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Abstract

Many models in Cognitive Science require data to calibrate
parameters. Some modelers calibrate their models’ parameters
for each individual in a data set, and others work at the ag-
gregate level. Generally, the accuracy of a model is judged by
the degree to which human data are replicated, and the model
parameters are interpreted accordingly. It is not too surpris-
ing that models that are developed for a particular task and fit
to each individual’s data in such a task replicate the human
data well. The question is, however, whether those models
can make predictions in the absence of human data. In this
paper, we present a theory-driven model of a well-known se-
quential decision task (the Balloon Analog Risk Task, BART)
which is able to make predictions in the absence of human
data. The cognitive model is grounded on the processes and
mechanisms of Instance-Based Learning (IBL) Theory of ex-
periential choice. We demonstrate the simulation predictions
from an IBL model and those of a well-known model of the
BART, which depends on the fits to human data. We fur-
ther show that when making predictions without data, the IBL
model provides predictions that are both theoretically founded
and accurate, while the Two-Parameter model performs much
worse than when fit to data. We conclude with a discussion of
the benefits of making theory-based predictions in the absence
of human data for our community.

Keywords: sequential decision making, instance-based learn-
ing, balloon analog risk task

Introduction

With the exponential increase in data sources, the availabil-
ity of large volumes of data, and the possibility to collect
data on the Web from a large number of individuals, sta-
tistical models have increased their potential to make accu-
rate predictions of human choices. From movie recommen-
dations to self-driving cars, models have become part of our
daily decisions; with more data, models can make more accu-
rate predictions of our preferences and choices. In particular,
computational cognitive science has taken advantage of the
availability of larger amounts of behavioral data to advance
the “explanation” of cognitive processes involved in various
types of tasks, notably decision making using Bayesian ap-
proaches (Griffiths, 2015).

However, beyond fitting models, computational cognitive
science has been largely interested in a deeper theoretical un-
derstanding of human learning processes and the predictions
made from the learning histories of populations or particu-
lar individuals. Some approaches are based on probability
theory and their statistical analyses have been used for many
decades to study many aspects of human cognition, including

language and memory (Chater, Oaksford, et al., 2008) and
decision making (Lee, 2006; Guan, Lee, & Vandekerckhove,
2015; Thomas, Coon, Westfall, & Lee, 2021). Although most
of these models require large human data sets, they can also
provide significant insights into human mental decision pro-
cesses and inform the development of more powerful com-
putational tools. However, it is unclear whether statistical
models and Bayesian cognitive models of decision making in
particular, have predictive and explanatory power (Hofman et
al., 2021; Shmueli, 2010).

For the advancement of cognitive science, it is generally
important not simply to make accurate predictions, but also
to provide an explanation and understanding of how and why
people behave the way they do. The development of compu-
tational cognitive models based on cognitive theories is ex-
pected to provide prediction power without a strong depen-
dence on data (Hofman et al., 2021). A cognitive theory is
a general postulation of mechanisms and processes that are
globally applicable to families of tasks and types of activity
rather than being dependent on a particular task; while cog-
nitive models are very specific representations of parts or all
aspects of a cognitive theory that apply to a particular task
or activity (Gonzalez, 2017). Cognitive models of sequential
decisions can be used to simulate the interaction of theoret-
ical cognitive processes with a particular task environment.
These models can make predictions of how human choices
are made in such tasks that can be compared to data collected
from human participants in the same tasks, without fitting to
human data (Roberts & Pashler, 2000, 2002). Thus, an advan-
tage of theoretically driven cognitive models is that no data is
required to fit the models.

Using a theory-driven approach to build computational
models is especially necessary in sequential decision making
tasks, such as the Optimal Stopping and the Balloon Analog
(Analogue) Risk Task (BART) (Lejuez et al., 2002), because
in these tasks, each decision is contingent on the specific se-
quence of past decisions (Guan, Stokes, Vandekerckhove, &
Lee, 2020; Thomas et al., 2021). Researchers of sequential
decision making tasks have developed particular models that
are applicable only to a particular sequential decision task
(Guan et al., 2020; Guan, 2019). The combinatorial com-
plexity of particular sequences of decisions would make these
data-driven approaches difficult to predict the performance

“out of sample” in novel data sets involving new individu-
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als and problems. Meanwhile, theory-driven models are ex-
pected to have predictive and explanatory power (Shmueli,
2010), with the ability to make a priori predictions and gen-
eralize in situations (Busemeyer & Wang, 2000).

