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Abstract 

Background: Cancer is a heterogeneous disease resulting from the accumulation of 

genetic defects that negatively impact control of cell division, motility, adhesion and 

apoptosis.  Deregulation in signaling along the EGFR-MAPK pathway is common in 

breast cancer, though the manner in which deregulation occurs varies between both 

individuals and cancer subtypes. 

Results: We were interested in identifying subnetworks within the EGFR-MAPK 

pathway that are similarly deregulated across subsets of breast cancers.  To that end, we 

mapped genomic, transcriptional and proteomic profiles for 30 breast cancer cell lines 

onto a curated Pathway Logic symbolic systems model of EGFR-MEK signaling.  This 

model was comprised of 539 molecular states and 396 rules governing signaling between 

active states.  We analyzed these models and identified several subtype specific 

subnetworks, including one that suggested PAK1 is particularly important in regulating 

the MAPK cascade when it is over-expressed.  We hypothesized that PAK1 over-

expressing cell lines would have increased sensitivity to MEK inhibitors.  We tested this 

experimentally by measuring quantitative responses of 20 breast cancer cell lines to three 

MEK inhibitors.  We found that PAK1 over-expressing luminal breast cancer cell lines 

are significantly more sensitive to MEK inhibition as compared to those that express 

PAK1 at low levels. This indicates that PAK1 over-expression may be a useful clinical 

marker to identify patient populations that may be sensitive to MEK inhibitors. 

Conclusions: All together, our results support the utility of symbolic system biology 

models for identification of therapeutic approaches that will be effective against breast 

cancer subsets.

 



Background 

Cancer is a heterogeneous disease that results from the accumulation of multiple 

genetic and epigenetic defects [1-4].  These defects lead to deregulation in cell signaling 

and ultimately impacts control of cell division, motility, adhesion and apoptosis [5].  The 

MAPK (mitogen-activated protein kinase/ERK) pathway plays a central role in cell 

comunication: it orchestrates signaling from external receptors to internal transcriptional 

machinery, which leads to changes in phenotype [6, 7].  This pathway has been 

implicated in the origin of multiple carcinomas, including those of the breast [8-10].  

Activation of MAPK is initiated by one of the four ERBB receptors (ERBB1/EGFR, 

ERBB2-4), which leads to signaling through RAF, MEK and ERK.  In addition, the 

ERBB receptors integrate a diverse array of signals, both at the cell surface level and 

through cross-talk with other pathways, such as the phosphoinositide 3-kinase (PI3K) 

pathway [11]. Both EGFR and ERBB2 are overexpressed in a substantial fraction of 

breast cancers and are recognized targets for breast cancer therapy [12-16].  In addition, 

MEK has long been studied as a therapeutic target, and many drugs that inhibit it are 

currently under development [17-20].   

Among breast cancers, unique subsets can be defined at the genomic, 

transcriptional and proteomic levels.  For many years, breast cancers were classified by 

whether or not they express various receptors, namely estrogen (ER/ESR1), progesterone 

(PR/PGR) and ERBB2 [21-25].  This key insight has been used to tailor therapies to 

individual patients [22, 26].  Of particular interest is the finding that ER-negative tumors 

frequently show elevated signaling along the MAPK pathway as compared to ER-

positive cancers [27].  DNA amplification at various loci can also be used to stratify 

 



patients, and, importantly, has prognostic value as well [28, 29].  For example, 

amplification at 8p12 and 17q12 are both associated with poor outcome [28, 30]. The 

emergence of expression profiling technology led to the seminal observation that breast 

cancers can be systematically classified at the transcriptional level [23-25].  More 

recently, interest has turned toward the analysis of somatic mutations [31].  Different 

cancer types show common patterns of mutation, implying that a few key mutations play 

a pivotal role in tumorigenesis.  All together, these studies indicate the value of 

identifying unique subsets of cancers, both for understanding the origin of the disease as 

well as identification of appropriate therapeutics. 

A critical question remaining is how to identify meaningful subsets of cancers that 

differ in their cell signaling pathways.  One approach to this problem is to identify gene 

expression signatures that reflect the activation status of oncogenic pathways [32, 33].  

While it is possible to stratify cancers into unique populations based on their expression 

patterns of these signatures, a key challenge lies in interpreting the meaning of the 

various genes within these signatures [34].  Here, we used an alternate approach in which 

we explored subtype-dependent behavior in genes that make up known signaling 

pathways. 

Our goal was to identify signaling pathway modules that are deregulated in 

particular cancer subtypes.  To that end, we populated a well-curated cell signaling model 

with molecular information from a panel of breast cancer cell lines.  We used a 

combination of transcriptional, proteomic and mutational data to create a unique 

signaling network for each cell line.  Specifically, we discretized transcript and protein 

data and used it to populate the network models; genes or proteins that are differentially 

 



expressed across the cell lines were evaluated as present in some cell lines and absent 

from others.  The resultant network models can be viewed as a statistical formalism of the 

pathways activated in each of the cell lines. 

We created our network models with Pathway Logic [35-38], a system designed 

to build discrete, logical (rule-based) models of signal transduction pathways [39].  

Logical models are directly related to the canonical schematic diagrams (“cartoons”) 

commonly used to show functional relationships among proteins, and as such, are easily 

interpretable in the context of biological systems (see Figure 1B) [40].  The two critical 

elements of a Pathway Logic model are a rule set and an initial state.  The rules represent 

biochemical reactions, and the initial state is a representation of all proteins present in a 

particular cell line.  Our model contains a rich rule set: the interactions between proteins 

have all been individually curated from primary literature sources and therefore represent 

well-characterized signaling biology.  In short, we used our collection of molecular data 

to identify active states in each cell line, and the rules to define signaling between these 

active states.  The resultant networks are static coarse graphical representations of 

signaling that can be used to generate hypotheses about key signaling events in subsets of 

the cell lines. 

 We focused our modeling on the ERBB/MAPK pathway because deregulation 

along this pathway is both frequent in breast cancers and heterogeneous across them [12, 

41].  Further, it is involved in a complex web of signaling that results from cross-talk 

with other pathways [42].  Our model system includes rules that describe: (i) interactions 

between the ERBB receptors and their ligands; (ii) direct association of intracellular 

signaling proteins with the phosphorylated ERBB receptors; (iii) signaling along the 

 



canonical RAF-MEK-ERK pathway; (iv) cross-talk with PI3K and JAK/STAT pathways; 

(v) activation of immediate-early transcription factors (e.g., JUN, FOS); and (vi) 

signaling from other receptors that influence MAPK signaling, including EPHA2 and 

Integrins. 

