
UC Merced
Proceedings of the Annual Meeting of the Cognitive Science 
Society

Title
Constraint-Based Parsing with Distributed Representations

Permalink
https://escholarship.org/uc/item/5rj6w6p9

Journal
Proceedings of the Annual Meeting of the Cognitive Science Society, 37(0)

Authors
Blouw, Peter
Eliasmith, Chris

Publication Date
2015
 
Peer reviewed

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/5rj6w6p9
https://escholarship.org
http://www.cdlib.org/


Constraint-Based Parsing with Distributed Representations
Peter Blouw (pblouw@uwaterloo.ca)

Chris Eliasmith (celiasmith@uwaterloo.ca)
Centre for Theoretical Neuroscience, University of Waterloo

Waterloo, ON, Canada N2L 3G1

Abstract

The idea that optimization plays a key role in linguistic cog-
nition is supported by an increasingly large body of research.
Building on this research, we describe a new approach to pars-
ing distributed representations via optimization over a set of
soft constraints on the wellformedness of parse trees. This
work extends previous research involving the use of constraint-
based or “harmonic”’ grammars by suggesting how parsing
can be accomplished using fully distributed representations
that preserve their dimensionality with arbitrary increases in
structural complexity. We demonstrate that this method can
be used to correctly evaluate the wellformedness of linguis-
tic structures generated by a simple context-free grammar, and
discuss a number of extensions concerning the neural imple-
mentation of the method and its application to complex parsing
tasks.

Keywords: natural language processing; parsing; optimiza-
tion; harmonic grammar; holographic reduced representations;
semantic pointer architecture

Introduction
One of the most impressive features of human cognition is
the ability to rapidly process vast numbers of linguistic ex-
pressions. To help explain this ability, many cognitive scien-
tists adopt the view that humans possess implicit knowledge
of the grammatical properties that characterize well-formed
phrases and sentences. An influential approach to describing
this knowledge involves postulating sets of interacting con-
straints that favour and penalize the co-occurrence of certain
structural features in the representation of a linguistic expres-
sion (Smolensky & Legendre, 2006). Applications of this ap-
proach have resulted in a number of important insights con-
cerning the nature of language processing in cognitive sys-
tems (Prince & Smolensky, 1997).

A significant benefit of describing grammatical knowledge
in terms of violable constraints is that processes sensitive to
such constraints are naturally computed in neural systems
(Smolensky & Legendre, 2006; Rogers & McClelland, 2014).
Given as much, an important area of research concerns the
development of techniques for (a) encoding structured rep-
resentations into continuous vector spaces of the sort used
to describe neural systems (Plate, 2003; Smolensky, 2006;
Eliasmith, 2013), and (b) defining operations on these vectors
spaces that perform constraint-sensitive computations of the
sort required to account for linguistic phenomena (Smolensky
& Legendre, 2006). To date, there has been comparatively
more success solving the first of these problems than the sec-
ond.

One challenge facing efforts to connect constraint-based
accounts of grammatical knowledge and vector-based ac-
counts of neural computation concerns the mapping between

constraints defined over symbols and operations defined over
vectors. At a theoretical level, a technique for performing this
mapping has been proposed (Smolensky, 2006), but it is pri-
marily defined using tensor product representations that grow
in dimensionality in proportion to symbol structure depth. In
practice, the main existing implementation of this technique
uses localist rather than distributed representations (Hale &
Smolensky, 2006).1

Our aim is to build on this previous work by implement-
ing a constraint-based parser that operates on fully distributed
representations in a vector space of fixed dimensionality at all
structural depths. There are two benefits to performing these
extensions. First, the use of fully distributed representations
can allow for parsing behaviour that is sensitive to graded de-
grees of similarity between structures; such graded sensitivity
to processing constraints is arguably necessary to account for
many kinds of linguistic phenomena (Rogers & McClelland,
2014). Second, the use of a fixed vector space for encod-
ing structures of all degrees of complexity provides a natural
way to account for the graceful saturation of processing capa-
bilities as structural complexity is increased. Accounting for
such saturation and related processing errors is an important
goal for research on linguistic cognition.

