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Abstract
Purpose  To investigate whether radiomics features extracted from magnetic resonance imaging (MRI) of patients with 
biopsy-proven atypical ductal hyperplasia (ADH) coupled with machine learning can differentiate high-risk lesions that will 
upgrade to malignancy at surgery from those that will not, and to determine if qualitatively and semi-quantitatively assessed 
imaging features, clinical factors, and image-guided biopsy technical factors are associated with upgrade rate.
Methods  This retrospective study included 127 patients with 139 breast lesions yielding ADH at biopsy who were assessed 
with multiparametric MRI prior to biopsy. Two radiologists assessed all lesions independently and with a third reader in 
consensus according to the BI-RADS lexicon. Univariate analysis and multivariate modeling were performed to identify 
significant radiomic features to be included in a machine learning model to discriminate between lesions that upgraded to 
malignancy on surgery from those that did not.
Results  Of 139 lesions, 28 were upgraded to malignancy at surgery, while 111 were not upgraded. Diagnostic accuracy was 
53.6%, specificity 79.2%, and sensitivity 15.3% for the model developed from pre-contrast features, and 60.7%, 86%, and 
22.8% for the model developed from delta radiomics datasets. No significant associations were found between any radiologist-
assessed lesion parameters and upgrade status. There was a significant correlation between the number of specimens sampled 
during biopsy and upgrade status (p = 0.003).
Conclusion  Radiomics analysis coupled with machine learning did not predict upgrade status of ADH. The only significant 
result from this analysis is between the number of specimens sampled during biopsy procedure and upgrade status at surgery.

Keywords  Radiomics · Machine learning · High-risk lesions · ADH · Atypical ductal hyperplasia

Introduction

With the widespread use of image-guided breast biopsies 
in clinical practice, lesions with uncertain potential of 
malignancy, also known as high-risk lesions, have become 
increasingly identified. Several types of high-risk breast 
lesions exist, with differing upgrade rates at subsequent sur-
gical excisions [1–5]. Atypical ductal hyperplasia (ADH) is 
a type of high-risk proliferative breast lesion involving the 
terminal ductal lobular units of the breast and is a non-obli-
gate precursor to invasive breast cancer. At image-guided 
biopsy, it is difficult to distinguish ADH from low-grade 
ductal carcinoma in situ (DCIS) [6]. The rate of upgrading 
ADH to DCIS or invasive cancer has been reported to be 
between 10 and 31% at a subsequent surgical excision [7].
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In clinical practice, the two entities are distinguished 
pathologically based on quantitative criteria according to the 
World Health Organization classification of breast tumors 
[8]. Because the amount of atypia in the biopsy sample may 
be underestimated at image-guided biopsy, the National 
Comprehensive Cancer Network guidelines state that not 
only DCIS requires surgical excision but also ADH [9]. Nev-
ertheless, the majority of ADH end up not being upgraded to 
malignancy based on surgical excision [10]. Accordingly, a 
pre-surgical non-invasive tool to identify women at low risk 
of an upgrade from ADH to DCIS or invasive cancer could 
serve to obviate surgery for these women, along with the 
unnecessary associated expenses and morbidity associated 
with surgery.

A few clinical and technical factors have been reported 
to predict which patients with ADH at image-guided biopsy 
are more likely to have an upgrade to malignancy at surgery; 
these include patient age, lesion size, number of biopsy sam-
ples collected, caliber of the needle used for image-guided 
biopsy, and personal and family history of breast cancer 
[11–14]. Nevertheless, these factors are not yet enough to 
change the current recommendation of surgical excision 
as the current standard of care after ADH is diagnosed at 
image-guided biopsy [7, 15]. As to imaging features, initial 
studies involving magnetic resonance imaging (MRI) have 
shown that no specific imaging feature was able to predict 
an upgrade for high-risk lesions when detected with MRI 
[16], and the subsequent upgrade rate for these lesions was 
between 14 and 38% at surgical excision [17–19].

In this context, artificial intelligence approaches to 
imaging may present a breakthrough. Several investiga-
tors have used various machine learning and computa-
tional approaches to predict subsequent upgrades of ADH, 
using mammographic data, clinical data, and data acquired 
from biopsy samples [10, 11]. However, to date, no study 
has applied artificial intelligence to MRI to predict such 
upgrades. Thus, the aim of the present study was to deter-
mine if radiomics analysis coupled with machine learning 
using MRI data can distinguish which image-guided biop-
sied lesions with a histological diagnosis of ADH will be 
upgraded to DCIS or invasive ductal carcinoma (IDC) at 
surgery. A secondary aim was to determine if qualitatively 
and semi-quantitatively assessed imaging features, clinical 
factors, and image-guided biopsy technical factors are asso-
ciated with upgrade status at surgery.

