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Abstract
Essays in Network Econometrics
by
Yassine Shai Sassi
Doctor of Philosophy in Economics
University of California, Berkeley

Professor Bryan S. Graham, Chair

This dissertation studies estimation and inference on models with dyadic dependence, that
is models for double indexed observations where observations are correlated whenever they
share an index. Data exhibiting this form of dependence are commonplace: from international
trade (e.g. Rose (2004)) to sales on online platforms (e.g. Bajari et al. (2023)) or social
networks (Fafchamps and Gubert (2007)). Because of the particular dependence structure,
very little is known about efficiency in these models. For instance, for parametric models,
only a handful of examples have likelihood functions or maximum likelihood estimators
that can be expressed in closed form or that are computationally feasible. The analyst is
forced to sacrifice efficiency for computational ease and tractability. Unfortunately, unlike
cross-sectional models, efficiency losses in dyadic models can manifest as drops in rates of
convergence rather than just asymptotic variance, immensely impacting the precision of
estimation.

The dissertation explores new estimation methods for different dyadic models, with a particular
attention to efficiency and computational feasibility. Each of The three chapters in this
dissertation studies a set of dyadic models and estimators for those models. The first and
last chapters present efficiency results.

In the first chapter I propose a two step rate optimal estimator for an undirected dyadic linear
regression model with interactive unit-specific effects. The estimator remains consistent when
the individual effects are additive rather than interactive. We observe that the unit-specific
effects alter the eigenvalue distribution of the data’s matrix representation in significant and
distinctive ways. We offer a correction for the ordinary least squares’ objective function to
attenuate the statistical noise that arises due to the individual effects, and in some cases,
completely eliminate it. The new objective function is similar to the least squares estimator’s
objective function from the large N large T" panel data literature (Bai (2009)). In general,
the objective function is ill behaved and admits multiple local minima. Following a novel
proof strategy, we show that in the presence of interactive effects, an iterative process in



line with Bai (2009)’s converges to a global minimizer and is asymptotically normal when
initiated properly. The new proof strategy suggests a computationally more advantageous
and asymptotically equivalent estimator. While the iterative process does not converge when
the individual effects are additive, we show that the alternative estimator remains consistent
for all slope parameters.

Chapter 2 proposes a general procedure to construct estimators for exchangeable network
models. For any network model, consider an auxiliary ¢.7.d. model where each observation
has the same distribution as any observation in the original model. The procedure returns
estimators for the original model whenever valid estimators are known in the auxiliary i.7.d.
model. The chapter then studies the asymptotic behavior of the “the average MLE”, the
estimators returned by the procedure for parametric binomial network models. I show that
the average MLFE behaves asymptotically like the composite maximum likelihood estimator.
Interestingly, the average MLE does not require the entire network to be observed. For
instance, I show that for a balanced bipartite graph, observing almost any sub-graph with
more than N2+¢ edges for some € > 0 (out of the total N? edges) is enough for the asymptotic
result to hold. These results are readily extendable beyond the binomial model.

The final chapter studies the properties of the maximum likelihood estimator (MLE) for
exponential families of distributions on network data. I show that, under some conditions,
the MLE is asymptotically normally distributed with an asymptotic variance equal to the
inverse of the information matrix. I also show that under those same conditions, the MLE is
efficient compared to regular estimators with the same rate of convergence. This extends well
known results on MLE for i.i.d. models.
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Chapter 1

A linear regression model for
non-oriented dyadic data with
interactive individual effects

Introduction

Linear regression models with individual-specific effects are widely used to fit data with
network structures. Such linear models were used to explain trade flows between countries
(Anderson and van Wincoop (2003), Fally (2015)), to fit matched employer-employee data
(Abowd et al. (1999), Bonhomme et al. (2019)), or to study teacher effects on student
performance (Jackson et al. (2014)), to mention a few examples. In applications, these
linear regression models are most often used with a particular specification of the individual-
specific effect. A popular specification consists of including the individual effects additively.
This is the approach taken for instance in Abowd et al. (1999) and Jackson et al. (2014).
Broadly, three types of estimators are used under this specification. The two way fixed
effects estimator (Abowd et al. (1999)) exploits the additivity of the model to eliminate
the individual effects. After double differencing, the initial model is turned into a regular
linear regression model (free of the individual effects), and estimators are obtained by least
squares on the transformed model. When the data is non bipartite with a number N of
agents (respectively, when it is bipartite, with N and M agents on each side), the two way
fixed estimator of the slope parameters converges at the optimal rate of N (resp. vV NM).
The two way fixed estimator comes with a significant caveat: the slope parameters on any
agent-specific observable covariates disappear in the double differencing process, in the same
way as the individual effects. Those can be recovered in a second stage by ordinary least
squares if we further assume the individual effects to be exogenous with respect to the additive
observable attributes. The second stage OLS estimators for the slope parameters on the
additive covariates converges at a v/N rate.

A second approach appeals to the standard OLS estimator (e.g. Rose (2004), Fafchamps
and Gubert (2007)). In the dyadic linear regression setting, the OLS estimator is in general



V/N consistent for all the parameters. Given that for some covariates the two way fixed effects
estimator can provide N-consistent estimators, the OLS estimator is severely inefficient.

Other approaches consist of estimating a fixed effects model, by regressing the output
variable on the covariates, individual indicators and interactions of individual interactions.
Examples abound in the large N large T panel data literature. Bai (2009), Moon and Weidner
(2015) and Moon and Weidner (2017) study the least squares (LS) estimator, obtained by
treating the individual and time effects as nuisance parameters estimated by minimizing the
squared errors. The least squares estimator is shown to converge at the optimal v NT rate.
However, the LS estimator is obtained by minimizing the objective function over K +71 + N
parameters (K being the dimension of the slope parameter, N and T the dimensions of
the cross-sectional and time effects), which poses computational challenges. Bai (2009)
proposes an iterative minimization routine that is guaranteed to converge to a stationary
point. However, the objective function can be ill-behaved, potentially admitting multiple
stationary points. Moon and Weidner (2023) propose an iterative process that returns an
estimator that is asymptotically equivalent to the LS estimator after just 2 iterations, when
initiated with a consistent but potentially rate inferior estimator. Each of the iterations
requires the resolution of a high dimensional minimization problem.

This paper studies symmetric non-oriented network regression models with interactive
effects. We propose a modification over the ordinary least squares estimator’s objective
function to obtain a new low dimensional objective function. We exploit the matrix structure
of network data and identify the individual effects’ footprint on the spectrum of the output
matrix. We then correct for the unobservables’ effect on the spectrum. We show that the
estimator obtained through the minimization of the new objective function has a similar
asymptotic behavior to the LS estimator from the large N large T panel data literature.

We propose an iterative process to solve the new minimization problem. Following Sargan
(1964)’s standard argument, the iterative process is guaranteed to converge to a stationary
point. However, the new objective function can have multiple local minima. We show that if
the iterative process is initiated by a consistent but potentially rate inferior estimator, then
the iterations converge to a global minimizer. We study the asymptotic behavior of that
specific global minimizer.

Interestingly, we show that in theory, no finite number of iterations is enough to jump
from the inferior initial rate of convergence to the optimal N rate. To escape the inferior rate,
the number of iterations ought to be indexed by the sample size, which is computationally
problematic. Building on our results on the distribution of a single iteration estimator, we
propose an equivalent estimator that only requires 1 iteration when the initial estimator is
V/N? consistent, or 2 iterations when the initial estimator is v/N consistent, substantially
reducing the computational burden.

IThe language in this statement is kept intentionally loose. The usual assumptions in the large N large T
panel data literature (e.g. Bai (2009), Moon and Weidner (2015), Moon and Weidner (2017), etc) exclude the
network models that this paper studies. However, the proofs in that literature can be marginally modified to
obtain results on the LS estimator in our context. Later in this paper (especially following corollary 3), we
precise in what sense the estimator proposed in this paper compares to the LS estimator.



Throughout the paper, an initial v/N- consistent estimator is assumed to be available. In
the context of dyadic (network) regression, the individual effects are generally assumed to
be centered and independent from the observable regressors (e.g. Graham (2020), Graham
et al. (2021)). When that is the case, the OLS estimator is v/ N-consistent and is a good
candidate for the initiation phase. Generally, for dyadic data, one can always extract an i.i.d.
subsample of a size of order N (for instance by only keeping the observations with indices
{1,2}, {3,4}, ..., {N — 1, N}, which are i.i.d. observations since no index appears more than
once), then employ whatever cross-sectional estimation procedure is suitable for the context
at hand (for instance, using an instrumental variable for the unobservable effects on the
i.i.d. subsample). This would typically yield a V/N-consistent estimator. The results in the
paper are more general in the sense that they allow for an arbitrary correlation between the
regressors and the individual effects, as long as an initial estimator is available.

The next section introduces the setup and lays out the main intuitions leading up to the
definition of the new estimator. Section 1.3 discusses the estimator’s theoretical properties
and numerical implementation. Section 3 proposes estimators for the covariance matrix.
Section 1.5 examines the asymptotic distribution of the alternative estimator in a specification
without interactive effects. Finally, section 1.6 shows the results from Monte Carlo simulations
and from an empirical illustration and the last section concludes. All proofs are deferred to
the end of the paper (appendix 1.8).

1.1 Minimizing the least eigenvalues: definitions and
main results

Consider the model:
Yij = XiiBo +7(Ai + 4;) + 0(A; x Aj) + Vi (1.1)

for all ¢ # j, where A;’s are i.i.d centered random variables with finite fourth moments. The
Vi;'s are 1.i.d centered square integrable random variables with V;; = Vj;, 8o :== (Bo1, .-, Bo.1) 18
the parameter of interest and v > 0 and § € {—1,0, +1} are unknown nuisance parameters.>
The covariates X are such that for all 4, j,[ such that i # j: X;;; = X, = o(X;, X;, Wij),
for some (possibly unknown) function ¢, i.i.d random variables X; and i.i.d. variables W;;.
By convention, X;;; = 0 for all 4 and [ and the first covariate is the intercept (i.e. X;;; =1
for all ¢ # j).

When § # 0, the model in equation (1.1) can also be re-expressed:

L
Yy =) BoaXiju = 09" + (A +7)(4 +7) + Vi (1.2)

=1

27 is set to be positive because the model (1.1) can also be re-expressed as Y;; = X;; 8+ (—7)((—A4;) +

(—A;)) 4+ x (—A;) x (—A;) + Vi;. The sign of v is not identified.



which reduces the study of the model (1.1) to that of:

L
Y;'j = ZWO,lXij,l + 6UZU] + V;j (13)

=1

where the errors U; := v+ A; are no longer assumed to be centered. All the slope parameters
remain unchanged as you move from model (1.1) to (1.2) (or (1.3)), only the intercept is
altered by the correction term“—§v2?” in equation (1.2). Therefore, any “good” estimators
for the parameters of the model (1.3) also provide good estimators for the parameters in
models (1.1) and (1.2), except perhaps for their intercepts. Because the intercept is shifted
by —dv* when we move from the original model (1.1) to model (1.3), the OLS estimator of
the intercept would need to be corrected to account for the shift. That is done in Proposition
7 and relegated to the appendix.

Let N be the sample size (number of nodes or agents 7). Denote Y and V the N x N
matrices with entries Y;;, V;; and X; the matrix with entries X;;; forevery [ =1...L. Y
and X;’s diagonal entries are equal to zero. V’s ith diagonal term is equal to §(E(UZ) — U?).
Finally, stack the individual random effects into a vector denoted U. This allows for the
formulation of model 1.3 in a compact matrix form :

L
Y =) mu X+ UV +V = SE(U})Iy (1.4)

=1

Iy being the identity matrix of dimension N. Let M (7) be the matrix of residuals corre-
sponding to 7:

L L
M(m):=Y => mX; =Y (mo, — m)X; + 6UU' +V = SE(U}) Iy (1.5)
=1 =1

For any N x N matrix M, Tr(M) denotes M’s trace, Ay (M) > Ao(M) > ... Ay(M) are
M’s eigenvalues ranked from largest to smallest. We study the estimator that minimizes the
objective function

gn(m) = Z i (M(?T)z) (1.6)

that is, the sum of M (7)?’s N — 1 smallest eigenvalues; gy is a modification over the ordinary
least squares’ objective function, observe:

g (m) = Z Xi (M(m)?) = Tr (M(m)?) — Ay (M(x)?)

L
= (Yo D mXiu| — M (M(@)?)
,J =1
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Figure 1.1: The graph of the function gn for the model Yi; = mo + U;U; 4+ Vij; oy = oy =1,
E(U)=1, N =100 and 7y = 1. The values of m are on the X-axis, and the corresponding
fn(m) is on the Y-axis.

and note that the OLS estimator minimizes the sum of squared residuals

2

L
Z Yij — Z mXij
=1

0,

The OLS estimator is efficient when the interactive term U;U; is absent from equation (1.3),
and as we discuss further later in this paper, the interactive term mostly impacts M (7)’s
largest eigenvalue, once 7 is close enough to the true my. The new objective function gy
mechanically removes the largest eigenvalue, the one baring most of UU’ impact on the sum
of squared errors (c.f. section 1.2 for a detailed discussion).

The problem of minimizing gy can’t be solved in closed form and the function gy is in
general ill behaved (globally not smooth and potentially admitting multiple local minima).
Following Bai (2009), we propose an iterative process and show that it converges to a global
minimizer when initiated properly. In studying the minimizer of the objective function (1.6),
we take a different route than the common route in the panel data literature. Bai (2009)
offers the iterative process as a practical method of minimizing gy, but studies the asymptotic
properties of the minimizer independently of how it is obtained in practice. The function gy
can admit multiple stationary points and the iterations are not guaranteed to converge to
the intended argmin. To illustrate this point, figure (1.1) shows a plot of the function gy for
the model Y;; = g + U;U; + Vij; op = oy =1, E(U) =1, N =100 and 7y = 1.

In this paper, we study the global minimizer specifically by analysing the effect of individual
iterations, then combining the effects of successive iterations. In addition to guaranteeing
convergence to the desired minimizer (conditional on proper initialization), this proof strategy



also offers the simple shortcuts at the origin of our equivalent and computationally more
efficient alternative estimator. Let fy be the function

fN LT — ZXZ/]XU — Z Vi(ﬁ)ljj(ﬁ)X]/-kXik ZX;JY;J — z I/Z'(W)I/j(T[')X],-kY;k
i#i i g it oy
Lemma 1. Assume E(X{,X12) is invertible. With probability approaching 1, the problem

N
min N (M ()2 1.7
iy 3 (M (7)) (17)
admits a solution for N large enough. Moreover, ™ is a minimizer of (1.6) if and only if it
is a solution to the fized point problem:

T = fn(m) (1.8)

where v(r) is the normalized (||v(m)||> = 1) eigenvector of M(w) corresponding to M(m)'s
largest eigenvalue.

Proof. See section 1.8. O

The condition on E(X],Xi2) is a standard non-collinearity condition. In addition to
guaranteeing the existence of a solution, Lemma 1 provides a practical tool to study the
behavior of estimators obtained through the optimization problem (1.6). Intuitively, equation
(1.8) is a first order condition of a minimization problem that is equivalent to (1.6). Let

T € arg mingepr Son o Ai (]\/[(7?))2 and note

N
2
7 € arg min )\
gWGR Z ))
2
= 7 Eargmlnz Yi; Zm gl | — IﬁlzﬁxlylM(ﬂ')Ql/
vi|\V||=
i#]
2
=" Eargmmz Yi; ZTQXZJ’ — v(m*) M (7)?v(r*)
7]
where v(r) € arg max /' M(n)*v
vi|v||=1

= 7" Gargmlnz Yi; ZW il

i#]

L L
- E ZWlXik,l Yij — E mXkji
=1

i,j,k;ﬁl,j =1
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Figure 1.2: The graph of the function fx for the model Y;; = m + U U; + Vij; oy = oy =1,
N =100. The values of m are on the X-azis, and the corresponding fy(m) is on the Y-axis.

The last equality allows for the expression of 7 as the minimizer of a smooth and convex
function over R® (in fact, strictly convex with probability 1, when N is large enough):

2

L L L
™ — Z Y;j — Z 7T1Xij7l - Z V’L'<7T*)I/j(ﬂ-*) Yir — Z 7Tl)(z‘k,l chj - ZWlej,l
=1 =1 =1

i#] 1,0,k F 1]

the first order condition results in the fixed point problem (1.8). The proof in section 1.8
closely follows this sketch.

Lemma 1 does not guarantee the uniqueness of the solution to the minimization problem
(1.6). The iteration process just described, when it converges, could converge to one of many
potential fixed point of (1.8) (solutions to (1.6)). Additionally, the iteration process could be
explosive, leading the iterations to diverge rather than approach one of the fixed points. The
function fy is generally ill-behaved. In general, it is neither convex, nor quasi-convex, nor
differentiable. Figure 1.2 illustrates fy’s behavior for the simplest model nested in model
(1.3): Y;; =mo + U;U;j + Vjj for oy = oy =1, mp = 1 and for N = 100. In this example, fy is
convex between ~ —0.5 and ~ 2, it has a point of inflexion, smoothly switching convexity at
~ —0.5. fy is not differentiable at ~ 2. However, fy has a unique minimum (on the interval
displayed in figure 1.2), that is close to the true parameter m = m9 = 1. The figure also points
to the direction that the results in the sequel will follow: I show that with high probability,
fn is well behaved in a shrinking neighborhood of 7y; my being unknown, knowledge of a good
enough first stage estimator will be essential throughout the paper. In particular, we study
the estimator defined defined in (1.6) by studying single successive iterations on the fixed
point problem (1.8). It turns out that when the iteration process is initiated with a good
first stage estimator, e.g. OLS when the individual effects are assumed to be independent
of the observable covariate, the process converges to a fixed point or a minimizer (formal
statements are presented in Corollary 2 in the following section).

The estimator(s) studied in this paper are obtained by iterating equation (1.8), that is, by
plugging some “reasonable” initial estimator in the right hand side of (1.8) to obtain what we



show is a more precise estimator on the left hand side, then iterating this process as needed
until the true fixed point distribution is achieved.

Before stating the main result, let’s summarize the assumptions we have used in the
previous Lemma and intuitions.

Assumption A. - Xij = Xji = o(X;, X;, Wi;) has at least 4 finite moments.
- B(X12X15) is full rank.

Assumption B. - The Vij’s are i.i.d. across pairs, and have at least 2 finite moments.
- The U; ’s are i.i.d. across individuals and have at least 4 finite moments.
-Var(U) =103 #0

We will need to introduce a final assumption ensuring that the matrix of covariates does
not include the multiplicative individual effects U;:

Assumption C. The vector of covariates is not perfectly collinear with the individual errors,
that is: for any vector X € RE, P(N X, = U Usy) < 1.

This is a basic identifying assumption, without which the “unobserved” effects term U,U;
is in fact a linear combination of observable features. We are ready to state our main result:

Theorem 1. Let the assumptions A, B and C hold. Let 7 be an estimator such that
T —m = Op (\/Lﬁ) Define the sequence w,, by: 7p := T and Tpi1 = fn(Tm), and let

~ sk

7* = limsup,, T,m. Then with probability approaching 1 7 = lim,, 4100 Ty and T is a
solution to (1.6). Moreover:

_ EUY) _
~ 1 3 1 2 y—1
N(7* —mp) =4 0% <E<U12)E(U1X12U2) — E(U12>2E(U1U2X12)> +N(0,20V2 ) (1.9)
for
1 2
3= (E(Xng{Q) + WE(UlUQXm)E(UlUQXQ)’ — E(U%)E(UlUgXngég)))
Proof. Immediately follows from Corollary 2 and Proposition 4. [

Theorem 1 shows that if we iterate for long enough, we approach a minimizer of the
objective function gy with high probability. The theorem does however not provide any
guidance regarding the number of iterations that are required to “sufficiently” approach
the optimum. In fact, we show (in proposition 1) that if we initiate with a v/N-consistent
estimator, no finite number of iterations is sufficient to escape the v/N rate of convergence.
For any hope of achieving a superior rate, the number of iterations needs to be indexed
by the sample size N, which is computationally challenging. One exception to this curse



is noteworthy. If the individual effects are centered and independent of the observable
regressors X, then proposition 2 shows that even initiating with a v/N-consistent estimator,
one iteration is enough to obtain an estimator with the same asymptotic properties as 7*.
In that case also, interestingly, the OLS estimator is N-consistent but has a non standard
asymptotic distribution (c.f. for instance Menzel (2021)). Moreover, under these assumptions,
7* is easily shown to be asymptotically efficient (refer to the discussion following proposition
2).

We circumvent the debate around the appropriate number of iterations by proposing an
alternative estimator that is asymptotically equivalent to the “oracle” 7*. The alternative
estimator only requires 2 iterations on the function fy, significantly limiting the computational
burden. First, starting with a v/N-consistent estimator 7, define the matrix

—1

K= | 2 XigXiju = D ) Xi; Xn(#)
i#j i#5,k

< Y S vi(®) Xy X (@) — | Y u@® X (@) | | vil®) Xiv(7)

i#j i#j i#]
then follow the three steps:

1. Run one iteration to get 7y := fn(7)

2. Compute 7y := (I, — K) 'y 4+ (I, — (I; — K) ™7

3. Tterate on 7 to get 7y := fn(71)

4. Compute 7y == (I, — K) Yty + (I — (I — K) ™)y

we show (proposition 5) that Ky is a consistent estimator for a matrix K that is central
to our analysis of the iteration process. More on the definition of K, its role, and why the
4 steps above deliver an estimator with the desired properties comes in section 1.3. We
conclude this section by stating the paper’s second main theorem:

Theorem 2. Under the assumptions of theorem 1

Proof. Immediately follows from Corollaries 3 and 4. O]

When § = 0 in model (1.1), however, the iterations become explosive (see proposition
6) and do not converge. Therefore, the limit distribution of * is not well defined. The
alternative estimator remains consistent for all slope parameters, excluding the interecept,
when the individual effects A in equation (1.1) are independent of the regressors X. When
the individual effects and the regressors are correlated, the iterations introduce bias to all
parameters, whence the need for the following assumption:
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Assumption D. Assume that for all i, j, the individual effects A;, A; are independent from
the regressor X;.

Theorem 3. Under the assumptions A and D, and § = 0, and assuming 7 is /N -consistent
for myg. Then:

VNdiag(0,1,...,1) (72 — m) = diag(0,1,...,1) (rl(c)\/ﬁ(fr —m) + PQ(C)\/—N > Xz-jAj>

N2 &
ij
1
+ 0, | —=
(o)
= 0p(1)
for some c~1— 2Be7’n0uilli(%) and some deterministic matriz valued functions I'y(.) and

La(.).
Proof. Follows from Proposition 6 (section 1.5) and Lemma 5 in Appendix 1.8. O

The two following sections discuss the intuition behind the least eigenvalue estimator
and break down the intermediary results leading to theorems 1 and 2. Section 1.2 details
how the interactive term in equation (1.3) affects the spectrum of the matrix M (7) and why
minimizing the function gy is a sensible choice. Section 1.3 outlines the theoretical results
starting from the behavior of a single iteration estimator and leading up to the construction
of the alternative estimator 7.

1.2 Some intuition

Consider the ordinary least squares estimator on model 1.3, defined by

2

’/TOLS = arg m]g% Zj E 7Tl ij,l
(S i

=arg min Tr X
gﬂeR ( Zﬁz l

(1.10)

i=1

N
= arg;reli& Z (x\, Y — ZW;XZ
/\

N
=: arg min E i
meRL

1=

—_
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Equation (1.10) indicates that the OLS estimator can also be defined as a minimizer
of the average squared eigenvalues of the matrix M (7). Let’s examine the distribution of
M (m)’s eigenvalues for values of 7 that are “close” to the true value 7y, assuming § = 1 (the
treatment for § = —1 is similar). Begin with the value m = 7, that is, let’s look at the
distribution of the eigenvalues of the matrix UU’ + V. 3 Figure 1.3 shows the histogram
of the eigenvalues of the simulated matrix \/—IN (UU"+ V), where the U’s and V’s are i.i.d
standard normal and the sample size is set to N = 1000.

—_
S
=)
T
1
|
|

# occurrences
ot
S
I
|

O I [ T T T T T T T T T T T T T T T T
-2 0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32 34
Eigenvalues

Figure 1.3: Histogram for \}—NM(WO)’S eigenvalues; o, = 0, =1, N = 1000

The histogram in figure 1.3 shows two distinct parts: to the left, a block of eigenvalues
concentrated between values ~ —2 and ~ +2, and a single eigenvalue, further to the right, at
around value ~ 31. After proper rescaling (and ignoring the single eigenvalue to the left for
the rescaled histogram to fit on a page) the block of eigenvalues to the left has the shape of a
semi-circle as shown in Figure 1.4 .

To rationalize the shape of Figure 1.3, let’s examine the eigenvalues of each of the terms
composing M (mp). The matrix UU’ is of rank 1, its unique non null eigenvalue is equal to
U'U = 3", U? which is of the same order as NE(U?) when N is large enough.

Figure 1.5 shows the histogram of Vs eigenvalues. The two histograms in 1.4 and 1.5 are
seemingly identical. Only M (mg)’s outlier eigenvalue (the one approximately equal to 46) is
absent from V’s histogram. This should come as no surprise: the matrix M (m) is a rank
1 deformation of V. The impact of rank 1 deformations on the eigenvalues of the original
matrix (V here) is well studied (e.g. Bunch et al. (1978)). Because UU’s unique eigenvalue
is positive, modifying V' through UU’ shifts all of V’s eigenvalues upwards such that Vs
eigenvalues are interlaced with V' + UU"’s, that is, for i = 2, ..., N:

AN(V) <N (V+UU') < Xa(V)
and
MV) <N (V+UU)

3We ignore the effect of the matrix E(U?)Ix in the discussion that follows. E(UZ)Iy simply shifts all
eigenvalues by the same quantity E(UZ). The shift size will turn out to be of a low order of magnitude
compared to the bulk of UU’ 4+ Vs eigenvalues and its effect will be negligible anyways.




12

# occurrences

Eigenvalues

Figure 1.4: A zoom into the semi circle (the left block in Figure 1.3)
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Figure 1.5: A histogram for \/LNV’S eigenvalues; o, =1 , N = 1000

Provided that V’s eigenvalues (rescaled by \/LN) are concentrated roughly between -2 and
2, then the inequalities above predict that V 4+ UU"”’s N — 1 smallest eigenvalues will be
only shifted by a small amount, which explains why the figures 1.4 and 1.5 are not visually
distinguishible.

The semi-circle in figure 1.4 is reminiscent of Wigner’s semi-circle law in the random
matrix literature (see for instance Benaych-Georges and Knowles (2016)). Wigner’s law states
that the empirical distribution of the eigenvalues of a random symmetric matrix with centered
square integrable entries “converges” (in a sense that is made precise below) to a distribution
with a semi-circular probability density function. In particular, Fiiredi and Komlés (1981)
show that Vs largest eigenvalue is of order v/N with probability approaching 1 as N grows.

These observations combined suggest the following rough interpretation of the histogram
1.3: M(m)’s N — 1 smallest eigenvalues are of order v/N and are "very close” to Vs
eigenvalues, whereas the largest eigenvalue is due to the UU’ deformation and is of order N.

Let’s extend these intuitions to values of 7 that are different from the true parameter
mo. If 7 is too far from 7, then the term Y7 (mo; — m)X; in equation (1.5) can become
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dominant and dwarf the contributions of V' and UU’ in M (7)’s eigenvalue distribution. In
the other extreme, when the candidate 7 is“very close” to my, then the contribution of the
covariates’ term becomes negligible and we obtain a histogram that is similar to the one in
figure 1.3.

The values of 7 that are abberantly far from my lead to the eigenvalues of Zle(ﬂogl —
m)X; being of a higher than order V/N. Subsequently, they are easy to eliminate as they
produce a histogram that is grossly different from the one in figure 1.3. However, this rough
discrimination strategy will be ineffective for values of 7 that return a term Zf:1(770,l —m) X,
of order v/N or lower. In any case, for model (1.3), when U is independent of X, the OLS
estimator is known to be at least v/N consistent in general (See for instance Menzel (2021)
or section 4 in Graham (2020)).* The following lemma shows that any /N estimator is in
fact “close enough” for our purposes.

Lemma 2. Assume that assumption A holds. We have that
max [ (Xn)| = O,(N)
Proof. Refer to subsection 1.8. n

The lemma implies that any initial estimator 7 that is /N consistent - like the OLS
estimator - would yield a covariates’ term such that ™7 (mo; — ) X; = O,(v/N). It would
produce an eigenvalue histogram for M (7) that is similar to figure 1.3 with one outlier
eigenvalue of order N, due to the rank 1 modification UU’, and a cloud of eigenvalues that
are of a smaller order v/N but that need not form a semi-circle this time.