 Our panel of cell lines captures many features of biological variation found in 

primary breast tumors [43].  Both the cell lines and tumors cluster into basal (ESR1-

negative, CAV1-positive) and luminal (ESR1-positive, ERBB3-positive) expression 

subsets.  These two subtypes – basal and luminal – also show distinct biological 

characteristics, including differences in morphology and invasive potential [23, 25].  In 

addition, the cell lines show a broad response to pathway-targeted drugs (Gray, et al, in 

preparation).  Overall, the genomic heterogeneity in the cell lines mirrors that observed in 

a large population of primary tumors, and en ensemble constitute a useful model of the 

molecular diversity of primary tumors [43]. 

We generated signaling network models for our panel of cell lines with the goal of 

identifying subnetworks that are active in particular subsets of cell lines.  We found that 

the discretized data used to populate the initial states of the networks showed only a small 

amount of variation.  Specifically, only 13% of the components in the initial state of the 

networks varied across the cell lines.  Even with this small amount of variation, the 

discretized data used in the initial states could be clustered into basal and luminal cell line 

groups.  Surprisingly, over half of the protein interactions predicted to occur varied 

across the cell line network models.  In order to identify active subnetworks, we clustered 

the network features of our models.  This clustering resulted in three main groups of cell 

lines: basal, luminal and a third mixed group composed of both basal and luminal cell 

 



lines.  In addition, we identified several network modules active in specific subsets of the 

cell lines.  One module in particular implicated PAK1 (p21 protein (Cdc42/Rac)-

activated kinase 1) as a key regulator of the RAF-MEK-ERK pathway in the subset of 

PAK1 over-expressing cell lines.  We found that among luminal cell lines, the over-

expression of PAK1 was significantly associated with sensitivity to MEK inhibition.  

Taken together, these results indicate that our modeling approach can be used to identify 

signaling subnetworks that are particularly important in subsets of breast cancer cell 

lines. 

 

Results 

Data clustering and model initialization 

 Our goal was to create a unique signaling network model for each cell line in our 

panel.  In generating these models, we must accommodate two fundamental biological 

principles.  First, the ERBB network results from the integration of many diverse signals, 

and second, most cell signaling occurs through protein-protein interactions.  Ideally, then, 

we would create large networks populated with protein data.  Because the acquisition of 

comprehensive protein abundance data for multiple cell lines is not technically feasible, 

we used transcript data to infer protein levels when protein data were unavailable. An 

example of one of these large computed networks is shown in Figure 1A.  

A key feature of Pathway Logic models is that they are discrete, so components 

are considered either present or absent.  In order to populate our network models, we first 

discretized the transcript and protein data (see Methods, Figure 1C, D, E).  Following 

discretization, we determined which components (proteins) are present in the initial state 

 



of each cell line.  We considered genes and proteins that are differentially expressed 

across the cell lines to be present in some cell lines and absent from others.  Genes and 

proteins that showed little variation in expression were considered present in all cell lines. 

Although this approach is coarse, we can use it to assess which pathways may be most 

critical in each of the cell lines.  That is, we can identify the pathways that may be highly 

up- or down-regulated in particular cell lines.  This discretization algorithm captured 

many well-documented differences in expression across the cell lines.  For example, the 

transcript data for ESR1 yields three clusters, which parallels the observation that 

primary breast tumors show varied expression of this protein (Figure 1E; [44, 45]). 

The initial states were constructed from a population of 286 signaling 

components.  We had expression data alone for 191 of these components, both protein 

and expression data for 25, and no available data for the 70 remaining components.  

Following discretization, 13/25 (52%) proteins and 19/191 (10%) transcripts form both 

present and absent groups.  For the remaining protein and transcript data, a single group 

best describes the distribution of expression values.  To explore the transcript and protein 

data further, we compared the clustering results for the 25 components that had both 

protein and transcript data available.  Approximately two-thirds of these components 

show a high level of concordance between the two discretized datasets: 9 yield a single 

present group for both datasets; 8 yield a present and absent group for both datasets 

(mean Pearson’s r=0.603).  The remaining 8 components form a single group in one 

dataset and two groups in the other.  For 6 of these, the transcript data yield a single 

group while the protein data form two groups (Table 1). 

 



 We used the Sanger COSMIC database to identify mutations to KRAS, PTEN and 

PIK3CA in our cell lines, and included these data in the initial states [46].  We focused 

on mutations in these three proteins for two reasons: first, they influence MAPK 

signaling, and second, the mutations have a known functional impact, so it is possible to 

computationally model them.  Specifically, a G13D point mutation in KRAS causes it to 

become constitutively active [47, 48].  A frameshift mutation in PTEN leads to premature 

termination and an inactive protein [49].  Three common point mutations in PIK3CA 

(E542K, E545K and H1047R) lead to increased lipid kinase activity [50, 51].  PIK3CA is 

the most frequently mutated gene in our cell line panel (6/30, 20%), a finding that 

parallels other reports [52]. 

 

Initial states reflect the known biology 

We found that 39/286 (13%) of the components vary across the initial states of the 

cell lines (Figure 2).  This includes both the effect of data discretization, as well as 

differences in mutational status for KRAS, PTEN and PIK3CA.  The components that 

vary are located throughout the network and include receptors, GTPases and transcription 

factors.  We used unsupervised hierarchical clustering to analyze the variable components 

in the initial states [53].  In accordance with our previous studies, we found that the site 

of origin, basal or luminal epithelium, largely defines the two major clusters [43].  We 

achieved a similar result when we clustered the data with a partitioning around medoids 

(PAM) algorithm that searched for two groups in the discretized data.  Specifically, most 

of the cell lines (26/30) correctly segregated into basal or luminal groups.  This finding 

demonstrates that our modeling system has some of the genes that influence this 

 



phenotypic difference.  Further, it indicates that the discretized data used to populate the 

network models recapitulates some of the known cell biology associated with the origins 

of the breast cancer cell lines. 

 

The network models are highly variable 

 A principal interest in modeling these pathways was to determine how the 

network topology differs across the set of cell lines.  To address this question, we 

determined which components and rules were present in each of the networks.  The 

network models contained an average of 334 (8.29 s.e.m.) rules and 218 (4.55 s.e.m.) 

unique state changes.  Over 55% of the rules and state changes differ across the 30 

models, indicating that the networks are highly variable (Table 2).  This result was 

surprising at first, considering that the initial states have 87% of the components in 

common. 

To explore this finding further, we examined the connectivity of individual 

components by determining the number of rules in which each component is involved. 

The majority of the components participate in only one or two rules, whereas a few 

components participate in many rules (Figure 3A).  EGFR, the most highly connected 

component, is involved in 22 rules.  When we plotted these data on a log-log plot, a 

robust linear relationship was revealed, indicating that the connectivity follows a power-

law (Figure 3B).  Interestingly, some of the most highly connected components vary 

across the initial states of the cell lines, namely EGFR, SRC, PI3K, and KRAS (Table 3).  