In what follows, we first describe existing approaches to
describing grammatical knowledge in terms of sets of vio-
lable constraints and briefly motivate this approach in favour
of more conventional approaches that postulate a set of sym-
bolic rewrite rules capable of generating all and only the sen-
tences of a particular language. We then describe an existing
method for computing grammatical forms using constraints
and describe a novel variation of this method that can allow
for the implementation of a parser that operates on distributed
representations in a vector space of fixed dimension. We con-
clude with a discussion of the current limitations of our ap-
proach, along with some promising extensions.

Harmonic Grammars
A fairly widespread view amongst contemporary cognitive
scientists is that strictly rule-based accounts of linguistic phe-
nomena are empirically inadequate. Since the late 1980’s,
considerable research has been directed towards the devel-
opment of probabilistic and constraint-based frameworks in
which certain properties of linguistic structures are favoured
in a violable manner (Rogers & McClelland, 2014). Through-
out this paper, we adopt the formalism of harmonic grammar
(Smolensky & Legendre, 2006), in which the wellformedness

1In a distributed representation, each unit of a neural network
participates in the encoding of numerous representations.

238



of a linguistic structure is evaluated against a set of soft con-
straints that take the following form:

The co-occurence of structural constituents ci and c j
should be favoured (or disfavoured) to degree wi j.

Once a constraint set of this sort has been defined, it is pos-
sible to assign a scalar measure of well-formedness to every
possible structure built from a fixed inventory of constituents.
Formally, the scalar measure or “harmony” value, E, is a pair-
wise sum over the set of constituents that make up particular
structure, s:

H(s) = ∑
i≤ j

H(ci,c j) (1)

where H(ci,c j) evaluates to wi j if both ci and c j are present
in s. Importantly, the value H assigns an ordering to the set
of structures containing a set of input constituents for which a
parse is being sought. The maximum element of this ordering
is the structure corresponding to the optimal parse of the in-
put. Or put more intuitively, the optimal parse is the structure
containing the input constituents that minimizes the overall
degree of constraint violation.

The expressive power of a grammar defined in terms
of simple pairwise constraints is considerable. Hale and
Smolensky (2006), for example, prove that harmonic gram-
mars can be constructed to describe formal languages in all
classes of the Chomsky hierarchy. One important caveat of
this result is that the resource and processing requirements
associated with these grammars are often substantial. For this
reason, our goal of implementing a parser whose performance
degrades gracefully with increased structural complexity is an
important one.

Considering the case of a simple context-free grammar
helps to illustrate how Hale and Smolensky are able to de-
scribe arbitrary formal languages with large collections of
pairwise constraints. A context-free grammar, to explain, is a
grammar in which each production rule takes on the follow-
ing form:

S→Φ (2)

where S refers to any non-terminal symbol and Φ refers to
a set of terminal and non-terminal symbols. To convert a
context-free grammar into a harmonic grammar, the gram-
mar is first translated into Chomsky normal form, in which
all production rules take one of two forms:

S→ AB A→ a (3)

where A and B are non-terminal symbols, and a is a terminal
symbol. Notice that each production rule in (3) adds either a
binary or unary branch to a parse tree while also specifying
which symbols can be placed in parent-child relationships on
a given branch. This observation can be used to break each
binary branching rule into two parts, each of which refers to
only a pair of symbols:

S→ A – S→ – B (4)

--
-

- -

-
-

+
+

+

+ +

+

+
+

-
-

S

A B

a b

S

A B

a b

S

S

A

B

A B

a

b

Figure 1: Harmonic grammar constraints for a small set of
context-free rewrite rules, adapted from Hale and Smolensky
(2006). The constraints defining the grammar are organized
such that each constituent is penalized for occurring alone to
a degree equal to the number of parents and children it re-
quires.These penalties are exactly cancelled out by the pos-
itive values associated with each co-occurrence of a correct
parent/child pair.