Provided that the candidate 7 is close enough to m, the largest eigenvalue of M () is,
at least up to a first order approximation, closely tied to the error term UU’. Notice that,
absent the UU’ from the model 1.3 (or the random effects A; and A; from the model (1.1)),
we would be back to the standard linear regression model with i.i.d. and exogenous noise V;;.

In that case, we know that OLS is efficient, and since the sample size is N(]\éfl), the rate of

convergence of the OLS estimator would be N, rather than v/N under models (1.1) or (1.3).

An appealing idea is then to modify the objective function in the matrix form definition
of the OLS in (1.10) to remove the contribution of the random effects. Following the intuition
laid down so far, this can for instance be done by removing M (7)’s largest eigenvalue from
the sum of squared errors before minimizing. The new estimator would be a solution to the
minimization problem

min » N (M(7)*) = gn(n) (1.11)

1.3 Single iteration analysis

The first result examines a single iteration of the fixed point problem (1.8).

4In fact, if E(U;) # 0, the OLS estimator of the intercept is biased. In proposition 7 (appendix 1.8), we
show how that bias can be corrected to obtain a v/ N-consistent estimator.
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Proposition 1. Consider the model 1.5:

K
E/ij = Z WO,kXij,k + (5U1U] -+ V;j - Xz-jﬂ'o + 5UZU] -+ Vz’j
k=1
where § € {—1,+1}. Under the assumptions A, B and C, given a first stage estimator T such

that ||7 — mo|| = O, ﬁ), the single iteration estimator
-1
Fi= [ D OXXG— > wl®)y(R) X Xa MNOXLYi— > v @) (R) XY
i#j i#j,k#i,j i#j i#£5,k#1,j
(1.12)

satisfies

VN(# — 1) = KVN (% — m) + O, (\/LN) (1.13)

for

, 1 , -
(E(X12X12) — mE(U1U3X12X32)>
1

1
X (E(U1U3X12X23> - E(UQ)E(U1X12U2)E<U1U2X12)>
1

A detailed proof is presented in section 1.8. Proposition 3 shows that

1
(E(X{QXH) — mE(UlUgX{Qng))
1

is invertible, ensuring that K is well defined.

Equation (1.13) describes how the distribution of the single iteration estimator relates
to the first stage estimator’s. An immediate corollary of proposition (1) is that the single
iteration estimator 7 is consistent and converges to 7 at least as at a rate of v/N. Also, up
to a first order approximation, the single stage estimator depends linearly on the initial 7.

Whether the iteration process improves the quality of estimation depends on the matrix
K. When the individual effects U are independent of the regressors X and when E(U;) =0
in proposition 1, the matrix K is null and equation (1.13) becomes

7A1'—7T0:Op<%>.

After a single iteration, we are able to achieve the optimal rate of convergence N. Unfortu-
nately, proposition 1 does not provide the asymptotic distribution of 7 or the effect iterations
have beyond the first iteration. To answer both these questions, we need to zoom into the
O, (ﬁ) term in equation (1.13) and determine how it depends on the first stage estimator

7 and/or how it behaves asymptotically. The next proposition and its proof in appendix 1.8
address this case.
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Proposition 2. In addition to the assumptions in proposition 1, assume that the individual
effects are independent of the regressors X;; and that E(U;) =0, then

N(# —mo) =a N (0,202 E(X12X1,)7") (1.14)

A “one step theorem” applies, one iteration is enough to achieve full efficiency. The
argument proving the efficiency of 7 in proposition 2 is simple: consider the alternative
model Y;; = 2113:1 04X + Vij = Xyjmo + Vij is i.i.d. with 7.4.d. errors Vj;. In this model, the
ordinary least squares estimator is known to be efficient and asymptotically normal, with
asymptotic covariance matrix 202 F(X1,X],) ! - the same asymptotic distribution as in (1.14)
(see for instance Chamberlain (1987a) or Newey (1990)). Given that our model of interest
(1.3) is noisier than the alternative model, the following corollary holds.

Corollary 1. Under the assumptions of proposition 2, the single iteration estimator defined
in (1.13) is semi-parametrically efficient.

When K # 0, the one step theorem no longer applies. After any finite number of
iterations, the new estimator is still v/N-consistent. To understand the role of K when
K # 0, consider the simple case where we have a single regressor (L = 1). K becomes a
scalar and when |K| < 1, 7 is to a first order closer to my than 7. If the first stage estimator
is asymptotically normal (the standard ordinary least squares estimator for example) with an
asymptotic variance of 52, then 7 is normally distributed with variance K262 < 2. Moreover,
as we iterate, the variance decays exponentially in the number of iterations. Conversely,
if |K| > 1, iterations produce noisier estimators, and the variance explodes exponentially
with the number of iterations. Finally, if || = 1, then the new estimator is asymptotically
equivalent to the first stage estimator, iteration is neither useful nor harmful.

Simplify further, and assume that the single regressor is in fact just a constant X;; =1,

that is, we are interested in estimating the mean of Y;;. The constant K becomes K = %Ul);
1

which is positive and strictly smaller than 1 (since by assumption o7 > 0), the iterations
improve estimation quality.

When L > 1, K is a matrix. Rather than comparing K to 1, the relevant comparison
is now between K and I - the identity matrix of dimension L - in the partial order on
symmetric matrices. When K2 > I, that is, when K’s eigenvalues are all larger than 1 in
absolute value, the successive iterations follow an explosive path of covariance matrices. The
conclusions are similar to the univariate setting in the two cases: K? < I, or K? = I;. In
the multivariate case however, these three cases are not exhaustive, since > here is only a
partial order. Fortunately, the next proposition shows that the only possibile case, given our
assumptions, is in fact 0 < K < I.

Proposition 3. Under the assumptions of proposition 1, the matrix

/ 1 /
(E(X12X12) - (U2)E(U1U3X12X32)>

1
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15 positive definite and all the eigenvalues of the matriz

1 1 B
K = m (E(X12X12) - mE(UIU?)X{QXE}Q))

1
X (E(U1U3X12X23) — mE(UlegUQ)E(U1U2X12)>
1

are positive and strictly smaller than 1.
Proof. cf. section 1.8 n

Together, the Propositions 1 and 3 imply that given a v/N-consistent initial estimator
and a fixed € > 0, we iterate the process described in the equation (1.12) to obtain a new
v/N-consistent estimator with a variance that is smaller than e (or eI, in the multivariate
case). This strongly suggests that an estimator with a faster than VN rate of convergence
exists. In fact, using a simple trick, the Propositions 1 and 3 provide a rate N (a rate optimal)
estimator.”

Another corollary of proposition 1 is that, if fy has a fixed point #* that is v/ N-consistent,
then equation (1.13) yields:

(I — K)VN(#* —m) = O, (\/—%>

so 7* is in fact N-consistent. Proposition 1 is silent about the exact asymptotic distribution
of 7* and about its existence.

To establish the existence of a fixed point, notice that equation (1.13) has the flavor of
Taylor expansion, where the matrix K would represent a gradient. Because the matrix K
has a spectral radius that is smaller than 1 (proposition 3), then fy must be contracting in a
local sense. Then (a variation on) the Banach fixed point theorem should prove existence.
This intuition is the main idea for the proof for the next corollary.

Corollary 2. Let 7 be an estimator such that @ — my = O, (ﬁ) Fiz k € (M(K),1) and

some C' > 0. Under the assumptions of proposition 1, with probability approaching 1:

1. The function fy in equation (1.8) is differentiable in the closed ball B(my, \/%) centered

at my and with radius I

2. SupWEB(WO,\/—CN) ||f]IV(7T)|| <k<l

A similar idea is used for instance to construct a “Generalized Jackknife estimator” (e.g. Powell et al.
(1989), Cattaneo et al. (2013)). In the context of proposition 1, the term /N (7 — 7p) is eliminated by taking
the convex combination, in the same fashion that the bias is removed in the generalized jackknife by taking a
convex combination of estimator with the same bias.
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Moreover, define the sequence T, by: 7o := 7 and i1 = fn(7m), and 7 = limsup,,, Ty, .
Then ™ — mp = O, (ﬁ) and with probability approaching 1 ©* = lim,, o T and T s a
solution to (1.6).

Proof. Cf. Section 1.8 . O

So 7* exists with probability approaching 1 and is rate optimal. It is left to determine its
asymptotic distribution. We need to compute a higher order term in the expansion (1.13) of
proposition 1. That is the purpose of proposition 4.

Proposition 4. Under the assumptions of proposition 1, if the first stage estimator is such
that @ — m9 = O, (%), then

N(# —m0) = KN (7 — m0) + Ry + O, (\/Lﬁ) (1.15)
with
Ry = <E(X12X{2) - E(1U12)E(U1U3X12X32)> N (E (?)U%)E(Uf’XlgUg) - EL?((UU;))QE(MUQXQ))
+ (E(XQX{Q) - %E(megﬁ)) _1/\/ (0, 2052)
for
5 (E(X12X{2) + ﬁE(UlUQXu)E(UlUQXu)’ - = (QU%)E(U1U3X12X§3))>
Proof. C.f. Section 1.8 O

Because of the presence of the residual Ry in equation (1.15), the new expansion is
fundamentally different from the previous one (equation (1.13) in Proposition 1). The effect
of an iteration on the estimation quality is now ambiguous and depends on how the first
stage estimator 7 relates to the residual Ry. Even if they were independent, it is not clear
whether iteration improves estimation. Unfortunately, even though proposition 2 provides
the asymptotic distribution of Ry, that is not enough to fully characterize the distribution of
the single iteration estimator. For that, we would need the joint distribution of the first stage
7 and Ry, which is challenging even for a single iteration. However, we can see that because
K has a smaller than one spectral radius (by proposition 3), as we iterate, the contribution
of the initial (first stage or input) estimator fades away. Intuitively, starting with some N—
consistent first stage 7(=: @), from (1.15):

m—1
N(ftm — m0) &~ K™N(7 —m9) + > K'Ry

1=0
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~ K™ N(7 — ) + (I, — K™)(I, — K) 'Ry
~ (I, — K)'Ry; when m is lage.

So the limit distribution (when m approaches infinity) should not depend on the initial
estimator 7. Corollary 3 formalizes these thoughts.

Corollary 3. Let @ be a vV N consistent estimator. Define the sequence 7t,,: Ty = T and
Tms1 = fn(Tm) for allm >0, and let 7* := limsup,, T,,. Then

N(7* —m) = (I — K) 'Ry + O, (ﬁ)

and with probability approaching 1 T is a solution to (1.6). Therefore

EUY)

3
A% -1 3 1
N(’]T — 7T0) —d X (—E(UlegUg) — W

B0 E(U1U2X12)) + N (0,207,571

(1.16)

for

2
E(U?)

1
Z = (E(X]_QX{Q) —l— —E(U1U2X12)E(U1U2X12)/ —

B(U2)? E(U1U3X12X§3))>

Proof. Immediately follows from Proposition 4 and Corollary 2. O

Notice that 7* is asymptotically biased. This is a manifestation of the incidental parameter
problem and in line with the behavior of other estimators that incidentally estimate the
individual effects (e.g. Bai (2009) , Moon and Weidner (2017)...). Interestingly, the asymptotic
bias of 7* has a particular structure when the individual effects are independent of the
observable regressors. Notice that, in that case:

(1,0,...,0) = %E(Xu)
so that:
[ 3 5 E(UY)
> (E(U%)E(U1X12U2) - E(Uf)2E<U1U2X12>>
E(U)

=——'_(BE(UHEU?) — E(U)EWUYH) 1,...,0)

Fer(E BEUDEW) ~ BW)BU) (1,-...0)

that is, the bias only affects the intercept. So, when the individual effects are independent
of the regressors, and if the slope parameters are the only parameters of interest, no bias
correction is needed.
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In general however, all coefficients are affected by the asymptotic bias. In the next section,
we offer a correction to this bias by proposing a consistent estimator for the bias term.

The corollary shows that if we initiate a sequence 7 := 7, for some initial v/ N-consistent
estimator 7, and then we iterate “infinitely many” 7,11 = fn(7,) as in corollary 2,
then with high probability 7, approaches a fixed point 7*. As is standard in numerical
optimization methods, “infinitely many” repetitions can in practice be read as “sufficiently
many repetitions”. None of the results so far in this paper provides any guidance regarding
how many repetitions are enough. In fact, one of proposition 1’s corollaries can be concerning;:
equation (1.13) establishes that if we initiate with a v/N consistent estimator, then we can
only hope the iteration process to return v/ N-consistent estimators if we stop after a finite
number of iterations. Therefore, from equation (1.35), we get a sense of what a lower bound
on the number of iterations should be, and it is rather massive. The number of iterations
should be a diverging function of the sample size N for us to have any hope to escape the
VN rate of convergence. How fast the number of iterations grows with N will have an effect
on the rate of convergence of the final estimator, but it is hard to tell what the proper order
of magnitude is. It is even less clear what the rate of convergence would be if the number of
iterations is indexed on some stoppage criterion on the value of the objective function, as is
usually the case in standard numerical optimization algorithms. In simulations, the question
of the number of iterations does not seem to be problematic. The standard optimization
methods deliver distributions that are in line with the predictions of the asymptotic results
presented so far, in particular the asymptotic distribution of 7* in corollary 3.

Fortunately, the propositions 1 and 2 can be put to use differently to extract an estimator
that is asymptotically equivalent to the minimizer 7*. The alternative estimator requires
exactly 2 iterations over the function fy and is therefore computationally more efficient.
Using the alternative estimator, we can circumvent the concerns we highlighted around the
number of iterations that are sufficient to achieve the desired asymptotic distribution.

The equivalent estimator

First, assume that the matrix K is observed. Let 7 be an initial v/N consistent estimator
and let 7; be the estimator returned in the equation (1.12) after a single iteration. Write
7y = Gy + (I — G)7, for some fixed L x L matrix G and where I is the identity matrix
of dimension L. We will choose the matrix G so that 7] converges at rate V. Write

VN (it = m) = VNG(7y — m0) + VNI, — G)(7 — m)
— (GK + I, — G)VN(7 —m) + O, (%)

= (I. = G, — K)) VN(7 —m0) + O, <\/LN>

choosing G such that I, — G(I, — K) =0-1ie. G = (I — K)™! - yields a rate N estimator.
Note that by the proposition 3, I, — K is invertible and G is well defined.
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In practice, the matrix K is not observed. Instead, it needs to be estimated and plugged
in to generate an estimator for GG. Assume we have a consistent estimator K for K. Define
G:= (I, — K) "' and 7, := Gt + (I, — G)7. As for 7

VN (it — ) = VNG(7 — mo) + VNI, — G) (7 — mp)
= (I = (1= B) (I = K)) VN (7 = m0) + O, (L)

VN (1.17)
= (I, — K)™! (K - K) VN (7 —m) + O, (%)

If K is a VN - consistent estimator for K, that is, if K-K= O, (ﬁ), then the new

estimator 7 is rate optimal. The following proposition offers an example of a v/ N consistent
estimator for K.

Proposition 5. Let the assumptions of Proposition 1 hold. Let 7 be a v/ N-consistent
estimator for my. Define:

-1

ZXi,sz‘/,j,k— Z i(7) X, X/ka( )

i ik

Then

Proof. c.f. section 1.8 O

Proposition 5 allows for the construction of an estimator that is rate optimal. However,
studying the asymptotic distribution of 7r; defined in (1.17) is challenging. It requires that
we determine the joint asymptotic distribution of K, v N(7 — m) and the residual of order

O, (\/Lﬁ) in equation (1.17). However, as for the study of the fixed point 7%, as we iterate, the

effect of first stage estimator fades away. Rather than iterating here again, we use the same
linear combination trick that allows us again to achieve the “infinite iterations” distribution
using one iteration only.
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Let 79 := fn(71) and define 7y 1= Gy + (I, — @)7?1. Following the steps in equation
(1.17),

N(y — m9) = (I, — K)~! (K _ K) N(#t, — o) + (I, — K) 'Ry + O, <¢%)
=, —K)'"Ry+ (I, - K)! (K - K) N(ity — mo) + (K — K)"'Ry

vo, (\/LN) (1.18)

1
=, —K)'Ry+0 (—)
( ) p \/N
the last equality is a consequence of proposition 5. This proves that 75 is asymptotically
equivalent to 7%, the fixed point studied through corollary 3.
To summarize, the alternative estimation procedure follows these steps:

1. Run one iteration to get 71 1= fn(7)

~ ~

2. Compute 7y := (I, — K)'iy + (I, — (I, — K) )7

3. Iterate on 7y to get 7o := fn(71)

~ ~

4. Compute 7y := (I — K) Yoy + (I — (I — K)™')7y
Corollary 4.
1
N(ity =) = (I, — K) 'Ry + O, (—) (1.19)

VN
Proof. See the steps leading to equation (1.17). ]

We conclude this section by highlighting important connections to the literature on the
large N large T' panel regression models. Moon and Weidner (2015) show that in the setting
of the large N large T' panel regression model (or similarly, in the context of oriented dyadic
linear regression models), the objective function in (1.6) is obtained from the objective
function of the least squares estimator. In our context, however, the two objective functions
are different because of the zeros on the diagonal of the matrix M () in (1.5).% The covariance
matrix 3 is equal to the asymptotic covariance Dy in Bai (2009) (if we were to use the
LS estimator on an oriented network model of the form Y;; = X;;8 + A,B; + Vj; to fit Bai
(2009))’s assumptions). The coefficient 2 in 7*’s asymptotic variance and that we don’t see

®The LS objective function:  Sy(w,U) := mzi#(}ﬁ-j — S mXijke — UU;)? =

m i Yig = Sy meXijh — UilU;)? — NE(;Vili:;), and Moon and Weidner (2015) show that J\,g(hl’v(f)l) =

4
arg ming m Zi,j(Y;j — > T Xijx—U;U;j)?. Even assuming U is uniformly bounded: NZ(&EH) =0, (%)
(uniformly), extending standard results (e.g. Arcones (1998)) , we would need a O, (5z) error to obtain the

asymptotic equivalence of the minimizers of both objective functions.
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in Bai (2009) is simply a sample size adjustment due the fact that out model is symmetric

and that the actual number of observations is ( ~U yather than N2 had the model been
oriented.

1.4 Variance estimation and bias correction

To be able to do inference on the (asymptotically equivalent) estimators presented in the
previous section. We need to provide a consistent estimator for the covariance matrix
202371 (proposition 3) and a consistent estimator for the bias term: —25 E(UX15Us) —

E(g; E(U1U3X15) (equation (1.9)).

The matrice F(X12X],) the vector £(X;2) can be estimated through their sample ana-
logues. (57 E(UIQ), E(U{l), E(U1U3X12Xé2>, E(U?UQXlQ) and E(UlUQXlg) are left to be
estimated. Assume that 6 = 1, section 1.2 explained how the eigenvector corresponding to the

largest eigenvalue of M (7) is a good approximation to the normalized vector Moreover,

E(U2

||U IPR
the largest eigenvalue informs about U’'U, the norm of the vector U. Combining both, we can

recover an estimator for U. When ¢ is -1, then we reason in terms of the largest eigenvalue
in absolute value, and its corresponding eigenvalue The difference when 6 = —1 is that the
corresponding eigenvalue in fact estimates — ||U||2 rather than T H and a sign correction is
necessary. The sign of § is, with probability approaching 1, the sign of the largest eigenvalue
in absolute value. These ideas are formalized through 1emrna 3.

Lemma 3. Under the conditions and notation of proposition 1, denote U; = \/max; | X (7)|vi(7)
We have

1.3 (@) = % +0, (ﬁ), forallr > 2

max; |A;(7)|2

2 B =0, (%),
3. s Soisjners UiUnXii Xl =y E(UUsX1X%)
bz iy Uil Xoy = E(U1 U X15)
5. D iz XigXi; —p E(X12X15)
0. 22] vi ()2 Xijv(T) = E( E(U1X12U2)
Proof. Cf Appendix 1.8. m

Finally, to obtain an estimator for the covariance matrix, it is left to provide a consistent
estimator for the variance o%. Let’s go back to the model (1.2)

L
Yij = Z"TO,ZXij,l +oUU; +Vi;

=1
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First, observe that

% (Y;J — Xijﬁ'g) = ]&2 Z ((5U U + V;]) 7TQ - 7T0 ZX Xz] 7T2 — 7To)
i#] i#] i#]
—2) " (8UU; + Vi) Xij (2 — mo)
7]
1 2 1
=3 (6UU; + Vij)" + O, (N)

i)

= B(U})* + 07 + O, (%)

Therefore, given the estimator for E(U?) provided in lemma 3, we obtain a consistent

2
772 A~
estimator 6% = ﬁ Zi# (Yij — X,-jfrg)Z — (ZZI'VU" > , where U; are defined in lemma 3. To

summarize:

T2 2 A
Corollary 5. Define 6% = N2 Z#] ( i Xijer)Q — (ETU) where U; is defined in lemma
3. We have

2 2
Oy —7p Oy

Proof. Follows from the earlier observation that gz >_,; (Vi — Xz-j7vr2)2 —, E(U})?+ 0% and
the convergence of UWQ to E(U?) (Lemma 3). O

Therefore

2625 =262 (1 — K)7!
-1

< | D vl ) Xiy X (i) — [ Do wil@)Xagus () | | D val) Xigvs (B

i#] ] i#]
is consistent for the asymptotic variance. For the bias term, define:

5o ) sign(A(@) - if Ay(f) »= max; [A ()]
sign(An(fz)) if |An(jz)] = max; |A;(j1)]

In appendix 1.8 we show that § is consistent for 8. Therefore

h o " max A(7 23% (7)* Xy (7) = > (@D wil®) v (7)

i i,J

is consistent for the bias term.
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1.5 The no interaction (6 = 0) specification

For this section only, assume that the individual effects are independent of the regressors. In
model (1.1), when § = 0, the model becomes:

Y;j = ZXij,lﬂ'l + Al -+ Aj + V;j (120)
l

or, in matrix form:

YIZ?T[XZ—FAL/—FLA/—'—V
l

Assume that at iteration m, we obtain an estimator 7,, with

1
7ATm — Mg = —0ACyK N X (1,0,0, ...,O)/ N Zm,N + Op (N) (1.21)

Where ¢, y is a binary variable taking values c, ,, with probability p,, y or c_,, with

probability (1 — pm ). Zm .y is a random variable such that for all m, Z,, y = O, (\/Lﬁ) For

instance, if the initial estimator is VN consistent, then ¢y y = 0, and Zy y = ™ — my. The
reason we allow for a bias in the intercept in equation (1.21) is that proposition 6 shows that
even when we initiate with a consistent estimator under model (1.20), iterations introduce
bias in the intercept.

Then

M(7,,) = Z(Wo,l — ) X1+ A+ A+ V
!

= oaCm Nl — Z ZmNi X+ Al + 1A'+ V — oac NIy
1

to be able to employ the ideas from the pure interaction model, we orthogonalize the symmetric

matrix o 4cp, nit' + Al 4+ 1A', to show that it is in fact a rank two matrix. Note that:",?
gacm it + Al + 1A = 61,m€'1,m — 627m€/2’m (1.22)
where:
1b + ! + b NA 1b ! + b NA
eim = | =bm NCm.NO L+ by NA; eom = | =bpNCHNTA — L
1, 9 JNCm NOA me,N N 2, 9 NCm NO A Qbm,N m,N

"See section 1.8 for a proof.
8the dependence on N is omitted in the notation for e1,m and eg p,.
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N

N/4

2
|A[|2 + N2 6% + ¢, oAt A

bm,N =

moreover:
/
€1 m€2,m = 0

Therefore, the error component of M (7,,) can be written as the difference of two rank
1 matrices, with eigenvalues that are of a similar order of magnitude (||e1 || = |le1ml])
and opposite signs. Extending our past intuitions, by removing a single largest eigenvalue,
one other eigenvalue, of a similar order of magnitude (~ N) is left. We can state a result
equivalent to Proposition 1 in the § # 0 specification:

Proposition 6. Under the specification (1.20), assume iterations are initiated with an
estimator ™ = mg — co4(1,0,0,...,0) + Zy + O, (%), for Zn = O, <\/Lﬁ>, if m = fn(7), then:

VNG —m0) = o (h(c) +0, (\/LN» (1,0,....0Y

+ M(e)™ (B(X19Xhs) + Ale, e n) E(X12) E(X15)) VN Z v
1 1 1

ij

= —04a (h(0> + Op <\/Lﬁ>> (1’07 "‘7O>/ + Op(l)

where |h| is deterministic with |h(c)| = |h(—c)| > |c|, Ve, and |h(c)| —|¢j—oc 00, A and B are
deterministic scalar functions and ciy —, 1 — 2 x Bern(0.5),

+ B(c,c1n)

Proof. Refer to appendix 1.8. O]

Two observations are in order. First, even when the initial estimator is consistent for all
parameter including the intercept, in which case ¢y = 0, the first iteration estimator has a
biased intercept, with a bias of order of magnitude |o4h(c)| > 0. Subsequently, the following

iterations deliver estimators that are on an explosive path, since |h(h(c))| = |h(|R(c)])| > |h(c)]
for all c¢. In particular, this implies that the iterative process described in theorem 1 cannot
converge.

On the other side, Proposition 6 guarantees that all coefficients other than the intercept
remain v/ N consistent following a single iteration, regardless of the bias in the initiating
estimator.
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1.6 Empirical illustration and simulation study

Empirical illustration

To illustrate the use of our new estimator in real world settings, we run our estimation
procedure on trade data in line with Rose (2004). Rose (2004) uses a standard gravity
model to examine whether joining the World Trade Organization increases trade. Using
Rose (2004)’s data set, we estimate a gravity model for year 1999 by regressing log(Trade)
between the countries ¢ and j, on indicators of whether both countries are in the World
Trade Organization (WTO), only 1 is in the WTO, and a dummy variable GSP describing
whether the countries extend each other preferential trade treatment under the Operation
and Effects of the Generalized System of Preferences published by the UN. In addition to
these three main variables of interest, and following Rose (2004), we regress on a number of
other country pair observables (a total of 15 regressors, plus the intercept).

The data set concerns N = 157 countries. Out of the w = 12246 possible country
pairs, 7268 pairs show a non-null trade volume for the year 1999.

We estimate the regression coefficients using the standard OLS estimator (table 1.2)
following Rose (2004)’s cross-sectional study (table 2 in Rose (2004)) then we use the least
eigevalues estimator described in the earlier section of this paper (table 1.1). Comparing the
two tables, as expected, the standard errors are lower for the least eigenvalues estimator than

for the OLS.

Table 1.1: The least eigenvalues estimator for the slope parameters on trade data for year
1999. The explained variable is log real trade. The intercept is not reported.

Variable Coefficient Std. Error
Both in WTO -0.479 0.072
One in WTO -0.322 0.070
GSP 0.305 0.034
Log distance -1.181 0.019
Log product real GDP 0.829 0.010
Log product real GDP p/c -0.033 0.012
Regional FTA 0.679 0.081
Currency union 0.592 0.141
Common language 0.369 0.041
Land border 0.793 0.083
Number landlocked -0.375 0.029
Number islands 0.017 0.036
Log product land area -0.071 0.008
Common colonizer 0.863 0.055

Ever colony 1.246 0.105
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Table 1.2: The ordinary least squares estimator for the slope parameters on trade data for

year 1999. The explained variable is log real trade. The intercept is not reported.

Simulations

Variable Coefficient Std. Error
Both in WTO -0.269 0.096
One in WTO -0.320 0.097
GSP 0.199 0.045
Log distance -1.073 0.025
Log product real GDP 0.944 0.011
Log product real GDP p/c -0.034 0.014
Regional FTA 0.946 0.108
Currency union 0.757 0.194
Common language 0.415 0.053
Land border 0.965 0.114
Number landlocked -0.540 0.034
Number islands 0.022 0.041
Log product land area -0.076 0.009
Common colonizer 0.966 0.074
Ever colony 1.113 0.141

I run S = 10000 simulations on each of the 4 following designs, with a network of N = 100
nodes in each simulation.