These proteins have a particularly large role in shaping network topology.  If they are 

 



omitted from the initial state, many rules will fail to fire and many pathways in the 

resultant network will be truncated.   

We were interested in whether the cell line models could be grouped by their 

network properties.  We addressed this by performing an unsupervised hierarchical 

clustering of the network features (i.e., the components in the initial state, rules, and 

components that underwent state changes) that differed across the cell lines.  This 

clustering resulted in three major groups for the cell line models: basal, luminal and a 

third group comprised of both basal and luminal cell lines (Figure 4).  The observation 

that there is a mixed group of basal and luminal networks indicates that the cell lines may 

be segmented by their signaling pathways, rather than by site of origin alone. 

 

Unique signaling modules are active in particular subsets of the network models 

We next asked how the network structure varies across the cell lines.  To answer 

this question, we used partitioning around medoids (PAM) clustering to partition the 

network features into 30 clusters.  Each cluster represents a unique “signaling module” 

that is present in some cell line models and absent from others.  A summary of these 

signaling modules provides an overview of the variable network features Table 4.  Each 

signaling module is driven by the presence of particular components in the initial state.  

For example, the ERBB4 module is present in 10 cell lines, 9 of which are luminal and 1 

that is basal, reflecting the fact that ERBB4 is present in the initial state of these 10 cell 

lines.  The signaling modules average 8 rules each, though they vary in size from a single 

rule up to 76 rules for the SRC/RAC1 module. 

 



The RHOB (ras homolog gene family, member B) module is largely responsible 

for the segmentation of the basal and luminal cell line models, and is present in all the 

luminals and absent from all the basals.  RHOB interacts with NGEF to activate many 

downstream targets that go on to regulate a diverse array of cellular functions including 

cell motility, cell adhesion and cell cycle progression [54, 55]. In accordance with this, 

we have found that the basal cell lines are far more invasive than the luminal cell lines 

[43].  Furthermore, RHOB levels have been shown to decrease as cancer progresses [56-

58].  

Clustering of the “mixed” group of cell lines is strongly driven by the three SRC 

modules (Figure 4).  SRC is one of the most highly connected components in the 

network (18 rules), and serves to integrate a variety of signals.  This module, which 

results from the omission of SRC from the initial state, is present in all cell lines except 

two, namely basaloid MDAMB435 and luminal MDAMB453.  The other two SRC 

modules are dependent on the presence of either EGFR or RAC1.  The SRC/EGFR 

module includes SRC-dependent activation of EGFR; if either component is missing 

from the initial state, signaling along this cascade is compromised.  The SRC/EGFR 

module is absent only from the mixed group of networks: four are missing EGFR, one is 

missing SRC, and the other is missing both EGFR and SRC. 

 One small signaling module is related to the presence of CAV1 in the initial state.  

One of the rules in this module describes activation of SHC that is dependent on FYN, 

CAV1 and Integrin (ITGB1) (Figure 5A).  Both the transcript and protein data indicate 

that the presence of CAV1 is bimodal, and is clearly present at either very low or very 

high levels (Figure 5B, C).  This module is only present in basal cell lines, and further, 

 



most of the cell lines that contain it are of the most aggressive basal B subtype [43].  This 

signaling module provides a direct feed into the RAF-MEK-ERK pathway, suggesting 

that these cell lines have an alternate route available for ERK activation (Figure 5A).  

This interaction may help to explain why these basal cell lines are particularly aggressive. 

 

PAK1 plays a pivotal role in the network models 

In our model, PAK1 is required for the activation of MEK and ERK (Figure 6A).  

Specifically, PAK1 phosphorylates MEK, which in turn facilitates signaling along the 

RAF-MEK-ERK cascade [59].  It follows, then, that network models with PAK1 omitted 

from the initial state fail to activate ERK.  Across the cell lines, the distribution of PAK1 

transcript levels is highly skewed, so our discretization algorithm yields two clusters, a 

large group centered at -0.26, and a small group centered at 2.16 (Figure 6B).  PAK1 was 

present in the initial state of the cell lines with high expression and absent from the 

others.  The four cell lines with high PAK1 transcript levels, MDAMB134, 600MPE, 

SUM52PE and SUM44PE, are all of luminal origin. 

 Based on the observations that PAK1 directly regulates MAPK signaling, and that 

its expression pattern shows substantial variation, we hypothesized that PAK1 

differentially regulates MAPK signaling across our panel of cell lines.  We tested this 

hypothesis experimentally.  The first issue we addressed was whether PAK1 protein 

levels vary across the cell lines.  We found highly variable expression of total PAK1 

protein.  Specifically, three of the four cell lines with elevated PAK1 transcript levels 

have concordantly high PAK1 protein levels.  In addition, a handful of other cell lines 

also show over-expression of PAK1 protein.  PAK1 transcript and protein levels are 

 



significantly correlated (Pearson’s r = 0.78, p < 0.0001, Figure 6C).  While this 

relationship is largely dependent on the cell lines that highly express PAK1, it 

nonetheless supports the idea that elevated transcript levels affect protein expression 

levels.  Focal changes in copy number are thought to convey a selective advantage for 

tumor growth, so we next asked whether PAK1 is amplified in any of our cell lines.  The 

four cell lines that over-express PAK1 show high-level amplification (> 8.7 copies, see 

Methods) of the PAK1 amplicon (11q13.5-q14, [60], Figure 6D); none of the other cell 

lines show this amplification.  In addition to PAK1 amplification, three of these cell lines 

also show amplification at CCND1, though in all cases there are distinct peaks at each 

locus. 

If PAK1 indeed regulates MAPK signaling, we would expect to find a correlation 

between PAK1 and phospho-MEK levels.  To address this, we quantified isoform-

specific phospho-MEK levels in our cell lines (see Methods).  We found a small but 

significant correlation between total PAK1 and percent MEK1-S298 (Pearson’s r = 0.32, 

p<0.05, Figure 6E).  Although the correlation is somewhat weak, it is clear that high 

PAK1 levels are always associated with elevated phospho-MEK1.  In accordance with 

the observation that the interaction between PAK1 and MEK is specific to MEK1 [61], 

we found no correlation between PAK1 and percent phospho-MEK2 (p>>0.05). 