Materials and methods

Study population

This was an institutional review board-approved and Health 
Insurance Portability and Accountability Act-compliant 

retrospective study for which the need for written informed 
consent was waived. This study included patients who 
underwent state-of-the-art multiparametric MRI with 
dynamic contrast-enhanced imaging and T2-weighted imag-
ing using a dedicated breast coil, either at our institution or 
elsewhere, prior to image-guided biopsy (MRI-, ultrasound-, 
or stereotactic-guided biopsy). We included patients with 
a suspicious finding on MRI (mass or non-mass enhance-
ment of any size), with or without an ultrasound or mam-
mographic correlate, which on subsequent pathology yielded 
a diagnosis of ADH (alone or associated with other high-
risk lesions) and subsequent surgical excision confirming a 
benign finding or an upgrade to malignancy. We excluded 
patients if they underwent a mastectomy for an ipsilateral 
cancer for which the pathological report was unclear as to 
which pathological finding was related to the biopsy that 
yielded ADH.

For all patients, clinical data (patient age, history of 
breast cancer, presence of ipsilateral or contralateral breast 
cancer), technical data (caliber of needle used, number of 
sampled specimens), and pathologic results from the subse-
quent surgery were collected.

Breast MRI

Breast MRI examinations were performed on either a 1.5 T 
or a 3 T scanner using an 8-channel or 16-channel dedicated 
surface breast coil. Patients underwent state-of-the-art breast 
multiparametric MRI protocol in agreement with interna-
tional guidelines [20, 21].

Imaging analysis

Two fellowship-trained breast radiologists (RLG and KV) 
with 5 and 2 years of experience interpreted the MR images 
independently, blinded to patient family and personal his-
tory, biopsy results, and pathologic results from the sub-
sequent surgery. Cases in which there was a disagreement 
between the two readers were re-reviewed by a third reader 
(CRS) with 6 years of experience to generate a consensus 
assessment.

On post-contrast-enhanced T1-weighted images, lesion 
depth (anterior, middle, or posterior depth) was recorded 
for each lesion as this has been shown to be correlated 
with malignancy [22]. Morphological features were also 
assessed according to the Breast Imaging-Reporting and 
Data System (BI-RADS) lexicon (lesion shape, margin, 
and internal enhancement characteristics for mass lesions, 
and distribution and type of enhancement for non-mass 
enhancements) [23], and readers assigned a BI-RADS 
classification. Lesion size was measured as the single larg-
est diameter. On T2-weighted and high b-value diffusion-
weighted images, signal intensity (hypo-, iso-, hyperintense) 
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and morphology were recorded. Background parenchymal 
enhancement and fibroglandular tissue were also assessed 
using maximum intensity projection images and non-fat 
saturated T1-weighted images, respectively. Time–inten-
sity kinetic curve analysis (signal enhancement in relation 
to time after contrast injection) was performed using the ROI 
Enhancement plugin in the OsiriX software [24] by R1. The 
kinetic curve pattern was described as washout, plateau, or 
persistent.

Radiomics analysis

One hundred and one radiomic features were calculated for 
each patient with CERR software [25], publicly available 
via GitHub, using MATLAB 2017b (The MathWorks Inc., 
Natick, MA) and an in-house script was written for batch 
processing of patient images [14]. The features calculated 
can be defined as belonging to six classes, based on first-
order statistics (22), gray-level co-occurrence matrix (26), 
run-length matrix (16), size zone matrix (16), neighbor-
hood gray-level dependence matrix (16), and neighborhood 
gray-tone difference matrix (5), respectively. CERR has 
recently been shown to conform to the Image Biomarker 
Standardization Initiative (IBSI) guidelines [26]. Radiomic 
features were calculated from pre- and post-contrast admin-
istration. Delta radiomics, defined as the percentage change 
in radiomic features between the two timepoints, was also 
determined. Images were decimated to 32 Gy levels prior to 
feature calculation.

Histopathology

Histopathological results from surgical specimens were used 
as the reference standard. The criteria used to distinguish 
ADH from DCIS included the presence of at least one of the 
following two quantitative features according to the World 
Health Organization classification of breast tumors size lim-
ited to 2 mm or smaller and/or involvement of no more than 
two membrane bound spaces [8].

Statistical analysis and predictive model building

Univariate analysis using the Chi-square test or Fisher’s 
exact test was performed to assess associations between 
imaging features and upgrade status. Differences in lesion 
size and number of specimens between the two groups were 
assessed using the Mann–Whitney test. P-values < 0.05 were 
considered significant. To determine inter-reader agreement 
for qualitatively and semi-quantitatively assessed imaging 
parameters, Cohen’s Kappa (κ) was estimated. Statistical 
analysis for the above-mentioned purposes was conducted 
using SAS version 9.4 software (SAS Institute, Cary, NC, 
USA).

