi

Qj

=
1

N

N∑

i=1

exp [−βiVi(xn)]

exp [−βjVj(xn)]
≈ ⟨exp [−βiVi(x) + βjVj(x)]⟩j , (3.3.6)

where ⟨. . .⟩j is an ensemble average over ρj(x). From Eq. (3.3.3) the free energy difference is
obtained as

βjFj − βiFi = − ln
1

N

N∑

i=1

exp [−βiVi(xn) + βjVj(xn)] (3.3.7)

≈ − ln⟨exp [−βiVi(x) + βjVj(x)]⟩j , (3.3.8)

which is known as the free-energy perturbation (FEP) method to compute free energy
differences [133].
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To extend this to multiple replicas we utilize a formalism known as the mixture distribution
[134]. Let’s assume we perform simulations in the M different replicas where we have collected
Nα samples in each replica. Each replica obeys its own probability distribution ρα (x), and
from these distributions a new probability distribution is constructed that contains all
N =

∑M
α=1 Nα samples. This distribution, the mixture distribution, is prescribed the form

ρm (x) =
1

N

M∑

α=1

Nαρα (x) , (3.3.9)

with the intuition that one has a Nα/N chance of getting a sample from replica α, and
as each ρα(x) is normalized the resulting mixture distribution is also normalized. We now
apply the previous reweighting trick that was used to derive Eq. (3.3.7) to determine the
partition functions by reweighting from the mixture distribution to replica i. Reweighting
the observable A(x) = 1 from the mixture distribution to replica i yields

1 =
1

N

N∑

n=1

ρi (xn)

ρm (xn)
=

N∑

n=1

Q−1
i exp [−βiVi (xn)]∑M

α=1NαQ−1
α exp [−βαVα (xn)]

, (3.3.10)

from which we obtain an expression for Qi,

Qi =
N∑

n=1

exp [−βiVi (xn)]∑M
α=1NαQ−1

α exp [−βαVα (xn)]
. (3.3.11)

This is the MBAR estimator for free energy [131]. There are M equations for each of the
partition functions, with only M − 1 independent equations due to Eq. (3.3.11) being the
same upon multiplication by a constant. By convention, we fix the partition function of the
first replica to be Q1 = 1. Once all of the partition functions have been obtained by solving
the system of equations given by Eq. (3.3.11), an estimate of the partition function for any
condition is obtained through Eq. (3.3.11), though more accurate results are obtained if the
conditions of the wanted replica are well sampled with the simulated dataset. For example,
this can be done in the case of the unbiased ensemble corresponding to V (x) in which one
obtains

Q =
N∑

n=1

exp [−βV (xn)]∑M
α=1 NαQ−1

α exp [−βαVα (xn)]
. (3.3.12)

From Eq. (3.3.12), one sees that the unbiased weight associated with a sample x is

W (x) =
Q−1 exp [−βV (x)]∑M

α=1NαQ−1
α exp [−βαVα (x)]

, (3.3.13)

and the corresponding unbiased average of an observable A is

⟨A⟩ =
N∑

n=1

A(xn)W (xn) . (3.3.14)
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While there are multiple ways to obtain the MBAR estimator of free energy, such as maximum
likelihood [135, 136] and extended bridge sampling estimators [131], this particular derivation
is useful in its simplicity and ease in seeing how Eqs. (3.3.10) and (3.3.11) are used for
reweighting to different conditions per Eqs. (3.3.13) and (3.3.14).

Using umbrella sampling it is straightforward to evaluate the free energies of the replicas
by Eq. (3.3.11). Another piece of information can be gained by evaluating the unbiased free
energy with respect to a specific binned value of Θ(x), which will be helpful in understanding
the phase and shape behavior of the membrane model. Analytically this is given by the
marginalization of Eq. (2.3.9) to a specific value of Θ(x) as

Q (Θ) =

∫
dx exp [−βV (x)] δ [Θ−Θ (x)] , (3.3.15)

F (Θ) = −β−1 lnQ (Θ) . (3.3.16)

To compute a discrete version of Eq. (3.3.16) from simulation data, the data is binned
according to uniform discrete values of Θ. Let Θi be a discrete bin of Θ and Pi be the set of
configurations Θ(x) ∈ Θi. We estimate F (Θi) by summing the weights given by Eq. (3.3.13)
of the configurations in Pi to yield

βF (Θi) = − ln
∑

x∈Pi

W (x) . (3.3.17)

We note that additional schemes for obtaining free energies and unbiasing are possible, and
we will use a different unbiasing scheme derived in Ref. [137] for Chapter 5.

In practice, pymbar1 is used to evaluate quantities involving MBAR [131, 138]. The
timeseries module of pymbar is also used to decorrelate data obtained from simulation. This
is done by evaluating the autocorrelation time of the data, which is then used to subsample
the data. Bootstrapping is used to generate estimates of the mean and variance of quantities
such as free energies and averaged quantities by using randomly sampled datasets generated
from the decorrelated data [139, 140].

In addition to standard umbrella sampling, we also use replica-exchange umbrella sampling
(REUS) [141, 142] in some cases to enhance the efficiency of sampling. In REUS we attempt to
exchange configurations between replicas during sampling to enhance sampling of configuration
space. This is done through a Monte Carlo move that, given randomly selected replica indices
i and j from the K total replicas, accepts a swap of configurations xi and xj between replicas
i and j with probability

Aij = min

[
1,

exp [−(βiV (xj) + βjV (xi))]

exp [−(βiV (xi) + βjV (xj))]

]
. (3.3.18)

We follow the procedure of Ref. [143] in which we attempt K4 swaps between randomly
selected pairs of replicas, and such a swap move is done infrequently compared to the parallel
checkerboard move or box resizing move to allow the systems to decorrelate between swaps.

1https://github.com/choderalab/pymbar

https://github.com/choderalab/pymbar
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3.4 Composition Effects

We first examine composition effects driven by Vc in membrane-protein systems.

3.4.1 Phase Diagrams
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Figure 3.4: (a) Phase diagram in ϕ vs J space for variations in kb (Lo) with γ, τ = 0. (b) Phase
diagram in ϕ vs J space for variations in γ, τ of both phases, with kb (Lo) = 60 kBT . (c) Phase
diagram in µ vs J space for the systems in (b) with lines indicating µeq. The same coloring scheme
is used as (b). (d) System with 1600 vertices in equilibrium in the Ld phase at µeq − µ = 1e-4 kBT ,
J = 0.3 kBT , kb (Ld) = 20 kBT , and kb (Lo) = 60 kBT . (e) System with 1600 vertices in equilibrium
in the Lo phase at µeq − µ = −1e-4 kBT , J = 0.3 kBT , kb (Ld) = 20 kBT , and kb (Lo) = 60 kBT .

To allow measurement of distance away from phase coexistence, phase diagrams with
respect to composition and chemical potential are obtained in Fig. 3.4. This is done with US
through sampling with respect to the average composition given by

ϕ =
1

N

N∑

i=1

ϕi , (3.4.1)

with the chemical potential at phase coexistence, µeq, being obtained through reweighting
with MBAR. The value of µeq is identified by setting the probability of each phase to be equal
[144, 145]. The probability of each phase is obtained by integration of exp(−βF (ϕ)), with
the local free energy maxima between the phases being used to distinguish the two phases
(see the blue curve in Fig. A.2(a) for reference of what the free energy with respect to ϕ is).
The value of µeq is then evaluated using Brent’s method [146]. Figures 3.4(a,b) show that the
phase diagrams obtained for variations in bending rigidity and surface tension are similar to
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that of the Ising model on a hexatic lattice [147], reproducing the critical coupling parameter
Jc =

ln 3
4

kBT along with the symmetric composition values. Differences in bending rigidity
and tension between Lo–Ld phases lead to nonzero µeq due to the Ld having a lower bending
energy (Fig. 3.4(c)). Reference images of the Ld and Lo phases are given in Fig. 3.4(d) and
Fig. 3.4(e), respectively.

A discussion on the relation of the line tension λ to simulation parameters is needed.
There are two ways to tie the value of J to relevant experimental parameters. The first
is setting the critical temperature given by Tc =

4
kB ln 3

Jc to experimental values and then
tuning temperature appropriately to yield the line tension λ. The other is through tuning λ
directly by setting J at constant T as is done in Figs. 3.4(a–c). For the Ising model on a
hexatic lattice, an analytical formula relating λ, J , and T has been derived. The formula is
per Ref. [147]

βλ = 2 ln sinh 2K + 2 ln

[
1

2
(1 + vu1)

0.5 +
1

2
(1 + vu2)

0.5

]
, (3.4.2)

where

K = βJ , (3.4.3)
v = tanhK , (3.4.4)
u1 = v + 2 , (3.4.5)
u2 = v + v2 + v−2 . (3.4.6)

For β = 1, Eq. (3.4.2) yields λ (J = 0.3) ≈ 0.17 kBTσ
−1, λ (J = 0.5) ≈ 1.34 kBTσ

−1, and
λ (J = 1.0) ≈ 3.75 kBTσ

−1. In the first approach, in order to see λ range on physiological
values, the temperature would need to be lowered by a factor of kb ln 3

4
which would yield

unphysiological temperatures. Hence, we use the second approach of tuning λ through J .

3.4.2 Single Protein Effects

We now probe the effect of a single protein domain. The protein domain is constructructed
by initializing protein vertices within a confining domain, such that displacement and identity
exchange moves are allowed within the domain but not out of the domain. The confining
radius R is taken to be 1.5 times greater than the initial cluster’s radius. This allows sufficient
room for protein vertices to move. An example of a single orderphilic protein domain is given
in Fig. 3.5(a), with the confining radius given in black.

To see if a model orderphilic protein domain nucleates the Lo phase in its vicinity, we
evaluate the composition field as a function of distance from the center of the protein, ⟨ϕ (r)⟩,
with the protein vertices counted as Lo vertices in the evaluation of ⟨ϕ (r)⟩. This quantity is
evaluated for a variety of chemical potentials, protein radii, and coupling parameter values in
Fig. 3.5(b–d). The extent of the region nucleated by the protein increases with the proximity
to µeq, the size of the protein, and proximity to Jc. This behavior replicates that found in the
previous orderphobic effect study that used a coarse-grained molecular dynamics model [7].
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Figure 3.5: (a) Top view of a single orderphilic protein domain of radius 9.6 σ at kb (Ld) = 20 kBT ,
kb (Lo) = 60 kBT , J = 0.3 kBT , and µeq − µ = 1e-4 kBT with 104 total vertices. The confining
radius is given in black. (b) Varying µ for a protein of radius 6.4 σ at J = 0.3 kBT . (c) Varying
protein radius for J = 0.3 kBT and µeq − µ = 1e-4 kBT . (d) Varying J for a protein of radius 6.4 σ
and µeq − µ = 1e-4 kBT .

3.4.3 Two Protein Effects

We simulate systems with two protein domains per the domain construction of Sec. 3.4.2.
The domains move through a Monte Carlo move that moves the center of the confining radius
in the x-direction. This move is rejected if the domain’s vertices are outside of the proposed
new domain, and accepted if the domain’s vertices are inside of the proposed new domain.

It is found that two orderphilic protein domains spontaneously assemble. The typical
assembly behavior is seen in Fig. 3.6(a). Two protein domains are initially independent of
each other at distances beyond that of their individual interaction ranges (Fig. 3.6(a,top)).
Once within a certain distance, the formation of a solvation bridge between the protein
domains occurs spontaneously (Fig. 3.6(a,middle)). The two protein domains then merge
together (Fig. 3.6(a,bottom).

To quantify this behavior, the free energy with respect to the distance between two
orderphilic protein domains is evaluated using REUS and MBAR. This is done for various
coupling parameters, chemical potentials, and protein radii as shown in Figs. 3.6(b–d). The
free energy minimum occurs when the protein domains are at a distance of 2R apart. Any
further reduction of the distance between the proteins leads to repulsion due to elastic energy.
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Figure 3.6: (a) The assembly of proteins with radii 6.4 σ at kb (Ld) = 20 kBT , kb (Lo) = 60 kBT ,
J = 0.3 kBT , and µeq − µ = 1e-4 kBT . (Top) Before the formation of the solvation bridge. (Middle)
During the formation of the solvation bridge. (Bottom) After merging. The following correspond to
the free energy profiles of two orderphilic proteins at different parameters, kb (Ld) = 20 kBT , and
kb (Lo) = 60 kBT for a system with 104 total vertices. (b) Varying µeq − µ for a protein of radius
6.4 σ and J = 0.3 kBT (c) Varying protein radius for µeq − µ = 1e-4 kBT and J = 0.35 kBT . (d)
Varying J for a protein of radius 6.4 σ and µeq − µ = 1e-4 kBT .

At distances greater than this minima, the free energy increases linearly with protein distance.
A plateau is eventually reached that corresponds to when the two protein domains begin
to spontaneously merge. Past this distance, the proteins are independent of one another.
The range of the proteins’ interactions increases with J → Jc, protein size, and distance
from coexistence, in agreement with the single protein trends in Sec. 3.4.2. The height of
the plateau increases with the protein size and J . Variations in the bending rigidity and
surface tension are found to not affect the plateau height as shown in Fig. A.1. For values of
µeq−µ leading to energetic interactions in the same order as J , the distance from coexistence
increases the plateau height.

The assembly of two proteins driven solely by composition effects follows the mechanism
previously described in the orderphobic effect [7], and more generally that of the hydrophobic
effect [104, 148]. This mechanism is that of two independent domains drifting until they enter
some interaction range. The proteins then spontaneously assemble due to the minimization
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of their line tension. The free energy of this assembly is governed by λPint, where Pint is
the perimeter of the interface. The perimeter of the interface between two proteins depends
linearly upon the protein distance, leading to the observed linear free energy profiles. Increases
in R lead to an increased Pint at constant λ. Increases in J , on the other hand, lead to an
increased λ that are greater than the corresponding reduction in Pint, hence yielding a larger
value of λPint. Under similar logic, one would expect that adjusting the chemical potential
away from phase coexistence would lead to lower free energy incentives to assemble due to
the reduction of the interface perimeter. While the observed range of interaction is reduced,
the plateau height increases with distance from coexistence. This is due to a reduction in the
amount of induced Lo vertices when the proteins assemble.

3.4.4 Multiple Protein Effects

The effect of multiple orderphilic proteins is considered through the use of point particle
proteins, each a single vertex in size. The point particle proteins are allowed to freely diffuse
under vertex displacements and mass conserving moves without the need for the previous
confining radius construction. We first look at qualitative trends as the number of proteins is
increased at constant J and µ, and as J is increased at constant protein number and µ. In a
system with moderate line tension and close proximity to µeq, the addition of more proteins
induces a larger stable Lo phase in a bulk Ld phase as shown in Fig. 3.7(a). In a system with
a high protein number and a large distance from µeq, low line tensions lead to the proteins
being dispersed while higher line tensions lead to protein assembly into a larger domain as
seen in Fig. 3.7(b).

This behavior is quantified by obtaining phase diagrams with respect to the average
composition for differing protein numbers using US and MBAR (Fig. 3.7(c)). The inclusion
of protein vertices stabilizes Lo regions in a bulk Ld phase, observed through a corresponding
shift in the phase diagram about the composition. This can be further understood by looking
at the underlying free energy used to obtain the phase diagrams in Fig. A.2(a), where
it is observed that the proteins allow for greater fluctuations in the average composition.
Additionally, measurement of the line tension Fig. A.2(b) shows that the line tension is
reduced by protein addition. This behavior is in agreement with the qualitative behavior
previously seen in Figs. 3.7(a,b).

To conclude our discussion on composition effects, protein domains can generate large
clusters of the thermodynamically disfavored phase in a bulk of the thermodynamically
favored phase. Line tension drives this aggregation due to the reduction of the free energy
per λPint. This is in line with the previous orderphobic effect study [7] and expectations from
the hydrophobic effect [104]. As previously mentioned, experimentally it is seen that Lo-Ld

domains, both with and without proteins, do not necessarily phase separate macroscopically.
Artificial membrane systems can have multiple phase-separated domains [81, 97, 149], while
the lipid raft hypothesis for live systems speculates the existence of many dynamic nanoscopic
domains [6, 80]. As line tension drives only macroscopic phase separation we will now consider
additional factors in the membrane-protein model to drive microscopic phase behavior.
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Figure 3.7: Multiple point particle protein results at kb (Ld) = 20 kBT and kb (Lo) = 60 kBT . In
(a) and (b), the size of a protein vertex is increased clarity. (a) Varying number of point particle
proteins at µeq − µ = 0.04 kBT and J = 0.4 kBT . (b) Varying J at 45 point particle proteins and
µeq − µ = 0.5 kBT . (c) Phase diagram of a system with orderphilic point particle proteins in a
system with 1600 total vertices, kb (Ld) = 20 kBT , kb (Lo) = 60 kBT , and reweighted such that each
phase has equal probability.
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3.5 Bending Effects

We now examine bending effects related to the membrane-protein system. This covers the
coupling between bending and compositional energies along with the effect of spontaneous
curvature and the various shape transformation accessible to membranes.

3.5.1 Single Protein Effects
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Figure 3.8: (Left) Flat protein of radii 10.3 σ at kb = 5 kBT and J = 1 kBT . (Middle) Free energy
versus curvature for various bending rigidities for a protein domain with radius 10.3 σ at J = 1 kBT
and γ, τ = 0 in a system with 2500 total vertices. (Right) Budded protein of initial radii 10.3 σ at
kb = 5 kBT and J = 1 kBT .

When an Lo (Ld) domain reaches a sufficient size in a Ld (Lo) bulk phase at a nonzero
line tension, spontaneous budding of the domain can occur [82, 113, 150, 151]. Theoretically,
this process has been well described by Lipowsky in the absence of surface tension, in which
the membrane undergoes a transition from a flat state to a budded state as the line tension
or spontaneous curvature of a domain increases [152, 153]. We will examine the budding
process in the current computational model to see its behavior and compare it to the behavior
described by Lipowsky. We then examine mechanisms for the generation of spontaneous
curvature for protein domains. To do so, we evaluate the free energy of the budding process
for a single protein domain.

To evaluate the free energy we sample with respect to the average mean curvature of a
protein domain. The average mean curvature of the protein domain, H̄protein is taken to be

H̄protein =
1

Nprotein

∑

i∈{protein vertices}
Hi , (3.5.1)

where Nprotein is the number of protein vertices. The simulation setup is shown in Fig. 3.8(left)
with a single protein domain in a flat state. To keep the number of vertices, including Lo

vertices, in the protein domain constant we fix the mass of the system, and the confining
radius of the protein domain is set to 19.21 σ. Performing US with respect to H̄protein allows
for the study of the transition between the previously seen flat state to that of the budded
state (Fig. 3.8(right)).
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Figure 3.9: (a) Free energy versus curvature for a protein domain of radius 10.3 σ at kb = 5 kBT ,
J = 1 kBT , and γ, τ = 0 in a system with 2500 total vertices. (b) Free energy versus curvature for a
single Lo domain of radius 4.8 σ at kb (Ld) = 20 kBT , kb (Lo) = 60 kBT , and composition energy
governed by Eq. 3.5.2 with parameters given in Eq. 3.5.3 for a system with 2500 total vertices and
80 Lo vertices at various spontaneous curvatures obtained through reweighting. (c) Dimpled protein
of radii 4.8 σ at kb (Ld) = 20 kBT , kb (Lo) = 60 kBT , and composition energy governed by Eq. 3.5.2
with parameters given by Eq. 3.5.3 in a system with 2500 total vertices at C = 0.1 σ−1 with 80 Lo
vertices.

The free energy with respect to H̄protein is evaluated using REUS and MBAR. A uniform
bending rigidity in the range of 2.5–5 kBT is used for both the Lo and Ld vertices. This is
done as vertices with higher bending rigidity would be increasingly difficult to sample due
to large free energy barriers. The free energy in this bending rigidity range is evaluated in
Fig. 3.8(middle), where a transition between spontaneous budding at lower values of the
bending rigidity to a stable flat phase at higher values of the bending rigidity is seen. This
result is in line with the theory of Lipowsky [152] with the observed stable phases being a
flat state of zero curvature or a fully budded state. Surface tension is found to increase the
barrier related to budding (Fig. A.3(a)). This is due to τ creating an energetic cost for the
reduction of projected area in bud formation. Note that performing simulations at a fixed
projected area would lead to a large energetic barrier for budding as the excess area of the
membrane would need to be converted into the area of the bud [154].

We now evaluate the effect of protein spontaneous curvature, which we denote as C =
C (ϕi = 1, ni = 1). This is done by performing reweighting with respect to H̄protein to yield
the free energy profiles in Fig. 3.9(a). Per the theory of Lipowsky [152], relatively small
spontaneous curvatures can induce spontaneous budding in conjunction with line tension.
In the cases where spontaneous budding does not occur the stable flat phase’s minimum is
shifted by the spontaneous curvature, resulting in a dimpled phase.
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To see in greater detail the shifting of the flat phase to that of the dimpled phase by C
at physiological conditions, we evaluate the free energy of a protein domain with respect
to H̄protein at realistic bending rigidities and low line tension. To keep the protein domain
together within the large confining radius, Vc is modified. This modified composition energy
is

Vc,2 = −
1

2

∑

i

∑

j(i)

J (ϕi, ni, ϕj, nj)ϕiϕj , (3.5.2)

where for a system with only orderphilic proteins the values of J (ϕi, ni, ϕj, nj) are

J (ϕi = ±1, ni = 0, ϕj = ±1, nj = 0) = 0 ,

J (ϕi = 1, ni = 0, ϕj = 1, nj = 1) = 0 ,

J (ϕi = −1, ni = 0, ϕj = 1, nj = 1) = 10 kBT ,

J (ϕi = 1, ni = 1, ϕj = 1, nj = 1) = 0 kBT .

(3.5.3)

This choice of parameters leads to the Lo vertices wetting the protein domain as seen in
Fig. 3.9(c). This is due to the protein vertices having an energetic penalty to interact with Ld

vertices, while interactions between Lo–protein vertices and Ld–Lo vertices have no penalty.
Hence, the protein domain has effectively zero line tension. The confining radius is set to
9.61 σ with mass conserving moves used for the protein vertices and 80 Lo vertices.

The free energy with respect H̄protein is evaluated for the system governed by Eqs. (3.5.2)
and (3.5.3) with C = 0 using REUS and MBAR, and then reweighted to different curvatures
to yield the free energy profiles in Fig. 3.9(b). A stable basin around the specified C is seen
in the profiles, with the systems having a stable dimpled state for C > 0 due to the low line
tension in comparison to the previous results of Fig. 3.8(middle) and Fig. 3.9(a). Surface
tension slightly shifts the curvature of the free energy profile per Fig. A.3(b), and does not
have the large effect previously seen for the budding transition in Fig. A.3(a) due to the
projected area of the system being relatively constant for a dimpled domain.

3.5.2 Two Protein Effects

We now simulate systems that have two protein domains with nonzero spontaneous curvature
through C = C (ϕi = 1, ni = 1). The simulation system is seen in Fig. 3.10(a). It is observed
in short simulations that dimpled protein domains of radii 6.4 σ do not spontaneously assemble
in contrast with the results of Section 3.4.3. This behavior is now quantitatively analyzed
using umbrella sampling.