Instance-Based Learning Theory (IBLT) is a general cog-
nitive theory of experience-based decisions that emerged
from the need to explain the sequential decision process of
dynamic decision making, where interdependent decisions
are made in a sequence and over time (Gonzalez, Lerch,
& Lebiere, 2003). IBLT provides a single general algo-
rithm and mathematical formulations of memory retrieval
that rely on the ACT-R cognitive architecture (Anderson &
Lebiere, 2014). An IBL model uses IBLT in a particular
task, where the memory “instances” represent the state, ac-
tion, and utilities in the context of the task being modeled.
Many models based on IBLT have been developed in a wide
diversity of contexts and domains, from highly specialized
and complex tasks such as cyber defense (Aggarwal et al.,
2020; E. A. Cranford et al., 2020) and anti-phishing detec-
tion (E. Cranford, Lebiere, Rajivan, Aggarwal, & Gonza-
lez, 2019); where tasks need multidimensional representa-
tions and real-time interactivity (Nguyen, Phan, & Gonza-
lez, 2021); to simple and abstract binary choice dynamics
(Gonzalez & Dutt, 2011; Lejarraga, Dutt, & Gonzalez, 2012;
Konstantinidis, Harman, & Gonzalez, 2020). Importantly, all
IBL models use the process and mechanisms of IBLT.

In this paper, we present an IBL model that makes
theoretically-based predictions in a sequential decision task
(BART) in the absence of data. We compare the IBL pre-
dictions to human data and to the predictions of the Two-
Parameter model, which was built for the BART task and fits
its parameters to each individual in the same human data set
by using Bayesian inference. The Two-Parameter model data
fits are an excellent representation of the data; and the IBL
model captures the behavioral variability in the data set by
making predictions in the absence of data. We then compare
the models for their predictive power by running both models
with standard parameter distributions, not fit to human data.
The results show that the Two-Parameter model cannot gen-
eralize as well as the theory-driven, IBL model.

Balloon Analog Risk Task

The Balloon Analog Risk Task (BART) is a well-known task
used to measure human risk-taking behavior. The task was
introduced by Lejuez et al. (2002) to measure risk-taking and
compare with other measures of risky behavior. Since its de-
velopment, BART has been used to study risky decision mak-
ing in many domains and contexts, such as adolescent de-
cision making (Lejuez, Aklin, Zvolensky, & Pedulla, 2003;
Aklin, Lejuez, Zvolensky, Kahler, & Gwadz, 2005), deci-
sion making of smokers versus non-smokers (Lejuez, Ak-
lin, Jones, et al., 2003), impulsivity (Reynolds, Ortengren,
Richards, & de Wit, 2006), and decision making under stress
(Lighthall et al., 2011), to name a few.

BART is a sequential decision making task in which a deci-

sion maker inflates a balloon, and the level of inflation corre-
sponds to a monetary value. At each time point, the decision
maker decides whether to pump the balloon and increase its
value or bank the current monetary amount. However, with
each pump of the balloon, there is a probability that the bal-
loon bursts and the decision maker receives a reward of 0.
This leads to the need to balance exploration through pump-
ing with exploitation through banking, with the goal of max-
imizing total reward. Each balloon has a predefined prob-
ability of bursting, although participants are not informed
about this probability (Guan et al., 2020). Because BART
is a sequential risk-taking task, the riskiness of the decision
increases with each pump decision, and the number of pumps
an individual makes represents the level of risk the partici-
pant is willing to take. A risk-seeking individual would likely
pump the balloon more times than a risk-averse individual.

To analyze and predict risk propensities in BART, many
researchers have proposed computational models that repre-
sent risky behaviors. The Two-Parameter BART model is per-
haps the most well-known model of the BART task and has
been used successfully in a large number of research studies
(Pleskac, Wallsten, Wang, & Lejuez, 2008; van Ravenzwaaij,
Dutilh, & Wagenmakers, 2011; Guan et al., 2020).