For radiomic features, data were summarized utilizing 
medians and inter-interquartile range. Associations between 
radiomic features and upgrade status were explored using 
the Mann–Whitney test, with p-values < 0.05 regarded as 
significant. Following univariate analysis, predictive models 
from radiomic features were created. Correlation analysis 
was initially employed to remove redundant parameters from 
advancement to model development, to reduce the possibil-
ity of overfitting. If a highly positive (> 0.9) or highly nega-
tive (< − 0.9) correlation was noted, the parameter with the 
lowest area under the receiver operating curve (AUROC) 
was removed. After parameter selection, undersampling 
techniques were employed, due to the large imbalance 
between the majority (no-upgrade) and minority (upgrade) 
class sizes, to reduce the possibility of any algorithm incor-
rectly classifying all lesions as belonging to the majority 
class. Random undersampling at 50% minority class size 
was utilized for both classes and this process was repeated 
1000 times for generalizability. Five-fold cross validation 
was utilized in place of dedicated train/test datasets and a 
gaussian support vector machine algorithm was employed. 
As the current recommendation for lesions diagnosed as 
ADH at image-guided biopsy is surgical excision, a 50% 
increased penalty for misclassifying a non-upgraded lesion 
was utilized. This will have the effect of increasing specific-
ity at the expense of sensitivity to upgraded lesions.

Results

Patient population and breast lesion characteristics

This study included 127 patients (average age 51.2 ± 10.2; 
range 27–78) with 139 lesions, of which 28/139 lesions 
were upgraded to DCIS or IDC on surgery while 111/139 
lesions were not upgraded (Fig. 1). The average lesion size 
was 15.14 ± 13.23 mm (range 3–70 mm). The majority of 
lesions (125/139) was assessed with MRI at our institution, 
while a minority (14/139) was assessed with MRI from an 
outside institution.

Radiomics analysis to predict upgrade status

At univariate analysis, 11 radiomic features were found to be 
significantly different between the two groups (no-upgrade 
vs upgrade) when utilizing pre-contrast data, 10 radiomic 
features were significantly different when utilizing percent-
age change in radiomic features between pre- and post-con-
trast data, and no radiomic feature was significantly different 
between the two groups when utilizing post-contrast data. 
Following correlation analysis, four radiomics features were 
advanced to model development for both the pre-contrast 
and delta radiomics datasets. These included 1 first-order 
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feature (Minimum), 1 run-length matrix feature (run-length 
variance) and 2 neighborhood gray-tone difference matrix 
features (high dependence high gray-level emphasis and 
Busyness), findings are summarized in Tables 1 and 2.

Table 3 details the diagnostic performance of the two 
models. For both the pre-contrast and delta radiomics mod-
els, a specificity of around 80% was obtained but at the 
expense of poor sensitivity (15.3–22.8%). As can be seen, 
there was a slight improvement in diagnostic accuracy from 
53.6% for the pre-contrast radiomics model to 60.7% for the 
delta radiomics model.

Association of qualitatively and semi‑quantitatively 
assessed imaging parameters with upgrade status

Table 4 shows the inter-reader agreement between R1 and 
R2. For BI-RADS assessment, while there was agreement in 
128/139 cases, the κ value of 0.24 showed low agreement, 
probably due to the low number or BI-RADS category 3 
lesions as compared to category 4 lesions. Agreement was 
moderate for background parenchymal enhancement, T2 and 
DWI signal intensity, and shape. Agreement was good for 
fibroglandular tissue, apparent diffusion coefficient signal 
intensity, and distribution of non-mass enhancement. There 
was very good agreement for lesion depth within the breast.

Table 5 shows the results from univariate analysis accord-
ing to independent assessments by the two radiologists. 

Table 6 shows the results from univariate analysis accord-
ing to consensus assessment. In consensus reading, no sig-
nificant associations were found between any radiologist-
assessed lesion parameter and upgrade status.

Time–intensity kinetic curve analysis was performed 
in 135/139 lesions; four lesions were not analyzed due to 
motion-related artifacts. Progressive contrast enhancement 
was present in 54 lesions, plateau kinetics was present in 
63 lesions, and washout was seen in 18 lesions. There was 
no association between kinetics and upgrade rate (p = 0.2).

Association between clinical and image‑guided 
biopsy technical parameters

Table 7 shows the results from univariate analysis of clinical 
and image-guided biopsy technical parameters with upgrade 
status. The average number of biopsy samples was 8 ± 2.7, 
and there was a significant correlation between the num-
ber of specimens sampled during biopsy and upgrade status 
(p = 0.003). All other parameters were insignificant between 
the two groups.

Fig. 1   Contrast-enhanced 
T1-weighted fat-suppressed 
subtraction maximum intensity 
projection images in the axial 
(a, d) sagittal (b, e) and coronal 
(c, f) planes with (top row) and 
without segmentation (bottom 
row), showing a 1.3 cm focal 
non-mass enhancement in the 
left upper outer quadrant. MRI-
guided biopsy yielded atypical 
ductal hyperplasia (ADH), 
ADH diagnosis was confirmed 
on surgical specimen
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Discussion

We undertook this study with the primary hypothesis 
that radiomics analysis coupled with machine learning 
using MRI data can distinguish which image-guided biop-
sied lesions with a histological diagnosis of ADH will be 
upgraded to a malignant lesion at surgery, but our results 
showed otherwise. A secondary aim was to determine if 
conventional qualitatively and semi-quantitatively assessed 
imaging features, clinical factors, and image-guided biopsy 
technical factors are associated with upgrade status at sur-
gery. The only significant result from this analysis is between 
the number of specimens sampled during biopsy procedure 
and upgrade status at surgery.