The free energy with respect to protein distance is evaluated using REUS and MBAR.
The spontaneous curvature leads to an elastic repulsion between domains at long distances,
in line with previous theories of dimpled domains [154, 155]. For proteins with radii of 6.4 σ
increasing curvature produces a barrier for domain assembly (Fig. 3.10(b)). The height of
the barrier increases with C, and it is found at the highest tested spontaneous curvature of
0.3 σ−1 that the free energy incentive to assemble also increases. For larger proteins with
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Figure 3.10: (a) Stable orderphilic protein domains of radii 6.4 σ with kb (Ld) = 20 kBT , kb (Lo) =
60 kBT , γ, τ = 0, J = 0.3 kBT , µeq − µ = 1e-4 kBT , and C = 0.3 σ−1 in a system with 104

vertices. The following are free energy versus protein distance for two orderphilic proteins with
varying parameters. (b) Varying C at γ, τ = 0, J = 0.3 kBT , kb (Ld) = 20 kBT , kb (Lo) = 60 kBT ,
and µeq − µ = 1e-4 kBT for two orderphilic proteins of radii 6.4 σ. (c) Varying C at γ, τ = 0,
J = 0.3 kBT , kb (Ld) = 20 kBT , kb (Lo) = 60 kBT , and µeq − µ = 1e-4 kBT for two orderphilic
proteins of radii 9.6 σ.
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Figure 3.11: (a) Free energy versus protein distance for two orderphilic proteins of radii 6.4 σ at
kb (Ld) = 20 kBT , kb (Lo) = 60 kBT , and µeq − µ = 1e-4 kBT for varying γ, τ at C = 0.2 σ−1 and
J = 0.3 kBT in a system with 104 total vertices. (b) Free energy versus protein distance for two
orderphilic proteins of radii 6.4 σ at kb (Ld) = 20 kBT , kb (Lo) = 60 kBT , and µeq − µ = 1e-4 kBT
for varying γ, τ at C = 0.3 σ−1 and J = 0.3 kBT in a system with 104 total vertices.
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radii of 9.6 σ the barrier is much greater (Fig. 3.10(c)). This leads to the protein domains
remaining separated. Similar to the smaller protein domains, the values of the free energy
profiles for r − 2R < 0 are not as repulsive at high spontaneous curvatures as they are for
low spontaneous curvatures. The region at r − 2R < 0 for high spontaneous curvatures is,
however, metastable with respect to the independent domain state. Previously observed
trends for µ and J , with increasing distance from coexistence leading to shorter compositional
interaction range and increasing J leading to shorter compositional interaction range and
larger incentives to assemble, are found to hold in the presence of nonzero spontaneous
curvature as seen in Fig. A.4.

Surface tension provides another barrier for domain merging by enhancing the bending
interactions as seen in Fig. 3.11. This effect becomes more significant at higher curvatures
with the progression of surface tension shifting the free energy plateau at low curvatures
(Fig. 3.11(a)) to producing a repulsive interaction between the domains at high curvatures
(Fig. 3.11(b)). One expects the elastic length scale of the protein domain interactions to
depend upon the surface tension per

√
kb/σ, allowing for the modulation of the interaction

range between the domains which matches the observed trend in the free energy profiles of
Fig. 3.11. This length scale dependence on surface tension is in line with previous theoretical
work on the assembly of rigid inclusions in lipid bilayers [155].

The elastic interaction driven by protein spontaneous curvature together with the com-
positional interaction provides a mechanism for microphase separation. The effects of the
elastic interaction produce a barrier for assembly at large domain sizes and/or spontaneous
curvatures, while line tension drives the spontaneous assembly of small domains. This suggests
that domains will grow to some critical size at which the elastic and compositional interactions
are in balance and prevent further assembly. Though this size is difficult to quantify in the
two protein systems in which the elastic and compositional energetics have to be controlled
meticulously, we now quantify it in a multiple point particle protein simulation.

3.5.3 Multiple Protein Effects

We now look at the behavior of multiple orderphilic proteins using point particle proteins
with spontaneous curvature. At low spontaneous curvatures of protein vertices, the protein
vertices create one large domain rich in the Lo phase in line with the results of Section 3.4.4.
However, when the curvature is increased past a certain value, the spontaneous formation of
many domains is observed as shown in Fig. 3.12(a), in line with the hypothesis at the end of
Section 3.5.2. We now quantitatively examine this behavior.

The clusters formed by the orderphilic protein vertices are identified using a depth-first
search algorithm [156, 157]. Pseudo-code for the implemented version of the depth-first search
algorithm is given in Algorithms 1 and 2, in which a list of clusters containing orderphilic
protein vertices and Lo vertices is obtained by searching for clusters over all vertices. This
is done by identifying a protein vertex that is not in a cluster per Algorithm 1, and then
recursively going over all Lo and protein vertices neighboring that protein vertex until all
vertices in the cluster are identified per Algorithm 2. The depth-first search algorithm returns
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Figure 3.12: (a) System with 4800 orderphilic point proteins with 40000 total vertices at kb (Ld) =
20 kBT , kb (Lo) = 60 kBT , J = 0.5 kBT , µeq − µ = 0.25 kBT , γ, τ = 0, and C = 0.05 σ−1 (left) and
C = 0.25 σ−1 (right). (b) Weight-averaged cluster size for a system with 4800 orderphilic point
proteins with 40000 total vertices at kb (Ld) = 20 kBT , kb (Lo) = 60 kBT , µeq − µ = 0.25 kBT ,
γ, τ = 0, and varying C and J . (c) Weight-averaged cluster size for a system with 4800 orderphilic
point proteins with 40000 total vertices at kb (Ld) = 20 kBT , kb (Lo) = 60 kBT , C = 0.3 σ−1,
γ, τ = 0, and varying µ and J .

a list of the protein-induced clusters and the vertices in each cluster. Three metrics are
evaluated using the cluster list. The first metric is the number of clusters, Ncluster. The
second metric is the number-averaged cluster size nn measured by

nn =

Ncluster∑

i=1

ni

Ncluster∑

i=1

1

, (3.5.4)

where ni is the size of cluster i. This metric averages all cluster sizes equally. The final metric
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Algorithm 1: Depth-first search algorithm
Data: Triangulation T . Composition variables ϕ. Protein identities n.

1 Initialize empty list of clusters L.
2 Initialize list of vertex statuses S set to −1 for all vertices.
3 for vertex k = 1, . . . , N do
4 if nk = 1 and Sk = −1 then
5 Initialize empty list Lj.
6 Recursive DFS(k, T ,ϕ,n, Lj,S)
7 Store Lj in L.

Algorithm 2: Recursive part of depth-first search
Recursive DFS(i, T ,ϕ,n, L,S)

1 Set Si = 0.
2 Store i in L.
3 for k ∈ j(i) do
4 if nk = 1 or ϕk = 1 then
5 if Sk = −1 then
6 Recursive DFS(k, T ,ϕ,n, L,S)

Figure 3.13: Pseudo-code for the depth-first search algorithm used to identify clusters and
their sizes.

is the weight-averaged cluster size nw measured by

nw =

Ncluster∑

i=1

n2
i

Ncluster∑

i=1

ni

. (3.5.5)

This metric puts more weight into clusters of larger sizes, and is useful for discerning large
clusters in the presence of smaller clusters. Simulations are used to obtain ⟨Ncluster⟩, ⟨nn⟩,
and ⟨nw⟩.

We examine the trends in cluster size with respect to the spontaneous curvature and
line tension. Sweeping over values of spontaneous curvature at three different values of line
tension, the same general trend is observed as shown in Fig. 3.12(b) with Figs. A.5(a,b)
containing additional statistics. At low spontaneous curvatures, the system is in a macrophase
state with one large cluster. Beyond some value of C, the weight-averaged cluster size begins
to decrease indicating microphase separation. Large line tensions necessitate larger values of
C for this transition to occur. This is in line with the previous behavior seen with respect to
two dimpled proteins.
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Figure 3.14: (a) Weight-averaged cluster size for a system with 4800 orderphilic point proteins with
40000 total vertices at kb (Ld) = 20 kBT , kb (Lo) = 60 kBT , µeq − µ = 0.25 kBT , J = 0.5 kBT , and
varying γ, τ and C. (b) Weight-averaged cluster size for a system with 4800 orderphilic point proteins
with 40000 total vertices at kb (Ld) = 20 kBT , kb (Lo) = 60 kBT , C = 0.3 σ−1, J = 0.5 kBT , and
varying γ, τ , and µ.

The weight averaged cluster size decreases as µeq − µ increases as shown in Fig. 3.12(c)
with additional statistics in Figs. A.5(c,d). This in opposition to the results in Figs. 3.6(b)
and A.4(a), but it is noted the results in those figures use the artificial protein domain
construction to obtain those results. With the distance from phase coexistence increasing,
the clusters consist less of the Lo vertices and more of the protein vertices. As the Lo vertices
have no curvature the resulting clusters have higher curvature and hence more repulsion
leading to more clusters. This behavior is hard to probe with the two protein construction
due to the artificial behavior with regards to the Lo vertices, while the point protein vertices
have no such issue.

Surface tension is found to prevent microphase separation up to moderate values of C and
µ, and enhances microphase separation for higher values of C and µ as shown in Fig. 3.14.
This partially contradicts the result from Fig. 3.11 where surface tension is found to only
enhance repulsion. Looking at the other metrics, surface tension increases the value of
⟨Ncluster⟩ for increasing curvature per Fig. A.6(a) while having a similar trend for increasing µ
except surface tension reduces ⟨Ncluster⟩ for µeq−µ per Fig. A.6(c). The value of ⟨nn⟩ is found
to steadily decrease for increasing curvature and chemical potential as seen in Figs. A.6(b,d)
with surface tension having a similar trend to that seen in Fig. 3.14 by amplifying the
reduction past certain values of C and µ. Intuitively one expects that ⟨Ncluster⟩ and ⟨nn⟩ will
be inversely related, which is seen in all cases except for increasing curvature with increasing
surface tension in Figs. A.6(a,b). This suggests that in the case of moderate curvatures with
high surface tension, small clusters form that do not significantly affect the value of ⟨nn⟩
and ⟨nw⟩. In the case of increasing µeq − µ changes in ⟨Ncluster⟩ and ⟨nn⟩ are initially more
pronounced than ⟨nw⟩ at high tensions, in line with the formation of many small clusters in
the presence of a few large clusters.
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3.5.3.1 Spherical Systems
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Figure 3.15: (a) Phase diagram in ϕ vs J space for a spherical membrane system with 40962 vertices,
kb (Ld) = 20 kBT , and kb (Lo) = 60 kBT . (b) Phase diagram in µ vs J space determined using
the bracketing method for the system in (a) with lines indicating µeq. (c) Spherical system with
4800 orderphilic point proteins with 40962 total vertices at kb (Ld) = 20 kBT , kb (Lo) = 60 kBT ,
J = 0.5 kBT , µeq − µ = 0.25 kBT , γ, P = 0, and C = 0.05 σ−1 (left) and C = 0.25 σ−1 (right).
(d) Weight-averaged cluster size for a spherical system with 4800 orderphilic point proteins with
40962 total vertices at kb (Ld) = 20 kBT , kb (Lo) = 60 kBT , µeq − µ = 0.25 kBT , γ, P = 0, and
varying C and J . (e) Weight-averaged cluster size for a spherical system with 4800 orderphilic point
proteins with 40962 total vertices at kb (Ld) = 20 kBT , kb (Lo) = 60 kBT , C = 0.3 σ−1, γ, P = 0,
and varying µ and J .

We now consider the effects of multiple point orderphilic proteins in a spherical system.
We do so on a system that is roughly the same size of the planar systems in Figs. 3.12
and 3.14, consisting of 40962 vertices generated using the Loop subdivision scheme introduced
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in Section 2.4.1. The radius of the initial triangulation is set to 69.48 σ and the spontaneous
curvature of the Lo–Ld vertices is set to 1

69.48
σ−1.

As in the planar system, the phase diagram of the spherical system is established so
that distance from phase coexistence set by µeq − µ can be quantified. Determining the
phase diagram using US for this system is computationally difficult due to the larger number
of vertices in the spherical system than that of the planar system used for the results in
Fig. 3.4. The phase diagrams are instead obtained for a system with kb (Ld) = 20 kBT and
kb (Lo) = 60 kBT by finding values of µ that establish phase coexistence using the ansatz
that the phase diagrams have similar behavior to that of the Ising model. We first simulate
10 systems with mass conserving Monte Carlo moves that have half Ld vertices and half Lo

vertices at select values of J . The equilibrated systems are then simulated with non-mass
conserving Monte Carlo moves from which the number of trajectories that commit to either
the Ld or Lo phase is counted, which are denoted as NLd and NLo respectively. As phase
coexistence has the probability of each phase to be equal [144, 145] and the phase diagram of
the Ising model is symmetric with respect to composition, the value of µ that yields an equal
number of trajectories committing to either phase is µeq. This objective function is written as

f(µ) = NLd(µ)−NLo(µ) , (3.5.6)

where the value of µeq is found with the bisection algorithm [158] by finding the root of
Eq. (3.5.6). The obtained values of µeq along with the corresponding phase diagram in ϕ
versus J space obtained through simulations in the Ld and Lo phases at µeq are shown in
Figs. 3.15(a,b). Similar to the results in Figs. 3.4(a,c), the phase diagram in ϕ versus J space
is symmetric and the value of µeq has little dependence on J .

Tuning the value of the protein vertex spontaneous curvature, C, in the spherical systems
yields similar behavior to that of the planar systems, with the protein vertices separating
macroscopically at low curvature and microscopically at higher curvatures (Fig. 3.15(c)).
This is quantified using measurements of the weight averaged cluster size in Figs. 3.15(d,e)
and the other metrics in Fig. A.7, where identical trends to the planar case are found. This
demonstrates that the background curvature of a sphere has minimal effect on the observed
planar results under the conditions considered.

3.6 Conclusions and Discussions

We have looked at the assembly of Lo inducing protein domains in a bulk Ld membrane phase
using a model commensurate with the relevant biological length and time scales. Line tension
drives the assembly of these domains until elastic energetics between domains prevent further
assembly. The elastic energetics are due to the spontaneous curvature of the protein domains,
and the equilibrium domain size is controlled by the line tension, bending rigidity which
enhances elastic interactions, and surface tension of the Lo–Ld phases. Experimental work in
giant unilamellar vesicles and giant plasma membrane vesicles with Lo–Ld phase separation
has observed the trend of domain size increasing with line tension while trends with surface
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tension remain controversial [159–163], though to our knowledge no experimental study has
analyzed the trends in bending rigidity.

The assembly of two solute domains with a barrier is in contrast with processes driven
solely by pre-transition effects such as the hydrophobic effect [104, 164] and the prior
orderphobic effect study [7]. In absence of spontaneous curvature, the assembly is energetically
favorable under all cases considered. Some concerns could arise that this process is not
necessarily spontaneous. The formation of the solvation bridge leads to the generation of the
thermodynamically disfavored phase, which intuitively leads to the process having a barrier.
It has been shown that a similar Ising model-based energy leads to spontaneous assembly
of two hydrophobic solutes via a committor analysis to determine good collective variables
[148]. Below a certain distance between the solutes, the formation of the solvation bridge
was found to lower the free energy with subsequent reduction in the solute distance being
barrier-less. Above this solute distance, the process is not spontaneous as solvation bridge
formation does not lower the free energy of the system. Though similar kinetic studies are
not considered here, it is likely the case due to similarities in the energetic potential.

Our work on understanding the generation of curvature in a single Lo induced protein
domain follows the theory of Lipowsky [152] for the tensionless case. Non-zero spontaneous
curvature is found to be needed to generate a dimpled state to drive microphase behavior.
Surface tension regulates complete budding while having minimal effect on the curvature of
slightly dimpled states. Reference [154] has speculated a mechanism for which competition
between surface tension and line energies leads to stable dimpled states, but this behavior is
not observed in our computational model. This is in agreement with the work of Lipowsky
[152], and other work theoretical work in the context of budded domains acting as tension
regulators [165] and budding in clathrin-mediated endocytosis [166, 167] that demonstrated
tension serves to regulate complete budding. Additionally, the line tension needed to facilitate
the budding of Lo domains is nontrivial due to the large bending rigidity of the Lo phase. This
necessitates large domain sizes and line tensions which is not compatible with the hypothesis
of lipid rafts being nanoscopic domains and existing near physiological critical points where
line tension is low.

Recent theoretical and computational work has considered similar mechanisms for the
generation of multiple domains. This work has focused on spontaneous curvature causing
microphase separation on spherical systems with mass conservation [157, 168–172]. Our work
differs by focusing on a flat surface with non-mass conserving moves, though the final result
has been extended to spherical systems, along with showing the importance of protein domains.
Prior studies [157, 169] have utilized the assumption that large regions with spontaneous
curvature can be unstable, leading to the formation of smaller regions at low line tension that
has been quantified here in the case of two domains merging into one. Some of this prior work
better describes the microemulsion behavior some expect of lipid rafts which have not been
fully explored within our framework yet [157, 173, 174], along with the effect of Gaussian
curvature for different Gaussian moduli [169, 171, 172]. Prior theoretical work for flat systems
has explored the energetics of curved domains [154, 155], though our computational results
also incorporate effects due to line tension along with allowing for the merging of domains.
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Besides the coarse-grained description of lipids and proteins considered in this work, live
cells have other phenomena that may impact the formation of lipid rafts. For example,
biological membranes in live cells are coupled with the cytoskeleton. This interaction has
important effects on both membrane shape through extensive pushing and pulling by actin
[175, 176], and membrane composition, through mechanisms such as pinning from the
cytoskeleton which causes fencing of domains and limits diffusion [177, 178]. Lo and Ld

domains can also be generated through organelle contact [179]. Live cell membranes also
experience dynamic behavior through lipid trafficking, which is hypothesized as a potential
mechanism for lipid raft formation [180–183]. The model of this work uses Metropolis Monte
Carlo which assumes equilibrium behavior, and we acknowledge that live cell membranes are
in a non-equilibrium state with many moving parts and do not dismiss that the inclusion of
such phenomena could lead to different results.

There are many possible directions for future studies. As previously noted the effect of
Gaussian moduli differences between Lo–Ld phases and the incorporation of nonequilibrium
phenomena such as membrane recycling and coupling with the cytoskeleton has not been tested.
Ideas from our model can be applied to other simulation models of biological membranes,
such as atomistic and coarse-grained simulation models, though difficulties remain due to the
necessary time and length scales needed to study lipid rafts. Non-mass conserving moves can
be complicated as the identity swapping of lipids and proteins in these models are nontrivial,
though recent schemes have begun to address this issue [184–186]. Nonetheless, by modulating
protein length and curvature of proteins, the effects demonstrated in this chapter should be
reproducible and able to explain a wide range of biological behaviors.
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Chapter 4

Introduction to Transition Path Theory

4.1 Introduction

A fundamental problem in chemistry is the discovery of mechanistic pathways governing
kinetic processes at the microscopic level. These processes include phase transitions in
colloidal systems [187], chemical reactions at aqueous interfaces [188], and protein folding
[189]. While diverse in context, they exhibit a common bottleneck in the form of high-energy
barriers, which separate the reactant and product states of the pathway. Despite remarkable
progress in high-performance molecular simulations [51, 190, 191], finding these pathways
is difficult due to the rarity of barrier-crossing events at timescales achievable by current
computational resources. Studying these rare events constitute identifying the transition
pathways, and sampling them is an important part of obtaining a mechanistic understanding
of the problem.

A common approach in mechanistic pathways with high-energy barriers is the identification
of a low-dimensional set of collective variables (CVs). If the set of collective variables is
sufficient to predict dynamical progress along the mechanistic pathway, it is termed a reaction
coordinate. With a reaction coordinate, integration of all other degrees of freedom in the
system typically yields local free energy minima corresponding to the reactant and product
states with a local free energy maximum corresponding to the transition state (see Fig. 4.1 for a
schematic). While idealistic, many processes such as water autoionization [192], crystallization
[193, 194], and protein folding [189] are amendable to this analysis. The use of good collective
variables allows for efficient calculation of reaction rates using methods such as transition state
theory and reactive flux calculations [195–198]. However, collective variables are typically
not known a priori and require exhaustive trial-and-error to obtain ones that best describe a
reaction pathway [199].

Several strategies exist for capturing rare barrier-crossing events without good CVs, one
of which is transition path sampling (TPS) [200, 201]; an importance sampling technique for
generating an ensemble of transition pathways. An alternative strategy is to rely on transition
path theory (TPT) [202, 203], which can outline various computational methods to obtain an
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Figure 4.1: Cartoon of a potential a reaction undergoes with a one-dimensional reaction
coordinate q having a reactant state A, transition state, and product state B.

average characteristic pathway, e.g., the finite-temperature string (FTS) method [204, 205].
Both strategies involve the calculation of the committor function q(x); the probability that
a trajectory starting from some initial configuration x enters the product state before the
reactant state. The committor function can be further used to obtain reaction rates and
transition-state ensembles. Its standard computation entails generating many trajectories for
every initial configuration x, which may become prohibitively expensive [206].

In this chapter, we outline the main results of transition path theory in Section 4.2, in
which a framework to obtain the committor function by solving a partial differential equation
is developed. The finite-temperature string method will then be derived in Section 4.3 using
approximations to transition path theory. These ideas are then applied to a 2D nonconvex
potential, the Müller-Brown potential, to demonstrate the ideas of transition path theory
and the finite-temperature string method in Section 4.4. We conclude with some remarks
on the limitations of the finite-temperature string method for higher dimensional systems in
Section 4.5. These results will be used in Chapter 5 in order to obtain methods to evaluate
the committor function in an efficient manner using machine learning techniques.

4.2 The Committor, Backward Kolmogorov Equation,
and Reaction Quantities

To review TPT, consider a d-dimensional system with N -many particles at equilibrium that
interact with a potential energy function V (x), where x ∈ Ω is a configuration of the system
and Ω ⊂ RNd is the configuration space. For now, we also consider the particles to have
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Figure 4.2: A schematic of transition path theory (TPT). Gray lines are flow lines of the
probability flux J(x), and the transition tube, i.e., the region of high flux, is localized around
the transition path φ(s). Dashed lines are isocommittor surfaces, with the middle dashed
line defining the transition-state ensemble where q(x) = 0.5.

velocities v ∈ RNd. Given this model system, TPT can be used to analyze the system’s
transition from a reactant state A ⊂ Ω to a product state B ⊂ Ω [202, 203, 207]; see Fig. 4.2
for a schematic of the problem. Central to TPT is the calculation of the committor function
q(x,v), which is defined as the probability to first reach B before A given that the system
initially starts at x0 = x and v0 = v. The formula for q(x,v) is given by

q(x,v) = E [hB (xτ ) | x0 = x,v0 = v] ; τ = arg min
t∈[0,+∞)

{xt ∈ A ∪B : x0 = x} , (4.2.1)

where E[. . . | x0 = x,v0 = v] = E(x,v) is an average over all trajectories starting from x and
v, τ is the first-passage time, and the indicator function hC(x) = 1 gives if x ∈ C and zero
otherwise.

