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Abstract

Joint Modeling of Longitudinal and Survival Data via

Multivariate Mixed Effects State Space Model

by

Ya Luo

State space models are powerful in modeling dynamic processes and at the same time

have clear interpretations. Due to their flexibility and interpretability, mixed effects state

space models have been studied in the literature for the modeling of multivariate longi-

tudinal data. In a multivariate mixed effects state space model, the population effects

and subject random deviations of any variable can be modeled by different stochastic

processes. These processes can differ between variables, allowing great flexibility in the

modeling. In addition, the model provides multiple ways to characterize interactions

between the variables. However, the expensive computational cost is a major hindrance

to the application of the mixed effects state space model to data with large numbers

of individuals. Let m be the number of individuals. The current most efficient version

of the Kalman filter, the univariate treatment, has time complexity O(m3) and space

complexity O(m2). The univariate treatment can handle only a few hundred individuals

at a high computational cost. We discover special structures in the Kalman filter of the

mixed effects state space model and develop a new algorithm to exploit these structures.

This reduces both time and space complexity to O(m) and enables easy modeling of hun-

dreds of thousands of individuals without parallel computing, although it is also highly

parallelizable. We further extend the mixed effects state space model to a joint modeling

framework, in which a mixed effects state space model characterizes longitudinal data and

a logistic regression models the survival probability. The true values of the longitudinal

vii



variables, modeled by the latent state of the state space model, are used as predictors in

the logistic regression. Our joint model can (i) characterize the evolution of longitudinal

variables and interactions between them, (ii) model the relationship between the survival

probability and longitudinal variables/external covariates, and (iii) perform online pre-

dictions for longitudinal variables and survival probability. We develop another efficient

algorithm for the computation of the maximum likelihood estimates of parameters in the

joint model with time and space complexity both linear in m.
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Chapter 1

Introduction

1.1 Mixed Effects Models for Longitudinal Data

Longitudinal data contain repeated measurements of individuals over time. Compared

to cross-sectional data in which the measurements of different subjects are collected at

different time points, longitudinal data eliminate sample difference by track- ing the

same subjects, hence more accurately characterize the change in variables over time.

Longitudinal data are often modeled by mixed effects models, in which subject deviations

are modeled by random effects and the population mean is modeled by fixed effects. A

linear mixed effects model (Laird and Ware [1]) assumes that

yi(tij) = xTi (tij)β + zTi (tij)bi + εi(tij), (1.1)

where yi(tij) is the observation of the response variable at time tij from subject i, i =

1, . . . ,m, j = 1, . . . , ni; xi(tij) is a p × 1 vector of covariates associated with the fixed

effects β; zi(tij) is a q × 1 vector associated with the random effects bi
iid∼ Nq(0, D); and

εi(tij) are random errors with εi = (εi(ti1), . . . , εi(tini
))T ∼ N(0, Ri). Given the random
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Introduction Chapter 1

effects bi, the observations of subject i at time tij fluctuate around xi(tij)β + zi(tij)bi,

hence the random effects characterize between-subject variation.

Model (1.1) can be written in a vector form. Let yi = (yi(ti1), . . . , yi(tini
))T be the

observation vector of subject i,

Xi =


xTi (ti1)

...

xTi (tini
)

 , Zi =


zTi (ti1)

...

zTi (tini
)

 , and εi =


εi(ti1)

...

εi(tini
)

 , (1.2)

then model (1.1) can be written as

yi = Xiβ + Zibi + εi, i = 1, . . . ,m. (1.3)

Furthermore, one can stack the observations of all subjects and write the model in a

general linear mixed effects form. Let

y =


y1

...

ym

 , X =


X1

...

Xm

 , Z =


Z1 0

. . .

0 Zm

 ,

b =


b1
...

bm

 , and ε =


ε1
...

εm

 ,

we have

y = Xβ + Zb+ ε, (1.4)

where y is an observation vector of dimension n× 1, n =
∑m

i=1 ni, X is an n× p design

matrix for the fixed effects β, Z is an n × qm design matrix for the random effects

2



Introduction Chapter 1

b, b ∼ N(0, G), G = diag{D, . . . , D}, ε ∼ N(0, R) is a vector of random errors, and

R = diag{R1, . . . , Rm}.

Suppose that the covariance matrices G and R depend on a parameter vector θ. We

need to estimate parameters β and θ. According to (1.4),

y ∼ N(Xβ,W−1), (1.5)

where W−1 = ZGZT +R depends on θ. Maximizing the log-likelihood

l(β,θ) = log p(y|β,θ) = constant +
1

2
log |W | − 1

2
(y −Xβ)TW (y −Xβ) (1.6)

gives the maximum likelihood estimate (MLE) of β and θ. For a fixed θ, maximizing

the likelihood with respect to β results in an analytical expression of β as a function of

θ,

β̂ = β̂(θ) = (XTWX)−1XTWy, (1.7)

which is the same as the generalized least squares (GLS) estimate. Plugging (1.7) back

into the log-likelihood (1.6) gives the profiled likelihood

l(β̂,θ) = constant +
1

2
log |W | − 1

2
(y −Xβ̂)TW (y −Xβ̂), (1.8)

which is a function of θ only. The MLE of θ̂ is the maximizer of (1.8), and the MLE of β

is β̂ = β̂(θ̂). Usually there is no closed form solution for θ and a numerical optimization

procedure such as the EM algorithm or Newton-Raphson is employed.

The maximum likelihood approach, however, results in biased estimates of the vari-

ance components θ due to loss in the degrees of freedom for estimating β, especially when

the dimension of β is large relative to the number of observations. Restricted maximum

3



Introduction Chapter 1

likelihood (REML) corrects this bias problem by eliminating fixed effects β from the

likelihood and estimating θ based on the reduced data.

Suppose that the n× p design matrix X is of rank r. Let O be an (n− r)×n matrix

of full row rank satisfying OX = 0, we have

Oy ∼ N(0, OW−1OT ), (1.9)

in which the distribution of Oy is independent of β. The likelihood of Oy is referred to

as the restricted likelihood and is used to estimate θ.

The joint density of y and b is

p(y, b|θ) = p(y|b,θ)p(b|θ)

= (2π)−
n+qm

2 |R|− 1
2 |D|− 1

2 exp{−1
2
[(y −Xβ − Zb)TR−1(y −Xβ − Zb)+

bTG−1b]}.
(1.10)

By taking the logarithm of (1.10), one obtains the joint log-likelihood of β and b (Hen-

derson [2]),

l(β, b) = constant− 1

2
log |R|− 1

2
log |D|− 1

2
[(y−Xβ−Zb)TR−1(y−Xβ−Zb)+bTG−1b].

(1.11)

Differentiating (1.11) with respect to β and b and equating to zero, we have

XTR−1Xβ +XTR−1Zb = XTR−1y,

ZTR−1Xβ + (ZTR−1Z +G−1)b = ZTR−1y.
(1.12)

4



Introduction Chapter 1

The solutions for β and b are

β̂ = (XTWX)−1XTWy,

b̂ = (ZTR−1Z +G−1)−1ZTR−1(y −Xβ̂).
(1.13)

The parametric assumption of fixed and random effects may be too restrictive in some

cases. More flexible semi-parametric and non-parametric mixed effects models have been

developed ([3], [4], [5], [6], [7], [8], [9]).

1.2 Joint Modeling of Longitudinal and

Survival Data

Longitudinal studies track subjects over time and collect various types of informa-

tion. The measurements include exogenous variables whose values are independent of

other variables in the system and are usually measured accurately with negligible er-

ror, endogenous variables whose existence and values depend on other variables, and

time to an event such as death. Both exogenous and endogenous variables can change

over time. Of interest are the interconnections between these variables, specifically, (a)

the within-subject trajectories of endogenous longitudinal variables and their associa-

tion with exogenous variables and other endogenous variables, and (b) the relationship

between time-to-event and longitudinal endogenous/exogenous variables.

Traditional survival analysis, such as the Cox proportional hazard model, charac-

terizes the relationship between time-to-event and observed covariates under the ideal

assumptions that data are available at all times and are measured without errors. How-

ever, these assumptions rarely hold in practice. First, the longitudinal variables are

usually observed intermittently. Naive imputations such as Last Value Carried For-

5
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ward (LVCF) result in biased parameter estimates ([10]). Second, observed longitudinal

variables are usually not the true values—there are measurement errors and biological

variations. Third, the distributions of longitudinal variables may change when the event

is about to happen.

The complications in practice and the potential for biased inference gave rise to the

method of joint modeling, which assumes that longitudinal and survival data depend on

a common set of latent processes. A joint model typically consists of a submodel for

longitudinal data and a submodel for survival data (see [11] and [12] for a review). Let

Ti, Ci, xi, and mi(t) be the event time, censoring time, the vector of exogenous variables

which may be time dependent, and the latent true longitudinal process for subject i,

respectively. The actual observations are Vi = min{Ti, Ci}, the event indicator 4i =

I(Ti ≤ Ci), and the observation yi(t) of latent process mi(t) with error at intermittent

time points t ∈ {ti1, . . . , tini
}.

There are three main models for the latent process mi(t). The simplest is

mi(t) = α0i + α1it, (1.14)

specifying the latent process as a linear function of time t. A more flexible model depicts

the latent process as a smooth trajectory

mi(t) = f(t)αi, (1.15)

where αi is a vector of subject-specific time-invariant effects and f(t) is a vector of

functions of time t. Other work ([13], [14], [15], [16], [17]) accounts for autocorrelation

6
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over time by adding a zero-mean stochastic process Ui(t) to (1.15), namely,

mi(t) = f(t)αi + Ui(t). (1.16)

The actual observation of a longitudinal variable is modeled by

yi(t) = mi(t) + εi(t), (1.17)

where εi(t) is the measurement error and/or biological variation, either serially indepen-

dent or has a covariance structure if autocorrelation is present and is not included in

mi(t).

Parametric accelerate failure time models and semi-parametric proportional hazard

models have been considered for the survival submodel. For example, a proportional

hazard survival submodel assumes that

hi(Mi(t),xi) = h0(t)exp{γTxi + αmi(t)}, t > 0, (1.18)

where Mi(t) is the history of the latent process up to time t, and h0(t) is the baseline

hazard function. The standard Cox model ([18]) in survival analysis leaves the base-

line hazard h0(t) completely unspecified. However, in a joint modeling framework, such

a semi-parametric approach often leads to underestimation of the standard errors of

parameter estimates ([19]). It is therefore preferable to use a known parametric distribu-

tion for h0(t), such as Weibull, log-normal, and Gamma. Alternatively, one may model

h0(t) non-parametrically using step functions or splines ([20], [21], [22]). The hazard

hi(Mi(t),xi) may also depend on the first derivative of the latent process, in this case,

the exponent in (1.18) will have an additional regression term for m′i(t).

Parameters in a joint model can be estimated by maximum likelihood. However, the

7
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evaluation of the joint likelihood of the two submodels involves numerical integration,

which is computationally expensive and is thus a main limitation of joint models.

Extensions to multivariate longitudinal data have also been studied in the literature

([23], [24], [25]). Let mik(t) be the latent process of the kth longitudinal variable at time

t for subject i, k = 1, . . . , q. Xu and Zeger [24] considered a linear mixed effects model

mik(t) = Xik(t)βk + Zik(t)bik + εik(t), (1.19)

where βk is a pk × 1 vector of fixed effects, bik is a vk × 1 vector of random effects, and

Xik(t) and Zik(t) are design matrices that can be time-dependent.

For each subject, there are two sources of correlation structures in the multivariate

case: (i) correlation among repeated measurements for each variable, and (ii) correlation

between different variables.

To account for the two correlation structures, Xu and Zeger [24] assumed that

bi = (bTi1, . . . , b
T
iq)

T iid∼ N(0, G), (1.20)

where random effects for different variables may be correlated. They also assumed that

random errors are serially independent and mutually independent between different vari-

ables, i.e., εik(t)
independent∼ N(0, σ2

k). Correlation among repeated measurements within

each variable is also accounted for by random effects.

Chi and Ibrahim [23] and Song et al. [25] also consider the mixed effects model (1.19)

for multivariate longitudinal data with a different way to characterize correlation between

variables:

εi(t) = (εi1(t), . . . , εiq(t))
T iid∼ Nq(0,Σ) and bik

independent∼ Nvk(0, Gk), (1.21)

8
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εi(t) are serially independent, and εi(t) and bik are mutually independent. Covariance

matrix Σ characterizes correlation between variables, and bik accounts for correlation

among repeated measurements.

Chi and Ibrahim [23] argued that assumption (1.20) carries both of the two correla-

tion structures in G alone, making it less straightforward to perform separate inferences

about the different dependence structures. In addition, a model with assumption (1.20)

has more parameters compared to a model with assumption (1.21), with a difference of

1
2

∑q
k 6=k′,1≤k,k′≤q vkvk′ −

1
2
q(q − 1), which increases with the dimension of random effects

and the number of longitudinal variables.

The survival submodel in the multivariate case is similar to (1.18), where the exponent

is now a linear combination of xi and mi1(t), . . . ,miq(t).

1.3 State Space Models

This section provides an overview of the state space model, mainly based on Durbin

and Koopman [26]. The state space model is a modeling approach that treats a variety

of problems in which the system is dynamic and evolves over time. It assumes that the

development of the system depends on a latent unobserved process αt, where t = 1, . . . , n

are observation time points, and the observations yt are reflections of the latent process

with added noise. Both αt and yt can be either scalars or vectors, and are not constraint

to have the same dimensionality.

The most general form of the state space model is given by

yt ∼ p(yt|αt),

αt+1 ∼ p(αt+1|αt),

α1 ∼ p(α1),

(1.22)

9
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where p(yt|αt) is the conditional density of the observation yt given the state αt, spec-

ifying the relation between the observation and the state; p(αt+1|αt) is the conditional

density of the next state given the current state, characterizing the state evolution pro-

cess; p(α1) is the distribution of the initial state, which can be known or unknown. The

model is said to be linear when

yt = Ztαt + εt,

αt+1 = Ttαt +Rtηt.
(1.23)

If at least one of the dynamic equations for yt and αt is not linear, the model is non-

linear. If p(yt|αt), p(αt+1|αt), and p(α1) are all Gaussian, the model is said to be

Gaussian. If at least one of p(yt|αt), p(αt+1|αt), and p(α1) is not Gaussian, the model

is non-Gaussian.

A particular type of non-Gaussian state space models comes up frequently in practice—

models with a linear Gaussian signal, which assumes that

yt ∼ p(yt|Ztαt),

αt+1 = Ttαt +Rtηt, ηt ∼ N(0, Qt),
(1.24)

where θt = Ztαt is referred to as the signal. The density p(yt|Ztαt) can be non-Gaussian,

and the relationship between yt and θt can be non-linear.

This thesis focuses on linear Gaussian state space models. A linear Gaussian state

space model has the form

yt = Ztαt + εt, εt ∼ N(0, Ht),

αt+1 = Ttαt +Rtηt, ηt ∼ N(0, Qt),
(1.25)

for t = 1, . . . , n, with initial distribution α1 ∼ N(a1, P1), where a1 and P1 can be known

10
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or unknown; yt is a p × 1 observation vector and αt is an unobserved m × 1 state

vector, Zt, Tt, Ht, Rt, Qt are system matrices, which may contain unknown parameters,

and disturbance terms εt and ηt are assumed to be mutually and serially independent.

The first equation in (1.25) is referred to as the observation equation, and the second the

state equation.

Occasionally, a state space model may contain mean adjustments, given by

yt = Ztαt + dt + εt, εt ∼ N(0, Ht),

αt+1 = Ttαt + ct +Rtηt, ηt ∼ N(0, Qt),

α1 ∼ N(a1, P1)

(1.26)

for t = 1, . . . , n, where dt and ct are known, but may depend on parameters.

1.3.1 Initialization

In many cases, the initial distribution of α1 ∼ N(a1, P1) is completely or partially

unknown. In this situation, the initial state vector α1 is written as

α1 = a+ Aδ +R0η0, η0 ∼ N(0, Q0), (1.27)

where the m× 1 vector a contains the known constant part of α1, δ is a q × 1 vector of

unknown quantities, and η0 is an (m−q)×1 vector whose distribution is known. Matrices

A andR0 are selection matrices, i.e., columns of the identity matrix Im, satisfying ATR0 =

0.

One may treat δ as a random vector with distribution

δ ∼ N(0, κIq), (1.28)

11
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where κ → ∞, and δ is said to have a diffuse distribution. One may also treat δ

as an unknown deterministic vector and estimate it by maximum likelihood, using the

augmented Kalman filter ([27], [26], [28]). These two approaches give the same numerical

results (Durbin and Koopman [26]).

1.3.2 The Kalman filter

Kalman filter is an algorithm that aims at filtering out noise in the observation to

estimate the unobserved latent state. At each time point, it accomplishes two things:

(1) given the current observation, update the estimate for the current state, and (2)

make predictions for the next state. Let Y t be the vector of history observations up

to time t, Y t = (y′1, . . . ,y
′
t)
′, t = 1, 2, . . . , n. Let at = E(αt|Y t−1), at|t = E(αt|Y t),

Pt = Var(αt|Y t−1), and Pt|t = Var(αt|Y t). Since the initial state and the disturbances

are all normally distributed, we have αt|Y t−1 ∼ N(at, Pt) and αt|Y t ∼ N(at|t, Pt|t).

The vectors at and at|t are referred to as the one-step-ahead prediction and the filtering

estimate of αt, respectively. At each time t, t = 1, . . . , n, given at and Pt, the Kalman

filter calculates at|t, Pt|t,at+1, and Pt+1 via the following filtering equations:

wt = yt − Ztat, Ft = ZtPtZ
′
t +Ht,

at|t = at + PtZ
′
tF
−1
t wt, Pt|t = Pt − PtZ ′tF−1t ZtPt,

at+1 = Ttat +Ktwt, Pt+1 = TtPt(Tt −KtZt)
′ +RtQtR

′
t,

(1.29)

for t = 1, . . . , n, where Kt = TtPtZ
′
tF
−1
t . In (1.29), wt is the one-step-ahead prediction

error given Y t−1, that is, wt = yt−E(yt|Y t−1); Ft is the variance matrix of the one-step-

ahead prediction, Ft = Var(wt|Y t−1); and Kt is called the Kalman gain. Alternatively,

12
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at+1 and Pt+1 can be directly computed from at|t and Pt|t,

at+1 = Ttat|t, Pt+1 = TtPt|tT
T
t +RtQtR

T
t . (1.30)

For the model with mean adjustments given in (1.26), the Kalman filter recursion is

given by

wt = yt − Ztat − dt, Ft = ZtPtZ
′
t +Ht,

at|t = at + PtZ
′
tF
−1
t wt, Pt|t = Pt − PtZ ′tF−1t ZtPt,

at+1 = Ttat|t + ct, Pt+1 = TtPt|tT
T
t +RtQtR

′
t.

(1.31)

1.3.3 Likelihood

Let ψ be the vector of all parameters in the state space model. When the initial state

distribution N(a1, P1) is known, the likelihood is

L(ψ) = p(y1, . . . ,yn) =
n∏
t=1

p(yt|Y t−1), (1.32)

where p(y1|Y 0) = p(y1) and Y 0 is an empty set. Taking logarithm, the log-likelihood is

l(ψ) =
n∑
t=1

log p(yt|Y t−1). (1.33)

Since E(yt|Y t−1) = Ztat, Ft = Var(yt|Y t−1), p(yt|Y t−1) is Gaussian, and the prediction

error wt = yt − Ztat, we have

l(ψ) =
n∑
t=1

log p(wt) = −np
2

log 2π − 1

2

n∑
t=1

(log |Ft|+wT
t F
−1
t wt), (1.34)

where wt and Ft are recursively calculated by the Kalman filter. Since the likelihood is

equal to the joint density of wt, t = 1, . . . , n, (1.34) is referred to as the prediction error

decomposition ([26], [28]).
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When the distribution of the initial state α1 is partially unknown and δ has a diffuse

prior as described in Section 1.3.1, the likelihood (1.34) will contain a term −1
2
q log 2πκ,

which goes to −∞ as κ→∞. In this situation, the diffuse likelihood is used,

Ld(ψ) = lim
κ→∞

κ
q
2L(ψ). (1.35)

1.3.4 Connection to the linear mixed effects model

A linear Gaussian state space model with a zero mean prior for the initial state can

be written in the form of a general linear mixed effects model ([29], [28]). Consider the

linear Gaussian state space model

yt = Ztαt + εt, εt ∼ N(0, Ht),

αt+1 = Ttαt +Rtηt, ηt ∼ N(0, Qt),
(1.36)

for t = 1, . . . , n. Partition the q × 1 initial state α1 into two parts, α1 = (αT11,α
T
12)

T ,

where the q1 × 1 vector α11 has a diffuse distribution and the q2 × 1 vector α12 has a

proper zero mean normal distribution.

Let α∗t = αt−
∏t−1

j=1 Tjα1 for t = 2, . . . , n, and α∗1 = 0. Then α∗t satisfies the recursion

equation

α∗t+1 = Ttα
∗
t + ηt. (1.37)

Rewrite the observation equation in (1.36) as

yt = (Zt

t−1∏
j=1

Tj)α1 + Ztα
∗
t + εt. (1.38)

Let Xt = (Zt
∏t−1

j=1 Tj)
T and partition it into Xt = (X1t, X2t) where X1t has q1 columns

and X2t has q2 columns.

14



Introduction Chapter 1

Then (1.38) becomes

yt = X1tα11 +X2tα12 + Ztα
∗
t + εt, t = 1, . . . , n. (1.39)

Writing the state space model in vector form, we have

y = X1α11 +X2α12 + Zα∗ + ε (1.40)

where

y =


y1

...

yn

 , X1 =


X11

...

X1n

 , X2 =


X21

...

X2n

 , (1.41)

Z =


Z1 · · · 0

...
. . .

...

0 · · · Zn

 , α∗ =


α∗1
...

α∗n

 , and ε =


ε1
...

εn

 . (1.42)

Model (1.39) is a linear mixed effects model of the form (1.4), where X1 and X2 are

design matrices, α11 is the vector of fixed effects, α12 is the vector of random effects with

a proper zero mean normal distribution, and Zα∗+ ε is the error vector following a zero

mean normal distribution.

Suppose that the variance components of random effects and random errors in model

(1.40) depend on a parameter vector θ. From a Bayesian point of view, in a general

linear mixed effects model of the form (1.4), if the data is sufficiently informative that

the prior of (β,θ) is flat relative to the likelihood, the REML estimate of θ is identical

to the Bayesian estimate of θ using the full data (Harville [30]).

The full likelihood, (1.34), of the state space model calculated by Kalman filter, is

the posterior joint density of fixed effects α11 and variance component θ. Since α11
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has a diffuse prior, the MLEs of parameters in the state space model that are variance

components of (1.40) are identical to those obtained using REML.

1.3.5 State smoothing

While the Kalman filter calculates filtering estimates and one-step-ahead predictions

for the latent state, state smoothing calculates the posterior estimates of the latent state

and the covariance matrices, given all observations, that is, E(αt|Y n) and Var(αt|Y n),

for t = 1, . . . , n.

Let α̂t = E(αt|Y n) and Vt = Var(αt|Y n), the state smoothing recursion is given by

rt−1 = Z ′tF
−1
t wt + L′trt, Nt−1 = Z ′tF

−1
t Zt + L′tNtLt,

α̂t = at + Ptrt−1, Vt = Pt − PtNt−1Pt,
(1.43)

for t = n, . . . , 1 with rn = 0 and Nn = 0.

1.3.6 Disturbance smoothing

The smoothing estimates of the disturbances εt and ηt are useful for diagnostic check-

ing. The computation of ε̂t = E(εt|Y n) and η̂t = E(ηt|Y n) is given by the recursion

ε̂t = Htut,

η̂t = QtR
T
t rt,

ut = F−1t wt −KT
t rt,

rt−1 = ZT
t ut + T Tt rt,

(1.44)
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for t = n, . . . , 1, with rn = 0. The computation of corresponding variance matrices

Var(εt|Y n) and Var(ηt|Y n) is given by the recursion

Dt = F−1t +KT
t NtKt,

Var(εt|Y n) = Ht −HtDtHt,

Var(ηt|Y n) = Qt −QtR
T
t NtRtQt,

Nt−1 = ZT
t DtZt + T Tt NtTt − ZT

t K
T
t NtTt − T Tt NtKtZt,

(1.45)

for t = n, . . . , 1, with Nn = 0.