Now, it is possible to convert the rules into pairwise con-
straints of the form “B should be favoured as a right-child of
S to degree to x” or “S should be favoured as parent to A to
degree y”, where x and y are derived from a constraint holding
between constituents. The key to defining the grammar for a
language is to organize these constraints such that the struc-
tures permitted by the language are assigned energy values of
0 via (1), while all other structures are assigned positive en-
ergy values (Hale & Smolensky, 2006). Figure 1 illustrates
this constraint assignment in an intuitive manner.

Encoding Grammars in Neural Networks
At this point, it might seem that constraint-based grammars
are simply complex re-descriptions of more conventional
grammars. The key advantage of adopting the constraint-
based approach is that it can be used to easily translate a
measure of the wellformedness of a particular linguistic struc-
ture into a measure of the wellformedness in a neural system
that encodes this structure. This translation occurs via a map-
ping from (1) to an equivalent measure of wellformedness
that only refers to the state of the neural system in question.

Before describing the translation in more detail, it is nec-
essary to briefly discuss how symbol structures can be en-
coded into the vectors that describe neural network states.
The first step of the encoding involves performing a role de-
composition on a set of symbol structures that allows each
structure to be represented as a combination of role/filler pairs
(Smolensky, 2006). This role decomposition defines a func-
tion β : S→ P (F×R) that maps each symbol structure to a
collection of role/filler pairs. F ×R refers to the Cartesian
product of the set of all possible fillers and the set of all pos-

239



sible roles. The roles in question are typically tree nodes, and
the fillers are symbols.

The second step of the encoding involves mapping a collec-
tion of role-filler pairs into a superposition of states in a neural
network. This mapping is achieved by assigning a vector to
each role and filler, and by defining a binding operation that
joins a role and filler into a pair. Following Plate (2003), we
adopt circular convolution as binding operation and use vec-
tor addition for constructing combinations of bound items.
These operations can be used to map symbol structures onto
vectors as follows:

a = υ(β(s)) = ∑
Fi/Ri∈β(s)

Fi ~Ri (5)

where a is vector, and υ indicates a mapping from a col-
lection of role/fillers pairs onto a sum of role/filler bindings.
This mapping generates what Plate refers to as a “holographic
reduced representation” (HRR), which importantly is not a
lossless encoding the of original symbol structure s.The con-
volution operation ensures that each role/filler binding resides
in the same vector space as the vectors for each role and filler,
but also it results in sums of bindings that correspond to com-
pressed approximations of symbol structures.

Translating (1) into the language of HRRs is now straight-
forward because each structural constituent is simply a
role/filler binding. As such, the wellformedness of an HRR
can be assessed by summing over the constraint magnitudes
associated with all pairs of role/filler bindings encoded in the
HRR.

If the constraints defining a harmonic grammar are en-
coded into the connection weights of a neural network, then it
possible to calculate the wellformedness of the network state
through a simple algebraic operation that ranges over all pair-
wise connections in the network:

E(a) =−aTWa =−∑i j aiWi ja j (6)

where a is an activation vector describing the state of the
network, and W is the network’s weight matrix. Intuitively,
if two units connected by a positive weight are active, the
wellformedness of the activation vector increases (i.e. fewer
constraints are violated). If the weight is instead negative,
the wellformedness decreases (i.e. more constraints are vio-
lated). (6) is what is often referred to as an “energy” function,
and a number of results concerning the optimization of these
functions in neural networks can accordingly be applied here
(Smolensky & Legendre, 2006). The most important of these
results entails that, assuming certain constraints on the con-
nectivity of W , a large class of networks implement dynamics
that push the activation vector a towards a steady state that is
a local optimum of E(a). Thus, if the weight matrix W en-
codes the constraints that define a harmonic grammar, and a
is initialized to encode a set constituents for which a parse
is being sought, then the network dynamics will shift a to a
point the minimizes E(a). Minima of E(a), by definition,
encode structures that correspond to (locally) optimal parses

given that E(a) = −H(s) by virtue of the mapping provided
in (5).2

With these preliminaries out of the way, it is possible to
introduce the central contribution of this paper, which is to
show how to evaluate E using a network whose represen-
tational state maintains a fixed dimensionality regardless of
parse complexity.