Using stochastic calculus [208, 209], one may compute the committor as a solution to the
steady-state backward Kolmogorov equation (BKE). To do so, we specify that the system is
governed by the Langevin equation

ẋ = v , (4.2.2)

v̇ = −∇V (x)− γv +
√

2 kBTγη , (4.2.3)

where γ is the friction coefficient and η is Gaussian white noise. Under the system of equations
given by Eqs. (4.2.2) and (4.2.3), one can derive a general partial differential equation that
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all observables obey. To see this, let f(x(t),v(t)) be some observable computed at time t. By
Itô’s formula [209], we obtain

df =
[
∇xf · ẋ+∇vf · v̇ + kBT∇2

vf
]
dt+

√
2 kBTγ∇vf · dBt , (4.2.4)

where Bt is a Wiener process. Substitution of Eq. (4.2.3) yields

df =
[
∇xf · v +∇vf · [−∇xV (x)− γv] + kBT∇2

vf
]
dt+

√
2 kBTγ∇vf · dBt (4.2.5)

= L̂f dt+
√
2 kBTγ∇vf · dBt . (4.2.6)

Integration over time and averaging over possible trajectories yield

E(x,v)[f(x(t),v(t))]− f(x,v) = E(x,v)

[∫ t

0

L̂f ds

]
+ E(x,v)

[∫ t

0

√
2 kBTγ∇vf · dBs

]
.

(4.2.7)
We will evaluate the average value of the stochastic integral first. To do so, we evaluate the
general case of a function g(x(t),v(t)). Using Itô calculus and the knowledge that individual
Brownian noise increments are independent with mean zero yields

E(x,v)

[∫ t

0

g(x(t),v(t))dBs

]
≈ E(x,v)

[∑

i

g(x(ti),v(ti))
[
Bti+1

−Bti

]
]

(4.2.8)

=
∑

i

E(x,v)
[
g(x(ti),v(ti))∆Bti+1

]
(4.2.9)

=
∑

i

E(x,v) [g(x(ti),v(ti))]E
[
∆Bti+1

]
(4.2.10)

=
∑

i

E(x,v) [g(x(ti),v(ti))] · 0 = 0 . (4.2.11)

Hence the stochastic term in Eq. (4.2.7) evaluates to 0. Using Fubini’s theorem to switch the
order of time integration and averaging for the remaining terms yields

E(x,v)[f(x(t),v(t))]− f(x,v) =

∫ t

0

E(x,v)
[
L̂f(x(s),v(s))

]
ds . (4.2.12)

Dividing by t and taking the limit of t→ 0 obtains

lim
t→0

E(x,v)[f(x(t),v(t))]− f(x,v)

t
= lim

t→0

1

t

∫ t

0

E(x,v)
[
L̂f
]
dt = L̂f(x,v) . (4.2.13)

Next, we consider a function u(t,x(r),v(r)) = E(x(r),v(r))[g(x(t),v(t)]. By the Markov
property, the expectation value at time t + h is given by an iterated expectation value at
time h followed by time t

E(x,v)[g(x(t+ h),v(t+ h)] = E(x,v)
[
E(x(h),y(h)) [g(x(t+ h),v(t+ h)]

]
. (4.2.14)
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The time evolution of u(t,x,v) can then be found as

∂u(t,x,v)

∂t
= lim

h→0

E(x,v)[g(x(t+ h), v(t+ h))]− E(x,v)[g(x(t), v(t))]

h
(4.2.15)

= lim
h→0

E(x,v)
[
E(x(h),y(h)) [g(x(t+ h),v(t+ h)]

]
− E(x,v)[g(x(t), v(t))]

h
(4.2.16)

= lim
h→0

E(x,v) [u(t+ h,x(h),v(h))]− u(t,x,v)

h
(4.2.17)

= L̂u(t,x,v) . (4.2.18)

Equation (4.2.18) is known as the backward Kolmogorov equation (BKE). At steady-state,
the equation reduces to

L̂u(x,v) = 0 . (4.2.19)

Using the operator L̂ associated with the Langevin equation and letting u(x,v) = q(x,v),
we obtain

v · ∇xq + [−∇xV (x)− γv] · ∇vq + kBT∇2
vq = 0 . (4.2.20)

In the overdamped limit, we can neglect v and obtain the commitor function in terms of x
alone. The equations of motion in the overdamped limit are given by

γẋ = −∇xV (x) +
√

2 kBTγη . (4.2.21)

We can derive the corresponding BKE for the overdamped limit by either re-deriving the
BKE for the overdamped Langevin equation, or in the high friction limit of the BKE for the
Langevin equation. Either method will result in [210]

−∇2
xq(x) + β∇xV (x) · ∇xq(x) = 0 , (4.2.22)

subjected to the boundary conditions

q(x) = 0, x ∈ ∂A; q(x) = 1, x ∈ ∂B , (4.2.23)

where ∂A and ∂B are the boundaries of A and B respectively.
Equation (4.2.22) can be simplified by multiplication with the Boltzmann distribution

ρ(x) = e−βV (x)/Q. Doing so yields

− e−βV (x)

Q
∇2

xq(x) + β
e−βV (x)

Q
∇xV (x) · ∇xq(x) = −∇x ·

[
e−βV (x)

Q
∇xq(x)

]
= 0 , (4.2.24)

where one can identify

J(x) =
kBT

γ
ρ(x)∇xq(x) (4.2.25)

as the probability flux of reactive trajectories at x.
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Solving Eq. (4.2.24) for the committor function allows us to evaluate quantities such as the
transition path, transition-state ensembles, and reaction rates. The transition path is a curve
φ(s) that encodes how the system on average moves from A to B in the configuration space.
For every value of s, one can compute φ(s) self-consistently as the average configuration
weighted by the flux |J(x)| = kBT

γ
ρ(x)|∇xq(x)| at a chosen level set of the committor function

q(x), i.e.,

φ(s) =

∫
P
dS|J(x)|x∫

P
dS|J(x)| =

∫
P
dSρ(x)|∇xq(x)|x∫

P
dSρ(x)|∇xq(x)|

, (4.2.26)

where
∫
P
dS is a surface integral over the level set P = {x ∈ Ω : q(x) = q(φ(s))} [202, 203].

Note that for processes involving high-energy barriers the region of high flux typically forms
a tubular region called the transition tube, which is localized around φ(s); see Fig. 4.2. The
level sets of q(x) are also referred to as the isocommittor surfaces, where the isocommittor
surface corresponding to the level set {x ∈ Ω : q(x) = 1

2
} defines the transition-state ensemble.

The reaction rate νR, defined as the frequency with which a system transitions from A to
B, can also be evaluated from q(x). We can evaluate νR as the flux through a surface in
configuration space per [203, 207, 210]

νR =

∫

Γ

dS n(x) · J(x) , (4.2.27)

where Γ is an arbitrary dividing surface and n(x) is the unit normal of the surface. Taking Γ
to be an isocommittor surface P , one identifies the normal as

n(x) =
∇xq(x)

|∇xq(x)|
. (4.2.28)

We then use the identity [211]
∫

P

dS =

∫

Ω

dx δ(q(x)− q)|∇xq(x)| , (4.2.29)

to evaluate Eq. (4.2.27) as

νR =

∫

Ω

dx δ(q(x)− q)∇xq(x) · J . (4.2.30)

To proceed, we will demonstrate that Eq. (4.2.30) is independent of the choice of q and then
integrate over all possible values of q. This is seen from evaluating the partial derivative of
νR with respect to q to yield [207, 210]

∂νR
∂q

=

∫

Ω

dx
∂δ(q(x)− q)

∂q
∇xq(x) · J (4.2.31)

= −
∫

Ω

dx ∇xδ(q(x)− q) · J (4.2.32)

=

∫

Ω

dx δ(q(x)− q) ∇x · J = 0 . (4.2.33)
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The reaction rate is then evaluated as

νR =

∫ 1

0

dq νR =

∫

Ω

dx ∇xq(x) · J (4.2.34)

=
kBT

γ

∫

Ω

dx ρ(x)|∇xq(x)|2 =
kBT

γ

〈
|∇xq(x)|2

〉
. (4.2.35)

4.3 The Finite-Temperature String Method

The BKE given by Eq. (4.2.24) is difficult to solve as it corresponds to a partial differential
equation in high dimensional space Nd. While the committor function is important on its
own, information about the kinetic process of interest can be gained by only looking at
quantities defined by q(x) and not q(x) itself. To do so, we will devise a numerical method
to obtain the transition path φ(s) directly from an approximation of the committor function.
One of the most popular methods to do so is the finite-temperature string (FTS) method
[204, 205]. The FTS method is a numerical method to obtain transition paths, assuming that
the probability flux across region A to B attains a highly-peaked and unique transition tube
across different committor values. In this section, we will review the FTS method [204, 205].

The FTS method is an algorithm for obtaining a transition path φ(s), as defined in
Eq. (4.2.26), using sampling and optimization techniques. It emerges from an approximation
of the committor function q(x) that is locally built around the transition path φ(s). This
local approximation is achieved by constructing suitable functions sγ(x), which represent
isocommittor surfaces as hyperplanes centered around φ(s). If φ(s) follows an arc-length
parameterization, where s is the arc-length, the approximation for q(x) and the formula for
sγ(x) can be written as

q(x) ≈ f(sγ(x)) , (4.3.1)

sγ(x) ≡ arg min
s∈[0,L]

1

2
|x−φ(s)|2 , (4.3.2)

where L is the total arc-length of the path, and f : [0, L] → [0, 1] is an invertible scalar
function. To see that the function sγ(x) approximates isocommittor surfaces as hyper-planes,
one may perform the minimization in Eq. (4.3.2) to obtain the following equation:

dφ(s)

ds
· (x−φ(s)) = 0 , (4.3.3)

which is a linear equation in x, indicating the set of all configurations satisfying Eq. (4.3.3)
for fixed value of s ∈ [0, L] is a hyperplane; see Fig. 4.3 for illustration. On the other hand,
the operation of fixing a configuration x, and finding s that satisfies Eq. (4.3.3) defines a
mapping between configurations x ∈ Ω and the variable s ∈ [0, L]. This mapping is what we
denote as sγ(x).
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Configuration Space

Ω ⊆ RNd

sγ(x) = 0.95L

sγ(x) = 0.5L
sγ(x) = 0.15L

A
Reactant
State

B
Product
State

ϕ(0.5L)

ϕ(0.95L)

ϕ(0.15L)

Figure 4.3: The local approximation of isocommittor surfaces as hyper-planes, which also
correspond to the level sets of sγ(x). The normal vector of each hyper-plane is the tangent
vector dφ(s)

ds .

Given sγ(x) in Eq. (4.3.2), the problem of finding φ(s) can be posed as an optimization
problem. To this end, using Eq. (4.3.1), Eq. (4.2.26) can be approximated as an integral over
the hyperplane defined by sγ(x):

φ(s) ≈
∫
P̃
dS ρ(x)f ′(sγ(x))|∇xsγ(x)|x∫

P̃
dS ρ(x)f ′(sγ(x))|∇xsγ(x)|

, (4.3.4)

where P̃ is a level set of the function sγ(x) given by P̃ = {x ∈ Ω : sγ(x) = s}. Since f ′(sγ(x))
is constant over the level set P̃ , Eq. (4.3.4) can be rewritten as

φ(s) ≈
∫
P̃
dS ρ(x)|∇xsγ(x)|x∫

P̃
dS ρ(x)|∇xsγ(x)|

. (4.3.5)

Using Eq. (4.2.29), Eq. (4.3.5) can be rewritten as

φ(s) ≈
∫
Ω
dx ρ(x)δ(sγ(x)− s)|∇xsγ(x)|2x∫

Ω
dx ρ(x)δ(sγ(x)− s)|∇xsγ(x)|2

=
⟨δ(sγ(x)− s)|∇xsγ(x)|2x⟩
⟨δ(sγ(x)− s)|∇xsγ(x)|2⟩

. (4.3.6)

Furthermore, assuming the path’s curvature to be small, which implies that |∇xsγ(x)|2 ≈ 1
(see Appendix A of Ref. [205] for a proof), Eq. (4.3.6) can be simplified into a conditional
average given by

φ(s) ≈ ⟨δ(sγ(x)− s)x⟩
⟨δ(sγ(x)− s)⟩ = ⟨x | sγ(x) = s⟩ . (4.3.7)
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Lastly, one may use variational techniques to show that Eq. (4.3.7) is the result of extremizing
the following functional [205, 212]:

C[φ] =

∫ L

0

ds

〈
1

2
|φ(s)− x|2δ(sγ(x)− s)

〉
(4.3.8)

such that ∣∣∣∣
dφ(s)

ds

∣∣∣∣ = 1 . (4.3.9)

Equation (4.3.9) is the definition of arc-length parameterization, which sets a constraint on
the possible paths that extremize Eq. (4.3.8).

Equations (4.3.8) and (4.3.9) form the starting points for developing the FTS method, with
several discretization and approximation steps leading to a solvable optimization problem. To
this end, discretizing φ(s) into a set of equidistant nodal points {φα}Mα=1, satisfying Eq. (4.3.9),
i.e., |φα+1 −φα| = |φα −φα−1|, ∀α ∈ {1, . . . ,M}, Eq. (4.3.8) can be approximated as

C({φα}) =
M∑

α=1

∆s

〈
1

2
|φα − x|2δ(sγ(x)− sα)

〉
, (4.3.10)

where sα =
(

α−1
M−1

)
L is the arc-length of the path up to node φα, and ∆s is the arc-

length between any two nodes. Furthermore, the Dirac delta function δ(sγ(x)− sα) can be
approximated with an indicator function (see Appendix B of Ref. [205]):

hRα(x) =

{
1
∆s

x ∈ Rα({φα}) = {x ∈ Ω : |x−φα| < |x−φα′ | ∀α′ ̸= α}
0 otherwise

, (4.3.11)

where Rα denotes a Voronoi cell centered at node φα. With these steps, Eq. (4.3.10) can
then be expressed as a least-squares function:

C({φα}) =
M∑

α=1

∆s

〈
1

2
|φα − x|2hRα(x)

〉
=

M∑

α=1

〈
1

2
|φα − x|2

〉

Rα({φα})
(4.3.12)

where ⟨. . .⟩Rα({φα}) is an ensemble average constrained inside a Voronoi cell.
The ensemble averages in Eq. (4.3.12) can be estimated as averages over samples obtained

from molecular simulations, which are constrained to be inside the Voronoi cells and are
initiated with the configuration of the corresponding node. As illustrated in Fig. 4.4(left), this
step involves introducing M -many replicas of the system to sample configurations within each
of the M -many Voronoi cells, where each replica can evolve according to discrete overdamped
Langevin dynamics with a rejection rule:

xα
⋆ = xα

t − γ−1∇xV (xα
t )∆t+

√
2∆t kBTγ−1wα

t , (4.3.13)

xα
t+1 =

{
xα
⋆ if xα

⋆ ∈ Rα

xα
t otherwise

, (4.3.14)
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Regions sampled by
replicas

Boundaries of
Voronoi cells Rα

Nodal point of
the transition path

Reactant State A

Product State B

ϕ0
k

ϕ1
k

ϕ2
k

ϕ3
k

ϕ4
k

ϕ5
k

Algorithm 3: The FTS Method
Data: Initial conditions {φα

0}. The FTS
Method step size ∆τ and penalty
strength λS.

1 for k = 0, . . . , K do
2 for α = 1, . . . ,M in parallel do
3 for m = 1, . . . , |Rα

k | do
4 Sample xα

m with MD/MC
simulation constrained in the
Voronoi cell Rα({φα

k}), e.g.,
Eqs. (4.3.13) and (4.3.14).

5 Store xα
m in batch Rα

k .

6 φk+1
α ← Eqs. (4.3.18) and (4.3.19).

Figure 4.4: (Left) An illustration of the FTS method, where each replica samples configura-
tions inside a Voronoi cell. (Right) Pseudo-code for the FTS method.

where wα
t is a random variable with zero-mean and unit variance. Note that Eq. (4.3.13) can

be replaced with an MC step. Introducing Rα as the batch of samples obtained from the
α-th replica, Eq. (4.3.12) can be estimated as

Ĉ({φα}; {Rα}) =
M∑

α=1

1

|Rα|
∑

x∈Rα

1

2
|φα − x|2 . (4.3.15)

To avoid large displacements in neighboring nodal points, a penalty function is added to
Eq. (4.3.15), which yields

Ĉ({φα}; {Rα}) =
M∑

α=1

1

|Rα|
∑

x∈Rα

1

2
|φα − x|2 + λS

2

M−1∑

α=1

|φα+1 −φα|2 , (4.3.16)

s.t. |φα+1 −φα| = |φα −φα−1| , (4.3.17)

where λS is the penalty strength.
The FTS method minimizes Eq. (4.3.16) using a closed feedback loop between the replica

dynamics, e.g., Eqs. (4.3.13) and (4.3.14), and a modified gradient-descent step. At the k-th
iteration of the loop, replicas generate a collection of batches {Rα

k}Mα=1, where the batch Rα
k

consists of a short molecular dynamics (MD)/Monte Carlo (MC) trajectory run from the
α-th replica. This data is then used in a two-part gradient descent update, where the first
part corresponds to the following update:

φα
⋆ = φα

k −∆τ∇φαĈ({φα
k}; {Rα

k}) , (4.3.18)
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with ∆τ the step size. Note that one can replace Eq. (4.3.18) with an implicit update for
increased stability or a momentum-variant, such as the Heavy-Ball [213] and the Nesterov
method [214], for accelerated convergence. The second part enforces the constraint Eq. (4.3.17)
with a reparameterization of the path using linear interpolation:

φα
k+1 = φa(α)−1

⋆ +

(
LM

α− 1

M − 1
− La(α)−1

)
φ

a(α)
⋆ −φ

a(α)−1
⋆∣∣∣φa(α)

⋆ −φ
a(α)−1
⋆

∣∣∣
, (4.3.19)

where Lα =
∑α

α′=2 |φα′
⋆ − φα′−1

⋆ | is the length of the path up to node φα
⋆ , and a(α) ∈

{1, . . . ,M} is an index such that La(α)−1 <
(

α−1
M−1

)
LM < La(α). This process is repeated until

convergence is achieved, yielding the transition path φ(s). The pseudocode for the FTS
method in its entirety is given in Algorithm 3.

4.4 Numerical Examples
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Figure 4.5: (a) MB potential along with isocommittor lines from the FEM solution. Note
the MB contours correspond to βVMB. (b) MB potential along with contours indicating
the lines of increasing flux J(x) from white to red along with the transition path in black,
computed using the FEM solution via Eq. (4.2.26).

In this section, we perform demonstrative calculations on a 2D single particle system in
which the committor function, reaction rate, and transition path can be computed numerically
to high precision. We will use a particle subject to the 2D Müller-Brown (MB) potential
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Figure 4.6: The relative error in the reaction rate of the MB potential compared to a solution
with 386671 vertices for FEM solutions with a varying number of vertices.

[215], which is a Gaussian mixture potential given by

VMB(x) =
4∑

k=1

Ak exp
(
ai (x− x̄i)

2 + bi (x− x̄i) (y − ȳi) + ci (y − ȳ)2
)
, (4.4.1)

A = (−200,−100,−170, 15), a = (−1,−1,−6.5,−0.7) ,
b = (0, 0, 11, 0.6), c = (−10,−10,−6.5, 0.7) ,
x̄ = (1, 0,−0.5,−1), ȳ = (0, 0.5, 1.5, 1) .

It has two minima at xA
0 ≈ (−0.558, 1.442) and xB

0 ≈ (0.623, 0.028). In what follows, we
study this model at a temperature where kBT = 10 and friction coefficient γ = 1. While an
analytical form of q(x) for the MB potential is unknown, we use the finite element method
(FEM) to numerically solve the BKE (Eq. (4.2.24)) via FEniCS [216, 217], and obtain a
solution to the committor function qFEM(x) with first-order Lagrange elements. This is done
on the domain Ω = [−1.75, 1.25]× [−0.5, 2.25], with the reactant and product states defined
by A = {x ∈ Ω : |x− xA

0 | < 0.025} and B = {x ∈ Ω : |x− xB
0 | < 0.025}, respectively. The

FEM solution is obtained by applying Dirichlet boundary conditions as per Eq. (4.2.23)
along with a zero-flux Neumann boundary condition on ∂Ω, and on a mesh with 386671
vertices. Contours of the MB potential along with isocommittor lines of qFEM(x) are shown
in Fig. 4.5(a), along with contours of increasing flux and the transition path in Fig. 4.5(b).

An estimate of the reaction rate νR over Ω is obtained by evaluating Eq. (4.2.35) with
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Figure 4.7: Transition paths obtained using FEM and the FTS method for the MB potential,
with the boundaries of the Voronoi cells corresponding to φFTS given in brown.

qFEM(x) to obtain

νR,FEM =

〈
kBT

γ
|∇xqFEM|2

〉
≈ 4.91 · 10−3 . (4.4.2)

The relative error of the solution with 386671 vertices to solutions of lower quality is shown in
Fig. 4.6, demonstrating the expected linear convergence as the number of elements increases
[3]. We obtain a comparison to direct simulation by running unbiased trajectories of the MB
potential under discrete overdamped Langevin dynamics of the form

xt+1 = xt − γ−1∇xV (xt)∆t+
√
2∆t kBTγ−1wt . (4.4.3)

The reaction rate is measured by averaging the inverse of the time it takes for 16000 trajectories
to go from xA

0 to xB
0 and back to xA

0 . This obtains

νR,DS = (5.38± 0.08) · 10−3 , (4.4.4)

in close agreement with Eq. (4.4.2).
We now evaluate the transition path for the MB potential. The transition path for the

FEM solution, φFEM(s) is obtained through Eq. (4.2.26). The transition path from the FTS
method, φFTS, is obtained using 24 replicas with |Rα

k | = 64. With the FTS method, the
penalty strength is set to λS = 0.1M , and Eq. (4.3.18) is done using the Nesterov method
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[214] with the step size ∆τ = 0.05 and momentum coefficient µ = 0.9 (see Eqs. (B.2.3)
and (B.2.4) for the implementation of the Nesterov method). Figure 4.7 shows the transition
paths, which agree closely with each other. The major observed difference is in the ends of
φFTS extending beyond φFEM and the corresponding q(x) = 0 and 1 isocommittor surfaces,
which is allowed in the FTS method.