1. An intercept and an additive regressor , with v = 0

2. An intercept and a multiplicative regressor, with v = 0

Yii == Boa + Bo2(Xi + X;) + AA; +V

Y;j = 60,1 + /3072X,-Xj + AiAj + Vij

3. An intercept and an additive regressor, with v =1

4. An intercept and a multiplicative regressor, with v =1

Yij = Bor + Bo2(Xi + Xj) + Ai + Aj + AiA; + Vi

Yij = Boa + B XiX; + Ai + Aj + AiA; + V5
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for each of the two designs X ~ Unif(0,1), Bo1 = fo2 = E(A]) = E(V3) = 1.° The
histograms for the estimated slope parameters o are in the figures 1.6 to 1.9. In each
graph, we show the histogram for the OLS estimator (in bleu) on the original model (1.1)
as a benchmark, the estimator 7g;o defined in this paper in green. The OLS estimator is
semi-parametrically efficient in the model without individual effects, Y;; := Bo1 + Bo2Xi; + Vi
as a “gold standard” in orange, it is also estimated for each of the simulations and displayed
in orange in the figures 1.6 to 1.9 as an oracle estimator. The estimators for the intercepts
are not shown since the slope parameter are our concern in this paper. As discussed in the
introduction, our estimator is N — consistent for 3,; —dy = 1 —1 = 0 rather than for 3y; = 1.
The term v can’t be estimated at a higher rate than v/N. Any estimator for Bo.1 based on
our estimator and an estimated correction for 6y would only yield a v/N-consistent estimator,
even though [y; — 07 is estimated at rate N.

The first two histograms (figures 1.6 and 1.7) confirm the result in proposition 2. The
histogram for the eigenvalue-corrected estimator (in green) is close to the oracle (orange).
On both histogram, the OLS estimator (blue) seems to have a larger variance. In fact,
the OLS estimator has a non standard asymptotic distribution (cf. Menzel (2021)) and its
distribution is slightly skewed to the left. The skew is not visible in figures 1.6 and 1.7,
because the variance of A is not large enough (see figure 1.10 for a version of figure 1.7 with
a Var(A) = 100 and where the skew is now obvious on the OLS estimator, whereas the
eigenvalue corrected estimator is unaffected).

Figures 1.8 and 1.9 show that the histogram of the OLS estimator (blue) is much less
concentrated than the eigenvalue-corrected estimator (green). This reflects the prediction of
corollary 4. The eigenvector corrected estimator is itself less efficient than the oracle (orange),
but is rate optimal.

9T also generated simulations with X ~ N(0,1) or X ~ 1+ A(0,1) and the outcomes are similar.
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Figure 1.6: OLS (blue) and eigenvalue-corrected (green) estimators for the slope parameter
Bo.1 in the model Yi; = Bo1 + Bo2(Xi + X;) + A;A; + Vij, and the “oracle” OLS estimator
(orange) for the slope parameter By in the model Yi; = Bo1 + Po2(Xi + X;) + Vi;.
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Figure 1.7: OLS (blue) and eigenvalue-corrected (green) estimators for the slope parameter
Bo.1 in the model Y; := Bo1+ o2 XiX;+ AiA;j+Vij, and the “oracle” OLS estimator (orange)
for the slope parameter 5y 1 in the model Yi; := Bo1 + Bo2(X; + X;) + Vij.
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Figure 1.8: OLS (blue) and eigenvalue-corrected (green) estimators for the slope parameter
50,1 in the model Y;j = ﬂO,l + /BO’Q(Xi + X]) + AZ + Aj + AzA] + V;j, and the “oracle” OLS
estimator (orange) for the slope parameter By in the model Yi; == Fo1 + Bo2(Xi + X;) + Vij.

350

300 4

250

e pols
pos with no U
G

Figure 1.9: OLS (blue) and eigenvalue-corrected (green) estimators for the slope parameter
Boa in the model Yi; = Bo1+ Boo XX+ Ai+A;+A;A;+V,;, and the “oracle” OLS estimator
(orange) for the slope parameter By in the model Yi; == Bo1 + Bo2(Xi + X;) + Vij.
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Figure 1.10: OLS (blue) and eigenvalue-corrected (green) estimators for the slope parameter
Boa in the model Yi; := Bo1 + Bo2XiX; + 10 x A;A; + Vi, and the “oracle” OLS estimator
(orange) for the slope parameter By in the model Yi; := Bo1 + Bo2(Xi + X;) + Vi;. Note the
10 factor multiplying the A;A; term to amplify the skew of the OLS estimator.

1.7 Conclusion

In this paper, we proposed a new two iteration estimator for the dyadic non-oriented linear
regression model with interactive effects. The new estimator is asymptotically equivalent to
the “infinite iterations” estimator on an iterative process similar to Bai (2009)’s. The new
estimator emerges from a new proof for the the iterations’ limit distribution examining one
iteration at a time. We also show that in the absence of interaction, the iterative process
does not converge, with an estimated intercept that explodes through iterations . Because
the alternative estimator requires only a finite number of iterations, and because iterations
only bias the intecept, the alternative estimator is still well defined and is shown to be
v/N-consistent for all slope parameters, excluding the intercept.

Technically, studying the asymptotic distribution of M (7)’s largest eigenvalue up to a
second order is the main challenge. The results in this papers hint at how similar 2 iteration
estimators could be computed for models with higher order interactions. For higher order
interactions, however, the proof would require the computation of the joint distribution of a
number of largest eigenvalues, which would be technically challenging. I leave this extension
for future work.

1.8 Proofs and intermediary results

This section details the proofs of all the results in the paper. It begins by showing how the
OLS estimator of the intercept (in model (1.1)) can be adjusted to obtain a v/N- consistent
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estimator of the modified estimator (in model 1.2). Then we provide the technical ingredients
(propositions 8 and 9) that our main results heavily rely on.

Adjustment to the intercept

Proposition 7. Under modelf].]) and under the assumptions of theorem 1, v > 0, § €
{—1,1}, 0} = E(A?) # 0. Let 31 be a /N -consistent estimator of the intercept By in equation
(1.1). Then w1, the intercept in the modified model (1.2) is equal to: mo1 = Po1 — 07>
Define

a:= E(epex) =V E(A?)

b:= E<€12€23€31) = 3572E(A?)2 + 5E(A?)3
Then |B] = 30v*E(A2)? + §E(A?)? and E(A?) is the unique real root of the polynomial
P(x;a,|b]) == 23 + 3ax — |b| . Denote

L
€j =Y — ZX” B = Z Xija(Bog — Bi) + €5
=1

- E EZJ ezk

Z#J#k
N 1 o
b:= N3 Z €ij€ik€jk
i#j#k
6 = sign(b)

~

Let 6% be a real root of the polynomial P(x;a,b) and define 4? := U% We have
U

5% - B =0, ()
i =+1=0, (=)

where T 1= Bo — 5?2

Proof. That P has a unique real solution whenever a > 0 results from the observation that
lim, o P(z;a,|b]) = —o0, lim, o P(x;a,|b|]) = +00 and P(.,a,b) is strictly increasing
when a > 0.

Observe that
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-n-a(5)

The roots of a polynomial being continuous in its coefficients (e.g. Harris and Martin (1987)),
the continuous mapping theorem proves the consistency of 7.
Moreover, note that 6 = sign(b), that b # 0, and that
In addition, by the mean value theorem, for some (z,a,b) between (E(U?),a,b) and
(67,6, 5)
0= P(6:a.b) = PUE(AR):ab) + 50,0, 8)(6% — B + G — ) + g = )

i

= (32" + 3)(67; — B(AY)) +3z(a — a) — (Jb] = [8])

because ’|l§] — [p]| < b — | , then |b| — |b] = O, (%), implying:

N

5% = B = g (3000 = 0) = (1= 1) = 0, ()

Finally

On the distribution of the largest eigenvalue

Proposition 8. Let A = (a;;) be a matriz such that:
a;; = UU; +Vi; for alli # j

and a;; = 0 for all i, where the V;;’s for i # j are i.i.d. mean 0 random variables with variance
oy and Vi; = Vj;, and the diagonal entries of V' given by Vi; = E(Uy)? — U?.
The U’s are also i.i.d but not necessarily centered. Let \{(A) > Xo(A).... be A’s eigenvalues.
Then:

Uuvu UV

or o~ PO o)

)\1(14) - U/U +
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Proof. The proof draws from Fiiredi and Komlés (1981). In all what follows, “with high
probability (w.h.p.)” means“with probability approaching 1 as N grows”. Write
A=UU+V — E(U))*Ix

define A := A+ E(U;)?Iy and decompose U into U = v + r such that 7’v = 0 and Av = \.
We first show that, with high probability, r is bounded.

Define: .
S =AU = (U'U)U+ VU = \v+ Ar
define:
L:= E(S|U)=(UU)U
therefore:
L, = (U’U)Ui
Notice

||Ar||* = A Ar < /\2(121';1) x ||r|]? = maxi>1])\i(f~1)|2 x ||r|[?

where the inequality results from the Courant-Fisher theorem (equation (11) in Fiiredi and
Komlés (1981) ) and the second equality results from: A’A = A2, Therefore:

1 Ar]| < mazi |\ (A)] x ||r]]
By a standard result on rank 1 modifications (e.g. Bunch et al. (1978)), for all ¢ > 1
M(V) < Ai(A) < X (V)

So :
mazs1|Ai(A)| < max{|Ax(V)|, \(V)}

By theorem 2 in Fiiredi and Komlds (1981) , almost surely:
max{[Av (V)] \(V)} = 20,VN + 0 (N?)

so with high probability, for N large enough:

[1A7]] < max{[Ax(V)[, AM(V)} < 30, V/N]|r| (1.23)
Thus:
| Ar — (U'U)r|| = (U'U)[|r|| = [|Ar|| = (U'U = max{[An(V)], M (V) D] I7]] (1.24)
implying:
| Ar — (U'T)r||” 1S — LI”

Ir[]* < (1.25)

U0 = max{ (V)L MOV = (070 = max{ (V)] A (V)]



With high probability:
4
(U0 = max{ Ay (V)] Au(V)})? 2 22N

The second inequality is a result of Pythagorean theorem.
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(1.26)

To show that 7 is bounded w.h.p., it is left to show that ||S — L||* also grows as N2. T

use Chebychev’s inequality on ||S — L||*:

E(|S=LIPIU)y=E [ Y (Si — L)*|U

%

2

=E|> [> vy ‘U
@ J

=E > UVZ+Y | D ViU +2ZUVMZVZJU

@ J# J#

:ZU?V?JFJ?ZZUJ?

i jFi

—Z(ﬂ U2 +02(N—1)) U?

S0
E —L||?
5 N2 1) — 02E(U}) almost surely.
Also:
Var(||S — L|P|U) = Var (Zw U

Do 2Vl +2ZUVHZVUU

J#i j#i

=Var ZU2

=Var MU +2U, V3, V;U U
Z Z J ) Z J ’

@ J#1 J#i

2

=Y oo | [ W +2UiViiZVijUj, S VU | 4200V Y WUy

il ji ji j#l

(1.27)

il
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2 2

=> Cov | (D VUi | | D VUi | U
il

i J#l

+ 4 Z UiViUVyCov Z ViiUj, Z ViU |\U
il J#i J#l

2
+4) UVaCov | [ Y ViU | Y ViU|U
%,

i#i J#l

Hence:

VCLT(HS - LH2|U) = Z Z Z UlejQUk‘lUk‘QCOU (‘/;jl‘/;j27 Wk1%k2)

.l j1,j27#1 k1,ka#l
+4) 3 UViUValU,UCou(Viy, Vik)
il g kAl
+4 Z Z Z Ui%inlUjQUkCO’U (‘/;jl‘/;.h? Wk)
4Ll g1,gei k#l
=200 Y VR4 Var(V)Y Y UM+ Var(V) > Y UU?
i g kFik#E] [ L
+402 Y N VUV 4+ 402 ) 0> UiViUViUUs
[ i g
+AB(VE) Y ST UM +4B(VE) ST S URvU?
i i A
so there exists a constant ¢; > 0 such that
Var(||S — L|]*|U)
N3

— 1 almost surely.

By Chebychev’s inequality:

1
P <'||5—LH2 E(|S = LIP|U)| = v/Var(]|S — LI |U)N1/3> N2/ (1.28)
By (1.27) and (1.28), with high probability:
I|S — L||* < 2N?*E(U})o? (1.29)
Combining (1.25),(1.26) and (1.29), with high probability:
4E(U1)

[Ir]* < (1.30)

U
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Now note that:

>S5 8'S _ Mllll® + [JAr|P [|Ar[[* — Mo’ Ar
T7 Qs 5 — =\ + 7 (1.31)

Zi SzUz SU >\1||U|| —|—T’/AT‘ Zz SZUZ

let’s now show that ”A%‘Q% =0 (ﬁ) From (1.23), w.h.p.:
| Ar[[* < 903N ||r||*
then by (1.30)
4E(U?
|| Ar|> < 90 2MN =36E(U?)N

’U

then:

7' Ar| < ||r]] x ||Ar|| < 2V E(U?)VN = PLACHIV

Oy
To bound A;(A), note that Av = A\jv. So

M (Ao =1 ayv; — E(Uy) vz\<maxlvj\ (U)°+ layl.
J#i JFi

Taking a max over the i’s: |\;(A)| max; [v;] < max; |v;] x max; >_jlaij|, therefore: |A;] <
E(U1)? +max; ), |aij|. For any n > 0, Markov’s inequality shows that max; > [a;;| =
0,(N'*1). Finally:

> SiUi=SU=UU?+UVU = Z(ﬂ +ZUUVU+ZU2
( 1#]

so, almost surely,

5 D08 = B +0,(1) (1.82)
implying that: l
A= ZZSSIZJ +0, (1)
U+ Uvu n (U'U)U'VAU — (U'VU)? o, (1)

Uu UU)((U'U)2+U'VU)
Note that, by the CLT U'VU = O,(N), and note that U'V2U = O,(N?) so

. . Uvu UvVU
M(A)=UU+ i + (00) + 0,(1)
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or
~ uvu  UViU
A)=M(A) - B =U
)‘l( ) )‘1< ) (Ul) UvU+ U'U +(U’U)2

— B(U1)* + 0,(1)

Proposition 9. Fiz some vector my € RE. For all w, denote M () the matriz:
M(ﬂ') = X(ﬂ'o —7T) + UU/+V— E(UE)IN

where U and V' are defined as in Proposition (8), and X is a linear function of the vector
(mo—m): X = ZZL:1(7TO,Z —m) Xy, with L a fized, known number, X; are symmetric matrices
with zeros on the diagonal and such that A;(X) := max;—1 1 \(X;) = O,(N).

Let \i(m) > Aa(m)... > Ay () be the eignevalues of M (), then:

o,k — ﬁk)U/XkU
U'vu

M(7)=U'U + 2 +0,(1)

Moreover, define v(m) and r(m) the vectors such that:
1. U=uv(m)+r(n)
2. v(m)r(r) =0
3. M(m)v(m) = Ay (m)v(m)
Let 7 be an estimator for my such that ||7 — mo|| = O, (%).Th@n

N

1.
IU = ()| = Op(1)
NUIP = [fo(@)|? = |Ir(@)]* = O,(1)
3. for any l,I' =1..K:

o(7) Xp X (7) = U'Xp XU + O, ( N?ﬁ)

Proof. Note that
[|M(@)r (T[] < [Ae(7)] > [|r(@)]]

and: for all ¢+ = 2...N
N(M(7) —UU") < (M (7)) < N\ (M(70) = UU)
and by Weyl’s inequalities:

=|lmo = 7| x M (X)] + \(V = E(UD)Iy) < Ni(M(7) = UU)
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and

N(M(7) = UU) < [lmo — 7| x [M(X)] + Xi(V = E(UF)In)

SO:

Mo(M(7)] < max{\ (V), [\ (V)[} + E(UY) + [Imo — 7| x [A:(X))]
by Theorem 2 in Fiiredi and Komlés (1981), almost surely:

max{|Ay(V)], \(V)} = 20,V'N + 0 (N%)

Ao(M(7)] = Op(VN)

as in the proof of proposition (8), with high probability:

|M(7)r(7) = (U U)r(@)]] = (U O)r (@) = [|M@)r((@)]] = (U'T) = [Aa(M(7))]|r(7)]]
so with high probability:

(@) (@) - O

(U0 = DM

<||M<> — (UO)U?

= (UU = oM@

_ (IM@U — M(WO)U!HHM(M)U v)ul)’
|

[lr(®)I* <

N (U'U = [A(M(7))])?
(||Zl(7foz—7rz)XzU||+|IM(7T0)U (o))’
(U'U — [Xo(M(7))])?
(Zl T4 — 7| X |A1(Xz)| < ||U| + VU - EWR)U])*
(U'U = [X(M(7))])?

_ (X Imoq — | % Ml(Xz)! < ||U| +11S = ZI| + EWp)||U]])*
(U'U = X (M(7))])?

where S and L are defined in the proof for equation (8). By equation (1.29), with high

probability:
IS — L|| < V2N 1/ E(U})o,

(@[] = Op(1)

SO

which proves the first result:

|IU = v(@)|| = Op(1)
Also, as in equation (1.33):
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. UM®GE)MFEU
A p—
1(7) UM(R)\U
Zk LS (o — ) (mok — T)U' X XU + (U'U) Sop (mo — 1)U’ XU
S (o — 7)) U' XU + (U'U)? + UVU — E(UR)U'U
S (o — MU' Xp VU
S (T — U XU + (UU)?2 + U'VU — E(UAU'U
—E(U?) Zk (o — 1)U XU
ngk—mﬁﬂnU+«WU)+UvU E(UHU'U
(U'U) K (m0, — 7)U'X,U + (U'U) + (U'D)U'VU — E(UR)(U'T)?
S (Mo — ) U XU + (UU)2 + U'VU — E(UH)U'U
Zlmm WUVXU + (UDU'VU + UV — E(UDU'VU
S (o — ) U XU + (UU)2 + U'VU — E(UHU'T
WQZMWW_MU&U_EWMUWLJMﬁWVU+MWVUU+ND
S (o — ) U XU + (UU)2+ U'VU — E(U2)U'U P
L (U0) (Sy(mo — T)U' XU + (U'U)? + U'VU — E(UZ)U'U)
S (mox — ) UXU + (UU)? + U'VU — E(UY)U'U
(X (Tos — F)U XU JU'U) (X (mos — 7e)U' XoU + (U'U)2 + U'VU — E(U2)U'U)
Zk(ﬂ-oﬁ — ﬁ'k)U/XkU + (U/U)2 + U/VU — E(UZ2>U/U
Sy Yo (mog — ) (mox — W)U Xe XU + (U'U)(U'VU)
S (mox — 7)) U' XU + (U'U)? + UVU — E(UR)U'U
—BU(U'V)? - Q;@M—mwu@)WwU+mWU+O 1
S (o — ) U XU + (UU)2 + U'VU — E(UH)U'U P
Zk(ﬂ—O,k — ﬁk)U/XkU

+ 0, (1)

+

L=

+

+

— !
U'U + i
~ 2
UX, XU  UVU oo (Zp(mor — 7R)U'XU)
E E — U?) — ’
—i—k pa To,l 7Tl 7T0k l) (U’U) + UU ( ) (U’U)3

+M+O L
() P\VYN

as desired.

(1.34)

For the third part of the proposition, note that:

M(#)U =Y (mo, — 7)) XU + (U'U)U + VU — E(U})U

=1
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M(7)U = M(M(7))U = VU + (U'U = M(M(@)U + Y _(mo, — 7)X,U — E(UT)U
remember:
M(m)U = M(7)r + A\ (M(7))v
hence:

MM(®)(U —v(7) = M(7)r — VU + (M(M (7)) = U'U)U
+ Z(ﬁl — mo) XU + E(UD)U

I=1
L (1.35)
= M(7)r = VU + O,(WU + > (7 — mo) XyU + E(UD)U
I=1
o Zk(ﬁ-k‘ - WO,k)U,XkUU
uu
fix some [ in 1..L, multiplying both sides by ' X]:

MM X[ (0(F) = U) = =/ X[M(F)r(7) + ' X)VU + (U'U = \(M (7)) XU
L
+ Z(ﬂ'o’l/ — ﬁ'l/)Lle/Xl/U - E(U,LQ)L/XIIU

=1

For the proposition’s second result, remember that r(7) and v(7) are orthogonal and that
U = v(7) + r(7), so by the Pythagorean theorem:

U117 = {fo(@)[]* + [Ir(®)]]*

as desired.

Finally, remember that

L
M (M (7)) (v(T)-U) = —M(ﬁ)T+VU+(U'U—)\1(M(ﬁ)))U+Z(7ro,z—7”rz)XzU—E(U12)U = A
=1
SO 1
Xp(7) = XU + ———— XA
w(®) = XU+ 3oy
and
1
V(7 Xy Xo(7) = UXp XU + ——— N Xy XA
(7)' Xp Xjo(7) Y N (M) v s
+ — A/XZ/X1U+—UXI’XIAI

A (M (7)) A (M(7))
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Note that ||A]] = Op(N), M (M (7)) = O,(N) and || X;A|| = O,(N?) since by assumption:
)\ma.X(Xl)a AInin<‘le) - Op(N)
(by lemma 2), also
XU € Amax (XD U = Op(NVN)

SO
0(7) Xp X (7) = U'Xp XU 4+ O,(N*VN)

Proof of Lemma 2

Assume X satisfies the lemma’s assumptions. Let A be one of X’s eigenvalues and let x be a
corresponding eigenvector. Then

[Alllz]]2 = [[Azll2
= [ X[
< (1 X2/l

where ||.||]2 designates the Euclidean norm for vectors and the spectral norm for matrices.
Hence
Al < 11XT]

but we know that the spectral normal is smaller than the Forbenius norm for any matrix.

Therefore:
A= DIRE
,J

It is left to show that }°, - X2 = O,(N?). Decompose
> = S BN + XX - BN X)
ij ij ij

First, by a U-statistic law of large numbers (e.g. theorem 3.1.3. in Korolyuk and Borovskich
(2013)), 3=, E(X71Xi, X;) = Op(N?). For the second term in the decomposition, it is enough
to note:

1
Var N2 ZXZQJ (X:)2, | — 0, almost surely.
]
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Proof of Lemma 1

Proof. First, note that, given the assumption F(X],Xs) is invertible. By a standard law of
large numbers, the matrix % 25:1 Xop ok +1Xo2k 2k11 converges almost surely to F(X(,X12),
then with probability 1, & Z]kvz1 Xop ki1 Xak 2111 1 invertible for N large enough. Under the
condition that % Z,]CVZI XékaHXQk,ng is invertible:

Write

arg min » A; (M(7))

WERL

2

=ar mln Y - X; 7r — max VM(n)*v
g Z max, v M(r)
i#]
) ) 2
= arg min 1"‘nhnl (K] — XUT(') — E ViVv; (}/;k — Xlkﬁ) (ij — Xk]’]T)
P i i) kA1,

For a fixed v in the unit sphere, the function that associates each 7 to ), 4 (Y - X; 7T)
Zi#j koti j Vil (Vi — Xuemr) (ij — Xkﬂr) is twice continuously differentiable with a Hessian
equal to:

H:=2|Y X[ Xi;— > v XpXp
] 1), k7#4,J

let’s show that H is definite positive. Fix a # 0 in RY, denote: z;; := \/§Xijoz and X the
matrix with entries z;;. Because X is symmetric, represent v in an orthonormal basis of
eigenvector of X: v = Zfil m;e;, where e; is a normalized eigenvector of X. Note

! 2
o Ho = g Ty — E ViV Tk ji
ij i#7,k#4,]

=Tr(X?) — (Xv)(Xv) —I—ZV T2
i#£k

N

Z ZmQ/\ Z % :L‘Zk
; = i#k
Z 2+ ZV xzk

i#k

since S (1 — m2)M\i(X)? = 0 implies that X is of rank at most 1 and v is its unique
eigenvector (up to a normalization) corresponding to a non null eigenvalue, if X is rank
1. Along with v;z;; = 0, this implies that X = 0, so X;ja = 0 for all 4,j. Therefore
o'+ N XYy op1 Xok2ks1a = 0 and the matrix + S Xop ok 1 Xak2k+1 18 not invertible; a

contradiction.
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This proves that, almost surely, when N is large enough, H(v) is definite positive for all
10

v.
For any fixed v, the function Zi# (Y;j — Xijﬂ)2—zi¢j kot Vil (Vi — Xyemr) (ij — ij’/T)
is minimized at 7*(v) that is continuous in v. So the problem of minimizing

2

L L L
Z Y — Z mXija | — Z vi(7*)vi(7*) | Yie — Z miXiwg | | Y — Z T Xk
=1 =1 =1

i#] i#5,k#1,j
on the unit circle admits a solution (minimizing a continuous function on a compact).

2
So let (7*,v*) be a minimizer of the function >_,_; (Y;j - mXW) — VM (7)?v,

then:
2

L
7 = argmin [ Y;; — Z mXij | — (@) M(7)v ()
=1

and
2

v* = arg max v M(7*)*v
[lv]]2=1
taking a first order condition for m, we get that 7* is a fixed point of fy.
Conversely, let 7" be a fixed point of fy. Then 7* satisfies the first order condition for

the minimization of the function:

2 * *
™ — Z (Y;J — Xij’ﬂ') — Z Vi(ﬂ' )Vj(ﬂ' ) (Y:L — szﬂ') (Yk] — ij’ﬂ')
i#] i#g,k#i,]
we have shown that this function is strictly convex with probability approaching 1. There-
fore 7* is a minimizer, implying that 7* minimizes the initial objective function 7 —

S A (M ()’ .

Proof of Propositions 1 and 2

Proof. Note that the function fy is symmetric as a function of the data, that is fy(Yy, Xy;7) =
In(=Yn, —Xn;7) = fn(0Yn, 0 X ;) for all m and for any sequence of data (Y, Xn). There-

fore, an iteration using fn(Yy, Xn;.) produces the exact same effect as an iteration using

the function fx(0Yy,dXy;.). In other words, given a first stage estimator 7, the estimator 7

is numerically the same whether it is computed on the model

Yij = Xijmo + oUU; + Vi

or

((SKJ) = (5Xij)ﬂ'0 + UlUJ + (SV;]

10Ty fact, we have shown that almost surely, for N large enough, min, Ay (H(v)) > 0.
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To ease notation, I will prove the proposition for the case 6 = 1. The result for any
d € {—1,1} is easily derived through the previous observation.
First, note that:

!/

N N N
1#] j=1 =1 =1

K
SOXG Yy =D o mouX | — D v@v(R)X | Vi — ZWOJszl
=1 ey

i#]
/
the (1,1) entry of the matrix Zjvzl (Zf\il I/i(ﬁ')Xij> (Zf\il I/i(ﬁ')Xij) is given by:

Z vi( T )i () Xija X =

1,5,k

1 - -
W Z Ui(W)Uk(W)Xij,szj,l'

Eﬁwkmmﬂ+owJﬁ

1,5,k

Hv\l2

where the last inequality results from proposition 9. Using a U-statistic central limit theorem

1 1
N3 Z UiUpXiju Xijo = E(U1UsX12,X3010) + O, (\/_N>

i7j7k

and, by proposition 9:
IU = v(@)]] = Op(1)

implying
= @] < 10 = o0l = 0,01
hence
MG _ iy o, (1)
———=EU;)+0, | —=
N . VN
SO
1 1 1
W;UU’“ XigaXejr = E(Uz)E<U1U3X121X321')+O N
and

1 - - 1
m Z Vi(ﬂ->yk<7r)Xij,lej,l’ = E(UIQ) E(U1U3X1211X327l/) + Op (

i7j7k
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implying:

/
N

N ) 1 .
N2 Z: Z ;Vi(ﬂ')Xij = mE(UlUgXlngg) + Op (\/—N)

=1
and T — m has the same distribution as

1
E(U?)

1
(E(Xiqu) - E(UlUBXuXBg))

K
ZXi/j YU_ZWOJXU,Z - Z vi(®)vy (7) Xy, | Yie — ZWOZXZM

i#j I=1 i ki,

-1
= <E(X{2X12) - E(U1U3X12X32))

1
E(U)

— | XU+ vi) - Y w@ (R XU + Vi)
i#] i#5,k#i,5

Now, define:

—1
7= mo+ <E(X{2X12) - E(U1U3X12X32)>

1
E(U)

U, U
| xwu+vip) - > oo XUl + Vi)
i#£j 1#£5,k#1,3

The proof proceeds in two steps. First, find the asymptotic distribution of N(7* — 7).
Second, determine the asymptotic distribution of:

. 1 -
™ — To— (E(X{2X12) — mE(UlUgXnggg))

><— SOXLUU + Vi) = Y v @) () X (Ui + Vie)
i#j i£5, k7]

combining the results of both steps allow to conclude.