In our study, we included MRI scans performed prior to 
image-guided biopsy showing suspicious enhancement. The 
upgrade rate at a later surgical excision was 25.5%, which is 
comparable to that of mammographically detected ADH and 
unacceptably high to warrant surveillance but also not high 
enough to justify a costly and invasive surgical procedure for 
all patients with biopsy-proven ADH. The results published 
so far on this topic are variable, and to date, no consensus 

exists regarding the selection of biopsy-proven ADH lesions 
that may safely undergo observation. A study by Tsuchiya 
et al. [6] reported that patients with biopsy-proven ADH 
without suspicious enhancement on breast MRI may be fol-
lowed up rather than undergo surgical excision, given the 
high negative predictive value of MRI. This study included 
only 17 patients (9/17 patients were upgraded to malignancy 
on surgery) and only looked at post-biopsy MRIs in which 
it may be difficult to differentiate post-biopsy changes from 
suspicious persistent enhancement. Another study by Linda 
et al. [25] included 79 patients with ADH diagnosed on 
core needle biopsy. The authors reported that cases show-
ing mild or no enhancement on MRI can be followed rather 
than having surgery. In their study, 8/24 lesions that showed 
enhancement on MRI were associated with an upgrade on 
surgical biopsy, whereas only one (1.8%, a low-grade DCIS) 
of 55 lesions classified as non-suspicious was confirmed to 
be malignant. Another study by Pediconi et al. [26] assessing 
32 high-risk lesions (including ADH) reported that cases of 
non-suspicious enhancement or no enhancement at breast 
MRI may undergo follow-up rather than surgery. Although 
these studies suggest that ADH could be followed with 

Table 1   Summary of significant 
Mann–Whitney U tests for 
radiomic features created from 
pre-contrast images

Median values with associated interquartile range (IQR) are reported as non-parametric tests were per-
formed. Features selected for advancement to model development are italicized
FO first-order, GLCM gray-level co-occurrence matrix, RLM run-length matrix, SZM size zone matrix, 
NGLDM neighborhood gray-level dependence matrix, hglre high gray-level run emphasis, lrhgle long-run 
high gray-level emphasis, srhgle short-run high gray-level emphasis, hglze high gray-level zone emphasis; 
lzhgle large zone high gray-level emphasis, hgce high gray-level count emphasis, hdhge high dependence 
high gray-level emphasis

Radiomic feature No-upgrade Upgrade p-value
Median (IQR) Median (IQR)

Skewness (FO)  − 0.322
(− 0.629 to 0.186)

 − 0.580
(− 1.013 to − 0.342)

0.011

Joint average (GLCM) 18.7
(16.2 to 20.3)

19.9
(17.2 to 22.0)

0.025

Sum average (GLCM) 37.3
(32.3 to 40.7)

39.8
(34.5 to 44.0)

0.025

Auto correlation (GLCM) 362
(286 to 434)

412
(313 to 495)

0.029

hglre (RLM) 358
(288 to 422)

397
(313 to 485)

0.036

lrhgle (RLM) 462
(377 to 581)

567
(427 to 659)

0.018

srhgle (RLM) 333
(266 to 392)

360
(294 to 437)

0.049

hglze (SZM) 347
(284 to 414)

389
(305 to 469)

0.042

lzhgle (SZM) 1027
(726 to 1462)

1281
(937 to 1965)

0.040

hgce (NGLDM) 363
(288 to 427)

399
(314 to 490)

0.038

hdhge (NGLDM) 1266
(936 to 1778)

1542
(1209 to 2280)

0.021
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imaging rather than surgically removed in case of no or lit-
tle contrast enhancement on MRI, another more recent study, 
also by Linda et al. [27], with a larger sample of 169 high-
risk lesions in 166 patients yielded contradicting results: 
the overall sensitivity, specificity, and positive and negative 
predictive values of MRI to determine upgrade to malig-
nancy were 72.7%, 74.8%, 30.2%, and 94.8%, respectively. 
The authors concluded that a negative MRI study warrants 

follow-up instead of surgery only for lesions with low likeli-
hood of malignancy such as papilloma and radial scar, but 
it does not help in cases of lobular neoplasia and ADH, and 
all these latter lesions should be excised.