1.3.7 Fast state smoothing

In state smoothing, if one is only interested in α̂t, but not the covariance matrix Vt,

a computationally more efficient recursion can be used:

α̂t+1 = Ttα̂t +RtQtR
T
t rt, (1.46)

for t = 1, . . . , n, with α̂1 = a1 + P1r0. That is, for t = 1, . . . , n, do filtering recursion

(1.29), then for t = n, . . . , 1, do disturbance smoothing recursion (1.44), after that, for

t = 1, . . . , n, do fast state smoothing recursion (1.46) to obtain α̂t.

1.3.8 Univariate treatment of multivariate time series

The Kalman filter and smoother takes in the whole observation vector yt at each

time point. A computationally more efficient algorithm was developed by Durbin and

Koopman [26], which brings in one observation at a time, converting the multivariate

series into a univariate series.

The univariate treatment significantly reduces the computational cost of filtering

17



Introduction Chapter 1

and smoothing by avoiding the inversion of the usually high dimensional matrix Ft.

This approach also allows the dimension of the observation vector yt to vary over time.

Assuming that the dimension of yt at time t is pt × 1, write

yt =


yt,1
...

yt,pt

 , εt =


εt,1
...

εt,pt

 , Zt =


Zt,1

...

Zt,pt

 ,

where Zt,i is the ith row of Zt, i = 1, . . . , pt. Assume that the error covariance matrix Ht

is diagonal, that is, Ht = diag{σ2
t,1, . . . , σ

2
t,pt}. If Ht is not diagonal, one can diagonalize

it by Cholesky decomposition

Ht = CtH
∗
t C

T
t ,

where H∗t is a diagonal matrix and Ct is a lower triangular matrix with diagonal elements

equal to one; then transform the observation equation into

y∗t = Z∗tαt + ε∗t , ε∗t ∼ N(0, H∗t ),

where y∗t = C−1t yt, Z
∗
t = C−1t Zt, and ε∗t = C−1t εt.

Let each element yt,i of yt come into the system one at a time, i = 1, . . . , pt. The

observation series now becomes

y1,1, . . . , y1,p1 , . . . , yn,1, . . . , yn,pn ,

which is univariate over
∑n

t=1 pt time points.

The observation equation is given by

yt,i = Zt,iαt,i + εt,i, i = 1, . . . , pt, t = 1, . . . , n,
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where Zt,i is the ith row of Zt, εt,i is the ith element of εt, and αt,i equals αt in the

original model (1.25). The state equation is given by

αt,i+1 = αt,i, i = 1, . . . , pt − 1,

αt+1,1 = Ttαt,pt +Rtηt, t = 1, . . . , n,

with α1,1 = α1 ∼ N(a1, P1).

Let

at,i = E(αt,i|Y t−1, yt,1, . . . , yt,i−1),

Pt,i = Var(αt,i|Y t−1, yt,1, . . . , yt,i−1), i = 2, . . . , pt,

be the one-step-ahead prediction mean and variance of the state vector, and

at,1 = E(αt,1|Y t−1),

Pt,1 = Var(αt,1|Y t−1).

The filtering recursion for the univariate model is given by

vt,i = yt,i −Zt,iat,i,

Ft,i = Zt,iPt,iZ
T
t,i + σ2

t,i,

Kt,i = Pt,iZ
T
t,iF

−1
t,i ,

at,i+1 = at,i +Kt,ivt,i,

Pt,i+1 = Pt,i −Kt,iFt,iK
T
t,i,

(1.47)

for i = 1, . . . , pt and t = 1, . . . , n, where vt,i and Ft,i are scalars, Kt,i is a column vector,

Zt,i is a row vector, and at,i and Pt,i+1 have the same dimensions as the original at and

Pt. In (1.47), at time t, one obtains at,pt+1 and Pt,pt+1; their transition to time t + 1 is
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given by

at+1,1 = Ttat,pt+1,

Pt+1,1 = TtPt,pt+1T
T
t +RtQtR

T
t .

The at+1,1 and Pt+1,1 calculated from this recursion are the same as at+1 and Pt+1 in the

original Kalman filter.

The smoothing algorithm is given by

Lt,i = I −Kt,iZt,i,

rt,i−1 = ZT
t,iF

−1
t,i vt,i + LTt,irt,i,

Nt,i−1 = ZT
t,iF

−1
t,i Zt,i + LTt,iNt,iLt,i,

(1.48)

for i = pt, . . . , 1 and t = n, . . . , 1, with initial values rn,pn = 0 and Nn,pn = 0, rt,i a

column vector, and Lt,i a square matrix of the same dimension as Nt,i. In (1.48), at each

time point t, one will obtain rt,0 and Nt,0; the transition to time t− 1 is given by

rt−1,pt−1 = T Tt−1rt,0,

Nt−1,pt−1 = T Tt−1Nt,0Tt−1.
(1.49)

The rt,0 and Nt,0 are equal to rt−1 and Nt−1 in the original Kalman filter, t = n, . . . , 1.

After obtaining at, Pt, rt−1, Nt−1 from the univariate treatment filtering and smooth-

ing recursions, one can use the last two equations in (1.43) to calculate the smoothed

mean and covariance estimate of state vectors.

1.3.9 Ensemble Kalman filter

In a linear Gaussian state space model, when the dimension of the state vector is ex-

tremely high, say, millions, the Kalman filter ([31]) and particle filters for low-dimensional

state space models are infeasible due to high computational cost and degeneracy. In this
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setting, there is an approximate method called the ensemble Kalman filter ([32], [33], [34],

[35], [36], [37], [38], [39]), which keeps track of the current state distribution by a collec-

tion (ensemble) of sample state vectors and update them with a linear shift. Ensemble

Kalman filter has been successfully applied to geophysical data assimilation, where the

dimensions are usually high. However, it is an approximation method that is suboptimal

compared to Kalman filter. In addition, while the time complexity is linear in the di-

mension of states, it is quadratic in the dimension of the observation vector ([40], [41]).

We note that the time complexity is O(p2n), where p is the dimension of the observation

vector and n is the dimension of the state vector, rather than O(pn) (stated in [41]).

Therefore, the computational cost of the ensemble Kalman filter is high when p is large

and it cannot handle extremely high dimensional observation vectors.

1.3.10 Regression estimation

The observation equation in the state space model (1.25) can be extended to include

covariates,

yt = Ztαt +Xtβ + εt, (1.50)

where Xt is a p × k design matrix of covariates and β is a time-independent vector of

coefficients of dimension k× 1. There are two ways to handle (1.50). The first approach

is to include β in the state vector, so the state space model is given by

yt = (Zt Xt)

 αt

βt

+ εt αt+1

βt+1

 =

 Tt 0

0 Ik


 αt

βt

+

 Rt

0

ηt
(1.51)

for t = 1, . . . , n.
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The second approach is via the augmentation of the Kalman filter. The log-likelihood

of β is given by−
∑n

t=1w
T
t F
−1
t wt+constant, where constant means that it is independent

of β. One estimates β by minimizing

n∑
t=1

wT
t F
−1
t wt. (1.52)

For a given β, (1.50) can be rewritten as

yt −Xtβ = Ztαt + εt. (1.53)

Let wt be the one-step-ahead forecast error for model (1.53) in which yt − Xtβ is

treated as the observation vector; wt can be obtained in the following way. Write

Xt = (x1,t, . . . ,xk,t), where xi,t is the ith column of Xt, i = 1, . . . , k. Recall that in

model (1.25), we apply Kalman filter with yt as the observation vector. Here, analo-

gously, we apply Kalman filter with each of yt,x1,t, . . . ,xk,t as the observation vector,

but using the same updating equations for Ft, Pt|t, and Pt as in model (1.25). Denote

the corresponding one-step-ahead prediction errors as w∗t ,W
∗
1,t, . . . ,W

∗
k,t. The one-step-

ahead forecast errors for the observation vector yt −Xtβ is given by wt = w∗t −W ∗
t β,

where W ∗
t = (W ∗

1,t, . . . ,W
∗
k,t). Hence we have

n∑
t=1

wT
t F
−1
t wt =

n∑
t=1

(w∗t −W ∗
t β)TF−1t (w∗t −W ∗

t β), (1.54)

which has an analytical solution for its minimizer β:

β̂ = (
n∑
t=1

X∗Tt F−1t X∗t )−1
n∑
t=1

X∗Tt F−1t w∗t . (1.55)

When diffuse initialization is used, the exact initial Kalman filter can be applied, see
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Durbin and Koopman [26].

1.4 Mixed Effects State Space Models

Linear mixed effects models have been widely used in the modeling of longitudinal

data. Some authors propose to write certain special cases of linear mixed effects models in

a state space form and use the Kalman filter to compute the likelihood, see, for example,

[42].

Recent literature realizes that the power of the state space model is far more than

just a computational tool. A state space model has an explicit expression for the underly

evolving process, which in turn can model a wide variety of parametric or non-parametric

processes. It is this property of both interpretability and flexibility that the state space

model has attracted much attention, and numerous studies have used it to directly model

longitudinal data ([43], [44], [45], [46], [47], [48], [49], [50], [51], [52]).

Liu et al. (2011) [48] consider the following mixed effects state space model:

yi(tij) = Z(θi)αi(tij) + εi(tij), εi(tij) ∼ N(0, H),

αi(ti,j+1) = T (θi)αi(tij) + ηi(tij), ηi(tij) ∼ N(0, Q),
(1.56)

where yi(tij) is a q × 1 observation vector for subject i at time tij, i = 1, . . . ,m, j =

1, . . . , ni, αi(tij) is a q × 1 state vector for subject i, and εi(tij) and ηi(tij) are error

and disturbance vectors. The system matrices Z(θi) and T (θi) are parameterized by a

random vector θi, modeled by

θi = θ + bi, bi ∼ N(0, D), (1.57)

where θ is the population fixed effect parameter vector, and bi is the random effect vec-
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tor. Model (1.56) assumes that all subjects share common time-invariant disturbance

covariance matrices H and Q, which characterize within-subject variation. System ma-

trices Z(θi) and T (θi) depend on a subject-specific vector θi, which is modeled by a

simple linear mixed-effects model. Therefore, Z(θi) and T (θi) characterize between-

subject variation. Model (1.56) integrates both the mixed effects idea of longitudinal

models and the dynamic modeling power of state space models. One limitation is that

one must know how the system matrices Z(θi) and T (θi) are parameterized in terms of

θi, which is often not the case in practice.

Liu (2010) [47] proposed another form of state space models for longitudinal data,

yi(tij) = Xi(tij)β(tij) + Zi(tij)bi(tij) + εi(tij) β(tij)

bi(tij)

 =

 Fβ(tij) 0

0 Fb(tij)


 u(tij)

vi(tij)

 ,

 u(tij)

vi(tij)

 =

 Tu(tij) 0

Tuv(tij) Tv(tij)


 u(ti,j−1)

vi(ti,j−1)

+

 Ru(tij) 0

Ruv(tij) Rv(tij)


 ηu(tij)

ηvi(tij)

 ,

(1.58)

with observation equation random error εi(tij)
iid∼ N(0, σ2

ε ), state equation disturbance

 ηu(tij)

ηvi(tij)

 ∼ N(

 µu(tij)

µv(tij)

 ,

 Qu(tij) 0

0 Qv(tij)

), (1.59)

and initial state distribution u(ti0)

vi(ti0)

 ∼ N(0,

 Pu0 0

0 Pv0

). (1.60)
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In model (1.58), β(tij) and bi(tij) are the population and individual effects, and u(tij)

and vi(tij) are their corresponding latent state vectors, transformed through Fβ(tij) and

Fb(tij). The initial state u(ti0) has a diffuse prior and vi(ti0) has a zero mean proper prior.

The third equation in (1.58) defines the latent process for u(tij) and vi(tij), in which the

system matrices can have non-zero off-diagonal blocks Tuv(tij) and Ruv(tij), allowing the

population fixed effects to have an influence on subject random effects. Model (1.58) is

very flexible in that population fixed effects β(t) and subject random effects bi(t) can

be time-dependent and can be any combination of parametric or non-parametric curves.

Note that the random effects stochastic process bi(t) must have mean zero to ensure

identifiability.

Compared to (1.56) which includes time-invariant random effects in the system matri-

ces and requires a known parameterization form of the transition matrices, (1.58) models

mixed effects in a more direct way by specifying the observation as the sum of fixed and

random effects.

1.5 Outline of the Thesis

To model the longitudinal trajectory, linear mixed effects models, non-parametric

spline based methods, mixed effects functional models, and state space models have been

used in the literature. Among these four approaches, only the state space model is

capable of modeling the dynamic interactions between the longitudinal variables from

one time point to the next.

We extend the mixed effects state space model (1.58) of Liu et al. [47] to (a) include

a regression term of covariates in the observation equation, (b) allow the random errors

from different variables to have an unstructured covariance matrix, and (c) joint model

longitudinal data with survival data. The computation of the proposed models remains
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a severe limitation when the number of subjects is large. The mixed effects state space

models have high dimensional observation vectors and state vectors. Current computa-

tional methods such as the univariate treatment of Kalman filter and ensemble Kalman

filter are infeasible for such high dimensional data. Denote by m the number of subjects,

n the number of time points, and q the number of variables. The time complexity is

O(m3q3n) for both the original Kalman filter and the univariate treatment, despite the

fact that the univariate treatment is more efficient by avoiding the inversion of mq×mq

matrices. The time complexity of the ensemble Kalman filter is O(m2q2N2n), where N

is the ensemble size that is usually at least 40. In addition, while the ensemble approach

is applicable when the number of subjects is not too large, it is always more desirable to

use an exact method whenever possible. We propose in this thesis a new algorithm of

time complexity O(mq3n) that gives exactly the same numerical results as the original

Kalman filter.

The remaining part of the thesis is organized as follows. Chapter 2 presents a mixed

effects state space model and develops an algorithm efficient in both time and space for

the model computation. Chapter 3 presents a non-Gaussian mixed effects state space

model to jointly model multivariate longitudinal variables and survival time. Evaluation

of the joint likelihood requires numerical simulations, for which we present an algorithm

to simulate from high dimensional multivariate normal distributions. Chapter 4 presents

simulation studies, in which we (i) compare the univariate treatment of the Kalman filter

with the new algorithm in terms of computation time and numerical accuracy, and (ii)

apply the new algorithm to the joint model. Chapter 5 presents real data applications,

where we apply the joint model to a dialysis data set to answer some clinical questions.

Chapter 6 discusses limitations and future work.
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Multivariate State Space Mixed

Effects Models

2.1 The Model

A mixed effects state space model is used to model longitudinal data, for its flexibility

and interpretability. Longitudinal data naturally evolves continuously over time, but the

observations can only be made intermittently. The model is similar to (1.58) with some

modifications.

Denote the observations for subject i as {(xi(tij), yi(tij)), j = 1, . . . , ni}, where

xi(tij) and yi(tij) are vectors of covariates and longitudinal variables measured at time

tij, j = 1, . . . , ni. Suppose there are q longitudinal variables and p covariates. We assume
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the following mixed effects state space model

yi(tij) = Zu(tij)u(tij) + Zv(tij)vi(tij) +Xi(tij)β + εi(tij), εi(tij) ∼ N(0,Σε(tij)),

u(ti,j+1) = Tu(tij)u(tij) +Ru(tij)ηu(tij), ηu(tij) ∼ N(0,Σu(tij)),

vi(ti,j+1) = Tv(tij)vi(tij) +Rv(tij)ηvi(tij), ηvi(tij) ∼ N(0,Σv(tij)),

(2.1)

where yi(tij) is an observation vector of longitudinal variables at time tij from sub-

ject i, Zu(tij) is a q × du design matrix, Zv(tij) is a q × dv design matrix, Xi(tij) =

diag{xTi (tij), . . . ,x
T
i (tij} is a q× pq design matrix, u(tij) is a du× 1 vector of population

effects, vi(tij) is a dv × 1 vector of random effects for subject i, β is a pq × 1 vector of

parameters, εi(tij) is a vector of random errors, Tu(tij) and Tv(tij) are state transition

matrices, ηu(tij) and ηvi(tij) are disturbance terms, and Ru(tij) and Rv(tij) are selection

matrices.

The first equation in model (2.1) describes the observation vector as the sum of four

parts: a population mean, a subject deviation, an external influence from covariates, and

a random error. For simplicity, we use the same set of covariates for all longitudinal

variables. Extensions to the case where covariates are different for different variables are

straight forward. The error term εi(tij) is assumed to be serially independent and i.i.d.

for all subjects at the same time points. εi(tij) models fluctuations around the domi-

nant trend Zu(tij)u(tij)+Zv(tij)vi(tij)+Xi(tij)β and describes within-subject variation,

which is usually due to measurement errors and/or biological variation. In addition, the

correlation structure between variables can be modeled by the covariance matrix Σε(tij)

of εi(tij). For each variable, the corresponding component of individual effects vi(tij)

specifies a subject deviation curve, so vi(tij) describes between-subject variation. Mean-

while, since vi(tij) evolves continuously over time, it also accounts for correlation among

repeated measurements for each variable. The population mean u(tij) and subject de-
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viation vi(tij) are modeled as latent states, defined by the second and third equation,

respectively. The state transition matrices Tu(tij) and Tv(tij) can model dynamic interac-

tions between variables at population and individual level. Therefore, three components

can be used to model the interactions between variables: Σε(tij), Tu(tij), and Tv(tij),

where Σε(tij) characterizes the correlation structure of the combination of population

effects and subject random effects. Depending on the mechanism of the system and the

purpose of the study, one can use one or a combination of these three components.

Comparing to model (1.58), model (2.1) has an additional regression term Xi(tij)β in

the observation equation. In addition, the random errors εi(tij) from different variables

measured at the same time are allowed to be correlated. Another major difference is that

we do not consider the influence of the population effects on the individual effects, which

is modeled by Tuv(tij) in the state transition matrix in (1.58). Other minor differences

include setting the Fβ(tij) and Fb(tij) in (1.58) to identity matrices, so that the population

and individual effects are directly modeled by latent states.

2.1.1 Models for latent states

There is a wide selection of models for latent processes u(tij) and vi(tij), specified by

the state equations in (2.1). Any stochastic process that can be represented by a state

space model can be used to model these latent processes. Note that u(tij) and vi(tij)

can be modeled as different processes; components of u(tij) and vi(tij) that correspond

to different variables can also be modeled as different processes. We provide details for

cubic spline and Ornstein-Uhlenbeck (OU) process models below.
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Cubic spline model

For simplicity, we consider the case when q = 1 and both the population mean and

subject deviations are modeled by cubic splines. Then the corresponding mixed effects

state space model is given by

yi(tij) = (1 0)

 f(tij)

f ′(tij)

+ (1 0)

 bi(tij)

b′i(tij)

+Xi(tij)β + εi(tij),

 f(tij)

f ′(tij)

 =

 1 4tij

0 1


 f(ti,j−1)

f ′(ti,j−1)

+Ru(tij)ηu(tij),

 bi(tij)

b′i(tij)

 =

 1 4tij

0 1


 bi(ti,j−1)

b′i(ti,j−1)

+Rv(tij)ηvi(tij),

(2.2)

where f(tij) is the population mean, bi(tij) is the deviation of subject i, Xi(tij)β is the

covariates effect, εi(tij)
iid∼ N(0, σ2

ε ), ηu(tij)
iid∼ N(0, ζΛ), ηvi(tij)

iid∼ N(0, λΛ), Ru(tij) and

Rv(tij) are identity matrices, ζ and λ are population level and subject level smoothing

parameters,

Λ =

 4t3ij/3 4t2ij/2

4t2ij/2 4tij

 ,

and 4tij = tij − ti,j−1 is the time difference between two consecutive observations. The

population level latent state is

u(tij) =

 f(tij)

f ′(tij)

 ,
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and the subject level latent state is

vi(tij) =

 bi(tij)

b′i(tij)

 .

The population and subject level state equations have the same transition matrix

Tu(tij) = Tv(tij) =

 1 4tij

0 1

 .

Generalization to the multivariate case is trivial. Suppose there are q longitudinal

variables, yi(tij) = (yi1(tij), . . . , yiq(tij))
T is the vector of all longitudinal variables of

subject i. The population level state is

u(tij) =



f1(tij)

f ′1(tij)

...

fq(tij)

f ′q(tij)


,

and the subject level state is

vi(tij) =



bi1(tij)

b′i1(tij)

...

biq(tij)

b′iq(tij)


,

where fk(tij) and bik(tij) are the population mean and subject deviation of the kth
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longitudinal variable, k = 1, . . . , q, Zu(tij) = Zv(tij) = Iq ⊗ (1 0); Tu(tij) = Tv(tij) =

Iq ⊗ T0(tij), with

T0(tij) =

 1 4tij

0 1

 ;

Ru(tij) = Rvi(tij) = I2q; ηu(tij) ∼ N(0, diag{ζ1Λ, . . . , ζqΛ}) and ηvi(tij) ∼ N(0,

diag{λ1Λ, . . . , λqΛ}) are mutually and serially independent, where ζ1, . . . , ζq and λ1, . . . , λq

are population level and subject level smoothing parameters for the q variables.

Ornstein-Uhlenbeck process

Another choice for the latent processes is the Ornstein-Uhlenbeck (OU) process, which

is often used to model biological variation. A continuous time OU process X(t) is given

by

dX(t) = ξ[µ−X(t)]dt+ νdW (t), (2.3)

where ξ > 0, µ, and ν > 0 are parameters, and W (t) is a Wiener process. The analytical

solution for (2.3) is given by ([53])

X(t) = µ+ e−ξ(t−s)[X(s)− µ] + ν

∫ t

s

e−ξ(t−s)dW (u). (2.4)

To write the OU process (2.4) in a discrete time state space form, suppose the discrete

time points are t1 < t2 < · · · < tn. In (2.4), let t = tj+1, s = tj, and 4tj = tj+1 − tj,

j = 1, . . . , n− 1, we have

X(tj+1) = µ(1− e−ξ4tj) + e−ξ4tjX(tj) + ν
∫ tj+1

tj
e−ξ(tj+1−u)dW (u)

= µ(1− e−ξ4tj) + e−ξ4tX(tj) + νe−ξtj+1
∫ tj+1

tj
eξudW (u)

= µ(1− e−ξ4tj) + e−ξ4tjX(tj) + η(tj),
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with η(tj) = νe−ξtj+1
∫ tj+1

tj
eξudW (u). It can be shown that

∫ tj+1

tj
eξudW (u) is a martin-

gale, hence

E[

∫ tj+1

tj

eξudW (u)] = 0. (2.5)

By the Itô isometry, we have

E[

∫ tj+1

tj

eξudW (u)]2 =

∫ tj+1

tj

(eξu)2du =
1

2ξ
(e2ξtj+1 − e2ξtj).

Therefore,

Var[η(tj)] = ν2e−2ξtj+1
1

2ξ
(e2ξtj+1 − e2ξtj) =

ν2

2ξ
(1− e−2ξ4tj).

Since W (t) is Guassian,
∫ tj+1

tj
eξudW (u) is also Gaussian, we have

η(tj) ∼ N(0,
ν2

2ξ
(1− e−2ξ4tj)).

Putting everything together, the discretized OU process X(t) is given by

X(tj+1) = µ(1− e−ξ4tj) + e−ξ4tjX(tj) + η(tj), η(tj) ∼ N(0,
ν2

2ξ
(1− e−2ξ4tj)). (2.6)

If, for example, we model the individual effects vi(tij) as an OU process, in the

univariate case, the state equation for vi(tij) = vi(tij) is

vi(tij) = Tv(tij)vi(ti,j−1) + c(tij) +Rv(tij)ηvi(tij),

where Tv(tij) = e−ξ4tij , Rv(tij) = 1, ηvi(tij) ∼ N(0, ν
2

2ξ
(1 − e−2ξ4tij)), and c(tij) =

µ(1 − e−ξ4tij) is the mean adjustment. We set µ = 0 so that the random effects have

mean zero. Generalization to the multivariate case is similar to that of the cubic spline
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model.