Parsing while Preserving Dimensionality
For simplicity, we initially construct our parser using the fol-
lowing set of context-free rewrite rules:

S→ A B A→ a
A→C S B→ b C→ c

These abstract rules are chosen because they form a small
set exhibiting the potential for boundless recursion, since an
arbitrary number of branches that stem from the symbols A
and S can be included in a tree. Next, we assign a random
512-dimensional unit vector to each symbol present in these
rules, and to each of branch position up to some maximum
depth assuming ternary branching (i.e. left, right, middle). By
binding together vectors for symbols and branch positions,
we can construct HRRs that encode arbitrary tree structures
(Smolensky, 2006). For example, the tree in Figure 1 might
be encoded as follows:

a = S+ rL ~A+ rR ~B+ rLM ~a+ rRM ~b (7)

where rL, rR, etc. are role vectors indicating the locations of
tree nodes relative to the (unlabelled) tree root.

As before, the rules defining the grammar can be refor-
mulated as a set of pairwise constraints. The first rule states
that the symbol S should have a A as its left-child and B as
its right child. In the language of our encoding scheme, this
means that if an HRR includes an S bound into a particular
tree position, then it should also include a B bound into the
next left-branching position. For each case in which one of
these constraints is satisfied, the magnitude of the constraint
is added to the value of E(a).

We can now construct a weight matrix that assigns the
proper energy values to those vectors that encode wellformed
parse trees. Following Smolensky (2006), we design the
weight matrix such that value of aTWa is equal to a sum of the
magnitudes of all constraints that hold between pairs of con-
stituents encoded in a. For example, if a = S+ rL ~A and the
constraint favouring A as a left child of S has a magnitude of
2, then −aTWa should equal −2. It is possible to obtain this
result exactly if the vectors for all constituents in a are lin-
early independent (Smolensky, 2006), but our use of an HRR
based encoding scheme is not guaranteed to oblige this condi-
tion. It precisely the point of this paper to show how parsers
might be designed without enforcing a linear independence
condition that requires the dimensionality of a to scale as a

2The minus sign in (6) is a convention: energy is equal to nega-
tive harmony and vice versa.

240



function of the number of constituents in a. We predict that
as the bindings encoding different constituents become more
and more dependent, the measured value of E(a) will provide
a progressively worse approximation to the ideal value E(a)
(i.e. the value calculated assuming linear independence).

To specify the exact form of W , it helps to consider the
simplest case in which W encodes only a single constraint. If
a encodes the two constituents used in the previous example,
and the constraint holding between these constituents still has
a value of 2, then there is a readily available expression in
which W occurs as the only unknown quantity:

−2 =−(S+ rL ~A) ·W (S+ rL ~A) (8)

Because matrix multiplication is linear, it is possible to break
W into components that “look for” the correct parent or child
of a particular constituent. For example, one component
might look for an S in the position that is a parent to the po-
sition at which A is bound. (8) can therefore be split into
two components that each search for a parent and child, re-
spectively. The first of these components seeks a parent for
rL ~A, and must therefore be mapped by Wa to a vector that
has an expected dot product of 1 with S and 0 with all other
constituents. This result is accomplished by observing that
(S~A−1~r−1

L )~(rL~A)≈ S and that S ·S≈ 1. As such, the
matrix Wa simply needs to perform a mapping that is equiva-
lent to convolving its input by (S~A−1 ~ r−1

L ). Plate (2003)
demonstrates that a fixed convolution operation is equivalent
to multiplication by a circulant matrix, so it is straightfor-
ward to derive Wa as a product of circulant matrices. Note
that Wa maps other constituents to meaningless terms such as
(S~A−1 ~ r−1

L )~ S ≈ ~S~ rL ~A−1 ~ S, which are treated
as noise (Plate, 2003).3

To account for the component of W that seeks a proper
child for S, the process just described is repeated to generate
a matrix Wb that performs a mapping equivalent to convolv-
ing an input with S−1 ~A~ rL. Any vector containing S is
mapped by Wb to a vector that has an expected dot product
of 1 with rL ~A and 0 with all other constituents. Adding
together Wa and Wb to yields the matrix W that was originally
sought to satisfy the equality described in (8), since aTWaa
and aTWba are both equal to one and together sum to 2 (i.e.
the constraint value specified by begin with).