Two-Parameter BART Model

In essence, the model depends on an individual propensity
to take risks (Yjx) and the belief in the probability of burst-
ing of the balloon (py), for the individual i and the condition
k. The py is often assumed to be the true probability of a
balloon burst. The p; and 7j, determine the target number
of pumps to make (®;). This model assumes that partici-
pants have a unique target number of pumps and that they
apply the same target number of pumps to all problems. That
is, the model assumes no learningl; instead, the model as-
sumes that the probability of pumping in a particular trial of a
problem depends directly on ®;; and an additional parameter
representing the behavioral consistency of the individual ()
which is determined by a logistic function. These parameters
are inferred using Bayesian inference. The model’s equations
have been presented and explained in many past studies (e.g.
Thomas et al. (2021)), which we repeat here for complete-
ness:

The Two-Parameter model assumes that each participant
has a target number of pumps, denoted w;;, for the participant
i and the condition k. The target number of pumps is cal-
culated according to Equation 1, where ﬁ is participant i’s
propensity for risk-taking in condition k and y;,r( > 0.

In(1 — py)
The target number of pumps and a behavioral consistency

(D

Ok

IRecently, Zhou, Myung, and Pitt (2021) introduced the Scaled
Target Learning (STL) model as a learning model for BART. The
STL model describes learning as the adjustment of the number of
pumps in response to previous outcomes, the adjustments reflecting
the sensitivity to wins and losses.
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parameter B;; determine the probability that the participant i
in problem j in condition k£ will pump the balloon in the trial ¢,
which is indicated by 0;;; and calculated according to Equa-
tion 2. Higher values of B correspond to greater consistency
in decision making and B;; > 0.

1
1 +exp(Bix(r — o))

The Two-Parameter model makes a number of assumptions
regarding information and decision elements for human par-
ticipants in BART studies. As explained above, the true burst
probability is assumed in the calculation of a target number
of pumps. This target number is assumed to be determined
by each individual and applied to every problem; some func-
tion of behavioral consistency is assumed; and importantly,
it is assumed that there is no learning, such that the number
of pumps is never adjusted as a result of experience. Actu-
ally, learning by human participants is often prevented in the
design of the human studies used to demonstrate the Two-
Parameter BART model. For example, the data set obtained
from Guan et al. (2020) and used in Thomas et al. (2021) was
obtained in a study in which individuals face problems with
different actual bursting trials in every problem, and where
problems are presented in random order across participants.
This is essentially done because the Two-Parameter BART
model is not a learning model, and it would be unable to cap-
ture patterns of learning over time.

We argue that at least some of these assumptions are be-
haviorally unreasonable. Participants in the BART task are
not told the probability of the balloon bursting (Guan et al.,
2020; Thomas et al., 2021), there is no evidence that they
have a number of pumps in mind, but there is evidence in-
dicating that the number of pumps is different in different
problems (Guan et al., 2020). Learning across problems is
prevented by experimental design (Guan et al., 2020). The
actual bursting time is pre-determined based on the probabil-
ity, it is set to be different in each problem, and problems are
randomized. However, it seems unreasonable to assume that
participants would not learn from their experience and adjust
the number of pumps.

In addition, the Two-Parameter BART model needs human
data to establish individual-level parameters that represent
each individual’s risk propensity. Although researchers have
used the calibrated BART model to make inferences “out of
sample” (e.g., Thomas et al. (2021)), the model depends on
human data to determine the parameter values.

We offer a cognitive model for the BART task that makes
none of these assumptions. The model makes predictions
based on the theoretical principles of Instance-Based Learn-
ing Theory (IBLT) (Gonzalez et al., 2003), and in the absence
of human data.

@)

0k =

Instance-Based Learning Theory

IBLT’s process and mechanisms have been published in many
past publications (see a recent publication from Nguyen,

Phan, and Gonzalez (2021)); we repeat the theory here for
completeness.