2.1.2 Vector form of the mixed effects state space model

The equations in (2.1) specify the dynamic mixed-effects model for each subject. In

this section, observations and state vectors of all subjects are stacked to provide a state

space form. In the remainder of this dissertation, we assume that all subjects share the

same time points, but the time points do not have to be equally spaced. That is, tij = tj

and 4tj = tj+1 − tj, j = 1, . . . , n. For now, assume there is no missing data. Suppose

there are m subjects and n time points. Stack the observations of all subjects at time tj

together and write

y(tj) =


y1(tj)

...

ym(tj)

 ,

where yi(tj) = (yi1(tj), . . . , yiq(tj))
T is the vector of q variables observed at time tij for

subject i, i = 1, . . . ,m. Stack the population-level state and subject deviation states

together into one state vector

α(tj) =



u(tj)

v1(tj)

...

vm(tj)


,

where u(tj) is a du × 1 population level state vector, and each vi(tj) is a dv × 1 subject

level state vector, i = 1, . . . ,m. The initial distribution of the state vector is

α(t1) ∼ N(a(t1), P (t1)), (2.7)
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where a(t1) and P (t1) can be known or partially/completely unknown. The dimension

of y(tj) is qm × 1 and the dimension of α(tj) is (du + mdv) × 1. When the number of

subjects m is large, both the observation vector and state vector have high dimensions.

Let

Z(tj) =


Zu(tj) Zv(tj) 0

...
. . .

Zu(tj) 0 Zv(tj)

 , (2.8)

which is a column block consisting of m identical matrices Zu(tj) combined with a block

diagonal matrix containing m identical matrices Zv(tj). Zu(tj) and Zv(tj) are the system

matrices defined in (2.1). Stacking the design matrices of all covariates together, write

X(tj) =


X1(tj)

...

Xm(tj)

 , (2.9)

where Xi(tj) is the design matrix defined in (2.1), i = 1, . . . ,m. Write the error term as

ε(tj) =


ε1(tj)

...

εm(tj)

 ,

where εi(tj) is the vector of errors of the q variables for each subject, i = 1, . . . ,m. Then

ε(tj) ∼ N(0, H(tj)) where

H(tj) =


Σε(tj) 0

. . .

0 Σε(tj)

 . (2.10)
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Let

T (tj) =



Tu(tj) · · · · · · 0

... Tv(tj) · · · 0

...
...

. . .

0 0 Tv(tj)


, (2.11)

Stack all state disturbance terms into one vector

η(tj) =



ηu(tj)

ηv1(tj)

...

ηvm(tj)


.

Then η(tj) ∼ N(0, Q(tj)) where

Q(tj) =



Σu(tj) · · · · · · 0

... Σv(tj) · · · 0

...
...

. . .

0 0 Σv(tj)


. (2.12)

The vector form of the mixed effects state space model is

y(tj) = Z(tj)α(tj) +X(tj)β + ε(tj), ε(tj) ∼ N(0, H(tj)),

α(tj+1) = T (tj)α(tj) +R(tj)η(tj), η(tj) ∼ N(0, Q(tj)),

α(t1) ∼ N(a(t1), P (t1)),

(2.13)
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where

R(tj) =



Ru(tj) 0

Rv(tj)

. . .

0 Rv(tj)


, (2.14)

is a selection matrix. In multivariate case, Ru(tj) and Rv(tj) can be used to model

interactions among the latent states of different variables. The system matrices Z(tj),

T (tj), H(tj), Q(tj), and R(tj) can contain unknown parameters. Depending on the initial

state distribution, a(t1) and P (t1) may also contain parameters.

2.2 Computations and Challenges

The unknown parameters in the state space model are estimated by maximizing the

marginal likelihood of the observations, which is calculated via the Kalman filter. One

of our main interests is the estimation of latent state vectors. This section details the

steps of the Kalman filter, the computation of likelihood, the smoothing algorithm, and

the computational challenges. The algorithms discussed in this section does not include

the regression term X(tij)β in the model. The regression term will later be added into

the model, using the augmented Kalman filter.

2.2.1 Filtering

Let Y (tj) = (yT (t1), . . . ,y
T (tj))

T be historical observations up to time tj. Let a(tj) =

E(α(tj)|Y (tj−1)) and P (tj) = Var(α(tj)|Y (tj−1)) be the one-step-ahead predictions of

the mean and covariance matrix of the state vector α(tj), and a(tj|tj) = E(α(tj)|Y (tj))

and P (tj|tj) = Var(α(tj)|Y (tj)) be the filtering estimates of the mean and covariance
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matrix of α(tj). The filtering equations for the state space model (2.13) are as follows:

w(tj) = y(tj)− Z(tj)a(tj),

F (tj) = Z(tj)P (tj)Z
T (tj) +H(tj),

a(tj|tj) = a(tj) + P (tj)Z
T (tj)F

−1(tj)w(tj),

P (tj|tj) = P (tj)− P (tj)Z
T (tj)F

−1(tj)Z(tj)P (tj),

a(tj+1) = T (tj)a(tj|tj),

P (tj+1) = T (tj)P (tj|tj)T T (tj) +R(tj)Q(tj)R
T (tj),

(2.15)

for j = 1, . . . , n, where n is the total number of time points.

2.2.2 Likelihood

Assume for the moment that the initial condition α(t1) ∼ N(a(t1), P (t1)) is known.

The likelihood is calculated as

L(Y (tn)) = p(y(t1), . . . ,y(tn)) =
n∏
j=1

p(y(tj)|Y (tj−1)), (2.16)

with p(y(t1)|Y (t0)) = p(y(t1)). The density p(y(tj)|Y (tj−1)) is Gaussian with mean

E(y(tj)|Y (tj−1)) = Z(tj)a(tj) and covariance matrix Var(y(tj)|Y (tj−1)) = F (tj). The

log-likelihood can be rewritten as

l(Y (tn)) = log
n∑
j=1

p(w(tj)) = −nqm
2

log 2π − 1

2

n∑
j=1

[log |F (tj)|+w(tj)
TF−1(tj)w(tj)],

(2.17)

where w(tj) is the one-step-ahead prediction error, w(tj) = y(tj)− Z(tj)a(tj).
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2.2.3 State smoothing

Let α̂(tj) = E(α(tj)|Y (tn)) and V (tj) = Var(α(tj)|Y (tn)) be the posterior mean and

covariance matrix of the state vector α(tj), j = 1, . . . , n, given observations from all n

time points. Then α̂(tj) and Var(α(tj)) can be evaluated recursively via the following

state smoothing recursion:

r(tj−1) = ZT (tj)F
−1(tj)w(tj) + LT (tj)r(tj),

N(tj−1) = ZT (tj)F
−1(tj)Z(tj) + LT (tj)N(tj)L(tj),

α̂(tj) = a(tj) + P (tj)rtj−1
,

V (tj) = P (tj)− P (tj)N(tj−1)P (tj),

(2.18)

for j = n, . . . , 1, with initial values r(tn) = 0 and N(tn) = 0; L(tj) = T (tj) −

K(tj)Z(tj) and K(tj) = T (tj)P (tj)Z
T (tj)F

−1(tj) can be calculated from the filtering

step; F−1(tj),w(tj),a(tj), and P (tj) are also computed during the filtering recursion.

2.2.4 Disturbance smoothing

Let ε̂(tj) = E[ε(tj)|Y (tn)] and η̂(tj) = E[η(tj)|Y (tn)] be the smoothing estimates of

the mean of the disturbance vectors ε(tj) and η(tj). They are calculated by the recursion

u(tj) = F−1(tj)w(tj)−KT (tj)r(tj)

ε̂(tj) = H(tj)u(tj),

η̂(tj) = Q(tj)R
T (tj)r(tj),

r(tj−1) = ZT (tj)u(tj) + T T (tj)r(tj).

(2.19)
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for j = n, . . . , 1, with r(tn) = 0. The smoothing estimates of the covariance matrices of

ε(tj) and η(tj) are calculated by the recursion

D(tj) = F−1(tj) +KT (tj)N(tj)K(tj)

Var[ε(tj)|Y (tn)] = H(tj)−H(tj)D(tj)H(tj),

Var[η(tj)|Y (tn)] = Q(tj)−Q(tj)R
T (tj)N(tj)R(tj)Q(tj),

N(tj−1) = ZT (tj)D(tj)Z(tj) + T T (tj)N(tj)T (tj)−

ZT (tj)K
T (tj)N(tj)T (tj)− T T (tj)N(tj)K(tj)Z(tj).

(2.20)

for j = n, . . . , 1, with N(tn) = 0. (2.19) and (2.20) together are called disturbance

smoothing recursion. The matrices/vectors F−1(tj),w(tj), and K(tj) in (2.19) and (2.20)

are obtained in the filtering step.

2.2.5 Fast state smoothing

In state smoothing, if one is only interested in obtaining the smoothed mean of the

state vector but not the smoothed covariance matrix estimate, one can use fast state

smoothing, which is computationally more efficient, given by

α̂(tj+1) = T (tj)α̂(tj) +R(tj)η̂(tj)

= T (tj)α̂(tj) +R(tj)Q(tj)R
T (tj)r(tj)

(2.21)

for t = 1, . . . , n, with α̂(t1) = a(t1) + P (t1)r(t0), where r(t0) is obtained from the

recursion specified in (2.19). The procedure of fast state smoothing is outlined as follows:

Step 1: for j = 1, . . . , n, perform the filtering recursion (2.15).

Step 2: for j = n, . . . , 1, carry out the disturbance smoothing recursion for disturbance

means given in (2.19).

Step 3: for j = 1, . . . , n, use the fast state smoothing recursion (2.21) to compute
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smoothed state.

2.2.6 Computational difficulties

The dimension of y(tj) is qm and the dimension of α(tj) is du +mdv. In the Kalman

filter equations (2.15), F (tj) is calculated by

F (tj) = Z(tj)P (tj)Z
T (tj) +H(tj), (2.22)

where Z(tj) is qm × (du + mdv) and P (tj) is (du + mdv) × (du + mdv). So the time

complexity of matrix multiplication Z(tj)P (tj) is qm(du + mdv)
2. Since du and dv are

multiples of q, the time complexity of (2.22) is hence O(q3m3). The equation to compute

P (tj|tj) in the Kalman filter is given by

P (tj|tj) = P (tj)− P (tj)Z
T (tj)F

−1(tj)w(tj), (2.23)

where P (tj) is (du + mdv) × (du + mdv) and F−1(tj) is qm × qm. The time complexity

of inverting the qm× qm matrix F (tj) varies from O((qm)2.373) to O((qm)3), depending

on the matrix inversion algorithm ([54]). Matrix multiplication P (tj)Z
T (tj)F

−1(tj) are

of time complexity O(q3m3). So (2.23) has time complexity O(q3m3). Other parts of the

Kalman filter have the same or less time complexity. In total there are n time points, so

the time complexity of the Kalman filter (2.15) is O(q3m3n). The same time complexity

applies to the smoothing algorithm. In computing the likelihood, the time complexity

for calculating the determinant of F (tj) ranges from O((qm)2.373) to O((qm)!) (Laplace

expansion), depending on the algorithm ([54]).

Under the univariate treatment of the state space model, in the filtering recursion,

each step involves multiplication between a (du +mdv)× (du +mdv) matrix and a (du +
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mdv)×1 vector or similar computation, which is of time complexity O(q2m2). Meanwhile,

there are in total qmn “time points” for the univariate series. So the over all time

complexity is O(m3q3n), the same as the original Kalman filter. But the univariate

treatment is more efficient by avoiding the inversion of the qm× qm matrix F (tj).

Both the original Kalman filter and the univariate treatment require the storage of

matrices of dimensions on the order of qm × qm at each time point, thus the space

complexity is O(q2m2). The smoothing algorithm requires the storage of matrices from

all time points, hence the space complexity is O(q2m2n).

According to our simulation study, the computations of both the Kalman filter and

the univariate treatment become impossible when m is only moderately large.

2.3 An Efficient New Algorithm

We present in this section a new algorithm for the mixed effects state space model,

reducing time complexity to O(mq3n). We first list three assumptions made in the pro-

posed mixed effects state space model. The new algorithm is based on these assumptions.

Assumption 1 The random errors εi(tj)
iid∼ N(0,Σε(tj)), i = 1, . . . ,m. The state dis-

turbance terms ηu(tj)
iid∼ N(0,Σu(tj)) and ηvi(tj)

iid∼ N(0,Σv(tj)), i = 1, . . . ,m. And

εi(tj), ηu(tj), and ηvi(tj) are mutually and serially independent.

Assumption 2 u(t1) and vi(t1) are mutually independent, with u(t1) ∼ N(µu, Pu) and

vi(t1)
iid∼ N(0, Pv), i = 1, . . . ,m.

Assumption 3 The subject-deviation state components vi(tj), i = 1, . . . ,m, of the state

vector α(tj) = (uT (tj),v1(tj), . . . ,vm(tj))
T , evolve in the same way over time for all

subjects. That is, the state equation for subject deviations, vi(tj+1) = Tv(tj)vi(tj) +

ηvi(tj), share a common system matrix Tv(tj) for all i = 1, . . . ,m.
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Under Assumptions 1 - 3, a close examination of the vectors and matrices in the filtering

equations (2.15) unveils some special structures, presented in Theorem 1.

Theorem 1 (a) P (tj) has the structure

P (tj) =

 P0(tj) 1Tm ⊗ P1(tj)

1m ⊗ P T
1 (tj) Im ⊗ P2(tj) + 1m×m ⊗ P3(tj)

 , (2.24)

for j = 1, . . . , n, where 1m is an m× 1 vector with all elements equal to 1, 1m×m is

an m×m matrix with all elements equal to 1, P0(tj) is a du× du matrix, P1(tj) is a

du × dv matrix, P2(tj) and P3(tj) are dv × dv matrices. In addition, P0(tj), P2(tj),

and P3(tj) are symmetric, and P0(tj) and P2(tj) + P3(tj) are positive semi-definite.

(b) F−1(tj) has the structure

F−1(tj) = Im ⊗ F1(tj) + 1m×m ⊗ F2(tj), (2.25)

where F1(tj) and F2(tj) are q × q square matrices.

(c) P (tj|tj) has the structure

P (tj|tj) =

 P0(tj|tj) 1Tm ⊗ P1(tj|tj)

1m ⊗ P T
1 (tj|tj) Im ⊗ P2(tj|tj) + 1m×m ⊗ P3(tj|tj)

 , (2.26)

where P0(tj|tj) is a du × du matrix, P1(tj|tj) is a du × dv matrix, and P2(tj|tj) and

P3(tj|tj) are dv × dv matrices. P0(tj|tj), P2(tj|tj), and P3(tj|tj) are symmetric, and

P0(tj|tj) and P2(tj|tj) + P3(tj|tj) are positive semi-definite.

We prove Theorem 1 by induction.
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Proof: For tj = t1, by Assumption 2,

P (t1) =



Pu 0

Pv

. . .

0 Pv


, (2.27)

so P (t1) is of the form (2.24), where P0(t1) = Pu, P1(t1) = 0, P3(t1) = 0, and P2(t1) = Pv.

It is for the convenience of computation and representation that matrix Pv is split into

the sum of P2(t1) and P3(t1).

F (t1) is calculated by the filtering recursion F (t1) = Z(t1)P (t1)Z
T (t1)+H(t1), where

Z(t1) and H(t1) are given in (2.8) and (2.10) with j = 1. It is straight forward to show

that

F (t1) = Im ⊗ A(t1) + 1m×m ⊗B(t1), (2.28)

where

A(t1) = Zv(t1)P2(t1)Z
T
v (t1) + Σε(t1),

B(t1) = Zu(t1)P0(t1)Z
T
u (t1) + Zu(t1)P1(t1)Z

T
v (t1)+

Zv(t1)P
T
1 (t1)Z

T
u (t1) + Zv(t1)P3(t1)Z

T
v (t1),

(2.29)

A(t1) and B(t1) are both q × q. To calculate F−1(t1), rewrite F (t1) as

F (t1) = Im ⊗ A(t1) + [1m ⊗B(t1)][1
T
m ⊗ Iq]. (2.30)
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By the Woodbury formula,

F−1t (t1) = Im ⊗ A−1(t1)− [Im ⊗ A−1(t1)][1m ⊗B(t1)]{I−1q +

(1Tm ⊗ Iq)[Im ⊗ A−1(t1)][1m ⊗B(t1)]}−1(1Tm ⊗ Iq)[Im ⊗ A−1(t1)]

= Im ⊗ A−1(t1)− 1m×m ⊗ {A−1(t1)B(t1)[Iq +mA−1(t1)B(t1)]
−1A−1(t1)}

= Im ⊗ F1(t1) + 1m×m ⊗ F2(t1),

(2.31)

where

F1(t1) = A−1(t1),

F2(t1) = −A−1(t1)B(t1)[Iq +mA−1(t1)B(t1)]
−1A−1(t1)

= −A−1(t1)B(t1)[A(t1) +mB(t1)]
−1.

(2.32)

P (t1|t1) is calculated by the equation

P (t1|t1) = P (t1)− P (t1)Z
T (t1)F

−1(t1)Z(t1)P (t1). (2.33)

Based on (2.8) and (2.27)-(2.32), we have

P (t1)Z
T (t1)F

−1(t1)Z(t1)P (t1) =

 M0(t1) 1Tm ⊗M1(t1)

1m ⊗MT
1 (t1) Im ⊗M2(t1) + 1m×m ⊗M3(t1)

 ,

(2.34)
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where

M0(t1) = m[P0(t1)Z
T
u (t1) + P1(t1)Z

T
v (t1)][F1(t1)+

mF2(t1)][Zu(t1)P0(t1) + Zv(t1)P
T
1 (t1)],

M1(t1) = [P0(t1)Z
T
u (t1) + P1(t1)Z

T
v (t1)][F1(t1) +mF2(t1)][mZu(t1)P1(t1)+

Zv(t1)P2(t1) +mZv(t1)P3(t1)],

M2(t1) = P2(t1)Z
T
v (t1)F1(t1)Zv(t1)P2(t1),

M3(t1) = P2(t1)Z
T
v (t1)F2(t1)Zv(t1)P2(t1)+

P2(t1)Z
T
v (t1)[F1(t1) +mF2(t1)][Zu(t1)P1(t1) + Zv(t1)P3(t1)]+

[P T
1 (t1)Z

T
u (t1) + P3(t1)Z

T
v (t1)][F1(t1) +mF2(t1)]Zv(t1)P2(t1)+

m[P T
1 (t1)Z

T
u (t1) + P3(t1)Z

T
v (t1)][F1(t1) +mF2(t1)][Zu(t1)P1(t1)+

Zv(t1)P3(t1)].

(2.35)

So we have

P (t1|t1) =

 P0(t1|t1) 1Tm ⊗ P1(t1|t1)

1m ⊗ P T
1 (t1|t1) Im ⊗ P2(t1|t1) + 1m×m ⊗ P3(t1|t1)

 , (2.36)

where

P0(t1|t1) = P0(t1)−M0(t1),

P1(t1|t1) = P1(t1)−M1(t1),

P2(t1|t1) = P2(t1)−M2(t1),

P3(t1|t1) = P3(t1)−M3(t1).

(2.37)

So far we have proved that Theorem 1 holds for tj = t1. Suppose that Theorem 1 holds

for t1, . . . , tj, j < n, We prove that it is also true for tj+1.

P (tj+1) is given by the Kalman filter equation

P (tj+1) = T (tj)P (tj|tj)T T (tj) +R(tj)Q(tj)R
T (tj), (2.38)
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where T (tj), Q(tj), and R(tj) are given in (2.11), (2.12), and (2.14), and

P (tj|tj) =

 P0(tj|tj) 1Tm ⊗ P1(tj|tj)

1m ⊗ P t
j (tj|tj) Im ⊗ P2(tj|tj) + 1m×m ⊗ P3(tj|tj)

 . (2.39)

Plugging (2.39) into (2.38), it is not difficult to show that

P (tj+1) =

 P0(tj+1) 1Tm ⊗ P1(tj+1)

1m ⊗ P T
1 (tj+1) Im ⊗ P2(tj+1) + 1m×m ⊗ P3(tj+1)

 , (2.40)

where

P0(tj+1) = Tu(tj)P0(tj|tj)T Tu (tj) +Ru(tj)Σu(tj)R
T
u (tj),

P1(tj+1) = Tu(tj)P1(tj|tj)T Tv (tj),

P2(tj+1) = Tv(tj)P2(tj|tj)T Tv (tj) +Rv(tj)Σv(tj)R
T
v (tj),

P3(tj+1) = Tv(tj)P3(tj|tj)T Tv (tj).

(2.41)

Similar to (2.28)-(2.45), one can show that

F (tj+1) = Im ⊗ A(tj+1) + 1m×m ⊗B(tj+1), (2.42)

where

A(tj+1) = Zv(tj+1)P2(tj+1)Z
T
v (tj+1) + Σε(tj+1),

B(tj+1) = Zu(tj+1)P0(tj+1)Z
T
u (tj+1) + Zu(tj+1)P1(tj+1)Z

T
v (tj+1)+

Zv(tj+1)P
T
1 (tj+1)Z

T
u (tj+1) + Zv(tj+1)P3(tj+1)Z

T
v (tj+1),

(2.43)

and

F−1t (tj+1) = Im ⊗ F1(tj+1) + 1m×m ⊗ F2(tj+1), (2.44)
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where

F1(tj+1) = A−1(tj+1),

F2(tj+1) = −A−1(tj+1)B(tj+1)[Iq +mA−1(tj+1)B(tj+1)]
−1A−1(tj+1)

= −A−1(tj+1)B(tj+1)[A(tj+1) +mB(tj+1)]
−1.

(2.45)

Similar to (2.33)-(2.47), one can show that

P (tj+1|tj+1) =

 P0(tj+1|tj+1) 1Tm ⊗ P1(tj+1|tj+1)

1m ⊗ P T
1 (tj+1|tj+1) Im ⊗ P2(tj+1|tj+1) + 1m×m ⊗ P3(tj+1|tj+1)

 ,

(2.46)

where

P0(tj+1|tj+1) = P0(tj+1)−M0(tj+1),

P1(tj+1|tj+1) = P1(tj+1)−M1(tj+1),

P2(tj+1|tj+1) = P2(tj+1)−M2(tj+1),

P3(tj+1|tj+1) = P3(tj+1)−M3(tj+1),

(2.47)
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and

M0(tj+1) = m[P0(tj+1)Z
T
u (tj+1) + P1(tj+1)Z

T
v (tj+1)][F1(tj+1)+

mF2(tj+1)][Zu(tj+1)P0(tj+1) + Zv(tj+1)P
T
1 (tj+1)],

M1(tj+1) = [P0(tj+1)Z
T
u (tj+1) + P1(tj+1)Z

T
v (tj+1)][F1(tj+1)+

mF2(tj+1)][mZu(tj+1)P1(tj+1)+

Zv(tj+1)P2(tj+1) +mZv(tj+1)P3(tj+1)],

M2(tj+1) = P2(tj+1)Z
T
v (tj+1)F1(tj+1)Zv(tj+1)P2(tj+1),

M3(tj+1) = P2(tj+1)Z
T
v (tj+1)F2(tj+1)Zv(tj+1)P2(tj+1)+

P2(tj+1)Z
T
v (tj+1)[F1(tj+1)+

mF2(tj+1)][Zu(tj+1)P1(tj+1) + Zv(tj+1)P3(tj+1)]+

[P T
1 (tj+1)Z

T
u (tj+1) + P3(tj+1)Z

T
v (tj+1)][F1(tj+1)+

mF2(tj+1)]Zv(tj+1)P2(tj+1)+

m[P T
1 (tj+1)Z

T
u (tj+1) + P3(tj+1)Z

T
v (tj+1)][F1(tj+1)+

mF2(tj+1)][Zu(tj+1)P1(tj+1) + Zv(tj+1)P3(tj+1)].