A final technicality concerns the fact that some of the con-
straints in a harmonic grammar are defined with respect to a
single constituent (e.g. a tree containing A is disfavoured to
degree x). This sort of constraint requires a matrix W that
maps a constituent back to itself. Adding the identity matrix
to W is possible way to satisfy this requirement, but doing
so has the unintended consequence of reproducing the entire
input to W in its output. To avoid this, we instead define a vec-
tor u that every constituent with unary constraint gets mapped

3The −1 in these expressions denotes the pseudo-inverse of a vec-
tor with respect to convolution; a vector convolved with its pseudo-
inverse is approximately equal to I, which in the context of convolu-
tion is a vector whose first element is 1 while the rest are zeros.

to by W (different constituents are mapped to scaled versions
of u to account for constraints of differing magnitudes). If u
is included in the activation vector a, then each unary con-
straint defined over a constituent present in a will have the
desired effect on E(a), since E(a) =−aT Ea and−aTWa will
vary with the presence or absence of constituents in a that are
mapped by W to u.

In the following simulations, we define a weight matrix W
that is a sum of circulant matrices, each of which performs a
mapping of the sort described in (8). The circulant matrices
that make up W are derived by converting the simple grammar
defined at the beginning of this section into a set of constraints
using the methods of Hale and Smolensky (2006). Because
the rewrite rule grammar produces a infinite set of trees of the
form {cn−1abn | n > 0}, we cap the depth of the trees under
consideration at 4. This leads to a grammar that defines two
trees (see Figure 2).

S

A B

a b

S A

B

A B a

b
S

A B

b
S

A B

a b

C

c

A C S

C c

Figure 2: The two trees generated by the depth-capped gram-
mar under consideration.

Given W and an HRR encoding some particular sum of
role-filler bindings, we can compute the wellformedness of
the HRR via (6). Furthermore, we can compare the well-
formedness of various HRRs that encode different collections
of parse tree constituents. In the simulations below, compar-
isons of the wellformedness of different HRRs are used to
illustrate how any network that optimizes (6) will map any
vector residing in a specific region of space to a new vector
than encodes one of the trees defined by our grammar.

A challenge that arises when computing the wellformed-
ness of an HRR via (6) is that the circulant matrices that com-
prise W introduce considerable amounts of noise into the cal-
culation of E(a). To explain, a single circulant matrix “looks
for” for a particular role-filler binding in a, and if this bind-
ing is present, the circulant matrix returns a different binding
(i.e. a binding that is a parent or child of the binding that
was being sought). Every other constituent encoded in a is
also mapped to an output by the circulant matrix, but these
outputs are highly dissimilar to the role-filler bindings of in-
terest and are therefore treated as noise. If, however, there
are n circulant matrices added into W , then each each role-
filler binding present in a will add n−1, n−2 or n−3 noise
terms into the desired output of Wa (since only 1, 2, or 3 of

241



n matrices seeks out a given binding by virtue of the branch-
ing structure of the trees). The overall noise added to E(a)
has a mean of zero, but a variance that is proportional to the
number of individual noise terms included in the computa-
tion of E(a). To avoid this problem in our simulations, we
break up the network defined by W into a set of subnetworks
{W1,W2,W3, ...Wn}, where n is the number of locally well-
formed trees (i.e. those trees comprised of a single parent
and its immediate children) permitted by the grammar, and
Wn is the sum of the circulant matrices that encode the con-
straints corresponding to the nth local tree. Then, we break
apart the vector a into a set of HRRs, each of which contains
the bindings present in a that are acted on by the constraints
in a given subnetwork. We compute the energy value in each
subnetwork, adding together all such values to obtain the total
energy of a. Put simply, we factor the overall energy function
in order to compute it more accurately. With 512 dimensional
vectors, the overall level noise is minimal. We use a simple
thresholding operation (described below) to filter this noise.
However, some unavoidable noise remains due to the fact that
the vector dot product used to compute −aT

n Wan performs
pairwise comparisons between vectors that are only approxi-
mately orthogonal (see the discussion below Eq. 8)