Step 1: I will begin by assuming that L = 1, then generalize to an arbitrary but known
L.
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Let’s determine the asymptotic distribution of 7* — 7y, that is, of:

U U
ZXij(Uz'Uj + Vij) — Z T ||U||X ik(UUx + Vi)
i) i o

First, note:

Uy Uj U, U
2 MU= 2 o = K= O g ek
i#j i#j,k#i,j i#j 1,,kF#4,J

+ZHUW KU
1,k
=2_ XUl - Z ||U||||U|| AUl
1#£j
’ (1.37)
kU Xi;U;
+%HU||2 ! HZ||U||2 )
_QZHUH?X”U
1 . 1
=N sz(UlXHUQHOp Wi
1
second:
U, U
S XVi— Y X;iVir, = ZVw Xij — 2ZUIC i
oy I~ ] 07P 2
note that
V‘”"(ZV”( 4 ||U||ZZU’“ ) UX)
i#£] k#i,j
‘V‘”(ZV” 24~ ||U||ZZU’“ i ||U||ZZU’“ 0 ‘UX)
1<J k#i,5
2
=op > | 2Xx; - |U||22Uk ik — PZUk i
1<J k#i,j
1
= O"Q/N2 (2E<X122) — 3mE(U1U3X12X23) + WE(UlUQXu)Q + Op(l))

almost surely
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by a standard CLT:

U; U
2 XV = D e e

i#£] i#£5,k#,5
1 1
—d N (0, 0"2/ <2E(X122) — 3mE(U1U3X12X23> + WE(U1U2X12)2>>
hence:
U, U
SNTXGUU + Vi) = Y O X (UUy, + Vig)
i#£] 1#£5,k#1,3
E(U?)E(Uh)
—d 2wE(X12>
1 1
+N (0, 0"2/ (2E(X122) — 3mE(U1U3X12X23) + WE(UlUQXU)Q))

and by the Wold device, for a multivariate X:

U, U
S X(UU + Vi) = ) o Xie(U;Uy, + Vig)
pwy #M#”H 11T

1
20— F(UU,X

1 1

+N (0, o2 <2E(X12X{2) - 3ME(U1U3X12X53) + WE(UleUg)E(UlX{QUg)))

therefore

N(ﬁ'* —7T0> —d

-1 1
(E(X{QXH) - E(U1U3X{2X32)) X (2mE(U13U2X12) +N(O, ASV))
1

E(UT)

with the asymptotic variance

1 /
AsV = O'V (2E(X12X ) 3mE(U1U3X12Xé3) + WE(UIXIQUQ)E(UleZUQ)) )

Step 2: Again, I will use the Wold device. Let n € R” and denote X;;, = nX;; € R and
Xy o= (Xijn)ig € RV,
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Let’s determine the asymptotic of

U U
Z vi (@) () Xy (UiUy + Vie) — Z U] ||UJ||X1€77(UZ'U’€+V;’€)
i), k#1,j i#j,k#i,j

= v(7) X, M (mo)v(7) — v(7) diag (X M(m)) v(7) — ||U||2U X,y M (mo)U
||U||2U/dwg(X WM (m0))U (1.38)
= v(7)' X, M (mo)v(7) — ||U||2U X, M (mo)U
/g U’ U’
- (1/(7?) diag (X, M (m)) v(7) — HUH (X, M) HUH>

e Case 1: E(U;) # 0 and U; and U; are arbitrarily correlated with X;
On one side, note:!!

U’ U’
——diag(X,M)+—
U] U]

v(m) — ||U|| Hmax‘Zszn U, Uy —i—V;k)‘

v(7) diag (XWM(TFO)) v(m) —

v(7) =

o H maxz (‘szn (U;Uy, + Vig) | - (‘Xik,n(UiUk + V;;J’))

v() — | Xt (UsUr + Vik)D

— E
||U||H

I want to show that:

o S (| Xty (Uil + Vi) = B| Xogy (Uil + Vi) ) = 0, (NVN)

Fix some z > 0 and by a union bound:

N\/_ maXZ <‘Xl;”, (U;Uy + Vig) ‘ — E}X@'k,n(UiUk + Vzk)D >

1
= ;P NVN Z (’Xik,n(UiUk + Vir)| = E| Xinw(UsUi + %k)l) >

1
=NxP NN Z <’Xi1,77<UiU1 +Vir)| = E[ Xy (Uil + V;l)’) Z

"Remember that, by definition, X;;,, = 0 for all i.
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1 Var (Zl (’Xil,n(UiUl + Vi1)| - E‘Xil,n<UiUl + Wl)’))
<

N2 x?
1
< = Var (}Xlz,n(U2Ul + V12)D

+ Cou (| X1z (Ualh + Via)], | X3,y (Ut + Vig)|) )
where the second inequality is Markov’s. This implies:

max ) (Xt (U + Vir)| = E| Xy (Uil + V)| ) = Op (NVN)
as desired. Since:

U 1
g1
H”ﬂ HmM

then:

o) =] |+ b ey = | = 0 ()

! /

||U||diag(XnM(7T0))W = Op(N)

v(7) diag (X,M(mo)) v(7T) —

and equation (1.38) becomes:

- . Uy U;
Z V()i () X (Ui U + Vig ) — Z T ||U||X ik (UiUx + Vig)
i) ki, FIkFL]
— U(FYX,UUV(7) — ——U'X,UU'U

HUH2

HUHQUX VU + O,(VN)
(~)’X U—-UX,U+ v(#)X,Vu(7)
——U'X,VU 4 O,(V'N)

+u(7) XV (7) -

HUH2
(1.39)

On one side:

1

v(T)' X, V() — TEGIE

U’XnVU‘ <||lv(#) -

WmWMwmzouN>

On the other side:

W(F)YX,U — U'X,U = U'X,(v(7) = U)
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~

U'X,U U'X,U
—7T0[ UX X1U+ 7T071) !
-1 121: UU /\1(7T)
L
UXUUXU 1
—UX, XU N
=2 (™ 7T0l(U/U NE) M) ”l>+%()

+ Op(N)

=1

where the second equality is a consequence of equation (1.35) and from noting that
U'VX,U = O,(N?) since, almost surely:

2

Vm(UXWdXU)zﬁEZ% > XiaUi | =00
4.k i

Hence
1
_2( vi(T) v (7) Xy (UiUx + Vig) — Z U kn(UiUk—i-‘/ik))
S > T
L
) UXUUX,U N 1 |
= - - U'X, XU ) 40,
;m ”°’l)<NU'UNA1<ﬁ> () N2o )+ (N)

L
- 1 1
= Z(ﬂ'l - 7T0,l) <E(Ulg)QE<U1X12,IU2)E(U1U2X12,77) - ?E(UlUSXH,nX%Z))

the previous equality holds for any fixed 7, so:

VN
W( Z vi(T) v (7) X (UsUp, + Vi) — Z U k(UiUk‘i‘V;k))
i ki ¢||HHH
L
_ ! }]ﬁ—n)—i—ﬂUX Uy)E(U Uz X19.,) — E(U U X190 Xos,)
E(Ulz) - l 0, E(Uf) 112102 1UaA 12y 1UsA 127 A23)
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since, by step 1: N(7* — my) = O,(1), we conclude:

VN (7 — m)
_ (E(X{QXH) _ mE(U1U3X12X32)>_1
(Uf) VN Z 7 — o) (E(UlUQ,XmXQgJ) -z (}]12)E(U1X12JU2)E(UIUQXW))
()
_ E(lUf) (E(X;2X12) - ﬁE(UlU?,X{ngzO B
X (E(U1U3X12X23) —~ ﬁE(UleUQ)E(UlU2X12m)> VN(7 —m0) + 0, (%)

e Case 2: E(U;) =0 and U is exogenous

Let’s prove the appropriate version of equation (1.39) for this case. On one side, note

! !

drag(X,M
TR

v(7) diag (X,M(mo)) v(T) —

v(7) -

max\zxmn UiUx + Vi)

IUHH

v(7) — HUH H max | ZXZ;M (UiUk + Vi) — E (Xity(UiUy + Vi) | X, Us) |

+N

because under E(U;) =0, E (Xikm(Ul-Uk + Vig) | Xk, Uk) = 0. I want to show that:

maX|Z( ik,n UUk““/zk) E(szn(UUk““/zk |Xk,Uk)}—

Fix some z > 0 and by a union bound:

1
P (N max ’ ZXik,n(UiUk + Vi) — E (Xiny(UiUr + Vi) | X3, Ug) | > x)
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k

1
< ZP (N ZXik,n(UiUk + Vik) = E (Xt (UiUk + Vig)| X3, Ur) | > ZL‘)

1
=NxP (| ZXikn UiUy + Vi) — E (X y(UsUs + Vie)| X, Uy) | > 96)

1 Var ( Xty (UiUp + Vi) — E (X1 (UiUy + Vik)‘Xk,Uk))>

2

X

<X12 n(U2U1 + Vig) — E (X12.(U1U2 + Vi) | X1, Ul))

w"_‘z‘

where the second inequality is Markov’s and the last equality results from the fact that
for a fixed k, the terms Xy, ,(UsUk + Vi) — E (Xip.y(UsUk + Vi) | Xy, Ug) are uncorrelated
for different i’s, because they are centered and independent conditionally on X, Uy.

This implies:

maX|Z( ik,n UUk‘i‘V;k) E(szn(UUk—FV;k |Xk,Uk)‘—

as desired. Since:

0= | = ()

then:

v(7) diag (X, M (mo)) v(7) — H[ngiag(XnM(WO))% = 0,(V'N)

and equation (1.38) becomes:
- - U, U
Yo v@y(R) X (Uil + Vie) = Y NIl X (UiUk + Vi)
ikt i k;ﬁ

= () X M (mo)v(7) — U’ XM (0)U + Op(V'N)

HUII2

= u(7) X, UUv(7) — HUHZU’X Z2UU'U

V(7 XVy(7) — ——U'X, VU + O,(VN)

HUH2
=v(7)' X, U - U'X,U +v(7)' X, Vv(F) —

»(VN)
(1.40)

U112



o4

Let’s get back to the notation from earlier in step 2: Let n € RZ and denote Xijm =
nX;; € Rand X, := (Xjj,)i; € RY*N From equation (1.40):

U U
E , Vl<7r)yj( )Xjkﬁ(UUk+‘/zk) E : ||U||||U|| JkW(UUk+‘/Zk)
i#7,k#1,J i#5,k#1,5

= () Xy M (mo)v(7) —

U' X, M (m0)U 4 O,(V'N)

HUH2
= v(7) X, M(7)w(7) HUHZUX LM (7)U
+ Z(ﬁ'l - 7T07l> (V(ﬁ')/XnXlV(ﬁ') — %XnXlﬁ> + Op(\/ﬁ)

I next show two useful results: for any random matrix X € R¥*¥ such that X’s largest
eigenvalue is at most of order N and X;; := ¢(X;, X;) for some fixed function g, then:
1) [[XU[| = Op(N), and 2) |[Xv(7)|| = [| XU + O (\/_)

Fix such a random matrix X, the proof of the two results goes as follows:

1. Note that | XU|]*> =U'X?*U =Y., Ui X;; XUy, and that:

ijk

r | ) UX XU | X

ijk

= Y EUyU,Un Uk X) | D Xij X | | D Xiai X,
j j

i1,k1,i2,k2

= N*(c+o(1)); alomost surely
for some real number ¢. Then:
IXU|]> = Op(N?)
as desired.

2. By the equation (1.35):

M(T[XU = Xo(@)|| <|XM(7@)r (@) + [|IXVU| + |\ (7) = U'U] > || XU]
L
+ Y 17— moul x [|IX XU + E(UT)|| XU

=1

let’s show that each term in the right hand side is O,(Nv/N).
a) ||IXM(#@)r(#)]] < MX)[|M(#)r(7)]] = Op(NVN)
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b) for the term || XV U]||, note that:

UVXVU = Y UiV XjpXuVimUi

2,9,k,l,m

= Z UiVii X1 X Vim U
4,5,k Lm:{i,5} A{l,m}

+ Z UiVig Xju XiiVigUj + Z UiVij Xk X1 Vis Ui
i,5,k 5k

= Z UiVij X1 XuVim Ui + Op(N?)
4,7,k L,m.{4,5} A{l,m}

almost surely:

Var > UVii X6 X0 VimUi| X, U | = O(N°®)
4,5,k 0, m:{3,5}#{l,m}

so [|XVU||> = UVX?VU = O,(N?), or || XVU|| = O,(NVN)
c¢) From proposition 9

7T07l — ﬁ'l)U/XlU
U

A7) =U'U + i + Op(1)

when E(Uy) = 0, then Z=tme U0 _ ¢ (1) |\(7) — U'U| = O,(1), hence

M(7) = U'U| % [|XU|| = Op(NVN)
d) For every [ = 1..L: || XX,U|| < M(X)||X,U|] = O,(N?), since |7, — moy| =
Oy () then oL, 17 = moa| x IXXiU|| = O,(NVN)
e) E(U?)|IXU| = Op(N)

In conclusion:
|IXU| = [|X0(#)|] < || XU = Xv(#)|| = O,(VN)

so equation (1.39) becomes:
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ik (UiUk + Vig)

> ulE AN UV o= 3 X
ki, j

i ki

— VR X MEE) ~ U1||2U’X MEU + 0,(vN)

_ (@) (A X o7 A(7)

" TIP (7' X,0(7) = TV X (R)
WU’XUM(ﬁ)r(ﬁ) +0,(V'N)

——Al(ﬁ)vﬁ’ r(7 L "X, (7

= T @ A )<||v<fr>u2 ||U||2>UX"”

+ O,(VN)

- —%v(frmrw L0,V

when E(U;) = 0, the equation (1.35) yields:

MM (7))o (7) Xyr () = v(7) Xy M ()7 + 0(7) Xy VU + Op(1)o(7) Xy U

L , (1.41)
+Zm—m ) X, XU + E(UY)v(7) X,U
=1

I want to show that each of the terms in the right hand side is of order O,(Nv/N):

L Jo(®@) X, M(7)r| < |lo(®@) Xyl x [|[M(7)r]] = Op(N) x Op(VN)

2. for ||v(7) X, VU]|, first write: v(7)' X,,VU = U'X, VU —r(7)' X, VU and note that
|r(7) Xy VU] < ||VU||X||7’(7~T)/X77|| = 0,(N) x O,(V'N), since [[VU|| < M(V)[|U]]
and Hr( ) X,|| = O,(1) by the proof in bulletpoint (e) above. So let’s examine
the term U’ X, VU:

2
Var(U'X,VU|U,X) =07 ) (Z UZ-XimUk)

Jkm (
2

=ov | 20| 2 | 2 Ui
k J i
= o} |IU|P1X,U1

SO

U'x,vu
V <

U.X ) = ot |U|P
X, 0] ) 7
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= Nop(E(U}) + o(1)); almost surely

and
U'XxX,vU B
|| XU

since ||.X,U|| = O,(N), then

O,(VN)

U'X, VU = 0,(VN)

implying
[0(7) X,VU|| = Op(VN)

3. (@) X,U| < [[o(@)]] x ||X,U|| = Op(NVN)
4. (7 = mo)o(@) X, XiU| < |7 — mog| x [[o(7)' Xy ]| x [|XiU|| = Op(NVN)
this allows to conclude:
M (M (7))o(7) Xyr(7) = Op(NVN)
and finally, the equation (1.39) becomes:
o U, U,
> w@v() Xy Uik + Vi)=Y Wﬁ

Xjow(UiUy + Vi) = Op(VN)

so under the condition F(U;) = 0:

and
N(# = mp) =4 BE(X{3X12) ™" x N (0,207 E(X12X1,))

Proof of proposition 3

Proof. The case E(U;) = 0 is straightforward, let’s prove the proposition for E(U;) # 0.
Note that:

1 1 -
= X, X)) — ——F X, X
1= gy (PO = gy AT

X (E(U1U3X12X23) — E(UlegUQ)E<U1U2X12)>

1
E(UT)
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=B'A

with:
A= B(UH)E(U1UsX15X},) — E(UUy X10) E(U U X,)
B = B(U{)*E(X12X1,) — E(UD) E(U1U3 X12X35)
I begin by showing that B — A is semi-definite positive. Note:

E ((E(Uf)x12 — Uy X33Us) (E(U2)X), — U1X§4U4)>

= B(U)?E(X12X1,) + E(U Uy X10) E(U Uy X)) — 2E(UR) E(U1Us X 19X 53)

—B-A
hence'?

B-A=E ( (BE(U2)X12 — UpX13Us) (E(U2)X], — U1X§4U4)>
= E(E[E <U2>Xu — U X13Us| X1, Xo, Wiz, Uy, Us]

|: U2 X{Z U1X£4U4|X17X27W127U17U2:| )
E(E[E <U )X1o — Us X13Us| X1, Xo, Waa, Uy, Us]
E|

x B [E(U})X12 — UsX13Us| X1, Xo, Wia, Ur, Un]")

>0

as desired. Moreover, let A be a deterministic L-dimensional vector such that \'(B — A)A =0
, then, almost surely:

NE [E(U?)X1s — Us X13Us| X1, Xo, Wi, Uy, Us] = 0

that is:

NE [E(UF)X12 — UsX13U3| X1, Xo, Wia, Uy, Us| = E(UP)N X1 — U E(N X15U3|X71)
SO:
E(UHN X1 = U, E(N X15Us| X7)
conditioning on Xs, Us
E(UHEN X15| Xy, Us) = Uy E(N X13Us)
hence

E(NX;3Us3)

E(UHN X1, = U Uy B0?)

12Remember our notation X;; := ¢(X;, X;, W;;).
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which contradicts our assumption that for any vector A € RY, P(N X, = U,U,) < 1. Therefore
K has all its eigenvalues < 1. Note that
A=FE ((U1U4X12 — U1Uy X14) (UsUs X3 — U2U3X34)/)
= B (B [01UsXu2 = UiUsXua] X, Up, X, Us) E [UsUsXas = UpUs Xaa| X, Us, X, Us])

= B (B [01UsX12 = UiUsXual X, Us, X, Us) B [UiUsXaz = UiUa Xua| X, Us, X, U]

>0

Since we have already shown that B — A > 0, then B > 0, so B is invertible. n

Proof of corollary 2

Proof. 1. The function m — |A;(M(7)?) — X\o(M(7)?)| is continuous on the compact
B(mo, TON) Let my be a minimizer on B(m, \/—CN) We show in the proof of propo-
sition 9 that A\ (M (7y)?) = O,(N?) and A\o(M(7y)?) = O,(N). So |\ (M(7n)?) —
Ao(M(mn)?)| = O,(N?). So with probability approaching 1, the largest eigenvalue
of M(my) in absolute value is simple on all of B(my, \/%) The compactness of
B(m, \/—Cﬁ)along with theorem 1 in Magnus (1985) allows to conclude that 7 — v(m) is

infinitely continuously differentiable on B(my, \/%)

2. Following 1), assume fy is continuously differentiable on B(m, \2/—%)
a maximizer of ||fy(7)|| on B(m, \/—Cﬁ) By equation (1.13): V' N(fnx(Tmax) — M) =
KVN (fimas = 70) + Op ()

also

Let .« be

1 1
\/N(fN(ﬂ'max-i-\/—N)—ﬂ'o) :K\/N(Wmax—l—ﬁ—ﬂo)—i-()p(

taking the difference of the two last equations:

VN <fN (wmax + \/Lﬁ) = fN(wmax)) —K+0, (\/_1N>

3

7o)

on the other side, by a Taylor expansion:

VN

13Building on the results in Magnus (1985), and after some tedious computations, we can show that

ov(w o%u(rn . .
SUD e (o, 2 || | = Op(1) and suprepir, ) [1gargnnll = Op(1), implying supepr, o) |1/ (@)l =

VN
Op(1).

VN (fN (nmax + L) - fzv(ﬁmax)> = [y (Tmax) + 0p (1)
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hence
S (Tmax) — K = op(1)
with a probability approaching 1:

1 (Fma)ll = sup |[f'(m)]| < &
ﬂGB(ﬂo,%)

for any x € (M (K),1).
. Fix some k € (A (K), 1) and € > 0. There exists M > 0 such that for N large enough,
with probability at least 1 — €, 7,71y € B(mo, #N) so that || — 7ol| < % (let this

be event Ey) . Assume fy is continuously differentiable on B (W 05 \/—MN <1 + ﬁ))
(denote this event Fy) and that sup__ B(mo, 24 (
N

0, 1+

)) ||/ (m)]| < & (let this be event
Gy). Then for any 7, 7" € B(mo, j/[—ﬁ(l + ﬁ))’ we have:

1fn(m) = (@) < kllr =7l

By induction on m, assume 7, ..., 7, € B (7‘(‘0, % (1 + ﬁ))

i1 = Tl = 1N (Fm) = fN(Fm-)l| < K[| Tm — Tl
and
71 — mol| < |1 — Tl + ([T — T || + o + |71 — Fol| + [|70 — ol

m
<> K|y — Foll + |70 — ol
=0

50 fimi1 € B <WO,% (1+ %))

So even though fy is not necessarily contracting on B <7r0, % (1 4 1 >), because it

1-k

may not preserve B <7T0, \/MN (1 + ﬁ)), we can follow the proof of the Banach fixed

point theorem for the specific sequence 7 (or in fact any sequence initiated in a way that
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the first two first elements are in B (71'(), 5 f) and not just B | mo, f (1 + 3 ) ).

First we show that the sequence 7, is a Cauchy sequence, let p, ¢ € N, without loss of
generality take p > ¢

A N K N N
iy = yll < ol — ol = 0, s g = oo
so the sequence is a Cauchy sequence. Therefore, it has a limit in B (7?0, IN (1 + —))
that can only be a fixed point of fy. By lemma 1, the sequence converges to a minimizer.
We have shown the following:

En, Fy and Gy = The sequence converges to a minimizer

Which proves that with probability approching 1, the the sequence converges to a
minimizer as desired.
Finally, the last result along with lemma 1 ensure that 7* is a solution to the minimization
problem 1.6 and is v/ N-consistent. Equation (1.13) yields

(I = KWN(GF —m) = O, (%ﬁ)

and finally

Proof of proposition 4

Proof. As for the proof of propositions 1 (section 1.8), assume that 6 = 1. The result for an

unknown ¢ € {—1,1} immediately follows as described in the the proof section 1.8 . Again, I

use the Wold device. Let 7 € R* and denote X;;,, = nX}; € R and X, 1= (Xj5,);; € RNV,
Following equation (1.39):

ZXij,n(Uin + Vij) — Z vi(T) v (7) Xk, (UiUy + Vi)

i) i#], k7]
U, U;
= ZXij,W(Uin + ‘/ZJ) - Z || || ||Uz||X]k,nUzUk
i#] 17, k#4,J
+ Z IUH XieaUilUx = Y vil@)vy(7) Xjin (UiUx + Vi)

i#7,k#4,] i#7,k#4,]

U U
—ZXw Ui+ Vi) — Y oo Uil + Vi)
i#£] 175, k#4,J
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+ U X, (U — v(7) — () X,Vu(7) + Y vil7) vau+||U||2U X, VU
i#]
SO, o,
U
2 U; U
=N <—2E(U?X12,nU2)> Y XV Y Xk Vik
507 2 2 TN
o ~ ~ e - 1012
+ U Xyr(7) + m—— (U'X,VU —o(7)' X,)Vu(7))) + U' X, VU g
)+ g VU @ X V(@) TGIEGE

+ O0,(VN)

where the second equality results from equation (1.39) and the third from equation (1.37).
Note that

1.

U'X,VU —0(7) X, Vo(7) = — U'X, VU + O,(NVN)

)\1( )

to see that, observe that from equation (1.35):

b
N (7)

o -
+E(U12)VU—Z’“<7T]“ UT?’]’“)U kUVU)

Vo(F) = VU — (VM(%)T(%) — VAU 4+ 0,(WVU + 3 (71 — mon) VXU

1

Xyv(r) = X,U — NG

(X M(7)r(7) = X, VU + Op()X,U + > (71 — m0) X, X,U

+ B(U)X,U — 2T _Uf((]’]’“)U XkUXnU>

combining both identities:

v(7)' X, Vo(7) =U'X,VU — U'X, (I/M(fr)r(fr) — VU +0,(1)VU

1
A1(7)

0 7 — mo) U XU
+ Z(m — o) VXU + E(UHVU — >k (Th U/(l)}k) k VU)

U'v (XWM(fr)r(fr) — X, VU + 0,(1)X,U

L ~
. T — mo)U' XU
+ 3 (71— m00) X, XU + B(UR)X,U — 2l Tk U,(;}’“) : XnU)

1 NS
+ % (XWM(TF)T(W) - X,VU+0,(1)X,U
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+

Mh

o~
Il

T — U' XU !
(1 = mo) X, XiU + B(U XU - 2R TR )
1

L
VM (&) (%) = VU + O,()VU + Y (7 — mo) VXU + E(UR)VU

=1

X

N

Zk(ﬁ-k — WO,k)UIXk:U
il VU

1
= U'X, VU + mU’XnVQU + 0,(NVN)
1

2. Remark that Var(U'X,VU|X,U) = oy, > >, UiXijUk)z = O(N*) almost surely,

hence
U’XnVU = Op(NQ)

SO:

> XijnlUiU+ Vi) = > vil®@)vi(7) X e (Uil + Vi)

i#j i g, kA,]
:N( 2 E(U3 X U2)> Y XV — > Ui Ui X Vi
E(U?) K R A | 10| RO R
1
+U' X, (7) U'X, VU + 0,(VN)

o@PM(F)

Let’s determine the asymptotic distribution of U’X,r(7). From the equation (1.35)

M(MENWU' X, r(7) = U'X, M(Z)r — U'X,VU + (\(M (7)) — UU)U'X,U

+ Y (71— m)U' X, XU + E(UD)U'X,U
=1

Also
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M (M (7R)U' X, M (7)r(7) = U' X, M(7)*r — U'X,M(7)VU + (A (M(7)) — U'U)U' X, M (7)U
+ ) (71— mo)U' X, M(7)X,U + E(U)U' X, M (7)U

=1
L
= U'X,UU'VU - UXVU =3 (o~ )U' X, X;VU
=1

+ (M (M(7)) — U’U)U’XnUU’(}
+ (M(M(F) - U'DU' X, VU

~

+ (M (M U)> (m— H)U'X,X,U
=1

(7 — mo)U' X, UU' XU + Z(frl — 1)U X, VXU

1 =1

Mh

_|_

o~

+ (71 — mo)U' X, X0, XU + E(UDU' X, UU'U

M=

(Tok — k)

M=

l

L
+ E(UDU'X,VU + E(U) Y (70; — 7)U' X, XU + O(N*V'N)
=1

=
Il

i
Il
—

= —U'X,UU'VU - U X, VU + (\(M(7)) - U'U)U'X,,UU'U
L
+ ) (71— mo)U'X,UU' XU + E(UD)U'X,UU'U + Oy(N*V'N)

=1
By equation (1.34), when @ — 7y = O, (%) as we are assuming here, we get:

> (Mo — W)U XU U'VU . U'VU 1
5 _ E - -
U o PO iy JN

)\1(77') = U/U +
therefore:

U'V2UU' X, U
M (M (FNU' X, M (7)r(7) = —U'X, VU + T” + O,(N*V'N)

plugging back in the expansion of U’ X, r(7):
UvViuuU' X, U
UX\VU + ———=— - U'X,VU
M (7) M (T)U'U K
L
+ (M(M(F) = U XU + Y (71— mo)U' X, XU + E(URU'X,U
I=1

M (M (F)U'X,r(7) =
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O,(NVN)
1 UVAUU'X, U
U'X UUVU — ——U'X, VU 4 2202 X, v
U’U N E R A WES I 07, "
UVAUU'XU S, (e — mo ) U X UUX,U
()2 0T

L
+ ) (71 = m)U' X, XU + Op(NVN)
=1

SO
1 Uviuu'x,u 1
UX UX UUu'vu — U'X, VU + 2 = UXxX,vUu
() = oy T AN (7T7E TR
Zk(ﬁ-k — 7T07k)UIXkUU,XnU
_ o7 U/U Z — mo)U' X, XyU + O,(VN)
plugging:
> XinUU; +Vig) = Y vil(@®)w () X i (UiUs + Vig)
ij i kit j
2 U, U;
= N( 5 (Uleanz)) +D X Vig— Y e X Vi
E(U7) oy o U
1 Uviuu'x,U 1
UX UUu'vu — U'X V32U 42 = UX, VU
oy U0 UU)y TR
Zk(iﬂf — 7o k)U/XkUU/XnU 1 1 2
— : UX XU — —UX VU
oy g LA A e @

+0,(VN)

Notice that

U'viu ZU2V2+O (NV'N)

and
U'XV?U =) U X;;V3Uj + Op(N*VN)
1,5,k
so that
;U 'X, VU — U'X, VU = O (L)
[[o(@)][PA:(7) gz "\VN
subsequently

> XinUU; + Vi) = > vl ®@)vs(7) X, (Uil + Vi)
1#] i#5,k#1,5
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Y
X Vi
LTHTC T

2
= ( 5 E(Uf’Xlz,nU2)) + > XigaVig— D
E(U7) i ki,

isﬁj
1
+ WE(UlUQXum)U’VU _ U,UU'X VU
Fp— o U X UUX, U 1
DA EL(??U)? S b S = U X, XU + Oy (V)

=1
_(UX, XU UXUUX,U
04 U'U UU U

L
=

3
+ N ( ~E(U; X12,Us) — E(U1X12U2))

1

E(UY)
U U 1
+ > XijVij — 2 Z XikaVit + 503 E(U1U2 X12,)U'VU + Oy (VN)
NZ -7 ! ————E(U,UsX 15, X )—LE(UUX VE(U1Uy X 12,
= 0.) E(U?) 1&3A12,n3 23, E(U?)? 1VaA121 1Va A2,

3
+N (E(UIQ)E(UEXHWUQ) — E(UlegUg))

1
+ZXWVH 9 Z H HIIUII MvzﬁE(UQ)QE(UlUQXum)U/vU+Op(\/N)
i#j i ki, !