The above findings suggest that elevated PAK1 levels provide a foothold into 

regulation of the MAPK cascade, and led us to hypothesize that PAK1 over-expressing 

luminal cell lines would be particularly sensitive to MEK inhibition.  To test this, we 

measured the response of 20 luminal cell lines to three MEK inhibitors: CI-1040, UO126 

and GSK1120212.  We compared growth inhibition (GI50, the drug concentration 

 



required to inhibit growth by 50%) following drug exposure between cell lines that over-

express PAK1 (n=3) and those that do not (n=17).  The two groups of cell lines had 

significantly different mean expression of both the PAK1 transcript and protein (t-test, p 

< 0.01). The three PAK1 over-expressing cell lines (MDAMB134, SUM52PE and 

600MPE) were significantly more sensitive to MEK inhibition as compared to the non-

PAK1 over-expressing cell lines (GSK1120212, p < 0.005; CI-1040, p < 0.05; UO126, p 

< 0.05; (t-test), Figure 7).  This result indicates that PAK1 over-expression may be a 

useful clinical marker to determine whether a particular tumor will be responsive to MEK 

inhibition. 

 

Discussion 

Cancer arises from deregulation in any of a multitude of genes, but exactly how 

this deregulation impacts cell signaling is not well understood.  Here, we leveraged a rich 

dataset of transcriptional and protein profiles with a computational modeling system in 

order to gain a greater understanding of the critical signaling pathways associated with 

breast cancer.  By creating a unique network model for individual cell lines, we were able 

to identify signaling pathways that are particularly important in subsets of the cell lines. 

Our modeling led to new insight about the importance of PAK1 as a modulator of the 

MAPK cascade. 

 

Approaches to computational modeling 

 There are many approaches to computationally modeling biological systems, 

ranging from high-level statistical models to low-level kinetic models [62].  We used a 

 



simplified mid-level scheme to construct network models from transcript and protein 

profiles for two reasons.  First, we were able to create a unique model for each cell line, 

rather than a single network that represents “breast cancer.”  We used this approach to 

examine how a collection of genomic and proteomic changes in individual cell lines 

affects its network architecture.  In contrast, other approaches, such as Bayesian 

reconstruction, are designed to describe ensemble behavior, rather than behavior of 

individual cell lines [63, 64].  A key attribute of our modeling system is that it can be 

used to identify specific biological instances of cell signaling that can be used to generate 

hypotheses.  Our observations about PAK1 are a key example of this feature.  The second 

reason for using this mid-level modeling scheme is that the computational algorithm is 

relatively simple; logical operators define relationships between signaling components.  It 

is therefore possible to create networks that are quite large, which provides the 

opportunity to examine multiple inputs that impinge upon the central signaling pathway 

of interest.  In comparison, kinetic models that offer more detail about signaling 

components are quite computationally demanding, so it is only feasible to examine a 

limited number of components [65, 66].  As a “hypothesis generator,” our modeling 

system could be used to guide the development of dynamic modeling systems by 

identifying key signaling components to include in them. 

One limitation of our modeling system is that it operates in a totally discrete 

manner: components are either present or absent, and rules fire with absolute certainty or 

not at all.  This is a simplification of true biological systems in which the levels of 

signaling components show a wide dynamic range, and the probability that a reaction will 

occur changes as a function of the concentration of individual proteins. We captured the 

 



variation in the concentration of signaling components by individually discretizing the 

data for each component in the initial state and then assigning each cell line to a “present” 

or “absent” group.  With this approach, we examined how signaling is affected by 

extreme changes in protein levels, therefore homing in on key signaling events.  We 

found that even with this simplified approach, we were able to make insights into key 

signaling events in subsets of our cell lines.  Hybrid modeling approaches, which 

combine continuous dynamical systems with discrete transition systems, have been 

developed to overcome this limitation [67, 68].  Modification of the current model system 

to a hybrid system would allow for a more detailed examination of cell signaling over 

smaller changes in protein concentrations. 

 

Modeling results 

We found that the network connectivity follows a power law relationship in which 

most components have low connectivity while a few components are highly connected 

(Figure 3).  The relationship we observed reflects not only intrinsic connectivity, but also 

curation bias, as literature relevant to EGFR/MAPK signaling was preferentially 

surveyed during creation of the rule set.  Nonetheless, this “scale free” relationship has 

been described in more thorough surveys of protein-protein interactions [69, 70].  The 

observation that our network models also have this scale free property supports the idea 

that they are biologically relevant representations.  Further, this pattern of connectivity 

implies that the few highly connected components may be most critical for regulating cell 

signaling along these pathways -- these components serve as promising candidates for 

more detailed study at both the computational and experimental levels.  Those that also 

 



show substantial variation across the cell lines (e.g. EGFR, SRC, PI3K, and KRAS) may 

be particularly relevant in the context of breast cancer. 

 Traditionally, the site of origin has been one of the primary features with which to 

classify breast cancers [23-25].  The full transcriptional profiles of our cell line panel 

show this characteristic split between basal and luminal subtypes [43], which we could 

largely recapitulate in our construction of the initial states (Figure 2).  Here, we have 

shown that ERBB/MAPK signaling systematically varies across our panel of cell lines.  

Specifically, we found that the cell line networks could be classified into three groups 

(Figure 4).  The basal and luminal network groups reflect the split we observed in the 

components of the initial state, while the third mixed group is largely defined by 

signaling related to SRC.  SRC acts as a well-connected signaling hub, so it is 

particularly important in shaping network architecture.  It also interacts with several key 

proteins in the MAPK cascade, including EGFR and its targets, ERK, and CDC42 [71, 

72].  SRC has been studied as a therapeutic target in a wide range of cancers, including 

cancers of the breast, lung and pancreas [73, 74].   

The basal and luminal networks could be well-differentiated by the RHOB 

signaling module, which is present in the luminal cell lines and absent from the more 

aggressive basal cell lines (Figure 4).  A number of reports have indicated that loss of 

RHOB expression is frequently associated with cancer progression [58].  Furthermore, 

suppression of RHOB is a critical step leading to transformation in a variety of cancers, 

including those of the lung and cervix [75].  These observations bolster the idea that 

modulation of the RHOB pathway may serve as a useful therapy in the basal cell lines.  

Among the basal cell line networks, the CAV1/ITGB1 signaling module was primarily 

 



found in the most aggressive basal B cell lines.  In accordance with this, CAV1 has been 

shown to have a role in carcinogenesis, though its mechanism may vary with cancer type 

[76, 77].   

 

PAK1 impacts signaling along the MAPK cascade 

 Through an analysis of our breast cancer network models, we identified PAK1 as 

a putative differential regulator of the MAPK cascade in our cell lines.  PAK1, a 

serine/threonine kinase, has long been studied as a regulator of cytoskeletal remodeling 

and cell motility [78, 79], but more recently has been shown to regulate both proliferation 

[80] and apoptosis [81].  The PAK family of proteins has been implicated in a variety of 

cancers, including those of the breast [80, 82, 83].  In particular, PAK1 hyperactivation 

has been shown to cause mammary-gland tumors in mice [84]. 

