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ABSTRACT OF THE DISSERTATION

Grounded-Knowledge-Enhanced Instruction Understanding for Multimodal Assistant

Applications

by

Te-Lin Wu

Doctor of Philosophy in Computer Science

University of California, Los Angeles, 2024

Professor Nanyun Peng, Chair

With the recent advancements in artificial intelligence (AI), researchers are making endeav-

ours towards building an AI that can understand humans, collaborate with humans, and help

or guide them to accomplish certain everyday chores. The actualization of such an assistant

AI can pose several challenges including planning (on certain events), comprehending human

instructions, multimodal understanding, and grounded conversational ability.

Imagine a scenario that one wishes to perform a task, such as “making a plate of fried

rice”, or “purchasing a suitable sofa bed”, which can require multiple steps of actions and

manipulation of certain objects. How would an assistant AI collaborate with humans to

accomplish such desired tasks? One crucial aspect of the system is to understand how and

when to take a certain action, which is often learned from interpreting and following

a guidance, a piece of resource that encompasses knowledge about accomplishing the task

and potentially the events that will occur during task completions. The guidance can come

from human verbal interactions (e.g. , in the form of a conversation or a question) or static

written instructional manuals.

In the first part of this thesis, I will decompose the proposed system framework into three

foundational components: (1) task-step sequencing/planning, where the AI needs to un-

derstand the appropriate sequential procedure of performing each sub-task to accomplish the

whole task, especially when the task knowledge is learned from instructional resources online
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that can be many and do not always come consolidated with proper ordering; (2) action-

dependencies understanding, where an agent should be able to infer dependencies of

performing an action and the outcomes after executing a particular action, in order to exam-

ine the situations and adjust the plan of accomplishing tasks; (3) multimodal grounding

and active perception, that we equip the AI with the ability to actively ground the visu-

ally perceived surroundings to the textual instructions (or verbal interactions) and perform

reasoning over multimodal information along the task completions.

In the second part of this thesis, I will introduce two newly curated resources that fore-

see the next-phase challenges towards building a strong and helpful assistive AI. One such

resource focuses on counterfactual reasoning, a type of reasoning capability humans fre-

quently rely on when performing complex decision making processes; while the other presents

a comprehensive suite of multimodal capabilities of an assistive AI to function in a

virtually created world.

Combining the two parts, the foundational components as well as the established novel

challenging benchmarks, this thesis aims at providing a comprehensive research road map

for the research direction of next-generation (multimodal) AI assistants.
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CHAPTER 1

Towards Actualizing Virtual Assistant AI

1.1 The Roadmap

With its recent rapid advancements, AI technology is becoming more and more prevalent

in our daily lives. In the near future, humans are able to gain access to powerful AI assis-

tants that can aid our needs in a just-in-time fashion, just very much like the AI named

J.A.R.V.I.S.1, in the well-known Iron Man movie series. One can easily imagine that, we

can get help from the AI assistant by conversing with it during any of our daily activities,

or when learning to do certain complex new tasks.

For the notion of assistance, particularly for some complex real-world physical tasks, it

often involves the processing of relevant instructions, i.e. , the guidelines that teach us when

to perform what actions. In order for an AI assistant to guide us humans throughout the

accomplishment of certain tasks, the AI requires to be equipped with three main capabilities

that center around learning and leveraging action-centric knowledge within these instruc-

tions: (1) Temporal action dynamics: As most of the everyday tasks consist of multiple

finer-grained steps, the AI should learn to sequence task-steps and plan the procedure dy-

namically during taking actions at each sub-task. (2) Action-dependency knowledge:

The AI should be able to consolidate more detailed instructions that are relevant to the hu-

man commands, and structure the instructions into a systematic plan to follow. (3) Active

perception and multimodal grounded interactibility: The AI agent will eventually

be deployed to the real-world, and in many cases, the surroundings are to be actively per-

ceived that the verbal interactions with the humans should be grounded with such an active

1https://en.wikipedia.org/wiki/J.A.R.V.I.S.
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Figure 1.1: The proposed roadmap of the fundamentals of building an assistant AI.

perception. In this chapter of roadmap, I will discuss the overview of these essential aspects

and illustrate the designed roadmap that this thesis is based on, as depicted in Figure 1.1.

1.1.1 Temporal Action Dynamics: Sequencing Instruction Steps

As previously mentioned, guidelines are common media that are processed and utilized when

facing a novel and complex tasks. Fortunately, real-world knowledge of accomplishing certain

tasks are often communicated through a set of human written procedural instructions, and

hence these guidelines are ubiquitous for one to obtain.

However, as much useful as instructions are, they may not always come in a proper se-

quential order, for example, when we obtain task instructions from multiple different sources

or when each sub-task can lead to another series of multi-step instructions. Therefore, se-

quencing unordered task-steps is crucial for comprehending and inferring task procedures,

which very much requires temporal and causal common sense reasoning ability, as well as

basic task-solving knowledge which often grounded by reality. This sequential nature aspect

is illustrated on the leftmost of Figure 1.1.

1.1.2 Action-and-Condition Dependencies

Another essential aspect for comprehending instructions is to infer the dependencies of exe-

cuting the instructed actions, including their preconditions, the prerequisites to be met prior

to executing an action, and postconditions, the effect caused after performing the action. It

is crucial for an agent to understand satisfying which preconditions will allow one to proceed
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to the next action, as well as what postconditions (effects) imply the success of performing

an action. This is helpful for both of the assistant AI and any autonomous robots, where

the former needs to be able to recognize the condition fulfillment for giving the user proper

guidance, and the latter should examine the current state or situation to decide on whether

it is on the right track towards accomplishing the desired task.

In Figure 1.1 mid-left, once the instructions are properly consolidated, the overall pro-

cedure guidance should be parsed into a more systematic and structural form, consisting of

primary instructed actions and their aforementioned dependencies and supposed outcomes,

for the AI to refer to while guiding or performing the tasks. Understanding the dependen-

cies among actions can also help inferring certain missing task details that are omitted by

manually written instructions due to their triviality to humans, which results in an overall

more comprehensive and structured understanding of the real-world tasks.

1.1.3 Situated Action-Knowledge-Driven Conversational AI

In addition to the standard multimodal grounding between rather static visual cues to lan-

guage, on the mid-right of Figure 1.1, one can also observe that certain grounding should be

inferred by the AI when humans are actively interacting with the environment. For exam-

ple, grounding the current visual states to the preconditions inferred from the instructions

requires the agent to actively explore and examine the environment to produce the correct

judgements. Furthermore, during the verbal interactions with the assistant AI, important

ability such as multimodal co-reference resolution (e.g. Which exact object is being referred

to? ), visiolinguistic episodic memory retrieval (Grauman et al., 2022c) (e.g. Where did I

put the object? ), guided navigation and manipulation, and giving instructions due to sp-

tiotemporal understanding of both the verbal interaction (conversation) history (e.g. Can

you check to your left whether the ingredients are ready? ) and the user active environmental

trajectories.

1.1.4 Multimodal Task-Centric Counterfactual Reasoning

Alongside accomplishing a task, there might be certain detours that need to be made due to

some unforeseeable circumstances, such as accidents or missing requirements. For example,

imagine if a person is trying to mix some food ingredients, and the required tool instructed

by the manual, an electric mixer, is missing. A question, such as "What if I do not have a
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mixer?" may arouse, and the assistant AI is supposed to respond with: "You could use a

whisk instead.". Another example could be "Could I avoid spilling the milk if I had chosen

a larger bowl?".

These questions are of a specific type of reasoning called counterfactual reasoning (Qin

et al., 2019), where it concerns a rationale over intervened facts. Such reasoning activity is

rather prevalent and common in our everyday life where the counterfactuality often comes

grounded by certain visually perceived events.

1.2 Contributions and Structure of the Thesis

This thesis mainly discusses our contributions in each of the aforementioned aspects towards

actualizing the virtual assistant AI, that humans can converse to while performing their

desired tasks. The thesis is divided into two major parts: (I) 2 the foundational components

or skills of such an assistant AI, and (II) newly constructed resources to benchmark how AI

models are capable of demonstrating the required foundational skills.

In the first part of this thesis, we discuss the importance of the procedural understand-

ing and the utilization of multimodal complementary information in the instructional re-

sources (Wu et al., 2022) to enhance the sequential awareness of AI models (Chapter 2).

Followed by the organization of the instructional information, structurally comprehending

the consolidated instructions will enable the assistant AI to provide more relevant just-in-

time guidance. We particularly focus on inferring the action-and-condition dependencies in

multimodal instructional sources (Wu et al., 2023a) (Chapter 3). The comprehensive under-

standing of the instructions and being able to infer additional knowledge, the assistant AI

is then required to translate the knowledge to the visual world to track and interpret users’

interactions for immediate assistance (Wu* et al., 2023a) (Chapter 4).

In the second part, we introduce the two newly curated resources that are aimed at

evaluating if the AI models possess the fundamental capabilities and skills that we outlined in

the previous sections. Chapter 5 discusses the counterfactual reasoning and how it connects

to solving real world problems where such type of reasoning is required or beneficial. The

proposed ACQUIRED dataset aims at justifying whether state-of-the-art video-language models

excel at such important reasoning aspect (Wu* et al., 2023b). Chapter 6 presents a novel and

interesting situated conversation dataset where a simulated user-AI interactions take place in
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a virtually built shopping environment (Wu et al., 2023b), where this dataset examines a full

suite of multimodal capabilities that are crucial to achieve a helpful and effective assistive

AI.

Finally, we provide a conclusive summary of contributions made in this thesis, followed

by a discussion on potential future research directions in Chapter 7.

1.3 Other Relevant Publications
During my Ph.D. years, I have also published several other relevant research work along the

line of understanding the inherent multimodal world, and how to interact within it. In the

Demo2Vec work (Fang* et al., 2018) we propose a model that can infer object affordance

given the usage videos, whereas the Program-Guided Agent framework (Sun* et al., 2019) is

able to comprehend structural instructions (such as programs) to control autonomous agent.

While this thesis generally focuses on physical commonsense reasoning that is helpful for real

world tasks, general commonsense reasoning (Singh et al., 2021) and concept learning (Ma

et al., 2021; Zamir* et al., 2017) are also two important aspects to equip the assistant AI

with strong world knowledge. Lastly, I have also conducted work in researching various

fundamental multimodal capabilities, such as grounding and understanding complex docu-

ments (Wu et al., 2021a,b), geometry (Yuan et al., 2016) across modalities, and multimodal

planning with clear story-lines (Chen et al., 2022).
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The Foundations of Multimodal

Assistive AI
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As discussed in Chapter 1, there are three main components building the foundations of

a helpful multimodal assistive AI, they are the capabilities of: (1) learning and modeling

the sequential nature inherent in the instructed tasks, (2) structurally comprehending the

organized instructional resources, and (3) actively grounding the relevant objects when giving

the instructions. Combining the aforementioned three essential skills, the AI assistant is then

equipped with the capability of providing just-in-time guidance while co-observing the users’

visual viewpoints.

Chapter 2 begins with introducing a multimodal instruction sequencing task that is

exactly inspired by how an AI is supposed to comprehend and sort unordered series of infor-

mation that are useful for accomplishing a task. We evaluate several strong natural language

processing (NLP) models as well as multimodal (vision-and-language) models, where the re-

sults suggest suboptimal utilization of multimodal information. We thus propose a sequence-

aware pretraining technique to allow the vision-language models to more effectively leverage

complementary information among different modalities.

Once an organized and consolidated instruction is obtained, it is crucial for the AI to be

able to parse and interpret the instructions to give structural guidance. Particularly, Chapter

3 demonstrates the importance of inferring the relations between the (to-be-instructed) ac-

tions and their pre- and postconditions. The scarcity of relevant datasets lead us to propose

a weakly supervised method to automatically curate training resources to harness the po-

tential action-condition dependencies from (theoretically) unlimited amount of instructional

data.

Chapter 4, followed by the previous component, aims at devising a framework that can

actively track (and localize) objects involved (or supposed to be involved) in each of the

instructed actions. We propose a method that can effectively utilize pre- and postcondition

world knowledge to enhance the grounding capabilities of vanilla phrase grounding models,

achieving significantly improved performance on tracing the key entities throughout the task

accomplishments.
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CHAPTER 2

Temporal Action Dynamics: Multimodal

Instruction Sequencing

2.1 Introduction

Instructions are essential sources for agents to learn how to complete complex tasks com-

posed of multiple steps (e.g., “making a wood sign from scratch”). However, instructions

do not always come in a proper sequential order, for example, when instructions must be

combined across sources (e.g., to accomplish a complex task there might be multiple useful

resources for certain task-steps come out from a single Google search). Therefore, sequenc-

ing unordered task-steps is crucial for comprehending and inferring task procedures, which

requires thorough understanding of event causal and temporal common sense.

Existing work has studied sequencing unordered texts from paper abstracts or short

stories (Chen et al., 2016; Cui et al., 2018). However, real-life tasks are often complex,

and multimodal information is usually provided to supplement textual descriptions to avoid

ambiguity or illustrate details that are hard to narrate, as illustrated in Figure 2.1.

To investigate whether current AI techniques can efficiently leverage multimodal informa-

tion to sequence unordered task instructions, we curate two datasets from online instructional

manuals (Hadley et al.; Yagcioglu et al., 2018). We consider two representative instruction

domains: cooking recipes and “How-To" instructions (WikiHow), and establish human per-

formance for the sequencing task on a subset of each data resource. As certain steps to

perform a task can potentially be interchangeable,1 we also collect annotations of possible

1For example, without special requirements, preparing certain ingredients of a dish, such as slicing carrots
or cucumbers, does not necessarily need to follow a specific order.
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Figure 2.1: Multimodal task procedure sequencing: The left column shows unordered instruction
steps from the manual How To Make Wood Signs. Each step is a text description and its associated image.
Without the complementary information from the visuals, a novice may have difficulty inferring the proper
task order. Considering multimodal information, the proper order can be correctly inferred (right column).

orders alternative to the originally authored ones to create multiple references.

We observe that multimodal information is consistently helpful for the sequencing task

in some preliminary studies. However, compared to humans, current models are less effi-

cient in utilizing multimodal information. We hypothesize that it is because the models do

not effectively capture the sequential information in the vision modality nor the sequential

alignment between multimodal contents. To address this, we propose to equip models with

capabilities of performing sequential aware multimodal grounding by proposing several

self-supervised objectives to pretrain the models before finetuning them on the downstream

sequencing task.

The work of this chapter has the following key contributions: (1) We propose a multi-

modal sequencing task with two curated instructional manuals, and comprehensive human

annotations. (2) We investigate model performance on sequencing unordered manuals, and

propose sequence-aware pretraining techniques to more effectively use the multimodal in-

formation. We aim at providing insights on which task categories are most challenging for

the state-of-the-art models. They also shed the light that more sophisticated sequential

multimodal grounding are required to further improve the performance for the proposed
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multimodal sequencing task.

2.2 Background and Related Work

The work introduced in this chapter is highly inspired by the story sequencing test, which is

a popular way of examining children’s abilities on sequential reasoning that is shown evident

for procedural understanding (Tomkins, 1952; Baron-Cohen et al., 1986; Loucks et al., 2017).

In NLP, most existing works attempt the sequencing task as sorting a series of unordered

sentences (Chen et al., 2016; Cui et al., 2018; Logeswaran et al., 2018; Oh et al., 2019; Lee

et al., 2020; Calizzano et al., 2021) from paper abstracts or short paragraphs. While certain

prior work also attempts to extend it to incorporate multimodality (Agrawal et al., 2016), the

dataset used, Visual StoryTelling (Huang et al., 2016), features album images that were not

intended to be procedural nor supply unstated details to complement the texts.2 In computer

vision, existing work leverages shuffle frame prediction for learning video representations (Lee

et al., 2017; Xu et al., 2019; Wang et al., 2020; Li et al., 2020a). (Zellers et al., 2021b) also

proposes a pairwise relative frame re-ordering objective to learn temporal common sense

from scripted videos, however, as their downstream tasks mainly concern visual reasoning

and ordering by frame-text-matching (also on Visual StoryTelling), the re-ordering objective

is more focused on the visual modality (in contrast, our work’s focus is on both modalities).

In addition to the works introduced in Chapter ??, another prior work (Zhang et al., 2020)

also considers WikiHow for learning event temporal ordering, but limited to only pairwise

relations. Additionally, a recent work uses WikiHow to infer visual goals (Yang et al., 2021),

which aligns with our goal to exploit the multimodal contents within this useful resource.

Another work attempts the original visual ordering task of RecipeQA (Liu et al., 2020)

(also an multiple choice task). However, we argue that our task tackles a more complex

task as the desired orders need to be directly derived and the event-wise complementary

multimodal understanding is not an essential component in these existing works.

2The images come from photo albums and the annotators create stories based on their freely arranged
image sequences.
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2.3 Problem and Datasets

2.3.1 Problem Definition

Given a task procedure 𝑆 consisting of 𝑁 steps, where each step 𝑆𝑖 ∈ 𝑆 can consist of two

types of contents: a textual description 𝑇𝑖 of tokens {𝑇𝑖,𝑘}𝑛𝑇
𝑘=1 and/or image(s) 𝐼𝑖 = {𝐼𝑖,𝑘}𝑛𝐼

𝑘=1.
3

A model is required to take as inputs a random permutation of 𝑆, i.e. 𝑆𝑝 = {𝑆𝑝1 , ..., 𝑆𝑝𝑁},
where 𝑝 is a permutation (𝑆𝑝𝑗 can take one of the following three modalities: 𝑇𝑝𝑗 , 𝐼𝑝𝑗 , and

{𝑇𝑝𝑗 , 𝐼𝑝𝑗}), and predict the correct order of 𝑆𝑝, i.e. argsort(𝑆𝑝).

2.3.2 Datasets

There are three major features we require for the target datasets: (1) It is multimodal.

(2) It consists of task procedures as sequences of steps. (3) Different modalities are used

intentionally to complement each other. In light of these, we consider the following resources:

RecipeQA. We start from a popular as well as intuitive choice of instruction manuals,

recipes, which fully fulfill the aforementioned criteria. RecipeQA (Yagcioglu et al., 2018)

is a multimodal question answering dataset consisting of recipes scraped from Instructa-

bles.com (Yagcioglu et al., 2018). We utilize the recipes collected in RecipeQA and convert

each unique recipe into sequential multimodal steps for our task.

WikiHow. To expand the types of instruction manuals for our task beyond recipes, we

also consider a popular “How To ..." type of instructions, WikiHow (Hadley et al.), which

is an online knowledge base that consists of human-created articles describing procedures to

accomplish a desired task. Each article contains a high level goal of a task, a short summary

of the task procedures, and several multimodal steps where each step consists of a description

paired with one or a few corresponding images.

We scrape the entire WikiHow knowledge resource, containing more than 100k unique

articles (mostly) with multimodal contents , as well as the hierarchically structured category

for each article. Table 2.1 presents the essential statistics of the two datasets.

3For computational concerns, we set 𝑛𝐼 = 1 in this work.
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Type Counts

Total Unique Articles 109486
Total Unique Images 1521909

Train / Dev / Golden-Test 98268 / 11218 / 300
Type-Token Ratio 216434 / 82396591 = 0.0026

Type Mean Std Min Max

Tokens in a Step Text 52.95 26.25 0 5339
Sentences in a Step Text 3.36 1.3 0 50
Number of Steps of a Task 5.27 2.62 0 75

(a) WikiHow

Type Counts

Total Unique Articles 10063
Total Unique Images 87840

Train / Dev / Golden-Test 8032 / 2031 / 100
Type-Token Ratio 91443 / 5324859 = 0.017

Type Mean Std Min Max

Tokens in a Step Text 82.08 84.72 0 998
Sentences in a Step Text 4.19 4.22 0 73
Number of Steps of a Task 6.45 2.57 4 20

(b) RecipeQA

Table 2.1: General statistics of the two datasets: We provide the detailed component counts of the
datasets used in this work, including the statistics of tokens and sentences from the instruction steps (lower
half of the two tables).

2.3.3 Human Annotation

To ensure the validity of our proposed multimodal sequencing task, we establish the human

performance via Amazon Mechanical Turk. Since our dataset is constructed from resources

that are not directly designed for the sequencing task, the quality of random samples is

unverified. Specifically, some articles in WikiHow may not have a notion of proper order

among the steps.4 As a result, to construct a high quality test set particularly for WikiHow

for establishing human performance, we first identify a set of categories which are more

likely to feature proper order, e.g. Home and Garden and Hobbies and Crafts.5 A random

4No temporal or other dependencies among the task-steps, e.g. “How to be a good person”, where each
step depicts a different aspect and tips of being a good person.

5Although the data used for training is not cleansed and thus can be noisy, we believe models can still
learn to sequence from many of the articles designed to have proper order.
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proportion is then sampled and the co-authors further downsample the subset to 300 samples

with the aforementioned criteria via majority vote. For RecipeQA, we randomly sample 100

recipes from the dataset. And hence, the resulting two subsets serve as our golden-test-set

for performance benchmarking.

Human Performance. Prompted with a task goal and a randomly scrambled sequence

of the task-steps (can be one of the following modalities: multimodal or text/image-only),

workers are asked to examine the contents and decide the proper performing order. Human

performance are then computed against the original authored orders as the ground truths,

averaged across the whole set.6

Alternative Orders. When performing a task, some steps can be interchangeable. To take

the interchangeability into consideration in our benchmark task, we also collect possible

alternative orders to the original ones to create multiple references. For each instance in our

golden-test-set, given the instruction steps sequenced in their original order, we ask workers to

annotate alternative orders if the presented task-steps can be performed following a different

order.7

Although in this work we are mainly focusing on sequential instructions and hence the

interchangeability is also gauged in a sequential manner, we want to point out that the

nature of task-step interchangeability is also highly related to parallel (branching) steps of

tasks (Sakaguchi et al., 2021a). We argue that the actions that can be performed inter-

changeably imply no direct dependencies are among these actions and thus can potentially

be parallelized, and hence our alternative order formulation can help inferring these parallel

actions.

6We design an algorithm to compute the inter-annotator agreements (IAAs). The IAAs for (multimodal,
text-only, image-only) versions in WikiHow is: (0.84, 0.82, 0.69), and (0.92, 0.87, 0.81) in RecipeQA.

7The alternative order annotation IAAs for (multimodal, text-only, image-only) versions in WikiHow is:
(0.73, 0.71, 0.78), and (0.79, 0.76, 0.79) in RecipeQA.
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2.4 Sequence-Aware Multimodal PreTraining

2.4.1 Technical Challenges

To benchmark the proposed task, we construct models comprising: (1) an encoder which

encodes multimodal or text/image-only inputs, and (2) an order decoder which utilizes

the encoded representations to predict the orders. Our preliminary studies verify the effec-

tiveness of multimodal information, however, we also observe that, compared to humans, the

multimodality is much under exploited and properly utilized. We hypothetically attribute

the reasons of the aforementioned issue to that the standard multimodal grounding tech-

niques (Li et al., 2019; Lu et al., 2019; Su et al., 2020; Chen et al., 2020) do not explicitly

concern the sequentiality of text and associated image sequences, and hence may fall short

of effectively utilizing the sequential properties in multimodal inputs.

To address this and help models capture sequentiality in task-steps better as well

as adapt to our target task domains, we pretrain the encoders with several self-supervised

objectives on the instructions before integrating them with the decoder. Specifically, to

encourage models to have better awareness of the sequential alignments in multimodal in-

struction steps, we propose to pretrain the encoders with the following self-supervised objec-

tives: (1) masked language modeling (MLM), (2) (patch-based) image-swapping predictions

(ISP/PISP), and (3) sequential masked region modeling (SMRM). Figure 2.2 illustrates

an overview of the pretraining paradigm (and the model architectures).

2.4.2 Input Encoders

Text-Only Encoders. We use RoBERTa (Liu et al., 2019) for text-only inputs. Although

the next-sentence prediction in BERT (Devlin et al., 2019) can potentially be exploited for

sequencing, we empirically find that RoBERTa performs better.

Multimodal Encoders. We consider the following two V&L models mainly due to their

easy adaptation to our proposed sequencing task:

VisualBERT (Li et al., 2019) grounds object detected image regions (e.g. by Faster-

RCNN (Ren et al., 2016)) to language with a single transformer model (Vaswani et al.,
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2017). VisualBERT is pretrained with: (1) multimodal masked language modeling (MLM)8,

and (2) image-text matching prediction (ITM), where the image in an image-caption pair is

randomly replaced with another one to create misalignment, and the model is required to

predict whether the current pair is aligned.

CLIP-ViL (Shen et al., 2021) is also a single-stream V&L model similar to VisualBERT,

while the visual encoder is replaced by a patch-based model inspired by the ViT (Doso-

vitskiy et al., 2021) in CLIP (Radford et al., 2021), where the image features are taken as

gridded-image-patches as shown in Figure 2.2. The pretraining objectives remain the same

as VisualBERT. Empirically, both (Shen et al., 2021) and this work find such patch-based

model tends to yield better downstream performance.

Image-Only Encoders. We attempt to provide an image-only baseline on our sequencing

task with two visual encoders: (1) ResNet-based (He et al., 2016) Faster-RCNN model (also

the visual encoder in VisualBERT) where both the detected regional features and the whole-

image-feature are used, and (2) the aforementioned patch-based CLIP model.9

2.4.3 Sequence-Aware Pretraining

For the proposed sequence-aware multimodal pretraining objectives, the inputs to the mod-

els are generally ordered instruction step sequences, which can be further sub-sampled to

produce length-varying subsequences. Although we do not find this necessarily benefit the

downstream performance, it is observed that the sub-sampling helps the model converge

faster. While all of our proposed objectives can be applied to sequence with arbitrary length

(≥ 2), without loss of generality and for simplicity, the following sections assume the sub-

sampled sequence is of length 2. We will now describe them in details in the followings:

Masked Language Modeling:

The standard MLM (Devlin et al., 2019) is employed by the text-only models to adapt a

pretrained language model to the target domain (task instructions). Following prior V&L

works, we apply MLM to multimodal models. Specifically, we ensure that the textual de-

8RoBERTa is used to initialize VisualBERT and CLIP-ViL.