(2.48)

2.3.1 Kalman filter utilizing the special structure

Based on Theorem 1, it turns out that every matrix or vector in the Kalman filter

recursion has a special structure. For the high dimensional matrices, one only needs to

keep track of a few small matrices whose dimensions are on the order of q×q. The vectors

can be partitioned into either m components corresponding to m subjects, or with one

extra component for population effects. These components share some common terms

and can be computed independently. The Kalman filter algorithm is thus tremendously

simplified.
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In (2.15), the one-step-ahead prediction vector w(tj) can be written as

w(tj) =


w1(tj)

...

wm(tj)

 (2.49)

consisting of m components corresponding to the m subjects, where each wi(tj) is q× 1.

The vectors a(tj) and a(tj|tj) can be written as

a(tj) =



a0(tj)

a1(tj)

...

am(tj)


and a(tj|tj) =



a0(tj|tj)

a1(tj|tj)
...

am(tj|tj)


, (2.50)

containing m + 1 components, where the first component is at the population level and

the rest m components correspond to the m subjects. a0(tj) and a0(tj|tj) are du × 1

vectors, and ai(tj) and ai(tj|tj) are dv × 1 vectors for i = 1, . . . ,m.

Given Z(tj) specified in (2.8), the first recursion equation in the Kalman filter (2.15)

can be computed as

w(tj) = y(tj)− Z(tj)a(tj) =


y1(tj)

...

ym(tj)

−


Zu(tj)a0(tj) + Zv(tj)a1(tj)

...

Zu(tj)a0(tj) + Zv(tj)am(tj)

 , (2.51)

that is, instead of multiplying the qm× (du +mdv) matrix Z(tj) with the (du +mdv)× 1

vector α(tj), we only need to compute Zu(tj)a0(tj) and Zv(tj)ai(tj) for i = 1, . . . ,m. In

addition, the calculation of Zv(tj)ai(tj) and Zu(tj)a0(tj) + Zv(tj)ai(tj) for i = 1, . . . ,m

is parallelizable. The time complexity of calculating w(tj) is reduced from O(q2m2) to
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O(q2m). Since we do not need to store Z(tj), but Zu(tj) and Zv(tj) instead, and we

need to store a(tj) and w(tj), the space complexity of (2.51) is reduced from O(q2m2)

to O(q2 + qm).

In the second equation of the Kalman filter (2.15),

F (tj) = Z(tj)P (tj)Z
T (tj) +H(tj), (2.52)

according to Theorem 1, we have

F (tj) = Im ⊗ A(tj) + 1m×m ⊗B(tj), (2.53)

and

F−1(tj) = Im ⊗ F1(tj) + 1m×mF2(tj), (2.54)

where A(tj) and B(tj) are given in (2.43), and F1(tj) and F2(tj) are given in (2.45).

Therefore, for F−1(tj), we only need to compute the two q×q matrices F1(tj) and F2(tj).

Also, instead of the qm× qm matrix F (tj), we only need to store F1(tj) and F2(tj). The

time complexity of calculating (2.52) and F−1(tj) is reduced from O(q3m3) to O(q3m).

The space complexity is reduced from O(q2m2) to O(q2).

In the third equation of the Kalman filter (2.15),

a(tj|tj) = a(tj) + P (tj)Z
T (tj)F

−1(tj)w(tj), (2.55)

it can be shown that

P (tj)Z
T (tj)F

−1(tj) =

 1Tm ⊗ C0(tj)

Im ⊗ C1(tj) + 1m×m ⊗ C2(tj)

 , (2.56)
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where

C0(tj) = [P0(tj)Z
T
u (tj) + P1(tj)Z

T
v (tj)][F1(tj) +mF2(tj)],

C1(tj) = P2(tj)Z
T
v (tj)F1(tj),

C2(tj) = P2(tj)Z
T
v (tj)F2(tj) + [P T

1 (tj)Z
T
u (tj) + P3(tj)Z

T
v (tj)][F1(tj) +mF2(tj)].

(2.57)

The multiplication P (tj)Z
T (tj)F

−1(tj) of three matrices of dimensions on the order of

qm×qm is now simplified into computing the du×q matrix C0(tj) and the dv×q matrices

C1(tj) and C2(tj). The time complexity of (2.55) is reduced from O(q3m3) to O(q3m).

The space complexity is reduced from O(q2m2) to O(q2). Vector a(tj|tj) in (2.55) is

hence given by

a(tj|tj) =



a0(tj)

a1(tj)

...

am(tj)


+



C0(tj)
∑m

i=1wi(tj)

C1(tj)w1(tj) + C2(tj)
∑m

i=1wi(tj)

...

C1(tj)wm(tj) + C2(tj)
∑m

i=1wi(tj)


. (2.58)

In the fourth equation in the Kalman filter (2.15),

P (tj|tj) = P (tj)− P (tj)Z
T (tj)F

−1(tj)Z(tj)P (tj), (2.59)

it can be shown that

P (tj)Z
T (tj)F

−1(tj)Z(tj)P (tj) =

 M0(tj) 1Tm ⊗M1(tj)

1m ⊗MT
1 (tj) Im ⊗M2(tj) + 1m×m ⊗M3(tj)

 ,

(2.60)
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where

M0(tj) = m[P0(tj)Z
T
u (tj) + P1(tj)Z

T
v (tj)][F1(tj)+

mF2(tj)][Zu(tj)P0(tj) + Zv(tj)P
T
1 (tj)],

M1(tj) = [P0(tj)Z
T
u (tj) + P1(tj)Z

T
v (tj)][F1(tj) +mF2(tj)][mZu(tj)P1(tj)+

Zv(tj)P2(tj) +mZv(tj)P3(tj)],

M2(tj) = P2(tj)Z
T
v (tj)F1(tj)Zv(tj)P2(tj),

M3(tj) = P2(tj)Z
T
v (tj)F2(tj)Zv(tj)P2(tj)+

P2(tj)Z
T
v (tj)[F1(tj) +mF2(tj)][Zu(tj)P1(tj) + Zv(tj)P3(tj)]+

[P T
1 (tj)Z

T
u (tj) + P3(tj)Z

T
v (tj)][F1(tj) +mF2(tj)]Zv(tj)P2(tj)+

m[P T
1 (tj)Z

T
u (tj) + P3(tj)Z

T
v (tj)][F1(tj)+

mF2(tj)][Zu(tj)P1(tj) + Zv(tj)P3(tj)].

(2.61)

So (2.59) becomes

P (tj|tj) =

 P0(tj|tj) 1Tm ⊗ P1(tj|tj)

1m ⊗ P T
1 (tj|tj) Im ⊗ P2(tj|tj) + 1m×m ⊗ P3(tj|tj)

 , (2.62)

where

P0(tj|tj) = P0(tj)−M0(tj),

P1(tj|tj) = P1(tj)−M1(tj),

P2(tj|tj) = P2(tj)−M2(tj),

P3(tj|tj) = P3(tj)−M3(tj).

(2.63)

As stated before, the multiplications of the matrices with dimensions on the order of

qm × qm is now reduced to computing the matrices P0(tj|tj), P1(tj|tj), P2(tj|tj), and

P3(tj|tj), whose dimensions are on the order of q × q, since du and dv are multiples of q.

And the required space for storage is now independent of m.
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The fifth equation in the Kalman filter (2.15) becomes

a(tj+1) =



Tu(tj)a0(tj|tj)

Tv(tj)a1(tj|tj)
...

Tv(tj)am(tj|tj).


(2.64)

In the sixth equation of the Kalman filter (2.15), we have

P (tj+1) =

 P0(tj+1) 1Tm ⊗ P1(tj+1)

1m ⊗ P T
1 (tj+1) Im ⊗ P2(tj+1) + 1m×m ⊗ P3(tj+1)

 , (2.65)

where

P0(tj+1) = Tu(tj)P0(tj|tj)T Tu (tj) +Ru(tj)Σu(tj)R
T
u (tj),

P1(tj+1) = Tu(tj)P1(tj|tj)T Tv (tj),

P2(tj+1) = Tv(tj)P2(tj|tj)T Tv (tj) +Rv(tj)Σv(tj)R
T
v (tj),

P3(tj+1) = Tv(tj)P3(tj|tj)T Tv (tj).

(2.66)

As can be seen from the above algorithm, for matrix multiplications in the filter-

ing recursion, instead of calculating P (tj), P (tj|tj), and F (tj), we only need to compute

small matrices P0(tj), P1(tj), P2(tj), P3(tj), P0(tj|tj), P1(tj|tj), P2(tj|tj), P3(tj|tj), F1(tj),

and F2(tj), whose dimensions are independent of the number of subjects. The computa-

tion complexity of the vectors w(tj), a(tj|tj), and a(tj+1) is also significantly reduced.

The time complexity of this algorithm is O(q3m). The space complexity is O(q2 + qm),

in contrast to the space complexity of the univariate treatment, O(q2m2).

54



Multivariate State Space Mixed Effects Models Chapter 2

2.3.2 Computation of likelihood using the special structure

The computation of the log-likelihood in (2.17) can also be significantly simplified.

Since

log |F (tj)| = log |F−1(tj)|−1 = − log |F−1(tj)|, (2.67)

we compute |F−1(tj)| instead of |F (tj)| here. But note that both |F (tj)| and |F−1(tj)|

can be computed easily using the special structure.

Suppose that the dimension of the square matrix F1(tj) is q × q. Since |F−1(tj)| has

the form (2.54), we have

|F−1(tj)| =

∣∣∣∣∣∣∣∣∣∣
F1(tj) + F2(tj) · · · F2(tj)

. . .

F2(tj) · · · F1(tj) + F2(tj)

∣∣∣∣∣∣∣∣∣∣
. (2.68)
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Adding all blocks to the first block row, we have

|F−1(tj)| =

∣∣∣∣∣∣∣∣∣∣
F1(tj) +mF2(tj) · · · F1(tj) +mF2(tj)

. . .

F2(tj) · · · F1(tj) + F2(tj)

∣∣∣∣∣∣∣∣∣∣

=

∣∣∣∣∣∣∣∣∣∣∣∣∣

F1(tj) +mF2(tj) 0 · · · 0

0 Iq

. . .

0 Iq

∣∣∣∣∣∣∣∣∣∣∣∣∣
·

∣∣∣∣∣∣∣∣∣∣∣∣∣

Iq Iq · · · Iq

F2(tj) F1(tj) + F2(tj) F2(tj)

. . .

F2(tj) F1(tj) + F2(tj)

∣∣∣∣∣∣∣∣∣∣∣∣∣

= |F1(tj) +mF2(tj)|

∣∣∣∣∣∣∣∣∣∣∣∣∣

Iq Iq · · · Iq

0 F1(tj) 0

. . .

0 F1(tj)

∣∣∣∣∣∣∣∣∣∣∣∣∣

= |F1(tj) +mF2(tj)|

∣∣∣∣∣∣∣∣∣∣∣∣∣

Iq 0 · · · 0

0 F1(tj) 0

. . .

0 F1(tj)

∣∣∣∣∣∣∣∣∣∣∣∣∣
= |F1(tj) +mF2(tj)||F1(tj)|m−1.

(2.69)

Hence, the calculation of |F (tj)| is reduced to computations related to q × q matrices,

where q is the number of variables and is independent of the number of subjects.

The calculation of term wT (tj)F
−1(tj)w(tj) in the log-likelihood (2.17) is simplified
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to

wT (tj)F
−1(tj)w(tj)

=

(
wT

1 (tj) · · · wT
m(tj)

)
F1(tj) + F2(tj) · · · F2(tj)

...
. . .

...

F2(tj) · · · F1(tj) + F2(tj)



w1(tj)

...

wm(tj)


=
∑m

i=1[w
T
i (tj)F1(tj)wi(tj)] + [

∑m
i=1wi(tj)]

TF2(tj)[
∑m

i=1wi(tj)],

(2.70)

the time complexity of which is linear in m.

2.3.3 State smoothing recursion using the special structure

In the state smoothing recursion (2.18), r(tj) can be decomposed into m+ 1 compo-

nents:

r(tj) =



r0(tj)

r1(tj)

...

rm(tj)


. (2.71)

The matrix K(tj) = T (tj)P (tj)Z
T (tj)F

−1(tj) can be computed during the filtering step

and is given by

K(tj) = T (tj)P (tj)Z
T (tj)F

−1(tj) =

 1Tm ⊗K0(tj)

Im ⊗K1(tj) + 1m×m ⊗K2(tj)

 , (2.72)

where

K0(tj) = Tu(tj)C0(tj),

K1(tj) = Tv(tj)C1(tj),

K2(tj) = Tv(tj)C2(tj),

(2.73)
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with C0(tj), C1(tj), and C2(tj) given in (2.57).

The matrix L(tj) = T (tj)−K(tj)Z(tj) is given by

L(tj) =

 L0(tj) 1′m ⊗ L1(tj)

1m ⊗ L2(tj) Im ⊗ L3(tj) + 1m×m ⊗ L4(tj)

 , (2.74)

where

L0(tj) = Tu(tj)−mK0(tj)Zu(tj),

L1(tj) = −K0(tj)Zv(tj),

L2(tj) = −[K1(tj) +mK2(tj)]Zu(tj),

L3(tj) = Tv(tj)−K1(tj)Zv(tj),

L4(tj) = −K2(tj)Zv(tj).

(2.75)

The computation of the (du + mdv)× (du + mdv) matrix L(tj) is reduced to computing

L0(tj), L1(tj), L2(tj), L3(tj), and L4(tj), which are of dimensions du × du, du × dv, dv ×

du, dv × dv, and dv × dv, respectively.

In the first equation r(tj−1) = ZT (tj)F
−1(tj)w(tj) + LT (tj)r(tj) of (2.18),

ZT (tj)F
−1(tj)w(tj) =



ZT
u (tj)[F1(tj) +mF2(tj)]

∑m
i=1wi(tj)

ZT
v (tj)[F1(tj)w1(tj) + F2(tj)

∑m
i=1wi(tj)]

...

ZT
v (tj)[F1(tj)wm(tj) + F2(tj)

∑m
i=1wi(tj)]



, (2.76)
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and

LT (tj)r(tj) =



LT0 (tj)r0(tj) + LT2 (tj)
∑m

i=1 ri(tj)

LT1 (tj)r0(tj) + LT3 (tj)r1(tj) + LT4 (tj)
∑m

i=1 ri(tj)

...

LT1 (tj)r0(tj) + LT3 (tj)rm(tj) + LT4 (tj)
∑m

i=1 ri(tj)


, (2.77)

where F1(tj), F2(tj), K0(tj), K1(tj), and K2(tj) are computed in the filtering step. In

(2.76), the matrix-matrix and matrix vector multiplications of dimensions on the order

qm is reduced to computing the m+1 components on the right hand side using the small

blocks F1(tj), F2(tj), K0(tj), K1(tj), K2(tj) and components of w(tj).

In equation

α̂(tj) = a(tj) + P (tj)rtj−1
, (2.78)

we have

α̂(tj) =



a0(tj)

a1(tj)

...

am(tj)


+



P0(tj)r0(tj−1) + P1(tj)
∑m

i=1 ri(tj−1)

P T
1 (tj)r0(tj−1) + P2(tj)r1(tj−1) + P3(tj)

∑m
i=1 ri(tj−1)

...

P T
1 (tj)r0(tj−1) + P2(tj)rm(tj−1) + P3(tj)

∑m
i=1 ri(tj−1)


,

(2.79)

where P0(tj), P1(tj), P2(tj), P3(tj) are computed in the filtering step.

In equation

N(tj−1) = ZT (tj)F
−1(tj)Z(tj) + LT (tj)N(tj)L(tj), (2.80)
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similar to the proof of Theorem 1, N(tj) can be shown by induction to have the form

N(tj) =

 N0(tj) 1Tm ⊗N1(tj)

1m ⊗NT
1 (tj) Im ⊗N2(tj) + 1m×m ⊗N3(tj)

 , (2.81)

where N0(tn) = N1(tn) = N2(tn) = N3(tn) are initialized to zero matrices. In (2.80),

ZT (tj)F
−1(tj)Z(tj) =

 U0(tj) 1Tm ⊗ U1(tj)

1m ⊗ UT
1 (tj) Im ⊗ U2(tj) + 1m×m ⊗ U3(tj)

 , (2.82)

where

U0(tj) = mZT
u (tj)[F1(tj) +mF2(tj)]Zu(tj),

U1(tj) = ZT
u (tj)[F1(tj) +mF2(tj)]Zv(tj),

U2(tj) = ZT
v (tj)F1(tj)Zv(tj),

U3(tj) = ZT
v (tj)F2(tj)Zv(tj),

(2.83)

and

LT (tj)N(tj)L(tj) =

 X0(tj) 1Tm ⊗X1(tj)

1m ⊗XT
1 Im ⊗X2(tj) + 1m×mX3(tj)

 , (2.84)
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where

X0(tj) = LT0 (tj)N0(tj)L0(tj) +mLT2 (tj)N
T
1 (tj)L0(tj)+

mLT0 (tj)N1(tj)L2(tj) +mLT2 (tj)[N2(tj) +mN3(tj)]L2(tj),

X1(tj) = LT0 (tj)N0(tj)L1(tj) +mLT2 (tj)N
T
1 (tj)L1(tj) + LT0N1(tj)[L3(tj)+

mL4(tj)] + LT2 [N2(tj) +mN3(tj)][L3(tj) +mL4(tj)],

X2(tj) = LT3 (tj)N2(tj)L3(tj),

X3(tj) = LT1 (tj)N0(tj)L1(tj) + [LT3 (tj) +mLT4 (tj)]N
T
1 (tj)L1(tj)+

LT1 (tj)N1(tj)[L3(tj) +mL4(tj)] + [LT3 (tj) +mLT4 (tj)]N3(tj)[L3(tj)+

mL4(tj)] + LT3N2(tj)L4(tj) + LT4 (tj)N2(tj)L3(tj) +mLT4N2(tj)L4(tj).

(2.85)

Adding up the two terms, N(tj−1) is given by

N(tj−1) =

 N0(tj−1) 1Tm ⊗N1(tj−1)

1m ⊗NT
1 (tj−1) Im ⊗N2(tj−1) + 1m×m ⊗N3(tj−1)

 , (2.86)

where

N0(tj−1) = U0(tj) +X0(tj),

N1(tj−1) = U1(tj) +X1(tj),

N2(tj−1) = U2(tj) +X2(tj),

N3(tj−1) = U3(tj) +X3(tj).

(2.87)

The time complexity of (2.80) is thus reduced from O(q3m3) to O(q3m). In equation

V (tj) = P (tj)− P (tj)N(tj−1)P (tj),

P (tj)N(tj−1)P (tj) =

 W0(tj) 1Tm ⊗W1(tj)

1m ⊗W T
1 (tj) Im ⊗W2(tj) + 1m×mW3(tj)

 , (2.88)
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where

W0(tj) = P0(tj)N0(tj−1)P0(tj) +mP1(tj)N
T
1 (tj−1)P0(tj)+

mP0(tj)N1(tj−1)P
T
1 (tj) +mP1(tj)[N2(tj−1) +mN3(tj−1)]P

T
1 (tj),

W1(tj) = P0(tj)N0(tj−1)P1(tj) +mP1(tj)N
T
1 (tj−1)P1(tj)+

P0(tj)N1(tj−1)[P2(tj)+

mP3(tj)] + P1(tj)[N2(tj−1) +mN3(tj−1)][P2(tj) +mP3(tj)],

W2(tj) = P2(tj)N2(tj−1)P2(tj),

W3(tj) = P T
1 (tj)N0(tj−1)P1(tj) + [P2(tj) +mP3(tj)]N

T
1 (tj−1)P1(tj)+

P T
1 N1(tj−1)[P2(tj) +mP3(tj)]+

[P2(tj) +mP3(tj)]N3(tj−1)[P2(tj) +mP3(tj)] + P3N2(tj−1)P2(tj)+

P2(tj)N2(tj−1)P3(tj) +mP3(tj)N2(tj−1)P3(tj).

(2.89)

So V (tj) is given by

V (tj) =

 V0(tj) 1Tm ⊗ V1(tj)

1m ⊗ V T
1 (tj) Im ⊗ V2(tj) + 1m×m ⊗ V3(tj)

 , (2.90)

where

V0(tj) = P0(tj)−W0(tj),

V1(tj) = P1(tj)−W1(tj),

V2(tj) = P2(tj)−W2(tj),

V3(tj) = P3(tj)−W3(tj).

(2.91)

The new algorithm reduces the time complexity of the state smoothing recursion from

O(q3m3) to O(q3m). The space complexity of the original state smoothing is O(q2m2n),

where n comes from storing the filtering quantities. In contrast, the new algorithm for

state smoothing is of space complexity O((q2 + qm)n).
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2.3.4 Disturbance smoothing using the special structure

The computation of quantities in disturbance smoothing (2.19) and (2.20) can also

be simplified using the special structures.

In the first equation in (2.19),

u(tj) = F−1(tj)w(tj)−KT (tj)r(tj), (2.92)

the two terms are given by

F−1(tj)w(tj) =


F1(tj)w1(tj) + F2(tj)

∑m
i=1wi(tj)

...

F1(tj)wm + F2(tj)
∑m

i=1wi(tj)

 , (2.93)

and

K ′(tj)r(tj) =


KT

0 (tj)r0(tj) +KT
1 (tj)r1(tj) +KT

2 (tj)
∑m

i=1 ri(tj)

...

KT
0 (tj)r0(tj) +KT

1 (tj)rm(tj) +KT
2 (tj)

∑m
i=1 ri(tj)

 . (2.94)

In ε̂(tj) = H(tj)u(tj), write u(tj) as

u(tj) =


u1(tj)

...

um(tj)

 . (2.95)
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then ε̂(tj) is given by

ε̂(tj) = H(tj)u(tj) =


Σε(tj)u1(tj)

...

Σε(tj)um(tj)

 , (2.96)

where H(tj) = diag{Σε(tj), . . . ,Σε(tj)}. η̂(tj) is given by

η̂(tj)

= Q(tj)R
T (tj)r(tj)

=



Σu(tj) 0 0

0 Σv(tj)

. . .

0 Σv(tj)





RT
u (tj) 0 0

0 RT
v (tj)

. . .

0 RT
v (tj)





r0(tj)

r1(tj)

...

rm(tj)



=



Σu(tj)R
T
u (tj)r0(tj)

Σv(tj)R
T
v (tj)r1(tj)

...

Σv(tj)R
T
v (tj)rm(tj)


.

(2.97)

r(tj−1) = ZT (tj)ut + T T (tj)r(tj) =



ZT
u (tj)

∑m
i=1 ui(tj)

ZT
v (tj)u1(tj)

...

ZT
v (tj)um(tj)


+



T Tu (tj)r0(tj)

T Tv (tj)r1(tj)

...

T Tv (tj)rm(tj)


.

(2.98)

For the disturbance smoothing recursion of the variance matrices (2.20), in D(tj) =

F−1(tj) + KT (tj)N(tj)K(tj), K(tj) is given in (2.72) and N(tj) is given in (2.86), thus

64



Multivariate State Space Mixed Effects Models Chapter 2

we have

KT (tj)N(tj)K(tj) = Im ⊗ E1(tj) + 1m×m ⊗ E2(tj), (2.99)

where

E1(tj) = KT
1 (tj)N2(tj)K1(tj),

E2(tj) = KT
0 (tj)N0(tj)K0(tj) + [KT

1 (tj) +mKT
2 (tj)]N

T
1 (tj)K0(tj)+

KT
0 (tj)N1(tj)[K1(tj) +mK2(tj)] + [KT

1 (tj)+

mKT
2 (tj)]N3(tj)[K1(tj) +mK2(tj)]+

KT
1 (tj)N2(tj)K2(tj) +KT

2 (tj)N2(tj)K1(tj) +mKT
2 (tj)N2(tj)K2(tj).