Across our panel of cell lines, PAK1 is differentially expressed at the copy 

number, transcript and protein levels (Figure 6).  The finding of elevated PAK1 

expression in some of our cell lines mirrors the observation that PAK1 is sometimes 

upregulated in breast tumors [80].  The correlation between PAK1 and phospho-MEK1 

levels (Figure 6C) suggests that across the cell lines, PAK1 differentially modulates 

activation of the MAPK cascade.  Although statistically significant, this correlation was 

not perfect: high PAK1 levels are always associated with high phospho-MEK1 levels, 

while a more variable relationship emerges when PAK1 is low.  This observation implies 

that when PAK1 levels are high, it dominates the regulation of phospho-MEK1, whereas 

at low PAK1 levels, alternate proteins must serve as the principle regulator of phospho-

MEK1.  For example, KSR1 and SPRY are both involved in regulation of the MAPK 

 



cascade, and may be particularly important in the cell lines that express PAK1 at low 

levels [85, 86].  Based on this finding, we hypothesized that the luminal cell lines that 

over-express PAK1 would be particularly sensitive to MEK inhibition.  Indeed, the PAK1 

over-expressing cell lines were significantly more sensitive to three MEK inhibitors than 

the non-PAK1 over-expressing cell lines (Figure 7).  The observation that all three drugs 

showed the same pattern indicates that the inhibition is quite robust and not due to off-

target effects.  These results indicate that PAK1 over-expression may be a useful clinical 

marker to determine which patient populations may be sensitive to MEK inhibitors. 

 

Conclusions 

Breast cancer is a remarkably heterogeneous disease that results from the 

accumulation of various genetic defects.  We were interested in identifying signaling 

subnetworks that may be particularly important in generating oncogenic phenotypes.  To 

address this, we generated a discrete, static network model for a panel of 30 breast cancer 

cell lines.  The resultant network models were highly variable: of the protein interactions 

predicted to occur, over half of them varied across the cell lines.  We searched for active 

subnetworks by clustering the network features of our models.  This clustering yielded 

three main groups of cell lines, a basal group, a luminal group, and a third mixed group 

composed of both basal and luminal cell lines.  In addition, we identified several network 

modules active in specific subsets of the cell lines.  One signaling module implicated 

PAK1 (p21 protein (Cdc42/Rac)-activated kinase 1) as a key regulator of the RAF-MEK-

ERK pathway in the cell lines that over-express it.  Based on this observation, we 

hypothesized that luminal cell lines that over-express PAK1 would be particularly 

 



responsive to MEK inhibition.  In support of this idea, we found that among luminal cell 

lines, the over-expression of PAK1 was indeed significantly associated with sensitivity to 

three MEK inhibitors.  All together, these results indicate the utility of symbolic systems 

modeling for the identification of key cell signaling events in the context of cancer. 

 

 

Materials and Methods 

Cell lines:  The complete panel contains 51 breast cancer cell lines that have been 

previously described [43]. We assembled our panel of breast cancer cell lines from the 

ATCC and the laboratories of Drs. Steve Ethier and Adi Gazdar.  All cell lines have been 

carefully maintained in culture, and we have stored stocks of the earliest-passage cells.  

We assure quality control by careful analysis of morphology, growth rates, gene 

expression and protein levels over time.  All extracts were made from subconfluent cells 

in the exponential phase of growth in full media.  Information about biological 

characteristics and culture conditions is available elsewhere [87].  We generated network 

models for the 30 well-characterized cell lines with the complete datasets described 

below. 

Protein abundance data: We measured the abundance of 25 proteins associated with 

ERBB/MAPK signaling in our network model.  These abundances were assayed and 

quantitated as previously described [43].  Briefly, proteins were measured by Western 

blots of cells lysed in 1% Nonidet-P40, 50 mM HEPES (pH 7.5), 150 mM NaCl, 25 mM 

b-glycerophosphate, 25 mM NaF, 5 mM EGTA, 1 mM EDTA, 15 mM pyrophosphate, 2 

 



mM sodium orthovanadate, 10 mM sodium molybdate, leupeptin (10 mg/ml), aprotinin 

(1 0mg/ml), and 1 mM PMSF. 

 We quantified protein levels by measuring the emitted chemiluminescence or 

infrared radiation recorded from labeled antibodies using Scion Image [88] or Odyssey 

software [89].  For each protein, the blots were made for 4 sets of 11 cell lines, where 

each set included the same pair (SKBR3 and MCF12A) to permit intensity normalization 

across sets. We performed a basic multiplicative normalization by fitting a linear mixed-

effects model to log intensity values, and adjusted within each set to equalize the log 

intensities of the pair of reference cell lines across the sets. 

Transcriptional profiles: Total RNA was prepared from samples using Trizol reagent 

(GIBCO BRL Life Technologies), and quality was assessed on the Agilent Bioanalyser 

2100. Preparation of in vitro transcription (IVT) products, oligonucleotide array 

hybridization, and scanning were performed according to Affymetrix (Santa Clara, 

California) protocols. In brief, 5 μg of total RNA from each breast cancer cell line and 

T7-linked oligo-dT primers were used for first-strand cDNA synthesis. IVT reactions 

were performed to generate biotinylated cRNA targets, which were chemically 

fragmented at 95°C for 35 min. Fragmented biotinylated cRNA (10 μg) was hybridized at 

45°C for 16 hr to Affymetrix high-density oligonucleotide array human HG-U133A chip. 

The arrays were washed and stained with streptavidin-phycoerythrin (SAPE; final 

concentration 10 μg/ml). Signal amplification was performed using a biotinylated anti-

streptavidin antibody. The array was scanned according to the manufacturer's instructions 

(2001 Affymetrix Genechip Technical Manual). Scanned images were inspected for the 

 



presence of obvious defects (artifacts or scratches) on the array. Defective chips were 

excluded, and the sample was reanalyzed.  

We generated probe set based gene expression measurements from quantitated 

Affymetrix image files with the RMA algorithm [90] from the BioConductor tools suite 

[91] and annotated with Unigene annotations from the July 2003 mapping of the human 

genome [92].  All 51 CEL files were analyzed simultaneously, yielding a data matrix of 

probe sets by cell lines in which each value is the calculated log abundance of each gene 

probe set for each cell line. Gene expression values were centered by subtracting the 

mean value of each probe set across the cell line set from each measured value. 

Mutation data: We searched the Sanger Catologue Of Somatic Mutations In Cancer 

(COSMIC) website for reported mutations in our cell lines [46].  We incorporated 

mutations to KRAS, PTEN and PIK3CA into our models through the construction of 

rules that reflect the functional impact of each mutation. 