In our study, MRI-based radiomics analysis coupled with 
machine learning was not able to accurately predict which 
biopsy-proven ADH lesions would be upgraded to malig-
nancy at surgery. Although a specificity of around 80% was 
obtained, this was done at the expense of poor sensitivity. 
As can be seen, there was a slight improvement in diagnostic 
accuracy from 53.6 to 60.7% when the radiomics model was 
based on percentage change in radiomic features between 
pre- and post-contrast data rather than using only pre-con-
trast data. Our results involving radiomics analysis are in 
contrast to a similar study by Ha et al. [10] that included 149 
patients who underwent mammography, wherein the con-
volutional neural network yielded an area under the curve 
(AUC) of 0.86, sensitivity of 84.6%, specificity of 88.2%, 

Table 2   Summary of significant Mann–Whitney U tests for percent-
age change in radiomics features between pre- and post-contrast 
images

Median values with associated interquartile range (IQR) are reported 
as non-parametric tests were performed. Features selected for 
advancement to model development are italicized
FO first-order, GLCM gray-level co-occurrence matrix, RLM run-
length matrix, SZM size zone matrix, NGLDM neighborhood gray-
level dependence matrix, NGTDM neighborhood gray-tone difference 
matrix, lrhgle long-run high gray-level emphasis, rlv run-length vari-
ance, lzhgle large zone high gray-level emphasis, hde high depend-
ence emphasis, hgce high gray-level count emphasis, hdhge high 
dependence high gray-level emphasis

Radiomic feature No-upgrade Upgrade p-value
Median (IQR) Median (IQR)

Minimum (FO) 122
(80 to 228)

184
(111 to 333)

0.041

Sum average (GLCM)  − 16.7
(− 23.9 to − 1.1)

 − 21.8
(− 35.4 to − 8.3)

0.047

Auto correlation 
(GLCM)

 − 26.4
(− 38.7 to 0.5)

 − 32.3
(− 54.3 to − 12.8)

0.044

lrhgle (RLM)  − 35.7
(− 47.9 to − 13.6)

 − 44.8
(− 63.9 to − 22.6)

0.026

rlv (RLM)  − 30.0
(− 48.1 to − 5.8)

 − 39.2
(− 58.7 to − 24.0)

0.045

lzhgle (SZM)  − 46.7
(− 60.6 to − 20.0)

 − 63.8
(− 73.0 to − 39.7)

0.008

hde (NGLDM)  − 21.1
(− 36.8 to − 3.8)

 − 30.4
(− 44.4 to − 14.4)

0.047

hgce (NGLDM)  − 31.4
(− 41.6 to − 4.7)

 − 38.0
(− 56.8 to − 14.6)

0.047

hdhge (NGLDM)  − 42.4
(− 60.6 to − 20.0)

 − 61.8
(− 72.9 to − 30.5)

0.006

Busyness (NGTDM) 108
(47 to 176)

160
(63 to 206)

0.047

Table 3   Summary of predictive models based on pre-contrast images and percentage change in radiomics features between pre- and post-con-
trast images

Models were created using gaussian support vector machines (SVMs) and are presented with confidence intervals
AUROC area under the receiver operating curve, NPV negative predictive value, PPV positive predictive value

AUROC Sensitivity (%) Specificity (%) PPV (%) NPV (%) Accuracy (%)

Pre-contrast 0.514
(0.299–0.728)

15.3
(1.8–42.8)

79.2
(49.2–95.3)

34.8
(11.6–77.3)

48.7
(39.3–56.5)

53.6
(27.5–66.1)

Percentage change 0.540
(0.329–0.752)

22.8
(4.7–50.8)

86.0
(57.2–98.2)

57.5
(22.7–88.4)

53.0
(43.5–60.7)

60.7
(33.9–72.5)

Table 4   Agreement between reader 1 and reader 2. A κ < 0.20 was 
indicative of poor agreement, κ of 0.20–0.40 indicated fair agreement, 
κ of 0.41–0.60 indicated moderate agreement, κ of 0.61–0.80 indi-
cated good agreement, and κ of 0.81–1.00 indicated very good agree-
ment

ADC apparent diffusion coefficient, BI-RADS breast imaging-report-
ing & data system, BPE background parenchymal enhancement, DWI 
diffusion-weighted imaging, FGT fibroglandular tissue

Comparison κ p-value

BPE 0.573962 0
FGT 0.736386 0
Depth 0.836347 0
T2 0.427319 3.26E−10
DWI 0.534687 6.79E−11
ADC 0.620233 6.23E−10
BI-RADS 0.247909 9.22E−06
Enhancement type 0.888129 0
Shape 0.569255 1.27E−11
Margins 0.581662 3.44E−10
Enhancement (mass) 0.388235 2.92E−05
Distribution 0.698065 0
Enhancement (non-mass) 0.47231 6.93E−08
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Table 5   Univariate analysis according to independent radiologist assessment

Imaging feature Reader 1 p-value Reader 2 p-value

Overall No-upgrade Upgrade Overall No-upgrade Upgrade

BPE 0.11 0.9
 Minimal 33 (24) 27 (24) 6 (21) 24 (17) 20 (18) 4 (14)
 Mild 46 (33) 39 (35) 7 (25) 41 (29) 34 (31) 7 (25)
 Moderate 50 (36) 35 (32) 15 (54) 55 (40) 42 (38) 13 (46)
 Marked 10 (7.2) 10 (9) 0 (0) 19 (14) 15 (14) 4 (14)