9Without confusion, throughout the paper we term the ViT- and CLIP-inspired visual encoder simply as
CLIP.
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Vision-Language (V & L) Transformer

[C
LS

] Apply wood primer … CLIP Visual Encoder

Image 1 Image 2

…
 …

Image 1 Image 2

Obj2: Image-Swapping (ISP)

Obj3: Patch-Image-Swapping (PISP)

Use long strokes …
Text 1 Text 2

Obj4: Sequential Masked Region Modeling (SMRM)Obj1: Masked Language Modeling (MLM)

To BERSON

ISP / PISP

Figure 2.2: Sequence-aware pretraining includes: (1) masked language modeling (MLM), (2) image-
swapping prediction (ISP/PISP) which requires the model to predict if some images (image-patches) are
swapped, and (3) sequential masked region modeling (SMRM) where models are asked to reconstruct masked
regions in each image within the input sequence.

scription of each step 𝑇𝑖 gets similar amount of tokens being masked-out such that the models

can potentially exploit the image sequences more.10

Swapping-Based Prediction:

This objective concerns, with certain probability, randomly swapping a pair of items in a

sequence and asking the model to judge whether the resulting sequence is properly ordered or

not (i.e. binary classification). We mainly perform the swapping in the image modality and

hence it can be viewed as a sequence-aware version of ITM objective in most V&L models.

As in ITM, the output representation at the [CLS] token is used to make the prediction.

Standard. For an ordered sequence 𝑆, we can randomly swap two11 items of 𝑆, {𝑆𝑖, 𝑆𝑗},
where 𝑖 < 𝑗, to {𝑆𝑗, 𝑆𝑖}, with a certain probability 𝛿. Our preliminary studies find that

swapping the textual contents does not necessarily help the downstream performance for

either text-only or multimodal models, so we only perform the swapping on the images {𝐼𝑖, 𝐼𝑗}
in both multimodal and image-only models. For patch-based image inputs (or regional

features), the whole patches of an image are swapped with those of another one within the

same sequence, as illustrated in Obj2 in Figure 2.2.

10As higher chances that the complementary textual information is also masked out from different steps.

11Two is our minimum number for a valid subsequence.
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Patch-Based. We can perform the aforementioned swapping prediction with a finer granu-

larity, directly on the image patches. Assuming each image 𝐼𝑖 is cropped into 𝑤 patches (or

𝑤 detected regions), i.e. {i𝑖,𝑘}𝑤𝑘=1 = {i𝑖,1, ..., i𝑖,𝑤}, we randomly select 𝑀 (ranging from 1 to 𝑤)

number of patches each from the two images 𝐼𝑖, 𝐼𝑗 (i.e. {i𝑖,𝑝}, {i𝑖,𝑞}, 𝑝, 𝑞 ∈𝑀 -sized sampled indices)

to be swapped with probability 𝛿. Specifically, for each image patch i𝑖,𝑚 ∈ 𝐼𝑖, a randomly

selected image patch i𝑗,𝑛 ∈ 𝐼𝑗 is sampled to be swapped with. The sampled 𝑀 -sized indices

do not need to be the same set of integers for each image. The Obj3 in Figure 2.2 illustrates

the patch-based swapping prediction with 𝑤 = 4 and 𝑀 = 2.

Sequential Masked Region Modeling:

Prior works extend the masked learning to the visual modality, where the masked target is

either a predefined discrete visual vocabulary (Sun et al., 2019; Bao et al., 2021) or (soft)

object class labels (Lu et al., 2019; Su et al., 2020; Chen et al., 2020). In this work, we

construct a feature-based target vocabulary dynamically in each training batch. We first

randomly select the same amount of 𝑋% (𝑋 = 15) patches for each image to be masked

out (replaced with 0-tensor), and then construct a target vocabulary from the original output

representations (before masking) of these patches.

Concretely, denote the output representation of an input image-patch i𝑖,𝑚 as ℎ(i)𝑖,𝑚 and

the masked positions of 𝐼𝑖 as 𝐷𝑖, we can construct a candidate list from all the output

representations of the patches at the masked positions of each image, i.e. 𝐶 = {ℎ(i)𝑖,𝑚} ∪
{ℎ(i)𝑗,𝑛},𝑚, 𝑛 ∈ 𝐷𝑖, 𝐷𝑗. Denote the masked image patches (the gray-colored image patches

in Figure 2.2) as mask(i)𝑖,𝑚, for each output masked representation ℎ(mask(i))𝑖,𝑚, we

concatenate it with all the candidates, i.e. ℎ(mask(i))𝑖,𝑚||ℎ(i’),∀i’ ∈ 𝐶, which results in |𝐶|
concatenated representations for each masked position. A |𝐶|-way multi-class classification

can then be performed by maximizing the probability of 𝑝(i𝑖,𝑚|ℎ(mask(i))𝑖,𝑚;𝐶). For robust

training, we additionally: (1) shuffle the candidate set 𝐶 for each masked position to prevent

overfitting, and (2) ensure the overlapping of masked positions in each pair of images, 𝐷𝑖∩𝐷𝑗,

is < 50%, allowing the models to utilize information of similar regions from other images in

the sequence.
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Overall Training Objective:

As the mechanism in some objectives cannot guarantee mutually exclusive impacts (e.g.

performing ISP and PISP simultaneously may create confusing swapped patches), we employ

a turn-taking fashion, with uniform probability, one of the objectives (Obj) is sampled for

each training mini-batch. The overall pretraining objective is defined as below:

𝐿 = 𝐿MLM + 𝐿Obj,Obj ∼ {ISP,PISP, SMRM} (2.1)

2.4.4 Order Decoder – BERSON

BERSON is a recently proposed state-of-the-art neural sentence ordering framework (Cui

et al., 2020), where a pointer network (Vinyals et al., 2016) exploits both the local (relative

pairwise order) and global (self-attentions on top of the entire input sequence) information

of the inputs to decode the predicted order. BERSON mainly exploits the [CLS] out-

put representations for relational understanding, which aligns well with how our encoders

are pretrained (Figure 2.2). We integrate our encoders (with or without sequence-aware

pretraining) into BERSON, replacing its original BERT encoder. The BERSON-module-

specific components are freshly initialized and then the entire integrated module is finetuned

on our sequencing task.

2.5 Experiments
Our experiments seek to answer these questions: (1) How valid is the proposed task for

humans to complete? (2) Is multimodality helpful? (3) Can the proposed sequence-aware

pretraining utilize multimodality more effectively? (4) How would results differ when alter-

native orders are considered?

2.5.1 Evaluation Metrics

We mainly adopt evaluation metrics used in prior sentence ordering works (Chen et al., 2016;

Cui et al., 2018, 2020):

Position-Based metrics concern the correctness of the absolute position of each item in a

sequence, including: (1) Accuracy (Acc) which computes the ratio of absolute positions

in the ground truth order that are correctly predicted; (2) Perfect Match Ratio (PMR)

which measures the percentage of predicted orders exactly matching the ground truth orders;
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and (3) Distance (Dist.) which measures the average distance12 between the predicted and

ground truth positions for each item.

Longest Common Subsequence computes the average longest subsequences in com-

mon (Gong et al., 2016) between the predicted and ground truth orders (L𝑞). We also

consider a stricter version, longest common substring, which requires the consecutiveness for

the comparisons (L𝑟).

Kendall’s Tau (𝜏) (Lapata, 2003) is defined as 1 − 2 × (# 𝑖𝑛𝑣𝑒𝑟𝑠𝑖𝑜𝑛𝑠)/(# 𝑝𝑎𝑖𝑟𝑠), where

the inversion denotes that the predicted relative order of a pair of items is inverted compared

to the corresponding ground truth relative order, and # 𝑝𝑎𝑖𝑟𝑠 =
(︀
𝑁
2

)︀
for 𝑁 -length sequence.

Each metric focuses on different perspectives of the predictions, i.e. position metrics con-

cern the absolute correctness, while common subsequence and 𝜏 metrics measure if general

sequential tendency is preserved despite incorrect absolute positions.

2.5.2 Implementation Details

We use the original data splits for RecipeQA. For WikiHow, to prevent models’ exploiting

knowledge from similar articles, we split the data so that certain (sub)categories do not

overlap in each split. We use only the train splits in each dataset to perform their respective

pretraining. Preliminary studies show that joint training with both RecipeQA and WikiHow

data does not necessarily improve the downstream performance, thus the models evaluated in

the two datasets are trained simply using their respective training sets for faster convergence.

We cap the overall sequence length at 5 and each step description with maximally 5

sentences for both models and humans. The maximum input length per step is 60 tokens

(overall maximum length = 300) for training and GPU memory efficiency. 𝛿 = 0.5 for both

ISP and PISP. All images are resized to 224 × 224, and 32 × 32 patch is used for CLIP-

based models, resulting in 7 × 7 = 49 patches per image. Aside from standard positional

embedding, we only supplement a modality token type embedding (text:=0, image:=1) to

the multimodal models. Pretrained weights for each encoder is obtained either from their

corresponding code bases or by running their codes on our setup.13

12Except for distance metric, higher scores are better.

13We initialize CLIP-ViL with our pretrained CLIP.
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Modality Encoders Sequence-aware WikiHow Golden-Test-Set RecipeQA Golden-Test-Set
Pretraining Acc↑ PMR↑ L𝑞 ↑ L𝑟 ↑ 𝜏 ↑ Dist↓ Acc↑ PMR↑ L𝑞 ↑ L𝑟 ↑ 𝜏 ↑ Dist↓

Image-Only

ResNet N 21.73 2.00 2.81 1.73 0.01 7.87 31.20 5.00 3.27 2.07 0.27 6.10

CLIP N 24.92 3.33 2.95 1.84 0.08 7.32 38.40 8.00 3.39 2.02 0.35 5.44
CLIP Y 28.24 5.00 3.09 1.96 0.16 6.80 47.20 16.00 3.68 2.40 0.52 4.12

Human Performance 68.16 47.49 4.27 3.51 0.72 2.43 80.40 64.50 4.54 4.02 0.86 1.29

Text-Only
RoBERTa N 74.75 56.67 4.47 3.78 0.82 1.71 74.00 52.00 4.45 3.68 0.83 1.64
RoBERTa Y 75.68 58.67 4.50 3.87 0.82 1.69 77.00 57.00 4.49 3.81 0.84 1.48

Human Performance 83.35 66.91 4.63 4.11 0.89 1.06 88.92 78.56 4.76 4.41 0.93 0.70

Multimodal

VisualBERT N 75.30 57.33 4.45 3.83 0.81 1.65 76.20 58.00 4.49 3.85 0.83 1.58
VisualBERT Y 77.30 59.67 4.50 3.86 0.83 1.58 78.20 60.00 4.56 3.91 0.85 1.44

CLIP-ViL N 76.15 59.00 4.49 3.87 0.82 1.68 79.20 60.00 4.57 3.93 0.85 1.29
CLIP-ViL Y 79.87 65.67 4.57 4.05 0.85 1.44 82.60 68.00 4.61 4.10 0.88 1.10

Human Performance 91.03 79.61 4.78 4.46 0.94 0.52 92.12 83.13 4.82 4.53 0.95 0.45

Table 2.2: Golden-test-set performance: Models which take multimodal inputs (for both VisualBERT
and CLIP-ViL encoders) consistently outperform the ones that only take unimodal inputs. Our proposed
sequence-aware pretraining is shown consistently helpful throughout the three modality variants. Humans
show larger performance gain when both modalities of inputs are provided, and are more robust to the local
ordering as implied by the smaller gaps between L𝑞 and L𝑟.

2.5.3 Standard Benchmark Results

Modality Pretrain WikiHow Golden-Test-Set RecipeQA Golden-Test-Set
Acc↑ PMR↑ L𝑞 ↑ L𝑟 ↑ 𝜏 ↑ Dist↓ Acc↑ PMR↑ L𝑞 ↑ L𝑟 ↑ 𝜏 ↑ Dist↓

Image-Only ISP 27.31 4.00 3.02 1.82 0.12 7.00 43.20 9.00 3.49 2.05 0.47 4.46
ISP + PISP 27.57 4.67 3.07 1.93 0.16 6.85 43.40 12.00 3.57 2.24 0.48 4.46

Multimodal

MLM 77.08 61.33 4.52 3.96 0.83 1.65 79.60 61.00 4.55 3.93 0.86 1.29
MLM + ISP 77.61 62.00 4.54 3.97 0.83 1.60 80.00 61.00 4.56 3.93 0.86 1.26

MLM + SMRM 77.94 62.33 4.54 3.98 0.84 1.60 80.00 59.00 4.53 3.89 0.87 1.26
MLM + ISP + PISP 78.14 63.33 4.55 4.03 0.84 1.56 80.80 63.00 4.57 3.99 0.87 1.24

MLM + ISP + SMRM 79.47 63.67 4.57 4.03 0.85 1.54 81.40 63.00 4.57 4.00 0.87 1.20

Table 2.3: Model ablation studies: We provide a performance breakdown for incremental combinations
of the pretraining objectives, ablated on the best performing models (CLIP and CLIP-ViL) from Table 2.2
for each dataset and modality.

Table 2.2 summarizes both the human and model performance for each input modality

evaluated using the original ground truth orders on the golden-test-set, whereas Table 2.3

summarizes a more detailed breakdown of the model performance when incrementing com-

binations of pretraining objectives.

As is shown, multimodal information is verified consistently helpful for humans. Com-

pared under same scenario with or without the sequence-aware pretraining, the two mul-

timodal models consistently outperform their text-only counterparts, where the proposed

pretraining technique is shown particularly effective for the patch-based multimodal model

(CLIP-ViL). However, our top-performing models still exhibit significant gaps below human
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performance, especially in PMR.

Additionally, we observe a different trend in the two datasets where the multimodality

benefits more in RecipeQA than WikiHow. The gap between the multimodal human and

model performance is larger than the text-only counterparts in WikiHow, while a reversed

trend is shown in RecipeQA. We hypothesize that recipes may contain more domain-specific

language usages and/or less words for the pretrained language models and hence benefits

more from the our in-domain sequence-aware pretraining. Humans, on the other hand,

benefit more from the images in WikiHow as its texts are hypothesized to contain more

ambiguities.

WikiHow Category Analysis. We are interested in knowing on which categories of Wiki-

How our models perform closer to humans, and on which the multimodal information is most

efficiently utilized. In Figure 2.3 we select categories with the top and least performance gaps

(with PMR metric, top=3, least=2) between the human and our best performing models.

We observe that the categories on which multimodal models outperform the text-only ones

the most are also the categories the models perform closest to humans, e.g. Home and Gar-

den. We hypothesize that the images in these categories are well complementary to the texts

and that our sequence-aware grounding performs effectively. In contrast, in categories such

as Arts and Entertainment and Hobbies and Crafts where humans still enjoy benefits from

multimodal information, our models have difficulty utilizing the multimodal information.

We hypothesize that better visual understanding may alleviate the potentially suboptimal

grounding as images of these categories can contain many objects that are not so commonly

seen.

2.5.4 Evaluating with Alternative Orders

For each instance where alternative ground truth orders exist, the performance is computed

by the best each predicted order can obtain against all the ground truth orders14, denoted

by multi-reference performance, and the subset containing these instances is denoted as

the multi-reference subset.15

14Jointly considered from all the evaluation metrics.

15The overall average number of ground truth references becomes 1.19, 1.23, 1.09 for multimodal, text-only,
and image-only versions in WikiHow; and 1.10, 1.17, 1.14 in RecipeQA.
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Figure 2.3: Top-3 and least-2 categories of human-model performance difference (in PMR):
The selected categories have >10 samples. The difference bars on the multimodal model series are compared
against the text-only model series.

Modality Subset
WikiHow Golden-Test-Set (Size: 300) RecipeQA Golden-Test-Set (Size: 100)
Acc↑ PMR↑ L𝑟 ↑ Acc↑ PMR↑ L𝑟 ↑

single multi single multi single multi single multi single multi single multi

Text-Only

Single 77.30 — 61.75 — 3.98 — 79.32 — 60.23 — 3.90 —

Multi. 67.35 80.00 40.82 59.18 3.35 3.86 60.00 75.00 33.33 58.33 3.17 3.92
(% of instances benefit w. multi-reference: 34.7%) (% of instances benefit w. multi-reference: 50.0%)

All 75.68 77.74 58.67 61.67 3.87 3.96 77.00 78.80 57.00 60.00 3.81 3.90

Single† 85.57 — 71.41 — 4.24 — 90.27 — 80.41 — 4.47 —

Multi.† 72.03 85.51 43.84 71.38 3.46 4.14 79.00 87.00 65.00 80.00 3.95 4.40
(% of instances benefit w. multi-reference: 42.9%) (% of instances benefit w. multi-reference: 41.6%)

All† 83.35 85.56 66.91 71.40 4.11 4.22 88.92 89.88 78.56 80.36 4.41 4.46

Multimodal

Single 81.68 — 69.90 — 4.15 — 83.71 — 69.07 — 4.12 —

Multi. 70.98 78.82 47.05 61.22 3.59 3.90 46.67 60.00 33.33 33.33 3.67 3.78
(% of instances benefit w. multi-reference: 21.6%) (% of instances benefit w. multi-reference: 66.6%)

All 79.87 81.19 65.67 68.00 4.05 4.11 82.60 83.00 68.00 68.00 4.10 4.11

Single† 92.86 — 83.67 — 4.56 — 91.88 — 82.61 — 4.52 —

Multi.† 82.09 92.22 59.80 83.33 3.99 4.54 100.00 100.00 100.00 100.00 5.00 5.00
(% of instances benefit w. multi-reference: 41.18%) (% of instances benefit w. multi-reference: 0.0%)

All† 91.03 92.75 79.61 83.61 4.46 4.55 92.12 92.12 83.13 83.13 4.53 4.53

Multi.-subset-size (text, multimodal) are: (49, 51)/300 in WikiHow; (12, 3)/100 in RecipeQA.

Table 2.4: Multi-reference performance: († denotes human performance) Our golden-test-set can
be decomposed into two subsets: Single where each instance in this subset only has one single originally
authored ground truth, and Multi. where each instance features multiple ground truths from alternative
orders. For the Multi. subset, two types of performance can be computed: single considers only the
originally authored ground truth and multi computes the multi-reference performance. All denotes the
entire test-set combining the results from Single and Multi. subsets. Results are reported on the two main
competitors: multimodal and text-only using the best performing models from Table 2.2 in each modality.
% of instances benefit w. multi-reference indicates that of what percentage of instances in each multi-
reference subset humans and the models benefit (for each instance if its performance improves in any of the
metrics) from alternative ground truth orders.

22



Modality WikiHow (300) RecipeQA (100)
Cnt Min/Max Avg/Std Cnt Min/Max Avg/Std

Image-Only 24 2/4 2.1/1.4 13 2/3 2.1/0.3

Text-Only 49 2/6 2.4/0.9 12 2/6 2.4/1.1

Multimodal 51 2/4 2.1/0.5 3 2/6 4/1.6

Table 2.5: Multi-reference subset statistics: We report the count (cnt) of multi-reference instances
in each dataset across the three modalities, and their basic statistics.

Statistics. Table 2.5 lists the essential statistics of the multi-reference subsets, including

the counts of the multi-reference instance for each dataset and modality, as well as the

per-instance statistics.

Multi-Reference Performance. The noticeable main competitors in Table 2.2 are mul-

timodal and text-only models, and hence for conciseness, in Table 2.4 we mainly report the

multi-reference version of their best performing variants with the selected metrics. Several

trends still hold: (1) Multimodal models still outperform the text-only counterparts. (2)

Human performance is still well above models’ even under multi-reference setups. Addi-

tionally, both humans and models perform significantly worse in the multi-reference subset

when single (original) ground truth is enforced, implying the validity of our alternative order

annotations.

We originally hypothesize that enforcing the original authored order to be the only ground

truth would be unfair to the text-only models, as images can often better represent the

detailed scene changes omitted by the texts, while in reality certain steps may not need

to strictly follow the authored order. Judging from the number of instances that improve

after evaluating with alternative orders, the text-only model indeed benefits more from the

multi-reference setup. Examining the general trends in Table 2.4, one can conclude that

the textual contents indeed posses certain levels of ambiguities where images can help to

alleviate. However, as the performance gaps between multimodal and text-only models are

still significant under the multi-reference settings, advantages of multimodality. Note that

humans achieve perfect performance on the multi-reference subset in RecipeQA, though

unlikely it may seem, it is mainly due to recipes tend to have rarer possible alternative

orders.

WikiHow Categories. Table 2.6 lists the WikiHow categories with the most (top-5) an-
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Categories Mean Per-Instance Refs. (Cnt)
Multimodal Text Image

Home and Garden 2.00 (7) 2.14 (7) 2.00 (3)
Hobbies and Crafts 2.00 (5) 2.73 (11) 2.00 (2)

Food and Entertaining 2.20 (15) 2.22 (14) 2.17 (12)
Others 2.28 (7) 2.67 (5) 2.00 (4)

Personal Care and Style 2.33 (3) 2.00 (1) 2.00 (1)

Table 2.6: Top-5 mean alternative orders by categories: We list top-5 categories in WikiHow
according to the number of average ground truth references in their multi-reference subset. We again only
list the categories with total instance count >10.

notated multi-reference ground truths. Note that the categories with more annotated alter-

native ground truths are also among the worse performance from both humans and models

(refer to Figure 2.3).

2.6 Summary
In this work we present studies of language and multimodal models on procedure sequencing,

leveraging popular online instructional manuals. Our experiments show that both multi-

modality and our proposed sequence-aware pretraining are helpful for multimodal sequenc-

ing, however, the results also highlight significant gaps below human performance (∼ 15%

on PMR).

We provide insights as well as resources, such as the multi-reference annotations of the

sequencing task, to spur future relevant research. We also anticipate that the alternative

orders defined and annotated in our work can benefit more comprehensive task-procedure

understanding. Future work such as predicting task steps which can be parallel or inter-

changeable, and understanding step dependencies can be explored.
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CHAPTER 3

Learning Action Dependencies for

Comprehending Task-Knowledge

3.1 Introduction

When performing complex tasks (e.g. making a gourmet dish), instructional manuals are

often referred to as useful guidelines. To follow the instructed actions, it is crucial to

understand the preconditions, i.e. prerequisites before taking a particular action, and the

postconditions, i.e. the status supposed to be reached after performing the action. Knowl-

edge of action-condition dependencies is prevalent and inferable in many instructional texts.

For example, in Figure 3.1, before performing the action “place onions" in step 3, both

preconditions : “heat the pan" (in step 2) and “slice onions" (in step 1) have to be success-

fully accomplished. Likewise, executing “stir onions" (in step 4), leads to its postcondition,

“caramelized" (also in step 4).

For autonomous agents or assistant AI that aids humans to accomplish tasks, understand-

ing the conditions provides a structured view of a task (Linden, 1994; Aeronautiques et al.,

1998; Branavan et al., 2012b; Sharma and Kroemer, 2020) and helps the agent correctly

judge whether to proceed to the next action and evaluate the action completions.

However, no prior work has systematically studied automatically extracting pre- and

postconditions from prevalent data resources. To bridge this gap, we propose the action

condition inference task on real-world instructional manuals, where a dense depen-

dency graph is produced, as in Figure 3.1, to denote the pre- and postconditions of actions.

Such a dependency graph provides a systematic task execution plan that agents can closely

follow.
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1. Slice 500 grams of onion.

2. Heat the pan with olive oil.
Wait until the oil is sizzling.

3. Place onions in the frying pan.

4. Stir the onions. In a few minutes,
they should be caramelized.

Precondition

Postconditions

Precondition

Precondition Postcondition

Can I put
the onions 
in now?

Yes, your pan is already fried, onions are also sliced. 

Figure 3.1: The Action Condition Inference Task: We propose a task that probes models’ ability
to infer both preconditions and postconditions of an action from instructional manuals. It has wide applica-
tions to e.g. assistive AI and task-solving robots. *Original instructions are rephrased for simplicity in this
illustration.

We consider two online instruction resources, WikiHow (Hadley et al.) and Instructa-

bles.com (ins), to study the current NLP models’ capabilities of performing the proposed

task. As there is no densely annotated dataset on the desired action-condition-dependencies

from real-world instructions, and annotating a comprehensive dependency structure of ac-

tions for long instruction contexts can be extremely expensive and laborious, we collect

human annotations on a subset of totally 650 samples and benchmark models in either a

zero-shot setting where no annotated data is used for training, or a low-resource/shot

setting with limited amount of annotated training data.

We also design the following heuristics and show that they can effectively construct large-

scale weak supervisions : (1) Key entity tracing: Key repetitive entity mentions (including

co-references) across different instruction descriptions likely suggest a dependency. (2)

Keywords: Certain keywords (e.g. the before in “do X before doing Y ") can often imply

the condition dependencies. (3) Temporal reasoning: We adopt a temporal relation mod-

ule (Han et al., 2021b) to alleviate the potential inconsistencies between the narrated orders

of conditional events and their actual temporal orders to better utilize their temporally

grounded nature (e.g. preconditions are prior to an action).

We benchmark two strong baselines based on pretrained language models with or without
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instruction contexts on our annotated held-out test-set, where the models are asked to make

predictions exhaustively on every possible dependency. We observe that contextualized

information is essential (> 20% F1-score gain over non-contextualized counterparts), and

that our proposed heuristics are able to augment an effective weakly-supervised training

data to further improve the performance (> 6% F1-score gain) on the low-resource setting.