4.5 Limitations of the FTS Method

Though the FTS method is a strong framework to evaluate transition paths, it does have
limitations. For instance, the application of the FTS method to molecular systems may
fail since the distance metrics defining the Voronoi cells are not invariant with respect to
rigid-body transformations. As a result, replicas can escape from their respective Voronoi
cells without any structural change via rotations and/or translations alone. To resolve this
issue, the FTS method is typically applied in the space of collective variables (CVs), which
are invariant under translation and rotation by construction. While a solution independent
of CVs remains an open problem, the work in Ref. [205] proposes a sufficiently general CV,
denoted as Θ, if the system configuration x can be divided into a sub-system configuration
xS that undergoes the structural change and solvent degrees of freedom xE that make up the
surrounding environment. This CV takes xS and a string nodal point φα as input, and it can
be written as

Θ(xS;R
∗,b∗) = R∗ (xS − b∗) , (4.5.1)

(R∗,b∗) = arg min
(R,b)

|R (xS − b)−φα| , (4.5.2)

where R∗ and b∗ are a rotation matrix and translation vector, respectively, that form a rigid
body transformation of the sub-system. By minimizing the distance metric in Eq. (4.5.2), the
chosen rigid transformation has the effect of matching the center-of-mass and orientation axis
of xS to that of φα. This results in a CV that not only retains some of the original molecular
degrees of freedom but also removes the degeneracy due to translations and rotations. The
transformation defined by Eq. (4.5.2) can also be done at a relatively low computational cost
by translating the sub-system to match its center of mass with the center of mass of φα and
subsequently rotating the sub-system via the Kabsch algorithm [218]. Other CVs are also
possible and may be needed when dealing with rare-event problems where the system cannot
be subdivided, e.g., nucleation and self-assembly.

Despite the generality of Eq. (4.5.1), it may not be sufficient in cases such as having high
solvent densities where the solvent molecules/particles move in a highly correlated fashion
during the transition, i.e., solvent reorganization, or where additional CVs are required to
resolve the transition. In such cases, we note the committor values as a function of xS

alone are insufficient as the solvent degrees of freedom have significant influence over q(x).
In the following chapter, we will demonstrate a method capable of solving the BKE in
high-dimensional systems using sampling and machine learning techniques. This will allow us
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to resolve the issues associated with CVs as mentioned in this section, as the method will be
capable of generating a CV-independent representation of the committor function that can
use data collected via sampling methods like the FTS method that may rely on collective
variables.
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Chapter 5

Committor Learning

5.1 Introduction

Having reviewed transition path theory (TPT) in Chapter 4, we will now consider methods for
solving the backward Kolmogorov equation using machine learning tools. In the framework
of TPT, the committor function can be computed by solving a high-dimensional partial
differential equation (PDE) in configuration space, called the backward Kolmogorov equation
(BKE) [202, 203, 219]. The complexity in solving the high-dimensional BKE may be reduced
by constructing a low-dimensional set of collective variables (CVs) [220], but they are not
known a priori and require exhaustive trial-and-error to obtain ones that best describe a
reaction pathway [199]. On the other hand, one does not need to solve the BKE over the entire
configuration space to obtain reaction rates and transition-state ensembles by focusing on the
important regions across the transition path. One way to target these regions is importance
sampling [39] where molecular simulations are biased to generate configurations according
to target values of the committor function in regions across the transition path. However,
since the committor function has no closed-form expression as a function of configuration
x and intrinsically involves averages over finite-time trajectories, it is impractical to use it
in conjunction with existing importance sampling techniques. Modern machine learning
(ML) approaches can alleviate this issue by representing committor functions via artificial
neural networks. This is the strategy used in recent work [10] to create an ML algorithm that
adopts a feedback loop between importance sampling and neural network training, which
involves minimizing a loss function derived from the BKE. The feedback loop uses the neural
network to acquire high-quality data from short molecular dynamics (MD) or Monte Carlo
(MC) simulations via umbrella sampling [129] where a bias potential built from the neural
network enhances sampling of the transition state. However, as will be shown in this work,
umbrella sampling poorly explores regions across the transition path, which may result in
an inaccurate computation of committor functions and thereby inaccurate, high-variance
estimates of the reaction rates. This issue may be mitigated by a careful fine-tuning of the
parameters used in umbrella sampling, which is a non-trivial task, or increasing the number
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of samples used during training, which may require long molecular simulations to reach the
desired accuracy. Furthermore, the bias potential built from the neural network can lead to
prohibitively expensive simulation due to the non-local many-body nature and size of the
neural network.

In this chapter, we improve the algorithm in Ref. [10] to increase its accuracy. The
accuracy is evaluated by computing the error in the committor function and reaction rate,
with both errors evaluated between the neural network and a solution of the BKE computed
either using analytical methods or the finite element method with a fine resolution for low-
dimensional problems. We show that accuracy in committor functions can be improved by
adding elements of supervised learning, where the neural network is trained on estimates
of committor values generated via short trajectories. Accuracy in reaction rates can be
improved by replacing the committor-based umbrella sampling with the FTS method [205],
which samples configurations homogeneously across the transition path, and enables accurate
low-variance on-the-fly estimation of reaction rates. The resulting algorithm with the FTS
method is also amenable to error analysis, enabling accurate estimation of reaction rates
with a lower number of samples. We also demonstrate the applicability of this method to a
molecular system with a high-dimensional configuration space and demonstrate that accurate
computations of the committor function and reaction rate can be obtained.

This chapter is organized as follows: in Section 5.2, we show how the BKE can be cast
as an optimization problem amendable to machine learning methods. In Section 5.3, we
review the ML algorithm proposed in Ref. [10] and describe how it uses umbrella sampling
with feedback loops. We propose modifications to this algorithm starting with the addition
of supervised learning elements in Section 5.4 and ending and use of the FTS method for
importance sampling in Section 5.5. In Sections 5.6.1 and 5.6.2, we test all algorithms to
problems corresponding to a particle diffusing in non-convex potential energies, showcasing
how our modifications lead to a more accurate low-variance computation of the committor
function and reaction rates. In Section 5.6.3, we provide an error analysis for algorithms
that use the FTS method, demonstrating that the sampling distribution of the estimated
reaction rates obeys a log-normal distribution, which can be used to remove the sampling
error in these estimates. In Section 5.7, we apply the algorithms to a molecular system, i.e., a
solvated dimer undergoing a transition between a compact to an extended state, and find the
previously seen trends in low-dimensional systems to be applicable to such a high-dimensional
system.

5.2 From Transition Path Theory to Machine Learning

Having reviewed TPT in Section 4.2, we will now use variational calculus to derive a form
amendable to machine learning techniques. The BKE, which is a high-dimensional PDE,
is infeasible to solve via standard finite difference/elements for large molecular systems, as
the number of grid points/elements grows exponentially with system size N . However, it is
in these situations that methods inspired by ML may hold a feasible alternative, where the
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committor function can be approximated by a neural network whose model parameters can
be solved by transforming the BKE into an optimization problem [8–10, 221]. To this end,
we begin by constructing a variational form of the BKE. Following the standard procedure
for elliptic PDEs [57], we consider a variation of the committor function δq(x), which obeys
the constraints δq(x) = 0 for x ∈ ∂A and x ∈ ∂B to satisfy the boundary conditions
in Eq. (4.2.23). Multiplying Eq. (4.2.24) by δq(x), integrating over Ω \ A ∪ B, and then
integrating by parts yields

∫

Ω\A∪B
dx δq(x)∇x [ρ(x)∇xq(x)] = −

∫

Ω\A∪B
dx ρ(x) ∇xδq(x) · ∇xq(x) = 0 . (5.2.1)

Applying Vainberg’s theorem [57] to Eq. (5.2.1) leads to the following functional:

L [q̃] =
1

2

∫

Ω\A∪B
dxρ(x)|∇xq̃(x)|2 =

1

2

〈
|∇xq̃(x)|2

〉
Ω\A∪B (5.2.2)

whose extremization over the space of admissible functions q̃(x) subject to boundary conditions
Eq. (4.2.23) leads to the solution of the BKE. The variational form in Eq. (5.2.2) therefore
transforms the strong form of BKE into a problem of functional optimization, where the
committor function satisfies

q(x) = arg min
q̃

L [q̃] s.t. q̃(x) = 0, x ∈ ∂A; q̃(x) = 1, x ∈ ∂B . (5.2.3)

Equation (5.2.3) guides a new ML-based optimization problem, where we may approximate
the committor function with a neural network model q(x) ≈ q̂(x;θ) with the model parameters
θ. Introducing the BKE loss function as

ℓ(x;θ) =
1

2
|∇xq̂(x;θ)|2 (5.2.4)

and imposing boundary conditions in Eq. (4.2.23) by the penalty method [222] with the loss
functions

ℓA(xA;θ) =
1

2
(q̂(xA;θ))

2 , (5.2.5)

ℓB(xB;θ) =
1

2
(q̂(xB;θ)− 1)2 , (5.2.6)

where xA ∈ A and xB ∈ B, the model parameters θ can be obtained by extremizing the
following objective function:

L(θ) = ⟨ℓ(x;θ)⟩+ λA ⟨ℓA(x;θ)⟩A + λB ⟨ℓB(x;θ)⟩B . (5.2.7)

Here, ⟨. . .⟩C denotes ensemble averaging constrained in a region C ⊂ Ω, and λA and λB

control the penalty strengths that enforce boundary conditions at A and B, respectively.
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Note that the ensemble average of the BKE loss function ⟨ℓ(x;θ)⟩ is proportional to the
reaction rate in Eq. (4.2.35) up to a constant factor 2kBT/γ, and thus it is crucial for any
ML approach that solves the BKE to be able to compute ⟨ℓ(x;θ)⟩ accurately.

The task of minimizing Eq. (5.2.7) may not yet be feasible in large system sizes, since the
ensemble averages involve high-dimensional integrals, which may be evaluated via standard
quadrature but their computational cost grows exponentially with system size. To resolve
this issue, one may approximate the ensemble averages in Eq. (5.2.7) with averages over
samples obtained via molecular dynamics (MD) or Monte Carlo (MC) simulations. In this
case, Eq. (5.2.7) can be evaluated as

L̂(θ;S,A,B) = 1

|S|
∑

x∈S
ℓ(x;θ) +

λA

|A|
∑

x∈A
ℓA(x;θ) +

λB

|B|
∑

x∈B
ℓB(x;θ) , (5.2.8)

where A, B and S are batches of samples obtained in the reactant state A, product state B
and configuration space Ω, respectively, and the operator | · | denotes the size of each batch.
The outlined strategy is the basis behind some of the recent ML approaches for solving the
BKE [8–10, 221] though earlier works can be found that utilize a different objective function
to train a neural network that takes collective variables as input and is trained on data
obtained from transition path sampling [223, 224]. The main challenge inherent in these
approaches is sampling; since the first term in Eq. (5.2.7) is proportional to the magnitude of
the flux |J(x;θ)| = ρ(x)kBT

γ
|∇xq̂(x;θ)|, the optimization problem is dominated by the rare

configurations found in regions of high flux, e.g. the transition-state ensemble. Inadequate
sampling of the transition-state ensemble may lead to poor estimates of the average BKE loss
function in Eq. (5.2.4), resulting in an inaccurate computation of committor functions and
reaction rates in Eq. (4.2.35). Inadequate sampling may also lead to poor estimates of the
gradient ∇θL, which may negatively impact the performance of the neural network training.
In Ref. [10], this sampling problem is partially resolved via an importance sampling technique,
namely umbrella sampling, that is coupled with the neural network model in a feedback loop.

5.3 Solving the BKE with Umbrella Sampling and
Feedback Loops

In this section, we review the algorithm in Ref. [10] that utilizes umbrella sampling for
obtaining the committor functions. To this end, consider a system that evolves via discrete
overdamped Langevin dynamics with noise wt that has zero mean and unit variance. As
discussed in Section 3.3, umbrella sampling biases the system’s dynamics by adding a potential
of the form W (x;θ) = 1

2
κ(q̂(x;θ)− q0)

2 to the potential energy function V (x), where q0 is
the target committor value and κ is the bias strength. This bias leads to modified equations
of motion

xt+1 = xt − γ−1∇x [V (xt) +W (xt;θ)]∆t+
√

2kBT∆tγ−1wt , (5.3.1)
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which sample a target distribution given by ρ(x;θ) ∝ e−β[V (x)+W (x;θ)] as ∆t → 0. With a
suitable choice of q0 and κ, the system may explore configurations x and values of q̂(x;θ) that
are rare according to the unbiased equilibrium distribution ρ(x) ∼ e−βV (x). In Ref. [10], this
strategy is expanded to target a range of q̂(x;θ) values between zero and one by introducing
M -many simulation systems, each of which uses a biasing potential with a unique target value
and biasing strength. Referring to these simulation systems as replicas and enumerating them
via an indexing variable α ∈ {1, . . . ,M}, the bias potential for each replica can be written as
Wα(x;θ) =

1
2
κα(q̂(x;θ)−qα)2, which induces a biased distribution ρα(x;θ) ∝ e−β[V (x)+Wα(x;θ)].

The set of target committor values and biasing strengths is denoted as {(κα, qα)}Mα=1. Note
that the configurations corresponding to the target distributions can also be generated via
MC or other MD methods instead of Eq. (5.3.1).

The algorithm for solving the BKE is a closed feedback loop between the replica dynamics
and any chosen optimizer, such as stochastic gradient descent (SGD) [225], Heavy-Ball [213],
or Adam [226], to obtain model parameters θ that extremize Eq. (5.2.8). At the k-th iteration,
replicas generate samples that are stored into a collection of batches {Mα

k}Mα=1, where the
α-th batchMα

k consists of samples obtained from a short MD/MC trajectory run of the α-th
replica. This data is then used to compute the gradient ∇θL̂ in order to update the model
parameters θk → θk+1. At the (k + 1)-th iteration, the process repeats by using q̂(x;θk+1) to
obtain new samples for further optimization.

The algorithm requires two additional components. First, the reactant and product
batches A and B are generated using short MD/MC trajectories constrained in the reactant
and product states, respectively. Second, a formula for ∇θL̂ is needed for the optimizer and
is obtained using a reweighting procedure [137] to compute the unbiased sample averages
from biased samples. This yields

∇θL̂ (θk; {(Mα
k , zα)},Ak,Bk) =

M∑
α=1

zα
|Mα

k |
∑

x∈Mα
k

[∇θℓ(x;θk)

c(x;θk)

]

M∑
α=1

zα
|Mα

k |
∑

x∈Mα
k

[
1

c(x;θk)

] +
λA

|Ak|
∑

x∈Ak

∇θℓA(x;θk)

+
λB

|Bk|
∑

x∈Bk

∇θℓB(x;θk) , (5.3.2)

where Ak ⊂ A and Bk ⊂ B are mini-batches obtained from random sub-sampling of the
reactant and product batches, respectively, and c(x;θ) =

∑M
α=1 e

−βWα(x;θ). Here, zα is a
reweighting factor given by the relative partition function

zα =
Qα∑M

α′=1Qα′
=

∫
dx e−β[V (x)+Wα(x;θ)]

∑M
α′=1

∫
dx e−β[V (x)+Wα′ (x;θ)]

, (5.3.3)

where Qα is the partition function of the α-th replica. Given the batches of samples
{Mα

k}Mα=1, various free-energy methods [227] can be used to compute Qα via the free-energy
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Algorithm 4: The BKE–US Method
[10]
Data: Initial conditions θ0. Reactant

and product batches A and B.
Hyperparameters for optimizer
η. Bias potential parameters
{(κα, qα)}Mα=1. Penalty strengths
λA and λB.

1 for k = 0, . . . , K do
2 for α = 1, . . . ,M in parallel do
3 for m = 1, . . . , |Mα

k | do
4 Sample xα

m ∼ ρα(x;θk) with
MD/MC simulation, e.g.,
Eq. (5.3.1).

5 Store xα
m in batchMα

k .

6 Sample mini-batch Ak ⊂ A and
Bk ⊂ B.

7 Compute zα with a free-energy
method, e.g., FEP Eq. (5.3.6).

8 Compute
∇θL̂(θk; {(Mα

k , zα)},Ak,Bk) with
Eq. (5.3.2).

9 Update θk → θk+1 with optimizer.
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Figure 5.1: (Left) Pseudo-code corresponding to the BKE–US method. Lines 2-6 are the
sampling steps, Lines 7-9 are the optimization steps, and a feedback loop couples the
sampling and optimization steps together. Note that the sampling of configuration xα

m in
Line 4 utilizes a fixed simulation length to obtain uncorrelated samples in the batchMα

k—a
convention used for all subsequent algorithms proposed in this work. (Right) Histograms of
committor values from committor-based umbrella sampling. The histograms overlap near
the transition state, with inset plots showing that the histograms are non-overlapping near
the reactant and product states. See also Fig. 5.8(b, top) for the corresponding histograms
in configuration space.

Fα = − 1
β
lnQα. In this work, we use free-energy perturbation (FEP) [133] where the estimator

for zα is derived from the following exact identity which is a restatement of Eq. (3.3.7):

zα
zα′

= e−β∆Fα,α′ =

〈
ϕα(x;θ)

ϕα′(x;θ)

〉

α′
, (5.3.4)
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where ⟨. . .⟩α′ is an ensemble average over the distribution ρα′ ∝ e−β[V (x)+Wα′ (x;θ)] obeyed by the
α′-th replica, ∆Fα,α′ = Fα−Fα′ is the relative free-energy difference, and ϕα(x;θ) = e−βWα(x;θ).
Given a batchMα′

k from the α′-th replica, Eq. (5.3.4) can be estimated as

zα
zα′
≈ 1

|Mα′
k |

∑

x∈Mα′
k

ϕα(x;θk)

ϕα′(x;θk)
. (5.3.5)

The accuracy of Eq. (5.3.5) quickly deteriorates if samples obtained between the α-th and
α′-th replicas do not overlap [228]. To mitigate this issue, we can employ a strategy called
stratification [229], where the forward and backward free-energy differences per Eq. (5.3.5)
between adjacent replicas are used to compute the overall free-energy difference of replica α
in reference to replica γ. This strategy yields the following formula:

zα =
z⋆α∑M
α=1 z

⋆
α

; z⋆α =





α−1∏
i=γ

e−β∆F(i+1),i ≈
α−1∏
i=γ


 1

|Mi
k|
∑

x∈Mi
k

ϕi+1(x;θk)

ϕi(x;θk)


 α > γ

γ−1∏
i=α

e−β∆F(i−1),i ≈
γ−1∏
i=α


 1

|Mi
k|
∑

x∈Mi
k

ϕi−1(x;θk)

ϕi(x;θk)


 α < γ

1 α = γ

, (5.3.6)

where γ ∼ unif{1,M} is randomly chosen at every iteration. In what follows, we shall
refer to this complete algorithm as the BKE–US method, whose pseudocode is described
in Algorithm 4 (Fig. 5.1, left). Note that Ref. [10] recommends choosing a different set of
biasing potentials such that c(x;θk) ≈ 1, which corresponds to a special case of Eq. (5.3.2).
Additionally, Ref. [10] uses replica exchange, where configurations are exchanged between
neighboring replicas to alleviate issues with metastability, which is not used here.

The challenge in the BKE–US method lies in selecting the bias potential parameters
{(κα, qα)}Mα=1 such that the average loss functions and their gradients are accurately estimated
with low variance. Since these estimates are obtained by reweighting procedures their accuracy
depends severely on obtaining an accurate estimate of the free-energy differences ∆Fα,α′ ,
and hence the reweighting factors zα. If one follows the procedures common to umbrella
sampling and free-energy calculations, this is achieved by ensuring overlap in the histograms
of the biased q̂(x;θ) values [229]. One may choose as initial guess qα = (α − 1)/(M − 1)
with equal biasing strengths, which is the setting recommended in Ref. [10], to obtain such
overlap. However, since the committor varies rapidly near the transition state in the presence
of high-energy barriers, this setting may lead to inadequate sampling of regions between the
transition state and reactant/product state. This reduces the overlap between histograms,
thereby reducing the accuracy as well as increasing the variance of the estimated average loss
functions obtained from reweighting. Figure 5.1(right) shows such behavior in the histograms
of q̂-values, with the replicas near the edges having progressively worse overlaps than the
replicas biased towards the transition state. Such a non-overlapping behavior is even more
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apparent in the configuration space, as shown in Fig. 5.8(b) for a one-dimensional system,
where large gaps in the histograms between the reactant/product basins and the transition
states can be observed. It may be plausible that further importance sampling near the edges
increases the overlap, but this requires further fine-tuning of the bias parameters to focus
more heavily on regions where q̂(x;θ) ≈ 0 and q̂(x;θ) ≈ 1; a non-trivial procedure to perform
in high-dimensional systems. Alternatively, one may also increase the batch size to improve
the chances of obtaining samples in the poorly targeted regions, but this task may require
prohibitively long simulations. Altogether, these issues motivate us to construct modifications
to the BKE–US method, described in the next sections.

5.4 Adding Elements of Supervised Learning

To begin with, the accuracy of the BKE–US method (Algorithm 4) can be improved by
adding supervised learning elements, where one can train the neural network to fit q̂(x;θ) to
known estimates of q(x). It has been found that supervised learning elements in the context
of training neural network models achieve better performance by finding global minima in
problems originally devoid of such elements [230–232]. In our case, supervised learning can be
implemented by evaluating an estimate of q(x) denoted as the empirical committor function
qemp(x) using short trajectories that start from a configuration x. The quantity qemp(x) can
be obtained from a sample-mean estimator of Eq. (4.2.1):

qemp(x) =
1

H

H∑

i=1

hB (xτ ; x0 = x) , (5.4.1)

where the averaging is performed over H-many trajectories that are conditioned upon
starting at x0 = x, and ending at the first-passage time τ . This estimator obeys the binomial
distribution and its variance scales as 1

H
[206]. It is important to note that supervised learning

of committor functions without importance sampling is ineffective since it is necessary for
the neural network to be trained on empirical committor values corresponding to rare events,
i.e., configurations along the transition tube including the transition state. To this end, one
may use either umbrella sampling as described before or the FTS method, introduced in
Section 4.3, to target the transition tube.

At this stage, an objective function must be formulated to inform q̂(x;θ) with the empirical
committor function qemp(x). To this end, a loss function in supervised learning is typically
postulated as the squared error for every configuration x:

ℓMSE(qemp,x;θ) =
1

2
(q̂(x;θ)− qemp)

2 . (5.4.2)

Suppose that qemp(x) is computed from configurations sampled by different replicas during
importance sampling. For every α-th replica, this allows us to generate a batch of samples Cα,
which is a set of pairs of empirical committor function and its corresponding configuration.
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Algorithm 5: The BKE–US+SL Method
Data: Initial conditions θ0. Reactant and product batches A and B.

Hyperparameters for optimizer η. Bias potential parameters {(κα, qα)}Mα=1.
Penalty strengths λA, λB, and λSL. Starting and ending iteration index, kemp,s

and kemp,e, and sampling period τemp for supervised learning.
1 for k = 0, . . . , K do
2 for α = 1, . . . ,M in parallel do
3 for m = 1, . . . , |Mα

k | do
4 Sample xα

m ∼ ρα(x;θk) with MD/MC simulation, e.g., Eq. (5.3.1).
5 Store xα

m in batchMα
k .

6 if k ≥ kemp,s and k < kemp,e and k (mod τemp) = 0 then
7 Evaluate qemp at xα ∈Mα

k with Eq. (5.4.1).
8 Store (qemp,x

α) in batch Cα.