(2.100)

Therefore,

D(tj) = Im ⊗D1(tj) + 1m×m ⊗D2(tj), (2.101)

where

D1(tj) = F1(tj) + E1(tj),

D2(tj) = F2(tj) + E2(tj).
(2.102)

We have

Var[ε(tj)|Y (tn)] = H(tj)−H(tj)D(tj)H(tj) = Im ⊗G1(tj) + 1m×m ⊗G2(tj), (2.103)

where

G1(tj) = Σε(tj)− Σε(tj)D1(tj)Σε(tj),

G2(tj) = −Σε(tj)D2(tj)Σε(tj),
(2.104)
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and

Var[η(tj)|Y (tn)] = Q(tj)−Q(tj)R
T (tj)N(tj)R(tj)Q(tj)

=

 J0(tj) 1Tm ⊗ J1(tj)

1m ⊗ JT1 (tj) Im ⊗ J2(tj) + 1m×m ⊗ J3(tj)

 ,
(2.105)

where

J0(tj) = Σu(tj)− Σu(tj)R
T
u (tj)N0(tj)Ru(tj)Σu(tj),

J1(tj) = −Σu(tj)R
T
u (tj)N1(tj)Rv(tj)Σv(tj),

J2(tj) = Σv(tj)− Σv(tj)R
T
v (tj)N2(tj)Rv(tj)Σv(tj),

J3(tj) = −Σv(tj)R
T
v (tj)N3(tj)Rv(tj)Σv(tj).

(2.106)

2.3.5 Fast state smoothing using the special structure

In (2.21),

α̂(tj+1) = T (tj)α̂(tj) + η̂(tj). (2.107)

Write α̂(tj) as

α̂(tj) =



α̂0(tj)

α̂1(tj)

...

α̂m(tj)


, (2.108)

then

T (tj)α̂(tj) =



Tu(tj)α̂0(tj)

Tv(tj)α̂1(tj)

...

Tv(tj)α̂m(tj)


. (2.109)
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For the initial value α̂(t1) = a(t1) + P (t1)r(t0), we have

P (t1)r(t0) =

 P0(t1) 1Tm ⊗ P1(t1)

1m ⊗ P T
1 (t1) Im ⊗ P2(t1) + 1m×m ⊗ P3(t1)




r0(t0)

r1(t0)

...

rm(t0)



=



P0(t1)r0(t0) + P1(t1)
∑m

i=1 ri(t0)

P T
1 (t1)r0(t0) + P2(t1)r1(t0) + P3(t1)

∑m
i=1 ri(t0)

...

P T
1 (t1)r0(t0) + P2(t1)rm(t0) + P3(t1)

∑m
i=1 ri(t0)


,

(2.110)

where P0(t1), P1(t1), P2(t1), and P3(t1) are the components of P (t1), obtained from the

filtering step, and r(t0) is obtained from disturbance smoothing (2.19).

The time complexity and space complexity of the original Kalman filter (KF) / uni-

variate treatment and the new algorithm are summarized in Table 2.1.

Algorithm Filtering Smoothing
Time Space Time Space

KF/Univariate treatment O(q3m3n) O(q2m2) O(q3m3n) O(q2m2n)
New Algorithm O(q3mn) O(q2 + qm) O(q3mn) O((q2 + qm)n)

Table 2.1: Time and space complexity of the univariate treatment and the new algorithm.

2.4 Dealing with Missing Values

The original Kalman filter and the univariate treatment can handle any kind of miss-

ing values. Our new algorithm, as far as we know for now, can only cope with one kind

of missing values: subject dropouts, but different subjects can drop out at different time

points. That is, the new algorithm cannot deal with the case where there are intermittent
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missing values, because the special structure would be disrupted. In practice intermittent

missing values may be imputed.

2.4.1 Filtering algorithm with subject dropouts

In the filtering part of the new algorithm, at time tj, in the observation vector

y(tj) = (yT1 (tj), . . . ,y
T
m(tj))

T , one simply replaces missing observations with NA. That

is, if yTi (tj) is missing for some 1 ≤ i ≤ m, replace it with a vector of NA’s of the same

length. Note that we cannot deal with the case where only a part of a subject’s variables

are missing, the entire vector yi(tj) is either missing or non-missing. According to the first

equation in the Kalman filter (2.15), the components of w(tj) = (wT
1 (tj), . . . ,w

T
m(tj))

T

that correspond to missing subjects will be NA. All matrices and vectors in the Kalman

filter recursion still have the same special structures, except that their evolutions will

only be contributed by non-missing subjects. Let

Aj = {i : subject i’s longitudinal variables are observed at time tj, 1 ≤ i ≤ m}

be the index set of subjects who are observed at time tj. Denote by |Aj| the number of

elements in Aj. Then the quantities that we keep track of, i.e., the small matrices, are

computed by replacing m with m(tj) = |Aj|, the number of non-missing subjects at time

tj. For example, in (2.57), m will be replaced by m(tj), and in (2.58),
∑m

i=1wi(tj) will

be replaced by
∑

i∈Aj
wi(tj).

It should be stressed that, in implementation, missing subjects cannot simply be

removed from the system, they must be kept in their positions as NA’s—it is important

to retain the ordering of all subjects, no matter whether they are missing or not, otherwise

we will lose track of them. Hence we keep the NA’s in w(tj),a(tj|tj), and a(tj+1), instead

of reducing the dimension of the vectors by removing missing values.
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2.4.2 Smoothing algorithm with missing values

For smoothing, currently, our new algorithm can only deal with the case where there

is no subject dropout, but the subjects can come into the system at different time points.

That is, once a subject comes into the system, it must exist to the end.

2.5 Initialization

According to the connection between a linear Gaussian state space model and a

general mixed effects model, elaborated in Section (1.3.4), in the initial state vector

α(t1) =



α0(t1)

α1(t1)

...

αm(t1)


, (2.111)

the fixed effects α0(t1) correspond to α11 in (1.40) and has a diffuse prior, and the random

effects αi(t1), i = 1, . . . ,m correspond to α12 and are independent identically normally

distributed with mean zero and a finite covariance matrix.

To cope with the diffuse and proper priors for the components of the initial state, as

described in Section 1.3.1, write the initial state vector as

α(t1) = a+ Aδ +R0η0, η0 ∼ N(0, Q0), (2.112)

in which, for our mixed effects state space model, a = 0, δ is a du × 1 random vector

with a diffuse prior δ ∼ N(0, κ0I) where κ0 →∞, η0 is a mdv × 1 random vector whose

covariance matrix Q0 we assume to be κ1I, where κ1 is an unknown finite parameter to
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be estimated, and

A =

 Idu

0mdv×du


(du+mdv)×du

and R0 =

 0du×mdv

Imdv

 (2.113)

are selection matrices.

The diffuse prior for δ can be implemented by either setting κ0 to an arbitrarily

large number, or using the exact initial Kalman filter [26]; the former often leads to

large rounding errors and the latter is algebraically complicated. As stated in Section

1.3.1, an equivalent algorithm is to treat δ as a fixed unknown parameter vector and

estimate it using the augmented Kalman filter ([27], [26], [28]). The parameters δ can be

concentrated out of the likelihood and estimated independently and analytically, given

the other parameters. Usually, the exact initial Kalman filter is more efficient than

the augmented Kalman filter. However, in our case, using the special structure, the

augmented Kalman filter does not add much extra computation and is algebraically

simpler. Details for this approach are provided below.

By (2.112), the distribution of the initial state vector α(t1) is normal with mean

E[α(t1)] = a(t1) = a + Aδ and covariance matrix Var[α(t1)] = P (t1) = R0Q0R
T
0 . Since

filtering operations are linear, we have

a(tj) = aa(tj) + AA(tj)δ (2.114)

for all tj, j = 1, . . . , n. aa(tj) is the a(tj) obtained from a Kalman filter with a as a(t1)

and y(tj) as the observation vector. AA(tj) is a (du +mdv)×du matrix. The kth column

of AA(tj) is the a(tj) obtained from a Kalman filter with the kth column of A as the

initial state mean a(t1) and 0 as the observation vector y(tj), j = 1, . . . , n. Similarly, we
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have

a(tj|tj) = aa(tj|tj) + AA(tj|tj)δ, (2.115)

and

w(tj) = wa(tj) +WA(tj)δ, (2.116)

for j = 1, . . . , n. The log-likelihood of δ is given by

l(δ) = log[p(Y n|δ)] =
n∑
j=1

p(w(tj)) = −bT (tn)δ − 1

2
δTSA(tn)δ + constant, (2.117)

where b(tn) =
∑n

j=1W
T
A (tj)F

−1(tj)wa(tj), SA(tn) =
∑n

j=1W
T
A (tj)F

−1(tj)WA(tj), and

constant means it is independent of δ.

Given other parameters, δ is estimated by minimizing

bT (tj)δ +
1

2
δTSA(tj)δ, (2.118)

for which there is an analytical solution, given by

δ̂ = −S−1A (tn)b(tn). (2.119)

The 1+du Kalman filter recursions used to obtain (wa(tj),WA(tj)), (aa(tj|tj), AA(tj|tj)),

and (aa(tj+1), AA(tj+1)) share common covariance matrices P (tj), P (tj|tj), and F (tj),

initialized with P (t1) = R0Q0R
T
0 . Therefore, one can apply an augmented Kalman filter

to an observation matrix (y(tj),0qm×du), with initial state mean matrix (aa(t1), AA(t1)) =
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(a, A). Updates for the augmented matrices are given by

(wa(tj),WA(tj)) = (y(tj),0qm×du)− Z(tj)(aa(tj), AA(tj))

(aa(tj|tj), AA(tj|tj)) = (aa(tj), AA(tj)) + P (tj)Z
T (tj)F

−1(tj)(wa(tj),WA(tj))

(aa(tj+1), AA(tj+1)) = Tt(tj)(aa(tj|tj), AA(tj|tj)).
(2.120)

The updates for the covariance matrices remain the same as in section 2.3.1. There

are special structures in (2.120), so the fast algorithm also applies. The updates for

wa(tj),aa(tj|tj), and aa(tj+1) are the same as the algorithm described in Section (2.3.1).

The calculations for WA(tj), AA(tj|tj), and AA(tj+1) can be simplified as follows. WA(tj)

can be partitioned into m parts corresponding to the m subjects, and AA(tj|tj) and

AA(tj) can be partitioned into m + 1 parts, corresponding to population effects and m

subject random deviations, written as

WA(tj) =


WA1(tj)

...

WAm(tj)

 , AA(tj|tj) =



AA0(tj|tj)

AA1(tj|tj)
...

AAm(tj|tj)


, AA(tj) =



AA0(tj)

AA1(tj)

...

AAm(tj)


.

The calculation of WA(tj) in (2.120) can be simplified as

WA(tj) =


WA1(tj)

...

WAm(tj)

 = −


Zu(tj)AA0(tj) + Zv(tj)AA1(tj)

...

Zu(tj)AA0(tj) + Zv(tj)AAm(tj)

 .

In the second equation of (2.120), P (tj)Z
T (tj)F

−1(tj) has a special structure given in
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(2.56), so AA(tj|tj) is calculated as

AA(tj|tj) =



AA0(tj)

AA1(tj)

...

AAm(tj)


+



C0(tj)
∑m

i=1WAi(tj)

C1(tj)WA1(tj) + C2(tj)
∑m

i=1WAi(tj)

...

C1(tj)WAm(tj) + C2(tj)
∑m

i=1WAi(tj)


.

And AA(tj+1) is given by

AA(tj+1) =



Tu(tj)AA0(tj|tj)

Tv(tj)AA1(tj|tj)
...

Tv(tj)AAm(tj|tj)


.

Applying the special structure of F−1(tj) in (2.54), we have

SA(tn) =
n∑
t=1

{
m∑
i=1

[
W T
Ai(tj)F1(tj)WAi(tj)

]
+

[
m∑
i=1

W T
Ai(tj)

]
F2(tj)

[
m∑
i=1

WAi(tj)

]}
,

and

b(tn) =
n∑
t=1

{
m∑
i=1

[
W T
Ai(tj)F1(tj)wai(tj)

]
+

[
m∑
i=1

W T
Ai(tj)

]
F2(tj)

[
m∑
i=1

wai(tj)

]}
,

where wai(tj), i = 1, . . . ,m, are the components of

wa(tj) =


wa1(tj)

...

wam(tj)

 .
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2.6 Adding the Regression Term

In the mixed effects state space model (2.13), the regression coefficient vector β can

be concentrated out and estimated separately, given other parameters; this treatment

considerably simplifies the numerical optimization procedure of maximum likelihood es-

timation.

In the observation equation in (2.13), moving the regression term to the left hand

side, we have

y(tj)−X(tj)β = Z(tj)α(tj) + ε(tj), (2.121)

in which, for a fixed β, one can treat y(tj) − X(tj)β as the observation vector. Given

the other parameters in the model, the log-likelihood of β is

l(β) = −1

2

n∑
j=1

wT (tj)F
−1(tj)w(tj) + constant, (2.122)

where w(tj) is the one-step-ahead prediction error obtained from a Kalman filter with

y(tj)−X(tj)β as the observation vector, F−1(tj) is the same as that obtained from the

Kalman filter for a model without the regression term, and “constant” means independent

of β. Since the filtering operations are linear, we have

w(tj) = w∗(tj)−W ∗(tj)β, (2.123)

with w∗(tj) a qm× 1 vector and W ∗(tj) a qm× pq matrix, where w∗(tj) is the one-step-

ahead prediction error w(tj) obtained from a Kalman filter with y(tj) as the observation

vector, and the kth column of W ∗(tj) is the w(tj) obtained from a Kalman filter with the

kth column of X(tj) as the observation vector, j = 1, . . . , pq. The pq+1 Kalman filtering

recursions share common covariance matrices F (tj), P (tj|tj), and P (tj), the difference is
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in w(tj),a(tj), and a(tj|tj). Therefore, one can apply Kalman filter to the observation

matrix (y(tj), X(tj)) instead of an observation vector, and use the same recursion for

covariance matrices as in Section 2.3.1. This is the augmented Kalman filter discussed

in Section 2.5. The parameter vector β is estimated by minimizing

n∑
j=1

wT (tj)F
−1(tj)w(tj) = [w∗(tj)−W ∗(tj)β]TF−1(tj)[w

∗(tj)−W ∗(tj)β], (2.124)

which has an analytical solution

β̂ = [
n∑
j=1

W ∗T (tj)F
−1(tj)W

∗(tj)]
−1

n∑
j=1

W ∗T (tj)F
−1(tj)w

∗(tj). (2.125)

The new efficient algorithm also applies for the estimation procedure of β, done in a sim-

ilar manner as in section 2.5. The augmented Kalman filter has recursions for covariance

matrices identical to that in Section 2.3.1, the difference lies in the updating equations

for w(tj),a(tj), and a(tj|tj), given by

(w∗(tj),W
∗(tj)) = (y(tj), X(tj))− Z(tj)(a

∗(tj), A
∗(tj)),

(a∗(tj|tj), A∗(tj|tj)) = (a∗(tj), A
∗(tj)) + P (tj)Z

T (tj)F
−1(tj)(w

∗(tj),W
∗(tj)),

(a∗(tj+1), A
∗(tj+1)) = Tt(a

∗(tj|tj), A∗(tj|tj)),
(2.126)

where A∗(tj) is a matrix, of which the kth column is the a(tj) obtained from a Kalman

filter with the kth column of X(tj) as the observation vector, and the kth column of

A∗(tj|tj) the corresponding a∗(tj|tj), k = 1, . . . , pq.

The updates forw∗(tj),a
∗(tj|tj), and a∗(tj+1) are the same as the algorithm described

in Section (2.3.1). The calculations for W ∗(tj), A
∗(tj|tj), and A∗(tj) can be simplified as

follows. W ∗(tj) can be partitioned into m parts corresponding to the m subjects, and

A∗(tj|tj) and A∗(tj+1) can be partitioned into m+1 parts, corresponding to a population
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level fixed effect and m subject random deviations, written as

W ∗(tj) =


W ∗

1 (tj)

...

W ∗
m(tj)

 , A∗(tj|tj) =



A∗0(tj|tj)

A∗1(tj|tj)
...

A∗m(tj|tj)


, A∗(tj) =



A∗0(tj)

A∗1(tj)

...

A∗m(tj)


.

(2.127)

The calculation of W ∗(tj) in (2.126) can be simplified as

W ∗(tj) =


W ∗

1 (tj)

...

W ∗
m(tj)

 =


X1(tj)

...

Xm(tj)

−


Zu(tj)A
∗
0(tj) + Zv(tj)A

∗
1(tj)

...

Zu(tj)A
∗
0(tj) + Zv(tj)A

∗
m(tj)

 (2.128)

In the second equation of (2.126), P (tj)Z
T (tj)F

−1(tj) has a special structure given in

(2.56), so A∗(tj|tj) is calculated as

A∗(tj|tj) =



A∗0(tj)

A∗1(tj)

...

A∗m(tj)


+



C0(tj)
∑m

i=1W
∗
i (tj)

C1(tj)W
∗
1 (tj) + C2(tj)

∑m
i=1W

∗
i (tj)

...

C1(tj)W
∗
m(tj) + C2(tj)

∑m
i=1W

∗
i (tj)


. (2.129)

And A∗(tj+1) is given by

A∗(tj+1) =



Tu(tj)A
∗
0(tj|tj)

Tv(tj)A
∗
1(tj|tj)

...

Tv(tj)A
∗
m(tj|tj)


. (2.130)
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Applying the special structure of F−1(tj) in (2.54), we have

β̂ =
(∑n

t=1

{∑m
i=1

[
W ∗T
i (tj)F1(tj)W

∗
i (tj)

]
+
[∑m

i=1W
∗T
i (tj)

]
F2(tj) [

∑m
i=1W

∗
i (tj)]

})−1∑n
t=1

{∑m
i=1

[
W ∗T
i (tj)F1(tj)w

∗
i (tj)

]
+
[∑m

i=1W
∗T
i (tj)

]
F2(tj) [

∑m
i=1w

∗
i (tj)]

}
,

(2.131)

where w∗i (tj), i = 1, . . . ,m, are the components of

w∗(tj) =


w∗1(tj)

...

w∗m(tj)

 . (2.132)
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Chapter 3

Joint Modeling of Longitudinal and

Time-to-Event Data

3.1 The Joint Model

For the modeling of longitudinal data, choices include linear mixed effects models,

semi-parametric/non-parametric mixed effects models via splines or functional models,

and state space models. Among these models, the state space model is capable of dy-

namically modeling the interactions between multiple longitudinal variables, and simul-

taneously enjoys interpretability and flexibility. To the best of our knowledge, the state

space model has not been used to model longitudinal variables in joint models. Semi-

parametric/non-parametric mixed effects models have rarely been used to model longi-

tudinal variables in joint models, possibly because of the extra burden to the already

high computational cost. The state space model with random effects also requires expen-

sive computation. With the advancement of new technologies, an increasing amount of

regularly measured data have emerged; and there is an urge for developing new efficient

algorithms to extract valuable information from these large data sets. For example, wear-
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able device data have been widely used in studies, where the data are measured regularly

and densely. Activity trackers and heart rate monitors are two such examples. Another

example is our dialysis data set, which contains 354,572 end stage renal disease patients

who receive dialysis treatment regularly. Their clinical variables such as hemoglobin,

albumin, and blood pressure are measured at each treatment or monthly. Interests are to

find out (i) how longitudinal variables change dynamically over time and relate to other

longitudinal variables and covariates, and (ii) the relationship between survival status

and longitudinal variables/covariates.

With the new fast and efficient algorithm under our belt, a joint modeling framework

using the state space model is developed in this chapter. The state space model for

longitudinal variables and the submodel for time to event will share common latent state

processes, thus naturally introduce correlation between longitudinal variables and time to

event. For the survival submodel, a logistic regression model is assumed which does not

require the restrictive proportional hazard assumption in a Cox regression model. The

joint model aims to (i) model the evolution of each longitudinal variable and its associa-

tion with covariates and other longitudinal variables, and (ii) perform online predictions

for longitudinal variables and the event probability of each subject.

We assume that all subjects share common observation time points tj, j = 1, . . . , n.

Let {(xi(tj),yi(tj), zi(tj), si(tj)) : i = 1, . . . ,m; j = 1, . . . , ni} be the observations for

subject i at time tj, where xi(tj) is a p × 1 vector of covariates, yi(tj) is a q × 1 vector

of longitudinal variables, zi(tj) is an event indicator, taking value 1 if the event happens

during time interval (tj−1, tj] and 0 otherwise, and si(tj) is a censoring indicator, taking

value 1 if the subject is censored during time interval (tj−1, tj] and 0 otherwise. We

assume that the event is terminal such as death. There are no observations for subject i

after tj if zi(tj) = 1. Note that subjects can be censored. In this case, we have si(tj) = 1,

and no observations for subject i thereafter.
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The longitudinal submodel is given by (2.1), with the vector form (2.13). In model

(2.1), each longitudinal observation is decomposed into three parts: the influence of

covariates, a latent process, and measurement error and/or biological variation. Correla-

tion/interactions between longitudinal variables can be modeled by one or a combination

of Σε(tj), Tu(tj), and Tv(tj). Population effects u(tj) and individual random effects vi(tj)

can be any process in the form of a state space model.

For each subject i, let tni
be the last time point its survival or censoring status is

observed, and n = max1≤i≤m{ni} be the maximum number of time points. Then for any

ni, we have either si(tni
) = 1 if subject i is censored during time interval (tni−1, tni

], or

zi(tni
) = 1 if subject i experiences the event during time interval (tni−1, tni

].

Assume that all subjects are alive and not censored at time t1 (otherwise the subject

will not enter the study), that is, zi(t1) = si(t1) = 0 for i = 1, . . . ,m. One of the

goals of our joint model is to predict the value of zi(tj+1) given the history longitudinal

observations and covariates up to time tj, j ≥ 1.

For subject i, let xi(t1:j) = (xTi (t1), . . . ,x
T
i (tj))

T , u(t1:j) = (uT (t1), . . . ,u
T (tj))

T , and

vi(t1:j) = (vTi (t1), . . . ,v
T
i (tj))

T be historical covariates and latent state vectors. Survival

status at the next time point zi(tj+1) is assumed to follow a Bernoulli distribution

zi(tj+1)|[xi(t1:j),u(t1:j),vi(t1:j)] ∼ Bernoulli(πi(tj+1)), i = 1, . . . ,m, j = 1, . . . , ni,

(3.1)

with

logit[πi(tj+1)] = γ0 + xTi (tj)γ1 + (uT (tj),v
T
i (tj))

TDTγ2, (3.2)

where γ0, γ1, and γ2 are parameters, and D is a design matrix.

The survival model (3.1) and (3.2) can be easily modified to predict survival probabil-

ities at a certain amount of time after tj. For example, if we want to study the mortality
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rate k months from now, we simply change zi(tj+1) to zi(tj+k).

We note that it is not difficult to extend the following estimation methods to other

logistic regression models.

3.2 Likelihood of the Joint Model

The joint model is based on the following assumptions:

1. observations from different subjects are independent of each other;

2. conditional on being alive and not censored at time tj−1, si(tj) are independent of

historical longitudinal observations.

3. all longitudinal variables and covariates are observed at tj as long as zi(tj) = 0 and

si(tj) = 0, and are not observed when either zi(tj) = 1 or si(tj) = 1;

4. when si(tj) = 1, the survival status zi(tj) is not observed;

5. when zi(tj) = 1, we have si(tj) = 0.

At time tj, j = 2, . . . , n, let

Aj = {i : zi(tj) = 0 and si(tj) = 0, i ∈ Aj−1}, (3.3)

Bj = {i : zi(tj) = 1, i ∈ Aj−1}, (3.4)

and

Cj = {i : si(tj) = 1, i ∈ Aj−1}, (3.5)

where A1 is the index set of all subjects. That is, Aj is the index set of subjects who

are alive and not censored at time tj, Bj is the index set of subjects who experience the
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terminating event during time interval (tj−1, tj], and Cj is the index set of subjects who

are censored during time interval (tj−1, tj]. Once a subject drops out due to censoring or

death, he/she will no longer be included in Aj, Bj, or Cj at later time points.