In IBLT, an “instance” is a memory unit that results from
the potential alternatives evaluated. These memory repre-
sentations consist of three elements that are constructed over
time: a situation state s which is composed of a set of features
f; adecision or action a taken corresponding to an alternative
in state s; and an expected utility or experienced outcome x
of the action taken in a state. Concretely, for an IBL agent, an
option k = (s,a) is defined by action a in state s. At time ¢, as-
sume that there are ny, different considered instances (k;, Xk, )
fori=1,...,ny, associated with k. Each instance i in memory
has an Activation value, which represents how readily avail-
able this information is in memory and is expressed as fol-
lows (Anderson & Lebiere, 2014):

Aigg=In| ¥ (t1—1)"¢ +a25im/(ff7ffi)+clnlg'7%
1 €T j ikt
3)

where d, o, and © are the decay, mismatch penalty, and noise
parameters, respectively, and Ty, C {0, ..., — 1} is the set of
previous timestamps in which the instance i was observed,
fj’? is the j-th attribute of the state s, and Sim; is a similarity
function associated with the j-th attribute. The second term
is a partial matching process that reflects the similarity be-
tween the current state s and the state of the option k;. The
rightmost term represents noise to capture individual varia-
tion in activation, and &ikﬂ is a random number drawn from
a uniform distribution U (0, 1) at each timestep and for each
instance and option.

Activation of an instance i is used to determine the proba-
bility of retrieval of an instance from memory. The probabil-
ity of an instance i is defined by a soft-max function:

ikt /T

Pigy = “4)

where 7 is the Boltzmann constant (i.e., the “temperature”) in
the Boltzmann distribution. For simplicity, T is defined as a
function of the & used in the activation equation T = 6+/2.

The expected utility of option k is calculated based on
Blending as specified in choice tasks (Lejarraga et al., 2012;
Gonzalez & Dutt, 2011):

Rt

Vie = ZPik,-txik,»t (5)
i=1

The choice rule is to select the option that corresponds to
the maximum blended value. In particular, at the /-th step of
an episode, the agent selects the option (s;,a;) with

aj = argmax Visja)a (6)

When the agent receives delayed results, the agent up-
dates expected utilities using a credit assignment mecha-
nism (Nguyen, McDonald, & Gonzalez, 2021).
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IBL BART Model

We built an IBL model of the BART using PyIBL, a Python
implementation of IBLT (Morrison & Gonzalez, 2021). In
this task, the state s is the number of pumps up to the current
trial, the action a is the action to pump or bank, and the util-
ity x is the amount of hypothetical money obtained from the
problem.

An instance is stored for each decision: for each pump that
does not burst the balloon, the utility is the reward that would
be obtained from banking on the next trial; for each bank
decision, the reward is the monetary amount collected; and
for each pump that results in the balloon bursting, the utility
is $0 since no money is collected. In this model, we use linear
similarity between the current instance and past instances and
the decay and noise parameters are set to the ACT-R default
values of d = 0.5 and 6 = 0.25 respectively.

Data Set

We retrieved and analyzed the data from Guan et al. (2020),
in which 56 human participants completed the BART. The
participants were presented with balloons that had a fixed
probability of bursting with each pump (either p = 0.1 or
p =0.2).2 The design was within-subjects, so each partic-
ipant completed 50 problems with each probability, and the
order of the problems and conditions was randomized across
participants. Each problem started with a balloon with a
value of $1. For each decision, the participant had the op-
tion to pump the balloon (“Pump”) and increase its monetary
value by $1, or stop (“Bank™) and collect the current mone-
tary value. However, each pumping action risks bursting the
balloon, resulting in collecting $0. The participant continued
making decisions until either the balloon burst or the partici-
pant chose the Bank action and collected the money. The goal
was to maximize the total reward in all problems.

Results
Explaining decisions through simulations

We simulated 56 IBL model agents making decisions in the
BART using default parameter values for decay and noise.
The stimuli faced by each agent correspond to that of a human
participant. That is, each agent experienced the problems in
the same order as the corresponding human participant, so
that the balloon bursts on the same number of pumps.
Following Guan et al. (2020) and Thomas et al. (2021)
and by modifying their provided scripts, we used the Two-
Parameter BART model developed by Pleskac et al. (2008).
We first fit the Two-Parameter model to both the p = 0.1 and
p = 0.2 conditions, and then simulated choices using the in-
ferred parameters for each participant for that condition. The
simulated problems are the same problems that the corre-
sponding individual experienced in each condition. Here, we
compare the model predictions to the choices of the human

2The constant probability of bursting is not the standard BART
design. Typically, the probability of bursting increases with each
pump of the balloon (Lejuez et al., 2002).

participants to determine the accuracy of the predictions rel-
ative to the observed human choices.