However, the best results are still well below human performance (> 20% F1-score difference).

Our key contributions are three-fold: (1) We propose an action-condition inference task

and create a densely human-annotated evaluation dataset to spur research on structural in-

struction comprehensions. (2) We design linguistic-centric heuristics utilizing entity tracing,

keywords, and temporal reasoning to construct effective large-scale weak supervisions. (3)

We benchmark models on the proposed task to shed lights on future research.

3.2 Background and Related Work

Two major lines of research work are closely related to the contribution in this chapter,

understanding procedural texts (text pieces instructing a task procedure), and extracting

event relations in contrived texts.

Procedural Text Understanding. Uncovering knowledge in texts that specifically fea-

tures procedural structure has drawn many attentions, including aspects of tracking entity

state changes (Branavan et al., 2012a; Bosselut et al., 2018; Mishra et al., 2018; Tandon et al.,

2020), incorporating common sense or constraints (Tandon et al., 2018; Du et al., 2019),

procedure-centric question answering (QA) (Tandon et al., 2019), and structural parsing or

generations (Malmaud et al., 2014; Zellers et al., 2021a; ?). (Clark et al., 2018) leverages

VerbNet (Schuler, 2005) with if-then constructed rules, one of the keywords we also utilize,

to determine object-state postconditions for answering state-related reading comprehension

questions. In addition, some prior works also specifically formulate precondition understand-

ing as multiple choice QA for event triggers (verbs) (Kwon et al., 2020) and common sense

phrases (Qasemi et al., 2021). We hope our work on inferring action-condition dependencies,

an essential knowledge especially for understanding task-procedures, from long instruction

texts, can help advancing the goal of more comprehensive procedural text understanding.

Drawing dependencies among procedure steps has been explored in (Dalvi et al., 2019;

Sakaguchi et al., 2021b; Pal et al., 2021), however, their procedures are manually synthesized
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Step 1: Prepare the line. The length and width of line you need varies based on your

trimmer. If you purchase the wrong width of line, the trimmer will not work correctly, so
don’t waste your money by simply guessing at the hardware store. If you are not sure

what size line your trimmer uses, check online—the manufacturer’s website often has

instructions, and if not the customer service department should be able to help you. …

Step 2: Make sure your trimmer’s engine is turned off. If it has a gearbox, make sure it is
cooled down. This will help prevent accidents.

Step 3: Remove the retaining cap from the trimmer head. This will probably involve

either unscrewing it, pressing one or multiple tabs, or a combination of the two. Some
models use different mechanisms for removing the spool.

Postcondition 1

Precondition 2i

Precondition 1

Precondition 2ii

Postcondition 2

Instruction Manual

…, check online, the manufacturer ’s 

website often has instructions, … 

check

V

online

ARGM-LOC

the manufacturer ’s  website

ARG0

often

ARGM-TMP

has

V

instructions

ARG1

SRL Sample Extractions

Figure 3.2: Terminologies: (Left) We show a few exemplar actionables (light yellow) with their
associated preconditions (light blue) and postconditions (light green). Notice that an actionable can have
multiple pre- or postconditions and they can span across different instruction steps. For simplicity we do not
show an exhausted set of text segments of interests, i.e. in the actual dataset there might be more. (Right)
we show one sample SRL extractions which correspond to one of the action-condition dependency linkages
on the left.

short paragraphs. Our work, in contrast, aims at inferring diverse dependency knowledge

directly from complex real-world and task-solving-oriented instructional manuals, enabling

the condition dependencies to go beyond inter-step and narrative boundaries.

Event Relation Extraction. Our work is also inspired by document-level event relation

extraction (Han et al., 2019, 2021a; Huang et al., 2021a; Ma et al., 2021). Specifically, certain

works also adopt weak supervisions to learn event temporal relations (Zhou et al., 2020, 2021;

Han et al., 2021b), while other relevant works aim at extracting causality relations (mainly

cause-effect) automatically from texts (Cao et al., 2016; Altenberg, 1984; Stasaski et al.,

2021). Our work combines multiple commonsensical heuristics tailored to the nature of the

dependencies exhibited in actions and their conditions, in real-world instruction sources.

3.3 Terminologies and Problem Definition
Our goal is to learn to infer action-condition dependencies in real-world instructional man-

uals. We first describe essential terminologies in details:

Actionable refers to a phrase that a person can follow and execute in the real world (yellow

colored phrases in Figure 3.2). We also consider negated actions (e.g. do not ...) or actions

warned to avoid (e.g. if you purchase the wrong...) as they likely also carry useful knowledge

regarding the tasks.1

1We ask workers to single out the actual actionable phrases, e.g. purchase the wrong line →
trimmer will not work.
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Precondition concerns the prerequisites to be met for an actionable to be executable,

which can be a status, a condition, and/or another prior actionable (blue colored phrases

in Figure 3.2). It is worth noting that humans can omit explicitly writing out certain

condition statements because of their triviality as long as the actions inducing them are

mentioned (e.g. heat the pan → pan is heated, the latter can often be omitted). We thus

generalize the conventional precondition formulation, i.e. sets of statements evaluated to

true/false (Fikes and Nilsson, 1971), to a phrase that is either a passive condition statement

or an actionable that induces the prerequisite conditions, as inspired by (Linden, 1994).

Postcondition is defined as the outcome caused by the execution of an actionable, which

often involves status changes of certain objects (or the actor itself) or certain effects emerged

to the surroundings or world state (green colored phrases in Figure 3.2).

Text segment in this paper refers to a textual segment of interest, which can be one of:

{actionable, precondition, postcondition}, in an article.

In reality, a valid actionable should have both pre- and postcondition dependencies, however,

we do not enforce this in this work as conditions can occasionally be omitted by human

authors.

Problem Formulation. Given an input instructional manual and some text segments of

interest extracted from it, a model is asked to predict the directed relation between a pair of

segments, where the relation should be one of the followings: NULL (no relation), precondition,

or postcondition.

3.4 Datasets and Human Annotations

As the condition-dependency knowledge we are interested in is prevalent in real-world in-

structions, we consider two popular online resources, WikiHow and Instructables.com,

both consist of detailed multi-step task instructions, to support our investigation. For Wik-

iHow, we use the provided dataset from (Wu et al., 2022); for Instructables, we scrape the

contents directly from their website.

Since densely annotating large-scale instruction sources for the desired dependencies is

extremely expensive and laborious, we mainly annotate a test-set and propose to train the

models via weakly or self-supervised methods. We hence provide a small subset of the human-
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annotated data to adapt models to the problem domain. To this end, we collect comprehen-

sive human annotations on a selected subset in each dataset to serve as our annotated-set,

and particularly the subsets used to evaluate the models as the annotated-test-set.2 In

total, our densely annotated-set has 500 samples in WikiHow and 150 samples in Instructa-

bles, spanning 7,191 distinct actions (defined by main predicate-object phrases) for diversity.

In Chapter 5.5.2, we will describe how the annotated-set is split to facilitate the low-resource

training. We also collect the human performance on the annotated-test-set to gauge the hu-

man upper bound of our proposed task.

3.4.1 Annotations and Task Specifications

Dataset Structure. The desired structure of the constructed data, as in Figure 3.2, features

two main components: (1) text segment of interest (see Chapter 3.3), and (2) condition

linkage, a directed and relational link connecting a pair of text segments.

Annotation Process. We conduct the annotated-set construction via Amazon Mechanical

Turk (MTurk). Each worker is asked to carefully read over thoroughly a prompted

complex multi-step instructional manual, where the annotation process consists of three

main steps: (1) Text segments highlighting: To facilitate this step (and postulating the

text segments for constructing weak-supervisions in Chapter 3.5), we pre-highlight several

text segments extracted by semantic role labelling (SRL) for workers to choose from.3 They

can also freely annotate (highlight by cursor) their more desirable segments. (2) Linking:

We encourage the workers to annotate all the possible segments of interest, and then they

are asked to connect certain pairs of segments that are likely to have dependencies with a

directed edge. (3) Labelling: Finally, each directed edge drawn will need to be labelled as

either a pre- or postcondition (NULL relations do not need to be explicitly annotated).

In general, for each article a worker is required to consider on average >500 pairwise

relations with all associated article contexts (>300 tokens), which is a decently laborious

task. Comparisons on the linkage annotations from different workers are as well made

on every pair of their respective annotated text segments with the actual candidate-

2Following (Wu et al., 2022), we first choose from physical categories and then sample a manually inspected
subset.

3SRL V and ARGs are connected alongside intermediate words to form contiguous segments.
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consideration from the entire rest of article.

Since the agreements among workers on both text segments and condition linkages are

sufficiently high4 given the complexity of the annotation task, our final human annotated-set

retains the majority voted segments and linkages.

Variants of Tasks. Although proper machine extraction of the text segments of interest as

a span-based prediction can be a valid and interesting task, we find that our automatic SRL

extraction is already sufficiently reliable.5 In this paper, we thus mainly focus on the more

essential linkage prediction (and their labels) task assuming that these text segments are

given, and leave the possible end-to-end system with the (refined) text segment extraction,

as the future work. Our proposed task and the associated annotated-set can be approached

by a zero-shot or low-resource setting: the former involves no training on any of the

annotated data and a heuristically constructed training set can be utilized (Chapter 3.5),

while the latter allows models to be finetuned on a limited annotated-subset (Chapter 3.6.3).

For the low-resource setting particularly, only 30% of the annotated data will be used for

training.

3.5 Training With Weak Supervision
As mentioned in Chapter 3.4, our proposed task can be approached via a zero-shot setting,

where the vast amount of un-annotated instruction data can be transformed into useful

training resources (same dataset structure as described in Chapter 3.4.1). Moreover, it is

proven that in many low-resource NLP tasks, constructing a much larger heuristic-based

weakly supervised data can be beneficial (Plank and Agić, 2018; Nidhi et al., 2018).

3.5.1 Linking Heuristics

The goal of designing certain heuristics is to perform a rule-based determination of the link-

age (its direction and the condition label). Our design intuition is to harness dependency

4The mean inter-annotator agreements (IAAs) per Fleiss Kappa for (segments, linkages) are (0.90, 0.57)
and (0.88, 0.58) for WikiHow and Instructables. Note that the Kappa agreement measures the extent to
which the observed amount of agreement among raters exceeds what would be expected if all raters made
their ratings completely randomly, so the agreement is high.

5∼58% of the time SRL-proposed segments were directly used, with others mostly being few-word-span
refinements.
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knowledge by exploiting relations between actions and entities (entity-level), certain linguis-

tic patterns (phrase-level), and event-level information, which should be widely applicable

to all kinds of instructional data. Concretely, we design four types of heuristics: (1) Key-

words: certain keywords are hypothesized to show strong implication of conditions such as

if, before, after ; (2) Key entity tracing: text segments that share the same key entities

are likely indicating dependencies; (3) Co-reference resolution is adopted to supplement

(2); (4) Event temporal relation resolution technique is incorporated to handle the

inconsistencies between narrative order and the actual temporal order of the events.

SRL Extraction. Without access to human refinements (Chapter 3.4.1), we leverage SRL

to postulate all the segments of interests to construct the weakly-supervised set. As SRL

can detect multiple plausible ways to form the ARG frames with respect to the same central

verb, we need to additionally determine the most desirable parses for each action verb. In

this work, we simply select the most desirable SRL parses by choosing ones that maximize

both: (1) the number of plausible segments (each centered around an action verb) within a

sentence, where they do not overlap above a certain threshold (set to be 60% in this work),

and (2) the number of ARGs in each of such segment.

Keywords:

Table 3.2 lists the major keywords that are considered in this work. Denote a text segment

as 𝑎𝑖, keywords are utilized so as the text segments separated with respect to them, i.e. 𝑎1
and 𝑎2, can be properly linked. Different keywords and their positions within sentences can

lead to different directions of the linkages, i.e. 𝑎1 ⇄ 𝑎2 (see second row of Table 3.1, note

that here condition labels are not yet determined). For example, keywords before and after

intuitively can lead to different directions if they are placed at non-beginning positions. We

follow the rules listed in Table 3.2 to decide the directions.

Key Entity Tracing:

It is intuitive to assume that if the two text segments mention the same entity, a dependency

between them likely exists, and hence a trace of the same mentioned entity can postulate

potential linkages. As exemplified in the first row of Table 3.1, that heating the pan being a

necessary precondition to placing onions in the pan can be inferred by the shared mention

“pan”. We adopt two ways to propose the candidate entities: (1) We extract all the noun
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standalone
Heuristics Examples Descriptions

Entity-
Tracing &

Coref.

… Slice 500 grams of onions. …… Heat the pan with olive oil. …

… Place them in the frying pan. …Precondition 1 Precondition 2

The shared entities are pan and
onions (linked via co-references
to them).

Keywords … Make sure everything is dry before you fill your flowerpot with dirt. …
Precondition

… If you’re using a machine punch, stick the rivet through the hole. …
Precondition

Keywords are used to link the
segments they separate. If
the keyword is at the begin-
ning (2nd example), the (1st)
comma is used to segment the
sentences.

Postcondition
Postcondition

… the oil is sizzling. …… Warm a pan with oil over medium heat…
Postcondition

… Do not pour water into your lock …… the water will be frozen solid …
SRL Tags:   ARGM-MOD       V           ARG2

Certain linguistic hints (e.g.
SRL tags) are utilized to
propose plausible (and likely)
postcondition text segments.

Temporal
… pry off the back side of the tire first …

… Step down hard on the rubber part of the tire …
AFTER

Precondition

The action prying should oc-
cur prior to stepping, but these
two segments are reversely nar-
rated in the contexts.

Table 3.1: Heuristics used for determining condition linkages between text segments, with sample use-
cases and descriptions.

phrases within the SRL segments (mostly ARG-tags), (2) Inspired by (Bosselut et al., 2018),

a model is learned to predict potential entities involved that are not explicitly mentioned

(e.g. fry the chicken may imply a pan is involved) in the context.

Co-References. Humans often use pronouns to refer to the same entity to alternate the

mentions in articles, as exemplified by the mentions onions and them, in the first row of Table

3.1. Therefore, a straightforward augmentation to the aforementioned entity tracing is in-

corporating co-references of certain entities. We utilize a co-reference resolution model (Lee

et al., 2018) to propose possible co-referred terms of extracted entities of each segment within

the same step description (we do not consider cross-step co-references for simplicity).

3.5.2 Linking Algorithm

After applying the aforementioned linking heuristics, each text segment 𝑎𝑖, can have 𝑀 linked

segments: {𝑎𝑙𝑖1 , ..., 𝑎
𝑙𝑖
𝑀}. For linkages that are traced by entity mentions (and co-references),

their directions always start from priorly narrated segments to the later ones, while linkages

determined by the keywords follow Table 3.2 for deciding their directions. However, the
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text segments that are narrated too much distant away from 𝑎𝑖 are less likely to have direct

dependencies. We therefore truncate the linked segments by ensuring any 𝑎𝑙𝑖𝑗 is narrated no

more than “𝑆 step” ahead of 𝑎𝑖, where 𝑆 is empirically chosen to be 2 in this work.

Despite pruning the traces with the aforementioned design choice 𝑆 can largely reduce

condition-irrelevant segments, such heuristic indeed cannot guarantee the included text seg-

ments are always dependent with respect to an actionable. Our goal here is to exploit

the generalization ability of language models to recognize segments that are most probable

conditions by including as many heuristically proposed linkages as possible, where a better

strategy on designing the maximum allowed step-wise distance is left as a future work.

Incorporating Temporal Relations:

As hinted in Chapter 3.3, the conditions with respect to an actionable imply their tem-

poral relations. The direction of an entity-trace-induced linkage is naively determined by

the narrated order of text segments within contexts, however, in some circumstances (e.g.

fourth row in Table 3.1), the narrative order can be inconsistent with the actual temporal

order of the events. To alleviate such inconsistency, we apply an event temporal relation

prediction model (Han et al., 2021b) (trained on various temporal relation datasets such

as MATRES (Ning et al., 2018)) to fix the linkage directions.6

We train the model on three different random seeds and make them produce a consensus

prediction, i.e. unless all of the models jointly predict a specific relation (BEFORE or AFTER),

otherwise the relation will be regarded as VAGUE. The model is then applied to predict

temporal relations of each pair of event triggers (extracted by SRL, i.e. verbs/predicates),

and then we invert the direction of an entity-trace-induced linkage, 𝑎𝑙𝑖𝑗 → 𝑎𝑖, if their predicted

temporal relation is opposite to their narrated order (VAGUE is of course ignored).

Labelling The Linkages:

It is rather straightforward to label precondition linkages as a simple heuristic can be used:

for a given segment, any segments that linked to the current one that are either narrated

or temporally prior to it are plausible candidates for being preconditions. For determin-

ing postconditions, where they are mostly descriptions of status (changes), we therefore

6These do not include linkages decided by the keywords.
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Keywords Begin. Within Sent.

before, until, in order to, so 𝑎1 −→ 𝑎2 𝑎1 ←− 𝑎2

requires — 𝑎1 −→ 𝑎2

after, once, if 𝑎1 ←− 𝑎2 𝑎1 −→ 𝑎2

Table 3.2: Keywords for deciding a potential linkage: If a keyword is at the beginning of a sentence,
we use the (first) comma of that sentence to separate it to two segments and link them accordingly, while
the keyword itself is used as the separator otherwise. The segments are then either refined with SRL or kept
as they are if SRL does not detect a valid verb.

[CLS] Turn on the stove. [SEP] Oil is hot. [SEP]

Pre-Trained Language Model (RoBERTa)

• NULL
• Precondition
• Postcondition

(a) Non-Contextualized Model

… <a> Cut up the onions </a>. <a> Turn on the stove. </a> Once the <a> oil is hot enough </a> …

Pre-Trained Language Model (RoBERTa)

⇒ NULL ⇒ Postcondition

Label Balanced Sampling

(b) Contextualized Model

Figure 3.3: Model architectures: (a) Non-contextualized pairwise model: The model only
considers a pair of given text segments. (b) Contextualized model: The model takes the whole instruction
paragraphs (i.e. contexts) and wrap each text segment with our special tokens (<a>), where each segment
representation is obtained by taking an average over its token representations. The ordered concatenated
segment representations will then be fed into an MLP to make the final predictions.

make use of certain linguistic cues that likely indicate human written status, e.g. the wa-

ter will be frozen and the oil is sizzling. Specifically, we consider: (1) be-verbs followed by

present-progressive tenses if the subject is an entity, and (2) segments whose SRL tags

start with ARGM as exemplified in Table 3.1.

3.6 Models

Our proposed heuristics do not assume specific model architecture to be applicable, and to

benchmark the proposed task, we mainly consider two types of base models: (1) Non-

contextualized model takes only the two text segments of interest at a time and make the

pairwise trinary (directed) relation predictions, i.e. NULL, precondition, and postcondition; (2)

Contextualized model also makes the relation predictions for every pair of input segments,

but the inputs include the whole instruction article so the contexts are preserved. The

two models are both based off pretrained language models (the non-contextualized model is
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essentially a standard transformer-based language model finetuned for classification tasks),

and the relation prediction modules are multi-layer perceptrons (MLPs) added on top of the

language models’ outputs. Cross-entropy loss is used for training.

3.6.1 Non-Contextualized Model

The non-contextualized model takes two separately extracted text segments, 𝑎𝑖 and 𝑎𝑗, as

inputs and is trained similarly to the next sentence prediction in BERT (Devlin et al.,

2019) (i.e. the order of the segments matters, which will be considered in determining their

relations), as shown in Figure 3.3a.

3.6.2 Contextualized Model

The architecture of the contextualized model is as depicted in Figure 3.3b. Denote the

tokens of the instruction text as {𝑡𝑖} and the tokens of 𝑖-th text segment of interest (either

automatically extracted by SRL or annotated by humans) as {𝑎𝑖𝑗}. A special start and

end of segment token, <a> and </a>, is wrapped around each text segment and hence the

input tokens become: "𝑡1, ..., 𝑡𝑘, <a> 𝑎𝑖1, 𝑎𝑖2, ..., 𝑎𝑖𝐾 </a>, ...". The contextualized segment

representation is then obtained by applying a mean pooling over the language model output

representations of each of its tokens, i.e. denote the output representation of 𝑎𝑖𝑗 as o(𝑎𝑖𝑗), the

segment representation of o(𝑎𝑖) is 𝐴𝑣𝑔𝑃𝑜𝑜𝑙(
∑︀𝐾

𝑗=1 o(𝑎𝑖𝑗)). To determine the relation between

segment 𝑖 and 𝑗, we feed their ordered concatenated representation, 𝑐𝑜𝑛𝑐𝑎𝑡(o(𝑎𝑖),o(𝑎𝑗)), to

an MLP for the relation prediction.

3.6.3 Learning

Multi-Staged Training. For different variants of our task (Chapter 3.4.1), we can utilize

different combinations of the heuristically constructed dataset and the annotated-train-set.

For the low-resource setting, our models can thus be firstly trained on the constructed train-

ing set, and then finetuned on the annotated-set. Furthermore, following the self-training

paradigm (Xie et al., 2020; Du et al., 2021), the previously obtained model predictions can be

utilized to either augment (i.e. adding linkages) or correct (i.e. revising linkages) the original

heuristically constructed data. And hence a second-stage finetuning can be conducted on

this model-self-annotated data for improved performance.

Label Balancing. It is obvious that most of the relations between randomly sampled text
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segment pairs will be NULL, and therefore the training labels are imbalanced. To alleviate

this, we downsample the negative samples when training the models. Specifically, we fill each

training mini-batch with equal amount of positive (relations are not NULL) and negative pairs,

where the negatives are constructed by either inverting the positive pairs or replacing one

of the segment with another randomly sampled unrelated segment within the same article.

3.7 Experiments and Analysis

Our experiments seek to answer these questions: (1) How well can the models and humans

perform on the proposed task? (2) Is instructional context information useful? (3) Are the

proposed heuristics and the second-stage self-training effective?

3.7.1 Training and Implementation Details

For both non-contextualized and contextualized models, we adopt the pretrained RoBERTa

(-large) language model (Liu et al., 2019) as the base model. All the linguistic features, i.e.

SRL (Shi and Lin, 2019), co-references, POS-tags, are extracted using models implemented

by AllenNLP (Gardner et al., 2017). We truncate the input texts at maximum length of 500

while ensuring all the text segments within this length is preserved completely.

All the models in this work (i.e. both pretraining and finetuning) are trained on a single

Nvidia A100 (40G RAM) GPU. The hyperparameters are manually tuned against different

datasets, and the checkpoints used for testing are selected by the best performing ones on

the held-out development sets.

3.7.2 Experimental Setups

Data Splits. The primary benchmark of WikiHow annotated-set is partitioned into train

(30%), development (10%), and test (60%) set, respectively, resulting in 150, 50, and

300 data samples, for low-resource setting. We mainly consider the Instructables annotated-

set in a zero-shot setting where we hypothesize the models trained on WikiHow can be

well-transferred to it. For training conducted on the heuristically constructed data, including

the second-stage self-training, we use respective held-out development sets to select the

checkpoints around performance convergence for finetuning.

Evaluation Metrics. We ask the models to predict the relations on every pair of text
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Model Heus. Finetuned/Self
WikiHow Annotated-Test-Set Zero-Shot Transfer to Instructables

Precondition Postcondition Precondition Postcondition
Prec. Recall F-1 Prec. Recall F-1 Prec. Recall F-1 Prec. Recall F-1

Prob. Random — N/N 3.55 4.42 3.54 0.61 0.86 0.68 2.94 3.88 3.04 0.46 0.46 0.42
Prompt. GPT-3 — N/N 3.87 73.46 7.35 4.90 77.08 9.21 3.14 64.25 5.99 1.37 34.33 2.65
Adapt.-XPAD — Y/N 6.21 58.38 10.64 9.47 13.83 10.45 5.11 57.53 8.92 7.74 9.00 7.89

Non-Context. Y Y/N 8.21 79.52 14.32 15.43 44.99 20.56 6.49 65.05 11.31 13.64 43.50 18.65
Y Y/Y 8.56 81.19 14.91 26.53 65.95 34.31 6.64 67.13 11.54 24.53 61.93 31.78

Context.

N Y/N 34.01 58.33 39.27 34.44 43.15 36.79 26.93 53.43 32.92 32.16 41.39 34.42
N Y/Y 42.26 58.45 45.41 40.99 46.51 42.32 38.16 55.77 42.23 42.57 48.00 44.07

Y N/N 10.69 34.79 15.05 10.34 11.88 10.49 10.34 16.17 11.42 4.52 4.15 4.15
Y Y/N 47.92 64.63 51.38 51.15 57.64 52.59 40.70 58.97 45.17 47.92 56.51 50.06
Y Y/Y 49.42 68.40 53.51 52.39 57.35 53.42 43.81 62.71 48.34 53.41 60.51 55.17

Human — — 83.91 83.86 83.55 77.39 84.81 78.81 84.74 81.32 82.78 71.90 82.51 75.53

Table 3.3: Annotated-test-set performance: The best performance is achieved by applying all of the
proposed heuristics (heus.) and undergoing the two-stage training: finetuned on the annotated-train-set
first and then perform the self -training. Note that for the Instructables, both Finetuned and Self are done
on the WikiHow training sets and a zero-shot transfer is performed.

segments in a given instruction, and compute the average precision (Prec.), recall, and F-1

scores separately with respect to each (pre/post) condition labels.