9 Sample mini-batch Ak ⊂ A, Bk ⊂ B, and Cαk ⊂ Cα.
10 Compute zα with a free-energy method, e.g., FEP Eq. (5.3.6).
11 Compute ∇θL̂(θk; {(Mα

k , zα)},Ak,Bk) +∇θL̂SL(θk; {Cαk }) with Eqs. (5.3.2)
and (5.4.5).

12 Update θk → θk+1 with optimizer.

Figure 5.2: Pseudo-code for the BKE–US+SL method.

Denoting the collection of batches as {Cα}Mα=1, and given Eq. (5.4.2), the objective function
as a mean-squared error has the form

L̂MSE(θ; {Cα}) =
λMSE

M

M∑

α=1

1

|Cα|
∑

(qemp,x)∈Cα

ℓMSE(qemp,x;θ) , (5.4.3)

where λMSE is the penalty strength. In practice, an optimizer to train the neural network
requires the gradient ∇θL̂MSE as additional input, which can be computed using a collection
of mini-batches {Cαk } with Cαk ⊂ Cα generated via random sub-sampling of the original batch
Cα similar to the sub-sampling procedure in Eq. (5.3.2).

Note that a finite number of trajectories are used to obtain estimates of committor values
for each configuration x, resulting in a statistically noisy variation of qemp(x). Therefore,
using the objective function Eq. (5.4.3) to train the neural network may lead to overfitting
issues and loss in accuracy. To alleviate this problem, we introduce a modified form of the
objective function where we first evaluate the squared mean error for a batch of samples Cα
corresponding to the α-th replica:

ℓME(Cα;θ) =
1

2

[
1

|Cα|
∑

(qemp,x)∈Cα

(q̂(x;θ)− qemp)

]2
. (5.4.4)
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This is then reduced across all replicas, yielding the modified supervised learning objective
function

L̂SL(θ; {Cα}) =
λSL

M

M∑

α=1

ℓME(Cα;θ) , (5.4.5)

where λSL is the penalty strength. Equation (5.4.5) indicates the neural network is trained
on committor errors that are locally averaged over a single replica. Such an averaging
smears out the statistical error in qemp(x), alleviates the issue of overfitting, and further helps
the neural network generalize to regions outside of the ones covered by sampling. A more
detailed discussion, which shows results comparing the standard (Eq. (5.4.3)) and modified
(Eq. (5.4.5)) objective functions for a two-dimensional system can be found in Appendix B.2.3

To incorporate the supervised learning strategy in the BKE–US method, each replica
computes qemp(x

α) between the sampling and optimization steps of the algorithm, where xα is
the current configuration of replica α. The committor evaluation can be initiated at a chosen
iteration k = kemp,s until k = kemp,e, after which no more qemp(x

α) values are computed.
Since each qemp(x

α) requires the initiation of H-many trajectories starting at x0 = xα, the
committor is evaluated infrequently every τemp iterations to reduce the computational cost.
The pseudocode combining supervised learning with the BKE–US method is described in
Algorithm 4 (Fig. 5.2), and is herein referred to as the BKE–US+SL method.

5.5 Solving the BKE with the Finite-Temperature String
Method

For methods employing umbrella sampling, it is important to ensure sufficient overlap in
samples obtained from neighboring replicas, since the overlap guarantees accurate computation
of reweighting factors zα, and further controls the accuracy in the estimator for the average
loss functions, e.g., the average BKE loss function, which sets the reaction rate. As mentioned
before, this may require exhaustive fine-tuning of the algorithm parameters, or long simulations
to obtain a larger number of samples. On the other hand, the framework of TPT already
provides the finite-temperature string (FTS) method [204, 205], which can homogeneously
sample overlapping regions across the transition tube with few control parameters. The
FTS method also yields the transition path φ(s) without needing to compute the committor
function q(x). Therefore, if we replace the committor-based umbrella sampling with the FTS
method, we eliminate the feedback loop between importance sampling and the neural network
training in learning q(x). Furthermore, it is also possible to obtain a low-variance estimate of
the reaction rate due to the overlaps in samples obtained from the FTS method.

With the FTS method described in Section 4.3, we now proceed to construct new
algorithms for minimizing the loss in Eq. (5.2.8). The key idea behind all subsequent new
algorithms is to replace the committor-based umbrella sampling in the BKE–US method with
the FTS method. This allows the replicas to generate samples that homogeneously cover the
transition tube with little fine-tuning, and enables accurate low-variance estimation of the
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average BKE loss function and its gradient. As mentioned before, since the average BKE loss
function is proportional to the chemical reaction rate, the FTS method also enables accurate
estimation of reaction rates during optimization of the neural network.

5.5.1 The FTS Method with Master Equation

The first algorithm that we construct involves running the FTS method simultaneously
with the neural network training. In particular, the replicas from the FTS method generate
batches of sampled configurations {Rα

k}Mα=1 to update the current path {φα
k} via Eqs. (4.3.18)–

(4.3.19), as well as the neural network parameters θk by computing the gradient of the loss
in Eq. (5.2.8). Note that, in this algorithm, there is no feedback loop between the neural
network and updates to the path. In this case, the loss gradient ∇θL̂ can be calculated using
modified versions of Eqs. (5.3.2)–(5.3.3), where the bias potentials Wα are replaced with
hard-wall potentials constraining each replica to its Voronoi cell, i.e.,

Wα(x; {φα}) =
{
0 x ∈ Rα

∞ otherwise
. (5.5.1)

This yields

∇θL̂ (θk; {(Rα
k , zα)},Ak,Bk) =

M∑

α=1

zα
|Rα

k |
∑

x∈Rα
k

∇θℓ(x;θk) +
λA

|Ak|
∑

x∈Ak

∇θℓA(x;θk)

+
λB

|Bk|
∑

x∈Bk

∇θℓB(x;θk) , (5.5.2)

where the reweighting factors zα are

zα =

∫
Rα

dx e−βV (x)

∫⋃M
α=1 Rα

dx e−βV (x)
=

∫
Rα

dx e−βV (x)

∫
Ω
dx e−βV (x)

=

∫

Rα

dx ρ(x) . (5.5.3)

Equation (5.5.3) indicates zα is the equilibrium probability of finding x to be in a Voronoi
cell Rα. This set of equilibrium probabilities can be computed as a solution to a steady-state
master equation, whose form is found by identifying the instantaneous rates (or fluxes)
between neighboring Voronoi cells [205]. To this end, let Nαα′ be the number of times that the
α-th replica attempts to exit its Voronoi cell Rα and enter a neighboring Voronoi cell Rα′ , e.g.,
the number of times that xα

⋆ ∈ Rα′ for the replica dynamics given by Eqs. (4.3.13)–(4.3.14).
Let kαα′ be the rate at which the system transitions between Rα to Rα′ . Denoting Nα

steps

as the total simulation length of the α-th replica, the previous rate can be evaluated as
kαα′ ≈ Nαα′/Nα

steps. The steady-state master equation is then given by a balance between the
total rate of leaving and entering the Voronoi cell Rα:

M∑

α′=1

zα′kα′α =
M∑

α′=1

zαkαα′ , ∀α ∈ {1, . . . ,M} , (5.5.4)
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which can be solved to obtain zα; see Appendix B.1 for more details, and also Section III
of Ref. [233] for a more detailed discussion of Eq. (5.5.4). Equations (5.5.2) and (5.5.4)
constitute the new algorithm, and will herein be referred to as the BKE–FTS(ME) method,
whose pseudocode is described in Algorithm 6.

We note that higher dimensional problems will require collective variables (see Section 4.5),
In this situation, the new BKE–FTS algorithms can still use the FTS method with the CV
as given in Eq. (4.5.1) to train neural networks that are implicitly aware of the solvent
degrees of freedom that the CV does not account for, since each replica samples the solvent
configurations that participate in the transition. Such a strategy of utilizing the FTS method
with the CV in Eq. (4.5.1) is used in Section 5.7 to compute committor functions and reaction
rates in a solvated dimer system with relatively high accuracy.

Algorithm 6: The BKE–FTS(ME) Method
Data: Initial conditions θ0, {φα

0}. Reactant and product batches A and B.
Hyperparameters for optimizers η. The FTS Method step size ∆τ and penalty
strength λS. Penalty strengths λA and λB.

1 for k = 0, . . . , K do
2 for α = 1, . . . ,M in parallel do
3 for m = 1, . . . , |Rα

k | do
4 Sample xα

m with MD/MC simulation constrained in the Voronoi cell
Rα({φα

k}), e.g., Eqs. (4.3.13) and (4.3.14).
5 Store xα

m in batch Rα
k .

6 φk+1
α ← Eqs. (4.3.18) and (4.3.19).

7 Sample mini-batch Ak ⊂ A and Bk ⊂ B.
8 Compute zα by solving the master equation Eq. (5.5.4).
9 Compute ∇θL̂(θk; {(Rα

k , zα)},Ak,Bk) with Eq. (5.5.2).
10 Update θk → θk+1 with optimizer.

Figure 5.3: (Left) An illustration of the FTS method, where each replica samples configura-
tions inside a Voronoi cell. (Right) Pseudo-code for the BKE–FTS(ME) method. Note that
the path is updated concurrently with the neural network at the k-th iteration.

5.5.2 The FTS Method with Umbrella Sampling

As mentioned before, given a sufficient number of nodes, the BKE–FTS(ME) method
guarantees homogeneous sampling across the transition path (see also Fig. 5.8(b)), which
better ensures low-variance estimation from reweighting. Accuracy can also be improved by
running longer simulations, i.e., larger Nα

steps, since they lead to more accurate estimates of
the rates kαα′ , thereby reducing the error in the estimated reweighting factor zα. Despite this,
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Algorithm 7: The BKE–FTS(US) Method
Data: Initial conditions θ0. Nodal points of the transition path {φα} obtained from

the FTS method. Reactant and product batches A and B. Hyperparameters
for optimizers η. Penalty strengths λA and λB.

1 for k = 0, . . . , K do
2 for α = 1, . . . ,M in parallel do
3 for m = 1, . . . , |Mα

k | do
4 Sample xα

m ∼ ρα(x; {φα}) with MD/MC simulation, e.g., Eq. (5.3.1) and
Eq. (5.5.5).

5 Store xα
m in batchMα

k .

6 Sample mini-batch Ak ⊂ A and Bk ⊂ B.
7 Compute zα with a free-energy method, e.g., FEP Eq. (5.3.6).
8 Compute ∇θL̂(θk; {(Mα

k , zα)},Ak,Bk) with Eq. (5.3.2).
9 Update θk → θk+1 with optimizer.

Figure 5.4: Pseudo-code for the BKE–FTS(US) method.

the error in zα is difficult to study as it involves the error propagation of kαα′ , which forms
a random matrix in the master equation. On the other hand, zα computed from umbrella
sampling is amenable to error analysis [137, 234], which makes it feasible to determine the
error in the estimates computed from reweighting as a function of batch size. This motivates
us to construct a modification to the BKE–FTS(ME) method where the computation of zα
is based on umbrella sampling and FEP (Eq. (5.3.6)). The modified algorithm consists of
running the FTS method before the neural network training to obtain the transition path
{φα}Mα=1, which is then used as a basis for umbrella sampling across the transition tube to
subsequently train the neural network.

The path-based umbrella sampling requires new bias potentials that can lead to better
overlaps between adjacent replicas, as well as sufficient exploration of regions transverse to
the path. The latter is necessary to ensure the neural network representing the committor
function is also accurate in regions away from the transition path. To this end, we construct
new bias potentials such that different bias strengths can be specified in directions parallel
and transverse to the path. Let tα be the unit tangent vector at node φα, evaluated using
finite differences. We then form the projection matrices P

∥
α = tα ⊗ tα and P⊥

α = I− tα ⊗ tα

to decompose a vector into a component that is parallel and transverse to tα, respectively.
The bias potential for the α-th replica can be written as

Wα(x; {φα}) = 1

2
κ∥
α(x−φα)P∥

α(x−φα) +
1

2
κ⊥
α (x−φα)P⊥

α (x−φα) , (5.5.5)

where κ
∥
α and κ⊥

α are the bias strengths for the parallel and transverse direction, respectively.
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Algorithm 8: The BKE–FTS(ME)+SL Method
Data: Initial conditions θ0, {φα

0}. Reactant and product batches A and B.
Hyperparameters for optimizers η. The FTS Method step size ∆τ and penalty
strength λS. Penalty strengths λA, λB, and λSL. Starting and ending iteration
index, kemp,s and kemp,e, and sampling period τemp for supervised learning.

1 for k = 0, . . . , K do
2 for α = 1, . . . ,M in parallel do
3 for m = 1, . . . , |Rα

k | do
4 Sample xα

m with MD/MC simulation constrained in the Voronoi cell
Rα({φα

k}), e.g., Eqs. (4.3.13)–(4.3.14).
5 Store xα

m in batch Rα
k .

6 if k ≥ kemp,s and k < kemp,e and k (mod τemp) = 0 then
7 Evaluate qemp at xα ∈ Rα

k with Eq. (5.4.1).
8 Store (qemp,x

α) in batch Cα.

9 φk+1
α ← Eqs. (4.3.18)–(4.3.19).

10 Sample mini-batch Ak ⊂ A, Bk ⊂ B, and Cαk ⊂ Cα.
11 Compute zα by solving the master equation Eq. (5.5.4).
12 Compute ∇θL̂(θk; {(Rα

k , zα)},Ak,Bk) +∇θL̂SL(θk; {Cαk }) with Eqs. (5.4.5)
and (5.5.2).

13 Update θk → θk+1 with optimizer.

Figure 5.5: Pseudo-code for the BKE–FTS(ME)+SL method.

To promote exploration of regions transverse to the path, the bias strengths are set such
that κ⊥

α < κ
∥
α. For sufficiently strong bias, this results in every replica exploring an oblate

ellipsoidal region, where the center of the ellipsoid is located at node φα, and its axis of
rotation is parallel to the tangent vector tα. Note that a similar bias potential has also been
used in Ref. [235] but defined with respect to a low-dimensional collective-variable space.

The loss gradient ∇θL̂ needed for this algorithm can be computed with Eq. (5.3.2)
and Eq. (5.3.6) from the BKE–US method, using samples obtained from biased MD/MC
simulations. As in the BKE–FTS(ME) method, there exists no feedback loop between
the neural network and umbrella sampling because the bias potentials are based on the
transition path, which remains static during training. This modification to the BKE–FTS(ME)
method shall be referred to as the BKE–FTS(US) method, whose pseudocode is described
in Algorithm 7 (Fig. 5.4). The algorithm shares similar advantages as the BKE–FTS(ME)
method, since homogeneous sampling across the transition tube and overlap in configuration
space is readily achieved for large enough bias strengths. Unlike the master-equation approach,
the bias and variance in the reweighting factors zα estimated from FEP are amenable to
error analysis [234]. As shown later in Section 5.6.3, we provide an error analysis of the
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Algorithm 9: The BKE–FTS(US)+SL Method
Data: Initial conditions θ0. Nodal points of the transition path {φα} obtained from

the FTS method. Reactant and product batches A and B. Hyperparameters
for optimizers η. Penalty strengths λA, λB, and λSL. Starting and ending
iteration index, kemp,s and kemp,e, and sampling period τemp for supervised
learning.

1 for k = 0, . . . , K do
2 for α = 1, . . . ,M in parallel do
3 for m = 1, . . . , |Mα

k | do
4 Sample xα

m ∼ ρα(x; {φα}) with MD/MC simulation, e.g., Eqs. (5.3.1)
and (5.5.5).

5 Store xα
m in batchMα

k .

6 if k ≥ kemp,s and k < kemp,e and k (mod τemp) = 0 then
7 Evaluate qemp at xα ∈Mα

k with Eq. (5.4.1).
8 Store (qemp,x

α) in batch Cα.

9 Sample mini-batch Ak ⊂ A, Bk ⊂ B, and Cαk ⊂ Cα.
10 Compute zα with a free-energy method, e.g., FEP Eq. (5.3.6).
11 Compute ∇θL̂(θk; {(Mα

k , zα)},Ak,Bk) +∇θL̂SL(θk; {Cαk }) with Eqs. (5.3.2)
and (5.4.5).

12 Update θk → θk+1 with optimizer.

Figure 5.6: Pseudo-code for the BKE–FTS(US)+SL method.

estimated average loss function, and a procedure where the bias in the estimator can be
removed, thereby enabling accurate estimation of reaction rates with smaller batch sizes.

5.5.3 The FTS Method with Supervised Learning

Both the BKE–FTS(ME) and BKE–FTS(US) methods can be combined with the supervised
learning methodology developed in Section 5.4 to further improve the accuracy of the
committor function. Since the samples obtained by either method homogeneously cover
the transition tube, they provide access to configurations that can be used for computing
empirical committor function qemp(x) necessary for supervised learning. The empirical
committor function qemp(x) may be evaluated by the replicas between the sampling and
optimization step of the algorithms. Similar to the procedure described in Section 5.4, it can
be evaluated at a rate τemp between a starting iteration kemp,s and an ending iteration kemp,e.
Given these estimates, the supervised-learning loss in Eq. (5.4.5) can be used to compute
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the compound loss gradient to update the neural network. We shall call these composite
algorithms as the BKE–FTS(ME)+SL and BKE–FTS(US)+SL method, whose pseudo-codes
are described in Algorithm 8 (Fig. 5.5) and Algorithm 9 (Fig. 5.6), respectively.

5.6 Computational Studies in Low-Dimensional Systems

q(x;θ) = 0.0

q(x;θ) = 0.1

q(x;θ) = 0.5

q(x;θ) = 0.9

q(x;θ) = 1.0

ϕ0
k

ϕ1
k

ϕ2
k

ϕ3
k

ϕ4
k

ϕ0
k

ϕ1
k

ϕ2
k

ϕ3
k

ϕ4
k

BKE–US BKE–FTS(ME) BKE–FTS(US)

Figure 5.7: Summary of the methods presented for solving the BKE using a neural network.
(Left) BKE–US, in which umbrella sampling with respect to q̂(x;θ) is performed. (Middle)
BKE–FTS(ME), in which the typical FTS method is used to sample the reaction pathway
where hard-walls are implemented to constrain replicas to their Voronoi cell. (Right) BKE–
FTS(US), in which umbrella sampling is performed with respect to the Voronoi cell centers.

In this section, we test Algorithms 4–9 (see Fig. 5.7 for a visual summary) to two model
systems consisting of a single particle diffusing in non-convex potential energies in one
dimension (1D) and two dimensions (2D), respectively. Reference solutions can be obtained in
1D and 2D via analytical method and the finite element method (FEM), respectively, which
will be used to ascertain the relative accuracy of the algorithms. Before we introduce these two
systems, we elaborate on the choice of the neural network, optimizer, and initial conditions.
For both systems, we use a single-hidden layer neural network with ReLU activation functions
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and a sigmoidal output layer [232]:

q̂(x;θ = {W1,w2,b}) = σ (w2 · ReLU(W1x+ b1)) , (5.6.1)

where ReLU(s) = max(0, s), σ(s) = 1
1+e−s , W1 is an m-by-d matrix of weights of the hidden

layer, w2 and b1 are m-dimensional vectors of weights of the output layer and biases of the
hidden layer, respectively, and the number of neurons is m = 200. The chosen optimizer is
the Heavy-Ball method [213] and Adam [226] for the 1D and 2D system, respectively; see
Appendix B.2 for a brief review of each optimizer and associated hyperparameters for each
study.

The neural network parameters are initialized randomly and subsequently updated by
minimizing the following mean-squared error function

I(θ; {xα
0}) =

1

M

M∑

α=1

(
q̂(xα

0 ;θ)−
α− 1

M − 1

)2

, (5.6.2)

where a gradient descent algorithm is used with a stepsize of 0.001 until I(θ) ≤ 10−3. Here,
xα
0 is the initial configuration of the α-th replica, and is chosen to be the linear interpolation

between a known energy-minimizing configuration at the reactant state xA
0 and product state

xB
0 :

xα
0 =

(
1− α− 1

M − 1

)
xA
0 +

(
α− 1

M − 1

)
xB
0 . (5.6.3)

For the BKE–FTS(ME) and BKE–FTS(ME)+SL methods, the initial nodal points of the path
are chosen as φα

0 = xα
0 . For the BKE–FTS(US) and the BKE–FTS(US)+SL method, since

the FTS method is run before the neural network training, xα
0 is set to the nodal point φα of

the converged path. The choice in Eq. (5.6.2) ensures an initial guess of θ that results in a
monotonic increase of the committor function from the reactant to the product states. It also
provides an initial value of the committor function that is compatible with the target value of
the committor-based umbrella sampling, avoiding large force evaluations for MD simulations.
Additional details pertaining to individual studies such as sampling schemes generating
mini-batches for optimization, choices of penalty strengths, and parameters controlling the
FTS method can be found in the Appendix B.2.

The accuracy of the algorithms is measured using both an L1 norm measuring error in
q̂(x;θ), and the ensemble average of the BKE loss function given by Eq. (5.2.4). The latter
is proportional to the reaction rate in Eq. (4.2.35). The L1-norm error is defined over the
region spanned by the transition tube, TΛ = {x ∈ Ω : |J(x)| ≥ Λ} where Λ is a cut-off value,
and normalized by the volume of the region. This yields

∥q̂ − q∥1 =
1∫

TΛ
dx

∫

TΛ

dx|q̂(x;θ)− q(x)| . (5.6.4)
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In all algorithms, an on-the-fly estimate of the ensemble average of Eq. (5.2.4) is computed
at the k-th iteration with the following formula:

〈
1

2
|∇xq̂(x;θk)|2

〉

fly

=





M∑
α=1

zα
|Mα

k |
∑

x∈Mα
k

ℓ(x;θk)

c(x;θk)


M∑

α=1

zα
|Mα

k |
∑

x∈Mα
k

 1

c(x;θk)

 for umbrella sampling

M∑
α=1

zα
|Rα

k |
∑

x∈Rα
k

ℓ(x;θk) for the master equation

, (5.6.5)

where the reweighting factors zα are evaluated using Eq. (5.3.6) for umbrella sampling and
Eq. (5.5.4) for the master equation, respectively. The estimate in Eq. (5.6.5) is then compared
to the average BKE loss function that is evaluated using reference solutions.