Copy number profiles:  We measured copy number profiles with molecular inversion 

probes (MIPs).  The MIP assay was performed as previously described [93]. Briefly, test 

DNA samples were diluted to 16 ng/ml. All DNA quantification was done using 

PicoGreen dsDNA Assay Kit (Molecular Probes/Invitrogen, Carlsbad, CA, USA, P7589). 

We used 96- or 384-well plates whenever possible to reduce variation. For day 1 

overnight annealing, 4.7 μl of DNA samples (75 ng total), 0.75 μl of Buffer A, 1.1 μl of 

the 53 K probe pool (200 amol/μl/probe) and 0.045 μl of Enzyme A were mixed well in a 

384-well plate on ice. The reaction was incubated at 20°C for 4 minutes, 95°C for 5 

minutes, then 58°C overnight. On day 2, 13 μl of Buffer A was added to each well with 

1.25 μl of Gapfill Enzyme mix, then 9 μl of this was put in each of two wells in a 96-well 

 



plate. MIP probes were circularized with 4 μl of dinucleotide (dATP with dTTP, dCTP 

with dGTP) and mixed at 58°C for 10 minutes. The uncircularized probes and genomic 

DNA were eliminated by addition of 4 μl of Exonuclease Mix and incubation at 37°C for 

15 minutes, followed by heat-killing of enzymes. The circularized probes were linearized 

by the addition of Cleavage Enzyme Mix at 37°C for 15 minutes, then subjected to 

universal primer amplification for 18 cycles at 95°C for 20 s, 64°C for 40 s, and 72°C for 

10 s. For the labeling reaction, the product was further amplified with the label primers 

for 10 cycles, and then subjected to cleavage by Digest Enzyme Mix at 37°C for 2 h. To 

hybridize, the cleaved MIP products were mixed with hybridization cocktail, denatured 

and hybridized to 70 K Universal Taq arrays at 39°C for 16 h (two arrays per sample). 

The overnight hybridized arrays were washed on GeneChip® Fluidics Station FS450 and 

stained by SAPE at 5 ng/ml (Invitrogen).  Copy number estimation was obtained from the 

hybridization signals as previously described [93]. 

We filtered the dataset to eliminate MIP probes missing from more than 5% of the 

samples.  We used the previously described amplicon boundaries to compute average 

copy number across all the probes in the PAK1 and CCND1 amplicons [60].  We defined 

high-level amplification as M+3*IQR, where M represents the median copy number and 

IQR represents the interquartile range, each computed across all amplicons and cell lines. 

Quantitative analysis of MEK:  We used high-resolution capillary isoelectric focusing 

technology to quantify the abundance of individual phosphoforms and isoforms of MEK.  

We used MEK1 (Upstate) and MEK2 (Cell Signaling) antibodies for this assay, which 

has been described in detail elsewhere [94]. 

 



Cell growth inhibition assay and data analysis:  Cells were plated at proper density in 

96-well plates such that they would remain in log growth at the end of assay time.  The 

cells were allowed to attach overnight before being exposed to MEK inhibitor CI-1040, 

UO126 or GSK1120212 for 72 h. Drugs were dissolved in DMSO as 10 mM stock, and a 

set of 9 doses in 1:5 serial dilution was added in triplicate wells.  The final DMSO 

concentration in the treated well was 0.3% or less.  The cell growth was determined using 

Cell Titer Glo (CTG) assay (CellTiter-Glo Luminescent Cell Viability Assay, Promega, 

Madison, WI), with slight modification from the manufacturer’s protocol at day 0 (time 

when drug was added) and day 3 of drug exposure. Briefly, CTG reagent was diluted 

with PBS (1:1, volume:volume) and the culture media was removed from the 96-well 

plate prior to adding 50 ul per well of the diluted CTG reagent.  Luminescence from the 

assay was recorded using BIO-TEK FLx800.  

Data calculations were made according to the method described by the NCI/NIH 

DTP Human Tumor Cell Line Screen Process [95] and as previously described [96].  The 

percent growth curve is calculated as [(T-T0)/(C- T0)] x100, where T0 is the cell count at 

day 0, C is the vehicle control (e.g. 0.3% DMSO without drug) cell count at day 3, T is 

the cell count at the test concentration. The GI50 and TGI value are determined as the 

drug concentration that results in a 50% and 0% growth at 72 hr drug exposure.  

 

Pathway Logic modeling system 

 Pathway Logic [97] is a system for building discrete, logical models of biological 

systems [35, 36].  The construction of a Pathway Logic model requires two key elements:  

a set of rules and an initial state.  Each rule represents a statement of a precisely defined 

 



biological transformation or biochemical reaction.  For example, the rule below describes 

the activation of the ERBB2 receptor by activated EGFR: 

rl[793.ERBB2.on]: 
  {CLm | clm [EGFR - act] ERBB2          } 
  => 
  {CLm | clm [EGFR - act][ERBB2 - act] } . 

 
The first term on each line represents a cellular location.  In this case, CLm indicates that 

EGFR and ERBB2 are located in the cell membrane.  A reaction will occur (“fire”) only 

if the components are located in the specified cellular compartment.  Most rules in our 

database describe changes to the state of a protein, such as activation, exchange of GDP 

for GTP, or translocation to a different cellular compartment.  In total, the relevant rule 

database contains 396 rules, all of which have been individually curated from primary 

literature sources. 

The initial state specifies the model components present in a cell, as well as their 

locations.  We created the initial states for each network model from a set of 286 

components.  Models are generated by “rewrites.”  In a simple rewrite, the initial state is 

presented to the rules.  Whenever the state meets the conditions required by a rule input, 

the state is adjusted in accordance with the rule.  The new state is then presented to the 

rules and more adjustments are made.  This iterative process continues until either no 

further alterations can be made, or a user-defined condition is reached.  We visualize the 

result of these rewrites as a Petri net, a directed bipartite graph that contains places, 

transitions, and directed arcs that connect the places and transitions [98].  In Petri net 

models of cell signaling, places represent proteins and transitions represent chemical 

reactions.  Petri nets are a useful representation because they closely resemble hand-

drawn cartoon models of cellular signaling pathways. 

 



 

Data discretization 

We discretized the protein and transcript data in order to determine which 

components were present in (or absent from) the initial state of each cell line network 

model.  Conceptually, the idea was to analyze the expression data for each protein in the 

initial state in order to decide if it showed differential expression across the panel of cell 

lines.  Proteins that showed a highly variable expression pattern across the panel of cell 

lines were considered present in some cell lines and absent from others.  Our approach to 

discretization and creation of the initial states was quite conservative.  That is, we did not 

omit a component from the initial state unless there was strong evidence that it is absent 

from a particular cell line.  We chose a conservative approach because in discrete 

networks such as these, errant omission of a component from the initial state can lead to 

significant effects on the structure of the network, in the form of truncated signaling 

pathways (see Figure 1B). 