Baselines. There is no immediate baseline we are aware of for the proposed action condition

inference task. However, we note that (Dalvi et al., 2019)’s dependency graph prediction

on scientific procedures (Mishra et al., 2018) shares high-level similarities to specifically our

precondition inference task. Our non-contextualized model (without the second-stage self-

training) with only the noun-phrase-based entity tracing heuristic resembles the KB-induced

prior dependency likelihood, 𝑔𝑘𝑏, in their proposed XPAD framework.7

Beside this adapted-XPAD, we also evaluate our task with (1) probabilistic random-

guess baseline (random guesses proportional to the training-set label ratio), and (2) zero-

shot GPT-3 (Brown et al., 2020) where we prompt GPT-3 with exemplar data instances

as the task definition (contextualized). These baselines help us to set up a benchmark and

justify the challenges our task poses.

3.7.3 Experimental Results

Table 3.3 left half summarizes both the human and model performance on our standard

split (30% train, 60% test) of WikiHow annotated-set. Contextualized model obviously

7With all entity-state-related components excluded (irrelevant to our task) and encoder replaced by
RoBERTa model.

38



Heuristics.
WikiHow Annotated-Test-Set Zero-Shot Transfer to Instructables

Precondition Postcondition Precondition Postcondition
Prec. Recall F-1 Prec. Recall F-1 Prec. Recall F-1 Prec. Recall F-1

– temporal – coref. - keywords 45.60 61.22 48.59 43.71 47.56 44.35 39.35 57.03 43.49 38.45 42.96 39.39
– temporal – coref. 43.43 64.43 48.04 46.27 51.27 47.22 37.06 59.95 42.56 38.41 44.54 39.83

– temporal 45.83 62.48 49.17 47.72 52.70 48.81 39.39 59.53 44.23 46.81 52.15 48.23

Table 3.4: Heuristics ablations: The models used here are contextualized models without the
second-stage self-training for both datasets, and "–" indicates exclusion (from using all). In general, each of
the designed heuristics give incremental performance gain to both datasets, where the temporal component
is particularly effective in postcondition predictions (compare to Table 3.3).

Train Precondition Postcondition
Prec. Recall F-1 Prec. Recall F-1

10% 41.34 61.71 46.06 45.24 55.56 47.95
20% 45.60 67.55 50.78 49.30 58.02 51.62
30% 57.38 64.46 57.53 50.49 54.57 51.09
40% 49.61 73.09 55.14 50.45 57.77 52.27
50% 54.27 70.89 57.84 51.35 55.85 52.23
60% 53.21 69.36 56.42 53.68 58.09 54.46

Table 3.5: Varying annotated-train-set size: on WikiHow (test-set size is fixed at 30%). We use the
(best) model trained with all the proposed heuristics and the self-training paradigm.

outperforms the non-contextualized counterpart greatly, and all learned models perform well-

above random baseline. Significant improvements on both pre- and postcondition inferences

can be noticed when heuristically constructed data is utilized, especially when no second-

stage self-training is involved. The best performance is achieved by applying all the

heuristics we design, where further improvements are made by augmenting with second-

stage pseudo supervisions. Similar performance trends can be observed in Table 3.3 right

half where a zero-shot transfer from models trained on WikiHow data to Instructables is

conducted.

Notice that the zero-shot GPT-3 performs quite poorly compared to our best low-resource

training setting, and generally worse than our zero-shot contextualized model utilizing only

the heuristically constructed data. We hypothetically attribute the poor performance to

both the requirement of exhaustive search of the conditions across the whole manual, and

its lacking of complex commonsense reasoning; justifying the effectiveness of our proposed

training paradigm and the difficulty of our task. Nevertheless, there are still large rooms

for improvement as the best model falls well-behind human performance (>20% F1-score

gap).
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Type Example Description

Heus.
Overfit … look for a blade …

… use a sharp blade to cut …
Precondition

Precondition
Overfits on entity
trace heuristic.

Lacking
Causal
Reason

… body start leaning …
… decrease pedal resistance …NULL

Precondition

… can’t completely dry…
… bacteria could form …NULL

Postcondition

Knowledge-
enhanced causal
reasoning can be
helpful.

Table 3.6: Exemplar model errors. The second row are from distant segments not link-able even via
the keyword heuristic.

Heuristics Ablations.s. Table 3.4 features ablation studies on the designed heuristics.

One can observe that keywords are mostly effective on inferring the postconditions, and

co-references are significantly beneficial in the Instructables data, which can hypothetically

be attributed to the writing style of the datasets (i.e. authors of Instructables might use

co-referred terms more). Temporal relation resolution is consistently helpful across pre-

and postconditions as well as datasets, suggesting only relying on narrated orders could

degenerate the performance.

Error Analysis. While our (best) models perform well on linkages that exhibit similar

concepts to the designed heuristics and generalize beyond their surface forms, we are in-

terested in investigating under which situations they are more likely to err. We therefore

sub-sample 10% of the annotated test-set for manual qualitative inspections and summarize

our observations in Table 3.6. We find that our models can sometimes overfit to certain

heuristic concepts as in Table 3.6 first row (within a food preparation context). Another

improvement the models can enjoy is better causal understanding, which is currently

not explicitly handled by our heuristics and can be an interesting future work (Table 3.6

second row, in a biking and cleaning contexts).

Humans, on the other hand, exhibit much superior performance than the models, tend to

fail more often on two kinds of situations: (1) Missing preconditions (of an action) in those

much earlier paragraphs, and (2) Sophisticated temporal ordering of the events (often not

narrated sequentially in the texts). Especially, the first sentences of each task-step are often

regarded as the starting actions, while in reality, they can be postconditions of the followed-
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up detailed contexts. However, we think both aforementioned errors are rather remediable

if the annotators are more careful and search more exhaustively for condition statements.

The Effect of Training Set Size:

Table 3.3 shows that with a little amount of data for training, our models can perform

significantly better than the zero-shot setting. This arouses a question – how would the

performance change with respect to the training set size, i.e. do we just need more data? To

quantify the effect of training size on model performance, we conduct an experiment where

we vary the sample size in the training set while fixing the development (10%) and test

(30%) set for consistency consideration. We use the best settings in Table 3.3, i.e. with all

the heuristics and self-training paradigm, for this study. We can observe, from Table 3.5, a

plateau in performance when the training set size is approaching 60%, implying that simply

keep adding more training samples does not necessarily yield significant improvements, and

hypothesize that the discussed potential improvements are the keys to further effectively

exploit the rich knowledge in large-scale instructional data.

3.8 Summary
In this work we propose a task on inferring action and (pre/post)condition dependencies on

real-world online instructional manuals. We formulate the problem in both zero-shot and

low-resource settings, where several heuristics are designed to construct an effective large-

scale weakly supervised data. While the proposed heuristics and the two-staged training

leads to significant performance improvements, the results still highlight significant gaps

below human performance (> 20% F1-score).

We hope our studies and the collected resources can spur relevant research, and suggest

two main future directions: (1) End-to-end propose (refined) actionables, conditions, and

their dependencies, by fully exploiting our featured span-annotations of the text segments.

(2) Inferred world states from the text descriptions as well as external knowledge of the

entities and causal common sense can be factored into the heuristics for weak-supervisions.
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CHAPTER 4

Tracing Active Objects Throughout Tasks with

Symbolic World Knowledge

4.1 Introduction
Recent technological advancements in smart glasses (and headsets) from industry leaders

such as Meta, Google, and Apple have attracted growing research in on-device AI that can

provide just-in-time assistance to human wearers. 1 While giving (or receiving) instructions

during task execution, the AI assistant should co-observe its wearer’s first-person (egocen-

tric) viewpoint to comprehend the visual scenes and provide appropriate assistance. To

accomplish this, it is crucial for AI to first be able to localize and track the objects that are

undergoing significant state change according to the instruction and/or actions performed.

For example in Figure 4.1, it can be inferred from the instruction that the object undergoing

change which should be actively grounded and tracked is the pawpaw.

Existing works have focused on the visual modality alone for such state change object

localization tasks, including recognizing hand-object interactions (Shan et al., 2020a) and ob-

ject visual state changes (Alayrac et al., 2017). However, it remains under-explored whether

the visual modality by itself is sufficient for providing signals to enable robust state change

object localizing/tracking without enhanced signals from the textual modality. While uti-

lizing a phrase grounding model (Liu et al., 2022a, 2023) is presumably a straightforward

alternative, it leaves unanswered questions of which mentioned objects/entities in the instruc-

tion are supposedly the one(s) that undergo major state changes, e.g. , the pawpaw in Figure

4.1 instead of the knife is the correct target-object. Furthermore, how visual appearances of

1Code at: https://github.com/PlusLabNLP/ENVISION
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A fruit with yellow—greenish flesh…

Object Undergoing Change
Tool

Post-Cond:(Cut,Opened)

Pre-Cond:(Ripe,Smooth)

Cut the pawpaw into half with the knife.

Figure 4.1: Active object grounding is the task of localizing the active objects undergoing state change
(OUC). In this example action instruction "cut the pawpaw into half with the knife", the AI assistant is
required to firstly infer the OUC (pawpaw) and the Tool (knife) from the instruction, and then localize them
in the egocentric visual scenes throughout the action trajectories. Symbolic knowledge including pre/post
conditions and object descriptions can bring additional information to facilitate the grounding.

the objects can help such multimodal grounding is yet to be further investigated.

In light of this, we tackle the active object grounding task by first extracting target object

mentionsfrom the instructions using large language models (ChatGPT (OpenAI, 2023a))

with a specifically designed prompting pipeline, and then finetuning an open-vocabulary

detection model, GLIP (Li* et al., 2022), for visual grounding. We further hypothesize

that additional action- and object-level symbolic knowledge could be helpful. As shown

in Figure 4.1, state conditions prior to (pre-conditions : which indicate pre-action states)

and after (post-conditions : which suggest at past state changes) the execution of the action

are often considered when locating the objects, especially when the state changes are more

visually significant. Furthermore, generic object knowledge including visual descriptions (e.g.

, "yellow-greenish flesh"), are helpful for uncommon objects.2 Based on this hypothesis, we

prompt the LLM to obtain pre- and post-conditions on the extracted object mentions, along

2This should not contradict with the application where an assistive AI judges if the outcomes of the
actions are desirable, as here we are only using general commonsensical conditions generated by an LLM,
while in reality there can be more subtle and task-dependent conditions that need to be examined.
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with a brief description focusing on specific object attributes.

To improve the grounding models by effectively using all the aforementioned action-

object knowledge, we design an object-dependent mask to separately attribute the symbolic

knowledge to its corresponding object mentions for training. During inference time, a pre-

/post-condition dependent scoring mechanism is devised to aggregate the object and the

corresponding knowledge logit scores to produce a joint inference prediction.

We evaluate our proposed framework on two narrated egocentric video datasets, Ego4D (Grau-

man et al., 2022a) and Epic-Kitchens (Damen et al., 2022) and demonstrate strong gains.

Our main contributions are two folds: (1) We design a sophisticated prompting pipeline to

extract useful symbolic knowledge for objects undergoing state change during an action from

instructions. (2) We propose a joint inference framework with a per-object knowledge ag-

gregation technique to effectively utilize the extracted knowledge for improving multimodal

grounding models.

4.2 Background and Related Work
The contributions in this chapter are inspired heavily by three lines of research work, includ-

ing egocentric visual perception, unveiling knowledge regarding action-object relations, and

vision-and-language cross-modal grounding.

Egocentric Vision. Egocentric vision has recently attracted research attentions thanks

to advancements in smart wearable devices and robotics. Datasets used in this work,

Ego4D (Grauman et al., 2022a) and Epic-Kitchens (Damen et al., 2022, 2018; Dunnhofer

et al., 2022) are two representative large-scale collections of egocentric videos recording tasks

performed by the camera wearers. Other existing works have also investigated egocentric vi-

sion in audio-visual learning (Kazakos et al., 2019), object detection with EgoNet (Bertasius

et al., 2017; Furnari et al., 2017), object segmentation with eye-gazes (Kirillov et al., 2023)

and videos (Darkhalil et al., 2022).

Action-Object Knowledge. The knowledge of objects are often at the center of under-

standing human actions. Prior works in both NLP and vision communities, have studied

problems such as tracking visual object state changes (Alayrac et al., 2017; Isola et al.,

2015; Yang et al., 2022), understanding object manipulations and affordances (Shan et al.,

2020a; Fang et al., 2018), tracking textual entity state changes (Branavan et al., 2012a;
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Bosselut et al., 2018; Mishra et al., 2018; Tandon et al., 2020), and understanding textual

pre-/post-conditions from action instructions (Wu et al., 2023a). While hand-object inter-

actions (Shan et al., 2020a; Fu et al., 2022) are perhaps one of the most common object

manipulation schemes, the objects undergoing change may not be directly in contact with

the hands (see Figure 4.2). Here additional textual information can aid disambiguating the

active object during localization and tracking. In this spirit, our work marries the merits

from both modalities to tackle the active object grounding problem according to specific

task instructions, and utilize action-object knowledge to further improve the models.

Multimodal Grounding. In this work, we adopt the GLIP model (Li* et al., 2022; Zhang*

et al., 2022) for its compatibility with our settings and the joint inference framework, which

indeed demonstrate significant improvements for the active object grounding task. There

are many related works for multimodal grounding and/or leveraging language (LLMs) to

help with vision tasks, including (but not limited to) Grounding-DINO (Liu et al., 2023),

DQ-DETR (Liu et al., 2022a), ELEVATER (Li* et al., 2022), phrase segmentation (Zou*

et al., 2022), visually-enhanced grounding (Yang et al., 2023), video-to-text grounding (Zhou

et al., 2023), LLM-enhanced zero-shot novel object classification (Naeem et al., 2023), and

multimodal object description generations (Li et al., 2022a, 2023b).

4.3 Tasks and Terminologies

4.3.1 Technical Challenges

The Active Object Grounding Task. For both robotics and assistant in virtual or

augmented reality, the AI observes (or co-observes with the device wearer) the visual scene

in the first-person (egocentric) point of view, while receiving (or giving) the task instructions

of what actions to be performed next. To understand the context of the instructions as well

as engage in assisting the task performer’s actions, it is crucial to closely follow the key

objects/entities that are involved in the actions undergoing major state change.3 We term

these actively involved objects as objects undergoing change (OUC), and what facilitate

such state change as Tools.

3State change can come from objects’ physical properties such as composition, textures, and functionalities;
as well as attributes such as sizes, shapes, and physical affordances.
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Pre-Frame PNR-Frame Post-Frame

Use the spray nozzle(TOOL) to spray the car windshield(OUC).

Figure 4.2: Ego4D SCOD active grounding: Example object undergo change (OUC) due to the
instructed actions and associated Tools, spanning: the pre-condition, point-of-no-return (PNR) and post-
condition frames.

Challenges. For a standard phrase grounding model, such as GLIP (Li* et al., 2022;

Zhang* et al., 2022), it requires to know beforehand which entities and/or phrases in the

texts to be grounded. Furthermore, localizing objects that undertake drastic visual changes,

can often create out-of-distribution shifts in terms of recognizing the same objects (but

under different states). This cause severe challenges to perform standard phrase grounding

as it is hard to generalize to novel/unseen objects seamlessly. Our proposed framework

will be essentially addressing such an issue, where the symbolic world knowledge extracted

can provide more continuous grounding guidance. However, naively utilizing the symbolic

knowledge could lead to noisy multimodal alignment, where the generic contrastive learning

paradigm could fall short to capture subtle alignment between noisy textual descriptions

with the visual (regions). Our proposed framework aims at coping with this challenge,

by instructing the LLMs to produce concise and visually recognizable conditional symbolic

knowledge to facilitate the underlying multimodal alignment with much reduced complexity

while maintaining high diversity and principally decisive features.

4.3.2 Datasets

As there is not yet an existing resource that directly studies such active instruction ground-

ing problem in real-world task-performing situations, we re-purpose two existing egocentric

video datasets that can be seamlessly transformed into such a setting: Ego4D (Grauman

et al., 2022a) and Epic-Kitchens (Damen et al., 2018). Both come with per-time-interval

46



annotated narrations transcribing the main actions occurred in the videos.4

Ego4D: SCOD. According to Ego4D’s definition, object state change can encapsulate both

spatial and temporal aspects. There is a timestamp that the state change caused by certain

actions start to occur, i.e. , the point-of-no-return (PNR). Ego4D’s state change object

detection (SCOD) subtask then defines, chronologically, three types of frames: the pre-

condition (Pre), the PNR, and the post-condition (Post) frames, during a performed

action. Pre-frames capture the prior (visual) states where a particular action is allowed

to take place, while post-frames depict the outcomes caused by the action, and hence also

record the associated object state change. Each frame annotated with its corresponding

frame-type is further annotated with bounding boxes of the OUC (and Tools, if applicable),

that is required to be regressed by the models. Figure 4.2 shows an exemplar SCOD data

point.

Our re-purposed active grounding task is thus as follows: Given an instructed action and

one of a Pre/PNR/Post-typed frames, localize (ground) both the OUC(s) and Tool(s) in

the visuals. While the official SCOD challenge only evaluates the PNR frame predictions,

we consider all (Pre, PNR, and Post) frames for both training and inference.

Epic-Kitchens: TREK-150. TREK-150 object tracking challenge (Dunnhofer et al., 2022,

2021) enriches a subset of 150 videos from the Epic-Kitchens (Damen et al., 2018, 2022)

dataset, with densely annotated per-frame bounding boxes for tracking a target object. Since

the Epic-Kitchens also comprises egocentric videos capturing human performing (specifically

kitchen) tasks, the target objects to track are exactly the OUCs per the terminology defined

above. Hence, given an instructed action, the model is required to ground and track the

OUC in the egocentric visual scenes.5

It is worth noting that some OUCs may occasionally go "in-and-out" of the egocentric

point of view (PoV), resulting in partial occlusion and/or full occlusion frames where no

ground truth annotations for the OUCs are provided. Such frames are excluded from the

4The narrations are paraphrased as imperative instructions.

5Unlike Ego4D SCOD task, TREK-150 does not contain any defined Pre/PNR/Post frames. Our proposed
model is trained to perform joint inference and autonomously decide which of the pre- and post-conditions to
weigh more based on the frame image and instructed action. And hence, in the TREK-150 task, frame-type
information is not required.
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Pre-Frame

Dot-Product
Alignment Loss
(Object Scores)

Localization Loss
(BBox Regression)

PNR-Frame
Post-Frame

GLIP-(L) Model

Cut fish fillet(OUC) with a knife(TOOL).

PNR

Post

Pre

Per-Frame Logits

0.3

0.1

Image Encoder

Text Encoder(LLM) Symbolic 
Knowledge

Figure 4.3: Overview of proposed framework that comprises a base multimodal phrase grounding
model (GLIP), a frame-type predictor, a knowledge extractor leveraging LLMs (GPT), and predictions
supervised by both bounding box regression of the objects and their ranked scores.

final evaluation. And in Chapter 4.5.2 we will show that our proposed model is very successful

in predicting the objects when they come back due to the robustness of our symbolic joint

inference grounding mechanism.

4.4 Method

Figure 4.3 overviews the proposed framework, consisted of: (1) A base multimodal ground-

ing architecture, where we adopt a strong open vocabulary object detection module, GLIP (Li*

et al., 2022). (2) A frame-type prediction sub-component which adds output projec-

tion layers on top of GLIP to utilize both image (frame) and text features to predict of

which frame-type (Pre/PNR/Post) is currently observed. (Chapter 4.4.2) (3) A prompt-

ing pipeline that is engineered to extract useful action-object knowledge from an LLM

(GPT). (Chapter 4.4.2) (4) A per-object knowledge aggregation technique is applied

to GLIP’s word-region alignment contrastive training. (Chapter 4.4.3)

4.4.1 Adapting GLIP

GLIP (Li* et al., 2022; Zhang* et al., 2022) achieves open vocabulary object detection by

pretraining on a contrastive phrase grounding objective. Specifically, GLIP extends the

text(caption)-to-image dot product matching objective from CLIP (Radford et al., 2021)

to a word-region-level alignment objective. For some (tokenized) words of the textual
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Figure 4.4: Model architecture (knowledge-enhanced grounding): On the left depicts the word-
region alignment (contrastive) learning of the base GLIP architecture, where the model is trained to align
the encoded latent word and image features with their dot-product logits being supervised by the positive
and negative word-region pairs. On the right illustrates the enhanced object-knowledge grounding. During
training we apply an object-type dependent mask to propagate the positive alignment supervisions; while
during inference time the frame-type predictor (offline trained by the encoded textual and image features)
acts as a combinator to fuse dot product-logit scores from both (extracted) object phrases and corresponding
knowledge. (Note that for simplicity we do not fully split some phrases into individual words.)

description of an image, there are certain image region(s) that could be grounded to, while

other regions are viewed as the negative samples for the CLIP-like alignment contrastive

learning. During pretraining, GLIP utilizes both phrase grounding datasets (Ordonez et al.,

2011; Plummer et al., 2015; Sharma et al., 2018) and object detection datasets (Krishna

et al., 2017; Krasin et al., 2017; Shao et al., 2019).6

Contrastive Learning. We illustrate the GLIP training adapted to our task in Figure 4.4

left half. Notice that for simplicity we do not fully expand the tokenized word blocks, e.g. ,

"fish fillet" should span two words where each word ( fish" and "fillet") and its corresponding

region is all regarded as the positive matching samples. The model is trained to align the

encoded latent word and image features7 with their dot-product logits being supervised by

the positive and negative word-region pairs. The alignment scores will then be used to score

(and rank) the regressed bounding boxes produced by the image features, and each box will

feature an object-class prediction score. Concretely, for 𝑗th regressed box, its grounding

6The descriptions of object detection are a simple concatenation of all the available object class labels.

7For details of GLIP’s multimodal fusion technique, we refer the readers to Li* et al. (2022); Zhang* et al.
(2022).
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[OUC]: Spinach [Tool]: Sickle

[Caption]: Slash the portion of spinach with the sickle. 

Localizable Active Entities
► OUC: [Identify]: "a portion of spinach"  ➔  [Ground]: "spinach"

► Tool: [Identify]: "a sickle"  ➔  [Ground]: "sickle"

► OUC: [Desc.]: "Spinach is a leafy green vegetable."
► Tool: [Desc]:A sickle is a curved knife with a short handle, used for   
                cutting grain and other crops.

► OUC: [Pre-cond]: "fresh, green" + [Post-cond]: "diced, shredded"
► Tool: [Pre-cond]: "sharp, metallic" + [Post-cond]: "green, splattered"

Symbolic World Knowledge

OUC

Tool

ToolOUC

OUC

Tool

Targets

Identify OUC & Tool

Precise Semantic Grounding

Entity
Extraction

Instructional CaptionInput

OUC Tool

State Change Forecast

Object Description 

Knowledge
Extraction

Figure 4.5: The GPT knowledge extraction pipeline. Demonstrated through an example from the
Ego4D SCOD Dataset.

score to a phrase 𝑊 = {𝑤}1:𝑇 is a mean pooling of the dot-products between the 𝑗th region

feature and all the word features that compose such a phrase: S𝑏𝑜𝑥
𝑗 = 1

𝑇

∑︀𝑇
𝑖 I𝑗 ·W𝑖. In this

work, we mainly focus on the OUC and Tool object classes, i.e. , each textually-grounded

region will further predict whether it is an OUC or Tool class.

4.4.2 LLM for Action-Object Knowledge

Pipeline. As illustrated in Figure 4.5, we implement an LLM query pipeline to extract

active entities and relevant symbolic knowledge from an instructional caption. To account

for GPT’s verbose tendency, we forcibly instruct GPT to produce the active objects (OUC

and/or Tool) following a specifically designed format and then apply heuristic-based post-

processing to further refine the extractions. Conditioned on the extracted OUC (and Tool),

two additional queries are made to generate: (1) the symbolic pre- and post-conditions of

such objects induced by the actions, and (2) brief descriptions characterizing the objects and

their attributes. Interestingly, we empirically find it beneficial to situate GPT with a role,

e.g. , "From the first-person view."

GPT Intrinsic Evaluation. In Table 4.2, we automatically evaluate the OUC/Tool ex-

traction of GPT against the labelled ground truth entities in both datasets. We report both

exact (string) match and word overlapping ratio (as GPT often extracts complete clauses of

entities), to quantify the robustness of our GPT active entity extractions.

Table 4.3 reports human evaluation results of GPT symbolic knowledge, including pre-
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Examples Explanations

GPT: Pick up some green papers(OUC) from the table.
[No Tool]
Desc.: "Green papers are consultation documents issued
by government."

Without visual knowledge input, GPT is
not robust to phrase ambiguity, leading
to undesirable definition.

GPT: Cut the fish fillet(OUC) with a knife(TOOL)
OUC: [Pre-cond]: "fresh, raw" [Post-cond]: "sliced, cut"

Tool: [Pre-cond]: "Sharp, metallic" [Post-cond]: "Blunt,
distorted"

LLMs may hallucinate exaggerated state
changes, in this case claiming the knife to
be "blunt, distorted" after a single use,
which is unreasonable.

GPT: Hold the iron(OUC) on the ironing board with your
hand. [No Tool]
Ego4D gt-label: [OUC]: "pants" [Tool]: "iron"

"Pants" is not mentioned in the narra-
tion, GPT fails to capture OUC due to
text narration reporting bias.

GPT: Spin the mop(OUC) in the mop bucket spinner(Tool).
Ego4D gt-label: [OUC]: "mop" [Tool]: "mop"

GPT prediction is more reasonable com-
pared to the Ego4D ground truth label.

Table 4.1: Qualitative Analysis of GPT Knowledge Extraction: Examples of cases where GPT-
extracted symbolic knowledge are wrong or conflict with Ego4D annotations. Here the GPT-extracted or
dataset-annotated knowledge are displayed in GREEN if they match human analysis and RED otherwise.
Explanations for each example are provided on the right.