At time t1, we assume that all subjects are alive and not censored, otherwise he/she

will not enter the study. Therefore, we have B1 = ∅ and C1 = ∅. We have the following

relationships:

1. A1 ⊃ A2 ⊃ · · · ⊃ An, because subjects gradually drop out or experience the

terminating event as time moves on;

2. Aj ∩ (Bj ∪ Cj) = ∅ for j = 1, . . . , n;

3. Bj ∩ Cj = ∅; and

4. Aj ∪Bj ∪ Cj = Aj−1 for j = 2, ..., n.

Let yAj(tj) be the stacked vector of {yi(tj)}i∈Aj
and Y A1:j(t1:j) = (yA1(t1)

T , . . . ,

yAj(tj)
T )T , 1 ≤ j ≤ n. Let αAj(tj) be a subvector of the state vector α(tj) with

components corresponding to subjects who are not in the set Aj removed. That is,

αAj(tj) = (uT (tj),v
T
i1

(tj), . . . ,v
T
ikj

(tj))
T where Aj = {i1, . . . , ikj} and i1 < · · · < ikj ,

1 ≤ j ≤ n. Similar definition applies for αAj∪Bj(tj−1), 2 ≤ j ≤ n.

Denoting by zAj(tj) the stacked vector of {zi(tj)}i∈Aj
, then according to the definition

of Aj, we have zAj(tj) = 0 for j = 1, . . . , n. Letting zBj(tj) be the stacked vector of

{zi(tj)}i∈Bj
, according to the definition of Bj, we have zBj(tj) = 1 for 2 ≤ j ≤ n and

zB1(t1) = ∅. zCj(tj) = {zi(tj)}i∈Cj
= ∅ according to our assumption. Let ZA1:j(t1:j) =

(zA1(t1)
T , . . . ,zAj(tj))

T and ZB1:j(t1:j) = (zB1(t1)
T , . . . ,zBj(tj))

T , 1 ≤ j ≤ n.

Let sAj−1(tj) be the stacked vector of {si(tj)}i∈Aj−1
. That is, sAj−1(tj) is the censoring

status at tj for subjects who are alive at time tj−1. Define A0 as the index set of all
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subjects and we have sA0(t1) = 0. Let SA0:j−1(t1:j) = (sA0(t1)
T , . . . , sAj−1(tj)

T )T , 1 ≤

j ≤ n.

Suppose that ψ is the vector of all parameters in the model. Since all subjects are

alive at t1, we have zA1(t1) = 0 with probability 1. At time tj, 1 ≤ j ≤ n, yAj(tj)

is the vector of current longitudinal observations, (zAj(tj), z
Bj(tj)) are current survival

status observations, and sAj−1(tj) are censoring status observations for all subjects in

Aj−1. Therefore, the likelihood is given by

L(ψ) = p(Y A1:n(t1:n),ZA1:n(t1:n),ZB1:n(t1:n),SA0:n−1(t1:n))

= p(yA1(t1), z
A1(t1)︸ ︷︷ ︸

0

, zB1(t1)︸ ︷︷ ︸
∅

, sA0(t1)︸ ︷︷ ︸
0

)

∏n
j=2 p(y

Aj(tj), z
Aj(tj), z

Bj(tj), s
Aj−1(tj)|

Y A1:j−1(t1:j−1),Z
A1:j−1(t1:j−1),Z

B1:j−1(t1:j−1),S
A0:j−2(t1:j−1)).

(3.6)

Note that all densities are conditional on external covariates xi(tj), which is suppressed

here for notational simplicity.

In (3.6), we have

p(yA1(t1), z
A1(t1), z

B1(t1), s
A0(t1))

= p(yA1(t1), z
A1(t1) = 0, sA0(t1) = 0)

= p(yA1(t1)).

(3.7)
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The second half of the likelihood in (3.6) can be rewritten as

∏n
j=2 p(y

Aj(tj), z
Aj(tj), z

Bj(tj), s
Aj−1(tj)|

Y A1:j−1(t1:j−1),Z
A1:j−1(t1:j−1),Z

B1:j−1(t1:j−1),S
A0:j−2(t1:j−1))

=
∏n

j=2 p(y
Aj(tj)|Y A1:j−1(t1:j−1),Z

A1:j−1(t1:j−1),Z
B1:j−1(t1:j−1),

SA0:j−2(t1:j−1), z
Aj(tj), z

Bj(tj), s
Aj−1(tj))∏n

j=2 p(z
Aj(tj), z

Bj(tj)|Y A1:j−1(t1:j−1),

ZA1:j−1(t1:j−1),Z
B1:j−1(t1:j−1),S

A0:j−2(t1:j−1), s
Aj−1(tj))∏n

j=2 p(s
Aj−1(tj)|Y A1:j−1(t1:j−1),Z

A1:j−1(t1:j−1),Z
B1:j−1(t1:j−1),S

A0:j−2(t1:j−1))︸ ︷︷ ︸
=p(sAj−1 (tj)) by assumption

=
∏n

j=2 p(y
Aj(tj)|Y A1:j−1(t1:j−1),Z

A1:j(t1:j),Z
B1:j(t1:j),S

A0:j−1(t1:j))∏n
j=2 p(z

Aj(tj), z
Bj(tj)|Y A1:j−1(t1:j−1),Z

A1:j−1(t1:j−1),Z
B1:j−1(t1:j−1),S

A0:j−1(t1:j))
n∏
j=2

p(sAj−1(tj))︸ ︷︷ ︸
constant

=
∏n

j=2 p(y
Aj(tj)|Y A1:j−1(t1:j−1))

∏n
j=2 p(z

Aj(tj), z
Bj(tj)|Y A1:j−1(t1:j−1)) · constant.

(3.8)

In (3.8),
∏n

j=2 p(s
Aj−1(tj)) is a constant because by assumption, given that subject i is

alive and not censored at time tj−1, the distribution of si(tj) is independent of the history

of longitudinal variables. The third equality in (3.8) holds because in the first density,

conditional on Y A1:j−1(t1:j−1), the longitudinal variables of subjects in Aj are independent

of the historical survival and censoring status of subjects who are not in Aj; in addition,

although the existence of yAj(tj) conditions on ZAj(t1:j−1) = 0 and SAj(t1:j) = 0, these

conditions are indicated by the superscript Aj of yAj(tj), thus we suppress in notation the

conditions ZAj(t1:j−1) = 0 and SAj(t1:j) = 0; and similar reasons apply for the second

density.
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Plugging (3.7) and (3.8) into (3.6), the likelihood is rewritten as

L(ψ) = constant · p(yA1(t1))
∏n

j=2 p(y
Aj(tj)|Y A1:j−1(t1:j−1))∏n

j=2 p(z
Aj(tj), z

Bj(tj)|Y A1:j−1(t1:j−1))

= constant · L1(ψ)L2(ψ),

(3.9)

where

L1(ψ) = p(yA1(t1))
n∏
j=2

p(yAj(tj)|Y A1:j−1(t1:j−1)) (3.10)

is the joint density of longitudinal data, and

L2(ψ) =
n∏
j=2

p(zAj(tj), z
Bj(tj)|Y A1:j−1(t1:j−1)) (3.11)

is the conditional joint survival density given longitudinal data. L1(ψ) is computed by

the Kalman filter. The density p(zAj(tj), z
Bj(tj)|Y A1:j−1(t1:j−1)) in L2(ψ) is calculated

by

∫
p(zAj(tj), z

Bj(tj)|αAj−1(tj−1),Y
A1:j−1(t1:j−1))

p(αAj−1(tj−1)|Y A1:j−1(t1:j−1))dα
Aj−1(tj−1)

=
∫
p(zAj(tj), z

Bj(tj)|αAj−1(tj−1))p(α
Aj−1(tj−1)|Y A1:j−1(t1:j−1))dα

Aj−1(tj−1),

(3.12)

for j = 2, . . . , n, in which the term Y A1:j−1(t1:j−1) is dropped from the first density because

by definition, zAj(tj) and zBj(tj) are independent of Y A1:j−1(t1:j−1) given αAj−1(tj−1)

(recall that Aj ∪ Bj ⊂ Aj−1). In addition, according to the definition of zi(tj) in (3.1)

and (3.2), the zi(tj)’s for different subjects are conditionally independent given covariates
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xi(tj−1) and the state vector α(tj−1). Therefore, we have

p(zAj(tj), z
Bj(tj)|αAj−1(tj−1)) =

∏
i∈Aj∪Bj

p(zi(tj)|αAj−1(tj−1)). (3.13)

The integral (3.12) does not have an explicit form because p(z(·)(·)|α(·)(·)) is Bernoulli,

and p(α(·)(·)|y(·)(·)) is Gaussian. A numerical method is thus needed to evaluate (3.12).

To illustrate our approximation method for the integral (3.12), let us first simplify

the notations and abstract the problem as

p(z|y) =

∫
p(z|α)p(α|y)dα, (3.14)

where z = (z1, . . . , zm)T is a vector of m Bernoulli random variables that are conditionally

independent given α, α = (αT0 ,α
T
1 , . . . ,α

T
m)T , in which α0 is a du × 1 vector and αi are

dv × 1 vectors for i = 1, . . . ,m; and y = (yT1 , . . . ,y
T
m)T , wherein yi are q × 1 vectors,

i = 1, . . . ,m. In (3.14), p(z|α) =
∏m

i=1 p(zi|α) is the joint conditional density of m

Bernoulli random variables and is known, and p(α|y) is a known multivariate Gaussian

density N(a, P ), where

a = (aT0 ,a
T
1 , . . . ,a

T
m)T (3.15)

is partitioned in the same way as α, and P is of the structure

P =

 P0 1Tm ⊗ P1

1m ⊗ P T
1 Im ⊗ P2 + 1m×m ⊗ P3

 , (3.16)

where P0, P2, and P3 are symmetric matrices; and P0 and P2+P3 are positive semi-definite

matrices.
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The goal is to calculate p(z|y), which can be approximated by

p(z|y) ≈ 1

M

M∑
k=1

p(z|α(k)), (3.17)

where α(1), . . . ,α(M) are samples drawn from p(α|y).

In integral (3.12), N(a, P ) is the filtering distribution computed by Kalman filter,

where a is of the form (3.15) and P is of the form (3.16). The dimension of P is

(du +mdv)× (du +mdv), where m can be extremely large. It is therefore impractical to

simulate directly fromN(a, P ), which requires a Cholesky decomposition of the extremely

high-dimensional matrix P .

The trick we use here is sequential conditional sampling. Suppose we wish to generate

a sample α from N(a, P ). We partition α into α = (αT0 ,α
T
1 , . . . ,α

T
m)T and generate

its components sequentially, each conditional on the already generated components. To

explain, first, a lemma on multivariate Gaussian conditional distribution is presented

below.

Lemma 1 Suppose that the joint distribution of two random vectors x and y is normal,

with mean and covariance matrix given by

E

 x

y

 =

 µx

µy

 , Var

 x

y

 =

 Σxx Σxy

ΣT
xy Σyy

 ,

then the conditional distribution of x given y is normal with conditional mean and co-

variance matrix

E(x|y) = µx + ΣxyΣ−1yy(y − µy), Var(x|y) = Σxx − ΣxyΣ−1yyΣT
xy. �
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Using Lemma 1, α = (αT0 ,α
T
1 , . . . ,α

T
m)T can be generated from N(a, P ) in the

following way. First, generate a dv × 1 random vector αm from N(am, P2 + P3). To

generate αm−1, note that the joint distribution of αm−1 and αm is

N(

 am−1

am

 ,

 P2 + P3 P3

P3 P2 + P3

). (3.18)

By Lemma 1, we have that the conditional distribution αm−1|αm is normal with mean

E(αm−1|αm) = am−1 + P3(P2 + P3)
−1(αm − am)

and covariance matrix

Var(αm−1|αm) = (P2 + P3)− P3(P2 + P3)
−1P3.

Generate αm−2, . . . ,α1 sequentially using conditional distributions in a similar manner.

In fact, suppose that αm,αm−1, . . . ,αk+1 have already been generated, 1 ≤ k ≤ m − 2,

the next step is to generate αk conditional on (αk+1, . . . ,αm). The joint distribution of

αk,αk+1, . . . ,αm is

N(


ak
...

am

 , Im−k+1 ⊗ P2 + 1(m−k+1)×(m−k+1) ⊗ P3). (3.19)
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By Lemma 1, the conditional distribution αk|(αk+1, . . . ,αm) is normal with mean

E(αk|αk+1, . . . ,αm) = ak+(1Tm−k⊗P3)(Im−k⊗P2+1(m−k)×(m−k)⊗P3)
−1


αk+1 − ak+1

...

αm − am

 .

(3.20)

Using the Woodbury formula, similar to how F−1(tj) is calculated in Theorem 1, we have

(Im−k ⊗ P2 + 1(m−k)×(m−k) ⊗ P3)
−1 = Im−k ⊗W1,k + 1(m−k)×(m−k) ⊗W2,k, (3.21)

where W1,k = P−12 and W2,k = −P−12 P3[P2 + (m− k)P3]
−1. So (3.20) becomes

E(αk|αk+1, . . . ,αm)

= ak + P3[W1,k + (m− k)W2,k]
∑m

i=k+1(αi − ai)

= ak + P3{P−12 − (m− k)P−12 P3[P2 + (m− k)P3]
−1}

∑m
i=k+1(αi − ai).

The covariance matrix is

Var(αk|αk+1, . . . ,αm)

= (P2 + P3)− (1Tm−k ⊗ P3)(Im−k ⊗ P2 + 1(m−k)×(m−k) ⊗ P3)
−1(1m−k ⊗ P3).

= (P2 + P3)− (m− k)P3[W1,k + (m− k)W2,k]P3

= (P2 + P3)− (m− k)P3{P−12 − (m− k)P−12 P3[P2 + (m− k)P3]
−1}P3.

After obtainingαi, i = 1, . . . ,m, the next step is to generateα0 conditional on (α1, . . . ,αm).

The joint distribution of α0,α1, . . . ,αm is N(a, P ). By Lemme 1, the conditional dis-
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tribution α0|(α1, . . . ,αm) is normal with mean

E(α0|α1, . . . ,αm) = a0 + (1Tm ⊗ P3)(Im ⊗ P2 + 1m×m ⊗ P3)
−1


α1 − a1

...

αm − am


= a0 + P1[W1,0 +mW2,0]

∑m
i=1(αi − ai)

= a0 + P1{P−12 −mP−12 P3[P2 +mP3]
−1}

∑m
i=1(αi − ai),

(3.22)

where W1,0 = P−12 and W2,0 = −P−12 P3[P2 +mP3]
−1, and covariance matrix

Var(α0|α1, . . . ,αm) = P0 − (1Tm ⊗ P3)(Im ⊗ P2 + 1m×m ⊗ P3)
−1(1m ⊗ P3)

= P0 −mP1(W1,0 +mW2,0)P
T
1

= P0 −mP1{P−12 −mP−12 P3[P2 +mP3]
−1}P T

1 .

(3.23)

The simulation algorithm is summarized in Algorithm 1. In step 2 we need to calculate∑m
i=k+1(αi − ai) for k = m − 1, . . . , 1, making the time complexity quadratic in m.

However, in implementation, for each k, we can store the current
∑m

i=k+1(αi−ai). Then

for i = k − 1 we only need to add αk − ak to the previously stored quantity, hence

90



Joint Modeling of Longitudinal and Time-to-Event Data Chapter 3

reducing time complexity to O(m).

Algorithm 1: Generating a sample from N(a, P ).

Input : a and P , where a is of the structure (3.15) and P of the structure (3.16)

Output: a sample α generated from N(a, P )

1 generate αm from N(am, P2 + P3);

2 for k = m− 1, . . . , 1 do

3 generate αk from the multivariate normal conditional distribution

αk|(αk+1, . . . ,αm) with mean E(αk|αk+1, . . . ,αm) =

ak + P3{P−12 − (m− k)P−12 P3[P2 + (m− k)P3]
−1}

∑m
i=k+1(αi − ai) and

covariance matrix Var(αk|αk+1, . . . ,αm) =

(P2 + P3)− (m− k)P3{P−12 − (m− k)P−12 P3[P2 + (m− k)P3]
−1}P3;

4 end

5 generate α0 from the multivariate normal conditional distribution α0|α1, . . . ,αm

with mean

E(α0|α1, . . . ,αm) = a0 + P1{P−12 −mP−12 P3[P2 +mP3]
−1}

∑m
i=1(αi − ai) and

covariance matrix

Var(α0|α1, . . . ,αm) = P0 −mP1{P−12 −mP−12 P3[P2 +mP3]
−1}P T

1 ;

6 return α = (αT0 ,α
T
1 , . . . ,α

T
m)T .

Antithetic variables Given one draw of α from N(a, P ), we can use antithetic vari-

ables to improve the efficiency in estimating (3.14). According to Durbin and Koopman

[26], an antithetic variable is “a random draw of α which is equiprobable with α and

which, when included together with α in the estimate of the target function increases

the efficiency of the estimation”. Let ᾰ = 2a − α. Since ᾰ − a = −(α − a) and α is

normal, we have that ᾰ and α are equiprobable.
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To approximate L2(ψ) in (3.11), at each time point tj, j = 2, . . . , n, we draw N

samples from the filtering distribution p(αAj∪Bj(tj−1)|Y A1:j−1(t1:j−1)) using Algorithm 1,

where p(αAj∪Bj(tj−1)|Y A1:j−1(t1:j−1)) is a multivariate Gaussian distribution for subjects

who are in the set Aj ∪Bj. Note that αAj∪Bj(tj−1) is used in place of αAj−1(tj−1), where

the former is a subvector of the latter. This is because we calculate survival likelihood

only for subjects in Aj ∪Bj. Then p(zAj(tj), z
Bj(tj)|Y A1:j−1(t1:j−1)) is approximated by

p(zAj(tj), z
Bj(tj)|Y A1:j−1(t1:j−1)) ≈

1

N

N∑
k=1

p(zAj(tj), z
Bj(tj)|αAj∪Bj ,(k)(tj−1)), (3.24)

where αAj∪Bj ,(k)(tj−1), k = 1, . . . , N , are samples generated from the filtering distribution

p(αAj∪Bj(tj−1)|Y A1:j−1(t1:j−1)).

Parameters are estimated by maximizing the logarithm of the joint likelihood (3.9).

Since the likelihood surface of the state space model is not convex, we first use the genetic

algorithm with R function ga in the GA package to find a set of reasonable initial values

for the parameters, then use the Nelder-Mead method in the R function optim for the

optimization procedure.
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Simulation Studies

4.1 Mixed Effects State Space Models for Longitu-

dinal Data

In this section, we consider longitudinal data only, under three scenarios: (i) both

population effects and subject random effects are generated by local level models, (ii)

population effects are generated by cubic spline models and subject random effects by

OU processes, and (iii) both population effects and subject random effects are generated

by cubic spline models. Covariates or survival data are not considered in this section.

We set q = 2 and n = 50. To compare CPU time for one round of filtering using

the univariate treatment and the new algorithm, we consider 5 choices of m: 50, 100,

200, 500, 1000, and 3 more values for the new algorithm: m = 104, 105, 106. We take the

average CPU time over 10 replications for each setting. For evaluating the performance

of the new algorithm, we use 5 choices of m: 100, 500, 1000, 5000, 10000. We use 100

replications for each setting.

The vector form of the mixed effects state space model is given by (2.13), rewritten
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here without the covariates regression term:

y(tj) = Z(tj)α(tj) + ε(tj), ε(tj) ∼ N(0, H(tj)),

α(tj+1) = T (tj)α(tj) +R(tj)η(tj), η(tj) ∼ N(0, Q(tj)),

α(t1) ∼ N(a(t1), P (t1)),

(4.1)

for j = 1, . . . , n, where we only consider Z(tj) = Z and T (tj) = T being time-invariant,

and R(tj) is the identity matrix. In (4.1),

y(tj) =


y1(tj)

...

ym(tj)

 (4.2)

is a qm × 1 vector of stacked observations for all subjects, where yi(tj) = (yi1(tj), . . . ,

yiq(tj))
T is the vector of q longitudinal observations for subject i, i = 1, . . . ,m. The state

vector

α(tj) =



u(tj)

v1(tj)

...

vm(tj)


(4.3)

is of dimension (du + mdv) × 1, where u(tj) is a du × 1 vector and vi(tj) is a dv × 1

vector, 1 ≤ i ≤ m. The values of du and dv are proportional to q and depend on model

specifications for population effects and subject random effects. The system matrix

Z(tj) = Z =


Zu Zv 0

...
. . .

Zu 0 Zv

 (4.4)
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is qm× (du +mdv), wherein Zu is a q × du matrix and Zv is a q × dv matrix. The state

transition matrix

T (tj) = T =



Tu 0 · · · 0

0 Tv · · · 0

...
...

. . .

0 0 Tv


(4.5)

is (du +mdv)× (du +mdv), in which Tu is du × du and Tv is dv × dv The random error

ε(tj) =


ε1(tj)

...

εm(tj)

 (4.6)

of the observation equation has covariance matrix

H(tj) = H =


Σε 0

. . .

0 Σε

 , (4.7)

where Σε is either a diagonal or unstructured q × q covariance matrix. The state distur-

bance term

η(tj) =



ηu(tj)

ηv1(tj)

...

ηvm(tj)


(4.8)
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has covariance matrix

Q(tj) = Q =



Σu 0 · · · 0

0 Σv · · · 0

...
...

. . .

0 0 Σv


, (4.9)

where Σu is du × du and Σv is dv × dv; their structures are determined by model specifi-

cations for population effects and subject random effects.

The initial state is decomposed into

α(t1) = a+ Aδ +R0η0, η0 ∼ N(0, Q0), (4.10)

where a is a known constant vector, A and R0 are selection matrices, δ is an unknown

vector, and η0 is a random vector whose distribution is known. The structures of A,R0,

and Q0 depend on the model specification.

In our mixed effects state space model, δ corresponds to the initial population effects

which have a diffuse prior, and η0 corresponds to the initial individual effects which have

a zero mean proper prior. Q0 may contain unknown parameters that can be estimated

by maximum likelihood. As stated earlier in Section (1.3.1), the diffuse initialization

of δ is equivalent to treating it as a fixed quantity and estimating it using maximum

likelihood. Our implementation uses the maximum likelihood approach. Note that one

can also assign a diffuse prior to δ and apply the exact initial Kalman filter.

Treating δ as a fixed quantity, the initial state has mean

E(α(t1)) = a+ Aδ (4.11)
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and covariance matrix

Var(α(t1)) = R0Q0R
T
0 . (4.12)

For unstructured Σε, to ensure the positive definiteness of the estimated Σε, we use

the LDLT decomposition for Σε:

Σε = LDLT , (4.13)

and estimate L and D instead, where L is a lower triangular matrix with ones on the

diagonal and D is a diagonal matrix with positive diagonal elements. Let l be the

parameters in L and d the parameters in D, then l is of length q(q−1)
2

and d of length q.

4.1.1 Scenario I: both population effects and subject random

effects are local level models

The model is (4.1) with both population effects and subject random effects generated

and modeled as local level models. Using the notations stated above, we have

du = dv = q, Zu = Zv = Iq, Tu = Tv = Iq, (4.14)

Σu =


σ2
u1

0

. . .

0 σ2
uq

 , Σv =


σ2
v1

0

. . .

0 σ2
vq

 , (4.15)

A =

 Iq

0qm×q

 , R0 =

 0q×qm

Iqm

 , (4.16)
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δ is a q × 1 parameter vector, and Q0 = κ1I; both δ and κ1 are estimated by maximum

likelihood.

Let pu = (σ2
u1
, . . . , σ2

uq)
T and pv = (σ2

v1
, . . . , σ2

vq)
T , the collection of all parameters in

the model is ψ = (pu,pv,d, l, κ1, δ), which is of length 0.5q2 + 3.5q + 1.

The parameter values are set as follows: σ2
u1 = 0.7, σ2

u2 = 0.8, σ2
v1 = 0.2, σ2

v2 = 0.9,

Σε =

 0.2 0.1

0.1 0.8

 = LDL′,

where D = diag{0.2, 0.75} and

L =

 1 0

0.5 1

 .