5.6.1 First Study: 1D Quartic Potential

In this section we study a 1D particle diffusing in a quartic potential V (x) = (1− x2)2 with
kBT = 1/15. This potential has two minima at x = −1, 1 with a saddle point at x = 0, which
is the transition state of the model. Setting the reactant state A = (−∞,−1] and product
state B = [1,∞+), the exact solution for the committor function qexact(x) can be obtained
as

qexact(x) =

∫ x

−1
dx′e15V (x′)

∫ 1

−1
dx′e15V (x′)

. (5.6.6)

Using Eq. (5.6.6), the average of the BKE loss function
〈
1
2
|∇xqexact(x)|2

〉
can be computed

as
〈
1

2
|∇xqexact(x)|2

〉
=

1

2

(
Q

(∫ 1

−1

dx eβV (x)

))−1

≈ 10−6 . (5.6.7)

To compute the L1-norm error, we set the transition tube region TΛ = Ω \ A ∪B = (−1, 1).
Figure 5.8(a) shows that the neural network approximations q̂(x;θ) obtained from all

methods converge to the exact solution. However, the histograms of sampled configurations
obtained from committor-based umbrella sampling lack overlap between the reactant/product
states and the transition state (Fig. 5.8(b), top). As discussed in Section 5.3, this lack of
overlap indicates that on-the-fly estimates of the average BKE loss, and thus the chemical
reaction rates, may not be accurate and are subject to large variance/noise. On the other
hand, the histograms from algorithms that use the FTS method (Fig. 5.8(b), middle and
bottom) show homogeneous sampling across the transition tube with sufficient overlaps, which
should translate to accurate low-variance estimates of reaction rates. Indeed, Fig. 5.8(c) shows
that the on-the-fly estimates from the BKE–US and BKE–US+SL methods exhibit large
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Figure 5.8: (a) Committor function obtained from all methods compared with the exact
solution. (b) Histograms of samples obtained from the BKE–US method (top), the BKE–
FTS(ME) method (middle), and the BKE–FTS(US) method (bottom). (c) On-the-fly
estimates of the average BKE loss obtained at every iteration and computed using a batch
size of 16, with an inset plot showing their cumulative averages over the last 1500 iterations.
(d) The L1-norm error as a function of iterations.
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fluctuations, spanning six orders in magnitude for a batch size of 16, while the algorithms
that use the FTS method can reduce this variance by approximately one order of magnitude
for the same batch size. When these on-the-fly estimates are cumulatively averaged, as shown
in the inset of Fig. 5.8(c), we also see that the BKE–US and BKE–US+SL methods yield
inaccurate estimates of the average BKE loss when compared to the algorithms employing
the FTS method, as these estimates are off from the exact value by two orders of magnitude.
Irrespective of the sampling method, the addition of supervised learning elements can yield
an order-of-magnitude increase in the accuracy of the committor function, as seen from the
L1-norm error in Fig. 5.8(d). Based on these results, we may conclude that the addition
of the FTS method and SL elements yields accurate committor functions and low-variance
estimates of the reaction rates.

5.6.2 Second Study: 2D Müller-Brown Potential

Although the 1D system already showcases the salient advantages of incorporating SL elements
and the FTS method, it only serves as a check to ensure that all algorithms can converge
in a setting where an exact solution is available. The advantages and disadvantages of all
algorithms can be observed with a more complex problem involving a 2D potential energy
landscape, where the transition path is curved. To this end, we now study a particle subject
to the 2D Müller-Brown (MB) potential given by Eq. (4.4.1). Using the committor function
obtained using the finite element method, qFEM(x), we will derive metrics that will test
both the accuracy of both the sampling procedures and the obtained neural network. The
ensemble-averaged BKE loss with qFEM(x) over Ω is obtained by evaluating the variational
objective function in Eq. (5.2.2):

〈
1

2
|∇xqFEM|2

〉
≈ 2.46 · 10−4 . (5.6.8)

To compute the L1-norm error, we select the transition tube domain to be TΛ = {x ∈ Ω :
|J(x)| > Λ = 1.61 · 10−4}, which corresponds to the outermost white line in Fig. 4.5(b).
In addition to on-the-fly estimates, the ensemble average of the BKE loss from the neural
network representation q̂(x;θ) can be evaluated by numerically integrating over the entire
domain, and is given by

〈
1

2
|∇xq̂(x;θk)|2

〉

full

=

∫

Ω

dxρ(x)ℓ(x;θk) = ⟨ℓ(x;θk)⟩ . (5.6.9)

Equation (5.6.9) provides an additional metric for evaluating accuracy; in particular, com-
paring Eq. (5.6.9) with the on-the-fly estimates allows us to evaluate the sampling error
that arises from the choice of estimator, while comparing Eq. (5.6.9) with the FEM value
(Eq. (5.6.8)) allows us to evaluate the error inherent to the neural network.

Figures 5.9(a-c) show the isocommittor lines and sampled configurations obtained from all
algorithms. We see from the isocommittor lines that methods employing supervised learning
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and BKE–US+SL method, (b) the BKE–FTS(ME) and BKE–FTS(ME)+SL method, and
(c) the BKE–FTS(US) and BKE–FTS(US)+SL method. × markers denote representative
samples obtained from algorithms without supervised learning. Dotted lines are the transition
paths obtained from the FTS method. (d) The L1-norm error of the committor function as
a function of iterations.
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Figure 5.10: (a) The filtered on-the-fly estimate of the BKE loss obtained at every iteration,
with the filtering window set to 200 iterations. (b) The ensemble-averaged loss per Eq. (5.6.9)
obtained at every iteration.

100 101 102 103

Nbatch

10−3

10−2

10−1

100

101

F
E

M
/O

n-
th

e-
fl

y

BKE–US

BKE–US+SL

BKE–FTS(ME)

BKE–FTS(ME)+SL

BKE–FTS(US)

BKE–FTS(US)+SL
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elements improve the accuracy of the committor functions both in and outside the transition
tube, as these surfaces follow the FEM solution far more closely than the ones without
such elements. This increase in accuracy is also reflected in the L1-norm error shown in
Fig. 5.9(d), where the error from methods with supervised learning is reduced by an order of
magnitude regardless of the chosen sampling method. Furthermore, similar to the 1D system,
committor-based umbrella sampling yields samples that are focused near the transition state
with little overlap between the reactant/product basins and the transition state region; see
Fig. 5.9(a). As mentioned in Section 5.3, this lack of overlap can negatively impact the
accuracy of the estimated reaction rates due to inaccurate estimates of free energy differences
between neighboring replicas and thereby the reweighting factors (Fig. B.3). Conversely,
all algorithms using the FTS method yield overlapping samples that homogeneously cover
the transition tube and hence accurate estimates of reweighting factors (Figs. B.4 and B.5),
indicating that reaction rate estimates may be computed with higher accuracy and lower
variance.

Figure 5.10(a) shows the on-the-fly estimates of the reaction rates or the average BKE
loss from all methods, computed using a smaller batch size of 64 samples and filtered over the
nearest 200 iterations. With the exception of the BKE–FTS(ME) and BKE–FTS(ME)+SL
methods, these on-the-fly estimates converge towards values far from the FEM solution even
though the ensemble-averaged BKE loss computed by numerical integration (Eq. (5.6.9))
shows convergence towards the FEM value (Fig. 5.10(c)). This shows the sampling error is
still large, and larger batch sizes (Nbatch) are needed to obtain accurate on-the-fly estimates.
Figure 5.11(a) shows the ratio of the FEM and the on-the-fly estimates as a function of batch
size, where all the methods employing the FTS methods converge towards the FEM value
with the exception of the BKE–US and BKE–US+SL methods, which plateau to a ratio
of 0.1. As mentioned in Section 5.3, this discrepancy is related to the lack of overlaps in
the samples between the transition state and the reactant/product basins, resulting in the
inaccurate estimates of zα (Fig. B.3). These results show that replacing the committor-based
umbrella sampling with the FTS method results in more accurate estimates of the reaction
rates.

Furthermore, the FTS method with path-based umbrella sampling is amenable to error
analysis, allowing us to estimate the errors in the reaction rates. In what follows, we provide
such an analysis for the BKE–FTS(US) and BKE–FTS(US)+SL methods, using which
the sampling errors in the on-the-fly estimates can be eliminated. As will be shown later
in Fig. 5.19, this allows accurate computation of the average BKE loss functions for the
BKE–FTS(US) and BKE–FTS(US)+SL methods at any batch size. Lastly, although the
average BKE loss computed by numerical integration may be closer to the FEM solution
than the on-the-fly estimates, such computation is impractical for high-dimensional problems
due to the increased cost of quadrature, necessitating the procedure constructed from error
analysis to improve the accuracy in the on-the-fly estimates.
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5.6.3 Error Analysis of the Average BKE Loss Estimator
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Figure 5.12: Histograms yielding the probability density functions for the on-the-fly estimate
of the BKE loss at various batch sizes from the last 3000 iterations of training for the
(a) BKE–FTS(US), and (b) BKE–FTS(US)+SL methods. Corresponding dashed lines are
log-normal distributions fitted using the method of moments [236], while the dashed vertical
black line corresponds to the average BKE loss from the FEM solution.

Before we begin the error analysis, we first plot the normalized histograms, i.e., the
empirical probability density functions (PDFs), of the logarithm of on-the-fly BKE loss for
both the BKE–FTS(US) and BKE–FTS(US)+SL methods (Fig. 5.12), which show that
fluctuations of these estimates are centered around the FEM value. Furthermore, the
resulting PDFs can be fitted to a log-normal distribution via the method of moments [236]
with increasing agreement as the batch size is increased. The emergence of the log-normal
distribution can be attributed to either the change in model parameters θk during optimization
or the nature of umbrella sampling when used in conjunction with the estimator given by
Eq. (5.6.5). Since the log-normal statistics emerge when the neural network is already
converged, it is more likely for sampling to be the chief cause of these statistics, rather
than the optimization. This hypothesis can be tested by computing the on-the-fly BKE loss
when the neural network parameters are fixed at every iteration, which has the effect of
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Figure 5.13: Histograms of the on-the-fly estimate of the average BKE loss at various batch
sizes, with the neural network parameters fixed at every iteration for the (a) BKE–FTS(US),
and (b) BKE–FTS(US)+SL methods. The neural network configuration corresponds to
the one obtained from training at batch size 4. Corresponding dashed lines are log-normal
distributions fitted using the method of moments [236], while the dashed vertical black line
corresponds to the average BKE loss computed by numerical integration (Eq. (5.6.9)).

decoupling the influence of optimization from sampling. The histograms from this numerical
experiment are shown in Fig. 5.13, where log-normal distributions are produced as before, and
their peaks are located precisely at the ensemble-averaged BKE loss computed by numerical
integration (Eq. (5.6.9)). The logarithm of the average BKE loss can be shifted by the mean
and normalized by the standard deviation of the corresponding distributions to produce
approximate standard normal distributions as seen in Fig. 5.14, with increasing batch sizes
having an increasing agreement with a standard normal distribution.

With the observation of log-normal statistics established, we now determine its origin by
investigating each component that contributes to the computation of the on-the-fly BKE loss
in Eq. (5.6.5). To this end, we provide a more concise notation for the estimator (Eq. (5.6.5))
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Figure 5.14: Histograms of the on-the-fly estimate of the average BKE loss shifted by
the mean µ and normalized by the standard deviation σ at various batch sizes, with the
neural network parameters fixed at every iteration for the (a) BKE–FTS(US), and (b) BKE–
FTS(US)+SL methods. The neural network configuration corresponds to the one obtained
from training with a batch size of 4. The black dashed line is a log-normal distributions
with µ = 0 and σ = 1.

by re-writing it as
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c(x;θk)

]


=

M∑

α=1

zαℓ̄
∗
α

M∑

α=1

zα1̄∗α

, (5.6.10)

where we define the division by c(x;θk) per sample with the ∗ operator, and denote the
standard sample mean using the bar operator. Equation (5.6.10) requires computing free
energies through zα, and sample means from each replica through ℓ̄∗α and 1̄∗α, which indicates
that the origin of the log-normal statistics of the average BKE loss can be found once the
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statistics for zα, ℓ̄∗α, and 1̄∗α are determined individually. In what follows, we first investigate
the statistics of zα as computed via FEP.

To begin, we write the free-energy difference ∆Fα,α′ = Fα − Fα′ per Eq. (5.3.5) as

β∆Fα,α′ = − log


 1

|Mα′
k |

∑

x∈Mα′
k

exp(−β∆Wα,α′(x;θk))


 , (5.6.11)

where ∆Wα,α′(x;θk) = Wα(x;θk)−Wα′(x;θk). Note that free-energy differences are typically
computed for adjacent replicas, so that α = α′ ± 1. For sufficiently small ∆Wα,α′(x;θk), use
of Taylor series expansions yields

β∆Fα,α′ ≈ − log


 1

|Mα′
k |

∑

x∈Mα′
k

(1− β∆Wα,α′(x;θk))


 (5.6.12)

≈ − log


1− 1

|Mα′
k |

∑

x∈Mα′
k

β∆Wα,α′(x;θk)


 (5.6.13)

≈ 1

|Mα′
k |

∑

x∈Mα′
k

β∆Wα,α′(x;θk) . (5.6.14)

According to the central limit theorem and assuming that the samples x ∈Mα
k are independent

and identically distributed, the sample mean of ∆Wα,α′ is normally distributed, and thus the
free-energy differences ∆Fα,α′ are also normally distributed. This argument only holds for
small ∆Wα,α′(x;θk), which can be achieved when there is overlap in configuration space—a
condition that is ensured with a good choice of the bias strength parameters. Since ∆Fα,α′

is normally distributed, its exponentiation e−β∆Fα,α′ is log-normally distributed. Using
Eq. (5.3.6), for α not equal to the reference index γ, the un-normalized reweighting factor z⋆α
obtained from FEP is also log-normally distributed, since it is computed from products of
e−β∆Fα,α′ factors that are log-normally distributed [237]. Upon normalizing z⋆α to obtain zα,
we should observe approximately log-normal statistics for zα, since the normalization requires
dividing z⋆α with its sum, which is approximately log-normal [238–242].

The arguments we put forth for the statistics of β∆Fα,α′ and zα can be verified in
simulations by evaluating the probability density functions for the quantities of interest.
For the forward free-energy differences β∆F(α+1),α and the backward free-energy differences
β∆F(α−1),α, the observed distributions can be described by normal distributions (Figs. B.6
and B.7), which immediately imply that their exponentiation is log-normally distributed.
The resulting reweighting factors zα are found to be log-normally distributed, in agreement
with our heuristic arguments, as seen from the PDFs of ln zα in the first row of Fig. 5.15
for representative replicas, and Fig. B.8 for all replicas. Note that there exist free-energy
differences, such as β∆F9,8 and β∆F10,9, that have a slight deviation in the tails due to the
presence of higher-moment terms. These effects are mostly removed when evaluating the
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Figure 5.15: Probability density functions of the various quantities representative of Table
5.1. Data is obtained from sampling with batch size 1024, with a fixed neural network
obtained from the BKE–FTS(US)+SL method at the same batch size. Dashed blue lines are
log-normal distributions fitted using the method of moments [236], while the vertical dotted
orange and solid black lines correspond to the mean of the histograms and the corresponding
ensemble average computed via numerical integration, respectively.
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PDFs for ln zα, and it is expected that these tails disappear as the batch size is increased since
this leads to free-energy differences that further obey a normal distribution. To summarize
the statistics observed in all replicas, we group replicas with similar behaviors into four
groups, corresponding to the reactant (1-10), transition (11-13), metastable (14-18), and
product (19-24) states. The results for zα for these groups are shown in the second column of
Table 5.1.

Replicas zα ℓ̄∗α 1̄∗α zαℓ̄
∗
α zα1̄

∗
α

Var(ln zα) >

Var(ln ℓ̄∗α)

Var(ln zα) >

Var(ln 1̄∗α)
Reactant State (1-10) ✓ ✗ ✗ ✗ ✓ ✗ ✓

Transition State (11-13) ✓ ✓ ✗ ✓ ✓ ✓ ✓

Metastable State (14-18) ✓ ✗ ✗ ✗ ✓ ✗ ✓

Product State (19-24) ✓ ✓ ✗ ✓ ✓ ✓ ✓

Table 5.1: Summary of error analysis results. For columns two through six, ✓ indicates the
distributions in all or most replicas are log-normal, while ✗ indicates the distributions in
all or most replicas are approximately log-normal with a skew or slight deviations in the
tails. For columns seven and eight, they indicate if the inequality holds. The corresponding
histograms for columns two through six can be found in Figs. B.8–B.12.

With the sampling distributions of zα understood, we now study the sampling distributions
for ℓ̄∗α and 1̄∗α. Assuming the values of ℓ∗α and 1∗α are independent and identically distributed,
one may expect the corresponding sample means ℓ̄∗α and 1̄∗α to be normally distributed
according to the central limit theorem. However, we observe from simulations that these
sample means are better described by log-normal distributions; see the second and third
rows of Fig. 5.15 for representative histograms, and Figs. B.9 and B.10 for all histograms.
Since log-normality arises when normally-distributed random variables are exponentiated,
its origin is likely due to the sums of exponentials in c(x;θk) for 1̄∗α, and the neural network
model q̂(x;θk) for ℓ̄∗α, where the output layer of q̂(x;θk) contains the sigmoidal function
σ(s) = 1/(1 + e−s). Nevertheless, the distributions possess tails that render the log-normality
only approximate in nature. We summarize these observations in the third and fourth columns
of Table 5.1.

Despite the approximate log-normality in ℓ̄∗α and 1̄∗α, one need not understand accurately
the distributions of ℓ̄∗α and 1̄∗α, as the distributions obtained for the products zαℓ̄

∗
α and zα1̄

∗
α,

which are needed by the estimator in Eq. (5.6.11), are log-normal; see the fourth and fifth rows
of Fig. 5.15 for representative histograms, and Figs. B.11 and B.12 for all histograms, as well
as the fifth and sixth columns of Table 5.1 for a concise summary. The only exceptions are the
histograms for zαℓ̄∗α at the reactant (1-10) and metastable state (14-18), which have slightly
skewed log-normal behavior. However, these do not contribute significantly to the overall
BKE loss when compared to the transition state. To understand why log-normality emerges
again for zαℓ̄

∗
α and zα1̄

∗
α, let us convert the products into sums by taking the logarithm, so
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that ln zαℓ̄
∗
α = ln zα + ln ℓ̄∗α and ln zα1̄

∗
α = ln zα + ln 1̄∗α. The distribution of the sum of two

independent random variables, denoted more generally as Y = X1 +X2, can be obtained
from the distributions for X1 and X2 in terms of a convolution

ρY (y) =

∫ ∞

−∞
dx ρX1(x)ρX2(y − x) . (5.6.15)

When one random variable, e.g., X2, possesses a much lower variance than the other random
variable, we expect that the value of X2 will be constant relative to X1. In this limit, we
may approximate ρX2(x) with a Dirac delta function to yield

ρY (y) ≈
∫ ∞

−∞
dx ρX1(x)δ(y − x) = ρX1(y) . (5.6.16)

Thus, the distribution for the sum is solely determined by the distribution of the random
variable with the highest variance. Although this argument is only a weak approximation, as
the random variables involved in zαℓ̄

∗
α and zα1̄

∗
α are correlated due to being processed from

the same x values, it gives an insight as to why zαℓ̄
∗
α and zα1̄

∗
α are log-normally distributed.

Note that the true distributions of ln ℓ̄∗α and ln 1̄∗α are not exactly known, but the distributions
of ln zα consist of normal distributions. If ln zα possesses a larger variance than ln ℓ̄∗α or ln 1̄∗α
we expect from Eq. (5.6.16) that the distribution of the sum in ln zαℓ̄

∗
α and ln zα1̄

∗
α matches

the normal distribution of ln zα. This argument is verified in the seventh and eighth columns
of Table 5.1, where we see that ln zαℓ̄

∗
α and ln zα1̄

∗
α are normally distributed whenever ln zα

possess higher variance.
With the log-normality of zαℓ̄∗α and zα1̄

∗
α verified, we can examine the numerator

∑M
α=1 zαℓ̄

∗
α

and denominator
∑M

α=1 zα1̄
∗
α of Eq. (5.6.10), which make up the on-the-fly average BKE

loss. Since the sum of log-normal random variables can be approximately described by a log-
normal distribution [238–242], both the numerator and denominator should be approximately
log-normal. From simulations, we find that the numerator is log-normally distributed
(Fig. 5.16(a)) while the denominator is log-normally distributed with slight deviations in the
tails (Fig. 5.16(b)). Since the ratio of two log-normal random variables is also log-normal, the
resulting on-the-fly BKE loss should be log-normal, as shown in Fig. 5.16(c). This is also in
agreement with what is observed during training (Fig. 5.12), and when the neural network is
fixed (Fig. 5.13). Although the log-normality of the denominator is only approximate, one can
use the previous argument on sums of random variables, i.e., Eq. (5.6.16), to show that the
sampling distribution of the on-the-fly BKE loss is still log-normal, since the numerator has
higher variance than the denominator, thereby allowing the log-normality of the numerator
to dominate in the on-the-fly BKE loss. Given these results, we conclude that the on-the-fly
estimates of the average BKE loss obtained from the BKE–FTS(US) and BKE–FTS(US)+SL
methods are approximately log-normal.

Using the log-normal distribution of the average BKE loss, one can determine the
asymptotic behavior of the sampling error as a function of batch size Nbatch. Denoting the
mean and variance of the log-normal distribution as µ and σ2, respectively, we expect that
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Figure 5.16: Probability density functions of sums of zαℓ̄∗α, zα1̄∗α, and the on-the-fly estimate
of the BKE loss function in logarithmic space. Data is obtained from sampling with batch
size 1024, with a fixed neural network obtained from the BKE–FTS(US)+SL method at
the same batch size. Dashed blue lines are log-normal distributions fitted using the method
of moments [236], while the vertical dotted orange and solid black lines correspond to the
mean of the histograms and the corresponding ensemble average computed via numerical
integration, respectively.
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Figure 5.17: The absolute error in the on-the-fly BKE loss at different batch sizes, with
respect to the largest batch size. All error bars are 95% confidence intervals.
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Figure 5.18: Using the geometric mean (a,b) and median (c,d) to remove the sampling error
in the filtered on-the-fly estimates (left column) and cumulative average (right column) of
the on-the-fly estimates in the BKE–FTS(US) method for batch size 64. Note that the
remaining error between the FEM value and the average BKE loss computed per Eq. (5.6.9)
is due to the inherent error of the chosen neural network. Cumulative mean and median are
performed over the last 3000 iterations of the algorithm. Shaded colors in (b) and (d) are
95% confidence intervals.
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Figure 5.19: The ratio between FEM and on-the-fly estimates, after taking the geometric
mean and median. Error bars are 95% confidence interval.

the cumulative mean of the on-the-fly BKE loss over iterations is given by [237]

1

K − k⋆ + 1

K∑

k=k⋆

〈
1

2
|∇xq̂(x;θk)|2

〉

fly

≈ exp

(
µ+

1

2
σ2

)
, (5.6.17)

where K is the final iteration index, and k⋆ is the iteration index when the on-the-fly estimates
begin to fluctuate around a plateau. Equation (5.6.17) implies that the cumulative mean
of on-the-fly estimates is always multiplied by a factor exp

(
1
2
σ2
)
> 1, since σ2 > 0. This

explains why the on-the-fly estimates in Fig. 5.9(a) from both the BKE–FTS(US) and
BKE–FTS(US)+SL methods are larger than the FEM value, and why the ratio between the
FEM value and the on-the-fly estimates in Fig. 5.10 is always less than one. Furthermore,
σ2 ∼ O(1/Nbatch), implying for large Nbatch that

1

K − k⋆ + 1

K∑

k=k⋆

〈
1

2
|∇xq̂(x;θk)|2

〉

fly

∼ exp (µ) (1 +O(1/Nbatch)) , (5.6.18)

thus showing the sampling error in the on-the-fly estimates scales as O(1/Nbatch). Defining
the absolute error as the difference between the cumulative mean of the on-the-fly estimates
obtained at smaller batch sizes and the one obtained at the largest batch size, we plot
the absolute error as a function of Nbatch in Figure 5.11 for both the BKE–FTS(US) and
BKE–FTS(US)+SL methods, where the O(1/Nbatch) scaling can be observed.
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The knowledge of the log-normal distribution can also be used to remove the sampling
error between the on-the-fly estimates and the ensemble-averaged loss computed by numerical
integration (Eq. (5.6.9)). This can be achieved by taking the median and geometric mean
of the on-the-fly estimates since they are equal to the true mean exp(µ) for log-normally
distributed random variables [237]. We demonstrate this by applying the geometric mean
(Figs. 5.18(a,b)) and median (Figs. 5.18(c,d)) to remove the sampling error in the filtered
on-the-fly estimates and the cumulative mean from the BKE–FTS(US) method.