Object Ego4D SCOD TREK-150
Type EM (%) Overlap. EM (%) Overlap.

OUC 77.8 88.6 76.0 94.3
Tool 60.3 88.5 — —

Table 4.2: Automatic evaluation of GPT entity extraction. Abbreviations: EM: exact string
matching; Overlap: The ratio of GPT extractions fully covering the ground truth phrases

Knowledge Ego4D SCOD TREK-150
Type Textual Visual Textual Visual

Pre-Cond. 86.5 81.6 83.0 79.9
Post-Cond. 75.2 70.3 76.6 73.5

Desc. 98.9 91.4 99.2 95.3

Table 4.3: Human evaluation of GPT symbolic knowledge extraction. Abbreviations: Textual:
i.e. "textual correctness" "Based on text alone, does the GPT conds./desc. make sense?"; Visual: i.e.
"visual correctness": "Does the GPT conds./desc. match what is shown in the image?"

/post-conditions and descriptions. Evaluation is based on two binary metrics, namely: (1).

Textual Correctness: "Based on text alone, does the knowledge make sense?" and (2). Visual

Correctness: "Does the conds./desc. match the image?" Despite impressive performance on
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both intrinsic evaluations, we qualitatively analyze in Table 4.1 some representative cases

where GPT mismatches with annotations or humans, including cases where GPT’s answer

is actually more reasonable than the annotations.

Incorporating Knowledge:

Adding Knowledge. We use the following schema to enrich the instruction with the ob-

tained knowledge: "{instr.} [SEP] object/tool (pre/post)-state is {conds.} [SEP] object/tool

description is {desc.}", where [SEP] is the separation special token; {conds.} and {desc.}

are the pre-/post-condition and object definition knowledge to be filled-in. Empirically, we

find diffusing the post-condition knowledge to PNR frame yield better results. As Figure 4.4

illustrates (omitting some prefixes for simplicity), we propagate the positive matching labels

to object/tool’s corresponding knowledge. In the same training mini-batch, we encourage

the contrastiveness to focus on more detailed visual appearance changes grounded to the

symbolic condition statements and/or descriptions, by sampling frames from the same video

clips with higher probability.

Frame-Type Prediction. Using both the encoded textual and image features, we learn

an additional layer to predict the types of frames conditioned on the associated language

instruction. Note that the frame-type definition proposed in Ego4D should be generalizable

outside of the specific task, i.e. , these frame types could be defined on any kinds of action

videos. In addition to the annotated frames in SCOD, we randomly sub-sample nearby

frames within 0.2 seconds (roughly 5-6 frames) to expand the training data. The frame-type

prediction achieves a 64.38% accuracy on our SCOD test-set, which is then directly applied

to the TREK-150 task for deciding the amount of pre- and post-condition knowledge to use

given the multimodal inputs.

4.4.3 Object-Centric Joint Inference

Masking. As illustrated in Figure 4.4, a straightforward way to assign symbolic knowledge

to its corresponding object type respectively is to construct a per-object-type mask.

For example, an OUC mask M𝑂𝑈𝐶 will have 1s spanning the positions of the words from

condition (e.g. , "fresh,raw" of the OUC "fish fillet" in Figure 4.4) and descriptive knowledge,

and 0s everywhere else. We omit the knowledge prefixes in Chapter 4.4.2 (e.g. , the phrase

"object state is") so that the models can concentrate on grounding the meaningful words.
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Such mask for each object type can be deterministically constructed to serve as additional

word-region alignment supervisions, and can generalize to object types outside of OUC and

Tool (beyond the scope of this work) as the GPT extraction can clearly indicate the object-

to-knowledge correspondences. In other words, we enrich the GLIP’s phrase grounding to

additionally consider symbolic knowledge during the contrastive training. Note that the

mask is frame-type dependent, e.g. , M𝑃𝑟𝑒
𝑂𝑈𝐶 and M𝑃𝑜𝑠𝑡

𝑂𝑈𝐶 will focus on their corresponding

conditional knowledge.

Aggregation. During the inference time, we combine the frame-type prediction scores

S𝑓𝑟 with the per-object mask to aggregate the dot-product logit scores for ranking the

regressed boxes. Specifically, we have S𝑏𝑜𝑥
𝑂𝑈𝐶 =

∑︀
𝑓𝑟 S

𝑓𝑟 *M𝑓𝑟
𝑂𝑈𝐶 , where S is a 3-way logit

and 𝑓𝑟 ∈ {Pre,PNR,Post}.

4.5 Experiments and Analysis

We adopt the GLIP-L variant (and its pretrained weights) for all of our experiments, where

its visual encoder uses the Swin-L transformer (Liu et al., 2021). We train the GLIP-L

with our framework primarily on the SCOD dataset, and perform a zero-shot transfer to the

TREK-150 task.

4.5.1 Ego4D SCOD

Experimental Setups:

Data Splits. We split the official SCOD train set following a 90-10 train-validation ratio

and use the official validation set as our primary test set.8

Evaluation Metrics. Following the original SCOD task’s main settings, we adopt average

precision (AP) as the main evaluation metric, and utilize the COCO API (Lin et al., 2014)

for metric computation. Specifically, we report AP, AP50, (AP at IOU≥ 0.5) and AP75 (AP

at IOU≥ 0.75).

8The official test-set only concerns the PNR frame, and deliberately excluded narrations to make a vision
only localization task, which is not exactly suitable for our framework.
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Baselines:

We evaluate three categories of baselines: (1) Pure object detection models, where the

language instructions are not utilized. (2) (Pseudo) referential grounding, where certain

linguistic heuristics are used to propose the key OUCs. (3) GPT with symbolic knowl-

edge, where GPT is used to extract both the OUCs and Tools, with additional symbolic

knowledge available to utilize.

Pure Object Detection (OD). We finetune the state-of-the-art model of the SCOD task

from Chen et al. (2022) (VidIntern) on all types of frames (Pre, PNR, and Post) to serve

as the pure object detection model baseline, which learns to localize the OUC from a strong

hand-object-interaction prior in the training distribution. We also train an OD version of

GLIP providing a generic instruction, "Find the object of change.", to quantify its ability to

fit the training distribution of plausible OUCs.

Pseudo Grounding (GT/SRL). We experiment four types of models utilizing the in-

structions and certain linguistic patterns as heuristics: (1) We extract all the nouns using

Spacy NLP tool (Honnibal and Montani, 2017) and randomly assign OUC to one of which

(Random Entity). (2) A simple yet strong baseline is to ground the full sentence of the

instruction if the only object class to be predicted is the OUC type (Full-Instr.). (3) Fol-

lowing (2), we hypothesize that the first argument type (ARG1) of the semantic-role-labelling

(SRL) parses (Shi and Lin, 2019; Gardner et al., 2017) of most simple instructions is likely

regarded as the OUC ((SRL-ARG1)). (4) Lastly, to quantify a possible upper bound of

simple grounding methods, we utilize the annotated ground truth object class labels from

SCOD task and perform a simple pattern matching to extract the OUCs and Tools. For

those ground truth words are not easily matched, we adopt the ARG1 method from (3) (GT-

SRL-ARG1).

GPT-based. For our main methods leveraging LLMs (GPT) and its generated action-object

symbolic knowledge, we consider four types of combinations: (1) GPT with its extracted

OUCs and Tools. (2) The model from (1) with additional utilization of object definitions

(GPT+Desc.). (3) Similar to (2) but condition on generated pre- and post-conditions of

the objects (GPT+Conds.). (4) Combining both (2) and (3) (GPT+Conds.+Desc.).
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Base Type Method Objects Pre-Frame↑ PNR-Frame↑ Post-Frame↑
AP AP50 AP75 AP AP50 AP75 AP AP50 AP75

VidIntern OD — OUC 32.73 49.17 34.05 37.49 57.04 38.59 29.68 44.43 30.94
Tool 16.39 23.43 17.25 16.53 24.51 17.14 14.03 21.70 14.44

GLIP-L

OD — OUC 26.91 42.83 27.86 29.74 47.70 30.47 24.13 38.74 24.71

Instr.

Zero-Shot on GTs OUC 20.18 32.97 20.63 19.51 32.34 19.39 19.34 31.07 19.88
Random Entity OUC 25.90 42.17 26.20 26.85 44.21 26.80 24.45 39.17 25.10

Full-Instr. OUC 32.45 51.62 33.34 33.78 54.44 34.49 31.30 49.23 32.42
SRL-ARG1 OUC 36.41 54.93 37.65 38.32 58.07 39.41 33.59 49.99 34.90

GT-SRL-ARG1 OUC 37.87 56.35 39.55 39.64 59.41 40.73 34.97 51.34 36.69
Tool 45.53 71.22 46.27 43.70 68.96 44.54 43.76 69.56 44.04

GPT OUC 37.46 56.05 38.96 39.07 59.17 40.13 34.77 51.34 36.35
Tool 38.41 60.66 39.33 37.64 60.26 39.29 37.67 59.73 38.24

GPT+Desc. OUC 36.97 56.16 38.35 38.49 59.38 39.41 34.09 51.18 35.56
Tool 42.26 64.37 44.59 41.30 64.46 43.53 40.20 63.92 41.60

GPT+Conds. OUC 38.65 57.55 40.16 40.19 60.39 41.56 35.40 52.15 37.11
Tool 43.48 65.78 45.58 42.37 64.97 44.77 41.08 63.26 42.07

w/o obj.-mask OUC 37.59 56.28 39.19 39.09 59.31 40.58 33.93 50.80 35.38

GPT+Conds.+Desc. OUC 38.27 57.79 39.65 39.96 60.91 41.35 35.37 52.82 36.95
Tool 44.00 66.49 46.12 42.77 66.06 44.82 42.12 65.44 42.45

Table 4.4: Model performance on Ego4D SCOD. OD: pure object detection. Instr: grounding
with instructions. We highlight best OUC performance in RED for and best Tool performance in GREEN.

Results:

Table 4.4 summarizes the overall model performance on Ego4D SCOD task. Even using

the ground truth phrases, GLIP’s zero-shot performance is significantly worse than pure OD

baselines, implying that many of the SCOD objects are uncommon to its original training

distribution. Generally, the instruction grounded performance (Instr.) are all better than

the pure OD baselines, even with using the whole instruction sentence as the grounding

phrase. The significant performance gaps between our models and the VidIntern baseline

verifies that visual-only models can be much benefit from incorporation of textual information

(should they be available) for the active object grounding task.

Particularly for OUC, with vanilla GPT extractions we can almost match the performance

using the ground truth phrases, where the both the conditional and definition symbolic

knowledge further improve the performance. Notice that condition knowledge by itself is

more useful than the definition, and would perform better when combined. We also ablate

a row excluding the per-object aggregation mechanism so that the conditional knowledge is

simply utilized as a contextualized suffix for an instruction, which indeed performs worse,

especially for the post-frames. As implied in Table 4.4 , best performance on Tool is achieved
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using the ground truth phrases, leaving room for improvement on more accurate extractions

and search of better suited symbolic knowledge.

Method Top-K Post-Frame↑ OD Metric
AP AP50 AP75

Track from GT PNR 1 20.36 41.15 17.78
Track from Pred. PNR 1 10.21 21.27 8.63

GPT+Conds.+Desc. 1 29.85 43.53 31.45

Table 4.5: PNR to Post OUC tracking ablation study. Since tracking module only produce a
single box for each frame, we report the top-1 performance of our grounding model. (Normally COCO API
reports max 100 detection boxes.)

However, one may raise a natural question: if the OUC/Tool can be more robustly

localized in the PNR frame, would a tracker improve the post-frame performance over our

grounding framework? We thus conduct an ablation study using the tracker in Chapter 4.5.2

to track from PNR-frames using either the ground truth box and our model grounded box to

the post-frames. Results in Table 4.5 contradicts this hypothesis, where we find that, due to

viewpoint variations and appearance differences induced by the state change, our grounding

model is significantly more robust than using tracking.

Qualitative Inspections:

Figure 4.6 shows six different examples for in-depth qualitative inspections. It mainly shows

that, generally, when the models grounding with the symbolic knowledge outperforms the

ones without, the provided symbolic knowledge, especially the conditional knowledge, plays

an important role

4.5.2 TREK-150

Experimental Setups:

Protocols. TREK-150’s official evaluation protocol is One-Pass Evaluation (OPE),

where the tracker is initialized with the ground-truth bounding box of the target in the

first frame; and then ran on every subsequent frame until the end of the video. Tracking

predictions and the ground-truth bounding boxes are compared based on IOU and distance

of box centers. However, as the premise of having ground-truth bounding box initialization

can be generally impractical, a variant of OPE-Det is additionally conducted, where the
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Pour water on the trouser(OUC) from the jug(TOOL).

Post-Frame(A)

Post-Cond:(Wet,Soaked)

A pair of pants covering the lower half of the body…

Post-Cond:(Wet,Dripping)

A container with a narrow neck and a handle…

Sew the material(OUC) with the sewing
machine(TOOL) on the table.

Post-Frame(B)

Post-Cond:(Stitched,Textured)

A flexible material made by weaving or knitting…

Post-Cond:(Operational,Threaded)

A device used to stitch fabric or other materials…

Cut the cardboard(OUC) with the cutter(TOOL).

Pre/PNR-Frame(C)

Pre-Cond:(Smooth,Flat)

A stiff paper-based material used for packaging…

Pre-Cond:(Sharp,Metalic)

A tool used for cutting or trimming…

Close the car boot door(OUC).

Pre-Frame(D)

Pre-Cond:(Open,Wide)

The rear hatch or trunk lid that allows access to…

Plaster the cement(TOOL) on the wire
gauze(OUC) on the wall.

PNR/Post-Frame(E)

Post-Cond:(Cemented,Gray)

A thin metal mesh or grid used to support glassware.

Post-Cond:(Hardened,Solid)

A binding substance used in construction to bond…

Pick the hose(OUC) from the shelf(TOOL) with hand.

Pre-Frame(F)

Pre-Cond:(Neat,Coiled)

A flexible tube typically used for conveying water…

Pre-Cond:(Neat,Organized)

Horizontal surface used for storing or displaying…

Figure 4.6: Qualitative inspections, mainly on the effectiveness of the GPT generated symbolic
knowledge. Bounding box color code: Ground truth boxes, Models with uses of symbolic knowledge (MD-1),
i.e. the GPT+Conds.+Desc.; Models without uses of symbolic knowledge (MD-2), i.e. , the vanilla GPT.

first-frame bounding box is directly predicted by our trained grounding model (grounded to

the instructions).

Evaluation Metrics. Following Dunnhofer et al. (2022), we use common tracking metrics,

i.e. , Success Score (SS) and Normalized Precision Score (NSP), as the primary evaluation

metrics. In addition, we also report standard OD metric (APs) simply viewing each frame

to be tracked as the localization task, as an alternative reference.

Baselines:

We adopt the best performing framework, the LTMU-H, in the original TREK-150 paper as

the major baseline. LTMU-H integrates an fpv (first-person-view) object detector (HiC (Shan

et al., 2020b)) into a generic object tracker (LTMU (Dai et al., 2020)), which is able to re-

focus the tracker on the active objects after the (tracked) focus is lost (i.e. , identified by

low tracker confidence scores).

Following the convention of utilizing object detection models to improve tracking (Feicht-

enhofer et al., 2017), we focus on improving object tracking performance by replacing the

HiC-detector with our knowlede-enhanced GLIP models. We substitute the HiC-detector

for all 8 GLIP-based models and the VideoIntern baseline trained on the SCOD task and
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FPV OD BBox Rank. Method OPE-Det↑ OPE↑ Std. OD Metric↑
SS NPS SS NPS AP AP50 AP75

HiC MDNet LTMU-H 0.267 0.261 0.505 0.520 — — —
HiC MDNet TbyD-H 0.047 0.018 0.433 0.455 — — —

Swin-L + DINO VidIntern — 0.341 0.340 0.526 0.541 29.49 41.47 30.85

GLIP-L GLIP-L

Full-Instr. 0.355 0.361 0.521 0.537 38.51 60.06 40.17
SRL-ARG1 0.373 0.377 0.528 0.544 40.00 60.52 40.96

GT-SRL-ARG1 0.383 0.390 0.531 0.548 42.35 61.41 44.27
GPT 0.379 0.389 0.529 0.545 41.85 61.89 43.46

GPT+Desc. 0.402 0.409 0.528 0.543 41.40 60.70 43.17
GPT+Conds. 0.412 0.422 0.541 0.557 45.90 67.26 47.94

GPT+Desc.+Conds. 0.413 0.424 0.539 0.557 43.49 64.34 45.43

Table 4.6: Model performance on TREK-150. OPE denotes One-Pass Evaluation Dunnhofer et al.
(2022) and OPE-Det is a variant to OPE where each tracker is initialized with its corresponding object
detector prediction on the first frame. Success Score (SS) and Normalized Precision Score (NPS) are standard
tracking metrics.

perform a zero-shot knowledge transfer (directly from Ego4D SCOD).9

Results:

Table 4.6 summarizes the performance on TREK-150. Our best GLIP model trained using

GPT-extracted objects and symbolic knowledge outperforms the best HiC baseline by over

54% relative gains in the SS metric and over 62% relative gains in the NPS scores for

the OPE-D task. It also outperforms the VideoIntern baseline by 16-18% relative gains in

SS/NPS and even the GLIP-(GT-SRL-ARG1) model by 7-9% relative gains on both metrics.

This demonstrates the transferability of our OUC grounding model in fpv-tracking. For the

OPE task with ground-truth initializations, the gains provided by our GLIP-GPT models

over LTMU-H narrow to 7-8% relative gains across both metrics while still maintaining a

lead over all other methods. This shows that the model is still able to better help the tracker

re-focus on the OUCs although the overall tracking performance is more empirically bounded

by the tracking module.

4.6 Summary
In this work, we approach the active object grounding task leveraging two narrated egocen-

tric video datasets, Ego4D and Epic-Kitchens. We propose a carefully designed prompting

9Mainly because: (1) The general bounding box annotations in Epic-Kitchens videos are machine anno-
tated, and (2) we believe model learned from Ego4D’s more general visual domains should transfer well to
kitchen activities.
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scheme to obtain useful action-object knowledge from LLMs (GPT), with specific focuses

on object pre-/post-conditions during an action and its attributional descriptions. Enrich-

ing the GLIP model with the aforementioned knowledge as well as the proposed per-object

knowledge aggregation technique, our models outperforms various strong baselines in both

active object localization and tracking tasks.
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Part II

New Challenges for Multimodal

Assistive AI
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In the previous three chapters: we discuss the building blocks that are essential for a multi-

modal assistive AI to be able to give effective instructions to humans and guide them towards

the completion of the tasks. In the next two chapters, we will introduce two datasets that are

particularly constructed to evaluate models’ capabilities of utilizing multimodal and action

information to reason over counterfactuality and converse back and forth to help solving

users’ problems.

In Chapter 5, we collect a counterfactual video question answering (video QA) dataset

that aims at examining the models’ commonsense reasoning capabilities to infer outcomes

if certain realities are altered. This is crucial since humans perform such counterfactual

judgements frequently during performing a task. For example, questions such as "What if I

do not have the spatula to stir the onions?" or "If I had stopped the engine earlier, would I be

able to remove the trimmer’s cap more easily?", are commonly encountered as humans tend

to infer alternative solutions or retrospectively search for better solutions, for accomplishing

a desired task. We benchmark several strong video-language models on our collected dataset,

and highlight important future endeavours to make for relevant research directions.

Chapter 6 introduces a novel and interesting dataset that simulates the conversational

interactions between a user and an assistant AI within a (virtual) shopping environment.

The virtual AI assistant can co-observe the users’ egocentric viewpoints while conversing

with the users to provide assistance such as recommending products, giving navigational

guidance, and comparing items. The dataset is collected smartly in a two-phased pipeline

where an algorithmically planned dialogue set is generated with dense dialogue attribute

annotations, followed by human paraphrasing for more natural utterances. We propose

four subtasks along the curation of the dataset that emphasizes specifically on multimodal

grounding, tracing entities throughout the conversations, and action-condition dependencies

mining.
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CHAPTER 5

ACQUIRED: A Dataset for Answering

Counterfactual Questions In Real-Life Videos

5.1 Introduction

Multimodal counterfactual reasoning refers to the ability to imagine and reason about what

might have happened if certain conditions were different from what actually occurred based

on vision and language inputs. It involves mentally simulating alternative scenarios and

evaluating their potential outcomes. This cognitive process plays a crucial role in human

intelligence, as it allows us to understand causality, make predictions, and learn from past ex-

periences. For AI models, developing the capacity for counterfactual reasoning is a significant

area of research and a challenging task. By enabling AI models to engage in counterfactual

reasoning, we can enhance their understanding of causal relationships and their ability to

assess the impact of interventions or changes in conditions.

However, despite the significance of counterfactual reasoning, it remains a relatively un-

explored area of research. To assess the overall reasoning capabilities of models, several

visual question answering datasets have been proposed on both images (Antol et al., 2015;

Johnson et al., 2017) and videos (Yi et al., 2020; Xu et al., 2021). These datasets require rea-

soning skills such as commonsense reasoning, extracting human/object-to-object relations,

and inferring physical properties.

One specific dataset in the realm of counterfactual reasoning is CLEVRER (Yi et al.,

2020), which generates synthetic videos and associated questions in a controlled environ-

ment, featuring simulated object motion and rendered video frames. This dataset allows

for evaluating models using descriptive, explanatory, predictive, and counterfactual ques-
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If he tested the weight of the dolly before pushing it, it 
wouldn‘t have dragged him down the ladder.

If he tested the weight of the dolly before pushing it, he 
would have pushed it harder down the ladder.

Temporal

I could get my hands stained with the red sauce. 

What if I wasn't wearing gloves?

I could accidentally cut myself with the cutter.

Physical

3rd-Person

1st-Person

What if the man tested the weight of the 
dolly before pushing it?

Figure 5.1: The ACQUIRED dataset is a video question answering (QA) dataset that specifi-
cally focuses on counterfactual reasoning on diverse real-world events. Our dataset concerns three types
of commonsense reasoning dimensions: physical, social, and temporal, and encompasses videos from both
third-person (upper) and first-person (lower) viewpoints. Each question is curated with a correct and a
distractor answer. Each answer is by itself individually judgeable, and hence our dataset can be approached
in either binary True/False or multiple-choice setting.

tions, covering a wide range of reasoning scenarios. However, the data generation process in

CLEVRER is overly synthetic, limiting its effectiveness to assess models’ counterfactual rea-

soning abilities in realistic contexts. To address this limitation, TrafficQA (Xu et al., 2021)

focuses on real-world traffic event cognition and reasoning in videos, specifically targeting

scenarios like traffic accidents. It leverages crowdsourcing to gather diverse types of ques-

tions, including fundamental comprehension, counterfactual inference, and event forecasting.

Nevertheless, because TrafficQA concentrates solely on traffic events, it fails to encompass
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other real-life events, resulting in a substantial domain gap between TrafficQA and general

video datasets such as Kinetics (Kay et al., 2017; Smaira et al., 2020) and YouTube (Abu-

El-Haija et al., 2016; Zellers et al., 2022).

In this paper, we construct a benchmark that can evaluate the counterfactual reasoning

abilities of visual models on various kinds of real-world events. We introduce ACQUIRED1

that covers multiple dimensions of counterfactual reasoning and includes videos of both

egocentric and exocentric views. Specifically, based on videos in both Oops (Epstein et al.,

2020) and Ego4D (Grauman et al., 2022d), we crowd-source 11K questions over 3.7K videos

targeting physical, temporal, and social counterfactual reasoning. Both the Oops and Ego4D

datasets consist of human activities and interactions in numerous settings, making them ideal

sources for curating video question answering datasets. In addition, many videos contain

unintentional human actions (e.g. , the person accidentally falling down the ladder in Figure

5.1), which naturally enables people to come up with diverse what-if questions.

Inspired by Singh et al. (2021), we adopt a similar methodology for gathering counter-

factual questions. Each question consists of a pair of answers, with one being the correct

response and the other serving as a distractor. Importantly, the distractor answer repre-

sents a minimal contrastive counterpart to the correct answer. As we can see from examples

in Figure 5.1, the design of using complementary pairs requires the model to understand the

subtle differences between different options, which ensures that the model exhibits an intu-

itive grasp of counterfactual reasoning. In addition, having one distractor for each question

allows for testing models in either True/False or multiple-choice setting.

We extensively evaluate numerous strong language models such as GPT-4, as well as

state-of-the-art video-language models such as VALOR on our ACQUIRED dataset. The ex-

perimental results suggest that models struggle to effectively utilize the video contexts and

perform counterfactual reasoning, with multimodal models achieving only comparable and

sometimes inferior performance than language-only models. Moreover, the significant gap

between the human and model (>13%) performance highlights the challenging nature of our

task and room for improvements in visual counterfactual reasoning.