1

1
= N? Z T — 70,1 ( ( E(U1U3X12,nX23,z) - —E(U2)2
1

Uz) E(UlUQXlz,l)E(U1U2X12,77))
+ RN,n + Op(\/_)

where the residual Ry, is of order O,(N) and is given by:

E(UY)
E(UR)?

3
RNJ] =N ( E(Uf’XlgmUQ) —

E(Ulz) E(U1U2X12))

1
+ Z XijnVij — QW Z UiU;j Xk Vik

i#j U ity kting
+ WE(UIUQXW) > UUVij + O,(VN)
i#£]

= N( ; (U1X12?7,U2) 5(((22{1))2E(U1U2X12)>

+ZVZJ( ijm U2 ZUk jkm T (U2) E(U1U2X12m)Uin)

1#] k#l J
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we get:

Var(Ry,|X,U)

1
_UVZ( igmn T U2 ZUk gkt E(U?)? E(U1U2X12,U)Uin

1<J k;ﬁz J

1 1 2
+ X’L'j,n - QUJ NE(U2 k; Uk 1]<;77 E(U]?)QE(UlUQXlZn)UlU])

2
—UVZ( un lNEU ZU]“ ik T (UQ) (U1U2X12,,7)U2Uj)

1<J k;éz 7

1 2
+ UVZ (Xwn ]NE(U%) Z U X ik E(UE)QE(UIUQXIQ’W)Uin)

1<J k#i,j

1
+20VZ( g Z]\[E1 U Z Uk ]kn UQ) E(UIUQXIQ,W)Uin>

1< k;éz J

1
X (X,-m S — NE<U2 ];Uk ik + E(UIZ)QE(UlUQXlgm)Uin)

1 1 2
— 02 (X — Wi > UpXipy + ———=E(U Uy X 12 )UiUz)
o NE(U?) ,; T E(UR)? e

1 1
-+ 20"2/ (Xij,n - QUZW k;” UkXJ'kyﬁ + WE<U1U2X12777)Uin>

1
> UnXik mE(UlUQXmm)Uin)
k#i,j5 1

2

1
=00 Y X}, A0 s | D Uk | + w5 E(U1 U2 X2, U U7
i#j 7 k#i,5 E<Ul)

4 1
— O\Q/W 4 Z 'Xl] nU UkXJkn + 2E(U2) E(U1U2X12777) ;XUWUin

1
TNE(U?)

s P X1y) Y VU UsX iy
oy
1 1
Xy = ZUJNE 07 ZUk Xk Xijm + WE(UleXlz,n)UinXim>

i) < k#i,j

1
U XikmXijn + AU U ———5= UnU X n X,
U2 ]{;” JIR;M 751 ]N2E(U12)2 k;] n<*a6n

67
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NE() B
+ 0"2/ <—|— %E(UlUQXlgm)UinXijm — Q;HE(U]UQXHW) Z UZUJQUlek,n

1
+ E(U1)4E(U1U2X12,77)2U2'2Uj2)

1 1

= N2O"2/ <E<X122J]) + 4ME<U1U3X12777X23777> + WE<UIU2X12,T)>2

4 2 4
— TU’%)E(UlUSXH’nXZB’n) + WE(UlUQXmm)z — WE(UlUQXmm)Q

1 1

+ E(X122777) — ZTU-%)E(UlU?)XlZTIXZ&n) + WE(UlUQme)Z

2 4
- mE(UlU:aXm,an:s,n) + WE(Ulexlz,n)z

2
— WE(UlUQXum)Q

1 1
+ WE(UlUQXm)? — 2WE(U1U2X12,,7)2

1
+ WE(UlUQXIM)Q + 0(1)) almost surely.

2 4

= N%o2 <2E(X122m) + WE(UlUQXlgm)Z — mE(UlU;,,Xme) + 0(1))

(almost surely)

clearly, the Lyapunov condition is met and by the Lyapunov CLT

1 3 EU})
— —— _EUX — L p X 200>
NRNJI —d (E(U%) (Ul 12777U2) E(UIQ)Q (U1U2 12#])) +N(07 oy 77)
for
1 2
Y= (E(XlzX{Q) + WE(U1U2X12)E(U1U2X12)/ - E(Ulz)E(UlU?,XlzXés)))
Finally:

-1
—E(U1U3X12X32))

1 ~ ~
3 | oGO+ Vi) = DT wl@ws (R X (Uil + Vi)
1#] 1%, k#1,7
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—1
- m E<U1U3X12X32>>

(E(X12X12) - E(;]f)

x (E(U1U3X12X§3) - E(UlUgXu)E(UlUQX{Q)) N(% — mo)

1
E(UT)

+ i+ 0, ()

_ KN(7 — 1) + Ry + 0, (\/LN)

with

1 N\
<(X12X12> E(UIQ)E(UlU:aXszg))

E(UyUs X12Xbs) — E(U1U2X12)E(U1U2X{2))

E(U?)
1

-1
ME(UlU?)XlZX:/}Q))

E(UY)
E(UR)?

3
X ( E(UlegmUQ) —

E(U%) E(U1U2X12)>

—1
+ (E(XHX{Q) - E(U1U3X12X§3)) N (0,207 %)

E(U?)

Proof of proposition 5

Proof. Write:

1
E(UT)

1 —1
K = (E(X;QXIQ) - = (UQ)E(UIU?,X{ZX?,Q))
1

X <E(U1U3X12X23) — E(UleQUQ)E(UlUQXlQ))

E(U?)
=: F (E(U1), E(X12X1,), E(U1U3 X12X3), E(U1Us X15))
for a function F' that is continuously differentiable at
xr = (E(Ul),E(XwX{Q), E(U1UsX12X3;), E(U1U2X12)) .
For any estimator xy of x:

OF

|[Fan) = F2)] < [loy —all x || 5—(2)

69
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where ||.|| is the Euclidean norm and where Z is a convex combination of zy and z. So
l|lzny —z|| = O, (ﬁ) implies |F(zy) — F(x)| = ( ) Therefore, it is enough to propose

VN consistent estimators for each of the elements E(U,), F(X12X!,), E(U1UsX1,X},) and
E(UlUgXlz). )
Clearly, by the standard CLT: Zi:lzf;(vj/\fji)’jxi’j is v/N- consistent for E(X12X],).

For the parameter E(U}) , lemma 3 shows that the estimators Z t (Cf. lemma 3 for the
definitions) is enough for our purposes.
For any [,q € 1...L:

v(7) X, X (%) = U' X, XU + O,(N*VN)

= N? (E(U1U3X1271X23,q) + O, (\/LW))
v(7) X (7) = U'X, X,U 4+ O,(NVN)

- (Beiesi -0 (55)

Plugging the five estimators in the function F' yields the desired estimator:

-1
Ky:= 2oz XiiXiy (%) XiXv(7))],,
N - — N2 N2

y [V(ﬁ)/XquV(ﬁmz,q B [V(ﬁ/XzV(ﬁ))M [V(ﬁ/XzV(fT))];
N2 N N

-1

= | ) XX/, [v(7) XiXv(7))],,
i#j

x ([EY XX (7)), — [F Xw ()], [F Xw(7)]))

Where [v(7' Xv(7 ]l d [v(F) X X (7 ))Lq are the matrices of dimensions L x 1 and
L x L, with entries v(7'X;v(7)) and v(7)' X, X,v(7)) respectively. O

Proof of lemma 3

Proof. First, note that, for r > 2

(@l = | < [Jo(i) = Ulle < (i) = Ulla = Op(1)
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Implying the first result: ). |v(7)|" = ma§|/|\U(7|r T . When § = 1, by proposition
9, with probability approaching 1 § = |:\\1E”§| and Al(% =1. When 6 =
5. = “AEM)) LAy (~M (7)) > M(=M(7)))}
' max; | \;(7)]

~ M EM@E) AN (=M (7)) < (=M(7))}
|

max; |A;(7)
so with probability approaching 1:
5. AEM@) LA (=M (7))] > M (=M(7)))}
' max; |\ (7)

|
A (=M (@) I{|]An (=M (7)) < M (=M (7))}
max; | \;(7)]

+

by the same reasoning as for the case § = 1,

AN (=M (@) H{[An (=M (7))] > M(=M(7)))}

max; |\ (7)|
N A (=M (@) {[An (=M (7)) < M(=M (7))} _ 1
max; [A;(7)]

with probability approaching 1. so 6 = —1 with probability approaching 1.

I begin by proving the fourth approximation. Note that when § = 1:

U = V] @p (@)l < |IU = o(@)l2 + |[o(@) — VA (@)wi(T)]]2
= [[U = v(@)l2 + [V A (7) = [[o(@)]]2]
- M (7) = [Jo(7)]]3
=|U —v(xw 2
I (T)l2 + M) o)
. A7) = [IUII3 + [1U113 — [lv(@)]13
=|U —v(7w 2
0= e@lle+ =2
By proposition 9, ||U —v(7)|l2 = Op(1), \u(7) = [|U]]3 = Op(V'N) andHUHz—Hv( I =
(1012 = [lo@)l2)([[U]2 + [[o(®)[l2) = Op(V'N), therefore |[U — /M(@)v)ll: = Op(1).

Likewise, when 6 = —1, the same reasonning applies to the matrix —M (7 ) and we get that

U + /AN (7)|y@)||2 = Op(1)

Combining both cases, we establish that ||U — dy/max; | \;(7)|v(7)||2 = Op(1). Hence:

U -U| < U =&, fmax |Ni(7) ()2 + [0, fmax | A (7)[v () —5\/m?X|>\i(7~T) v(7)|]2
= [|U =6 fmax|A;(7) |w(7)]]2 + |6 — 0] x max |\ (7) (7)o
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= Op(l)

Fix n € RF and X;;, = 7' X;; € R:

i#3, i#j
1
—‘ﬁ S (O = U)Xy + 3 U5 — Uy) X H
i7#J i#j
< 5 (10 = Ul X a0l + 110 = U1l X 1210112
= N2 2 2 2 2 2 2
1
—o. [
(%)

The two remaining results are proved similarly. O]

Proof of equation (1.22):
Proof. First:

/ /
€1,mC1m — €2,mCom

2 2
L - (L !
= —Um Cm (o2 L — “Um Cm g - Ll
2 NEmNTA 2bm,N 2 NEmNTA 2bm,N

1 1 1 1
b —by NCm — by, —b, NCm, — A+ A
+ N <2 NCm,NOA + Qbm,N) N (2 NCm,NOA 2bm,N) (LA"+ Ad)

= cpnoait + LA+ AL

as desired. Second:

1 1
Ehmeam = (zb?n,Nc;,Nai - 4b—> N+ B2 IR + B, yennoal A
m,N

1
4b12’)’L,N

=0

(bfn,N <4HA||2 + Nej, yoi + 4cm,NUAL,A> — N)
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Proof of proposition 6

In line with the proofs leading up to theorems 1 and 2, we beging by studying the behavior
of the M(7,,)’s largest eigenvalue (7, defined in equation 1.21). First, decompose:

e1m = V11 (Tm) + v12(Tm) + r1(Tm)

and likewise
€2.m = Vo1 (Tm) + Vo2 () + ro(Tm)

where v11(7,,) and wvi9(7,) are orthogonal projections of ey, on M (7,,)s eigen-spaces
corresponding to A;(7,,) and Ax(7,,) respectively. vo(7,,) and veo(7,,) are defined similarly.
We have:

Lemma 4. o )\1 (ﬁ'm) — >\1,m = ¥|2 Zl Zm,NJe’Lleel’m + Op(l)

et
¢ AN (Fm) = Aogn = — (15 7 201 Zm,Na€h m Xi€2,m + Op(1)
o [[011(Tm) — ermll = Op(1), v12(7Tm) = Op(1) and 71(7tm) = Op(1)
o [[v21(7tm)[| = Op(1), [[v22(7tm) — e2]| = Op(1) and 72(7tm) = Op(1)

o M (Tm)(vi1(Tm) — e1m) = — 2 Zim N1 X011 () + (Am — A (Tm) + Op(1))er,m
+ <m > 1 Zm,Nie2,mXie1,m + Op(]-)) eam + Vo1 () — oacm, nvi1 ()

4 )\N(ﬁ'm)(UZZ(frm) - 62,m) = - Zl Zm,N,leUQZ(ﬁ-m) + ()\Z,m - )\N(ﬁ-m) + Op(l))GZ,m
* <||e1,m||2i\|e2,m||2 21 Zm,Nie2mXie1m + Op(l)) e1m + Vv2a(7) — 04, N2 (7m)

Proof. We show the results successively:

[lv11(7rm) — €1,m|| = Op(1), vi2(rm) = Op(1) and 71 (7)) = Op(1)

On one side:

M(Wm)el,m == E Zm,N,leel,m + Vel,m + )\l,mel,m — 0ACKH, N€1,m
l
on another side:

M(frm)el m = M(ﬁm)rl(ﬁm) + Al(ﬁm)ﬂll(ﬁ'm) + )\N(ﬁ'm)vlg(ﬁ'm)

)

SO

M(ﬁm)rl(frm) + )\1 (ﬁm)vll(frm) + )\N(’ﬁ'm)’Ulg(ﬁ'm)
= - Z Zm,N,leel,m + Vel + Al,mel,m — O0ACH, N€1,m
l



multiplying by v15(7,,) on both sides:
(AN (Fim) = M) |[v12(Fom) || = Op(N)

similarly

(A1 (T ) = M) [[v11(Tm) || = Op(N)
First, by the interlacement theorem (e.g. Bunch et al. (1978)), for all i = 2..N:

Ai <M(ﬁ-m) - 61,m€,17m> <N (M (7)) < Aic (M(ﬁm) - 61,m6,1,m>
and for allt =1..N — 1.
i1 <M(ﬁm) — (el,mell,m — 62,m6/27m>) <\ <M<ﬁ_m) — 61,m€/1,m>

and
\; <M(7?m) — 61,m€/1,m) <\ <M(7%m) — (61,m€I17m — e2,m€/2,m>)

therefore, for all : = 2..N — 1

i1 (M(ﬁm) = (e1m€lm — ez,meg,m)) <N (M(7,))

and
)\z’ (M(ﬁ'm)> S )\i—l <M(ﬁ'm) — (el,mell’m — 62,m€/2’m>)
SO
_max [\ (M(n)) | = Op(VN)
also

A (M(Fn)) < Aot (M) = €1me )
< An-1 (M () — (el,me’Lm — ez,meé,m>)

which implies that
012 () ||* = Op(1)
to see that ||ri(7,)||* = O,(1), as for the proof of proposition 8,

M ()7 (Fm) = A1 (T ) || 2 Aw gt (7o) |71 (T [| = 1M (7 )71 ()

> (o — i MM () Dl ()|
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and by the Pythagorean theorem:
1M (T )r () = At () |[* < |IM (7 )er = A men |
== Z ZmniXier + Ver — oacm ver||”
1

= Op(Nz)

in conclusion:

< ||M(ﬁ-m)€1,m - Al,mel-rrj||2 5 = Op(l)
()\l,m — mMaX;—2 N—1 ’)\Z<M(ﬂ-m))|))

=
>
i
—

A

i Al(ﬁm) - Al,m = _m Zl stNvle;.,lee]-?m + Op(]‘)
We established:

M(ﬁm)rl(frm) + )\1 (ﬁm)vll(frm) + )\N(ﬁm)’vlg(ﬁ'm)
= - Z Zm,N,leel,m + Vel,m + )\1,m€17m — OACM,N€1,m
l
multiply by vy (7,,) on both sides:

(A1 () — >\1,m)||vll(ﬁ-m)“2 = — Z Zm N1 (T Xi€1 m + U11(ﬁm)/V€1,m
!

— 0 4C N1 (7o) ||°

= — Z Zn N 011 (T ) Xi€1,m + €1 Verm + Op(N)
I

- - Z Zm,N,lvll('ﬁ—m)Xlel,m + OP(N>
l

SO Al(ﬁm) — /\l,m = —W Zl Zm7N,l€/1,le€1,m + Op(l)

L A1 (frm)(’vll (frm) - el,m) = — Zl Zm,N,levll (ﬁ-m) + (Al,m - )\1 (ﬁ-m) + Op(]-))el,m +
||81,m||2i||'32,m||2 Zl Zm,N,le2,lee1,m + OP(l)) €2,m + Vvll(fr) - UACm,Nvll(ﬁm)

Write:

/\l(ﬁ-m)vll(ﬁ-m) = M(ﬁ—m)vll(ﬁm) = - Z Zm,N,levll(ﬁ-m) + VU11(7ATm) - UACm,NUn(me)
l

+ (o ()l Perm = (¢ nons(Fn)ezn )

SO

A (7o) (V11 () — €1,m) = — Z Z N1 X011 (T) + Vi1 (7m) — 04Cm NO11 (7))
!
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+ (Jlor1 (F))? = M1 (Fom)) €1,m — (€h 11 (Fom))€2,m
= — Z Zm N1 X011 (T) + Vi (7m) — 04Cm N011(Tm)
l

-+ ()\Lm — Al(ﬁm) + Op<1)) 617m — <6,27mvll(ﬁm))62,m

Let’s find an asymptotic approximation for e; ,,v11(7). We have shown:

A (Tm) 011 (1) = — Z Z N1 X011 () + Vi1 (7m) — 04Cm N011 (7))
!

o (I[o11 o) [Pe1m = (b0 () ez )

SO
A1(7ATm)€/2,mU11(7ATm) = - Z Zm,N,leQlell(ﬁ-m> + €2V011(ﬁm) + )\Q,m(elzmvll(ﬁ-m))
l
- UACm,N(eé,mvll(ﬁ'm))
implying
(M (Fm) = A2n)€s 011 (Fm) = =D Zmva€amXivn () + €2,mV 011 ()
l
— 0ACm N (€, V11 ()
= - Z Zm,N,le2,le€1,m + Op(N>
l
or
<>\1,m — >\2,m + Op(\/ﬁ)) 6/21]11(7’%) = — Z Zm,N7l62X161 —+ Op(N)
l
with
/\l,m - ||61,m||2
2
L 1t N + b2 y||A]? + 2b Ly 4t 'A
= | =bp.NCn.NO . m b NCm.NO L

5 NCm,NO A Qbm,N N N 9 NEm,NCUA Qbm,N

and
)\2,m - _||62,m||2
1 1 ? 1 1
= — | =by NCm — N —? Al = 2b,, —b,, NCm — A

(2 NCm,NO A 2bm,N> mN|| || N (2 NCm,NO A Qbm,N> 2

therefore:
R 1
6/27mvll(7rm) = - Z Zm,N,l€2,leel,m + Op(N)
l

[lexml[? + [lea,ml]”
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A2 () (V22 () — €2.m) = — D Zim, Ny XiV22(Tm) + (A2,m — A2(ftm) + Op(1))e2,m +
||el,m||2'::-‘||e2,m||2 Zl Zm,N,le2,leel,m + Op(1)> el,m + V’Uz2(7}) - UACm,N'U22(ﬁ'm)

Write:

Ao (T ) V22 (1) = M (T ) V22 (7)) = — Z Zn N1 X122 () + Voo (7)) — 04Cm NV22(T)
I

+ ((hmvoa(Fn)erm = [[v22(n) Peam)
SO

Ao (7o) (V22 () — €2.m) = — Z Zmn N1 X022 () + Voo (Tm) — 04Cm NV22(Tm)
!

+ (=22 (@) [P = Ao (7)) €2,m + (€ 1011 (7o) ) €1,m

=— Z Zp N X022 () + Ve (Tm) — 0 4Cm NV22(Tm)
!

+ ()\2,m — )\Z(ﬁm) -+ Op(l)) 627m — (€l2’mU11(7%m))€1’m

Let’s find an asymptotic approximation for €/ v (7). We have shown:

Ao (T ) V22 () = — Z Zm N1 X022 () + Voo (Tm) — 04Cm NV22(Tm)
!

+ (=l () [Peam + (€22 () Jerm)

SO
A (Fom) €4 22 (Fim) = =Y Zon n1€1,m X1022(Fn) + €1, V022 (Fim) + M (€ 1,011 (7))
l
— oAcmN(e'Lmvgg(frm))
implying
M2(Fm) = Man)€l Vo2 (Fm) = =D Zmna€1mXivoa (i) + €1,V 022(m)
l
— O’ACmJV(e/LmUQQ(ﬁ'm))
= — Z Zm.Nie1mXie2m + Op(N)

l

or
()\gm — A + Op(\/N)) e uga () = — Z Zm.Ni€1mXi€2.m + Op(N)
l

therefore:

1

[leml[? + [lea.ml]*

€y V11 () =

Z Zm,N,l€2,leel,m + Op(N)
l
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Note that:

Tm41 = ZXZ(inj— Z Vi( R )5 (R ) X X

i#j i#5,k#4,j
Z ij Z] Z Vi(ﬁ-m)yj(ﬁ-m)X,kY;k
i#£] 175, kF#i,]

where v(7,,) is the normalized eigenvector corresponding to the largest eigenvalue of M (,)%.
So

-1
T4l — o = (Z Xz{inj — Z Vz('frm)yj(ﬁ-m)X],lek
i#] i#j,k#4,J
X (Z X[ (Ai+ Aj+Vij) = D vilFm)vs(fom) X (Ai + Ap + Vig)
i#j i#j,k#1,3

First, note:

SOXUX = > vl () X Xk

i£]j i#£5,k#4,5
O Gin) # hwim) 20) | S0y = 37 B b
i#j it ety || TN 11i7m
+ 1A (7m) + An(7m) < 0) Z Z v22,i(Fm) 0225 (Fm) X Xik
2 R ]

We treat each of the two terms separately:
ZXz{inj _ Z Ulli<7Tm) V11 j(Wm) XJ/-sz‘k
2 it [ (T[] 11 (7 |

E(el,m>2
|lewml[?/N

= N2 E(XlinQ) — E(X12X23) + Op(1)>

2
1 1
<_bm,Ncm,NUA + >
— N? | B(X12X!y) — 2 2D,

E(X19X03) + 0,(1)

2
1 1 2 2
(Ebm,Ncm,NUA + Qbm,N> + bm,NUA

likewise

V90.i () Vag i (T,
SXyXy- Y e T X,

_ o Tem() [ Toaa ()
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2
1 1
(_bm,Ncm,NUA - —>
= N2 | B(X1.X),) — 2 2m,

1 1 2
(Qbm,NCm,NUA - 2bm,N> + b NUA

E(X12X23) + 0,(1)

For the term (32, X0 (Ai + A + Vig) = s 4 Gon s (o) X0 (Ai + Ay + Vi)

for the proof of proposition 1, let n be some vector n € R®, and define the matrix X, with
entries Xij,n = 77/XU

SOXLAA A V) =Y v () (o) X (A + Ay + Vi)
i#£] i#7,k#1,5
= T\ (Fn) + An(Fm) > 0)

V11i(Tm) V115 (T
> Xijn (Ai+ A+ Vi) — ) o (7 )||HU11](
i i#j,k#1,j "
L(AL(Fm) + An(fm) < 0)

))‘ | Xy (A + Ap + Vig)

ZXim (Ai+ A+ V) - Z V22i(7m) U22](7rm)
7 i ki [[v22 () || |[v22(7) |
We have

Xk (A + A + Vig)

V11,i(fm) - V11,5 (Fm)
D Xi (Ai+ A+ Vi) = ) |11 (Fon) || 011 (7o) |
itj i7#],kF#i,]

=3 Xijn (A + A; + Vi)
i)

Xy (Ai + A + Vig)

3 ViLi(m)  V1(fm)

- e | M(Tm)ik — > (Toq — Tm) Xiky

'L;ﬁ]k;ﬁ@jH 11(7Tm>HH1)11< )H o ;
1 o A~ A~
- Xijﬂ] (Az + Aj + ‘/zj) - —A2U11(7Tm),M(7Tm)XnUH(7rm)
011 ()|

i#£j m
—1 al ~ A

- |’U11(ﬁm)\|2 Z(WW = T ) 011 (7) X Xyon1 (70

v? Z7rm
ZH > Jkn<Ai+Ak+Vik)+Op(N)

U11 Tm H2

Note that:

Z U%LZ'Xjk,n (Ai + Ap + Vig) — Z 6%,~Xik,n (Ai + Ay + Vig)

ik ik
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< Z "U%l,i - eiiHXik,n (A + A + Vi) |
ik
= mgxz | Xiky (Ai + A + Vi) | ¥ Z vl — el

<
mkaXZ (|Xik,17 (Ai + Ap + Vi) | = E(| Xy (Ai + A + Vig) D) X |[vir — exlla X ||vi +exlf2

+ NE(| Xy (Ai + A+ Vie) ) X o — elf2 X |[vn + e

Let’s show that

Fix some z > 0 and by a union bound:

P N\/_maxz (}szn (A + Ay + Vig) ‘ - E|Xik,n<z4i + Ay +Vz‘k)D >
1
< gp 93 (1 Xk (s + i+ Vi) | = B| Xty (As + A+ Vig)]) > 0

1
=NxP N—\/N Xz: <‘Xi1,n<Ai + A+ Vzl)| — E‘Xil,n(Ai + A+ V;l)‘) > x

VCLT (Zz (‘Xil’n<14i + Al + ‘/21)| - E‘Xﬂm<Ai + Al + ‘/11)‘>>
$2

(Var (}Xlgn AQ -+ A1 —+ %2)‘)

IN
wl'_l 2[0|F—‘

X

a(As+ A +V13)‘>>

+ COU (}X12,77<

where the second inequality is Markov’s. This implies:

mkaXZ <|Xik,n(Ai + Ay + Vzk)‘ - E|Xik,17(Az' + Ap + Vzk)D = Op(N\/N>

we can infer

v} i (Tm)
Z T 1 Xiky (Ai + Ap + Vig) = O,(N)

V11 7Tm ||2

hence



ZX@‘j,n (Ai +A; + sz) _ Z V11, () V11,5 () ¥

ik (Ai + Ax + Vig)
oy e o ) H o Fa) [
1 . . .
— —mvll(ﬂ'm)/M(ﬂ-m)Xnvll(ﬂ-m)
1 . . .
> (oy = A )01 (Fn) Xy X011 () + Op(NVN)
o1 (7 | ]
A1 (i
= T ) ot )
1 .
o > " (oa = Fna)v11 (i) Xi X011 (7m) + Op(NVN)
l
)\1 m Cm,N

T Xplim + ez oAV () 0 Xy 11 () + O NV N
H61mH2 ! ! HUH('/Tm)HQ A 11( ) n 11( ) p( )

—€) i Xp1m + Ter ]\hQO'AelmLLX e1m + Op (NVN)

Note that

1 1
e/l,mL - <§bm,Ncm,NUA + me]\]> N + bm,NA,L;

1
ell,mXﬂel,m = (ébm,Ncm,NUA + % N) ZXZ]n

ij

1 1
+2bm,N <2meCmNO-A+ 2b N) ZX’L]WA +b ZZAlAJXZ]W

(4]

2
1 1
= N2 <§bm7Ncm7N0A + Qme) E(Xijn) + Op(NVN);

1 1
L/Xnel,m = (2meCmNUA + Qme> ZXZ]U ‘f‘meZ zjn

ij

1 1
= N2 <§bm7Ncm7N0A + Qme) E(Xij.) + O,(NVN)

SO
ZXU’” (Al n Aj n V;j) B Z V11 z(ﬂ'm) Ullj(ﬂ- ) Xjk,n (142 + Ak + mk)
2 2 Ton 1 o)l

2
1 1
- N2 - _bm m
( (2 NCm,NOA + Qbm,N>
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Ne,, 1 1
n c ,NO'A <§bm,NCm,N0'A + 5 ) >E<Xij,n)
<%bm,NCm,NO-A + Qbyylz,N) N+ by N||‘4H2 N
O,(NVN)
1 1 ’
= N2 -1+ Cm,NOA (ébm,NCm,NO-A + 20 )
(%bm,Ncm,No-A + 2bn11,N> + b, NIAIP/N A
x E(Xijn)
+ O,(NVN)

1
2 <§bm7NCm,NUA -

2
i)+ BllAl/N

2
1
5 <§bm,NCm,NUA + 5% ) E(Xijy)
<%bm,Ncm,NUA + Qbi,N> + b, NIAIP /N i
O,(NVN)