FGT 0.6 0.8
 Almost entirely fat 2 (1.4) 1 (0.9) 1 (3.6) 1 1 (0.9) 0 (0)
 Scattered FGT 35 (25) 28 (25) 7 (25) 37 (27) 29 (26) 8 (29)
 Heterogeneous FGT 91 (65) 72 (65) 19 (68) 73 (53) 57 (51) 16 (57)
 Extreme FGT 11 (7.9) 10 (9) 1 (3.6) 28 (20) 24 (22) 4 (14)

Depth  > 0.9 0.9
 Anterior 35 (25) 28 (25) 7 (25) 36 (26) 28 (25) 8 (29)
 Middle 74 (53) 59 (53) 15 (54) 70 (50) 57 (51) 13 (46)
 Posterior 30 (22) 24 (22) 6 (21) 33 (24) 26 (23) 7 (25)

T2 signal intensity 0.9 0.8
 Hypointense 2 (1.4) 2 (1.8) 0 (0) 17 (12) 13 (12) 4 (14)
 Isointense 99 (71) 78 (70) 21 (75) 85 (61) 67 (60) 18 (64)
 Hyperintense 38 (27) 31 (28) 7 (25) 37 (27) 31 (28) 6 (21)

DWI signal (75 lesions) 0.7 0.5
 Homogeneous 29 (39) 24 (41) 5 (29) 28 (37) 24 (41) 4 (24)
 Heterogeneous 6 (8) 4 (6.9) 2 (12) 16 (21) 12 (21) 4 (24)
 Rim 1 (1.3) 1 (1.7) 0 (0) 1 (1.3) 1 (1.7) 0 (0)
 No correlate 39 (52) 29 (50) 10 (59) 30 (40) 21 (36) 9 (53)

ADC signal (61 lesions) 0.4  > 0.9
 Hyperintense 4 (6.6) 3 (6.4) 1 (7.1) 4 (6.6) 3 (6.4) 1 (7.1)
 Hypointense 7 (11) 4 (8.5) 3 (21) 10 (16) 8 (17) 2 (14)
 No correlate 50 (82) 40 (85) 10 (71) 47 (77) 36 (77) 11 (79)

BI-RADS 0.7  > 0.9
 3 13 (9.4) 10 (9) 3 (11) 2 (1.4) 2 (1.8) 0 (0)
 4 126 (91) 101 (91) 25 (89) 137 (99) 109 (98) 28 (100)

Enhancement type 0.6 0.6
 Mass like 70 (50) 58 (52) 12 (43) 66 (47) 55 (50) 11 (39)
 Non-mass like 67 (48) 51 (46) 16 (57) 71 (51) 54 (49) 17 (61)
 Mixed 2 (1.4) 2 (1.8) 0 (0) 2 (1.4) 2 (1.8) 0 (0)

Shape (mass) 0.3 0.2
 Oval 19 (26) 18 (30) 1 (8.3) 13 (18) 13 (21) 0 (0)
 Round 16 (22) 12 (20) 4 (33) 19 (26) 15 (24) 4 (33)
 Irregular 38 (52) 31 (51) 7 (58) 42 (57) 34 (55) 8 (67)

Margins (mass) 0.8 0.5
 Circumscribed 30 (41) 25 (41) 5 (42) 36 (49) 32 (52) 4 (3)
 Irregular 34 (47) 29 (48) 5 (42) 32 (43) 25 (40) 7 (58)
 Spiculated 9 (12) 7 (11) 2 (17) 6 (8.1) 5 (8.1) 1 (8.3)

Enhancement (mass) 0.3 0.4
 Homogeneous 28 (38) 25 (40) 3 (25) 37 (49) 33 (52) 4 (33)
 Heterogeneous 35 (47) 29 (47) 6 (50) 38 (51) 30 (48) 8 (67)
 Rim enhancement 8 (11) 5 (8.1) 3 (35) 0 (0) 0 (0) 0 (0)
 Dark internal septations 3 (4.1) 3 (4.8) 0 (0) 0 (0) 0 (0) 0 (0)

Distribution (non-mass) 0.2 0.3
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and a diagnostic accuracy of 86.7%. Our results involving 
radiomics analysis also contradict a study by Cheeney et al. 
[28] that included 23 high-risk lesions which demonstrated 
that lesion size and ADC values showed promise for predict-
ing which MRI-detected high-risk lesions will be upgraded 
to malignancy at surgical excision; in our study, the size of 
target lesions and radiomic features from diffusion-weighted 
imaging did not add any value to the machine learning 
model. Harrington et al. [11] developed machine learn-
ing models to predict ADH upgrade in 128 biopsy speci-
mens and concluded that the most important predictors for 
upgrade status were patient age, size of lesion, number of 
biopsies, and personal and family history of cancer; how-
ever, they did not evaluate imaging features for inclusion 
into their models. Constant improvements in software and 
hardware may further improve the accuracy for characteriza-
tion of high-risk lesions on MRI in the future.