Furthermore, the geometric mean or median can be used to obtain similar accuracy in
the average BKE loss across all batch sizes, as seen in Fig. 5.19 where we plot the ratio
between the FEM value and the geometric mean and median of the on-the-fly estimates
from the BKE–FTS(US) and BKE–FTS(US)+SL methods. Note that the ratio obtained
from the BKE–FTS(US) method at the smallest batch size is larger than one, in contrast to
the expected log-normal prediction that is less than one, but this result is consistent with
the presence of the tails in the histograms for the smallest batch size; see Figs. 5.12(a) and
5.13(a). Nevertheless, the accuracy obtained from the smallest batch size after applying the
geometric mean and median is comparable to the accuracy obtained from the largest batch
size. Thus, one can use the BKE–FTS(US) and BKE-FTS(US)+SL methods to train neural
networks with smaller batch sizes, which results in cheaper simulation costs, without loss in
the accuracy in the reaction rates estimated on-the-fly.

5.7 Computational Study of a Solvated Dimer System

Figure 5.20: Dimer particles in (left) compact and (right) extended states for r0 = 21/6

and s = 0.25 for a system with ρ = 0.9. Only the seven nearest neighbors of each solvent
particle are visualized and made transparent. Image created using Ovito [31].

Until now, all previous studies correspond to a single particle diffusing in low-dimensional
energy landscapes where a reference solution for q(x) is known through analytical or numerical
methods, allowing us to understand the accuracy of the proposed methods. However, the
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neural network representation of the committor function can also be employed in molecular
systems with a high-dimensional configuration space with no reference solution, demonstrating
the applicability of the proposed methods. To this end, we now test Algorithms 4–9 on a
solvated dimer system [243], where the dimer transitions between a compact and an extended
state; see Fig. 5.20. In what follows, we compute the committor function and reaction rate
corresponding to the transition between the compact and the extended states of the dimer.

In this system, the dimer particles interact via a bond potential given by

Vdimer (r) = h

[
1− (r − r0 − s)2

s2

]2
, (5.7.1)

where r is the distance between the particles, h = 5.0 kBT is the height of the barrier,
r0 = 21/6 sets the distance in the compact state, and s = 0.25 sets the distance in the
extended state. The distance in the compact state is r = r0, and the distance in the extended
state is r = r0 + 2s (Fig. 5.20). The solvent particles interact between themselves and the
dimer particles by the Weeks-Chandler-Andersen potential [244]

VWCA (r) =

(
4ϵ

[(
1

r

)12

−
(
1

r

)6
]
+ ϵ

)
Θ(rWCA − r) , (5.7.2)

where ϵ = 1.0, rWCA = 21/6, and Θ(x) is the Heaviside function. We test all the methods on
systems of densities 0.05, 0.4, and 0.7 with a dimer and 30 solvent particles, and a system
of density 0.9 with a dimer and 46 solvent particles. For all systems, the temperature is
maintained at kBT = 1.

In comparison to the low-dimensional systems, molecular systems may have many particles
with different species identities. To increase efficiency in training, the neural network should
satisfy invariances with respect to translations, rotations, and permutations of the particle
positions x and species identities z. To this end, we use a neural network of the form

q̂(x, z;θ) = σ (f(x, z;θ)) , (5.7.3)

where the species identities z correspond to z = 1 for a dimer particle and z = 0 for a solvent
particle, and f(x, z;θ) being the implementation of SchNet [245] available with PyTorch
Geometric [246]. SchNet is a message-passing neural network that determines the contribution
to the committor function for each particle, satisfying permutation invariance of the particle
identities, using a scheme dependent only on the distances between particles, satisfying
the aforementioned translational and rotational invariances. SchNet first maps for each
particle a high dimensional feature vector that is obtained from an embedding of the particle
identities. The feature vectors are then updated using continuous-filter convolutions over the
relative distances of a particle to its neighboring particles, which incorporate information
about the particle environment; these operations are termed interaction blocks. The use of
the feature vectors and interaction blocks allows for SchNet to learn the effect of particle
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environments on the per particle contribution to the committor function without the use
of handcrafted descriptors. The feature vectors are then reduced into a scalar per particle
contribution to the committor function through a dense neural network, which are summed
together and passed through a sigmoid to obtain the neural network representation of the
committor function. In this work, we use a feature vector size of 64 and 3 interaction blocks
and perform the continuous-filter convolution for each particle over all other particles. For
details on the associated hyper-parameters for each study and parameters used for BKE–US,
BKE–FTS(ME), and BKE–FTS(US), see Appendix B.2.3. See also Ref. [245] for more details
on the general architecture of SchNet and our code repository2 for its implementation in this
work.

We apply the same training procedure as done for the 1D and 2D systems with the BKE–
US, BKE–FTS(ME), and BKE–FTS(US) methods plus their SL variants, where all methods
use 24 replicas of a batch size of 8 samples collected every 25 steps. Initial configurations for
sampling are obtained using umbrella sampling simulations with respect to the dimer bond
distance r with a potential of the form

Wα =
1

2
κα (r − rα)

2 , (5.7.4)

where κα = 1200 kBT and rα = 0.75 + 1.9−0.75
31

(α− 1) for α ∈ [1, 32]. These simulations
generate a set of equilibrium configurations corresponding to the reactant, product, and
in-between states. Furthermore, they are used to initialize the neural network and evaluate
the quality of the trained neural network with a fixed data set. This data set consists of 104
samples per umbrella sampling replica generated from simulations of length 107 time steps
with a sampling period of 103 time steps.

The neural network initialization is done through a similar procedure as described in
Section 5.6. The neural network parameters are initialized randomly, and updated by
minimizing Eq. (5.6.2) using Adam with a stepsize of 1 · 10−5 until I(θ) ≤ 10−4. The initial
configurations xα

0 are chosen to be the configurations obtained using the above umbrella
sampling procedure with bond distances closest to rα = 0.98 + 1.75−0.98

23
(α− 1) for α ∈ [1, 24].

As in the previous 1D and 2D cases, the BKE–FTS(ME) and BKE–FTS(ME)+SL methods
use φα

0 = xα
0 , and the BKE–FTS(US) and the BKE–FTS(US)+SL methods sets xα

0 to be the
nodal point φα of the converged path. All additional details related to sampling schemes
generating mini-batches for optimization, penalty strengths, and parameters controlling the
FTS method can be found in the Appendix B.2.3.

Figure 5.21 shows the on-the-fly estimates of the reaction rates or the average BKE loss
from all methods tested on various densities for a batch size of 8 samples. For densities of
0.05, 0.4, and 0.7 (Fig. 5.21(a-c)), the BKE–FTS(ME) and BKE–FTS(US) estimates plateau
around the same value near the estimate obtained from direct simulation, while BKE–US has
high variance around a different plateau. For a density of 0.9 all methods plateau around the
same value. As with the low-dimensional systems, the BKE–FTS(ME) and BKE–FTS(US)

2https://github.com/muhammadhasyim/tps-torch

 https://github.com/muhammadhasyim/tps-torch
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Figure 5.21: The filtered on-the-fly estimate of the BKE loss obtained at every iteration for
the solvated dimer system, with the filtering window set to 200 iterations. A total of 104

unbiased trajectories are used to compute a direct estimate of the reaction rate (dashed
line) for comparison with the proposed methods.
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Figure 5.22: Histograms of dimer distances obtained from the BKE–US method (top),
the BKE–FTS(ME) method (middle), and the BKE–FTS(US) method (bottom) for (a)
ρ = 0.05, (b) ρ = 0.4, (c) ρ = 0.7, and (d) ρ = 0.9.
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methods sample the reaction pathway, corresponding to dimer distances between the compact
and extended states, homogeneously across all densities. In contrast, the BKE–US method
does not homogeneously sample the reaction pathway although the transition state is better
sampled at ρ = 0.9 compared to lower densities (Fig. 5.22). This behavior results in slightly
improved overlaps between samples from the reactant/product state and the transition state,
which may explain why the reasonable agreement is obtained between the BKE–US method
and the direct estimate at ρ = 0.9.
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Figure 5.23: Average committor profiles for the methods compared to the empirical results
for dimer in solvent systems. The values are binned for 31 windows between rmin = 0.95
and rmax = 1.75.

The accuracy of all methods can be assessed by comparing an empirical committor function
qemp(r) computed at a fixed value of bond length r with the corresponding value q̂(r, z;θ)



5.7. COMPUTATIONAL STUDY OF A SOLVATED DIMER SYSTEM 128

1.0 1.2 1.4 1.6

r

0.0

0.1

0.2

0.3

0.4

||q̂
(r

)
−
q e

m
p
(r

)||
1

(a)
ρ = 0.05 σ−3

1.0 1.2 1.4 1.6

r

0.0

0.2

0.4

0.6

||q̂
(r

)
−
q e

m
p
(r

)||
1

(b)
ρ = 0.4 σ−3

1.0 1.2 1.4 1.6

r

0.0

0.1

0.2

0.3

0.4

0.5

||q̂
(r

)
−
q e

m
p
(r

)||
1

(c)
ρ = 0.7 σ−3

1.0 1.2 1.4 1.6

r

0.0

0.1

0.2

0.3

0.4

||q̂
(r

)
−
q e

m
p
(r

)||
1

(d)
ρ = 0.9 σ−3

BKE–US

BKE–US+SL

BKE–FTS(ME)

BKE–FTS(ME)+SL

BKE–FTS(US)

BKE–FTS(US)+SL

Figure 5.24: Mean absolute error profiles for the methods compared to the empirical results
for dimer in solvent systems. The values are binned for 31 windows between rmin = 0.95
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obtained from the neural network. At fixed r, the committor values are spread across a
distribution since the committor depends not only on r but also on solvent configurations.
Thus, both qemp(r) and q̂(r, z;θ) represent estimates of the mean committor at fixed r. Given
the full empirical committor function qemp(x) (Eq. (5.4.1)) and neural network q̂(x, z;θ), we
can compute these means via a binning procedure. Letting Qi be a set of configurations such
that every x ∈ Qi satisfies r ∈ (ri−1, ri], the binning procedure yields the following formulas:

q̂(ri, z;θ) =
1

|Qi|
∑

x∈Qi

q̂(x, z;θ) , (5.7.5)

qemp(ri) =
1

|Qi|
∑

x∈Qi

qemp(x) , (5.7.6)

where every x ∈ Qi is obtained from the configurations sampled via the umbrella potential in
Eq. (5.7.4) and qemp(x) is computed using 1250 trajectories per configuration x. Figure 5.23
plots qemp(ri) and q̂(ri, z;θ) with their respective variances, which represent the intrinsic
spread of committor values around their mean at r = ri. We see that the BKE–US and BKE–
US+SL methods have a systematic difference between the average binned neural network
and empirical values. Meanwhile, the BKE–FTS(ME) and BKE–FTS(US) have a slightly
lower systematic difference, which decreases further upon the use of supervised learning.

We further assess the accuracy of all methods by computing the mean of absolute error
between the binned values of the neural network committor and the empirical committor, i.e.,

∥q̂(ri)− qemp(ri)∥1 =
1

|Qi|
∑

x∈Qi

|q̂(x, z;θ)− qemp(x)| . (5.7.7)

Figure 5.24 shows the mean of absolute errors for all densities, where we find that the error
is the largest near q(r) = 1/2. Furthermore, we observe a hierarchy in the reduction of errors.
For densities ρ of 0.05–0.7, the order of methods with increasing accuracy goes as BKE–US
< BKE–FTS(ME) < BKE–FTS(US), and the addition of supervised learning improves the
accuracy of each respective method.

We now assess the accuracy of the methods through the average BKE loss, and thereby
the reaction rates. Unlike the low-dimensional studies, where the average BKE loss of the
neural network can be evaluated via quadrature (Eq. (5.6.9)), numerically exact calculation
is not possible in high-dimensional problems and a new scheme is needed. To this end, we
choose umbrella sampling with a reweighting procedure to compute the average BKE loss
with minimal sampling error. This new scheme utilizes the earlier dataset obtained for the
initialization of the neural network as a validation dataset, where umbrella sampling with
respect to Eq. (5.7.4) was used to obtain 104 configurations from all 32 replicas. Given this
dataset, we compute the reweighting factors zα using the multistate Bennett acceptance ratio
(MBAR) method. Note that MBAR is used instead of FEP since it yields estimates of zα
with lower error than FEP, albeit at a higher computational cost [131]. Once the MBAR
reweighting factors zMBAR

α are computed, the reaction rate from the neural network can be
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Figure 5.25: (a) The reaction rate ν̂R of the neural network per Eq. (5.7.8) as a function of
density. (b) Comparison between the arithmetic mean and geometric mean applied to the
last 3000 samples from training to direct simulation as a function of density. Error bars are
95% confidence interval.

estimated from a modification of Eq. (5.6.5) for umbrella sampling,

ν̂R =
〈
|∇xq̂(x;θ)|2

〉
=

32∑

α=1

2zMBAR
α

|Mα|
∑

x∈Mα

[
ℓ(x;θ)

c(x;θ)

]

32∑

α=1

zMBAR
α

|Mα|
∑

x∈Mα

[
1

c(x;θ)

] . (5.7.8)

Evaluating Eq. (5.7.8) produces the results seen in Fig. 5.25(a), which are compared to the
true reaction rate as estimated by direct molecular simulation. The results in Fig. 5.25(a)
mirror the trends seen in Fig. 5.24.

As established by the error analysis in Section 5.6.3, we may avoid costly computation
in Eq. (5.7.8) for the BKE–FTS(US) and BKE–FTS(US)+SL methods via the geometric-
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mean estimate to eliminate sampling error at low batch sizes. The comparison between
the arithmetic and geometric mean on the on-the-fly estimates, taken from the last portion
of training, is shown in Fig. 5.25(b). Similar to the low-dimensional case, the geometric
mean is able to recover estimates of the reaction rate closer to the true reaction rate than
the arithmetic mean, demonstrating the generality of the results from the error analysis.
Furthermore, the trend between the geometric mean agrees reasonably well with the true
reaction rate across all densities. This result supports the points made in Section 5.5 that the
BKE–FTS methods are able to account for solvent effects despite using a CV that ignores
solvent configurations and thereby predicting the correct trend of the reaction rate as a
function of density.

5.8 Conclusion and Future Work

In summary, building on the work of Ref. [10], we have introduced and discussed a set of
ML-based algorithms for computing accurate and precise committor functions and reaction
rates. Accuracy in computing committor functions is improved by adding elements of
supervised learning, where committor values obtained from short molecular trajectories
are used to improve the neural network training. On the other hand, accuracy in the
estimated reaction rates is significantly improved by incorporating the FTS method, which
allows homogeneous sampling across the transition tube necessary for obtaining accurate free
energies and reweighting factors. Furthermore, for the FTS method via path-based umbrella
sampling as in the BKE–FTS(US) and BKE–FTS(US)+SL method, we provide an error
analysis, which shows that the on-the-fly estimates of the average BKE loss obey log-normal
statistics. This analysis also shows that the sampling error in the on-the-fly estimates of
reaction rates can be removed by computing its geometric mean or median. The different
combinations of supervised learning and the FTS method yield five additional algorithms,
which were tested against three model systems. Out of the six algorithms, we recommend the
BKE–FTS(US)+SL method, which combines all the strengths of supervised learning and the
FTS method, in conjunction with the geometric mean/median procedure that allows accurate
and precise computation of reaction rates with a small number of samples, e.g., batch size of
O(101).

Future work involves investigating ways of further increasing the accuracy of the methods
on molecular systems. The accuracy could likely be increased through the use of an equivariant
neural network [247], with neural networks satisfying equivariance throughout the hidden
layers having been shown to yield increased accuracy in predictions of molecular properties
over SchNet [248]. Future work should also explore other model systems ranging from
ionic association/dissociation in NaCl solution, where the transition pathway involves the
association/dissociation of Na+–Cl− ionic pairs [192, 249–251], to excitation events in glassy
systems, where the transition state is known to have elastic signatures that are crucial for
the structural relaxation [252].
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Appendix A

Appendix to Lipid Rafts

A.1 Additional Composition Results
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Figure A.1: Additional results for the free energy profiles of two orderphilic proteins at kb (Ld) =
20 kBT , kb (Lo) = 60 kBT for a system with 104 total vertices. (a) Varying bending module for
proteins of radii 6.4 σ, J = 0.3 kBT , and µeq − µ = 10−4 kBT . (b) Varying γ, τ for proteins of radii
6.4 σ, J = 0.3 kBT , and µeq − µ = 10−4 kBT .

This section contains additional results for Section 3.4. To begin, the free energy with
respect to the distance between two orderphilic protein domains is evaluated using REUS
and MBAR under variations in the bending rigidity and surface tension in Fig. A.1, in which
the free energies have small dependence on those parameters. Additional statistics related
to the phase diagram of multiple protein systems of Fig. 3.7(c) is evaluated in Fig. A.2. At
J = 0.3 kBT , the use of US and MBAR obtains the free energy with respect to average
composition ϕ in Fig. A.2(a) in which it is found that the free energy minimum corresponding
to the Ld phase becomes broader upon the addition of orderphilic proteins. From the free
energy profiles, the line tension is evaluated. To do so, it is noted the line tension is defined
by

λ =
1

L
(Fl − Fb) , (A.1.1)
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Figure A.2: Additional results for an orderphilic point particle system with 1600 total vertices,
kb (Ld) = 20 kBT , kb (Lo) = 60 kBT , and reweighted such that each phase has equal probability. (a)
Free energy as a function of ϕ for varying number of orderphilic proteins at J = 0.3 kBT . (b) Line
tension as a function of J for varying number of orderphilic proteins.

where L is the length of the interface, Fl is the free energy of a system with an interface
between the Lo–Ld phases, and Fb is the free energy of a system in the bulk phase. In a
planar periodic Lo–Ld system Eq. (A.1.1) is evaluated as [253]

λ =
1

2L

[
F (ϕcoex)−

1

2

(
F (ϕLo) + F

(
ϕLd

))]
, (A.1.2)

where F (ϕ) is the free energy at composition ϕ with ϕLo , ϕLd , and ϕcoex corresponding to
the compositions in the Lo phase, Ld phase, and coexistence between the phases respectively.
Applying Eq. (A.1.2) to the data obtained using US and MBAR yields the line tensions in
Fig. A.2(b), in which it is found that the line tension is reduced upon the addition of proteins.

A.2 Additional Bending Results

This section contains additional results for Section 3.5. Additional free energy versus H̄protein

profiles for a single protein system with varying surface tension are evaluated using REUS
and MBAR in Fig. A.3. In Fig. A.3(a), the free energy profiles for a system with low kb
is evaluated in which surface tension is found to suppress spontaneous budding by making
the flat state preferred. In Fig. A.3(b), the free energy profiles for a system with realistic kb
and governed by the composition energetics of Eqs. (3.5.2) and (3.5.3) is evaluated in which
surface tension is found to slightly shift the profiles.

Additional free energy versus protein distance profiles for dimpled two protein systems
with varying µ and J are evaluated using REUS and MBAR in Fig. A.4. The trends match
the previous C = 0 cases seen in Figs. 3.6(b,d) with the addition of repulsion due to the
curvature of the dimpled domains.

In Figs. A.5–A.7, additional cluster metrics are evaluated for planar and spherical systems.
Figure A.5 corresponds to the results in Figs. 3.12,(b,c) in which C and µeq − µ are changed
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Figure A.3: (a) Free energy versus curvature for various surface and frame tensions at kb = 2.5 kBT
for a domain of size 10.3 σ at J = 1 kBT in a system with 2500 total vertices. (b) Free energy versus
curvature for various surface and frame tensions at C = 0.05 σ−1 for a single Lo domain of radius
4.8 σ at kb (Ld) = 20 kBT , kb (Lo) = 60 kBT , and composition energy governed by Eq. 3.5.2 with
parameters given by Eq. 3.5.3 in a system with 2500 total vertices and 80 Lo vertices.
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Figure A.4: The following are free energy versus protein distance for two orderphilic proteins with
varying parameters. (a) Varying µ at γ, τ = 0, J = 0.3 kBT , kb (Ld) = 20 kBT , kb (Lo) = 60 kBT ,
and C = 0.2 σ−1 for two orderphilic proteins of radii 6.4 σ. (b) Varying J at γ, τ = 0, C = 0.2 σ−1,
kb (Ld) = 20 kBT , kb (Lo) = 60 kBT , and µeq − µ = 1e-4 kBT for two orderphilic proteins of radii
6.4 σ.

at varying J for a planar system. Figure A.6 corresponds to the results in Fig. 3.14, in
which C and µeq − µ are changed at varying surface tension for a planar system. Figure A.7
corresponds to the results in Fig. 3.15, in which C and µeq − µ are changed at varying J for
a spherical system.
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Figure A.5: (a,b) Cluster metrics for a system with 4800 orderphilic point proteins with 40000 total
vertices at kb (Ld) = 20 kBT , kb (Lo) = 60 kBT , µeq − µ = 0.25 kBT , γ, τ = 0, and varying C and J .
(c,d) Cluster metrics for a system with 4800 orderphilic point proteins with 40000 total vertices at
kb (Ld) = 20 kBT , kb (Lo) = 60 kBT , C = 0.3 σ−1, γ, τ = 0, and varying µ and J .
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Figure A.6: (a,b) Cluster metrics for a system with 4800 orderphilic point proteins with 40000 total
vertices at kb (Ld) = 20 kBT , kb (Lo) = 60 kBT , µeq − µ = 0.25 kBT , J = 0.5 kBT , and varying γ, τ
and C. (c,d) Cluster metrics for a system with 4800 orderphilic point proteins with 40000 total
vertices at kb (Ld) = 20 kBT , kb (Lo) = 60 kBT , C = 0.3 σ−1, J = 0.5 kBT , and varying γ, τ , and µ.
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Figure A.7: (a,b) Cluster metrics for a spherical system with 4800 orderphilic point proteins with
40962 total vertices at kb (Ld) = 20 kBT , kb (Lo) = 60 kBT , µeq − µ = 0.25 kBT , γ, τ = 0, and
varying C and J . (c,d) Cluster metrics for a spherical system with 4800 orderphilic point proteins
with 40962 total vertices at kb (Ld) = 20 kBT , kb (Lo) = 60 kBT , C = 0.3 σ−1, γ, τ = 0, and varying
µ and J .
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Appendix B

Appendix to Committor Learning

B.1 Computing Reweighting Factors in the
Master-Equation Approach

Recall that the reweighting factor zα in the BKE–FTS(ME) and BKE–FTS(ME)+SL methods
are computed by solving the master equation Eq. (5.5.4). One can re-write Eq. (5.5.4) as a
matrix equation:

Kz = 0 , (B.1.1)

where z = zαeα, K = Kαα′eα⊗ eα′ , and Kαα′ = kT
αα′ for α ̸= α′ and Kαα = −∑α′ kαα′ . Since

Eq. (B.1.1) defines z as the basis vector of the null-space of K, one can use singular value
decomposition (SVD) to factorize K = UΣVT , and set the solution z as the column vector
of V corresponding to the zero singular value. One can then normalize the vector z to satisfy
the constraint

∑M
α=1 zα = 1.