The distributions of the number of pumps from the IBL
and Two-Parameter models are displayed in Figure 1 com-
pared to human data. A greater number of pumps tends to
correspond to a greater risk propensity.

6001 3| 600 2
c c

4001 S| 400 g
200 &1 200 S
5 o “l5 0 -
S o 3 0
© 6001 | © 600 D
c c

4001 8| 400 2l
200 &1 200 &
0% e oL e

10 20 30 40 10 20 30 40
Number of Pumps Number of Pumps

Player [ | Human [ ] IBL Model [ ] Two-Parameter Model

Figure 1: The distributions of the number of pumps of the
balloon for all participants and problems, for the humans, IBL
model, and Two-Parameter model. The dashed lines indicate
the mean number of pumps.

T-tests show that for p = 0.1, the mean number of pumps is
not significantly different when comparing the human (M =
3.86,SD = 3.07) and IBL model (M = 3.77,SD = 5.64),
1(5598) = 0.72, p = 0.469;d = 0.019, and when comparing
the human and Two-Parameter model (M = 3.85,5D = 3.00),
1(5598) = 0.15, p = 0.878;d = 0.004. For p = 0.2, the mean
for humans (M = 2.58,SD = 1.95) is significantly lower than
the IBL model (M = 2.83,8D = 3.62), 1(5598) = —3.24,p =
0.001;d = 0.087. There is no difference between the means
of humans and the Two-Parameter model (M = 2.61,5D =
1.97),¢(5598) = —0.65,p = 0.517,d = 0.017.

Figure 2 divides the problems into blocks of 10 problems
in the order in which they were presented to the participants.
This shows that the IBL. model becomes increasingly better at
predicting human behavior with more experience. The Two-
Parameter model fits the human data well, as expected given
the fitting to each individual’s choices, but it does not learn.

The burst rate is the proportion of problems for which the
participant bursts the balloon. Participants with higher risk
propensities will likely tend to burst the balloon on a higher
proportion of problems.

Figure 3 shows the distributions of the burst rates. In the
p = 0.1 condition, the t-tests show that the difference in the
mean burst rates for humans (M = 0.40,SD = 0.16) and the
IBL model (M = 0.37,SD = 0.20) is not significant #(110) =
0.65,p = 0.516;d = 0.123. The same holds for the humans
and Two-Parameter model (M = 0.39,5SD = 0.16) compari-
son, #(110) =0.29,p =0.772,d = 0.055. In the p = 0.2 con-
dition, the t-tests show that the difference for humans (M =
0.46,SD = 0.17) and the IBL model (M = 0.48,5SD = 0.20)
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Figure 2: The distributions of the number of pumps of the balloon for all participants by block of 10 problems, for the humans,
IBL model, and Two-Parameter model. The IBL model uses default parameter values and the Two-Parameter model parameters
are fit for each individual and condition. The dashed lines indicate the mean number of pumps.

is not significant, #(110) = —0.61, p = 0.545;d = 0.115; the
same is true for the humans and the Two-Parameter model
(M = 0.46,SD = 0.16), #(110) = —0.09,p = 0.927;d =
0.017. Together, these results show that both the IBL and
Two-Parameter model predict human burst rates accurately;
however, the IBL model can do this without fitting to human
data and relying only on IBLT.

Evaluation of predictions through simulations

To evaluate the IBL and Two-Parameter models on equivalent
grounds, we generated predictions from the Two-Parameter
model in this task, sampling values for B and vy for each in-
dividual from a truncated normal distribution with a lower
bound of 0, centered at the mean fitted value of each parame-
ter with a standard deviation of the standard deviation of that
parameter’s fitted values. We used these sampled values to
simulate choices in the task; the parameters are not directly fit
to the choices of the human participants, yet they are a reason-
able representation of the parameter distribution. For the IBL
model, we sampled values for the decay and noise parameters
from truncated normal distributions centered on their default
value with a lower bound of 0. We used the standard devia-
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Figure 3: The distributions of the burst rates for the humans,
IBL model, and Two-Parameter model. The dashed lines in-
dicate the mean burst rate.