Simulations
To illustrate the optimization behaviour that we propose to
take advantage of to perform parsing, we compare the well-
formedness of HRRs encoding various subsets of the set of
role/filler pairs defined by our grammar. The point of this
demonstration is to show that HRRs encoding the two parse
trees in Figure 2 have lower energy values than all nearby
HRRs. Specifically, removing a needed constituent or adding
a superfluous constituent is shown to typically increase en-
ergy; from this we can conclude that an optima of the energy
function E(a) is obtained when is a is very close to a vector
that encodes a well-formed parse tree.

In each simulation, we randomly generate vectors for all
roles and fillers that can be used in the encoding of the parse
trees in Figure 2. Specifically, we use random unitary vec-
tors, which have equal exact and approximate inverses (Plate,
2003). From the random role and filler vectors, we gener-
ate a set of circulant matrices that perform linear transforma-
tions that are equivalent to convolutions (e.g. S~A−1~r−1

L ).
The circulant matrices corresponding to the constraints defin-
ing a local tree are added together and included in the set
{W1,W2,W3, ...}.

For a given vector a we compute E(a) by first breaking
apart a into subsets of bindings that each correspond to one
of the subnetworks used to factor the energy function. Next,
for each subnetwork, we compute En(an) by multiplying an
by Wn, the weight matrix of subnetwork n. The result of this
multiplication is a vector, and we take the dot product of this
vector and the vectors that the subnetwork’s constraints are
are designed to produce (i.e. certain child and parent bind-
ings). The dot products are then thresholded (typically to 0 or

1) and again multiplied by the vectors the subnetwork’s con-
straints are designed to produce, yielding “clean” versions of
these vectors. This sort of clean-up function is frequently
implemented in models that make use of HRRs (Eliasmith,
2013; Plate, 2003). The clean vectors are subsequently added
together, and the dot product of this sum and an is calculated
to produce a value for E(an). In other words, we compute
E(an) = −aT

n C(Wnan) in each subnetwork n, where C refers
to the noise cleanup operation. E(a) is computed by summing
the energy values in each subnetwork.

Figure 3: Comparison of well-formedness for different tree
structures. The minimum in the graph corresponds to a struc-
ture that encodes the 5 constituents present in the first tree
in Figure 2. Points to the left of the minimum correspond
to structures that are missing constituents in the tree, while
points to the right of the minimum correspond to structures
that have extra constituents not found in the tree. Each plotted
value is the mean of 250 trials involving randomly generated
role and filer vectors of dimension D. Error bars indicate 95%
confidence intervals.

Next, we perform a comparison of wellformedness across
a number of linguistic structures. In the comparison shown
in Figure 3, we evaluate structures that progressively include
more constituents from the first tree shown in Figure 2. The
wellformedness measure E(a) minimizes when all five con-
stituents of the tree are present, and increases as additional
constituents are added. This result suggests that the well-
formedness of a structure can be accurately tracked even
though it only encodes a compressed approximation of the
symbol structure that the wellformedness measure is defined
over. In the comparison shown in Figure 4, we perform
an analogous evaluation with structures that include progres-
sively more constituents from the second tree shown in Fig-
ure 2. All simulations are run using 128, 256, and 512 di-
mensional vectors. As expected, performance degrades with

242



lower dimensional vectors.

Figure 4: Comparison of well-formedness for different tree
structures. The minimum in the graph corresponds to a struc-
ture that encodes the 11 constituents present in the second tree
in Figure 2. Points to the left of the peak correspond to struc-
tures that are missing constituents in the tree. The second
minimum likely arises as due to structures with fewer con-
stituents having a greater degree of similarity to the first tree.
Each value is the mean of 250 trials and error bars indicate
95% confidence intervals.