2 2
< b NCm,NOA 4b$1’N) +0p, N0 <1meCmNO'A+2b1N>
-V ) : E(Xija) + Op(NVA)
(§bm,NCm,NUA + 2bm,N> + 02, NO%
bk 02, v (S e v s + 5

>2
E(Xijm) + OP(N\/N)
(%bm,Ncm,NO'A + 2b,,ll’ ) + b2 NOA

Similarly

D i (At A+ V) = Y V22(Fm)_ V22,5 (m)

Xjn (Ai + Ay + Vi)
1#£j i kAi,j H 22(’/Tm)H HU22( )H

—_

T2 ) M ) X o)
1

+ m Z(TFO,Z - ﬁm,l>v22(’ﬁ'm>’Xan'022<ﬁ'm) + Op(N\/N)
" ]
Ao () L R 1 ) o A
22T (o) X2 (o) + o oY XXt
o 222 ) Xt ) 5 20 = T XX )
+O,(NVN)
)\Qm

CmN ~ 7 N
emX6m+—av T ) 00 X099 () + O (NV N
TeamlE2mezm T [ EoAve(Tn)  Xyvza(Tn) + Op(NVN)

—e2mX €am + T mN||20A62mLLX eam + Op (N\/_)
€2.m
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2
1 b 1
= “O0m,NCm -
o /mNEmNTA T oy

2
Crn.NO 1 1
+ NA <§bm,Ncm,NUA -3 ) )E(Xz‘m)
(%bm,Ncm,NO-A — 2b"117N> + 02 NUA N
+ O,(NVN)
1 1 ’
Cm.NO
=11+ A 2 <§bm,Ncm,N0—A - 2% ) E(Xi]}??)
<%bm,Ncm,NUA - 2bi7N> + 07, N0 Y
+ O,(NVN)
1 1 2
(—meCm NO'A+ ) +b O'
2Vm, . 2b,,, NPA 1 1 =
= a _bm,Ncm,NUA - E<Xij,77) + OP(N N)
1b 1 b2 2 Qbm,N
30m NCm,NOA — 37— + NOA

2
4 2 1
b mNTA o NO < b NCm.NOA — 2bm,N>

E(Xij,n) + Op(N\/N)

2
1 _ 1 2 2
<§bm,NCm,N‘7A 2bm,N> + 05, N0

Therefore

Tm+1 — T0

2
1 1
= | — 1\ (Fm) + AN (Fm) > 0) | 02, 03 + | =bmNCmNoa +
’ 2 2b’rn,JV

2
1 1
IL()\1<7%m) + )\N(ﬁ-m) < 0) b2 NUA + <§bm,Ncm,NUA - 2 ) :| (17 07 07 ) 0)/
m,N

2
1
:H'()\l(ﬁ-m) + )‘N(ﬁm) < 0) b2 N A + 4b$nN <Cm,NUA - b2 ) :| (170707 "'70)/
m,N
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= {—11(&( m) + An(Tm) > 0)

oA 1
+ Cm,NOA+ 04 4+CmN
VAt e,y Aoty

L(A1 () + An(Fm) < 0)

A 1
+ Cm,NOA — 0A 4+cmN (1,0,0,.
VAt y  doay/Atcl y

o (x)

o { IO () + An () > 0) (1 +i (cm,N /44 cfn,N)Q)

,/4—1—03”7]\,
1 2
LA () + An(Tm) < 0) (1 + 1 (chV —\/4+ an,N) > ] (1,0,0,...,0)
1
+0,|—=
()
Note that for any m, by lemma 4:

A(Tm) + AN (Tm)  Arm + Aoim
N = N + O,

7

Given that:

2
1 1 1 1
A = <_bm NCm,NOA + ) N + b2, N||A||2 + 2bp, N (§bm,NCm,NUA + 5 ) VA
'm,N

9N Cm, T
and
1 1 ? 1 1
2, (2 NCm,NOA 2bm,N> | [All N (25 NCm NOA Qbm,N> L

then, whenever m > 1:

/\1m+/\2m CmNUAN+2L/A 1
: o 40, —
N N JN

1
=Cn,NOA —+ Op (\/_N)
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so, for all m > 1:
o 1 2
ﬁm+1—7ro——A[—1(cm,N20) 1—|——(cm7N—|—1/4+cfn7N>
\/4+C$n,N 4
+ 1(cm,n < 0) 1+1 c \A+ 2 (1,0,0,...,0) + O !
m,N 4 m,N m,N s Iy Uy eeey p \/N

-

LN = \/ﬁ {Wl(ﬁvn) + A (ftm) 2 0) (1 + - (cmw Ffare, )2)
— 1A (Fr) + An () < 0) (1 + i (cm,N _ M)Q) }

Proposition 10. For all my € N:

1 1 2
ImP | Vm <mg: cpyin = —F———= <1+Z <cm,N+ 1/4—1—0727%]\,) ) ‘CLN =11 =1
N VAN

and

1 1 2
ImP | Vm <my: ey vy = ——F———= <1+é_l (chV— N/4+an,N) ) |01,N =—-11]=1
N ,/4+c§mN

Proof. Immediately follows from the computations above. ]

Corollary 6. Define the deterministic sequence c¢,, by:

C1 =1

2
1 1
Cmtl = e (1 T (Cm + 4+an> )

Then for all mg € N:
lij{rnIP’ (‘v’m <mpy:cmN = cm}clyN = 1) =1

and
li]{[n]P’ (Vm <mg:CmN = —cm}cLN = —1) =1

Proof. Direct consequence of proposition 10. O
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Let’s compute the second order (order O, (\%)) term:

ZXijm (Az =+ Aj + V;j) _ Z V11 z('ﬂ'm) Ull]( ) Xjk,n (Az + Ak + Mk)

i#J 1#£j,k#1,j || 11(7Tm)|| ||U11( )||
1 i ~ A
= oG o) M) Xaon ()
1 /
Moy (2~ VI[2 - Am Am X X Am
+ ||U11(7Arm)“2 ;(ﬂ'o,l Uy 7l)’UH(ﬂ' ) I nvll(ﬂ' )
+ )Xoy (A + Aj + Vig) + Oy(N)
i#]
A (ﬁm) A . 1 R ) A
- _mvll(ﬂ-m),){nvll(ﬂ-m) + m Z(ﬂ'{),l - Wm,l)vll(ﬂm)/XanUn(ﬂ'm)
m m l
+ ) Xigy (Ai+ A5+ Vig) + Op(N)
1#]
— )\1m 6 X, e + Cm,N oAV (ﬁ' )/LL/X v (ﬁ' )
- m 1,m = 11(TTm 11 (Tt
lerml P [[or (7o) |2 "
T Z Xijm Ai +Aj+ Vz‘j) + 2(61,m — Ull(ﬁ—m))/Xnel,m
1#]
! M = (i)
_ ||1}11(7% |2 Z Zm,N,lell,leXnel,m + Well,mxneLm + Op(N)
€1mX 61m‘|‘ WOAelmLLX n€1,m
+2 Z XijnAi +2(erm — v11(Tm)) Xperm — Tl ||2 Z Zn N €Y i X1 Xne1m
7] lm
i#j
)\Lm — Al(ﬁm) /
+ Wel,anel,m
Cm,N R A
||€1 m| |2 ((el,m - ’Ull(ﬂ'm))/[,[,/XneLm + €I17m[,(,IX,7<€17m — 'Ull(ﬂ'm))> + Op(N)

Ney, 1 1
- _6,17an61,771 + —N <§bm,Ncm,NUA + % N) VXe1m

i#j €1,m
)\1,m - /\1(7Tm)

[lexml[?

((eLm — 011 (7))t Xpey m + e'l,mLL’Xn(el,m — vu(ﬁm))> + O,(N)

!, /
+ by NA LW X e+ €1.mXnC1m

CmN

TlermlP”



HelmHZ 2 ’ ’ Qme

Nc 1 1
/ m,N /
= —elvaneLm + oa |l =bp.NC.NTA + v Xpe1m

+2) XA+

l;ﬁ

||61m||2

1

lewml?

+

_|_

+2) XijnAi +

-~ Mevmll?

g

||€1m||

ZZleelleX e1m + bm NALLX €1.m

( - Z Zm,N,leel,m + W Z Zm Nl€1 leel m€1lm
] 1,m

I
1
E Zm,N,l€2,leel,m €2.m
l

[lexml* + [le2.ml]”

X <2Xn€1,m — Cm’]\hQaA (LL’XneLm + XnLL’eLm)> + O,(N)

2
1 1 1 1
(—bm,NCm,NUA + Qme) %: Xijm — 2bm, N <2bm NCm,NOA + ST

||61,m

NCm,meJV 1
Nemabur, (§bm,Ncm,NaA + 2me) 3 X

[lexml?

isﬁj

||€1m||2

1

ij

1
m Z Zm,N,zell,le61,m€/1,an€1,m

ZZleelleX e1m + b NA W X e

( - ZZm,N,leel,m + H ||2 ZZleel mX €1,m€1,m
] €1,m

/
1
E Zm,N,ZGQ,leel,m €2m
l

llerm|[? + [lezml|?

% <2X,7617m—cm—N (LLX e1,m + Xyt 61m)) + O,(N)

NCmN

[lexml[?

2
1 1
1) <§bm,Ncm,NUA+ 2bm,N> ZXij’n

v

)2

§ : 1]77

87
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NCm,N 1 1

]

1
/ /
+ E L, NI€1 i X1€1,m€7 1 Xp€1,m —
le1ml|* 5

1
| —|€1 ||2 E Zm7N7l€leXan€17m
,m

+ by NA LW X e — m ( — ; ZmniXi€1m + 77— Z Zm N 1€} mXn€1Lme1m
+ ! ZZle€2 mXi€1m | €2 m)/

lerm|? + lleaml[> <=7 ’ ’

X <2Xn61’m — ||Z1m]\|7|2 (LL/XU(ZLm +XnLL,617m)) + O,(N)

oz (NCmN _1) (lmeCmNO'A_‘_ 1 )2,7’E(X12)+77’T1mN

llerml " 27 2bm, N i
+ ||€1m||4 ZZleelle€1m€1mX €lm — || 1m||2 ZZleelleX e1,m
i ||e1,1m||2(_ 3 Znes it s D T K

1

/
|2 E Zm,N,l€2,le€1,m 62,771)
l

[lerml|* + llezm|

% <2Xn61’m—cm—N (LLX e1.m + Xyt €1m)) + O,(N)

levml[?
where
Tl,m,N
Cm 1 1
=N — ~0a— 1 (Qbmcma,q—i—ﬂ) NQZX” E(X12)
<§bmchA + ﬁ) + b2 0%
Cm 1
+ 5 oa—21 b, bmcmaA+— + 2 Z

(%bmcmaA + ﬁ) + b2,0%

2
NCm N 1 1
= N? (m oA — 1) <§bm,NCm,N0A + Qme> N2 Z E(X12)
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NCmN 1 1
N oa =2 | b | ZbomnCm 2
: <H61,mH20A ) ’N<2 v N"“zm)* 2 %o
:OP(N\/N>

SO:
Z A—|—A+V) B Z Ullz(ﬁm) Ull](A )Xk (A+Ak+Vk)

AT2 1J,m J 1) Jkm ) 7

v 2 2 TTon ) Toa (o)
2
Cm,N 1 1 / 1 !
= . -1 —bm. NCm FE(X —n'T\m
(E(eim)aA > (2 NC ,NO'A+2bm’N> n ( 12)+N277 1,m,N
N <E(61,m)4 1 (UAcm,]\;E(eLm)2 N 2E(61’m)4 E(e1m)*E(eam)?
E(ei,)?  Elel,,) E(ei ) E(ei,)  E(e,,)+ E(es,,)
20 acmnE(e1m)?t 20 4cmnE(e1m)*E(eam)? )) , ,

— . : — : ’ ; E(X12)E(X|5)Zm
BE, R B (B + B, ) )X
E(e1m)? 1 5 CmnOaE(es, m)? / /

_ ) _ —2F(e1 E(X1:X0:) 2,

T\ TE@,) T B \ e gy ) | B K Xa)

1
Lo, ( )
N
2
CmN 1 1 1
) (E( ) (2 N CnN oA ame> TEXa) ¥ e Tiom
+( e1m)?t 1 (aAcmNE(elm)2 2E(€1 )4 5 E(e1m)*E(eam)?
E<61 m)2 E<€% m) E(el m) E( %m E<€1 m) + E<€2 m)
20-140771,NE1(€1,771)4 20_Acm NE(el m 62 m X )Z
E(eim>2 E(eim)(E(elm +E 62m 12 12 A
E(e1m)? Cm,NO A
— 1 - : "E(X 15X, O
B, \| B, ) et nat
Note that
1 1 ?
E m ? = _bm m
(€1.m) (2 NC ,NUA+2bm’N>
2
2 1 1 2 2

2 ’ by
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Hence:

035 FNPUIRRTANS IO AR

Xk (A + A + Vig)
’- 2 TonGall Ton(ra)
2
Cm,N 1 1 ’ 1 /
= (==Y oy — 1) | bpnem E(X1) + —1/T} .
(E(eim)aA ) (2 NCm,NOA + 2bm,N> N E(Xi2) + N277 1,m,N
N E(epm)? 1 oacmnE(e1m)? 2E(el,m)‘l I E(e1m)*E(eam)?
B(el,,)?  Elei,,) E(e,,) E(el,,)  E(e,,)+ Ele3,,)

_ 204cmnElerm)!  20acmnE(e1m)*E(ezm)’

B2 B EE) T E(e%,mn))”lE(X”)E(XWm’N

2
1 __1 2 2

E(e%,m> (lb

2
1 2 2
20m,NCm NOA + zbm,N> + bm,NUA

+

1
T]/E(X12X§3)Zm’N + Op (\/_N>

Define

ZXZ/]XU . Z V11 z(ﬁ_m) ,Ull](ﬁ—m) X/ X

2 L2 TTon )l Toa )|

2
) ) (%bm,Ncm,NUA + ﬁ) 1
<%bm,Ncm,N0A + Qb:L,N> + bgn,No-z%l

likewise
Z XZ/]XZ] _ Z V22 7,(7Tm) U22j( ) X]/erL]g

2 o oG Ten

2
1 1
9 , <§bm,Ncm,NUA - 20,1, N) 1
= N? | BE(X12X],) — E(X12X3) + Rom,n + Oy N
<%bm,Ncm,N0—A - anlm,N> + 62 NUA
Therefore:

LA (7) + An(7) > 0)VNdiag(0,1, ..., 1) (7rynsa

— 7T0)

2
1 1 2 2
61 m (

M) vE(X12X55) VN Zy v

1 2 2
m,NCm,NOA + 2bm,N> + by, N0
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1
VN

2
Cm,N 1 1 1 _
— <—E(€2 >0A — 1) <§bm,NCm,NUA + 2bm,N> \/NMl,m,NRLm,NMl,;z,NE<X12)

1m

o (x)

—1
+ My NTimN

with
2
, <%bm,Ncm,No-A + m)
M g = E(X12X7,) — 5 E(X12X53)
(%bmvNcm,NUA + 2b,i7N) + by NOh
SO
A7) + Aw(7) > 0)VNdiag(0, 1, .. 1) (1 — 7o)
1 2 2
m ( mCmUA - m) + meA 1
Eles ~ M E(X12X5)VN Zyn + \/—_M;TM,N
elm < mcmO'A‘i‘ﬁ) ‘|—b72n(7124 N
2
Cm 1) (L P VNM 'Ry o xMVE(X ) + O L
— | =—5—04 — —byCn O m
E(e2,) " 27T m SN Em FARR T\ UN
with
2
(%bmchA + %)
/ m
My, == E(X12X7,) — D) E(X12X03)
(%bmchA + ﬁ) + b2,0%

so that

1A\ (7) + An(7) > 0)VNdiag(0,1, ..., 1) (Fimsr — m0)

2 2
1 1 1 1 2 2
(§memUA + T) <‘memUA — m) + meA

- 5 M, ' E(X15X33) VN Zp

(%bmcmaA + 2b1 ) + b2,0% ( bmCm0OA + 3 ) + b2,0%

1
+ _NMmlTLmN

1 1 ’
Cm _ _

— : oa—1 <§bmcma,4 + 5 > VNM 'Ry nM, E(X o)

(%bmcmo-A + ﬁ) + bgno-,%l m,N
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1
+0,|—=
(%)
Generally, including the intercept:

L(A (7) + An(7) > 0)V N (Fns1 — 70)
= —0ACm+1n(1,0,...,0)+

<E(elﬁm)4 1 ) <0Acm,NE(€1,m)2 E(epm)?t E(e1m)*E(eam)?

+2

E(ef,,)?  E(ef,, E(ei,,) E(ef,,)  E(ef,,) + Ele,,)
20 4cmnE(e1m)? 20 scmnE(e1m)*E(eam)? , ,
— : : — : : : 1,0,...,0) E(X )2
BT BB+ B@ ) ) 0 OF Xz 2y
2 2
<lmemO'A + L> (lmemOA - L) + bgna-x%l
+ : 22bm 2 e 3 M,  E(X12X}3)V'N Zy n
(%bmcmaA + ﬁ) + 02,04 <%bmcmaA - ﬁ) + 02,04
1
- \/—NM;TM’N
. 2
— Cm 3 oA — 1 <§bmcma,4 + 2% > \/NMglRl’m’NMrglE(Xu)
(%bmcm(m + ﬁ) + 2,02 m,N

o)

We treat the term

D i (At A+ Vi) = > () Uz () Xk (Ai + A + Vi)
oy o o ()] Hvas (7o)

in the same way:

D X (A + 45+ Vi) = Y )tz (o) Xk (Ai + Ai + Vi)

oy s Noaa (@) | {[va2 (70m) |
1 Ja / A ~
= —WUm(M) M (7)) X022 ()
1 ~ ~ A
+ —H'U22<7?[' )||2 Z('/TO,Z - Wm,l)'UQQ(Wm)/XZXUUQQ(’/Tm) + Z Xij,n (Az + Aj + ‘/;J) + Op(N)
KRG i#]

= TomEIE )Hgvzz(ﬁm)/Xnvm(ﬁm) + oGl Z(WO,I o) V22 () X0 X2 (o)
m m .
D Xis (A + 4+ Vig) + Op(N)
i



/\Q,m / Cm N

€ mXn€2,m + )||20A022(7%m)’LL’Xn022(7%m)

|le,ml[? |[v22 (T,
+ ZXij,n (Ai + A+ Vz‘j) — 2(e2,m — v22(7m)) Xpeam
i#j
1 Ao — AN ()
" TenGalE 2 D ZnniCh XiXyeom + m]|e2 N =€l Xne2m + Op(N)
= €l mX €am + —N20A62 X n€2.m
|le2,ml]
. 1
+ 2 Z i, 77 62,m - U22<7Tm))/X77€2,m - W Z Zm,N,lelzmeaneZm
1#£] €2,m l
)\2 m )\N(ﬁ-m) /
: €, Xpe
lezml® — >m 72
N Cm,N

oA ((eg,m — V9o () 1t Xpeom + €t Xy (€2,m — vgg(frm))> + O,(N)

Nc N 1 1
— b Xoenm 4+ N o 2 e nTa — —— | X e
C2mAnCom ¥ l|le2.ml[? 74 (2 m,NCm,NOA 2me) bt

+ 2 Z Xij,nAi — 2(62’m — U22<7%m))/X7762,m —
i#j

Z Zm N. 162 leX €2.m

||€2m||2

>\2,m - )\N(ﬁ-m)
[le2,m[?

oA ((ez,m — Vo (7m)) 1/ Xpea m + e’lmLL’XT,(ezm — UQQ(ﬁm))) + O,(N)

! ! /
+ b N AW X e + €9.mXn€2,m

Cm,N

Ney, N 1 1
o m, /
= eQ,anez,m + H€2,mH20A <§bm,Ncm7NaA — 2bm,N> v Xpeam
+2) XA+ ——

’4 E ZleBQle62m€2mX €2.m
Z#J

Hezm!

ZZle€2leX 62m+meA LLX n€2,m

1
+ Teaml 2 ( - ZZm,N,le€2,m + W ZZmNz%mX €2.m€2m
2m ] 2m
1 /
+ ZZ ,N,I€1, Xle , €1, >
ezl 2+ [[erm|? : m 1L,mX1€2m | €1m

[le2,ml[?

X <—2X77€2,m — Cm—’NOA (LL’XneZm + XnLL’egm)) + O,,(N)
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2
1 1 1 1
- <§bm,Ncm,No-A - 2bm,N> %: Xij,n + 2bm,N <§bm,Ncm,NUA - 2bm,N> ZXij,nAj

ij
NCmN 1
T _bm m - Xz
—+ ||€2m||2 A<2 NCm,NO A Qme> Z 3,

]

Ncm’me,N 1 1
4 Nomaln (2b NemNTA - 2me) 3 K

[le2,ml|?

+QZXWA o

’4 E ZmNIGQmXZGZmGQmX €2.m
Z#J

Hez

| ZZle€2leX 62m+meALLX €2.m

1
+ ol ( - ZZm,N,le€2,m WZZmNzeng €2,mE€2m
2m ] 2m
1 !/
+ ZZ ,N,I€1, Xle , €1, >
lezml2 + ||erm| 2 : m 1L,mX1€2m | €1m

X (—2X,762,m _ N, (LL'Xneg,m + XWLL/GQ’m)> + O,(N)

lesmll?”

NCmN 1

]

Ne,, 1 1
<||e2m||2‘7,4+2>b <2meCmNUA_2me>+2 Z ijnA

ij
1

M m Z Zm7N’leé’le€2’melz7an627m - m Z Zm N l€2 leX €9 m—|—
7m l m
1
b N A1 X g + o 112 < o Z L N1 X1€2.m + 3 Z Zym.N.1€5 mXn€2.mE2m
lezml I ||€2m||
1 /
+ Z Zm N1€1mX € e
[levmll® + lleam|[2 4 7 Em m>

% <_2Xne2,m_ ’Cm—N a (/ Xpeam + Xyt €2m)> + O,(N)

|e2,m|[*

2
Ncm,N 1 1
= (framtion 1) (shmsenarn g ) B T
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— 1 / / 1 ’
l€2.m|] El: L, N 1€ 1 X1€2,m€% 1y Xy €2m — —||€2m||2 Z Zim,N €9 1 X1 Xn€2m
1
+ 2(_ZZm,N,lX162,m+ 2ZZle€2mX €2,mEnm
lleamlPX 4 [le2ml]
1 '
+ ZZleel mXi1€2.m | €1 m)
2 2 EEAR) ) ’ )
TermlP + ezl 2
Cm,N ’
X (—QXUGQ,m_W (LLX €Qm+X Lbegm)> —|—Op(N)
2,m
where
T2,m,N
T N2 o - 1 bm m -7
oA+ (2 & JA—|—2bm)

2
(%bmcmaA + ﬁ) +b2,0%

N2 Z E(X12)

m 1
L ( c _ oq—2 bm(QbmcmaA+—)+2 Z

1 1 2 +2
ibmcmO-A + m) + me'A

Nc N 1 1
= N? m’ 1 =By NCm — X — X
<||62,m||20A * ) (2 ANV Cm N A 2bm,N) N? Z 7 12)

Ncm’N 1 1
+ ( oA+ 2> b, N <§bm,Ncm,NaA — 2bm,N> +2 | Y XijA; 4+ Oy(N)

ij

SO:

1 U221(ﬁ-m) U22g(7AT )
[ D0 X (A + 45+ V) - X (As + Ap+ Vi)
el D A P DI oo ] e TR

2
N 1 1 , 1,
_ : 1) (26, v yoa — E(X13) + —1Tym
(E(e%,m)UA+ ) (2 NCm,NTA 2bm,N> N E(X2) + 150 Ty
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N <E<€2,m>4 N 1 <aAcm,NE(62,m)2 2E(62,m)4 5 E(eam)*E(e1m)?
B, E@)\ B, B@,)  ‘BE(,) T B,
QUACm NE(€2 m)4 20Acm NE(€2 m)2E(€1 m)2 ’ ’

— . 2 — d d J E(X12)E(X5)Zm
B, B@)BE.) + B, ) )" EE R
E(egm)? 1 o CmNOaFE(eam)? / /

— . 2F(eym, d d E(X19X5:) Zm,

I\ TEG TR P T g,y ) ) T A

1
Lo, ( )
1 1 ’ 1
Cm
= 1 m,NCrm — 'E(X —'Ts
(E( oA+ )(2 NCm.NOA 2bm,N> n'E( 12)+N27l 2,m,N
1

+ ( (e2,m) + (UACm,NE(€2,m)2 B 2E(627m)4 Ly E(€2,m)2E(€17m)2
E(e3 m)2 E(G%,m) E(G%,m) E(e%?m) E(e%m) + E(e%,m)
2040, NE(@Q m)4 20 4Cm, NE(€2 m)ZE(el m)z / /
— ) ) _ ) ) ) E X E X Zm
B, E@) B, + B, ) )T )y
E(€2 m)2 Cm.NO A , , 1
K K E X X Zm O L
B \' B, | TN Iy O\ g

+

Note that

2
1 b 1
5 m,NCm,NO A 2bm,N

2
1 1
E(eg,m) = <§bm,NCm,NO-A — 2% N) + bfn,NO-zl

Hence:

1 V22,5 Tm) Tm
e (ZXijm (At A+ Vi) = D 72 (). 225 (m) ¢ Xjkom (A1+Ak+Vik)>

— i s 022 ) [[ {22 (70|

2
Cm,N 1 1 , 1,
= 1 -b - E(X —n'T:
<E( % ) oA+ ) <2 m,NCm,NO A 2bm,N> n ( 12) + N2 142 m,N
(e, 1

( (UACm»NE(e27m>2 _ 2E(e2,m)4 9 E(627m)2E(61,m)2
E(eg,m)2 E(e3,)) E(e3,,) E(e3,,) E(e3,,) + E(e,,)
QUACm NE(€2 m)4 2UACm NE(€2 m)2E(61 m)2 , ,
N 7 - : : ’ B(X12)E(X!,)Z
E(e3,,)? E(e},,)(E(e?,,) + E(e3,,)) N E(X12)E(X12)Zm,N

2
1 1 2 2
E(€27m)2 (gbm,NCm,NUA + 2bm,N> + bm,NUA

"B, (

1
'B(X19X5) Z . N+ O ()
n ( 12 23) N P \/N

2
1 1 2 2
50m,NCm,NOA — QbmﬂN) + b, NTA
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Define

U222(7Arm) U22](A )
ZXZ‘IJ'XU_ Z | )”XJ,‘kX’Uf

i#j i ki |va2 (7 ) |] [ [v22 (7

2
1 1
<§bm,NCm,NUA — 5 N)

1 1 2
(§bm,Ncm,N‘7A - 2bm7N> +0 NUA

= N? | B(X15X],) — E(X12X03) + Rom v

where:
. 1 / /
ZJ
1 V22,i(Tm) Va2, (Fm) o E(eam)?
— X Xiw — 5~ E(X12X23)
<N2 o oGl o Gl 7 B(e,,) *
Therefore:
LA (7) + An(T) < O)\/_dmg(O, Lo, D) (e — o)
= L(A (7)) + An(7) < 0)diag(0,1,...,1)
2
1 2 2
E m2<b NCmNUA+ ) +bm,NUA
( E((€2é )> 2b 2 Msz (X12X )\/_ZmN
“.m (%b , ) + b2 NO'A

NV_'QmNEmN

2
Cm,N 1 1 -1 -1
— 1 —b, NCm, — v NM. Ry M E(X
(E(e% )JA-l- ) (2 NCm,NO A 2bm,N> 2,m, NL2m N Mg o ( 12)

(%))

Mz,m,N = E(X12X{2) -

with

2
1 1
<§bm,Ncm,NaA ~ 2%, N)

E(X12X23)

<%bm,NCm,NUA - 2b7i,N> + b2 NUA
then
()\1( ) + )‘N( ) < O)WdZCLg(O, 17 st 1)(ﬁm+1 - 7T0)
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2 2
1 1 1 1 2 2
(——b c O'A——) <——b c UA+—) + b0
2 m-m 2bm 2 m=m 2bim, m-YA
= 5 5 M E(X12X35)V'N Zy
<—%bmcmaA — i) +b2,0% (—%bmcmaA — ﬁ) +b2,0%
1
+—=M1T5,,

NN
c 1 1\? 1
S [ - 1) ( =Zbmemoa — — ) VNM'Ropu M 'E(X12) + O, [ —
( E(e%m)JAJF >( 5 bmCm0 4 2bm) VN m Rom M, E(X12) + p(\/ﬁ)

with
2
(%bmcmoA + ﬁ)
M, == E(X12X},) — E(X12X53)
%bmchA + ﬁ) -+ b%nO'El
and
1 i
dof + ;0%
SO
LA (7) + An(7) < 0)VNdiag(0,1, ..., 1)(Fpp1 — )
2 2
(lbcaAJrL) (lbcaA—L> + b2 02
2YmCm 2 2YmCm 2bm mIA
= > 5 M E(X195 X5V N Z n
(%bmcmaA + ﬁ) +02,0% (%bmcmaA + ﬁ) +02,0%
1
+ —M,;lTQ,m

NVN

Cm

— | — 3 oa+1
(%bmcm(m + ﬁ) + 02,02

2 2
((%bmcmaA + ﬁ) + bf,p%) (%bmchA + ﬁ)
X VNM 'Ry n(1,0, ..., 0)

b0
1

Again, including the intercept:

1A (7) 4+ An(7) < 0)VN(Fpmsr — T0) = —Cmsr.noa(1,0,0, ..., 0)
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N E(eim) <E(62,m)4 1 (aAcm,]\;E(egm)2 B 2E(€27m)4
E(el,,) — E(eim)* \E(€3,,)*  E(€3,,) E(€3,,) E(€3,,)
Eleam)?*E(e1m)?  20acmnE(eam)! 20 aCm NE(eam)?E(erm)?
CTE@.)+E(#,) B@,)? BB, + E(e%,m»))
x (1,0,0,..0) E(X15) Zm.n
1 ) (1 _ L>2 2 2
+ <2bmchA i %m) 2hmtm 4 %) T i M,;lE(Xngég)\/NZWN

2 2
(lb CmOA + ﬁ) +b2,0% (%bmcmaA + ﬁ) + b2,0%

+ —M 'y
NVN >

Cm
- - 2 O-A+1

(%bmcmaA + ﬁ) + 2,02

2 2
((%bmchA + ﬁ) + bf,pi) (%memO'A + ﬁ)

X VNM 'Ry n(1,0, ..., 0)

br0%
1
+0,( —
()
In conclusion:
VNdiag(0,1, ..., 1) (1 — m) = diag(0,1,...,1) X ( (1.42)

2 2
<lbmcm0'A + L) (lmemO'A - L > + b%no'?é‘
: 2 s 2 M E(X 12 X5)VNZ, v (1.43)

m 1 1
i C 5 O'A—2 bm (QbmchA—i_ﬁ) + 2 (144)
<%memOA + ﬁ) + b?n(fi m

1 _
—\/NMml Z Xi;A; (1.45)

( (A (7) + An(7) >0) T (7) + An(7) <0)) (1.46)
c 1 1\?