We developed the following discretization method and applied it to both the 

protein and transcript data.  First, for each gene or protein, we used partitioning around 

medoids (PAM) clustering and a mean split silhouette (MSS) statistic to determine 

whether the log-transformed expression values are best represented as 1, 2 or 3 groups of 

cell lines [99]. We searched for 1, 2 or 3 groups because the distributions of expression 

values appear unimodal (i.e., 1 group, see Figure 1C), bimodal (i.e., 2 groups, see Figure 

1D), or tri-modal (see Figure 1E).  We used the MSS statistic for three reasons: first, it 

can be used to classify the expression values as a single group, whereas most algorithms 

(e.g., k-means) require a minimum of two groups; second, it accurately classified both 

 



one-tailed and two-tailed distributions; and finally, because it could identify small 

clusters in the data.  

Next, for genes that clustered into 2 or 3 groups, we compared the mean 

expression levels of the groups.  If the expression levels between the highest and lowest 

group differed by less than a 4-fold change, we collapsed the groups together.  This 

ensured that expression differences between the groups were great enough to be 

meaningful.  We assigned proteins to the initial states in the following way. If a single 

group best described the distribution of expression values, the protein was considered 

present in all the cell lines.  For distributions that yielded more than one group, the 

protein was considered absent from the initial state of the cell lines with the lowest mean 

expression; the protein was present in the initial state of cell lines in the highest group(s).  

We considered the protein present in the two clusters with highest mean expression in 

order to avoid erroneous omissions from the initial state of cell lines in the middle 

expression group.  Finally, if we had no data available from which to estimate the initial 

state, we considered the protein present in all cell lines.   

For model components that had both transcript and protein data available, we 

used the clustered protein (rather than transcript) data to populate the model. To ensure 

that we made the most robust initial state assignments possible, we used data from as 

many of the 51 cell lines for the discretization step, even if we ultimately did not create a 

network model for the cell line.  We performed the analyses above in R with the hopach 

package, available as part of the BioConductor tools suite [100].   

 

Analysis of network topology 

 



We used the following method to compare the networks.  First, we decomposed 

each network into a list of all the components and rules contained within it.  This list 

describes all the state changes (e.g., phosphorylation) and reactions in each network.  We 

clustered the network features with PAM and an MSS statistic that searched for the 

optimal number of clusters, up to a maximum of 40.  Each cluster can be considered a 

unique “signaling module” that represents a small portion of the total network.  We 

compared the presence or absence of these signaling modules across the panel of cell 

lines.  

 

Hierarchical clustering and data visualization 

The discretized data used to populate the initial states was hierarchically clustered 

using an average linkage algorithm and a Pearson correlation for the distance measure 

[53].  We also used this algorithm to cluster the cell line network models.  We used Java 

TreeView to visualize the clustered data in Figures 2 and 4 [101]. 

 

Abbreviations 

CDC42: Cell division control protein 42 homolog; CAV1: Caveolin-1; EPHA2: Ephrin 

type-A receptor 2 precursor; EGFR: epidermal growth factor receptor (erythroblastic 

leukemia viral (v-erb-b) oncogene homolog, avian); ER: estrogen/ESR1; ERBB2: v-erb-

b2 erythroblastic leukemia viral oncogene homolog 2, neuro/glioblastoma derived 

oncogene homolog (avian); ERBB3: v-erb-b2 erythroblastic leukemia viral oncogene 

homolog 3 (avian); ERBB4: v-erb-a erythroblastic leukemia viral oncogene homolog 4 

(avian); FOS: FBJ murine osteosarcoma viral (v-fos) oncogene homolog; FYN: Proto-

 



oncogene tyrosine-protein kinase FYN; JAK: Tyrosine-protein kinase JAK1  (Janus 

kinase 1); JUN: Transcription factor AP-1/ V-jun avian sarcoma virus 17 oncogene 

homolog, p39l; ITGB1: Integrin beta-1 precursor; KRAS: Transforming protein p21 K-

Ras 2/Ki-Ras/c-K-ras; KSR1: Kinase suppressor of ras-1; MAPK: mitogen-activated 

protein kinase/ERK; MEK: Mitogen-activated protein kinase kinase 1/2; NGEF: Ephexin, 

EPH receptor interacting exchange protein; PAK1: p21 protein (Cdc42/Rac)-activated 

kinase 1; PI3K: phospho-inositide-3-kinase; PIK3CA: PI3-kinase p110 subunit alpha; 

PTEN: Phosphatidylinositol-3,4,5-trisphosphate 3-phosphatase; PR: progesterone/PGR; 

RAC1: Ras-related C3 botulinum toxin substrate 1 p21-Rac1; RAF: RAF proto-oncogene 

serine/threonine-protein kinase; RHOB: ras homolog gene family, member B; SPRY1: 

sprouty homolog1, antagonist of FGF signaling; SRC: v-src sarcoma (Schmidt-Ruppin 

A-2) viral oncogene homolog; STAT: Signal transducer and activator of transcription 1-

alpha/beta; MSS: mean split silhouette statistic; PAM: partitioning around medoids 

clustering. 
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Figure 1.  The signaling networks include several hundred components, all connected in a 
discrete manner.  A. Example network.  Each circle represents a component in the 
network; lines represent connections between them (i.e., rules).  Key signaling 
components are noted.  B. A small subnetwork.  C, D, E. Examples of data used to 
populate the model.  Each histogram shows the distribution of expression values across 
the complete panel of cell lines.  Data for each component in the model were clustered 
individually to determine whether or not the component should be included in the initial 
state.  Components that clustered into two groups were present in the initial states of 
some cell lines and absent from others.  A. RAF1 Transcript data yielded a single group.  
B. ERBB4 protein data yielded two groups.  C. ESR1 yielded three groups. 
 
Figure 2. Initial states recapitulate the known biology.  Heatmap shows the components 
in the initial states that varied across the cell lines.  Each column represents the initial 
state from a single cell line network; each row represents data for one component.  Red 
indicates the component was present in the cell line; green indicates it was absent.  Data 
are hierarchically clustered along both dimensions.  Basal and luminal cell lines cluster 
into distinct groups. 
 
Figure 3.  Network connectivity follows a power-law relationship.  A. Distribution of the 
number of rule connections for each component in the model.  Most components have 
only a few rule connections.  B. Log-log plot.  Each dot represents the number of 
components in the model that have a particular number of rule connections.  The line 
represents the least-squares fit to the data. 
 