Overall, the key implication of these results is that a lossy
encoding of a set of symbol structures into a vector space
seems to preserve the properties of an energy function de-
fined over the much larger space that is required to encode
the structures exactly.

Conclusions and Future Directions
The main purpose of this work is to extend earlier research on
harmonic grammars and optimization in linguistic cognition.
One limitation of our current work is that we have not dis-
cussed the problem of selecting a starting state for the parsing
network given an input expression (e.g. ’the dog ran’). Meth-
ods for solving this problem described by Hale and Smolen-
sky (2006) could likely be incorporated into our framework.

It is also unknown whether our use of factoring and thresh-
olding to eliminate noise will have any impact on whether
or not a neural network can be easily designed to optimize
E(a). As mentioned, if filtering is used, then the expression
for E(a) changes slightly to −aTC(Wa) where C denotes a
noise clean-up function. One approach to solving this prob-
lem involves the use of the Neural Engineering Framework
(Eliasmith & Anderson, 2003), a theory that describes meth-
ods for computing arbitrary functions in networks of spiking
neurons. If it is possible to define a function that optimizes
−aTC(Wa), then it should also be possible to compute this

function using simulated neurons. Extracting subsets of the
bindings in a may also incur additional computational costs
in a neural network implementation.

One other important limitation concerns the need to scale
our methods to more complex trees involving large numbers
of bindings. Preliminary empirical tests indicate that this
is possible (e.g. using trees including on the order of 100
bindings), and theoretically, good scaling is to be expected,
since the values of the noise terms introduced in the calcu-
lation of E(a) are dependent on the complexity of the local
trees evaluated in each subnetwork, which have at most only
two direct children. Finally, on a more speculative front, it
is worth noting that constraint-based parsers need not be re-
stricted to computing syntactic transformations. In general,
a parser of this sort finds a local solution to an optimization
problem, so it is conceivable that many constraint-sensitive
cognitive processes can be modelled using the framework
proposed here. Another interesting idea concerns integrat-
ing this sort of parsing into the Semantic Pointer Architec-
ture (Eliasmith, 2013), a recently proposed framework for
describing the functional organization of neurobiological sys-
tems. Pursuing these ideas over the long term will hope-
fully lead to the development of scalable and robust models
of constraint-based language processing.

Acknowledgments
This research was supported by CFI, OIT, SSHRC, NSERC
Discovery Grant 261453, AFOSR Grant FA8655-13-1-3084,
and the Canada Research Chairs program.

References
Eliasmith, C. (2013). How to build a brain: An architecture

for neurobiological cognition. New York, NY: Oxford
University Press.

Eliasmith, C., & Anderson, C. (2003). Neural engineering:
Computation, representation, and dynamics in neuro-
biological systems. Cambridge, MA: MIT Press.

Hale, J., & Smolensky, P. (2006). Harmonic grammars and
harmonic parsers for formal languages. In The har-
monic mind: From neural computaton to optimality-
theoretic grammar (p. 393-415). MIT Press.

Plate, T. (2003). Holographic reduced representations. Stan-
ford, CA: CSLI Publications.

Prince, A., & Smolensky, P. (1997). Optimality: From neural
networks to universal grammar. Science, 275(5306),
1604-1610.

Rogers, T., & McClelland, J. (2014). Parallel distributed pro-
cessing at 25: Further explorations in the microstruc-
ture of cognition. Cognitive Science, 38(1024-1077).

Smolensky, P. (2006). Tensor product representations: For-
mal foundations. In The harmonic mind: From neural
computaton to optimality-theoretic grammar (p. 271-
344). MIT Press.

Smolensky, P., & Legendre, G. (2006). The harmonic mind:
From neural computaton to optimality-theoretic gram-
mar (Vol. 1). Cambridge, MA: MIT Press.

243


	cogsci_2015_238-243