X B o4—1 bnConO A4 + —— (1.47)
(%bmchA + ﬁ) +0,0% ! (2 e )
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XV 3 2K — (X (1.48)

N ~ Cm
C 1R + A () > 0) i oa—1 (1.49)
(%bmcmcm + ﬁ) + b2,0%
2

2
((%bmchA + ﬁ) + bfn(ri) (%bmcmaA + ﬁ)

X
2 2
bm OA

VNM Ry n(1,0,...,0)" (1.50)

IO () + A7) < 0) | - o oat1 (1.51)

(%bmcmaA + ﬁ) + b2,0%

2 2
((%bmchA + ﬁ) + bfn0-124> <%bmcm0-A + ﬁ)

2 52
b2,0%

+0,(%) (1.5)

With the intercept:
\/N(ﬁ-m—&—l — 7T0) = _UACm+1,N(17 0, ceny 0)/

X

VNM 'Ry n(1,0, ... 0)’>

N E(ei,,) (E(el,m)4 1 (UAcm,NE(el,m>2 +2E(€1,m)4
E<€%,m) - E(el,m)2 E(e%,m)Q E(eim) E(e%,m> E(eim)
5 E(e1m)*E(eam)? B 20 4cm NE(e1m)* B 20 aCm NE(e1m)*E(em)? ))
Bt B, B BE@n) (B T Bedy)

X (1, 0, ceey 0)/E(X12)Zm,N

2 2
<lb c O'A—FL) (lb c UA—L> + b2 o2
2Ymbtm 2Ymtm 2bm mY A
. M E(X12 X5V N Zo x
(%bmcmO'A-i- i ) + b2 aA< bnCm0A + 5 ) +b2,0%

m 1 1
+ L o4—2| b <2bmcmaA+W> +2
(%bmcmaA + ﬁ) + b2,0% m

1
XN\/N
+ (LA (7) + An (7 )>0)—1(>\1( ) + An () < 0))



X

c 5 oa—1 <2bmchA+ﬂ)
(%bmcm“A + ﬁ) +h2,0%

1
X VN | 37 22X — B(X2)
ij

Cm
<)\1( ) + AN ~ or )
( bcma + 7 )+ V0%

2
((%memUA + m) + b2 0124) (%memUA + ﬁ)
X b2 o‘i \/NanlRl,m,N(l,O,...,O)’

Cm
— 1M (7) + An(7) <0) | — 2 .
(%bmcmaAﬂLﬁ) + 0202

? 2
((%bmcm@‘ +a) + bfnag,) (3bmemoa+5-)

X > 2 \/NanlRZm,N(l,O,...,O)’
b2,0%
1
+0, [ —
()
write
100 = 5% B,

1 Z V11 () V11, (Tm) ) E(eq )
? i kA Non (7)o G| E(e?,,) (X12)

1,m
and for any 7 € R":

1 V11 z(ﬁm) UH](A ) , E(Gl m)2
N2 Xikn = ra v E(Xi2n)
’ 7’#%1] || 11(7rm)|| ||U11( )|| Jkm E(G%m) n

1 ) o .
TP (2 P ) K = 3o

ey o

R R E(e1m)?
- ZUll,j(ﬂm)vll,k(wm)Xjkm) - E(e2, ) E<X1277)
ik b
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= g 7)) ) X - %E Xia) 404 ()
_ m (012G )'0) ¥y (o) Xyt — %E(xm) L0, (%)
_ m (e’l,ma) VX1 — %E(}(m)
+ m ((v11(Fm) — €1,m)"t) V' Xperm + m (6’1 m > VX (011 (Fm) — €1.m)

1o, (%)

1 / / E(61 m)2
=~ 15 X,e1m— ——FE(X
N2||eqm]|? (el’mb> LA, E(e?,) (X12.0)

1,m

1
— Zm X Am )\ m_)\ Am m
+N2||e1,m||2)\1(7%m)< Zl: NaXovn (Tm) + (A, 1 (o) )e1,

1 /
" lerml]* + [lezm|[? Z Zm N 1€2.mXi€1.m erm) 1 Xyerm
’ ’ l

1 / / A~ A~
* e (o) % 2 ZmavaXion(n) + (am = MaFm)er,

1 1
r|e1,mr|2+||e2,m||2; NAE2mACLm | €2 )* (N)

1 / / E(el m)2
= X m = -
Wl (“hnt) ot =

: (
+ - Zm,N,leel,m -
NelforlF\ ~ 2

E(Xi2,)

m Z Zn N €1 m X1€1,mC1mC1m

/
1
/
+ E ZmNi€2mXi€1m | €am | t' Xpeim
!

[leml* + [le2.ml|”

1 , ,
X\ = D ZmwiXierm = ZZ X
+ N2||61,m| |4 (61,mb> 2 77( l m,N, I €1,m ||61 ||2 m N161 mE1Lme1Lm

1 1
Zm mX m m O T
r|e1,mr|2+uez,m\|2; NAE2m AL m [ €2 )* (N)

1 E(elym)Q

= 3 (Cimt ) C Xnerm — —a 5 B(X
N?[lexm|[? <617"*>L "m TR, (Xizn)



1 1
+ — ZZ Xery — —— Z Zmni€r . Xie1 me1 me
N2||€1,m||4( l m,NLAIELm llexm|[? l m,N,1€1 mA1€1,mC1,mELm

1

e ml* + [le2.ml|?

1t 1
+ (e’ L> VX <—ZZ NiX € ——ZZ Vi€ Xier e
N2||€17m||4 l,m n l m, IV, 1,771 ||617m||2 l m,IN, Lm 1,771 Lm

!/
/
+ g Zm,N,l€2,le€17m 62,777,) Ll Xnel,m
l

Ternll? j_ ool ; Zim,N1€2,mX1€1,m ez,m) + 0, (%)
- m (6’17mb) U Xye1m — %E(Xlgﬂ)
+ %17:))2( — E(e1m)E(X12)Zm N — %E(Xlg)zmw
E]fgj:;iEE(Z%E(Xu)Zm,N)n’E(X12>
E(e1m) E(erm)®

( - E(€17m)77/E(X12X23)Zm,N - ) n E(X12)E(X12)/Zm,zv

B(&,)? B

Bl B PP 2 ) 400 (5

M

hence:
diag(0,1,1, ..., 1)M 'Ry, (1,0, ...,0)’

1

_ mdmg(o, L1, DM )Xy — B(Xy)
ij

1 E(e1m)?
— diag(0,1,1,..., 1) M, (— (e’LmL) VXperm — %E(Xn,n))

N2|[e1m|[? fm
E 61’m)2 . 1 1
+ Wdzag(O,l,l,...,l)Mm E(Xngég)Zm7N+Op N

1
= ﬁdwg(o,l,l,,l)MJLI ZX” —E(XZJ)
ij

1
~ diag(0,1,1, .., DM~ (6’17mb) VX1 m

" N2lexml]?

E(e1m)? !
(ex, )Qdiag(o, L1, )M, E(X195X53) Zm oy + O, (ﬁ)

TEB@,)

103
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N2dzag(0,1, 1,... ZX” Xij)

1
— diag(0, 1,1, ... 1)M* NE( m X; E( mb A; X
Zag(a y Ly eeey ) m N2H€1 H ( 61 Z J77+ 61 Z Z U

+ NE(eq.)bm ZAXWHP ZA ZAX””)

i )

E(e%m)Q 3 Ly by ) m 3 s p N
Ndeag(O, 1,1, ..., ZXZJ Xij)

— diag(0,1,1, ..., 1)M* N2||61 e (NE €1m) Zle—l—Eelmb ZA ZXW

+ NE(eLm)bm Z AiXij,n>
ij
E(el,m)2 . _ 1
+ deg(o, 1,1,..., 1)Mm1E(X12X§3)Zm,N + 0, N

-1
NZdwg(O,l,l,...,l)Mm ZX]

. 1 Eleim
—diag(0,1,1,...,1)M* —Nzée(l ) ] (E(eLm) g (Xijm — E(Xij)) + b E AiXij,n>
i ij

+ %d@ag(& L1, ., )M E(X19X03) Zn + O, (%)
Ndeag(O, 1,1,..,1) (1 _ %) ZXW Xij)
— diag(0,1,1,...,1)M_, Nfbi *Zlm ;A Xiin

+ %dzag((), L1, M E(X19X03) Zmn + O, (%)

Including the intercept:

MyZIRI,m,N<17 07 s} 0)/
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1
= M DXy - B(Xy)

1 ’ ’ E(61 m>2
s 5 m ’ E
Wl () Xaim = Ty P i)

|
S
3 /=

E(GL )2 _ 1

R i B XX 2 + 0 7
E(el m) ( E(61 m)3 E(€2 m)zE(el m) 1

+ —= E(el,m) + 2 - -2 ’ - Mm E(Xlg)E(Xlg)/ZmJV
E(e?,,)? E(et,,)  E(el,) + E(e3,,)

ey X, — B(X M ! ') X Blewm)® oy
= vz Mm > Xy — E(Xy) | - M, oo ] \Gmt) £ Xnerm = "5 (Xi12,9)

e E(e1m)’ _ E(ezm)*E(e1m)
)Q(E(M”+2E@ﬁ» e )

x (1,0,...,0)E(X12)' Zn N

E(elm) 1 /
MM E(X X 0
B, B 2t Oy
[
= =M Z X;; — B(Xy)

) 1
— M} N (NE (e1.m) ZXU—FEelmb ZA ZXZ]

E(eqm 2
+ NE(e1m)bm Y AiXy + b, ZA ZA X”) %M;E(xm)

]

E m2 E m2 E m2 ! !
+L)2(1+2 1) — >>(1,0,---,0> E(X12) Zin,n

E(eim)bgnO-A E<e%,m) E<€%,m) + E(@%
E(€1 m)2 -1 / 1
—=—M "E(X12X5)Z,, O, —=
+ E(eim)g m ( 12 23) Nt Up N
r . _
= =M ZXZ] B(X;)

. 1
— M N (NE (e1.m) ZXzJ—i-Eelmb ZA ZXU

+ NE(eLm)bm Z AzXz])

ij
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E(eym)? ( E(em)? E(em)? ) ,

4 142 _9 1,0,....0) E(X12) Znm
B, toh \ T2 E@,) B+ B VEXiz) Zm
E(el,m)2 1 1

FE@, i PE ) I+ O g
L

ij
v Elem) (o X — BE(X b AXo 4 b AS X
T Um N2E(e ) (el»m)Z( i — E(Xiy)) + mZ i z‘jJerZ 12 ij
m ij ij i ij
E(e?) — |levml|*/N .
: M'E(X
G
E(61 m)2 ( E(61 m) E(e m)2 > /

NR AN FV _9 (1,0,...,0) E(X12) Zum.n
E(eim)bgn ,24 E(eim) (e%m) E(e2m> .

E(el,m)2 1 1

FE@, M P2 + 0

1 E(e1m
- (1 ) e (- e

_M— el'm ZAXUn

™ N2E(e2, ) (ef.m) ”
E(e,,) = llewml /N E(erm)bm > As
,m ) _ ,m/¥m 7 7 M_lE X

+< E(e3,,)? E(3,)? N m E(Xi12)

E(el m)2 ( E(el m)2 (62m) > / /

* | 1+2—3 0, .., 0) E(X12) Zon
E(e?,,)b%,0% E(e,,) E(e3,,) + B(e3,,) (1 ) E(X12)' Zim,n
E(el,m 2 _

+E(eim)2MmlE(X12X§3) Zm,N + Op ( )

1 E(elm
= Ao 1_— Xz z
N2 ( E(elm ) Z J J

_ e1m
_Mm NZE elm %:AXZM
E(el,,) = lleimlP/N  E(erm)bm 3, As
,1 s . ;m/)Ym P} M_lE,X
*( B, B, N ) Mm B

E(€17m)2 1 i 2E(€1 m)2
E(el )04

E(eam)*
. , (e2,m) >(1,0,,,.,0)’E(X12)’Zm,zv

E(el m) E(e%,m) + E(eg,m>
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E(eLm)Z
E(ef,n)?

1 E(e1m
- 1= X, — B(X,)
N2 < E(el’ ) Z J j

— e1m
_Mm NQE elm ZAXWU

. 1
M E(X15Xk) Zow + O, (N)

ij

1 A2 A
+—=———— | bn (U,ch—.ZNz> _3E(€1’m)21 (1’07.“70)/

2] =

and similarly for Rs,, n, write

Ry (1,0,...,0) N2 ZXU X,;)
1 0221(7%771) 022](7%771) / E(€2 m)2
N2 XL — —7E(X12)
? o Tl Teamll ~ Bch,)
and for any n € RL:
1 V22,i(Tm) Va2, (Tim) o E(€2m)2
N? Xikm — 7 E(Xi2g)
’ z;é];;éz] H 22<7Tm>|| HU22< )|| Ik E(e%m) n
1 / / E(€2m)2
= A2 2 X, m— e p(x
N2|legm||? <62’mb> bAnes, E(e2,) (X12,)
1
J— Zm X Am A m_)\ /\m -
+N2Hez,m|\2)w(frm)( ; NaXiv22(Tm) + (Mg, N(m))es,

1

[le2ml? + [lexml]?

1 N A A
+ N2||62,m||2/\N(7%m> <€2’mb) t 77( ; Nl lU22(7T ) + ( 2, N(7T ))eQ,

/
/
E Zim,N1€1,mX1€2,m 61,m> wXyeam
l




1 1
HqﬂP+HqMPZ; NAEm A, “’)* p(w)

1 , , E(€2m)2
= Mo Xyeam — ) x
Nlen ] (chmt) (Xoeam = 32 B(Xa)

2,m

1
~ Nl i\ T 2o dmvaXiezm — o § Z X
N2||€27m||4 ( zl: m,N, 1M 1€2m |2 le€2m 1€2,m€2.m

||€2m|

1

/
i lle2ml|? + |le1,m]|? Z Zm,N1€1,m X1€2,m 61,m> ! Xpeam
’ ’ !

1

S 1
/ / ,
— NQ‘ |€2,m‘ |4 <e27ml/> L XT] ( - ; Zm,N,leeZm - —| |627m| |2 ; Zm’N71627lee2:m627m

1 1
+ Zm N1€1.mXi€am | €e1m | + O, | —
|kmAP+WaMP§; A mE 1’) p(N)

_ _EE(%:—))Q ( — E(eam) E(X19) Zn — %E( X19) Zon
CEREs e LR L

_ g((:;:% ( — E(eam)n E(X12X03) Z v — Z((Z—Jn B(X12)E(X12) Zonn

* Eﬁiigzg)iEE(Zgi)77’E(X12)E(X12)’Zm,N) + O, (%)

hence:

diag(0,1,1,...., 1)M 'Ry, n(1,0, ...,0)

E(ey
N2d2(1g(0,1,1,...,1> (1 — m) ZX'LJ z]

) e2m
— diag(0,1,1,...,1)M,, N?E ZAXUﬁ
E(egm)? ) ,
_ mdzag(O, 1,1, )My B(X12X0e) Zin + O, (N)
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b0
2dzag(O, 1,1,...,1) . ZXZJ X.))
(%bmchA + %) + b%naA

. 1 <;bmcm0'A + T )
+ diag(0,1,1, ..., 1) M, : — e Z i
<§bmcm0'/-\ + 2 ) + b mO A i

2
1 1
<§bmchA + m)

2
<(%memUA + ﬁ) + b2,0%

N

1
Sdiag(0,1,1, ..., 1) M E(X12X55) Zon. v + O, <N)

Including the intercept:

MRy n(1,0,...,0) =

! —E(e 62m
T Xij — B(X; A X
N2 ( E(e27m > Z J i) M, NQE €2m ; "
E(€2m> €2m E(@l 62m) 1 ,
5 | ~Ele2m) =2 M E(X12) B(X12) Zom
+E(6%,m>2 < (€2m) (ezm) E'(e 3 m +E(elm> m B(X12) E(X12) Zin,n

+ E<€§,m) ||62m|| /N E(62m m Az lE X
E(eg,m)Q E e2m 12

B EEe;, ;QMmlE(XHXé ) m,N +O

(

1 1o
¥ z 2
534

1 1
20mCmoa + T) + b%laA

1 1
<§bmchA + T)

+ anl N XU .
(%bmchA + 2bl > + b2 0'124 ij
B(esn) Blew) ) Ble)’ ,
e oz \ LT 2 e ) T2 ’ 1,0, ..., 0) B(X12)' Zn
+ E(6%7m>bgn0'124 E(e%’m) + E(@%m + E(eim) ( y Uy eeey ) ( 12) N

1 > A A
— | b 2 _ L] —3F ) 1 /
T B b, (“A ) 3E(com) = | (1,0,...,0)
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2
(;bmcmaA + ) 1
_ 1E (X12X%3) Zmn + O, (N)

((ébmcmaz“ + 2b + b; UA)

1 b2 o>
Y ZXw (X5)

e
N <bmcma,4+ ) —l—b?naA

1 1
=b,c UA—i——)
-1 (2 m=m 2b
AL : : E:AXW
<§memO'A+2b > +b O'A i

2 2
(%bmcmO—A + ﬁ) (%memO—A + ﬁ)

2 =2 2

<(%bmcma,4 + ﬁ) + b%ai) b2,0% (%bmcmaA + ﬁ) + b2,0%

2
1 1
<§bmchA — —2bm>

2 P
(%bmchA + ﬁ) + <%bmcmaA — ﬁ) + 2b2,0%

1 , YA (1 4 ,
— 5 — L — 1
+ E(e3,,)bm0% o (UA N 3 mechA * 2b N (1,0, ...,0)

+ +

+2 )(1,0,...,0)’E(X12)’Zm,N

2
_ 1E X12X )ZmJ\f + Op (N)

((%bmcmoA + 2b + b2 o >

1 b2o?
N2 2 Z Xij — E(X)
(QmemUA + o ) -+ b%nUA

1 1

(—b c JA—i——)

2Ym&m 2b
! § AiXii
(%bmchA + 2bl > + b2 O'A i

2
1 1
<§bmchA + _2bm>

1-2
2 ( 2
((%bmcmo—A +o) + meai) b2,0% (Sbmemoa + 5 )+ 803

+ M,

m

+

1 1\’
+ QbEnO'i (2memGA — W) )(1,0, ...,O),E(Xlz)/ZmJV



N 2b N

E(e%,mﬂ)mUA

1 A? 1 A,
+ =55 | tn (ai—L> +3(2bmchA—l——) Z (1,0,...

2
1 1
<§bmcmaA + 5 )

B 2
((%bmcmoA + ﬁ) + bf,pi)

1
QanlE(Xngéy))Zm’N + Op (N)

where the last inequality results from the observation that:

1

1
4bfncfnaA— ey +b205 =0
remember:
diag(0,1,1, ..., 1)M 'Ry, (1,0, ...,0)
1 2o
N2dzag(0, 1,1,..,1) 4_ ZX” X))

<%bmcma,4 + ﬁ) + b?nUA

1 1
(imemUA + T) bm

— diag(0,1,1,...,1)M* e ZA Xijm
(%memO'A—i—le ) +b2 0'124 iJ

2
1 1
<§bmcmaA + _2bm)

+ 2
((%bmcm(m + ﬁ) + 02,02

Including the intercept:

M= Ry (1,0, . 0) = — b ZX
m 1,m,N\+Ly Yy -eey - N2 ij
(2bmcmaA + 5o ) + bfnaA

1 1
<—memO'A + b_)
: - : - § A Xy,
<§memUA + o > + b2 O'A i

2
1 1
<§bmcmaA + 5 )

— ML

m

2

1 1
<§bmcmaA + —me>
+

. (1 +2 .
<<%bmcm0-A + ﬁ) + bfnai) b2,0% <%bmchA + ﬁ) + b2,0%

+
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1
2diag(0, 1, ]_, ceey 1)MT;1E(X12X£3)Zm’N + Op (N)
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1 1\?
— 2b$n(7124 (ﬁmemUA — W) > (1, O, ey O>/E<X12)IZm’N

1 T A2 1 S A
T/ 2 N 9 bm el I bm m YR 17 RS /
B, (UA N ) ’ (2 AT, ) A

2
1 1
<§bmcma,4 + _2bm>

5 2
((%bmcmaA + ﬁ) + b?nafl)

plugging in equation (1.42):

+

1
M, 'E(X12X5) Zmn + O, (N)

\/Ndiag(O, 1, D)y — mo) = diag(0,1,...,1) X [
b

2
1 1 1 1
<§bmcmaA + ) (—bmcmaA - 5%

M E(X 15 X5)V N Z n

Cm

+ 5 A — 2 bm
<%bmcma,4 + ﬁ) + b2,0%

1 1
— — 2
2bmcmaA + o > +

1
v Z i

+ (LA (7) + An(7 )> 0) L(A(7) + An(7) < 0))

- 1 1\? 1
X c > O’A—l <2memO'A+W) VN WZX”_E<X12>
(Sbmemeoa + 5 ) + B0 m ~
Cm
— 1(A\ () + An(7) > 0) 5 o4 —1

(%bmcmaA + ﬁ) +b2,0%

2 2

NM 'Ry ,.n(1,0,...,0)
bgno_i \/_ m 1, ,N( )

X

— I\ (7) + (7)< 0) | - Cm oa+1

2
(%bmcmoA + ﬁ) + b2,0%




2 2
((%bmchA b)) bf,pi) (tbucuoa+ o)

X VNM Ry n(1,0, ..., 0)

br0%
1
+0,| —
()
= diag(0,1,...,1) x (

2 2
1 1 1 1 2 2
<§memeA + m) (QbmchA - m) + bmJA

2 2
bm 04

M E(X12X5)V'N Zon x

2
(%bmcmaA + ﬁ) + b2,0%
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Crm, 1 1
+ |: ) 0A — 2 bm (§bmcm0A + ﬂ) + 24
<%bmcm0,4 + ﬁ) +b2,0% m
b <lb 1 3
Cm. m \ 3 mCmTA + m) 1
+ 3 o4 —1 5 2 :| Mn_q,linjAj
(ébmcm“ T ﬁ) +b,0% bm NVN ij
1
+0,|—=
(7%)
Including the intercept
VN (1 — 70) = =0 aCms1n(1,0,...,0)
N E(e?,,) (E(el,m)4
E(el,n) — Elerm)? \ E(ef,,)?
1 ((IAcm]\fE(el,m)2 N 2E(61’m)4 E(e1.m)*E(e2,m)?
E(e,,) E(e,,) E(et,,)  E(el,,) + E(e,)
20 cmnE(e1m)t  204cm NnE(e1m)*E(eam)? )) , ,
— ’ : — : : ’ (1,0,...,0) E(X]3) Zm.N
E(et,,)? E(ef ) (E(ef ) + E(€3,,)) .
2 2
<lbcaA+L> (lbcaA—L> + b2 o2
27 m=m 2brm 27m=m 2brm m~ A
+ 2 2 Mn_zlE(XuXé;;)\/NZm,N
(%bmcmaA + ﬁ) + 02,04 <%bmcmaA - ﬁ) + 02,04
m 1 1
+ ¢ gA — 2 bm (ibmchA + %) + 2

2
<%bmcmO—A + ﬁ) -+ bgn(f%
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>< ;M‘IE XA,
NVvN ™ - R

A A A A Cm
+ (L (7) + An(7) = 0) — L(Ai(7) + An(7) < 0)) 5 oq—1
(%bmcm(m + ﬁ) + 2,02

1 1\? 1
X <§bmchA+m) \/N miZinj_E(Xw)

Cm

— T\ (7) + An(7) = 0) oa—1

2
1 1 2
<§bmcm0,4 + m) + bszA
2

2
g b2 o2 \/NMrr_lel,m,N(ly 0,...,0)
m~ A

— I\ (7)) + An(7) < 0) | — Cm oa+1

7
(%bmcmaA + ﬁ) + b2,0%

2 2
((%bmcmaA + ﬁ) + b72nc7124> (%bmcmcm + ﬁ)
X VNM Ry n (1,0, ..., 0)’)

b7.0%
1

= —0acmi1.n(1,0,...,0)
n E<6%,m) (E(el,m)4
E(el,,) — Elerm)? \ E(e1,,)°
1 (UAch\;E(eLm)2 N 2E(61’m)4 E(e1m)*E(eam)?
E(ef ) E(e3 ) E(el,,)  E(el,)+E(e3,,)
204cm NE(e1m)? 20 acm NE(€1m)*E(eam)?