We also found no significant associations between any 
qualitatively or semi-qualitatively assessed lesion feature 
on MRI, whether from independent or consensus imag-
ing assessment, and upgrade status (p-values ranging from 
0.11 to > 0.9). In terms of DCE-MRI features in particular 
to predict high-risk lesion upgrade risk, our findings agree 
with the literature which has thus far found morphology and 
kinetic characteristics to be unpredictive of ADH upgrade to 
DCIS/IDC at surgery [16, 18, 29, 30].

The lack of significant results involving radiomics or con-
ventional imaging features in our study could be related to 
the fact that the distinction between ADH and DCIS relies 
solely on the quantity of atypia present on pathologic speci-
mens (size limited to 2 mm or smaller and involvement of 
no more than two membrane bound spaces), and thus, it 
is understandable that imaging features could be similar 

when comparing two entities that are qualitatively identi-
cal. The diagnosis of ADH remains a diagnostic challenge 
for pathologists, as significant interobserver variability has 
been reported for both general pathology and breast pathol-
ogy specialists [31].

Apart from radiomics and conventional imaging-based 
features, we found that the number of tumor specimens 
obtained at image-guided biopsy was significantly associated 
with the upgrade rate. Lesions that were upgraded at surgery 
had fewer specimens biopsied compared to lesions that were 
confirmed as ADH at surgery. This is in line with a previ-
ous study by Nguyen et al. [32] that showed that incomplete 
removal of calcifications on stereotactic biopsy (< 95% of 
the biopsy target) is associated with a higher upgrade rate at 
surgery. A large retrospective study by Deshaies et al. [12] 
that included 422 biopsy-confirmed ADH lesions found sev-
eral independent predictors of an upgrade at surgery, includ-
ing mammographic lesions, other microcalcifications, and 
use of a 14G needle. History of ipsilateral or contralateral 
cancer as well as presence of ipsilateral or contralateral syn-
chronous breast cancer did not affect upgrade rate.

This study has several limitations. The patient cohort 
used in this study is highly unbalanced (111 patients 
in the no-upgrade group vs 28 patients in the upgrade 
group) and while this does not affect univariate analysis 
using the Chi-square test or the Mann–Whitney test, it 
may have affected the performance of the predictive mod-
els created with machine learning. Future work similar to 
this may use data balancing techniques such as SMOTE 
[33] or ADASYN [34] to create synthetic data with the 
aim of finding more subtle patterns, or more preferably a 
higher number of patients with the intent to keep datasets 
balanced. These were, however, not done in this study 

Table 5   (continued)

Imaging feature Reader 1 p-value Reader 2 p-value

Overall No-upgrade Upgrade Overall No-upgrade Upgrade

 Focal 23 (33) 20 (37) 3 (19) 26 (35) 22 (39) 4 (24)
 Linear 27 (39) 22 (41) 5 (31) 26 (35) 21 (37) 5 (29)
 Segmental 18 (26) 11 (20) 7 (44) 19 (26) 12 (21) 7 (41)
 Regional 4 (2.9) 1 (1.9) 1 (6.2) 3 (4.1) 2 (3.5) 1 (5.9)
 Multiple regions 0 (0) 0 (0) 0 (0) 0 (0) 0 (0) 0 (0)
 Diffuse 0 (0) 0 (0) 0 (0) 0 (0) 0 (0) 0 (0)

Enhancement (non-mass) 0.2 0.5
 Homogeneous 15 (21) 9 (17) 6 (38) 16 (22) 12 (21) 4 (24)
 Heterogeneous 35 (50) 29 (54) 6 (38) 41 (55) 30 (53) 11 (65)
 Clumped 20 (29) 16 (30) 4 (25) 17 (23) 15 (26) 2 (12)
 Clustered rings 0 (0) 0 (0) 0 (0) 0 (0) 0 (0) 0 (0)

ADC apparent diffusion coefficient, BI-RADS breast imaging-reporting & data system, BPE background parenchymal enhancement, DWI diffu-
sion-weighted imaging, FGT fibroglandular tissue
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to keep the methodology clear and rely upon real data 
from the clinic. The features used as input parameters for 
the predictive models were chosen based on their perfor-
mance on the entire dataset, and this can introduce bias 
and overfitting into the model as features have already 
been filtered to suit the specific dataset. Even with this 

Table 6   Univariate analysis according to consensus radiologist 
assessment

Imaging feature Upgrade status p-value

Overall No-upgrade Upgrade

BPE 0.11
 Minimal 21 (15) 17 (15) 4 (14)
 Mild 56 (40) 47 (42) 9 (32)
 Moderate 51 (37) 36 (32) 15 (54)
 Marked 11 (7.9) 11 (9.9) 0 (0)

FGT 0.7
 Almost entirely fat 1 (0.7) 1 (0.9) 0 (0)
 Scattered FGT 37 (27) 28 (25) 9 (32)
 Heterogeneous FGT 89 (64) 71 (64) 18 (64)
 Extreme FGT 12 (8.6) 11 (9.9) 1 (3.6)