tion of the fitted p parameter from the Two-Parameter model
for each condition, to give similar variability in parameters
for both models. These simulations allow us to evaluate the
Two-Parameter model’s ability to generalize and make pre-
dictions without parameter fitting.
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The distributions of the number of pumps are displayed
in Figure 4. T-tests show that for p = 0.1, the mean num-
ber of pumps is significantly lower for the IBL model (M =
3.32,8D = 5.00) relative to humans (M = 3.86,5D = 3.07),
t(5598) = 4.91,p < 0.001;d = 0.131. The mean num-
ber of pumps is significantly higher for the Two-Parameter
model (M = 5.96,SD = 5.33) relative to humans, 7(5598) =
—18.05,p < 0.001;d = 0.482. For p = 0.2, the mean for
humans (M = 2.58,SD = 1.95) is not significantly different
than for the IBL model (M = 2.62,SD = 3.40), (5598) =
—0.58,p = 0.562;d = 0.015. In contrast, the mean for the
Two-Parameter model (M = 3.70,SD = 3.02) is much higher
than for humans, ¢(5598) = —16.49, p < 0.001;d = 0.441.
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Figure 4: The distributions of the number of pumps of the
balloon for all participants and problems, for the humans and
the IBL model and Two-Parameter model with sampled pa-
rameters.

Figure 5 shows the distributions of burst rates. For the p =
0.1 condition, t-tests show that the difference in mean burst
rates for humans (M = 0.40,SD = 0.16) and the IBL model
(M =0.34,SD = 0.19) is not significant, 7(110) = 1.62,p =
0.108;d = 0.306. The difference is significant for humans
and the comparison of the Two-Parameter model (M =
0.55,SD=10.24),¢(110) = —4.12, p < 0.001;d = 0.779, with
the Two-Parameter model having a significantly higher burst
rate compared to human participants, indicating that the Two-
Parameter model predicts a higher risk propensity compared
to that actually observed in human data. In the p = 0.2 con-
dition, the t-tests show that the difference for the humans
(M =0.46,SD = 0.17) and the IBL model (M = 0.44,SD =
0.19) is not significant, #(110) = 0.60, p = 0.552;d = 0.113.
The difference is significant for the comparison of human
and Two-Parameter model (M = 0.65,SD = 0.22), #(110) =
—5.20,p < 0.001;d = 0.982. The Two-Parameter model pre-
dicts a significantly higher burst rate compared to the human
participants. Without fitting to participant choices, the Two-
Parameter model becomes less accurate.

Discussion

To be able to provide explanations and accurate “out-of-
sample” predictions of human decisions, particularly in se-
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Figure 5: The distributions of the burst rates for the humans
and the IBL model and Two-Parameter model with sampled
parameters.

quential decision making tasks, it is important to rely on
theory-driven models. Models that rely on human data to fit
their parameters to particular human data sets can provide in-
terpretable parameters (e.g., regarding risk propensity). How-
ever, the same model immediately becomes less accurate and
significantly different from the human data (e.g., burst rate)
when making predictions, even on the same data set. The IBL
model, in contrast, makes theory-based predictions that are
statistically indistinguishable from human data, in the com-
plete absence of human data.

We presented and demonstrated how a theory-driven cog-
nitive model of the BART task can make accurate predictions
in the absence of human data. The IBL model uses the the-
oretical principles of IBLT, which have been used to model
many other decision making tasks across contexts. The pre-
dictions emerge from the simulation of the IBL algorithm us-
ing default generic parameters. The model stores only infor-
mation that is available to human participants and makes no
unreasonable assumptions, such as knowledge of the bursting
probability or assuming that participants have a predefined
and consistent number of pumps to make in the task.

By evaluating the performance of the models “out-of-
sample,” we aim to point out that often a model may work
well for a fixed data set to which the parameters are fitted,
but the same model may fail to generalize to settings that in-
volve even the same tasks and individuals. In fact, differ-
ent models have been constructed for related sequential deci-
sion tasks, suggesting that the models are only applicable to a
particular sequential decision task and can generalize poorly
(Guan et al., 2020). In future work, we seek to investigate
how the same IBL model of sequential decisions can be gen-
eralized across other tasks. This is a feasible avenue for fu-
ture research, given the currently available data sets in which
the same individuals completed four different sequential de-
cision tasks (Guan et al., 2020), and given the theory-driven
approach to building computational models of sequential de-
cision making tasks that we are pursuing.
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