That is, d1 = 0.2, d2 = 0.75, and l1 = 0.5. Parameters for the initial state are set as

κ1 = 1, and δ is randomly generated from N(0, I2) to make simulated data trajectories

different. The parameters of interest are (σ2
u1, σ

2
u2, σ

2
v1, σ

2
v2, d1, d2, l1).

The univariate treatment and the new algorithm produce exactly the same numerical

results. The only difference is in computation time. The CPU time is recorded on a node

consisting of two 10-core processors (20 total cores) at 2.60GHz each and 128GB RAM.

The functions for filtering and likelihood evaluation are coded in Rcpp.

We set q = 2, n = 50, and m = 50, 100, 200, 500, 1000 for the comparison of the

univariate treatment and the new algorithm. Figure 4.1 and Table 4.1 report the average

CPU time for one round of filtering over 10 replications of the univariate treatment and

the new algorithm. One can see that the filtering time for the univariate treatment

increases rapidly with the number of subjects: when m = 1000, the univariate treatment

takes more than an hour, while the new algorithm takes only 0.005 seconds. We also tried
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out the new algorithm on larger sample sizes with m = 104, 105, 106. When m = 105,

the time is still under one second. Even when m = 106, the new algorithm takes only 6

seconds. The univariate treatment could not be carried out for these larger sample sizes

because it would took too long. We estimate the CPU time for the univariate treatment

when m = 104, 105, and 106 by fitting a linear model with a cubic term of time. The

estimates are presented in Table 4.1. The estimated CPU time using the univariate

treatment when m = 106 is over 200, 000 years.

Figure 4.1: Average CPU time in seconds for one round of filtering over 10 replications
of the univariate treatment (turquoise) and the new algorithm (red).
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m univariate treatment new alogrithm
50 0.2140 0.0004

100 1.8380 0.0005
200 14.9410 0.0010
500 316.4980 0.0021

1000 4473.6270 0.0044
10000 est. > 82 days 0.0454

100000 est. > 200 years 0.5787
1000000 est. > 2× 105 years 6.8357

Table 4.1: Average CPU time in seconds for one round of filtering over 10 replications
of the univariate treatment and the new algorithm.

Table 4.2 displays mean squared error (MSE), bias, and variance for parameter esti-

mates when m = 1000, computed using the new algorithm over 100 replications.

Parameter True value MSE Variance Bias
σ2
u1 0.7000 0.0168 0.0168 0.0017
σ2
u2 0.8000 0.0193 0.0190 0.0161
σ2
v1 0.2000 0.0000 0.0000 0.0005
σ2
v2 0.9000 0.0002 0.0002 0.0023
d1 0.2000 0.0000 0.0000 -0.0005
d2 0.7500 0.0001 0.0001 -0.0010
l1 0.5000 0.0002 0.0002 -0.0007

Table 4.2: Bias, variance, and MSE of the estimates of parameters.

Figure 4.2 displays the filtering estimation errors for population effects with m =

100, 500, 1000, 5000, 10000. The squared error of a population effects estimate is com-

puted as

SE =
1

n

n∑
j=1

[û(tj)− u(tj)]
2,

that is, the average squared error over n time points.
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Figure 4.2: Boxplot of
√

squared error of population effects filtering estimates.

Table 4.3 is the mean squared error (MSE) of population effects filtering estimates,

which is defined as

MSE =
1

N

N∑
k=1

SEk,

where SEk is the squared error of population effects estimate from the kth replication.

The number of replications, as stated earlier, is N = 100.

m u1 u2
100 0.0589 0.2691
500 0.0152 0.0650

1000 0.0051 0.0277
5000 0.0014 0.0053

10000 0.0006 0.0021

Table 4.3: MSE of population effects estimates.

Figure 4.3 displays the boxplots of
√

squared error of the filtering estimates for in-

dividual random effects with m = 100, 500, 1000, 5000, 10000. The squared error of a

101



Simulation Studies Chapter 4

random effects estimate is defined as

SE =
1

m

m∑
i=1

{ 1

n

n∑
j=1

[v̂i(tj)− vi(tj)]2},

that is, the average squared error over all time points of all subjects.

Figure 4.3: Boxplot:
√

squared error of individual random effects filtering estimates.

Table 4.4 is the mean squared error (MSE) of subject random effects filtering esti-

mates. MSE is defined as

MSE =
1

N

N∑
k=1

SEk,

where SEk is the squared error of random effects estimates from the kth replication. The

MSE of random effects do not converge to zero because the bias is not zero, i.e., the

random effects estimates are not consistent.
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m vi1 vi2
100 0.1796 0.7597
500 0.1380 0.5673

1000 0.1283 0.5301
5000 0.1248 0.5089

10000 0.1240 0.5061

Table 4.4: MSE of random effects estimates.

Figure 4.4 displays the boxplots of
√

squared error of parameter estimates for m =

100, 500, 1000, 5000, and 10000, with q = 2 and n = 50.

Figure 4.4: Boxplot:
√

squared error of parameter estimates.

Table 4.5 displays the MSE of parameter estimates.

m
Parameter 100 500 1000 5000 10000

σ2
u1 0.015988 0.018499 0.016801 0.012871 0.010193
σ2
u2 0.020446 0.021263 0.019262 0.015862 0.017633
σ2
v1 0.000093 0.000018 0.000010 0.000002 0.000001
σ2
v2 0.002026 0.000321 0.000163 0.000032 0.000015
d1 0.000067 0.000015 0.000006 0.000001 0.000001
d2 0.001226 0.000232 0.000105 0.000026 0.000011
l1 0.002601 0.000357 0.000215 0.000043 0.000025

Table 4.5: MSE of parameter estimates.
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Figure 4.5 are selected filtering estimates of population effects for the first variable,

corresponding to 5th and 95th percentiles of MSE when m = 1000.

Figure 4.5: Selected filtering estimates of population effects for the first variable,
corresponding to 5th and 95th percentiles of MSE when m = 1000. Brown dots: true
population effects u1(t), green solid line: the filtering estimates of u1(t).

Figure 4.6 shows some randomly selected examples of the filtering estimates of indi-

vidual random effects for the first variable when m = 1000.
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Figure 4.6: Randomly selected examples of the filtering estimates of individual random
effects for the first variable when m = 1000. Brown dots: true subject random effects
vi1(t), green solid line: the filtering estimates of vi1(t).

4.1.2 Scenario II: population effects are cubic splines and sub-

ject random effects are OU processes

We consider model (4.1) where population effects are cubic splines and sub random

effects are OU processes. We use an unstructured Σε to characterize the correlation

between multiple variables. Since the random effects are assumed to have mean zero, the

parameter µ in (2.6) equals zero. We have

du = 2q, dv = q, Zu = Iq ⊗ (1 0), Zv = Iq, (4.17)
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Tu = Iq ⊗

 1 4t

0 1

 , Tv =


e−ξ14t 0

. . .

0 e−ξq4t

 , (4.18)

Σu =


ζ1Λ 0

. . .

0 ζqΛ

 , (4.19)

where

Λ =

 4t3/3 4t2/2

4t2/2 4t

 , (4.20)

Σv =


ν21
2ξ1

(1− e−2ξ14t) 0

. . .

0
ν2q
2ξq

(1− e−2ξq4t)

 , (4.21)

A =

 I2q

0qm×2q

 , R0 =

 02q×qm

Iqm

 , (4.22)

δ is a 2q × 1 parameter vector, and

Q0 = Im ⊗


ν21
2ξ1

0

. . .

0
ν2q
2ξq

 (4.23)

since OU process is a stationary AR(1) process when µ = 0. Let ζ = (ζ1, . . . , ζq)
T , pν =

(ν21 , . . . , ν
2
q )T , pξ = (ξ1, . . . , ξq)

T , the collection of all parameters is ψ = (ζ,pν ,pξ,d, l, δ),

which is of length 0.5q2 + 5.5q. We set q = 2, n = 50, and m = 50, 100, 200, 500, 1000 for

the comparison of the univariate treatment and the new algorithm. The parameter values
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are: population effects smoothing parameters ζ1 = 0.4, ζ2 = 0.6; OU process parameters

ν21 = 2, ν22 = 1, ξ1 = 0.9, ξ2 = 0.5; the observation random error covariance matrix

Σε =

 0.2 0.1

0.1 0.8

 = LDL′, (4.24)

where D = diag{0.2, 0.75} and

L =

 1 0

0.5 1

 ,

that is, d1 = 0.2, d2 = 0.75, and l1 = 0.5; and the initial population state mean δ

is randomly generated from N(0, I4) to make simulated data trajectories different from

each other. The parameters of interest are (ν21 , ν22 , ξ1, ξ2, d1, d2, l1).

Figure 4.7 and Table 4.6 report the average CPU time to perform one round of filtering

over 10 replications of the univariate treatment and the new algorithm. The results are

very similar to those in the local level model.
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Figure 4.7: Average CPU time in seconds for one round of filtering over 10 replications
of the univariate treatment (turquoise) and the new algorithm (red).

m univariate treatment new alogrithm
50 0.2310 0.0010

100 1.8470 0.0010
200 14.6410 0.0020
500 298.5740 0.0020

1000 4238.0650 0.0050
10000 est. > 78 days 0.0470

100000 est. > 227 years 0.5530
1000000 est. > 2× 105 years 6.0790

Table 4.6: Average CPU time in seconds for one round of filtering over 10 replications
of the univariate treatment and the new algorithm.

Table 4.7 displays the MSE, bias, and variance for parameter estimates when m =

1000, computed using the new algorithm.
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Parameter True value MSE Variance Bias
ν21 2.0000 0.0087 0.0087 0.0065
ν22 1.0000 0.0024 0.0023 0.0110
ξ1 0.9000 0.0006 0.0006 0.0022
ξ2 0.5000 0.0003 0.0002 0.0032
d1 0.2000 0.0006 0.0006 -0.0003
d2 0.7500 0.0005 0.0005 -0.0051
l1 0.5000 0.0051 0.0051 0.0055

Table 4.7: Parameter estimates when m = 1000.

Figure 4.8 displays the boxplots of the filtering estimation errors for population effects.

Figure 4.8: Boxplot of
√

squared error of population effects filtering estimates.

Table 4.8 is the mean squared error (MSE) of the filtering estimates for population

effects.

m u1 u2
100 0.0123 0.0177
500 0.0026 0.0039

1000 0.0013 0.0019
5000 0.0003 0.0004

10000 0.0001 0.0002

Table 4.8: MSE of population effects filtering estimates.
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Figure 4.9 displays the boxplots of the filtering estimation errors for individual random

effects with m = 100, 500, 1000, 5000, 10000, q = 2 and n = 50.

Figure 4.9: Boxplot:
√

squared error of individual random effects filtering estimates.

Table 4.9 is the mean squared error (MSE) of subject random effects filtering esti-

mates.

m vi1 vi2
100 0.1734 0.3995
500 0.1636 0.3952

1000 0.1625 0.3944
5000 0.1615 0.3936

10000 0.1614 0.3937

Table 4.9: MSE of random effects filtering estimates.

Figure 4.10 displays the boxplots of estimation errors of parameter estimates for

m = 100, 500, 1000, 5000, 10000.
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Figure 4.10: Boxplot:
√

squared error of parameter estimates.

Table 4.10 displays the MSE of parameter estimates.

m
Parameter 100 500 1000 5000 10000

ν21 0.0497 0.0104 0.0087 0.0011 0.0004
ν22 0.0200 0.0045 0.0024 0.0004 0.0002
ξ1 0.0036 0.0007 0.0006 0.0001 0.0000
ξ2 0.0023 0.0004 0.0003 0.0000 0.0000
d1 0.0040 0.0007 0.0006 0.0001 0.0000
d2 0.0037 0.0008 0.0005 0.0001 0.0000
l1 0.0373 0.0054 0.0051 0.0006 0.0002

Table 4.10: MSE of parameter estimates.

Figure 4.11 displays selected filtering estimates of population effects for the first

variable, corresponding to the 5th and 95th percentiles of MSE when m = 1000.
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Figure 4.11: Selected filtering estimates of population effects for the first variable,
corresponding to the 5th and 95th percentiles of MSE when m = 1000. Brown dots:
true values of u1(tj), green solid line: the filtering estimates of u1(tj).

Figure 4.12 shows some randomly selected examples of the filtering estimates of in-

dividual random effects for the first variable when m = 1000.
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Figure 4.12: Randomly selected examples of the filtering estimates of individual ran-
dom effects for the first variable when m = 1000. Brown dots: true values of vi1(t),
green solid line: the filtering estimates of vi1(t).

4.1.3 Scenario III: both population effects and subject random

effects are cubic splines

In model (4.1), when both population effects and subject random effects are modeled

as cubic splines, we have

du = dv = 2q, Zu = Zv = Iq ⊗ (1 0), (4.25)

Tu = Tv = Iq ⊗

 1 4t

0 1

 , (4.26)
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Σu =


ζ1Λ 0

. . .

0 ζqΛ

 , Σv =


λ1Λ 0

. . .

0 λqΛ

 , (4.27)

where Λ is the same as in (4.20),

A =

 I2q

02qm×2q

 , R0 =

 02q×2qm

I2qm

 , (4.28)

δ is a 2q × 1 parameter vector, and Q0 = κ1I2qm, where κ1 is a parameter. Here we use

Σε to model the correlation between multiple variables.

Let ζ = (ζ1, . . . , ζq)
T , λ = (λ1, . . . , λq)

T , the collection of all parameters is ψ =

(ζ,λ,d, l, κ1, δ), which is of length 0.5q2 + 4.5q + 1. We set q = 2, n = 50, and m =

50, 100, 200, 500, 1000 to compare the univariate treatment and the new algorithm. The

parameter values are: population effects smoothing parameters ζ1 = 0.4, ζ2 = 0.6; subject

random effects smoothing parameters λ1 = 0.5, λ2 = 0.2; Σε is the same as in (4.29),

thus d1 = 0.2, d2 = 0.75. Initial subject random effects state variation is κ1 = 1, and the

initial population state mean δ is randomly generated from N(0, I4) to make population

trajectories different for different data sets. The parameters of interest are (d1, d2, l1).

Figure 4.13 and Table 4.11 report average CPU time in seconds for one round of fil-

tering over 10 replications of the univariate treatment (turquoise) and the new algorithm

(red), with m = 50, 100, 200, 500, 1000. The univariate treatment for the cubic spline

model takes significantly longer time than for the local level model and the OU process

model, since the cubic spline model is more complex. When m = 1000, the univariate

treatment takes over 6 hours to do one round of filtering, while the new algorithm remains

at 0.005 seconds.
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Figure 4.13: Average CPU time in seconds for one round of filtering over 10 replica-
tions of the univariate treatment (turquoise) and the new algorithm (red).

m univariate treatment new algorithm
50 1.1650 0.0010

100 9.0140 0.0010
200 99.7060 0.0020
500 2338.6310 0.0020

1000 21674.1180 0.0050
10000 est. > 286 days 0.0560

100000 est. > 796 years 0.6540
1000000 est. > 7× 105 years 7.5340

Table 4.11: Average CPU time in seconds for one round of filtering over 10 replications
of the univariate treatment and the new algorithm.

Table 4.12 displays the MSE, bias, and variance for parameter estimates when m =

1000, computed using the new algorithm.
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Parameter True value MSE Variance Bias
d1 0.200000 0.000004 0.000004 0.000039
d2 0.750000 0.000050 0.000048 0.001324
l1 0.500000 0.000133 0.000132 0.000364

Table 4.12: Parameter estimates when m = 1000.

Figure 4.14 displays the boxplots of the filtering estimation errors for population

effects with m = 100, 500, 1000, 5000, 10000.

Figure 4.14: Boxplot of
√

squared error of population effects filtering estimates.

Table 4.13 displays the mean squared error (MSE) of population effects filtering esti-

mates.

m u1 u2
100 63.5702 29.2267
500 14.1930 5.6186

1000 6.1664 2.7774
5000 1.0455 0.6033

10000 0.7226 0.2741

Table 4.13: MSE of population effects filtering estimates.
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Figure 4.15 displays the boxplots of filtering estimation errors for individual random

effects with m = 100, 500, 1000, 5000, 10000.

Figure 4.15: Boxplot:
√

squared error of individual random effects filtering estimates.

Table 4.14 is the mean squared error (MSE) of subject random filtering estimates.

m vi1 vi2
100 63.7375 29.7168
500 14.3551 6.1230

1000 6.3307 3.2837
5000 1.2095 1.1100

10000 0.8870 0.7805

Table 4.14: MSE of random effects filtering estimates.

Figure 4.16 displays the boxplots of the estimation errors for the parameters with

m = 100, 500, 1000, 5000, 10000.
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Figure 4.16: Boxplot:
√

squared error of parameter estimates.

Table 4.15 displays the MSE of parameter estimates.

m
Parameters 100 500 1000 5000 10000

d1 0.0000348 0.0000074 0.0000040 0.0000008 0.0000005
d2 0.0003433 0.0000664 0.0000500 0.0000088 0.0000041
l1 0.0013213 0.0002470 0.0001325 0.0000298 0.0000117

Table 4.15: MSE of parameter estimates.

Figure 4.17 are selected filtering estimates of population effects corresponding to the

5th and 95th percentiles of MSE for the first variable when m = 1000.
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Figure 4.17: Selected filtering estimates of population effects corresponding to the 5th
and 95th percentiles of MSE for the first variable when m = 1000. Brown dots: true
values of u1(t), green solid line: the filtering estimates of u1(t).

Figure 4.18 shows some randomly selected examples of the filtering estimates of in-

dividual random effects for the first variable when m = 1000.
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Figure 4.18: Randomly selected examples of the filtering estimates of individual ran-
dom effects for the first variable when m = 1000. Brown dots: true values of vi1(t),
green solid line: the filtering estimates of vi1(t).

4.2 Joint Modeling of Longitudinal Data and Sur-

vival Data

The longitudinal data are generated by model (4.1), with the number of longitudinal

variables q = 2 and the number of covariates p = 2. That is, yi(tj) = (yi1(tj), yi2(tj))
T

and xi(tj) = (xi1(tj), xi2(tj))
T . The population effects are modeled by cubic splines, and

the subject random effects are modeled by OU processes. We have

u(tj) =



u1(tj)

u′1(tj)

u2(tj)

u′2(tj)


and vi(tj) =

 vi1(tj)

vi2(tj)

 .
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The survival status at time t, zi(t), are generated by (3.1) and (3.2). In (3.2), γ1 =

(γ11, γ12)
T is the coefficient vector for xi(tj). Given

(uT (tj),v
T
i (tj))

T =



u1(tj)

u′1(tj)

u2(tj)

u′2(tj)

vi1(tj)

vi2(tj)


,

we set D = (I2 ⊗ (1 0), I2) , hence

D

 u(tj)

vi(tj)

 =

 u1(tj) + vi1(tj)

u2(tj) + vi2(tj)


is the vector of the latent longitudinal values for subject i. The corresponding coefficient

vector is γ2 = (γ21, γ22)
T . We set γ0 = 0.5, γ11 = 0.1, γ12 = −0.2, γ21 = −0.5, γ22 = 0.3.

The parameter values in the longitudinal model are the same as in Scenario II in Section

4.1.2: population effects smoothing parameters ζ1 = 0.4, ζ2 = 0.6; OU process parameters

ν21 = 2, ν22 = 1, ξ1 = 0.9, ξ2 = 0.5; the observation random error covariance matrix

Σε =

 0.2 0.1

0.1 0.8

 = LDL′, (4.29)

where D = diag{0.2, 0.75} and

L =

 1 0

0.5 1

 ,
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that is, d1 = 0.2, d2 = 0.75, and l1 = 0.5; and the initial population state mean δ is

randomly generated from N(0, I4) to make simulated data trajectories differentzz from

each other. The censoring probability is set to 2% for all subjects from time t2 to t50.

The censoring probability at time t1 is 0. The parameters of interest are (ν21 , ν22 , ξ1, ξ2,

d1, d2, l1, γ11, γ12, γ21, γ22).

Table 4.16 displays the MSE, bias, and variance of parameter estimates withm = 1000

and n = 50. Note that for some simulated data sets, all subjects died/dropped out before

the 50th time point.

Parameter True value MSE Variance Bias
ν21 2.0000 0.0047 0.0046 0.0096
ν22 1.0000 0.0061 0.0059 0.0133
ξ1 0.9000 0.0015 0.0014 0.0091
ξ2 0.5000 0.0041 0.0039 0.0115
d1 0.2000 0.0002 0.0002 0.0029
d2 0.7500 0.0013 0.0013 0.0021
l1 0.5000 0.0067 0.0067 0.0052
γ21 -0.5000 0.0037 0.0037 0.0041
γ22 0.3000 0.0031 0.0031 0.0034
γ0 0.5000 0.0056 0.0048 0.0290
γ11 0.1000 0.0049 0.0043 0.0236
γ12 -0.2000 0.0096 0.0095 -0.0111

Table 4.16: Parameter estimates of the joint model.

Figure 4.19 and Table 4.17 report the average CPU time for computing the joint

likelihood over 10 replications, with n = 50, q = 2, and m = 100, 500, 1000, 5000, 10000.

The CPU time is linear in m, consistent with what we describe in Algorithm 1. The com-

putation time was recorded from full data sets with no early dropouts, i.e., all subjects

exist to the end time point. The survival likelihood at each time point is approximated

using (3.24) by drawing 100 samples of α from p(αAj∪Bj(tj−1)|Y A1:j−1(t1:j−1)), as de-

scribed at the end of Section 3.2. Also, for each drawn α, we add an antithetic variable

ᾰ = 2a−α, as described in Section 3.2, where a is the mean vector of the multivariate
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normal distribution from which α is drawn.

Figure 4.19: Average CPU time in seconds for calculating the joint likelihood over 10
replications.

Table 4.17 displays the corresponding values.

m time
100 0.1569
500 0.8198

1000 1.6106
5000 9.1662

10000 18.3859

Table 4.17: Average CPU time in seconds for calculating the joint likelihood over 10
replications.

The filtering estimation errors of the population effects are calculated only at time

points where there is at least one subject alive. The estimation errors for subject

random effects are computed in a similar manner. We consider sample sizes m =

100, 500, 1000, 5000.
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Figure 4.20 displays the boxplots of the estimation errors of population effects filtering

estimates.

Figure 4.20:
√

squared error of the population effects filtering estimates.

Table 4.18 displays the MSE of population effects filtering estimates.

m u1 u2
100 0.2409 0.2847
500 0.1120 0.1639

1000 0.1040 0.1379
5000 0.0696 0.0921

Table 4.18: MSE of population effects filtering estimates.

Figure 4.21 displays the estimation errors of the individual random effects filtering

estimates.
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Figure 4.21:
√

squared error of individual random effects filtering estimates.

Table 4.19 displays the MSE of individual random effects filtering estimates.

m vi1 vi2
100 0.2143 0.4846
500 0.1746 0.4322

1000 0.1703 0.4238
5000 0.1653 0.4221

Table 4.19: MSE of individual random effects filtering estimates.

Figure 4.22 displays the box plots of parameter estimation errors. There are some

extreme outliers for the m = 100 case. We truncate these outliers so the box plots of

other samples sizes can be seen.

125



Simulation Studies Chapter 4

Figure 4.22:
√

squared error of parameter estimates.

Table 4.20 displays the MSE of parameter estimates.

100 500 1000 5000
ν21 0.1424 0.0135 0.0047 0.0004
ν22 0.0763 0.0056 0.0061 0.0003
ξ1 0.0456 0.0036 0.0015 0.0002
ξ2 2.1166 0.0032 0.0041 0.0001
d1 0.0060 0.0007 0.0002 0.0001
d2 0.0565 0.0067 0.0013 0.0002
l1 0.4527 0.0184 0.0067 0.0014
γ21 0.3306 0.0126 0.0037 0.0011
γ22 0.1278 0.0158 0.0031 0.0013
γ0 0.1719 0.0298 0.0056 0.0020
γ11 0.3903 0.0448 0.0049 0.0021
γ12 0.1852 0.0220 0.0096 0.0022

Table 4.20: MSE of parameter estimates.