Figure 4.  The network models cluster into basal, luminal and mixed groups of cell lines.  
Heatmap shows the network features that varied across the cell line network models.  
Each column represents data from one network model; each row represents data for one 
network feature (component in the initial state, rule or component that underwent a state-
change).  Red indicates the component was present in the cell line; green indicates it was 
absent.  Hierarchical clustering along the vertical dimension reveals that the networks 
form basal, luminal and mixed clusters.  Hierarchical clustering along the horizontal 
dimension yields 30 signaling modules, each of which represents a small subnetwork.  
Signaling modules of particular interest, along with the key components in the initial 
state, are noted along the right side. 
 
Figure 5.  CAV1/ITGB1 signaling module is present in basal cell lines.  A. Signaling 
module.  CAV1, ITGB1 and FYN interact to activate SHC, which leads to activation of 
the MAPK cascade.  B, C. Distribution of CAV1 transcript (B) and protein (C) levels 
across the cell lines.  Both datasets show a bimodal distribution of CAV1. 
 
Figure 6.  PAK1 is a critical component of the MAPK cascade in our network models.  A. 
Subnet shows that PAK1 leads directly to activation of RAF, MEK and ERK.  B. 
Distribution of PAK1 transcript levels used in construction of the initial states.  PAK1 
yielded two clusters: a lower ‘absent’ cluster centered at -0.26 and an upper ‘present’ 
cluster centered at 2.16.  C. PAK1 protein and transcript levels are correlated.  Protein 

 



abundance is plotted on the x-axis; transcript data (log2 scale) is plotted along the y-axis.  
Line represents the least-squares fit to the data.  D. Copy number profiles for the region 
around the PAK1 amplicon on chromosome 11.  The vertical lines represent the locations 
of CCND1 (69Mb) and PAK1 (76Mb).  E. PAK1 protein levels are correlated with 
percent phospho-MEK1.  Each dot represents data from one cell line.  The line represents 
the least-squares fit to the data.   
 
Figure 7. PAK1 over-expression predicts responsiveness to MEK inhibitors.  Each pair of 
boxplots represents the average GI50 for luminal cell lines that over-express PAK1 
(PAK1+, blue) and those that express it at normal levels (PAK1-, red).  Within each box, 
the line represents the median; upper and lower boundaries represent the first and third 
quartiles, respectively.  The vertical lines extend to +/- 1.5IQR.  For all three drugs, 
PAK1+ cell lines are significantly more sensitive than PAK1- cell lines.

 



Table 1. Comparison of discretized protein and transcript data 
 

  

Protein 
clusters 

Transcript 
clusters 

Pearson’s 
correlation 

IRS1 2 2 0.0354 
EGFR 2 2 0.491 
ERBB3 2 2 0.491 
CAV1 2 2 0.523 
CD44 2 2 0.6 
CAV2 2 2 0.882 
ESR1 2 2 0.883 
CDH1 2 2 0.923 
AKT1 1 1 - 
GRB2 1 1 - 
HRAS 1 1 - 
IGF1R 1 1 - 
JAK1 1 1 - 
KRAS 1 1 - 
MAPK1 1 1 - 
MAPK3 1 1 - 
PTK2 1 1 - 
ERBB2 1 2 - 
GRB7 1 2 - 
CTNNB1 2 1 - 
EFNA1 2 1 - 
ERBB4 2 1 - 
RELA 2 1 - 
SRC 2 1 - 
JUN 2 1 - 

 

 



Table 2.  Summary of network features for the cell line models  
 
 

 
 
 
 
 
 

  Total 
Number 
variant 

Percent 
variant 

Rules 396 248 60 
State changes 253 141 55 
Initial state 286 39 13 

 
 
 
 
 
 

 



 
 
Table 3.  The most highly connected components in the network model 
 
 

Component 
Number of rule 

connections 
Variable across 

initial state 
EgfR 22 yes 
Pi3k 20 yes 
Src 18 yes 
Kras 17 yes 
Rhob 17 yes 
Rhoa 17 no 
Cbl 16 no 
Cdc42 16 no 
Rac1 16 no 
Erk1 15 no 
Erk2 15 no 
Hras 14 no 
Grb2 13 no 
PIP2 13 no 
Raf1 13 no 
Smad2 12 no 
Acta1 11 no 
Epha2 11 no 
Pkca 11 no 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

 
 

 



 

 
Table 4.  Summary of signaling modules 
 

  
Number 
of rules Key component(s) Summary of key events 

1 1 Pi3k, Erbb4 ErbB4 activation of Pi3k 
2 1 Snca Pyk2 activation of Snca 
3 1 Caml, Rsk Rsk activation of Caml 
4 1 Stat3 Stat3 activation by EgfR 
5 1 Irs, Pi3k Irs activation of Pi3k 
6 1 Rela Formation of Ikba, Nfkb1, Rela complex 
7 2 Pik3ca-mut Akt signaling through Pi3k mutant 
8 2 Mef2c Camk activation of Mef2c 
9 2 IL11R, Jak IL11R activation of Jak 

10 2 Elmo, Rac1 Elmo activation of Rac1 
11 2 Abi1, Pir121 Wave1 activation dependent on Abi1 and Pir121 
12 3 Mylk Mylk activation of Mlc 
13 3 Rhob Rhob activation 
14 3 EsR1, Bcat EsR1 activation by Rsk; Bcat activation 
15 3 Fos Fos activation by Erk 
16 3 Bcat Activation and degredation of Bcat 
17 4 Cav1, UpaR Integrin/Cav1 activation of Shc; UpaR activation 
18 5 Pten, Kras, Pik3ca Mutation rules 
19 5 ErbB4 ErbB4 activation of ErbB2, Shc; Grb2 relocation 
20 6 PrlR PrlR signaling 
21 7 Irs1 Irs1 activation; Grb2 translocation 
22 8 Pi3k 8 ways to activate Pi3k 
23 12 Rhob Rhob activation of first-order effectors 
24 12 Cbl Cbl-related signaling, including Rap1a, Crk, Dock 
25 14 Src Src-related signaling, including Fak, Pax, Cas 
26 15 EgfR First-order EgfR interactions including ErbB2, Grb2, Cbl 
27 16 Efna1 Epha2/Efna1 signaling; Integrin deactivation by Epha2 
28 27 ErbB3 ErbB3 activation by Nrg1 and ErbB2; ErbB3 activation of Shc 

29 32 EgfR, Src 
Src-dependent activation of EgfR; Cdc42 signaling; activation of 
Src effectors 

30 76 Src, Rac1-GTP Rac1 signaling; MAPK activation 
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