1Abbreviation of: Answering Counterfactual Questions In Real-Life Videos
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Dataset Visual Source Question Source
Reasoning Domain

CounterfactualPhysical Temporal Social

Image QA datasets
VQA Antol et al. (2015) Diverse Real-world Event Human ✓ ✗ ✗ ✗

CLEVR Johnson et al. (2017) Synthetic Object Automatic ✓ ✗ ✗ ✗

GQA Hudson and Manning (2019) Diverse Real-world Event Automatic ✓ ✗ ✗ ✗

VCR Zellers et al. (2019) Movie Human ✓ ✗ ✓ ✗

Video QA datasets
CLEVRER Yi et al. (2020) Synthetic Object Collision Automatic ✓ ✓ ✗ ✓

VLEP Lei et al. (2020) TV & YouTube Human ✓ ✗ ✗ ✗

MovieQA Tapaswi et al. (2016) Movie Human ✓ ✓ ✓ ✗

MSRVTT-QA Xu et al. (2017) Diverse Real-world Event Automatic ✓ ✗ ✗ ✗

TGIF-QA Jang et al. (2017) Tumblr GIF Automatic & Human ✓ ✓ ✗ ✗

MarioQA Mun et al. (2017) Gameplay Video Automatic ✓ ✓ ✗ ✗

TVQA Lei et al. (2018) TV Human ✓ ✓ ✗ ✗

Social-IQ Zadeh et al. (2019) YouTube Human ✗ ✗ ✓ ✗

TrafficQA Xu et al. (2021) Traffic Event Human ✓ ✓ ✗ ✓

NExT-QA Xiao et al. (2021) Diverse Real-world Event Human ✓ ✓ ✗ ✗

Causal-VidQA Li et al. (2022b) Diverse Real-world Event Human ✓ ✗ ✗ ✓

ACQUIRED Diverse Real-world Event Human ✓ ✓ ✓ ✓

Table 5.1: Comparisons of different visual question answering datasets. ACQUIRED is the first to feature
all the dimensions.

5.2 Background and Related Work

We will overview three lines of relevant research to this chapter: visual question answering,

visual understanding models, and counterfactual reasoning.

Visual Question Answering Datasets. In Table 5.1, we list several representative vi-

sual QA datasets as well as their key features. The Visual Question Answering (VQA)

dataset (Antol et al., 2015) is one of the pioneering works in this direction and has been a

standard benchmark for evaluating the reasoning ability of image-language models (Goyal

et al., 2017). Follow-up datasets such as CLEVR (Johnson et al., 2017) and GQA (Hudson

and Manning, 2019) automatically construct compositional questions over real or synthetic

images and perform the evaluation in a systematic way. To further evaluate the common-

sense reasoning ability of models, VCR (Zellers et al., 2019) crowd-sources commonsense

question-answer pairs associated with rationales over static images extracted from movies.

Video question answering is more challenging than image question answering and is gain-

ing increasing attention from the research community, leading to several video QA datasets

being constructed (Lei et al., 2020; Tapaswi et al., 2016; Xu et al., 2017; Jang et al., 2017;

Mun et al., 2017; Lei et al., 2018). Among them, CLEVRER (Yi et al., 2020) improves upon

CLEVR and uses programmatically generated videos capturing collisions of synthetic objects

65



to evaluate the model reasoning abilities along multiple dimensions. Social-IQ (Zadeh et al.,

2019) and TrafficQA (Xu et al., 2021) employ videos depicting real-world events, wherein

Social-IQ primarily emphasizes human social interactions, while TrafficQA focuses on traf-

fic events and accidents. To improve the diversity of the captured events, NExT-QA and

Causal-VidQA collect videos from diverse domains and have human-annotated questions

targeting different dimensions of reasoning.

As can be seen in Table 5.1, among all the visual QA datasets, there are only a few that

attempt to evaluate the counterfactual reasoning abilities of models. In addition, the existing

benchmarks are often limited in terms of the video sources and the question types, making it

difficult to evaluate the model performance in a diverse real-world setting. ACQUIRED is the

first dataset that can comprehensively evaluate the model counterfactual reasoning abilities

spanning three distinct dimensions (i.e. , physical, social, and temporal) and cover videos

that include a wide range of event types and from different viewpoints.

Visual Understanding Models. The creation of visual QA benchmarks allows for the

development of visual understanding models. Many of the previous works have tried to solve

these tasks using compositional approaches and scene graphs (Santoro et al., 2017; Hu et al.,

2017; Hudson and Manning, 2018; Perez et al., 2018; Yi et al., 2018; Shi et al., 2019; Gao

et al., 2020; Ding et al., 2021). For example, Hu et al. (2017) propose to train a modular

network in an end-to-end manner to achieve both effectiveness and interpretability; Hudson

and Manning (2018) utilize scene graphs and perform differentiable neural operations on

the graphs to perform visual reasoning. Inspired by the success in pretraining on Internet-

scale data (Devlin et al., 2019), pretraining models on large vision and vision-language tasks

and then finetuning them on specific downstream tasks has become a standard in tackling

visual understanding tasks (Sun et al., 2019; Li et al., 2020a; Zhu and Yang, 2020; Lei et al.,

2021; Zellers et al., 2021b; Fu et al., 2021; Zellers et al., 2022; Wu et al., 2021, 2023b; Zhou

et al., 2023). Existing works in this direction generally train models on large vision-language

datasets with objectives such as masked language modeling and video-text matching. Despite

the great progress in this direction, it is unclear if these models can perform counterfactual

reasoning. To address this, we benchmark ACQUIRED against state-of-the-art models and

systematically study their performance.

Causal and Counterfactual Reasoning. Humans can infer how an event would have
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unfolded differently without experiencing this alternative reality and it has been a long-

standing research topic in cognitive psychology (Van Hoeck et al., 2015). To empower such

an important ability to artificial intelligence, researchers have tried to build learning models

that can infer causal relations and perform reasoning in various fields (Qin et al., 2019; Yi

et al., 2020; Baradel et al., 2020; Abbasnejad et al., 2020; Yue et al., 2021; Wang et al., 2021).

Our constructed benchmark provides a valuable resource for developing and evaluating visual

models with counterfactual reasoning abilities.

5.3 The ACQUIRED Dataset

5.3.1 Dataset Design & Collection

Problem Definition. As illustrated in Figure 5.1 and Table 5.2, each data point in ACQUIRED

consists of a video and corresponding annotated question and answer pairs. We are inspired

by prior works (Clark et al., 2019; Singh et al., 2021) to consider the surprisingly difficult

nature of the T/F (yes/no) QA formats that could potentially exhibit less unintended bi-

ases/artifacts than curating data in the multiple choice (MCQ) settings. In light of this, for

each question, we collect one correct and one distractor answer (which can be a slightly

perturbed version of the correct one), where both of which are individually judge-able by

themselves respectively. And hence, our dataset can be approached as a binary True/False

(T/F) prediction task as well as a multiple-choice (MCQ) (2 choices in this case) question

answering task.

It is worth noting that the distractors in our dataset are manually curated with certain

twists towards the correct answers (examples in Table 5.2), forcing the models to truly

understand the visual concepts involved in the counterfactual questions in order to answer

correctly.

In Chapter 5.5.2, we will describe our adoption of a pairwise consistency metric that

requires the model to answer correctly in both correct and distractor directions to be regarded

as a success, in order to reduce the models’ exploiting surface-level heuristics to predict the

answers.

Commonsense Dimensions. We adopt the commonsense knowledge categorization pro-

posed in (Singh et al., 2021), which is inspired by the Theory of Core Knowledge (Spelke
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Sub-sampled Key Video Frames Question-Answer Pairs

(Temporal) Q: What if the two persons had
swerved to their left before reaching the shore?
Correct: They would not have had a beach land-
ing.
Wrong: They would have had a beach landing.

(Social) Q: What if the skier was a stranger to
the two people standing still?
Correct: The skier does not throw the snowball.
Wrong: The skier still throws the snowball.

(Physical) Q: what if the wheel was in a bike?
Correct: He would need to take out the screw
before being able to set the wheel on the table
Wrong: He would set the whole bike along with
the wheel on the table.

(Physical) Q: What if I let the cutting board
lie on the counter?
Correct: The cutting board would be dried
slower.
Wrong: The cutting board would be dried
quicker as it occupies a larger area.

Table 5.2: Sample data points of our dataset.

and Kinzler, 2007)2, to collect QAs that focus on the following three dimensions: physical,

social, and temporal. The physical dimension concerns the knowledge of objects involved

in the events and their properties (e.g. , shape, size, functionalities, affordances), as well

as the motion and location of the events. The social dimension looks at human social be-

haviors, particularly attributes such as personality, emotions, inner interests/intentions, and

social activities.3 The temporal dimension regards the aspects of events/activities in their

temporal orderings, duration, and frequency/speed of motions.

The three main dimensions are the building blocks towards a comprehensive commonsense

reasoning, and helps systematically analyze in which aspects the models need to be improved

upon more. Although some questions can be answered using more than one commonsense

2The capability of reasoning about physical objects, places, motions, and the social world.

3As most videos from Ego4D show tasks performed solely by the camera wearer without social interactions,
we do not require the social dimension to be annotated.
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Requirement: Video Relevancy 

Qualification Round(s)

Workers

Adversarial Game

Model Feedback

Per-Batch Iterative
Model Finetuning

Submit & Getting Rewards

Data Quality Validation

(Periodic) Tips & Human Feedback

Trained TextQA Model

Storage

Figure 5.2: Data collection workflow.

dimension, we ask the annotators to label with the main one used.

Video Resources & Sampling. We utilize the Oops! (Epstein et al., 2020) dataset for

third-person view videos and Ego4D (Grauman et al., 2022d) for first-person views, where

both of which feature text descriptions of the video contents. Oops! concerns predicting

the failing (oops) moment of an intended action in a video, and hence is event-rich and a

good testbed for reasoning what could the outcomes turned out differently. Ego4D collects

videos of humans performing daily activities in the first-person view, which adds a desirable

task-knowledge layer on top of its event-richness.

As we are annotating subsets of videos from the aforementioned sources, we have the

privilege to encourage a more balanced key events distribution from the videos to be anno-

tated. Specifically, we (1) use NLP tools such as semantic role labeling (SRL) to extract key

verbs (events) for each video description4, and group the videos accordingly, (2) each time

sample an event group with a probability inverse proportional to the current launched key

event distribution, (2) sample a video from the event group in (3), and repeat until reaching

a desired number of videos (to be annotated).

The sampling strategy, combined with our pre-defined reasoning dimensions and video

domains, is designed to improve the diversity of question-answer pairs.

Collection Workflow. We collect our dataset via Amazon Mechanical Turk (MTurk).

Each MTurk worker is asked to carefully watch a given video for creating the QA pairs. As

depicted in Figure 5.2, our dataset collection process comprises four main steps: (1) We

4We use the originally annotated narrations in Ego4D.
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design a qualification questionnaire focusing on examining one’s understanding of the

key concepts in our problem design, i.e. , the concept of counterfactuality, the requirement

of video relevancy, common sense reasoning dimensions, and what types of QA pairs are

more desirable. (2) Once the workers pass the qualification test, they are directed to an

interface where a pretrained (text-only) QA model is deployed in the loop of the QA

creation process. Bonus monetary rewards are given if the deployed model fails to predict

correctly the creations. (3) Internal members then conduct a quality validation on the

created samples and provide customized tips and/or feedback to the workers for potential

improvements. (4) Lastly, our deployed model is iteratively finetuned on the validated

samples after each batch of annotations, which results in a constantly improved model to

incentivize more challenging sample creations.

Integrating the model-in-the-loop protocol into the pipeline not only brings benefits in

curating more challenging samples, but also helps diversify the answers as the models will

not be easily fooled if there are similar patterns existed in the dataset or the questions can

be simply guessed without visual inputs.

Quality Validation. In order to further ensure the sample quality as well as summarize

common mistakes to provide custom human feedback to the annotators, our internal members

conduct the second-phase manual sample validation in conjunction with the deployed model

results. We cross-validate the annotations among our internal members in the ramping-up

phase to ensure quality. We also accumulate detailed guidelines from our manual validation

process for providing effective feedback. After scaling up, we continue to validate the an-

notations via uniform subsampling across each annotator. Our validation criteria are well

aligned as can be seen in the high 0.85 Kappa score for commonsense dimension agreements;

and 0.91 overlapping ratios for video relevancy.5

Validation Analysis. Table 5.3 reports the data drop-rates (majority voted to drop by

all three validators) for the first 5 batches. We hope these rigorous safety checks can ensure

a good data quality that also closely follows our guideline, and the validation should by no

means introduce unnecessary biases as we indeed saw a decrease in the dropping rates in our

5We did not use Kappa score for video relevancy because there is an unbalanced "agreed" distribution of
"yes" and "no" (22:1) in our validation results for this criteria, which would result in unfair Kappa score.
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Batches Annotation Drop-Rate (%) Number of Videos

Batch-1 28 50
Batch-2 17.3 100
Batch-3 4.3 200
Batch-4 3.5 200
Batch-5 2.6 200

Table 5.3: Annotation drop rate for the first 5 batches. Each video gives 3 pairs of question - cor-
rect/distractor answers.

later collection batches.

5.3.2 Dataset Statistics

General Statistics. Table 5.4 summarizes the essential statistics of the collected dataset,

where Table 5.4a is for videos obtained from the Oops! (Epstein et al., 2020) dataset

whereas Table 5.4b is for videos from Ego4D (Grauman et al., 2022d). The frame-per-second

rate (FPS) of videos from either source is mostly 30.

Key Annotated Events. We plot the distributions of most frequent key verbs (for main

event types) and nouns (for entities involved in events) in Figure 5.3a and Figure 5.3b,

respectively, to have a rough visual inspection of the diversity of the created samples. The key

verbs/nouns are firstly determined by the SRL parses of the question and answer sentences

(separately considered), and followed by lemmatization. Both plots are summaries of the

two video sources.

Deployed Model. Table 5.5 reports the model fooling rates in our collected data across the

two data sources. We encourage our annotators to develop QA pairs that can successfully

fool our model by setting up monetary rewards and unlimited trials.

5.4 Benchmarking Models
We benchmark our dataset with both state-of-the-art language-only and vision-language

models. Specifically, we perform experiments with DeBERTa (He et al., 2021), UnifiedQA (Khashabi

et al., 2020), VIOLET (Fu et al., 2021), VALOR (Chen et al., 2023), and VL-Adapter (Sung

et al., 2022) on our dataset.

Language-Only Models. While ACQUIRED is a multimodal dataset that has both vision

and language inputs, previous works (Thomason et al., 2019) have pointed out that unimodal
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Type Counts

Total Unique Videos 2,664
Total Unique QA-Pairs 7,853

Type-Token Ratio 0.0158
Verb-Token Ratio (total # verb-types) 0.0341

Verb-Token Ratio (total # tokens) 0.0034
Noun-Token Ratio (total # noun-types) 0.0796

Noun-Token Ratio (total # tokens) 0.0063
Physical / Social / Temporal (%) 34 / 33 / 33

Type Mean Std Max Min

Tokens in a Question 11.5 3.5 39 5
Tokens in an Answer 8.2 6.6 60 5
Video Frames (Count) 296.8 207.3 3283 74
Video Duration (sec) 10.7 7.1 111.6 3.2

(a) Videos from Oops!

Type Counts

Total Unique Videos 1,038
Total Unique QA-Pairs 2,695

Type-Token Ratio 0.0205
Verb-Token Ratio (total # video-types) 0.0586

Verb-Token Ratio (total # tokens) 0.0045
Noun-Token Ratio (total # noun-types) 0.1054

Noun-Token Ratio (total # tokens) 0.0081
Physical / Social / Temporal (%) 77 / 0 / 23

Type Mean Std Max Min

Tokens in a Question 11.1 3.3 32 6
Tokens in an Answer 9.4 6.0 41 5
Video Frames (Count) 399.1 54.8 572 240
Video Duration (sec) 13.3 1.8 19.3 8

(b) Videos from Ego4D

Table 5.4: General statistics of the two video domains.

Videos From Avg. Fool Rate (%) Avg. Fool Accuracy

Oops! 57.69 42.31
Ego4D 51.43 48.57

Table 5.5: Deployed model fooling rates during collection.

models can sometimes achieve surprisingly strong performance because of the annotation

bias. Therefore, we evaluate both DeBERTa-v3 (He et al., 2021) and the UnifiedQA model
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(a) Verbs (b) Nouns

Figure 5.3: Top-40 frequent word-types in the dataset.

family (Khashabi et al., 2020) (state-of-the-art question answering models based on the T5

architecture (Raffel et al., 2020)) on our dataset, which can reflect the dataset biases and

provide an important reference point for multimodal models. The language-only models

answer the textual questions without looking at the videos.

Inspired by the superior performance of the recent large language models, i.e. , the GPT

model from OpenAI, we also evaluate its zero-shot performance on the textual parts of our

dataset. Specifically, we consider both ChatGPT (OpenAI, 2023a) and GPT-4 (OpenAI,

2023b). In addition, we further include a version of GPT models that can condition on pre-

annotated descriptions describing the general contents of the videos, to serve as the pseudo

visual (and situated) contexts of the questions.

VIOLET (Fu et al., 2021). VIOLET is a video-language model that has three compo-

nents, including a video encoder (Swin Transformer-base (Liu et al., 2022b)), a language

encoder (BERT-base (Devlin et al., 2019)), and a cross-modal transformer module that

performs cross-modal fusion. The video and language encoders extract features from the

video and language inputs respectively, and the extracted features are then fed into the

cross-modal transformer for cross-modal interactions. VIOLET is pretrained on large-scale
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video-text data with masked language modeling that predicts the original word tokens given

the masked inputs, masked visual-token modeling (MVM) that recovers the masked video

patches conditioned on the unmasked video and language inputs, visual-text matching that

aims to align the paired video-text inputs between video and text modality.

VALOR (Chen et al., 2023). VALOR is a recently proposed multimodal model that

can take video, language, as well as audio as inputs. Similar to VIOLET, VALOR also first

encodes vision, audio, and text inputs separately, and the encoded features are then fed into

a multimodal decoder for text generation. VALOR demonstrates strong performance across

a wide range of tasks, including video retrieval, video captioning, video question answering,

audio-visual captioning, text-to-audio retrieval, and audio captioning.

VL-Adapter (Sung et al., 2022). VL-Adapter uses a pretrained vision encoder (e.g.

CLIP (Radford et al., 2021)) to extract vision features and feed the vision features as well as

text tokens to a pretrained language model (e.g. T5 (Raffel et al., 2020)) so that the model

can take both vision and language information. When adapting the model for downstream

tasks, because it can be costly to finetune all the model parameters, VL-Adapter investi-

gates different adapter-based parameter-efficient finetuning strategies and demonstrates that

training the adapter allows them to only update a rather small portion (e.g. 4%) of total

parameters and match the performance of finetuning the entire model. Because VL-Adapter

supports different combinations of pretrained vision and language encoders, we employ dif-

ferent versions of CLIP-ViT-B/16 and UnifiedQA-Large as the vision and text encoders.

5.5 Experiments and Analysis

5.5.1 Training and Implementation Details

We obtain the pretrained weights of all the benchmarking models from their respective open-

sourced releases and finetune them on our official training data split. The hyperparameters

are manually tuned for each model, and the checkpoints used for testing are selected by their

validation performance.
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5.5.2 Experimental Setup

Data Splits. For our official (to-be-released) dataset, we follow a 45 − 5 − 50 ratio and

randomly split the train-development-test datasets. The train split is mainly to adapt models

to our QA task settings as well as the counterfactual reasoning style. We ensure that there

are no overlaps between videos of different sets and the Oops! and Ego4D videos are equally

distributed in each of the splits.

Evaluation Metrics. Models are evaluated by a simple accuracy metric, for both T/F

and MCQ settings. We also further ablate the model performance along the commonsense

dimensions and/or viewpoints, for a more detailed performance breakdown and analysis. We

also include the pairwise accuracy in the T/F setting following Singh et al. (2021), where

the model is considered correct if both individual judgments are correct in each pair.

Training Details. All the models in this work are trained on multi (at least 2-4) Nvidia

A100 GPUs6 on a Ubuntu 20.04.2 operating system.

We train our models until performance convergence is observed on the training split

(determined by the development set performance). All of the hyperparameters are manually

tuned and searched, with multiple trials for better performance and training convergences.

5.5.3 Experimental Results

Table 5.6 reports benchmark performance. The best-performing multimodal model (VL-

Adapter) performs slightly better than its text-only counterparts, UnifiedQA-large (i.e. ,

the language encoder of our VL-Adapter). While this shows that visual contexts and mul-

timodality are effective, the performance gap is not substantial; therefore, there is room

for improvement, and more effective methods of multimodal inputs are yet to be explored.

While text-only UnifiedQA-3B achieves overall better performance in both T/F and MCQ

settings, potentially due to its much larger learnable parameter space, its mediocre pairwise

accuracy suggests that the model is still inept at robust counterfactual reasoning in the two

facets of the same question.

In general, models perform better in the MCQ settings than the T/F ones. This is

intuitive because in the MCQ settings, the model is aware that only one of the two given

6https://www.nvidia.com/en-us/data-center/a100/
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Modality Model QA-Format Viewpoints Accuracy↑ (%) Dimension Breakdowns
Physical Social Temporal

Text-Only

DeBERTa-V3 T/F — 70.12 70.61 70.32 69.19
MCQ — 70.35 72.10 68.62 69.01

UnifiedQA-base T/F — 68.93 70.22 69.32 66.33
MCQ — 67.63 68.53 69.01 65.13

UnifiedQA-large T/F — 69.59 71.00 69.88 67.18
MCQ — 70.38 71.57 71.83 67.38

UnifiedQA-3B
T/F — 70.49 70.58 72.20 68.99

T/F (Pair.) — 54.91 55.31 56.21 53.26
MCQ — 73.40 73.36 75.80 71.60

Vanilla ChatGPT T/F — 52.80 51.36 48.06 54.04

Desc.-ChatGPT T/F — 55.20 50.82 52.90 52.48
MCQ — 42.40 36.96 43.22 47.83

Vanilla GPT-4 T/F — 53.80 53.89 53.16 54.32

Desc.-GPT-4 T/F — 56.20 55.00 58.23 55.56
MCQ — 60.80 61.41 55.48 65.22

Multimodal

VIOLET
T/F All 66.15 70.20 64.45 60.24

T/F (Pair.) All 48.25 54.03 44.60 40.63
MCQ All 69.33 70.20 70.23 67.19

VALOR
T/F All 63.83 66.54 62.50 60.02

T/F (Pair.) All 43.00 46.51 42.46 37.26
MCQ All 55.06 58.28 51.76 51.69

VL-Adapter

T/F
All 68.75 71.56 67.94 64.40
3rd 66.32 66.01 67.90 65.07
1st 72.63 75.49 — 62.82

T/F (Pair.)
All 51.19 54.27 49.56 47.74
3rd 47.82 47.60 49.50 46.40
1st 60.40 62.23 - 53.44

MCQ
All 71.53 72.70 70.39 70.25
3rd 69.13 67.63 70.35 69.48
1st 75.34 76.29 — 72.05

Human T/F All 83.60 81.82 100 77.27
T/F (Pair.) All 77.78 72.73 100 54.55

Performance MCQ All 92.59 90.91 100 90.91

Table 5.6: Model benchmarking performance on our ACQUIRED dataset.

options is correct and only needs to compare them and select the more reasonable option.

(Such a phenomenon is also studied/discovered in (Clark et al., 2019; Singh et al., 2021))

In the case of ChatGPT, its MCQ setting accuracy is lower than that of the T/F setting

compared to others. We suspect that ChatGPT might have a weaker reasoning ability

compared with GPT4. We observe that often ChatGPT refuses to give an answer in the

MCQ settings because of insufficient conditions while it leans towards false when it was asked

the same question in a T/F setting.
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Perhaps surprisingly, despite the remarkable capabilities of the GPT series, they do not

perform as impressively, even when provided with descriptions transcribing the major visual

events in the videos. This suggests that the annotators in our curation task indeed closely

examine many visual details in order to create more challenging samples.

Human Performance. We randomly sub-sample 500 videos to estimate human perfor-

mance: these are reported in the last two rows of Table 5.6. The human performance

highlights a significant gap above all the model results, especially for the MCQ settings. We

hope future modeling endeavors can close the gap in visual counterfactual reasoning.

Commonsense Dimensions. The rightmost parts of Table 5.6 report the performance

breakdown along commonsense reasoning dimensions. We observe a general trend: most

of the models perform better in physical and social dimensions compared to the temporal

dimension; the physical dimension generally exhibits the highest performance. That obser-

vation implies that, even after being finetuned on our dataset, the models still fall short

of capturing temporal commonsense as opposed to the other two kinds of knowledge. This

can also be hypothetically attributed to the fact that the pretraining data for the language

models encapsulate more physical and/or human social knowledge.

Viewpoints. We take the best-performing multimodal model (VL-Adapter) and ablate its

performance along different video viewpoints. We find that, despite being pretrained mostly

on third-person viewpoint videos, the generalization ability of the models towards first-

person viewpoints is sufficiently good. However, as the videos from Ego4D are not intended

to explicitly contain failed actions from the camera wearers, it could be more challenging for

our annotators to construct diverse and subtle counterfactual questions as compared to the

videos from Oops!. Nevertheless, we argue that the counterfactual reasoning ability of the

models should be equally crucial regardless of video viewpoint, and our dataset can inspire

relevant research serving as a first-of-its-kind counterfactual video QA encapsulating videos

from varying viewpoints.

5.6 Summary
In this work, we present a novel counterfactual-reasoning-focused video question answering

dataset, named ACQUIRED. The dataset provides questions about counterfactual hypotheses

over visual events (videos). We collect a correct and a distractor answer for three com-
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monsense reasoning dimensions: physical, social, and temporal. We benchmarked various

state-of-the-art language models (including LLMs like GPT) and video-language models on

the collected dataset, where the results demonstrate algorithm performance well below hu-

man performance (>13% accuracy). We hope our studies and the collected ACQUIRED dataset

can spur relevant future research, specifically on testing multimodal models’ capabilities in

counterfactual reasoning, devising assistive AI for remedial and/or cause estimation of ob-

served failures, and more sophisticated visual event understanding and reasoning.
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CHAPTER 6

SIMMC-VR: A Task-oriented Multimodal

Dialog Dataset with Situated and Immersive VR

Streams

6.1 Introduction
With the growing popularity of smart glasses, studies on visually grounded conversational

agents have gained significant interest. For instance, SIMMC-2.0 (Kottur et al., 2021) in-

troduces an image-grounded, task-oriented dialog (TOD) dataset where an assistant agent

co-observes the user’s egocentric viewpoint to aid with user requests. Many follow-up works

(Huang et al., 2021b; Lee et al., 2022; Chiyah-Garcia et al., 2022) focus on challenges around

dialog-image grounding, such as visual coreference resolution (e.g. ‘the yellow dress behind

the rack ’) of a static image.