Figure 4.23 displays two examples of filtering estimates for population effects u1(tj)

from the joint model. The two examples are selected from data sets where at least one
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subject lives to the end.

Figure 4.23: Examples of filtering estimates of population effects u1(tj). Brown dots:
true population effects, green solid line: the filtering estimates of population effects.

Figure 4.24 displays two examples of random effects filtering estimates from the joint

model.

Figure 4.24: Two examples of random effects filtering estimates from the joint model.
Brown dots: true random effects vi1(t), green solid line: the filtering estimates of
vi1(t).
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Real Data Applications

We apply the joint model to a hemodialysis data set. The data set contains clinical

observations of 354,572 end stage renal disease patients who were on dialysis treatment.

The patients received dialysis treatment multiple times per week and were kept track of

over five years from 2010 to 2014. The monthly averages of their clinical measurements

were recorded in this data set.

The variables include: (i) external and internal covariates such as race (1: white, 0:

otherwise), gender (1: male, 0: otherwise), diabetic status (1: has diabetes, 0: other-

wise) and equilibrated Kt/V (EKTV), a measure of the intensity of a dialysis treatment;

(ii) internal longitudinal variables, such as hemoglobin (g/dL), albumin (g/dL), serum

sodium (mEq/L); and (iii) survival status (1: dead, 0: alive) and censoring status (1:

censored, 0: otherwise).

The questions of clinical interest are (i) describing how multiple longitudinal variables

evolve and interact with each other over time, and (ii) identifying risk factors of mortality.

We present below two analyses for illustration.
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5.1 Interrelationships Between Serum Sodium,

Blood Pressure, and Inter-dialytic Weight Gain

For hemodialysis treatment patients, to individualize the dialysate sodium (DNa)

prescription, research has been carried out to study its affect on patient outcomes ([55],

[56], [57], [58], [59], [60]). DNa affects multiple aspects including serum sodium, blood

pressure, and inter-dialytic weight gain. We present an example here to study the in-

teractions between serum sodium (SNa), pre-dialysis systolic blood pressure (SBP), and

inter-dialytic weight gain percentage (IDWG). To reduce potential inferential bias, we

joint model these three longitudinal variables with survival status, and control for covari-

ates albumin, age, gender, and diabetic status in the logistic regression survival model.

Note that albumin is a longitudinal variable, but since we are not interested in modeling

its trajectory or its interaction with other longitudinal variables in this analysis, we treat

it as a time-variant covariate and include it in the survival model for control.

Figures 5.1 - 5.3 display the longitudinal observations of SNa, SBP, and IDWG from

100 randomly selected patients. Different colors correspond to different patients.

Figure 5.1: Monthly average of serum sodium from 100 randomly selected patients.
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Figure 5.2: Monthly average of pre-dialytic systolic blood pressure from 100 randomly
selected patients.

Figure 5.3: Monthly average of inter-dialytic weight gain percentage from 100 ran-
domly selected patients.

Let yi(tj) = (yi1(tj), yi2(tj), yi3(tj))
T , where yi1(tj), yi2(tj), and yi3(tj) are SNa, SBP,

and IDWG of subject i at time tj, respectively. The longitudinal submodel is of the

form (4.1). The population effects are modeled by cubic splines, and the subject random

effects are modeled by OU processes. We use the subject level state transition matrix
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Tv(tj) to model the interactions between the three longitudinal variables. We have

Tv(tj) = Tv =


e−ξ14t φ12 φ13

φ21 e−ξ24t φ23

φ31 φ32 e−ξ34t

 ,

where ξ1, ξ2, ξ3 are the OU process parameters for each variable, same as the ξ in (2.6),

and φij, i 6= j, 1 ≤ i, j ≤ 3, are the parameters to model the interactions between these

three variables. Σε(tj) is assumed to be a time-invariant diagonal matrix, Σε(tj) = Σε =

diag{d1, d2, d3}, di > 0, i = 1, 2, 3.

The population state is

u(tj) =



u1(tj)

u′1(tj)

u2(tj)

u′2(tj)

u3(tj)

u′3(tj)


,

and the subject random deviation state is

vi(tj) =


vi1(tj)

vi2(tj)

vi3(tj)

 .

vi(tj) is a multivariate stationary AR(1) process, so the covariance matrix for the random

effect components of the initial state is Q0 = Im ⊗Q00, where

vec(Q00) = (Iq2 − Tv ⊗ Tv)−1vec(Σv). (5.1)
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We provide details below for the derivation of (5.1). For each subject i, the evolution of

subject random effects vi(tj) is described by the equation

vi(tj) = Tvvi(tj−1) + ηvi(tj−1), ηvi(tj−1) ∼ N(0,Σv), (5.2)

which is a zero mean multivariate AR(1) process. Since the subject deviations are i.i.d.,

for notational simplicity, we drop the i in the subscript and write

v(tj) = Tvv(tj−1) + ηv(tj−1), ηv(tj−1) ∼ N(0,Σv). (5.3)

Define Γj−k = E[v(tj)v
T (tk)]. Then Γj−k is the covariance matrix between the two

random vectors v(tj) and v(tk). We have Γj−k = ΓTk−j and Γ0 is a symmetric matrix.

Multiplying both sides of (5.3) by vT (tj−l), l = 0, 1, and taking expectation, we have

E[v(tj)v
T (tj−l)] = TvE[v(tj−1)v

T (tj−l)] + E[ηv(tj−1)v
T (tj−l)], (5.4)

where

E[ηv(tj−1)v
T (tj−l)] =

 Σv, l = 0,

0, l = 1.

Therefore, (5.4) can be rewritten as

Γl − TvΓl−1 =

 Σv, l = 0,

0, l = 1.
(5.5)

That is,

Γ0 − TvΓT1 = Σv,

Γ1 − TvΓ0 = 0,
(5.6)
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where Γ−1 is replaced by ΓT1 . In (5.6), plugging Γ1 = TvΓ0 into the first equation, we

have

Γ0 − TvΓ0T
T
v = Σv. (5.7)

Taking the vec(·) operation on both sides of (5.7), we have

vec(Γ0)− (Tv ⊗ Tv)vec(Γ0) = (I − Tv ⊗ Tv)vec(Γ0) = vec(Σv), (5.8)

since vec(AXB) = (BTA)vec(X). That is, vec(Γ0) = (I − Tv ⊗ Tv)−1vec(Σv). Γ0 is the

covariance matrix of v(tj) for any j ≥ 1, hence Q00 = Var[v(t1)] = Γ0 and (5.1) holds.

The covariates are xi(tj) = (xi1(tj), xi2(tj), xi3(tj), xi4(tj))
T , corresponding to al-

bumin, age, gender, and diabetic status. In the survival submodel (3.2), we have

D = (I3 ⊗ (1 0), I3) , so

D

 u(tj)

vi(tj)

 =


u1(tj) + vi1(tj)

u2(tj) + vi2(tj)

u3(tj) + vi3(tj)


are the latent values of the three longitudinal processes.

The survival submodel is given by

zi(tj+1) ∼ Bernoulli(πi(tj+1))

logit(πi(tj+1)) = γ0 + xTi (tj)γ1 + (uT (tj),v
T
i (tj))

TDTγ2,

where γ1 = (γ11, γ12, γ13, γ14)
T and γ2 = (γ21, γ22, γ23)

T .

We randomly select 3000 patients from a data set of 354,572 patients and fit the joint

model to the selected sample. Tables 5.1 and 5.2 display parameter estimates and 95%

bootstrap confidence intervals for the longitudinal and survival submodels, respectively.
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We use 100 bootstrap samples, which are obtained by resampling the patients with

replacement. The bootstrap confidence intervals for parameters are constructed by taking

the 2.5% and 97.5% quantiles of bootstrap parameter estimates.

From Table 5.2, one can see that albumin, IDWG, and age are significantly associated

with mortality. Larger values of albumin are associated with lower death probability,

while larger values of IDWG and age are associated with higher death probability.

Parameter Estimate Lower Upper
ζ1 (SNa) 0.0000 0.0000 0.0000
ζ2 (SBP) 0.1772 0.0673 0.4046
ζ3 (IDWG) 0.0027 0.0019 0.0047
ν21 (SNa) 0.4300 0.3514 0.5740
ν22 (SBP) 50.9909 43.8295 58.0832
ν23 (IDWG) 0.2292 0.1917 0.2623
ξ1 (SNa) 0.0319 0.0240 0.0382
ξ2 (SBP) 0.0619 0.0286 0.0739
ξ3 (IDWG) 0.0882 0.0453 0.0990
d1 (SNa) 5.0148 4.4001 5.6261
d2 (SBP) 36.7646 32.5648 40.4381
d3 (IDWG) 0.1590 0.1358 0.1819
φ12 (SNa, SBP) 0.0023 -0.0023 0.0134
φ13 (SNa, IDWG) 0.0235 -0.0716 0.3231
φ21 (SBP, SNa) 0.6017 -0.0102 0.7530
φ23 (SBP, IDWG) 0.0568 -0.0089 0.7955
φ31 (IDWG, SNa) 0.0138 -0.5121 0.0285
φ32 (IDWG, SBP) 0.0016 -0.0027 0.0070

Table 5.1: Longitudinal submodel parameter estimates and 95% bootstrap confidence
intervals. ζ(·): smoothing parameter of population effects; ξ(·) and ν2(·): OU process
parameters for subject random effects; d(·): variance of the observation random errors;
φ(·): interactions between two longitudinal variables, components of Tv.
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Parameter Estimate Lower Upper
γ21 (SNa) -0.3135 -0.3828 0.2246
γ22 (SBP) -0.0100 -0.2834 0.2949
γ23 (IDWG) 0.2170 0.0167 0.3992
γ0 (intercept) 10.8541 4.9603 20.1125
γ11 (albumin) -1.8559 -1.9868 -1.0841
γ12 (age) 0.1459 0.0472 0.3670
γ13 (male) 0.0440 -0.1040 0.9506
γ14 (diabetic) 0.1019 -0.2430 0.4913

Table 5.2: Survival submodel parameter estimates and 95% bootstrap confidence
intervals. γ(·): coefficient in the survival model.

The estimated Tv is

T̂v =


0.9686 0.0023 0.0235

0.6017 0.9399 0.0568

0.0138 0.0016 0.9156

 ,

in which the three longitudinal variables are SNa, SBP, IDWG in order. None of the

off-diagonal elements of T̂v are significantly different from 0, according to Table 5.1.

Figure 5.4 displays the filtering estimates of population effects for SNa, SBP, and

IDWG, respectively, plotted against the mean of all observations at each time point.

One can see that all three longitudinal variables increase rapidly during the first few

months of dialysis treatment.
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Figure 5.4: Filtering estimate of population effects for serum sodium, pre-dialytic
systolic blood pressure, and inter-dialytic weight gain percentage. Brown dots: obser-
vation mean; green solid line: the filtering estimates of population effects.

Figure 5.5 shows the filtering estimates of longitudinal trajectories for a randomly

selected subject, who died at the 50th month of dialysis treatment. One can see that

during the last few months of the patient, his/her SBP was dramatically decreasing and

IDWG was rapidly increasing.
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Figure 5.5: Filtering estimates of SNa, SBP, and IDWG for a randomly selected
individual. Brown dots: observations. Green solid line: filtering estimates.

5.2 A Prediction Model for Mortality

Clinical measurements albumin, inter-dialytic weight gain, and blood pressure are

potential risk factors of mortality. We construct a prediction model using these three and

other variables. In the longitudinal submodel of the form (4.1), the three longitudinal

variables are albumin, inter-dialytic weight gain percentage (IDWG), and pre-dialysis

systolic blood pressure (SBP). For illustration we use a different approach from the

previous example–here we use an unstructured time-invariant error covariance matrix to

model the correlation between longitudinal variables. We have Σε(tj) = Σε = LDLT ,
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where

L =


1 0 0

l21 1 0

l31 l32 1


and

D =


d1 0 0

0 d2 0

0 0 d3

 .

l21, l31, l32, d1, d2, d3 are parameters. The subject level state transition matrix is

Tv(tj) = Tv =


e−ξ14t 0 0

0 e−ξ24t 0

0 e−ξ34t

 ,

where ξ1, ξ2, and ξ3 are the OU process parameters for each variable. In the survival

submodel of the form (3.2), the design matrix D and the coefficient vector γ2 are the

same as those in the model in Section 5.1.

In the survival submodel, we control for covariates age, gender, diabetic status,

EKTV, and the types of vascular access with three levels: AVF, AVG, and CATH, corre-

sponding to arteriovenous (AV) fistula, AV graft, and catheter. For the types of vascular

access, we set CATH as baseline. We have γ2 = (γ21, γ22, γ23, γ24, γ25, γ26), corresponding

to age, male, diabetic, EKTV, AVF, and AVG, respectively.

Figures 5.6 - 5.8 display the longitudinal observations of albumin, SBP, and IDWG

from 100 randomly selected patients. Different colors correspond to different patients.
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Figure 5.6: Monthly average of albumin from 100 randomly selected patients

Figure 5.7: Monthly average of IDWG from 100 randomly selected patients.
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Figure 5.8: Monthly average of SBP from 100 randomly selected patients.

Tables 5.3 and 5.4 report the parameter estimates and 95% bootstrap confidence inter-

vals for the longitudinal and survival submodels, respectively. The bootstrap confidence

intervals are based on 100 bootstrap samples, which are obtained by resampling subjects

with replacement. Albumin, IDWG, SBP, age, gender, EKTV, and AVF are significantly

associated with mortality rate. Higher values of albumin, SBP, and EKTV are associated

with lower probabilities of death. Male have lower death probability than female. Access

type AV fistula are associated with lower probability of death compared to catheter, and

there is no significant difference between access types AV graft and catheter. Higher

values of IDWG and an older age are associated with higher probabilities of death.
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Parameter Estimate Lower Upper
ζ1 (albumin) 0.0003 0.0003 0.0008
ζ2 (IDWG) 0.0032 0.0028 0.0083
ζ3 (SBP) 0.0298 0.0167 0.3992
ν21 (albumin) 0.0142 0.0117 0.0179
ν22 (IDWG) 0.2135 0.1963 0.2372
ν23 (SBP) 59.1552 55.0777 69.1259
ξ1 (albumin) 0.0401 0.0334 0.0487
ξ2 (IDWG) 0.0874 0.0795 0.1003
ξ3 (SBP) 0.0817 0.0743 0.0950
d1 (albumin) 0.0275 0.0245 0.0294
d2 (IDWG) 0.1242 0.1091 0.1340
d3 (SBP) 28.4982 23.3930 30.5427
l21 0.0640 0.0032 0.1188
l31 2.4295 1.5982 3.6274
l32 -0.8348 -1.3334 -0.2934

Table 5.3: Longitudinal submodel parameter estimates and 95% bootstrap confidence
intervals. ζ(·): smoothing parameter of population effects; ξ(·) and ν2(·): OU process
parameters for subject random effects; d(·): variance of observation random errors;

l(·): elements of the lower triangular matrix L in the decomposition Σε = LDLT , do
not have particular meanings.

Parameter Estimate Lower Upper
γ21 (albumin) -1.6315 -1.9073 -1.4515
γ22 (IDWG) 0.1547 0.0473 0.2436
γ23 (SBP) -0.0234 -0.0286 -0.0154
γ0 (Intercept) 3.6138 2.2785 4.9840
γ11 (age) 0.0396 0.0317 0.0495
γ12 (male) -0.2388 -0.4266 -0.0021
γ13 (EKTV) -0.7230 -1.1406 -0.3828
γ14 (diabetic) -0.0624 -0.2887 0.1745
γ15 (AVF) -0.6118 -0.8253 -0.3645
γ16 (AVG) -0.2034 -0.5913 0.1969

Table 5.4: Survival submodel parameter estimates and 95% bootstrap confidence
intervals. γ(·): coefficient in the survival model.
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The estimated Σε is

Σ̂ =


0.0275 0.0018 0.0667

0.0018 0.1244 −0.0994

0.0667 −0.0994 28.7469

 ,

in which the three longitudinal variables are albumin, IDWG, and SBP in order. Write

Σε as

Σε =


σ11 σ12 σ13

σ21 σ22 σ23

σ31 σ32 σ33

 ,

where σ12 = σ21, σ13 = σ31, and σ23 = σ32. Table 5.5 displays 95% bootstrap confidence

intervals for the off diagonal elements of Σε. IDWG and albumin are significantly posi-

tively correlated, SBP and albumin are significantly positively correlated, and SBP and

IDWG are significantly negatively correlated.

At first sight, the negative correlation between SBP and IDWG seems conflicting with

what we obtain in Section 5.1, where the estimates of φ23 and φ32 in the matrix Tv are

positive, although not significant. There is also literature suggesting positive correlation

between SBP and IDWG ([61], [62], [63]). However, in Figures 5.5 and 5.10, the SBP

and IDWG values of an individual are often going in opposite directions. Recall that in

our mixed effects state space model there are three places to model interactions between

variables: Σε, Tu, and Tv. Among these three choices, Σε models the correlation structure

of the combination of population effects and random effects, Tu models the correlation

structure on the population effects level, and Tv models the correlation structure on the

subject random effects level. Our findings about Tv in Section 5.1 suggest that SBP and

IDWG are positively correlated on the subject level (although not significant), and our
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findings about Σε in this section suggest that SBP and IDWG are negatively correlated

after combining population effects and subject random effects. It would be interesting to

see how the two variables correlate on the population level, modeled by Tu, which, due

to time constraint, we do not include it here.

Parameter Estimate Lower Upper
σ21 (IDWG, albumin) 0.0018 0.0001 0.0033
σ31 (SBP, albumin) 0.0667 0.0429 0.0980
σ32 (SBP, IDWG) -0.0994 -0.1618 -0.0309

Table 5.5: Estimates of off-diagonal elements of Σε and 95% bootstrap confidence intervals.

Figure 5.9 displays the filtering estimates of population effects for albumin, IDWG,

and SBP, respectively, plotted against the mean of observations at each time point.
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Figure 5.9: Filtering estimate of population effects for albumin, IDWG, and SBP.
Brown dots: observation mean; green solid line: the filtering estimates of population
effects.

Figure 5.10 shows the filtering estimates of longitudinal trajectories for a randomly

selected individual, who was censored after the 59th month of dialysis treatment. One

can see that SBP and IDWG are often going in opposite directions. Opposite patterns of

SBP and IDWG can also be seen from Figure 5.5 in Section 5.1. In Figure 5.10, during

the later months, this patient’s IDWG was rapidly decreasing and SBP was increasing,

the opposite of that what happened to the patient in Figure 5.5.
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Figure 5.10: Filtering estimates of albumin, IDWG, and SBP for a randomly selected
individual. Brown dots: observations. Green solid line: filtering estimates.
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Chapter 6

Limitations and Future Work

6.1 Limitations of the New Smoothing Algorithm

Although our main goal is to perform online estimations and predictions which only

use the filtering algorithm, posterior estimates of latent states, i.e., smoothing estimates,

can also be of interest. Currently, the smoothing part of our new algorithm allows the

subjects to come in at later time points, but cannot deal with the case where there are

dropouts. We will work on dealing with missing data in the future.

6.2 Mixed-type Longitudinal Variables

Our new algorithm can potentially be applied to a mixed effects state space model

with mixed types of longitudinal variables, as long as the model has a linear Gaussian

signal as described in (1.24). A typical example of observations with a linear Gaussian

signal is the exponential family random variables.

In (1.24), when yt is an exponential family random variable, the signal θt = Ztαt is

the linear predictor in a generalized linear model (GLM), and the error term covariance
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matrix Ht equals 0 for any non-Gaussian exponential family random variables.

To illustrate how our new algorithm can be applied to mixed types of longitudinal

variables, suppose that for subject i we have longitudinal observations {y1i(tj), y2i(tj)},

i = 1, . . . ,m, where y1i(tj) and y2i(tj) are two types of exponential family random vari-

ables. Suppose that y1i(tj) ∼ p1(y1i(tj)|θ1i(tj)) and y2i(tj) ∼ p2(y2i(tj)|θ2i(tj)), we have

p(yki(tj)|θki(tj)) = exp[yki(tj)θki(tj)− b(θki(tj)) + c(yki(tj))], k = 1, 2,

where b(θki(tj)) is twice differentiable.

Let θ1(tj) = (θ11(tj), . . . , θ1m(tj))
T be the stacked signals of y1i(tj) for m subjects

and θ2(tj) = (θ21(tj), . . . , θ2m(tj))
T be the stacked signals of y2i(tj) for m subjects. The

signals θ1(tj) and θ2(tj) depend on the latent state α(tj) via the equation

 θ1(tj)

θ2(tj)


︸ ︷︷ ︸

θ(tj)

=

 Z1

Z2


︸ ︷︷ ︸

Z

α(tj), j = 1, . . . , n. (6.1)

The latent state α = (uT (tj),v
T
1 (tj), . . . ,v

T
m(tj))

T contains a population effects compo-

nent and m subject level random effects components. The population state u(tj) contains

both variables’ latent states, that is,

u(tj) =

 u1(tj)

u2(tj)

 ,
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and so does the subject random effects component:

vi(tj) =

 vi1(tj)

vi2(tj)

 , i = 1, . . . ,m.

u(tj) and vi(tj) can also contain the first derivatives of the variables, depending on the

specification of the stochastic process. The latent state α(tj) is connected to the signal

θ(tj) through the system matrix Z = (ZT
1 , Z

T
2 )T , where

Z1 =


Z1u Z1v 0

...
. . .

Z1u 0 Z1v


and

Z2 =


Z2u Z2v 0

...
. . .

Z2u 0 Z2v

 .

The state equation for α(tj) is the same as in (2.13). Generalization to the case where

there are multiple variables of each type is trivial.

Instead of letting the components of θ(tj) come into the system all at once or one

at a time as in the univariate treatment, we let the components enter the system in

two batches: θ1(tj) and θ2(tj). The equation for the signal, (6.1), thus becomes two

sequential parts:

θ1(tj) = Z1α(tj), θ2(tj) = Z2α(tj), j = 1, . . . , n.
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In this way, the special structure of the model is preserved. In general, if there are k

different types of variables, we will let them enter the system in k batches. To evaluate

the likelihood, since the model is non-Gaussian, we will need importance sampling, see

Durbin and Koopman [26] Section 11.6. A reasonable choice of the importance density

is an approximating linear Gaussian model that has the same posterior mode for θ(tj),

j = 1, . . . , n. To find this approximating linear Gaussian model, we will use a technique

called the mode estimation, described in Durbin and Koopman [26] Section 10.6. The

approximation is achieved using the Newton-Raphson method, which iteratively updates

the estimate of θ(tj), j = 1, . . . , n. At each iteration, the next estimate of θ(tj) is

obtained by applying the Kalman filter and smoother to the current approximating linear

Gaussian state space model, to which we can apply our new algorithm. The observation

error covariance matrix H(tj) of the current approximating linear Gaussian model is still

block diagonal, but the blocks are no longer identical. To preserve the special structures

of the Kalman filter and smoother, we let the subjects come into the system one at a time.

At convergence, the approximating linear Gaussian model can be used as the importance

density for likelihood evaluation. The time complexity will be O(q3m2n), still better than

the univariate treatment’s O(q3m3n). Currently we have this idea but have not started

working on it, hereby we list it as future work.

We provide an example here. Suppose that y1i(tj) ∼ N(µi(tj), σ
2
i ) and y2i(tj) ∼

Poisson(λi(tj)). A typical example of y2i(tj) is the number of hospital admissions during

time interval (tj−1, tj]. Then θ1i(tj) = µi(tj) and θ2i(tj) = log(λi(tj)). Let λ(tj) =

(λ1(tj), . . . , λm(tj))
T , we have

 y1(tj)

log(λ(tj))

 =

 Z1

Z2

α(tj) +

 ε1(tj)

0

 , ε1(tj) ∼ N(0, H1(tj)),
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where H1(tj) = diag{σ2
1, . . . , σ

2
m}.
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