In extremely short simulation runs, the off-diagonals of Nαα′ can be zero due to the
absence of rejection counts, which may result in estimates of zα, i.e., elements of column
vector of V, that are not strictly positive. To ensure that the algorithm computes the correct
column vector, we shift the off-diagonals kα(α+1) and k(α−1)α by a tolerance value of 2 · 10−9,
i.e., slightly lower than the machine epsilon of single-precision floats, and set the tolerance for
zero singular-value detection to be 10−6. For this choice of tolerance values, the estimated
zα converge in the limit of large batch sizes to the zα computed by numerical integration of
Eq. (5.5.3); see Fig. B.4. Note that a range of tolerance values 10−11–10−8 have also been
used with no change to the results.
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B.2 Computational Details on Optimization and
Sampling

In this section, we provide additional details relevant to both the sampling and optimization
steps of all algorithms. The simulation of multiple replicas are distributed with MPI and
interfaced with PyTorch [254] for performing optimization2.

B.2.1 First Study: 1D Quartic Potential

In the first study, umbrella sampling is performed with M = 20 replicas with dynamics
described by the overdamped Langevin dynamics in Eq. (5.3.1). For committor-based umbrella
sampling, bias potential parameters for each replica are set to κα = 50 and qα = α−1

M−1
. For

the path- or string-based umbrella sampling, the bias strength κ
∥
α = 5, and the choice of

κ⊥
α is irrelevant since there is no perpendicular direction in 1D. The transition path used

as input for the path-based umbrella sampling is obtained by running the FTS method up
to 100 iterations. Note that the FTS method is also performed with the same number of
replicas, but with dynamics described by Eqs. (4.3.13)-(4.3.14). In all algorithms, the friction
coefficient γ = 1, and step size ∆t = 0.005. The size of α-th batch at every iteration is set to
|Mα

k | = 16 and |Rα
k | = 16 for methods employing umbrella sampling and the FTS method,

respectively. Each sample x ∈Mα
k and x ∈ Rα

k is collected every 25 timesteps.
For the supervised learning component, the penalty strength λSL = 100 at all iterations,

and empirical committor values are collected at every 40 iterations of the algorithm, i.e.,
τemp = 40. The initial and final iteration index are set to kemp,s = 10 and kemp,f = 2500,
respectively. The number of trajectories for each replica is H = 100. The size of α-th
mini-batch is |Cαk | = 0.5|Cα|, and thus the size of mini-batch during iterations grows as more
samples are stored into Cα

For the boundary conditions, the penalty strengths are λA = λB = 104. The reactant and
product batches A and B are collected prior to the start of each algorithm using dynamics
given by Eqs. (4.3.13)-(4.3.14), but with Rα replaced with A and B, respectively. The size
|A| = |B| = 250M and each sample is also collected every 100 timesteps. During optimization,
the mini-batch is randomly sampled without replacement from the original batch A and B,
where the size |Ak| = |Bk| = 125M .

The chosen optimizer to train the neural network is the Heavy-Ball method [213], which
takes in two hyper-parameters as inputs. The first is the step size/learning rate η, while the
second is the momentum coefficient µ. Given any function f(θ) to minimize, the Heavy-Ball
method updates model parameters θk with the following equation:

mk+1 = µmk +∇θf(θk) , (B.2.1)
θk+1 = θk − ηmk+1 , (B.2.2)

2https://github.com/muhammadhasyim/tps-torch

 https://github.com/muhammadhasyim/tps-torch
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where m0 = 0. Note that our notation is consistent with PyTorch’s implementation of the
Heavy-Ball method. For all methods, η = 5 · 10−4 and µ = 0.95. The gradient ∇θf(θ) in
Eq. (B.2.1) corresponds to, e.g., Eq. (5.3.2) for the BKE–US and BKE–FTS(US) method,
and Eq. (5.5.2) for the BKE–FTS(ME) method, with additional mini-batches used as inputs
to the gradient computation.

For the FTS method, the penalty strength is set to λS = 0.1M , where M = 20 is the
number of replicas. In addition, we replace the SGD step in Eq. (4.3.18) with a momentum-
variant called the Nesterov’s method [214]. As implemented in PyTorch, which follows the
simplified version in [255], the Nesterov’s update can be written as

mk+1 = µ2mk + (1 + µ)∇φαĈ({φα
k}) , (B.2.3)

φα
⋆ = φα

k −∆τmk+1 , (B.2.4)

where m0 = 0. We set the step size/learning rate ∆τ = 10−2 and momentum coefficient
µ = 0.9.

B.2.2 Second Study: Muller-Brown Potential

In the second study, umbrella sampling is performed with M = 24 replicas with dynamics
given by Metropolis Monte Carlo [39, 256]. The particle is displaced in both directions by
a random value between −∆r and ∆r to yield a new position x′, which is accepted with
probability given by Pacc = min [1, exp (−β(VMB(x

′)− VMB(x)))]. The value of ∆r is 0.05
when generating the batchesMα

k for umbrella sampling, Rα
k for the FTS method, and Cαk for

supervised learning, while it is set to 0.01 for sampling the reactant and product states. For
committor-based umbrella sampling, qα is set to be α−1

M−1
and κα = 10000 for all α. For the

path- or string-based umbrella sampling, we choose bias strength κ
∥
α = 1100 and κ⊥

α = 600
and the transition path used as input is obtained by running the FTS method up to 100
iterations. Note the FTS method also uses the same amount of replicas as umbrella sampling,
and the Monte Carlo method to sample configurations inside the Voronoi cells. For Figs. 5.9
and 5.10, the size of α-th batch at every iteration is set to |Mα

k | = 16 and |Rα
k | = 4 for

methods employing umbrella sampling and the FTS method, respectively. For Figs. 5.11–B.12,
we use a list of batch sizes [4, 16, 64, 256, 1024], where each sample x ∈ Mα

k and x ∈ Rα
k is

collected every 25 timesteps.
For the supervised learning component, the penalty strength is set to λSL = 100 initially.

Beginning at iteration 300, λSL is increased linearly to 25000 at iteration 10000. Empirical
committor values are collected at every 10 iterations of the algorithm, i.e., τemp = 10. The
initial and final iteration index where we start and end supervised learning is set to kemp,s = 10
and kemp,f = 1000. The number of trials for every window H = 100. The size of α-th mini-
batch is |Cαk | = 0.5|Cα|, and thus the size of mini-batch we use during iterations again grows
as more samples are stored into Cα as in the 1D case.

For the boundary conditions, the penalty strengths λA = λB = 104. The reactant and
product batches A and B are collected before the start of each algorithm with dynamics
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confined to regions A and B, respectively. The size of the number of samples is |A| = |B| =
100M and each sample is also collected every 10 timesteps. The mini-batch is randomly
sampled without replacement from the original batch A and B with |Ak| = |Bk| = 50M .

The optimizer used to train the neural network in MB systems is Adam [226], which takes
in four hyper-parameters as inputs: the first is the step size/learning rate η, the second and
third are momentum coefficients β1 and β2 that control the change in the momentum and
momentum squared respectively, and the fourth parameter ϵ is a term added to improve
numerical stability. For any function f(θ) being optimized, the Adam update of model
parameters θk can be written as

mk+1 = β1mk + (1− β1)∇θf(θk) , (B.2.5)
vk+1 = β2vk + (1− β2) [∇θf(θk)⊙∇θf(θk)] , (B.2.6)

m̂k+1 =
mk

1− (β1)k
, (B.2.7)

v̂k =
vk

1− (β2)k
, (B.2.8)

Hk+1 = diag
[√

v̂k

]
+ ϵ , (B.2.9)

θk+1 = θk − η(Hk+1)
−1m̂k+1 , (B.2.10)

where ⊙ is the element-wise product between two vectors that yields a new vector of the same
dimension, the square root in Eq. (B.2.9) is applied element-wise to the vector, diag [. . .] is a
diagonal matrix obtained from elements of an input vector. Initially m0 = 0 and v0 = 0.
Note that our notation is consistent with PyTorch’s implementation of Adam, and for all
methods, η = 1 · 10−3, β1 = 0.9, β2 = 0.999, and ϵ = 10−8.

For the FTS method, the penalty strength for the Müller-Brown potential is set to
λS = 0.1M . The previously mentioned Nesterov’s update scheme is also used here, with the
step size/learning rate ∆τ = 0.05 and momentum coefficient µ = 0.9.

B.2.3 Third Study: Solvated Dimer

In the third study, umbrella sampling is performed with M = 24 replicas with dynamics
described by the overdamped Langevin dynamics in Eq. (5.3.1). For committor-based umbrella
sampling, bias potential parameters for each replica are set to κα = 100 for ρ = 0.05, 0.4, and
0.7 and κα = 50 for ρ = 0.9, and qα = α−1

M−1
for all densities. For the path- or string-based

umbrella sampling, the bias strength κ
∥
α = κ⊥

α = 1200. The transition path used as input for
the path-based umbrella sampling is obtained by running the FTS method to 20000 iterations.
Note that the FTS method is also performed with the same number of replicas, but with
dynamics described by Eqs. (4.3.13)-(4.3.14). In all algorithms, the friction coefficient γ = 1,
and step size ∆t = 0.0001. The size of α-th batch at every iteration is set to |Mα

k | = 8 and
|Rα

k | = 8 for methods employing umbrella sampling and the FTS method, respectively. Each
sample x ∈Mα

k and x ∈ Rα
k is collected every 25 timesteps.
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For the supervised learning component, the penalty strength is set to λSL = 100 initially.
Beginning at iteration 200, λSL is increased linearly to 1000 at iteration 10000. Empirical
committor values are collected at every 10 iterations of the algorithm, i.e., τemp = 10. The
initial and final iteration index where we start and end supervised learning is set to kemp,s = 10
and kemp,f = 5000. The number of trials for every window H = 100. The size of α-th mini-
batch is |Cαk | = 0.5|Cα|, and thus the size of mini-batch we use during iterations again grows
as more samples are stored into Cα as in the 1D and 2D cases.

For the boundary conditions, the penalty strengths λA = λB = 104. The reactant and
product batches A and B are collected before the start of each algorithm with dynamics
confined to regions A and B, respectively. The size of the number of samples is |A| = |B| =
100M and each sample is also collected every 10 timesteps. The mini-batch is randomly
sampled without replacement from the original batch A and B with |Ak| = |Bk| = 50M .

The optimizer used to train the neural network in dimer systems is Adam as previously
described in Appendix B.2.2. Initially m0 = 0 and v0 = 0. For all densities and methods,
η = 1 · 10−5, β1 = 0.9, β2 = 0.999, and ϵ = 10−8.

For the FTS method, the penalty strength for the Müller-Brown potential is set to
λS = 0.1M . The previously mentioned Nesterov’s update scheme is also used here, with the
step size/learning rate ∆τ = 0.001 and momentum coefficient µ = 0.9.

B.3 Comments on the Supervised Learning Loss
Function

In this section, we compare the results from the supervised learning scheme used in this
work with that of the more standard scheme seen in the literature [232], which utilizes the
mean-squared error (MSE) loss function given by Eq. (5.4.3) instead of the supervised-learning
loss given by Eq. (5.4.5). Switching the supervised-learning loss yields new algorithms denoted
as the BKE–US+MSE, BKE–FTS(ME)+MSE, and the BKE–FTS(US)+MSE methods. The
procedure for training the neural network follows that described in Appendix B.2.2, except
for the BKE–US+MSE method where λMSE is increased linearly to 2500.

The results demonstrate that the use of the MSE loss function yields worse accuracy, as
shown in the isocommittor lines and L1-norm error in Fig. B.1. In fact, the L1-norm error of all
methods employing the MSE loss function increases at later iterations. Furthermore, with the
exception of the BKE–FTS(ME)+MSE method, both the on-the-fly estimates (Fig. B.2(a))
and ensemble-averaged BKE loss function (Fig. B.2(b)) increase at higher iterations. This
suggests that the MSE loss function is prone to overfitting [232], and we provide a sketch for
why this occurs. To this end, the gradients of the losses with respect to the neural network
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Figure B.1: Isocommittor lines for q = 0.1, 0.5, and 0.9 from (a) the BKE–US+SL and
BKE–US+MSE method, (b) the BKE–FTS(ME)+SL and BKE–FTS(ME)+SL method, (c)
the BKE–FTS(US) and BKE–FTS(US)+MSE method. × markers denote representative
samples obtained from algorithms the SL methods. (d) The L1-norm error as a function of
iterations.

parameters are evaluated. For the MSE loss function in Eq. (5.4.3) this is

∇θL̂MSE(θ; {Cαk }) =
λMSE

M

M∑

α=1

1

|Cαk |
∑

(qemp,x)∈Cα
k

∇θℓMSE(qemp,x;θ) (B.3.1)

=
λMSE

M

M∑

α=1

1

|Cαk |
∑

(qemp,x)∈Cα
k

(q̂(x;θ)− qemp)∇θq̂(x;θ) . (B.3.2)
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Figure B.2: (a) The filtered on-the-fly estimate of the BKE loss obtained at every iteration,
with the filtering window set to 200 iterations. (b) The ensemble-averaged loss per Eq. (5.6.9)
obtained at every iteration.

Note that the error q̂(x;θ) − qemp for every x is correlated point-wise with the model’s
gradient ∇θq̂(x;θ), which causes large point-wise errors to have more weight in the gradient
descent direction. If the global minimum is reached, this results in fitting every datapoint
in x perfectly, despite the statistical noise in the data. In comparison the gradient of the
supervised-learning loss Eq. (5.4.5) is

∇θL̂SL(θ; {Cαk }) =
λSL

M

M∑

α=1

∇θℓME(Cαk ;θ) (B.3.3)

=
λSL

M

M∑

α=1


 1

|Cαk |
∑

(qemp,x)∈Cα
k

(q̂(x;θ)− qemp)




 1

|Cαk |
∑

(qemp,x)∈Cα
k

∇θq̂(x;θ)


 ,

(B.3.4)

where the error q̂(x;θ)− qemp and model gradient ∇θq̂(x;θ) are now individually averaged
with respect to samples in Cαk . This averaging is crucial as it reduces the statistical noise in
the empirical committor function qemp(x). To see this, we first write qemp(x) in terms of the
exact committor function q(x) as

qemp(x) = q(x) + ϵ(x) , (B.3.5)
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where ϵ(x) is some noise. It is expected that ϵ(x) has zero mean and some unknown variance
related to the number of trajectories used in the estimate. In the limit of large batch sizes,
we can approximate the average over samples with an ensemble average. We then have for a
single replica α

ℓME(Cα;θ) =
1

2

[
1

|Cα|
∑

(qemp,x)∈Cα

(q̂(x;θ)− qemp)

]2
(B.3.6)

≈ 1

2
(⟨q̂(x;θ)− qemp(x)⟩α)2 (B.3.7)

≈ 1

2
(⟨q̂(x;θ)− q(x)⟩α − ⟨ϵ(x)⟩α)2 (B.3.8)

≈ 1

2
(⟨q̂(x;θ)− q(x)⟩α)2 , (B.3.9)

where ⟨...⟩α is the ensemble average with respect to replica α. Note that the noise has been
approximately canceled due to the effective matching of negative and positive error terms. In
practice, the locality of the replicas in both umbrella sampling and the FTS method likely
ensures that ϵ(x) is slowly varying. This leads to the annihilation of noise at the level of
summing over batches from every replica without the need for higher quality qemp(x).

Returning to the gradient of the supervised learning loss function given in Eq. (B.3.4), we
have for large mini-batch sizes

∇θL̂SL(θ; {Cαk }) ≈
λSL

M

M∑

α=1

⟨q̂(x;θ)− q(x)⟩α⟨∇θq̂(x;θ)⟩α , (B.3.10)

in which the replica average of the gradient is coupled to a noise-reduced measure of the
error. A global minimum is achieved when

⟨q̂(x;θ)⟩α = ⟨q(x)⟩α ∀α . (B.3.11)

While this condition can be satisfied for q̂(x;θ) ̸= q(x) in the region sampled by replica α, the
additional loss terms in Eq. (5.2.7) and continuity between replicas seem to prevent trivial
solutions in practice.

In summary, compared to the standard mean-squared loss, the chosen supervised-learning
loss function avoids overfitting. This is likely due to the polling of empirical committor
estimates, which leads to a reduction in the effect of noise on the optimization.

B.4 Examining the Sampling Error in Reweighting
Factors

In this section, we examine how sampling error in the reweighting factors zα estimated from all
algorithms is reduced in the limit of large batch sizes. For a given batch size, zα is computed
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Figure B.3: (a) The sample mean of the BKE loss from each replica ℓ̄∗α = 1
|Mα

k |
∑

x∈Mα
k

ℓ(x;θk)
c(x;θk)

,
and (b) the estimated reweighting factor zα from each replica α, in comparison to the values
obtained by numerical integration (‘Exact’) for committor-based umbrella sampling. This is
done using a fixed neural network for all batch sizes that is obtained from the BKE–US+SL
method.

over many iterations of each algorithm while keeping the neural network fixed. Afterwards,
the mean of zα computed from all iterations is compared to the zα computed from numerical
integration of Eq. (5.3.3) for umbrella sampling, and Eq. (5.5.3) for the master-equation
approach.

Figure B.3(b) shows zα for committor-based umbrella sampling, where inaccurate estimates
are obtained for α ∈ [5, 24]. This result arises due to a lack of overlap in samples obtained
from adjacent replicas since α = 5 coincides with the beginning of non-overlap between
samples from the reactant state (1-4) and the transition state, which begins at α = 5. The
inaccuracy in zα can be contrasted with the sample-mean quantity ℓ̄∗α = 1

|Mα
k |
∑

x∈Mα
k

ℓ(x;θk)
c(x;θk)

(Fig. B.3(a)), which shows uniform convergence beginning with the smallest batch size. From
these results, we may conclude that the large sampling error of the on-the-fly estimates from
the BKE–US and BKE–US(SL) method arises from inaccurate reweighting factors due to
the lack of overlap in samples between neighboring replicas, and the accuracy may only be
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improved with prohibitively large batch sizes for training.
Figure B.4 shows both zα and the sample mean of the BKE loss from each replica

ℓ̄α = 1
|Rα

k |
∑

x∈Rα
k
ℓ(x;θk), as obtained from the FTS method with master equation. We

see that the quantity ℓ̄α converges quickly and uniformly, but the error in the reweighting
factor zα, which is the largest for α ∈ [11, 24], only diminishes at batch sizes that are too
large and impractical to use for neural network training, i.e., at O(4 · 103). Meanwhile, zα
computed from path-based umbrella sampling (Fig. B.5(b)) achieves convergence at relatively
smaller batch sizes, i.e., at O(102), with similar quick convergence for the corresponding
ℓ̄∗α (Fig. B.5(a)). This demonstrates the advantage of using path-based umbrella sampling
for computing accurate reweighting factors, and thus the utility of the BKE–FTS(US) and
BKE–FTS(US)+SL method in obtaining accurate on-the-fly estimates of reaction rates at a
wide range of batch sizes.

B.5 Additional Figures for Examining Log-Normal
Behavior

This section contains additional figures for the probability density functions (PDFs) of
all quantities of interest in Section 5.6.3 for all replicas. The histograms for the forward
free-energy differences are given in Fig. B.6. The histograms for the backward free-energy
differences are given in Fig. B.7. The histograms for the reweighting factors are given in
Fig. B.8. The histograms for ln ℓ̄∗α and ln 1̄∗α are given in Figs. B.9 and B.10, respectively.
The histograms for ln zαℓ̄∗α and ln zα1̄

∗
α are given in Figs. B.11 and B.12, respectively. For all

histograms, data is obtained by sampling a fixed neural network obtained from the BKE–
FTS(US)+SL method at a batch size of 1024. Dashed blue lines correspond to log-normal
distributions fitted using the method of moments [236], while the vertical dotted orange and
solid black lines correspond to the mean of the histograms and the corresponding ensemble
average computed by numerical integration, respectively.

The existence of tails in these PDFs is dependent upon the choice of bias potential
parameters that are needed for the path-based umbrella sampling. For instance, Figs. B.13
and B.14 show the histograms for ln zαℓ̄

∗
α and ln zα1̄

∗
α when the bias potential parameters

are changed from the ones in Appendix B.2.2 to κ
∥
α = 2200 and κ⊥

α = 300, where we see
that PDFs that originally possess tails, e.g., α ∈ [14, 18] for ln zαℓ̄

∗
α, are log-normal. It is

also expected that any tails in the distributions are suppressed as the batch size is further
increased.
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Figure B.4: (a) The sample mean of the BKE loss from each replica ℓ̄α = 1
|Rα

k |
∑

x∈Rα
k
ℓ(x;θk),

and (b) the estimated reweighting factor zα from each replica α, in comparison to the values
obtained by numerical integration (‘Exact’) for the FTS method with master equation.
This is done using a fixed neural network for all batch sizes that is obtained from the
BKE–FTS(ME)+SL method.
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Figure B.5: (a) The sample mean of the BKE loss from each replica ℓ̄∗α = 1
|Mα

k |
∑

x∈Mα
k

ℓ(x;θk)
c(x;θk)

,
and (b) the estimated reweighting factor ln zα from each replica α, in comparison to the
values obtained by numerical integration (‘Exact’) for the path-based umbrella sampling.
This is done using a fixed neural network for all batch sizes that is obtained from the
BKE–FTS(US)+SL method.
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Figure B.6: Probability density functions of the forward free-energy differences β∆F(α+1),α.
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Figure B.7: Probability density functions of the backward free-energy differences β∆F(α−1),α.
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Figure B.8: Probability density functions of the log of reweighting factors ln zα.
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Figure B.9: Probability density functions of ln ℓ̄∗α.
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Figure B.10: Probability density functions of ln 1̄∗α.
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Figure B.11: Probability density functions of ln zαℓ̄∗α.
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Figure B.12: Probability density functions of ln zα1̄∗α.
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Figure B.13: Probability density functions of ln zαℓ̄∗α, where data is obtained from umbrella
sampling with bias strengths κ

∥
α = 2200 and κ⊥α = 300.
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Figure B.14: Probability density functions of ln zα1̄∗α, where data is obtained from umbrella
sampling with bias strengths κ

∥
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