However, several technical gaps still remain in applying prior work to build a real-world,

situated multimodal assistant (Figure 6.1). For instance, a typical multimodal user-assistant

scenario (with a video capturing capability) would include (1) spatial and temporal language

references as grounding contexts (‘the shirt I saw earlier when I entered the store’), (2) ac-

tively perceived egocentric motions as part of conversation contexts (“No – turn around

the other way"), (3) references to conversational memories from past sessions (‘the one I

bought earlier’, the ‘black coat ’ in Figure 6.1 being retroactively mentioned by both the as-

sistant and the user), etc. While these scenarios are perceived as the expected capabilities of

a next-generation multimodal assistant, our survey of datasets (Sec. 6.2) highlights that due

to the static and constrained nature of the datasets’ grounding context, they lack sufficiently

complex interactions.
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I recommend the black coat 
in front of you on the wall.

INFORM:GET:COAT

Dialog Acts

Multimodal Coref.

I would want a coat that goes well 
with the blue dress I liked.

USER

Assistant
INFORM:COMPL:COAT

Do you have something like it 
but in light grey?

Yes, pivot to your left and move forward …
You can get closer to the light grey coat.

REQUEST:REFINE:COAT

NAVIGATIONAL   INSTR.

Frame 12.

Frame 178.

Frame 339. Frame 364. Frame 422.

Frame 451.
I like the black coat better than 
this one, is it my size?

I think so, the coat is a large and comes 
with other sizes, too.

INFORM:PREFER:COAT

INFORM:GET:COAT.size

Figure 6.1: SIMMC-VR is a Situated Interactive Multi-Modal Conversation dataset that features
task-oriented user↔assistant dialogs streamed immersively in a virtual-reality (VR) environment. The
dataset is created on programmed realistic shopping scenarios and actively-rendered photorealistic user
visual observations, which brings new challenges for complex spatial-temporal reasoning on the multimodal
interactions (visual cues and grounded-dialogs).

To this end, we present SIMMC-VR, a video-grounded task-oriented dialog dataset compris-

ing 4𝐾 user↔assistant task-oriented dialogs (95.3𝐾 utterances) grounded on diverse photo-

realistic VR video streams (4.8𝑀 frames). For data collection, we propose a novel two-stage

approach with: (1) a multimodal interaction simulator that generates egocentric VR streams

grounded on object-centric multimodal dialog flows, and (2) a manual paraphrasing step for

naturalness and diversity while preserving multimodal dependencies between visual scenes

and their grounding language. Our pipeline allows for flexible and cost-effective data col-

lection, easily extendable to simulate any other domains given the availability of 3D virtual

assets.
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To measure progress towards real-world applicability, we propose four SIMMC-VR tasks

that address new challenges in complex spatio-temporal dialog reasoning. We then extend

state-of-the-art multimodal models to the SIMMC-VR tasks and discuss the limitations of

current models.

Our contributions are as follows: (1) we present SIMMC-VR, a video-grounded task-oriented

dialog dataset (95𝐾 utterances over 4.8𝑀 frames) targeted towards real-world applications

for an assistant on smart glasses. (2) We propose the tasks with complex spatio-temporal

conversational dependencies, and benchmark them by extending the state-of-the-art multi-

modal models. (3) Our data collection platform allows creation of a similar dataset in any

target domains.

6.2 Background and Related Work
The proposed work in this chapter addresses unique requirements for a task-oriented assistant

on smart glasses, making it a first-of-its-kind – while complementing other related works

within multimodal NLP.

SIMMC (Moon et al., 2020; Kottur et al., 2021) is a class of research areas that the proposed

work builds upon, which addresses using virtual environments to simulate a co-observing

multimodal dialog agent. Moving away from the sanitized and static scenes that they concern

for the limited use cases, SIMMC-VR introduces several additional challenges as summarized

in Section 6.3.3.

Several models (Kung et al., 2021; Senese et al., 2021; Lee and Han, 2021; Huang et al.,

2021c) are proposed for the SIMMC benchmark tasks – primarily focusing on grounding

dialogs on visual objects from a single image. Taking inspirations from these works, we

extend the models to accommodate temporal dependencies within frames.

Multimodal Dialog Datasets. Many of the existing literature in multimodal dialogs (Das

et al., 2017b; Hori et al., 2018; Kottur et al., 2019; de Vries et al., 2017, 2018; Le et al., 2021)

typically assume asymmetric visual information between two observers, i.e. questioner and

answerer, where conversational goals are limited to reducing information asymmetry (similar

to VQA). In contrast, we study task-oriented dialog scenarios – an assistant co-observes the

same scene as a user does, thus focusing on serving user requests to achieve functional goals

(e.g. giving recommendations).
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The embodied AI dialog systems (Gao et al., 2022; Padmakumar et al., 2022), on the

other hand, study the scenarios where a human participant teaches an AI agent a set of skills

or gives navigational directions – hence posing an opposite role to an AI agent. While it is

an important area to study, its distribution of utterance patterns is completely different and

therefore not applicable for our target domain – building a situated AI assistant.

Egocentric Video Datasets. With the popularity of wearable devices, several datasets

(Grauman et al., 2022b; Lv et al., 2022; Damen et al., 2021) are released to study the unique

properties of egocentric videos. Our work also features similar visual properties, while adding

conversational layers that showcase an assistant use case of such videos.

Task-Oriented Dialog Systems (Henderson et al., 2014; Rastogi et al., 2019; Budzianowski

et al., 2018b; Eric et al., 2019) have long been studied to support various assistant scenarios

(e.g. booking hotels). Our work takes its roots in this line of work – focusing on predicting

user belief states and dialog acts to achieve functional goals – and extends it to a unique

multimodal setting.

A popular thread in the task-oriented dialog system modeling is to fine-tune end-to-end

causal LLMs (Hosseini-Asl et al., 2020; Peng et al., 2020; Chao and Lane, 2019; Gao et al.,

2019; Crook et al., 2021). We extend this line of work and propose a multimodal extension

to account for visual inputs.

6.3 SIMMC-VR Dataset
SIMMC-VR is actively multimodal, where each data instance is a video from a user’s ego-

centric viewpoint recording all interactions within a virtual shopping environment, densely

paired with dialog utterances and essential attributes. Each task-oriented dialog mimics

real-world shopping scenarios where the assistant’s goal is to help the user make purchases

and navigate through the environment. In each instance, the user walks around a virtual

shop while the assistant provides product information or recommendations; as well as help

the user locate and navigate to products of interest.

Dataset Collection Strategy. Multimodal or embodied dialogs (Das et al., 2017a; Pad-

makumar et al., 2022) are often constructed via a two-player game where participants interact

with the environment and converse with each other (i.e. in a Wizard of Oz (WOZ) (Mrkšić

et al., 2017; Budzianowski et al., 2018a) role-playing fashion). However, it can be overly
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challenging to require annotators to role-play as the AI assistant in our complex and quite

cluttered VR shop environments (>100 products). Furthermore, to match the potential

retroactive reasoning shopping scenarios (e.g. concerning products priorly seen/mentioned),

it could add much mental burden for annotators to memorize object attributes and their

locations while composing authentic long dialogue interactions. Lastly, in conjunction with

the aforementioned difficulties, it is rather unscalable and inextensible to manually annotate

all the required labels (dialog acts, coreferences) cross-referencing complex moving scenes for

a task-oriented dialog dataset.

We therefore collect the dataset through two phases: (1) simulating multimodal di-

alog flows with templated utterances – thereby programmatically generating fine-grained-

scene-grounded annotations and systematically ensuring the diversity of the conversations,

and (2) manual paraphrasing, which ensures the naturalness of utterances with a signifi-

cantly less annotation overhead (Rastogi et al., 2020; Shah et al., 2018).

6.3.1 Multimodal Dialog Generation

Our pipeline for multimodal dialog generation simulates plausible and natural multimodal

interactions in a virtual environment (Figure 6.2), The process is as follows: (1) Decide

a meta-agenda based on object attributes and traversal routes. (2) Sample specific objects

that fulfill the decided agenda as the object-centric flow. (3) Perform the user traver-

sal path planning and video recording using the sampled objects as starting/ending points.

(4) Synthesize the corresponding utterances via pre-written templates and the multimodal

contexts. (5) Manually paraphrase the templated utterances.

We categorize a full dialog instance (generated through the previously described steps)

into two phases: (a) static phase where the user mostly focuses on a specific viewpoint (with

a small amount of randomness in movement or eye-gaze) when conversing with the assistant

(Chapter 6.3.1), and (b) active phase, where the user navigates to another spot within the

environment, at will or following assistant instructions, containing larger movements and

actions (Chapter 6.3.1). The two phases interleave each other, creating a realistic shopping

scenario (e.g. user walks into a shop, stopping by a few products, and wanders to other ones).

Virtual Environment. Following SIMMC-2.0, we use the same set of photorealistic VR

shopping environments in Unity (Unity, 2020), where a set of seed scenes with pre-arranged
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Meta-Agenda

Goal Generator

User Simulator Asst. Simulator

Object-centric Flows

SampleSample

Dialog SimulatorActive Scene Generator
Path Planner

Phase 1. Automatic Multimodal Dialog Flow Generation

Phase 2. Dialog Synthesis & Manual Paraphrasing

Multimodal Interaction Simulator

User

Assistant

Tmpl. Uttr | IN | SLOT | OBJ

Tmpl. Uttr | IN | SLOT | OBJ

. . .

User

Assistant

. . .

…

…
…

…
Templated Utterances & Generated Dialog Attributes

Paraphrase For Naturalness

Sample

Figure 6.2: Dialog generation flow: (Upper half) a meta-agenda is firstly programmed to sample
an object-centric flow (grounded in the environment), which is used by the goal generator to sample high-
level dialog goals. These goals are then used by both user and assistant simulators to synthesize templated
utterances, which are then manually paraphrased by linguistic experts for diversity and naturalness (lower
half).

Fashion hat, tshirt, jacket, hoodie, sweater, shirt, suit, vest, coat, trousers, jeans, joggers, skirt, blouse,
tank top, dress, shoes

Furniture area rug, bed, chair, couch chair, dining table, coffee table, end table, lamp, shelves, sofa

Table 6.1: Digital assets categories used in SIMMC-VR for both fashion and furniture
domains.

digital assets (e.g. shirts, dresses for fashion domain and sofas, tables for furniture domain)

are programmatically re-arranged into randomized larger sets of scenes.

Table 6.1 lists the asset (product item) categories used for constructing the SIMMC-VR

dataset for both fashion and furniture domains.

Active Scene Simulation:

Figure 6.3ab illustrates the process of simulating visual observations of a user traversal,

where a path planning is performed (connecting the start and end user position/orientation)
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• Types:
• Colors:
• Patterns:
• Positions:

[complementary, same]
[arbitrary, arbitrary]
[arbitrary, arbitrary]
[far, close]

Agenda for a Shopping Scenario
U: What about a skirt to go with it?
A: We have a nice grey and white skirt.

U: I also want to find something by Uptown Studio.
A: How about the black and grey skirts in store?Unity Engine

(b) Path Planning (& Video Recording)

U: Can you show me how to find it?
A: If you turn to your right, you’ll see ...

(a) Sampling Referential Objects

Color pattern: {left: grey, 
up: black, down: null, right: null}

[1+2C, 3+3C, 2+2C, 4+2C]Rank
Scores Softmax

C: Predefined Constant

(c) Dialog Flow Generation with Meta-Agenda 

U: Could you help me find a jacket?
A: How about this grey jacket?

User Position & Orientation

Main Displacement Path

Active Phase Dialog

Static Phase Dialog

Figure 6.3: Multimodal dialog generation: (Right most) meta-agenda illustrates an exemplar
shopping scenario that concerns user demanding complementary (i.e. can go with) types for the first two
items (jacket ↔ skirt) and the same type between the 2nd and 3rd items. Colors and patterns are not
constrained, while the scenario simulates longer traversal is required (far) between the first two items and
the latter two are close-by. (Middle) Path planning: the navigational utterances will be grounded on the
planned path (displacements and orientations) and the referential objects (left most) used to facilitate
the guidance are sampled according to softmax scores on a ranking (via features e.g. eye-gaze, color-contrast)
of most suitable landmarks.

in the environment, and the trajectories are rendered into egocentric videos.

Path Planning. Ideally, the navigational guidance should minimize the overall traversal

distance (to a target spot), while taking the smoothness of movements into consideration.

Given a start and end position in the extracted environment layout, we perform an A* search

to plan a trajectory simulating a user’s traversal within a shop. Additionally, we modify the

standard A* algorithm to minimize the amount of turning for smoother and more natural

user movements1, with random noises added to naturally jitter the planned path. We then

augment the output path with rotation angles computed to account for the user orientation

during the traversal. At each viewpoint on the planned path, a Unity camera snapshot is

taken, and the traversal video is rendered by combining all the snapshots.

Referential Objects. Once the intended user-traversal video is planned and recorded, we

define key action points, using the start/end viewpoints of user movements (i.e. displacement

or turning actions). Inspired by the natural communication behavior, where we often refer to

certain landmarks when giving navigational guidance, we derive a set of referential objects

from objects placed across these viewpoints (e.g. “Turn left when you see the red shirt.").

Figure 6.3a illustrates the referential object sampling strategy: (1) Compute the cosine

similarity between an egocentric viewpoint (3D) vector (gaze point at the center of yellow

1A* ’s distance minimization may lead to excessive turns.
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dotted lines) and a look-at vector to each of the objects within the scene – a higher similarity

implies that it is closer to the eye-gaze line of sight, hence more probable to be referenced

during conversations. (2) Augment the previously derived rankings with other plausible

features such as stronger color contrast with neighboring objects. (3) Lastly, transform

these rankings into sampling probabilities (via a Softmax ) to sample object(s) for reference.

Scene Graphs & Disambiguation. When referring to an item in a cluttered environment,

its surroundings often serve as good candidates to disambiguate items that may share similar

attributes (often useful when users under-specify items). In light of this, for each object

within the same scene, we build a local scene-graph to include the closest three objects

to its left, right, top, bottom (four main directions). An object can then be referred to with

its neighbors when further clarification is needed (e.g. "Not that one, I mean the white hat

below the red coat.").

Scene Metadata. To facilitate templated utterances for paraphrasing (Chapter 6.3.1) and

to formulate a modeling task with visual labels (Chapter 6.4), we compute 2D bounding

boxes for all 3D assets in a particular viewpoint, where each object is cross-referenced across

every frame. As the dense bounding box computation in a 3D environment is time-consuming

(repeated for thousands of frames per dialog), we expedite this process via an approximate

reconstruction. Specifically, we record the camera position and orientation for each video

frame, and provide the mesh data for each asset and a function to reconstruct 2D bounding

boxes on-the-fly.

Dialog Simulation:

In real-life shopping experiences, customers typically explore a shop with certain product

attributes of interest in mind (e.g. clothing colors, types), thus shopping experiences are

often object-centric (Yinyin, 2011). Inspired by this, we program several (extendable)

object-centric flows that focus on certain objects within an environment to mimic how a

user may wander (self-motivated or guided) around from one product to another.

Dialog Flows. To have full control over the diversity of dialog flows, and to encourage

certain patterns of flows to emerge for more interesting user-AI conversations, we propose

an object-centric generation pipeline. Specifically, to generate an object-centric flow, we (1)
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Colors same, arbitrary

Patterns same, arbitrary

Types same, arbitrary,
alternative, complementary

Positions far, close, come_back_to_X

Table 6.2: Meta-Agenda Programs

define a meta-agenda, a sequence of meta-goals2 defined by certain object attributes

that simulate a complete shopping experience (e.g. a customer looking for certain types or

colors of clothing, or asking for a complementary item to match a previously purchased

one) and (2) for each meta-goal, sample an object according to a planned traversal route

(e.g. short or long travel distance, traveling back to a previously observed item) and a user-

position/orientation to look at the object (where the path planning can perform on).3 The

meta-agenda is either human-written or programmatically generated, and diversified while

ensuring a balanced distribution of scenarios. The traversal route is engineered to ensure

user’s navigation/orientation changes are necessary and natural.

For each of the sampled-objects, a goal generator will sample a high-level dialog goal

to define the theme of a few turns of utterances (e.g. COMPARE → user requesting product

comparisons). The user simulator then utilized both the sampled objects and goals to

generate corresponding NLU labels following a probability distribution, consisting of user

intents (e.g. INFORM:GET), request slots (e.g. color, brand) and object references. The assis-

tant simulator then resolves the user requests, leveraging the multimodal context and the

simulation API (e.g. for info lookup).4

Meta-Agenda. Table 6.2 lists the candidates that can be programmed into the meta-

agenda. For alternative and complementary item mappings, we consider: (1) Relations in

ConceptNet 5.0 (Speer et al., 2017) such as distinct_terms (jacket is distinct_to coat),

2We cap the max sequence length at 3, i.e. 3 meta-goals.

3Each flow is uniquely defined by the sampled object-sequence. We over-sample totally >1𝐾 object-
centric flows evenly across 27 programmed meta-agenda (Figure 6.3c).

4In contrast, SIMMC-2.0 plans a dialog only by randomly sampling a sequence of abstract goals (e.g.
BROWSE → GET_INFO → ...), often resulting in unrealistic scenarios.
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similar_terms and/or related_terms (e.g. sofa is related_to end-table). And (2) Manual

inspections and annotations, where we ask internal members to annotate the alternative and

complementary items to a particular one of interest, and refine the annotated list with

majority vote (e.g. hat is complementary to both shirt and dress as they can go in pairs, and

coat is alternative to jacket as they share similar functionalities and thus can complement

each other).

For the positions agenda, we pre-define a distance threshold to denote far or close de-

pending on the environment room layout (differ in fashion and furniture domains). For

the come_back_to_X program, we engineer that the user will traverse back to an item that

is previously seen and indicated with interests, to simulate relevant shopping experiences in

the real-world.

Templated Utterances. Grounded by the multimodal context, we pre-define a few utter-

ance templates each associated with a specific dialog act, leaving the specific object-related

information (e.g. object ids, modifiers, pronouns) as placeholders that are filled-in according

to the visuals. This allows us to easily sample an utterance template that is suitable for a

particular situation and the associated user or AI intention, determined by the dialog act.

We list a few exemplar utterances and their paraphrases, and highlight the placeholders

in Table 6.3. Notice that the local object scene-graphs (Chapter 6.3.1) are also useful for

generating diverse reference expressions for the same object (second role of the Assistant

examples in Table 6.3).

Manual Paraphrase. Next, we ask human annotators to paraphrase the templated utter-

ances to better match the real-world natural language distribution. We design an interface

that dynamically displays a multimodal scene that features either a still image (static dialog

phase) or a user egocentric video (active dialog phase). When clicking on a specific turn of

a dialog, the corresponding visual input is shown in the display panel to help annotators

navigate through the entire dialog flow. We ask the annotators to pay attention to detailed

and sophisticated spatial-temporal relations of objects and encourage writing interesting

shopping experiences. The paraphrases are collected from more than 20 different linguistic

experts for diverse language patterns/usages.

Once manual paraphrases are collected, we perform text-to-speech synthesis (TTS) on

the utterances, and synchronize the speech with the relevant motion renders for improved
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Role Dialog Goal & Act Example Templates & Paraphrases

User

BROWSE Could you recommend something with {type:blouse}[search-filter]?
REQUEST:GET ⇒ ‘I am looking for a blouse; do you have anything to show me?’

ALTERNATE_SEARCH
Do you have alternatives to [OID:34(hoodie,blue)][object]
with {color:violet}[search-filter]?

INFORM:ALTERNATE ⇒ ‘Any other options besides that? See if you have anything violet in store.’

REFINE_SEARCH I would like to refine my search to include {type: skirt}[search-filter].
INFORM:REFINE ⇒ ‘I want to search more specifically for skirts. What are my options now?’

ADD_TO_CART Please add to cart: [OID:50(hoodie,green), OID:50(hoodie, green)][object].
REQUEST:ADD_TO_CART ⇒ ‘I like the first hoodie the best. Give me two of the green one.’

AI

ACTION
Go {towards}[direction] it. [OID:100(sweater,red)][object]
will be on {far-left}[relation].

INFORM:DIRECTION_STRAIGHT ⇒ ‘Go straight forward until seeing a red and white sweater on your far left.’

ACTION
Turn {around}[direction] and you will be able to see [OID:141(blouse,white)]

[object], which is {on-right}[relation] to [OID:154(jacket,black)][object].
INFORM:DIRECTION_TURN ⇒ ‘Turn around and you will see that white and black blouse, on its left is a

black jacket.’

GET_INFO Here is the info on size: [OID:49(hat,green)][object]: {size:XS}[slot-values].
INFORM:GET ⇒ ‘That green hat you’re looking at is size XS.’

COMPLEMENTARY_SEARCH
How about these: [OID:77(skirt,brown)][object]? They are
{type:skirt}[search-filter].

INFORM:COMPLEMENTARY ⇒ ‘Yes we do. How about the brown skirt that is on the far right on the top row?’

* OID stands for object ID.

Table 6.3: Exemplar utterance template and paraphrases in SIMMC-VR. In each row under the
second column, the upper terms are the goals and the lower terms are the dialog acts (consisting of acts and
activities). We show a few representative dialog acts with their corresponding sample templates (each act
may have multiple templates as options) and a sample paraphrase. In each template, the subscripts denote
the type of the placeholders, where the contents are filled-in grounded by the multimodal contexts (e.g. ,
sampled objects, user eye-gazes) or sampled attributes (e.g. , types or colors of the desired item).

naturalness,making the rendered user shopping videos more realistic (and comprehensive).

We use an open-sourced tool, Coqui TTS (Coqui.ai, 2022) to generate the spoken speech

from the paraphrased utterances. This also helps computing the natural duration of each

utterance when spoken so that we can interpolate certain number of video frames (under a

fixed frame-rate) to fit such utterance would span.

Dialog Dataset Structures. Similar to other existing task-oriented dialog systems (Eric

et al., 2019; Rastogi et al., 2020; Moon et al., 2020), each turn of SIMMC-VR’s dialog data

consists of NLU (and NLG) intent and slot labels (e.g. "How do their prices compare?" →
REQUEST:COMPARE, slots: price, objects: [1, 4]), as well as object references (a unique object

ID across the same room environment) like SIMMC-2.0. In SIMMC-VR, due to the newly

introduced active dialog phase and the richer dialog scenarios (object-centric flows), the list
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Total # dialogs 4,075
Total # utterances 95,368
Avg # words per user turns 12.9
Avg # words per assistant turns 16.7
Avg # utterances per dialog 23.4
Avg # objects mentioned per dialog 13.2
Avg # objects in key video frames 24.6
Avg # objects per fashion environment 188.6
Avg # objects per furniture environment 62.0
Avg # frames (under fps = 10.0) 1197.7
Avg # seconds per TTS utterance 4.13

Table 6.4: SIMMC-VR dataset statistics. On average there are 13.2 objects mentioned in a dialog
and more than 20 visible in each video frame, making the video-grounded dialogs diverse and rich in contents.
Each video roughly lasts 2 minutes, equating to a total of >130 hours long VR streams.

of intents is expanded as compared to SIMMC-2.0.

6.3.2 SIMMC-VR Dataset Analysis

Table 6.4 shows the essential dataset statistics. In total, SIMMC-VR contains 4𝐾 dialogs with

the corresponding videos (equating to 95.3𝐾 utterances).

Videos. We set the frame per second (fps) as 10.0, which roughly leads to an average of

1.2𝐾 frames per video (∼2 minutes length). On average there are 24.6 visible objects in the

key video frames.

Dialog Acts & Flows. Each algorithmically generated flow, i.e. the meta-agenda-induced

object-centric flow (Chapter 6.3.1), is capped to have at most 5 different dialogs with ran-

domly sampled dialog goals and intents. The average number of utterances is 23.4, signif-

icantly larger than that in SIMMC-2.0 (10.4). Its length distribution over different turns is

shown in Figure 6.4a. SIMMC-VR extends SIMMC-2.0’s annotation to a set of 5 dialog acts

(e.g. INFORM, REQUEST) and 17 activities (e.g. REFINE, DIRECTION_TURN). Figure 6.4b shows

their frequency breakdown. A visualization of dialog transition is shown in Figure 6.5 to

illustrate the diversity and patterns of our generated dialog flows. Figure 6.4c plots the

coreference distances according to how many utterances separate the mentions.
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Figure 6.4: Plots of: (a) utterance lengths in dialogs, (b) acts and activities, and (c) co-reference
distance between object mentions.

Figure 6.5: Dialog act(s) transitions for the first four rounds of dialogs in the fashion domain. The
acts and activities are denoted for brevity as ACT:ACTIVITY:[A|U][turn_index], where U and A denote
user and assistant, respectively. The shown branching and inter-connectivity justifies the diversity of the
synthesized dialog flows.

6.3.3 Novel Challenges to SIMMC 2.0

SIMMC-2.0 shares the general goal of achieving multimodal task-oriented dialog systems for

future real-world and VR applications. However, the active and rich multimodal contexts

of SIMMC-VR introduce the following new challenges: (1) Anchoring egocentric videos as

visual contexts, SIMMC-VR requires the spatial and the additional temporal multimodal rea-

soning, posing new categorical patterns of object coreferences and associated user/assistant

utterances. (2) The novel dialog simulation pipeline allows for more diverse and realistic

interactions (e.g. navigation and localization scenarios) with a number of transitory dia-

log actions and viewpoints, many of which have not been studied in the previous datasets.