Depth  > 0.9
 Anterior 36 (26) 28 (25) 8 (29)
 Middle 72 (52) 58 (52) 14 (50)
 Posterior 31 (22) 25 (23) 6 (21)

T2 signal intensity 0.2
 Hypointense 1 (0.7) 0 (0) 1 (3.6)
 Isointense 111 (80) 88 (79) 23 (82)
 Hyperintense 27 (19) 23 (21) 4 (14)

DWI signal (75 lesions) 0.6
 Homogeneous 27 (36) 23 (40) 4 (24)
 Heterogeneous 7 (9.3) 5 (8.6) 2 (12)
 Rim 1 (1.3) 1 (1.7) 0 (0)
 No correlate 40 (53) 29 (50) 11 (65)

ADC signal (61 lesions) 0.6
 Hyperintense 3 (4.9) 3 (6.4) 0 (0)
 Hypointense 9 (15) 6 (13) 3 (21)
 No correlate 49 (80) 38 (81) 11 (79)

BI-RADS 0.7
 3 10 (7.2) 9 (8.1) 1 (3.6)
 4 129 (93) 102 (92) 27 (96)

Enhancement type 0.6
 Mass like 71 (51) 59 (53) 12 (43)
 Non-mass like 66 (47) 50 (45) 16 (57)
 Mixed 2 (1.4) 2 (1.8) 0 (0)

Shape (mass) 0.12
 Oval 16 (22) 16 (26) 0 (0)
 Round 16 (22) 12 (20) 4 (33)
 Irregular 41 (56) 33 (54) 8 (67)

Margins (mass) 0.6
 Circumscribed 34 (47) 30 (49) 4 (33)
 Irregular 32 (44) 25 (41) 7 (58)
 Spiculated 7 (9) 6 (10) 1 (8.3)

Enhancement (mass) 0.5
 Homogeneous 33 (45) 29 (47) 4 (33)
 Heterogeneous 37 (50) 30 (48) 7 (58)
 Rim enhancement 3 (4.1) 2 (3.2) 1 (9)
 Dark internal septation 1 (1.4) 1 (1.6) 0 (0)

Distribution (non-mass) 0.2

Table 6   (continued)

Imaging feature Upgrade status p-value

Overall No-upgrade Upgrade

 Focal 25 (37) 22 (42) 3 (19)
 Linear 23 (34) 18 (35) 5 (31)
 Segmental 18 (26) 11 (21) 7 (44)
 Regional 2 (2.9) 1 (1.9) 1 (6.2)
 Multiple regions 0 (0) 0 (0) 0 (0)
 Diffuse 0 (0) 0 (0) 0 (0)

Enhancement (non-
mass)

0.9

 Homogeneous 10 (15) 7 (13) 3 (19)
 Heterogeneous 36 (53) 28 (54) 8 (50)
 Clumped 22 (32) 17 (33) 5 (31)
 Clustered rings 0 (0) 0 (0) 0 (0)

DCE (kinetics)* 0.2
 Progressive 54 (40) 47 (44) 7 (25)
 Plateau 63 (47) 47 (44) 16 (57)

ADC apparent diffusion coefficient, BI-RADS breast imaging-report-
ing & data system, BPE background parenchymal enhancement, DCE 
dynamic contrast-enhanced, DWI diffusion-weighted imaging, FGT 
fibroglandular tissue
*Kinetic analysis was performed only by R1

Table 7   Comparison of clinical and image-guided biopsy technical 
data between upgraded and no-upgrade patients

Size and number of specimens are reported as median values with 
associated ranges; all other parameters are presented as frequencies, 
with percentages given in parentheses for each parameter

Imaging feature Upgrade status p-value

Overall No-upgrade Upgrade

Associated malig-
nancy

0.2

 Ipsilateral 22 (15.8) 15 (13.5) 7 (25)
 Contralateral 44 (31.7) 34 (30.6) 10 (35.7)
 None 55 (39.5) 48 (43.2) 7 (25)
 History of breast 

cancer
18 (12.9) 14 (12.6) 4 (14.2)

Needle caliber 0.9
 9 G 123 (88) 99 (89) 24 (86)
 12 G 11 (7.9) 8 (7,2) 3 (11)
 14 G 5 (3.6) 4 (3.6) 1 (3.6)

Size (mm) 15 (3–70) 9 (3–56) 11 (4–70) 0.077
No. of specimens 8 ± 2.7 9 (2–18) 8 (3–9) 0.003
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possible overfitting, the AUC values for all models fell 
below 0.700 and would be described as poor [35], sug-
gesting that there are very weak associations to be made 
at best.

In conclusion, there does not seem to be enough evi-
dence to suggest that we can predict which high-risk 
lesions will be upgraded to malignancy based on the radi-
omic data. Our results show, however, that the number of 
specimens sampled during image-guided biopsy is associ-
ated with the upgrade rate of ADH at surgical excision.
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