This results in the higher degree of complexities in conversational tasks – for instance, the

coreference resolution task gets significantly harder with a much larger number of objects

mentioned in a dialog (13.2 vs. 4.7 in 2.0), and with the increased average utterance counts

(23.4 vs. 10.4 in 2.0). (3) SIMMC-VR requires that a perception model maintains object
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correspondences across their variations from different angles and disjoint viewpoints over

time, to ensure the correctness of their resolution. While this requirement poses a practical

challenge for a real-world application, a robust solution has not been explored especially for

its use in the context of the multimodal dialog management.

6.4 SIMMC-VR Task Formulation
The SIMMC-VR is created to help AI models cope with realistic shopping scenarios and as-

sist human users in real-world applications in AR/VR. To investigate the (multimodal)

conversational and assistive abilities of current AI systems in this immersive and situated

environment, we propose four main bechmarking tasks leveraging the created dataset. Sev-

eral tasks inherit from SIMMC-2.0 with additional challenges brought by the nature of active

user scenes and expanded dataset annotations.

6.4.1 Multimodal Dialog State Tracking

Following SIMMC-2.0, in SIMMC-VR we retain the multimodal dialog state tracking (MM-

DST) task, which aims at inferring structured information for understanding and planning

out dialog policies/actions, with dialog utterances and/or multimodal contexts given. Each

DST is required to resolve both the dialog intents (as a dialog act) and the user request

slots, which is mainly evaluated by the F1 scores of the predicted slots and intents.

6.4.2 Multimodal Coreference Resolution

It is crucial for an assistant to be able to recognize objects that a user is referencing, either

within the current visual context, or any previously mentioned items. Therefore,

for each environment, a canonical ID is uniquely assigned to each object as the target for

multimodal coreference (MM-Coref) resolutions, where the mentions can be resolved by

both the dialog context (e.g. "Add the shirt I liked to the cart.") and the multimodal context

(e.g. "How does the red shirt next to the jeans compared to the one before?"). Follow-

ing SIMMC-2.0, we allow the models to take ground-truth bounding boxes as inputs to

bypass the needs for perfect visual detectors. The evaluation metric is the F1 scores for

the predicted object IDs. Note that as the multimodal contexts are videos, the models are

implicitly conditioned to identify the frames that likely contain the target objects, leading

to comprehensive multimodal spatial-temporal reasoning. Additionally, while there are no
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explicit textual coreference annotations, the models are still implicitly required to perform

textual coreference resolution for those utterances mentioning the same objects from prior

dialogue turn(s).

6.4.3 Failure-Mode Prediction

SIMMC-VR features user failure-modes that simulate users accidentally failing to correctly

follow the assistant guidance. In this task, given a dialog snippet (consisting of utterances in

the active phase) and the video frames surrounding it, we ask the model to predict whether

the current user actions correctly follow the instructions or not (i.e. binary classification

evaluated by F1 scores). The task is highly multimodal as the model needs to understand

the sophisticated active grounding of the visual and dialog contexts. During the training

time, we pre-sample the same amount of negative samples to make the labels balanced.

6.4.4 Dialog Response Generation

This task requires a trained dialog agent to generate the assistant responses (measured in

BLEU-4 (Papineni et al., 2002)), given user utterances as well as the resolved multimodal

information (belief states and referred canonical object IDs). Note that even though the

aforementioned information is given as ground-truths, the generation still needs to con-

form to natural language responses that do not contain flattened DSTs or object IDs (e.g.

INFORM:COMPARE, (OBJ_ID: 5,9) → "The white and blue shirts differ by ...").

6.5 Modeling & Experimental Analysis

In this section, we introduce the investigated baseline models to perform a preliminary

benchmarking of the proposed dataset, where we hope to inspire more sophisticated and

tailored modeling efforts from the community for future research.

Dataset Split. For the empirical modeling analysis and performance benchmarking, we

randomly split the dataset into 3 sets: train (70%), dev (5%), and test (25%) sets, while

ensuring both domains (fashion and furniture) have the same split distributions.

Baselines. To benchmark the dataset, we adopt:

(a) MM-DST Model is a 12-layered multi-task GPT-2 model (Radford et al., 2019; Kottur

et al., 2021) trained with joint supervision signals from MM-Coref, MM-DST, and response

93



MM Belief States

Dialog Context
(User-Assistant)

e.g.
A: …
U: How much is the red one? 

Multimodal Context
(Flattened Strings)

e.g.
O1 {color: red, type: hat}
O2 {pattern: dotted, type: shirt}

Multimodal Context
(Image & Descriptors)

Img1 Obj11 Obj1N…

Video-Language GPT-2/BERT

Prediction Target

Visual Inputs

Textual Inputs

System Response

e.g.
ASK:GET:HAT.price
[obj = O1] <EOB>

1 0

e.g.
A: That hat costs $350 

dollars. <EOS>

Dense Obj. Descriptors

Figure 6.6: Baseline models: The inner grey box (denoted “GPT-2/BERT”) is the language model
either as (is) the MM-DST model or the language encoder of the video-language model (VIOLET adopts
BERT). The video-language model predicts MM-Coref via dense object descriptors, while MM-DST model
generates (via GPT-2) the flattened target strings.

generation tasks, inspired by causal language modeling approach to dialog systems (Peng

et al., 2020; Hosseini-Asl et al., 2020). The inputs to the model include both the dialog

context (utterances) and the multimodal contexts flattened as structurally formatted text

strings, where the outputs are the predicted DST labels. This baseline has two versions:

one uses the ground-truth multimodal contexts provided from the scene generator (hence a

soft oracle) to simulate the outputs from a robust object detector or from a controlled VR

environment, whereas the other has to infer visual descriptors from raw videos, simulating

real-world scenarios.

(b) Adapted-VIOLET Model is a multimodal video-language model based on VIO-

LET (Fu et al., 2021), adapted to fit our task structure (Figure 6.6). Due to computational

limitations, we randomly sub-sample 10 − 15 video frames during training (while ensur-

ing a proportion of these frames contain objects of ground-truth coreferences), and sweep

through the entire video for test-time inference with a fixed window-size. In addition to the

frame-level whole image feature, we feed the dense object descriptor features extracted in

each ground-truth bounding boxes (assuming a perfect object detector) to the model for the
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Model DST Coref Fail. Gen.
Slot / Int. / Joint F1↑ F1↑ F1↑ BLEU↑

(Label Distribution) 19.4 / 9.39 / 8.73 0.66 34.1 —

MM-DST 72.4 / 78.6 / 33.9 17.1 — 0.117
MM-DST (no-gt.) 71.7 / 77.3 / 30.8 0.71 — 0.120
Adapt.-VIOLET 75.0 / 80.4 / 37.7 9.69 46.4 0.119

SIMMC-2.0 Performance (for comparison)

MM-DST 89.6 / 94.5 / 44.6 36.6 — 0.192

Table 6.5: Baseline performances for Multimodal (1) Dialog State Tracking (DST), (2) Object Coref-
erence (Coref.), (3) Response Generation (Gen.), and (4) Failure Mode Prediction (Fail.). In the lower half,
we report the corresponding performance from SIMMC-2.0 with the MM-DST model.

MM-Coref task.5

All baseline models are trained for ten epochs, and the best model on the dev set is used

for test.

6.5.1 Experimental Results

Table 6.5 summarizes the model performance and the probabilistic guess performance (pro-

portional to training label distributions) for each sub-task.

Main Results. The baselines show strong overall performances especially in the DST task.

The MM-Coref is understandably a very challenging task (resolving tens of items over moving

frames), as evidenced in the relatively low scores – suggesting areas for future research. It

is worth noting that without the ground truth multimodal contexts for assistant turns, the

MM-DST model performs close to zero, indicating that the created dataset does not leak

unintended artifacts for the object mentions (that language-only models can easily exploit

without visual contexts). For the failure mode prediction, we prepare a test-set that focuses

on the active scene utterances, where the random guess roughly equates to the amount of

the failure probabilities (30%). We expect the future modeling efforts can better perceive

discrepancies between the visual behaviors and the instructed guidance.

Effects of Temporal Grounding. We break down the MM-Coref performance by identi-

5Here to simplify the task, our dataset can also be approached without assuming any perfect vision
modules.
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fying coref utterances with temporal dependencies. With the Adapted-VIOLET model, we

get an F1 of 10.5 for utterances without temporal dependencies, and a significantly lower

2.81 for the others – suggesting the difficulty in encoding long-standing contexts.

Comparison with 2.0. We also include the MM-DST model performance for the SIMMC-2.0

dataset as a reference, to signify the new challenges that SIMMC-VR brings with the active

VR-streams and the complex multimodal dialog flows.

6.6 Summary
We present SIMMC-VR, a situated and interactive dialog dataset that features immersive VR

streams as multimodal contexts, simulating realistic shopping scenarios along with user-

assistant dialog interactions. The dataset consists of 4𝐾 user-egocentric videos paired with

densely annotated dialog utterances. We build a novel meta-agenda generator for auto-

matically synthesizing rich interactive dialogs grounded on active and diverse visual scenes,

paraphrased manually for more natural speech. We propose four sub-tasks on SIMMC-VR

which aims at inspiring future dialogue modeling endeavors on high-fidelity egocentric (user

POV) environments; where the baseline performance highlights many challenges the dataset

brings forth towards actualizing the real-world-ready VR/AR assistant. With rich annota-

tions it provides, SIMMC-VR can as well expand beyond the proposed tasks to spur relevant

future research, which includes (but not limited to): (1) augmented with speech-like spoken

utterance interventions to enrich the naturalness of the dialogues, and (2) environments and

room layouts beyond ones used under the scope of this paper.
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Conclusion
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CHAPTER 7

Conclusion and Future Directions

7.1 Summary of Contributions

In this dissertation, each of the presented contributions is closely tied to the roadmap de-

signed in Chapter 1, from comprehending and consolidating task instructional resources,

structurally interpreting the instructed actions and dependencies, to visually ground the

learned instructed knowledge to the actual world. The proposed system-level outline should

serve as the fundamental basis in actualizing helpful and effective assistant AI. In this chapter

we summarize our contributions as follows.

In Chapter 2, we present a thorough study of language and multimodal models on the

procedural understanding task, utilizing curated online instructional manuals from some

popular sites such as WikiHow or recipes. We show that both multimodality and our pro-

posed sequence-aware pretraining techniques are effective for models to learn to sequence

and consolidate unorganized task steps. We also provide a multi-reference annotation in

order to gauge the interchangeability of certain task steps to inspire future efforts along the

line of research.

In Chapter 3, we introduce the essential instruction interpretation task on inferring ac-

tion and pre-and-post-condition dependencies for structural understanding of the instructed

information. The problem can be formulated as a low-resource learning setup, where we de-

sign several heuristics to automatically construct useful large-scale weakly supervised data,

as well as a two-staged training methodology to improve the language models’ capabilities

of inferring the condition dependencies more robustly.

Followed the previous two chapters of comprehending instructions, Chapter 4 extends

the learned procedural and structural dependency knowledge to actively ground the impor-
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tant entities involved in the instructions to the visual world. We firstly propose a crafted

prompting scheme to obtain useful action-object knowledge large language models (LLMs),

followed by a per-object knowledge aggregation technique to improve vanilla phrase ground-

ing modules on localizing and tracking state-changing key entities more accurately with

longer tracking duration.

The aforementioned building blocks for actualizing the multimodal assistant AI leads us

to curate novel and challenging resources to evaluate models of their relevant capabilities.

In Chapter 5 and Chapter 6, we introduce two benchmarks we carefully collected, where

one focuses on the counterfactual commonsense reasoning in diverse and action-rich event

videos (Wu* et al., 2023b), while the other presents an interesting virtual shopping assistant

that can converse to the users while giving guidance regarding the visual surroundings and

tracing spoken items from the past conversations (Wu et al., 2023b). We hope these high-

quality multimodal resources can shed lights on and inspire future endeavours of actualizing

a better and improved assistant AI.

7.2 Summary of Technical Limitations

While every work in each chapter is motivated to improve the assistive capabilities of AI and

aimed at either providing the essential building blocks for more advanced vision-language

foundational components or useful and novel resources to learn from and evaluate upon,

there are still some limitations in each of them. In this section, we will briefly discuss the

technical limitations of each work, and how it may be improved for future advancements.

Task-Step Sequencing. While in this chapter (Chapter 2.3.3) we mentioned that alterna-

tive and interchangeable orders are annotated for certain task steps, there are still limitations

yet to be addressed: (1) The current formulation assumes an almost sequential order of the

task-steps, i.e. , if denoted the task as a graph, it would be a directed acyclic graph (DAG)

which has one way traffic/flow of task orders. This chapter currently does not consider

repeated steps and/or loops that could be mentioned during the task completion. (2) Fol-

lowing the previous point, the task steps could have underlying hierarchy as well, where

certain higher level subtasks actually would lead to a few lower-level children task-steps.

The most fundamental way of representing a task, is perhaps to extend our work into a

representation of a finite state machine (FSM). This formulation would encompass both the
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aforementioned loops as well as the inherent hierarchy, while obviously the learning com-

plexity is much higher. (3) Currently our model is bounded by five steps, future work could

consider extending our work to tackle task with much more steps and details.

Action-Condition Dependencies. There are three main limitations in this chapter: (1)

Although our annotated dataset enables the possibility of learning an extractive model that

can be trained to predict the span of the text segments of interest from scratch, we focus

on the more essential action-condition dependency linkage inference task as we find that the

SRL extraction heuristic currently applied sufficiently reliable. In the future, we look forward

to actualizing such an extractive module and other relevant works that can either further

refine the SRL-spans or directly propose the text segments we require. More specifically, the

extractive module can be supervised and/or evaluated against with our human annotations

on the text segment start-end positions of an article. (2) The current system is only trained

on English instruction resources. Multilingual versions of our work could be as well an inter-

esting future endeavors to make. (3) In this chapter, we mostly consider instructions from

physical works. While certain conditions and actions can still be defined within more social

domain of data (e.g. a precondition to being a good person might be cultivating good habits).

As a result, we do not really guarantee the performance of our models when applied to data

from these less physical-oriented domains.

Active Object Grounding. The two main limitations and potential future follow-ups are:

(1) While we make our best endeavours to engineer comprehensive and appropriate prompts

for obtaining essential symbolic action-object knowledge from large language models (LLMs)

such as GPT, there are still few cases where the extracted objects are not ideal (see Table 4.1).

Hence, our model performance could potentially be bounded by such limitation inherited

from the LLM ability to fully and accurately comprehend the provided instructions. Future

works can explore whether more sophisticated in-context learning (by providing examples

that could be tricky to the LLM) would be able to alleviate this issue. Alternatively, we

may utilize LLM-self-constructed datasets to finetune another strong language models (such

as Alpaca (Taori et al., 2023)) for the object extraction task. (2) There is more object- and

action-relevant knowledge that could be obtained from LLMs, such as spatial relations among

the objects, size difference between the objects, and other subtle geometrical transitions of

the objects. During experiments, we attempted to incorporate spatial and size information
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to our models. However, experimental results on the given datasets did not show significant

improvement. Thus we omitted them from this work. We hope to inspire future relevant

research along this line to further exploit other potentially useful knowledge.

SIMMC-VR. While our SIMMC-VR dataset is constructed aimed at presenting a comprehensive

suite of benchmarking tasks for multimodal assistive models, there are some improvements

one can make: (1) The SIMMC-VR dataset, similar to the previous SIMMC families, focuses on

shopping scenarios (clothing and furniture purchasing domains), one of the most common

everyday activities that virtual reality could enable users to do from anywhere, anytime.

We have not tested whether the models would generalize to domains outside of the shop-

ping experiences, thus we cannot speak to the transferability of our results to environments

with very different visual properties than what our virtual environments provide. (2) In

this dataset, we hand-design several possible dialog acts that we assume are common for

human buyers, as well as their associated scenarios. This may not exhaust all the possible

interactions a shopper can do with the assistant.

ACQUIRED. The limitations of our ACQUIRED resource are: (1) ACQUIRED focuses on

the three commonsense dimensions: physical, social, and temporal. While they likely span

the most common types of the reasoning technique, there could be more, e.g. , numerical

commonsense is not specifically dealt with in this work, nor is non common activities such

as fantasies and fictions involved. (2) The videos used in this work are subsets of readily

collected ones from both Oops! (Epstein et al., 2020) and Ego4D (Grauman et al., 2022d)

mother sets, and hence the event distribution can be bounded by the activities they concern.

While we argue that the dataset is, to our best knowledge, first of its kind video QA dataset in

terms of diversity and dedication of counterfactual reasoning, the video resources spanning

even more diversified situations can be further extended. (3) Unlike Oops!, there is not

an obvious failed actions occurred in Ego4D, and hence the annotated questions could be

confounded by more imagined situations. We argue that the required reasoning technique is

essentially the same and the models learn on our dataset should generalize well to situations

that actually involve failing actions from egocentric visual contexts. However, we encourage

future research to extend the first-person viewpoint (egocentric) parts to encompass obvious

failing actions to collect just-in-time assistive questions and their corresponding remedial

responses.

101



Object-Centric v.s. Event-Centric. The essence of an action, often involves an act

(e.g. , the predicate of a phrase) and the objects or environments involved. In Chapter 2

and Chapter 3, the sequential understanding of a task as well as the conditional dependencies,

all draw the bases off the essence of actions, where how certain objects are being manipulated

or acted on drives the relevant modeling and reasoning. To generalize such essence of action,

the concept or notion of event, can come into place. Event can describe an action (Hsu et al.,

2021; Parekh et al., 2023), a status, or generally any kinds of time-continuous occurrences.

That said, both the actionables and conditions can be thought of as events in Chapter 3,

where in Chapter 2 the model is essentially relying on the commonsense in ordering certain

events.

In Chapter 4, the grounding is currently object-centric, that is, the notion of track-

ing and localizing key entities, even though driven by action-centric symbolic knowledge,

concerns mainly the objects as the main goals. This may raise an interesting research ques-

tion: would grounding make sense to be generalized to action or event-centric? Multimodal

reasoning in events have recently drawn some attentions in visual event extraction and un-

derstanding in images (Li et al., 2020b, 2022) and/or videos (Chen et al., 2021), however,

the actual underlying grounding (text-to-visual regions) is still mainly concerning object-

level or object-centric concepts. Extending such grounding to temporal dimension in long

untrimmed videos, with finer-granularity of spatiotemporal grounding as the focus, could be

a very interesting and challenging next steps for the multimodal research community. Such

capability can benefit many use cases, such as the spatio-temporal reasoning and/or query

presented in Ego4D (Grauman et al., 2022a) tasks.

The event-centric understanding can also be seen in our ACQUIRED in Chapter 5, where

event duration, ordering, and general understanding are essential for answering visual coun-

terfactual reasoning questions. Furthermore, an extension of work in Chapter 4 generalizing

the grounded regions to actually paired with generated textual descriptions on the recog-

nized conditions, can push the work forward combining the benefits of object and even-centric

grounding. Such grounding hierarchy can also be useful to answer questions in ACQUIRED, as

many physical and temporal counterfactual questions regard the details of the objects and

how they undergo event alternations.
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7.3 The Next Steps
In order to keep further pushing research work along the line of multimodal agent/assistant

directions, in this section I will outline two main possible next steps where one focuses on

building the full-stack assistive AI agent and the other will shed light on how we can improve

the agent continually through our human feedback.

Grounded Instruction Generation with Embodiment. This direction can be a suitable

application for the work introduced in Chapter 3, as understanding the action-condition

dependencies is able to help generating more current-situation-grounded instructions, e.g.

agent knowing that the pan is not yet heated so it is less likely to utter the next action

but to stay at the current state for such pre-condition to be met. Concretely, one can train

a multimodal perceiver module to ground the inferred textual conditions to the current

situations along the agent trajectories, which can later on be used as an engineered reward

for training the agent and the instructor through reinforcement learning.

A possible framework can be built on top of a recent work (Dou and Peng, 2022) that

extends the speaker-follower framework of (Fried et al., 2018; Shen et al., 2019) for vision-

language navigation, where the authors have proposed a framework inspired by the back-

translation in neural machine translation that can augment the speaker module to produce

better instruction to guide the follower agent.

For potential suitable environments, in addition to navigation-centric tasks (as exempli-

fied by SIMMC-VR), two recently released datasets, TEACh (Padmakumar et al., 2022) and

BEHAVIOR-1K (Li et al., 2023a), where they both simulate embodied AI in a house-hold

(or indoor) environments that perform a specifically given task and can utter back (i.e.

chat) to the task instructor. Inspired by (Shridhar et al., 2021), one can consider building

a text-based world simulator that is primarily based off instructions in e.g. WikiHow, where

we abstract out the actual perception and grounding part but focuses on how world state

changes can affect the generated instructions. The knowledge learned from the aforemen-

tioned approach can shed light on how we can transfer the ability to grounded multimodal

settings.

Human-Feedback Improvable Multimodal AI. Recent trends of large-scale training on

large language models, such as GPT-4 (Achiam et al., 2023), and large vision or multimodal
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Figure 7.1: The human-feedback improvable system: is designed to comprehend and elicit effective
human feedback to improve the multimodal AI models.

models (Black et al., 2024), have accumulated more and more attentions on aligning the

pretrained models with human preferences to improve the model capabilities on numerous

downstream tasks. This process if often referred to as the post-training, where unsupervised

pretrained large models are tuned to align well with what humans want. Typically, the

method where the models are post-trained by reinforcement learning from human feedback

(RLHF) (Kaufmann et al., 2023) via proximity policy optimization algorithms (PPO) (Schul-

man et al., 2017), is predominant alongside several recently proposed preference optimiza-

tion algorithms, such as direct preference optimization (DPO) (Rafailov et al., 2024) or

Kahneman-Tversky optimization (KTO) as a human-centered loss functions (Ethayarajh

et al., 2024). The reinforcement learning scheme can also be applied to training pixel-based

generative models such as guided-image generations (Black et al., 2024) and large-scale mul-

timodal models (Liu et al., 2024).

However, a notable caveat of using reinforcement learning is the curse of sample ef-

ficiency (Das et al., 2024), and furthermore, for knowledge-heavy or grounded concepts,

directly editing the models (Mitchell et al., 2022) can enjoy both the efficiency as well as

the effectiveness of improving the models. And hence, a promising future research direction

is how to elicit and effectively utilize human feedback in more direct or sample efficiency

ways. Figure 7.1 illustrates an exemplar possible instruction-tuned generative pipeline that

could potentially improve a deployed vision-language-model on continually learning novel

104



concepts. When certain visual concepts are erroneously reasoned, human feedback can be

elicit or prompted, followed by utilization of generative models or editing methodologies to

correct or adapt the models with high-quality and controllable training samples (or supervi-

sions). This is inspired by how humans learn novel concepts by mistakes and the "show me

more samples for this!" fashion. In this way, the improvement is not only more interpretable

and controllable, but also more efficient as we are not only replying on inefficient sample

generations to seek useful human preference feedback.

7.4 Future Research Directions

At the time of writing this thesis, the AI research community has not been the same ever

since the introduction of the large language models (LLMs). Industries, alongside some

well-established research institutions have been radically competing in this space by training

larger and more capable LLMs and tune them for many well-trained or emergent abilities

and/or skills. While the scaling law might be true, that we could possibly always have

stronger models when there is more ample of data as well as the computation powers, it still

remains unclear whether what we are building, or the way we are training these models, is

actually moving towards the true intelligence.

From this thesis’s point of view, the human intelligence is powerful and advanced, not just

because of it knows ample amount of knowledge, but owing to the fact that humans are highly

adaptable when learning new tasks and knowledge, and can even create our own curriculum

to teach us complex knowledge by taking one smaller step after another. Furthermore,

the learning capability is not to be mixed up with generalizability, where the former is a

procedure to pick up new skills possibly completely different or unseen during the training,

which is also capable of absorbing external learning signals (like the feedback described

previously); while the latter concerns more on the distribution shift of particular tasks, data,

and/or scenarios. A future look-ahead research direction could be really unveiling how the

actual learning procedure a model can take on, a true meta-learner that is able to follow or

construct its own curriculum when noisy and unstructured learnable data is presented, and

of course, able to supervise itself with external or intrinsic feedback.

Another futuristic direction going beyond the current trend of reliance on the parameter

scaling law of multimodal learning, is to revisit how representations on individual modality
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work, and how a fundamental mapping or alignment could be made in addition to simply

relying on the large-scale pretraining stage. Language is fundamentally discrete (with sym-

bols), while many other modalities are continuous, such as audio, visuals, and even sensor

data streams. However, if certain key words or phrases, within a language context, can be

mapped to or projected to a space where the alignment could be facilitated better. Such pro-

jection, inspired by revisiting some earlier work on aligning representations (Lample et al.,

2018), can perhaps be integrated into the transformer-like to multi-layer neural models for

stronger modality alignment while being trained to perform any multimodal skills. Fur-

thermore, a pretrained symbolic-to-continuous alignment learning could possibly benefit a

from-scratch trained multimodal LLMs, where no pretrained language or other modality

encoder is utilized. Such from scratch pretraining perhaps is closer to how humans firstly

develop our visual systems, followed-by a symbolic grounding/alignment, and lastly the full

sapce of knowledge and skills are then largely scaled-up.

Lastly, multimodal learning with embodiment would make the real-life physical experi-

ences groundable to the language and visuals, especially when it comes to more manipulative

and affordance-related tasks. Performing a curricular sim-to-real transfer for the multimodal-

embodied models, while directly being instruction-tuned or preference-based-learned, could

be a very interesting future research agenda, in the next few years or beyond.
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