B, E@)(EE) E(ea,m»)) (1,0, -, OY B X1} 2o

2
1 1 1 1
<§bmchA + 2bm> <§bmchA = 2bm

_|_

oy M E(X12X55)V' N Zo x
m7 A (%memO'A + L
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Crm, 1 1
+ 2 O'A—2 bm ébmchA_Fﬂ + 24+
<%bmcm0,4 + ﬁ) +b2,0% m
b <lb 1 3
Crm m \ mCm0A + m) 1
+ 3 oq4—1 5 2 :| Mn_q,linjAj
G%%“+ﬁ>+%ﬁ bm NVN i

4
1 1
<§bmcmaA + 3 )

4 -4
bm 04

Cm

+ 2
(%memO'A + ﬁ) +b2,0%

UA—l

2
(%bmchA + ﬁ)

X [1+2 5
(%bmcmaA + ﬁ) +b2,0%

X \/NE(XQ)/ZMHN

2
— 202,07 1b CmOA — L (1,0,...,0)
mY A 2 mtm0 A 2bm s Uy eeey

3
1 1
Cm, <§memUA + 2bm>

+3 04— 1

2 e \/NZ;V (1,0,...,0)
(%bmchA + ﬁ) + b?na,%x m” A

+ (L (7) + An(7) = 0) — L\ (7) + An(7) < 0)) <sz42 - a§>

1 1
(ﬁbmcmaA + 5

> VN(1,0,0,...,0)

Cm

2
<%bmcm0-A + ﬁ) —+ b?nO'%

o)

Let’s simplify the coefficient of the term M, ' F(X12)E(X12) Zm.n:

X

O'A—l

2 4
meA

E(el,m)‘l E(el’m)2E<€2’m>2

E(el,m)4 1 UAcm’z\;E(el,m)2
B¢ B ( B, B@. CEE,) By
204cm NE(e1m)* 20 a¢m NnE(€1m)*Eleam)?
G G E E(ea,m»)

4
1 1
Cm (EmemUA + 2bm>

+

2 gA — 1 2
(%bmcma/x + ﬁ) +b2,0% b2,0% ((%bmcmaA + ﬁ) + b20124)
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2
(lb CmO A + L) 2
mbtm - ]_ ]_
<1 + 2 ’ 2 — Qbilai (2bmchA — —> )
( 3

2
1 1 2 2b,,
§bmcma,4 + m) + b%la

2 4
Eleyn)* 1 OACm,N (%memUA + ﬁ) (%memUA + ﬁ)
_ Blem) 1 ( : 49 . 120 o8
E(el m) E(el m) E(el,m) E(el,m)
4
20ACmN< bntmoa + 55~ > 20 ACm VS, 08
E(ef,,)? E(ef )
(lb CmO A+ L>4
2VmCm 2bm
oA — 1 2
(% mCm0A + 3 ) +b2,0% b2,0% <<%bmcm0,4 + ﬁ) + bQUa)
2
mchA + > 1 1 2
(1 + 2 5 — benaz (QbmcmaA — ﬁ) )
mchA - —> +b2,0%
; 2 1 L V4
E 4 1 O0ACm,N ( mCmO A + ) (_ mCmT A + _m>
_ <€;m>2 1 ( : TP i TR T
E(el m) E(el m) E<el,m) E<€1,m>
4
20 ACm,N (QbmchA + % > 20 ACm NVE, 08
E(el,m)2 E(e%,m)
<1b CmOA + L>4
Cm 2VmCm 2bm
+ 2 oa—1 2
<¥MMWHﬁ>+%ﬁ %ﬁ(@%%m+ﬁﬁ+@ﬁ)
(lb )2
‘m%m+mﬁ 1 1\
(1 +2 ’ 22 — 202 0% (QbmchA — ﬁ) )
(%bmchA + ﬁ) + b%no-z} m
To simplify notation, for every ¢, ¢; v and o4 denote
2 ) L\
A ) E(ey m)4 1 <0Acm01 N <2bmcma,4 + 3o > <§bmcmo,4 + m)
04,C,CIN) = . — + 2
E(e%,m>2 E(e%,m> E(€1 m) E(eim)

4
1
+M%w}“%N<%%“+%)_ﬁm%M%ﬁ
E(eLm)Q E<e%,m)
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4
1 1
<§memUA + _2b7n)

O'A—l

2
(% mCmTA + 3 ) + b2,0% b2,0% ((%bmcmaA + ﬁ) + b20124)
2
2bmCmOA + 5, ) 1 1)’
(1 +2 5 - QbE,ZUi <2bmcmaA — ﬂ) )
mcmaA + 3 ) +b2,0%
1 1
UA, oa—21 b, QmemUA—I-W + 24+
$bmCmoa + 3 ) +b2,0%
3
. b (%bmcmaA + ﬁ)
+ 2 oa—1 b2 o2
1 1 o
<§bmchA + m) + b,gn0'124 A

3
1 1
(gbmchA + _2bm>

3 ~+4
meA

Cm
C(oa,c) =3 5 oa—1
(%bmchA + ﬁ) + b2,0%

2
1 1
<§bmcma,4 + _2bm>

2 4
bm 04

Cm

)
(%bmcmoA + ﬁ) +b2,0%

D(oa,c,c1n) =1 N o4 —1

(remember ¢; y 1= L(A(7) + An(7) > 0) — L(A\ (%) + An(7) < 0)) so that:

\/N(ﬁm-&-l - 7T0)
= _gAcm+1,N(17 07 s O>, + A(O-Aa Cm)M(Cm)_lE(XIQ)E(Xi2>Zm,N

1
+ M E(X19X5)VNZp n + Bloa, cm)N—\/NMT;I Z XA

2

+C(oa, cm)\/ﬁzl' A"(L 0,...,0Y + D(0a, cm)VN (ZTA - 0?4> (1,0,0,...,0)

)

L)+ M (emn) ™ (B(X12X53) + A(0a, ¢ E(X12) E(X]5)) Zm v
—— M ZXUA +C aA,cm)\/_Z A £(1,0,...,0)

= —0ACm+1,N

+ B(UA,Cm

\/_



+ D(o4, cm)VN (ZA? — 02) (1,0,0,...,0)" 4+ O, (

N
Since
i
1
b =\ T3 55
404 + 2,05
Then: . )
2 2 2 _ 32 2
10mOACm — 0 bin0a
implying
1 1\> /1 1\? 1 1)?
<§bmchA + %) X <§memO'A — E) = (Z—lbfnaicgn — m) = bfn(fi
therefore: ) )
<%bmcma,4 + ﬁ) (%bmcmaA — ﬁ) + 02,02 X
2 2 2 =
bina (%bmcmaA + ﬁ) + 02,07
and

VNdiag(0,1,...,1) (1 — mo) = diag(0,1,...,1) x (M,;lE(XuXég)\/NZmN

Cm

(%bmchA + ﬁ) + b?no-gl

e, (e 1) 4
gaA — m —O0OmCmO
A 2 AT o

1
M1 Xi;A;
N\/N m ; J*2)

1
+0, | —=
(%)
= diag(0,1,..., 1) (Mm1E<X12X;3>x/Ndz'ag<o, Ly very 1) (fom — mo)

X

Cm

1 1
5 oa—11b, | =bpCnoa+—1,+1
1 1 2 2 2 2bm
_bmchA + 2bm + meA

+2

2

1
X ——=M1Y XA
N\/N m ; J2)
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Lemma for the proof of Theorem 3

Lemma 5. R
K —, Ky
with
<1b 4 )2 <1b 4 >2 -
sbocooa + 5~ sbocooa + 5~
(560000,4 + %> + b3o? (%bOCOUA - ﬁ) + b3o?

2
1 1
(§b0000,4 + %)

X | B(X12X53) — E(X12)E(X],)

2
(%bocoaA + ﬁ) + b3k

= % (E(XHX{Q) - %E(X12X§3)> h (E(XuXég) - %E(Xu)E(Xb))

Proof. Follows the same proof strategy as the proof of proposition 5 in appendix 1.8. n
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Chapter 2

A general estimation procedure for
exchangeable random graph models

2.1 Introduction
Consider a the following general model:
Y;j = h(XivXjanan7%j;B) (21)

for all 4,5 < N and for some measurable and known measurable function h, i.i.d. variables
X, U; and Vj;, which are also mutually independent, and for some parameter 5.! We are
interested in estimating /5 using the observations (Y;j); j<ny and (X;)i<n.

Given that, in general, we know much more about 7.i.d. models than about models
with dyadic dependence such as the one in the equation (2.1), it would interesting to
extract an i.i.d. sub-sample from a full sample (Y;;) and (X;). Observe that the set of
edges {Yi2,Y34,..., Yn_1n} (assuming NV is even) are i.i.d.. Denoting Y(;) := Y51 9; and
Xy = (Xai—1,Xy;) for all © = 1..N/2, the observations (Y(;), X(;))i<n/2 become i.i.d. and
follow:

Yiiy = M X, €6y, B) (2.2)

with €(;) for all i = 1..N/2. Assuming the parameter /5 is identified under the model (2.2), it
is also identified under (2.1). Moreover, any estimator for § with certain desirable properties
in (2.2) would have those same properties under (2.1). In fact, there are many ways to extract
i.i.d. sub-samples like the one used in (2.2): for any permutation o € Sy, the observations
{Yg(zi_l),g(gi),i = 1..N/2} are 1.1.d..

This approach is too naive, it disregards most of the data. A more sensible estimator
would be one that averages all - or a large number of - the estimators obtained through
the 7.7.d. sub-samples. This paper studies these averaged estimator for parametric binomial

!This model is in fact very general: any X-exchangeable random array would have a representation of the
form (2.1). See Crane and Towsner (2018) for details.
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models (e.g. logit models). I show that if the set of permutations used to extract the i.i.d.
samples is “diverse” enough, that is, if the sub-samples do not intersect too much (in a sense
that I precise in the proposition 14), then the “average MLE” has the same asymptotic
distribution as the composit maximum likelihood estimator (c.f. section 4.2. in Graham
(2020) for details on the composite maximum likelihood). In the next section, I formally
describe the procedure, the diversity and condition and show the asymptotic distribution
of the “averaged” estimators. The third section discusses an interesting application: the
procedure can also be useful when the network is not observable in its entirety. The last
section concludes. All the proofs are relegated to the end of the paper.

2.2 The model and the main results

Consider the model:

Yii = 1(X;;B0 + Ui+ U; +V;; > 0) (2.3)

where: X;; = ¢g(X;, X;) with (X;) are i.i.d. random variable, U; and V;; are i.i.d random
variables with mean 0 such that ¢;; = U; + U; + Vj; is distributed following CDF ® and PDF
®. By is the parameter of interest, (3, is known to be in a set K C RF.

Assume we have an even number of observations 7,5 = 1..IN, I am interested the fol-
lowing estimator: first, fog every permutation o € Sy consider the i.i.d. observations
(Yg(gi,l),o(zi),XU(Qi,1)7G(2i))izl, to simplify, denote: Y,; := Y,(2;-1),(2) and similarly for

X. Define Bg the maximum likelihood estimator of §y computed using the i.i.d. sample
<Y07 XO') = (Ya,i7 XU,i):

N

A

By = arg mgxz Y, ilog(®(X,.0)) + (1 — Ys,,) log(l — ®(X,.5))
i=1

N
For every o, denote: £,(X,Y;3) =232, Y, ;log(®(X,:8))+(1-Ys,) log(1—P(X,,)).
Fix some set S C Sy, define:
A 1 A
Bs = Bo
5] 2

ceSs

the objective is to determine the asymptotic distribution of BS.
Note that for any o € Sy, whenever (3, is an interior point of the parameter space K:

_ OLo(X,Yify) _ OL,(X Y3 By) | PLo(X, Y5 fy)
N op N op 032
for some f3, € [Bo, ,5’0].2 Therefore:

0 (BJ - BO)

2Throughout, as I will state in each proposition, I assume the parameter space to be convex.
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1

A 2 .

BS . 60 |S’ (8 (X Y ﬁa)) aﬁo(Xu}/JBO)
oeSs

B2 0B
I DL, (X, Y Bo)
‘ oesS ﬁ (24)
- PL(X,Y:5.)\ | 0L.(X,Y: Bo)
; - o> o6

where X(8y) == E (W)

Before discussing the asymptotic behavior of BS, a few technical comments are in order.

First, these Taylor expansions are only valid if all the 5,’s are interior points. How can we
0%°Ls(X,Y;B5)

be sure they are? Second, the equation (2.4) requires that o5

is invertible for any

B, and for any o.

The two following propositions and their corollary address these two concerns. I show that
the Bg’s are not only all interior points with high probability (when the true parameter is
itself an interior point), but that they are uniformly consistent as long as S does not grow too
fast in N. Moreover, I show that W converge to their common expectation uniformly
both in ¢ and in S.

Further, these uniform convergence results will allow me to neglect the second term of the

2\ —1
equation (2.4): |—é| Y ves |:Z(60)1 — <82£"(8);’2Y;B")> ] 850(2(;/;50)’ relative to its first term.

That is, the asymptotic distribution of BS will be that of the first term of the equation (2.4):
_ AL, (X,Y3B
S(60) 7 i Loes “2G5

Proposition 11. Assume
- K is compact and convex;
- X has a compact support and

- the smallest eigenvalue of ¥(f3) is bounded away from 0 uniformly over § € K, that is:

inf Amin(X(5)) >0

BeEK
then, for any o € Sy, for any € € RY.:

a1
P <sup 1Z(8)~* — w | > 6) < Aexp(—BN)
BekK B
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for some constants A and positive B that depend only on K, €, ||.|| the norm chosen on the
matriz space and X.3

The second proposition shows that the B(’,s are close to the true parameter with a
probability that grows exponentially to 1 with N:

Proposition 12. Under the the assumptions of proposition 11, for all € > 0 there exist
scalars A and B > 0 that do not depend on N such that:

P (HBzd — Bol| > 6) < Aexp(—BN)

where id denotes the identity permutation, i.e. id € Sy with id(i) =i for all i € N.

That each estimator Bg is close to the true parameter with a probability that increases
this fast (exponentially) has very strong implications: if the set S is small enough (with
a cardinality that grows polynomial in N), then the Bg’s are uniformly consistent almost
surely. The following corollary shows uniform consistency in probability for any set S that
grows sub-exponentially but not necessarily polinomialy!) because convergence in probability
is enough for our purposes. The claim on the uniform almost sure convergence follows by
Borel-Cantelli.

Corollary 7. In addition to the assumptions of proposition 1, assume that S grows sub-
exponentially, that is: |S| = o(exp(AN)) for all A € R. Then

sup |Bcr - 60' _>p 0
og€eS

If in addition By is an interior point in K, then with probability approaching 1, B, is in the
interior of K for allo € S.

Now that we dealt with the technical concerns regarding the validity of the Taylor
expansion in (2.4), the two following propositions look at the asymptotic distribution of each
of the terms in the final formula (2.4).

Proposition 13. Fiz some (sequence) S C Sy. Define
Csij =o€ S:3k:{c(2k—1),0(2k)} = {i,5}}|
3In fact, what I show is that

p( [7£e(X. Y5 5)
(155

is not invertible for some 5}

L OPL,(X, Y8

OR {it is invertible AND sup 052

BEK

‘2(5)

)

< Aexp(—BN)

I omit this detail in the statement of the proposition to simplify the exposition.
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the number of times the pair {i,j} appears in the subset of edges in S. In addition to the

assumptions of proposition 11, assume that 3, . C% .. = o(N|S|?), then

op

—a N (0,4 x %(Bo) 'Var (E (YHM —(1- Yu)lqb(XlZﬁ"))le, U1>> E(ﬁo)‘l)

_ 1 aEG(Xay;BO)
VNE(5) 1@ (;S —

O (X120) — ®(X1250

I will delay the discussion over the new condition in this theorem: >~ . C%,; = o(N|S|?)
until we state the main result in this paper in proposition 14. Putting all the previous
propositions together, we are now able to determine the asymptotic distribution of 3s:

Proposition 14. Assume that:
- K is compact and convex;
- X has a compact support and

- the smallest eigenvalue of ¥(f) is bounded away from 0 uniformly over f € K, that is:

i0f Auin (2(8)) > 0

- S grows sub-exponentially, that is: |S| = o(exp(AN)) for all A € R
- Zi<j Cé,zj = 0(N|S|2)
Then:

VN(Bs = Bo) =

1 ar ¢(X1250)_ _ ¢(X1250) > ~1
N 0,4 xX(5)"V (E (Ym—fb(Xlzﬁo) (1 Ym)—l_q)(Xmﬁo)le,Ul )E(ﬁo)

Remarks regarding the condition )
First, notice that:

Cg',ij = 0(N|S|2)

1<j

ZK]’ Cgvij _ Zij Za,nes ﬂ(i,j con 7T)
NIS[? N|S|?
_ ZU,ﬂ'ES lo Nl
N|S|?

where I notationaly identify permutations with perfect matchings (sets of edges), so that
onm = {{i,j} : Ik, K st. {i,j} = {o(2k —1),0(2k)} = {x(2K — 1),7(2k')}}. The
condition )7, C%.; = o(N|S|?) is then equivalent to >  _s|o N 7| = o(N|S[?). This

i<j
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alternative formulation clarifies the need for the condition: it is a diversification requirement
on the set S. S is not allowed to include permutations (perfect matchings) that share too
many edges. Specifically, the average overlap between all the perfect matchings in S shouldn’t
grow faster than N.

This condition restricts the choice of the set of permutations |S|, for instance, |S| can’t
be bounded (as a function of N), since for all 4, j:

CS X7 2 CS J
therefore:
S 02 sy =S|
1<j 1<j

if |S| does not go to infinity as N — oo, then the condition ),
satisfied.

C%,; = o(N|S|?) can’t be

1<J

On the other side, any S such that Cg;; € {0,1} for all 4, j, i.e. where each pair appears
at most once, and such that |S| — +o00 as N — oo, satisfies the condition. That is because
in that case: CF;; = Cs; for all 4, j, therefore >, CZ.. =37, Csij = NS = o(N|S?).
Such an S is always guaranteed to exist. Fix some N (even) and con81der the set of
permutations where I first include the identity permutation, then I "rotate” the second
elements in each pair (rotate the even indices). In other words, consider the following set of
permutations:

S:=1{(1,2,3,4,...N—3,N—2 N —1,N);
(1,4,3,6,.... N =3, N, N — 1,2);
(1,6,3,8,..., N — 3,2, N — 1,4);

(1,N,3,2,...,N—3,N—4,N—1,N —2)}

where o = (i1, ...,ix) denotes the permutation o(k) = i;. Notice that the odd indices (1,3,
...) do not change from one permutation to the other, whereas the even indices are rotated.
In this example, |S| = & and Cgs;; € {0,1} for all 4, j.
For computational reasons, one would want to choose a set S that is as small as possible.
Any subset of S defined above would work provided that its size explodes with V.
A weaker sufficient condition for 3, - C%,; = o(N|S|?) would be that each edge is allowed
to be repeated in S at most ¢y = o(|S]). In which case, for any pair {7, j}:

2
C5.5 < enCsij

Z Cg,ij <cn Z Csij = CNN

1<j 1<j

SO:

= o(N|S|*)
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as desired.

Importantly, S can be random as long as it is independent from all other variables (X, U
and V). In fact, picking a random S can relieve from the burden of verifying the condition
> icj C%45 = o(N|S|?) as discussed in the following corollary.

Corollary 8. Assume that:

K is compact convex;

- X has a compact support and

the smallest eigenvalue of X(3) is bounded away from 0 uniformly over 5 € K, that is:

inf Amin(X(5)) >0

BeK

- For all N, the perfect matchings in S are drawn uniformly with replacement from the
set of perfect matchings and |S| is a deterministic function of N with: |S| = O(log(N)).

Then:
V'N(Bs = Bo) =
- P(X125) P(X125) _
N 0,4 X 2(60) 1Va7” (E (Sflgm — (1 — Sle)m|Xl’ U1>) E(ﬁo) 1

An interesting application is one where the econometrician doesn’t observe the complete
N-node network, but can only observe a subgraph containing only a subset of Sy. I discuss
this application in the next section.

2.3 The average estimator for networks with missing
data

Assume that Yy = (Y};); j<n is generate following equation (2.3) as before. However, assume
that now the econometrician cannot observe the entire network, instead, the econometrician
observes a subgraph of Y only. Specifically, assume there is a random graph Gy = (Gyj)ij<n
with Gy; € {0, 1} for all 7, j such that

1. for all 4,7 < N, Yj; is observed if and only if G;; = 1 and
2. Gy and Yy are independent.

If G has a set of perfect matchings Sy that meets the conditions of proposition 14 above,
that is such that Sy grows sub-exponentially and }7, . C%.; = o(N|S|?), then Sy can be

used to construct the estimator BSN and the proposition 14 can be readily applied. However,
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checking that such a set Sy exists is hard. To the best of my knowledge, using the fastest
algorithms available, the enumeration of all the perfect matchings in Gy can performed at
a time complexity O(NN) x the number of perfect matchings in Gy (Uno (1997)). As in the

corollary 8, we can get around this difficulty by sampling from Sy, as long as we know that

> ic; O%5 = 0p(N[S[?) (there is no need to assume that |Sy| grows sub exponentially).

Proposition 15. Assume that:
- K is compact convez.
- X has a compact support.

- the smallest eigenvalue of ¥(B) is bounded away from 0 uniformly over 5 € K, that is:

ég}f{ Amin(2(8)) >0

- Assume the set Sy of all perfect matchings in Gy is such that Y, _ C%, . = 0,(N|Sn[?).

For all N, construct Sy, a tuple of perfect matchings uniformly drawn (with replacement)
from Sn with a deterministic cardinality and |Sy| — +oc. Then:

\/N(Bs — Bo) —*a

H(X1200)
Q(X1260)

P(X1200)

~ =)

N |{0,4x 3(B) 'WVar (E (Y12 |X1,U1>) Y(Bo) ™

Thanks to the proposition 15, we no longer need to check that >~ . C%,; = o(N|[S]?)
conditional on Gy as suggested by the proposition 14. It is instead enough that the underlying
model that generates Gy be such that . C% . = 0,(N[S|?) in probability. But how large is
the class of models for Gy satisfying Y, . C%.; = 0,(N|S|*)? The next proposition provides
a partial answer for bipartite graphs.?

For the purposes of proposition 16 only, consider the following model instead of model
(2.3):

1<j

Yii = 1(X;;00 + Ui + W; +V;; >0) (2.5)

fori € N and j € M, N and M being two sets of nodes. We assume |N| = |M]|, a necessary
condition for perfect matchings to exist. We will overload the notation N: when there is no
ambiguity, it will also refer to the cardinality |NV|.

Proposition 16. For any € > 0, iof Gy is drawn uniformly from the set of bipartite graphs
with at least N2t edges, then S C%.; = 0p(N|S|).

i<j

4The model in equation (2.3) that is one for a non bi-partite graph Y. However, the propositions 11 to
15 would hold, under the same proofs, for the bipartite graph model (2.5).
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2.4 Concluding remarks

This paper offers a systematic procedure to translate what we know about i.i.d. models
to exchangeable array models. It could be particularly useful for models where no other
estimators have been analysed. I am particularly thinking about semi-parametric models
where the composite likelihood estimator is not available. The proofs for other models would
be basically the same as the ones in this paper at the cost of adding some smoothness
assumptions (that are satisfied by the binomial parametric model studied here and that I did
not need to emphasize).

The estimator, however, is likely to be (very) inefficient. It does not exploit the dependence
structure that dyadic models exhibit. That is clear in the parametric model studied in this
paper: the average MLE cannot outperform the composite MLE, which also suffers from the
same flaw. However, one question that I am leaving under the shadow is: what happens if
we take exponentially many ¢.i.d. samples? If we do, the average MLE -were it to be well
defined - would be computationally infeasible, but what would its theoretical properties be?
clearly, from the proofs in this paper (again, if the MLE’s are all defined and are all interior
points!), the asymptotic distribution of the average MLE would be nothing like the composite
maximum likelihood anymore.

Perhaps related to the question of inefficiency, the use of this procedure for data sets with
missing observations could be interesting. First, it intuitively illustrates how inefficient the
estimators obtained are: in the last proposition, I show that in general, for balanced bi-partite
models, around 1/v/Nth of the total number of observations (edges) is in general enough
to perform like the estimator returned by the procedure if every edge were used (or like the
composite MLE)! Second, the result in the last section sheds only a very dim light over the
question of what observations are allowed to be missing in general graphs: non bi-partite or
unbalanced bi-partite. The same proof strategy does not seem to work for other settings and
[ am curious to know what other models for the observable graph (G in the last section)
would guarantee that the diversity condition on the set of all perfect matching be satisfied
with high probability. Of course, allowing the observables’s graph G to be correlated with
the actual graph Yy is yet another interesting and probably much more challenging question.
I have not put enough thought towards an answer to the last question yet.

Finally, this paper did not discuss how the standard errors could be estimated. That
was not my focus so far. However, given that each “averaged estimator” is computed based
on a set of i.i.d. sub-samples that are themselves drawn i.i.d. uniformly from the set of
available 7.i.d. sub-samples, we end-up with a huge number of “averaged” estimators. The
idea of computing the standard errors by computing multiple “averaged” estimators each on
a different 7.7.d. sub-sample, then computing an “empirical standard error” based on all these
“averaged” estimators, is an appealing place to start thinking about standard error estimation.
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2.5 Proofs

Proof of proposition 11
Proof. ( Proposition 11) The proof follows in 3 steps:

Step 1: Prove that for any continuous function W from support(X) x support(Y) x K
into R, with mean: p(8) = E(W(X,,, Y54, 3)), there are constants A" and B’ such that for
all € > 0:

BeK

P <sup W(B) — u(B)| > 46) < A'exp(—B'N)

with W(8) == 2 SN2 W(X,,, Yoi; 8)
Fix € > 0. For any 8 € K, define:

As(B) = E (supﬁ,zlw,_ﬂugé W (Xyss Yoi B) — W (KXo, Ym,ﬁ’)|> and § > 0 such that \s(3) <

e for all § € K. Such § exists because by theorem 9.1 in Keener (2010):

sup As(8) —s-0 0
BeK

Since K is compact, let (5;);=1.m be a finite set of elements in K such that the open balls O;
centered at f3; with radius ¢ cover K. Following the proof of theorem 9.2 in Keener (2010),
note that:

sup [W(8) — u(B)| = max sup [W(5) — pu(B)|

peEK i=1..m geo,

< max sup |[W(B) — W(B)| + W (Bi) — n(B)| + |u(Bi) — n(B)|

i=1l..m BEO;

Note that for all 7 and for all 8 € O;:

| (Bi) — u(B)| < As(beta;) < e

second, observe:

N

2 2
sup |W<Xa,iaya,ia6) - W<X0',17Yo,ia6/)‘

Ma, B)=—
V)= — l18—BlI<o

and note that:

max sup |W(8) — W(8)| < 1ax Msn(5;)

izl"m,BEOi i=1..
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Therefore:
sup [W(B) — u(9)] < mmax (M (B) = As(Bi)l + max [W(5:) = pu(B)] + 2¢
Hence:

P(;g}g (W (8) — u(B)] > 4e)

< P(max [ My n(B;) = As(8:)] + max [W(8;) — u(By)] + 2€ > 4e)
< P(max [ My (B;) = As(8:)] + max [W(5:) — p(B:)] = 2¢)

< P(max [ My (8;) = As(Bi)]] = €) +P(max [W(8;) — u(B;)] > €)
< m x (P(IMsn(B1) = As(Bo)l| = €) + P(IW(B1) — u(B1)] = €))

By the compactness of support(X) x support(Y) x K and the continuity of W,

(W(Xa,ia Yo, B1) — p(B1))i

and

sup |W(Xa,i; Ya,ia 51) - W(Xa,iy Ya,ia 5/)| - )‘6(61))1‘
B8/ —B1]|<é

are i.i.d. and bounded, Hoeffding’s inequality allows to conclude.

Step 2: Show that for any o € Sy, for any € € RY there exist constants some constants
A" and B” that depend only on K and €

2 g X7Y; " /"
]P’(supHE(B)— oL (852 5)“ >4e> < A”exp(—B"N)

BeEK

To see that, it is enough to apply the result in step 1 element wise on the matrix w
then use a union bound to obtain the desired result for the max norm ||.||x.
Step 3: Show the final result.

Note that for any 3, and any given o (using a sub-multiplicative matrix norm this time):

LX)y B! _ PL(X,Y: 5! L, (X,Y; )
2 1 . g 9 ) < 2 1 o ) ) 2 o g 9 )
e - FEn B < i) Ik i) - T
1=(8) ] PLAX, Y )
< 2 a5 < 1208) - I
Lo (X,Y3B 2
Amin(%) 85
where Apin(.) Teturns the smallest eigen value. Take some z € R such that ||z|| = 1 and

0Ly (XY 0L, (X,Y;
x’—a(BQ By = Amin(—a(BQ 6)), then :
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i (E(9) — [12(6) - LT < gy — (zm -

- $,32EU(X,Y;B)

O’L(X,Y; )
857 .

0p?
implying:®
PLAX,Y; B) PL,(X,Y;6)
/\mln(z(ﬂ)) - ||E<6) - 852 || S )\min( 652 )
under the event: supg [|3(8) — 82%#“ < infg Amin (E(5)) so:
L, (X,Y;8)"
et - T
T Aain(S(8)) — [[5(8) — 44 ag(zm)ll op?
supg{[[2(8) 7"} s PL, (XY )
> 2 . ﬁ -
B O S} — 129) - 2 1) o

Therefore for any € > 0, there exists a function that only depends on epsilon v(€) > 0 such

that, under the event under the event Ey := supg [|X(5) — WH < infg Anin (2(B)) we
have

L 0L(X,Y: 8! L(X,Y; )
E 1 o ) ) > 4 Z . o ) ) >
sup 203 sgr 112 de= swp|[£(8) - “Em 2 (0
5Note here that we could similarly show:

9L, (X,Y: ) DL, (X,Y; )

M L )~ 119(8) = =L < hn(2(9))

implying that: , ,
9L, (X,Y: ) L, (X,Y;8)
||)\min(a—52) = Amin (@) < |12(B) — 3—ﬂ2||

and leading to the result alluded to in a footnote to the proposition’s statement:

b (62£0(X,Y;5)

05 is not invertible for some B) < A" exp(—B"N)

for some generic A”, B"” > 0 that are independent of N.
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then:
DL, (X,Y:;8) "
e LE 4e>
2 .oyl
_p (s%p e - T 2 e EN)
oyl
+P (sup 1Z(8)~! — OLo(X. Y5 5) || > 4e; not(EN)>
8 op?
L, (X,Y;
<P <s%p 12(8) — %H > ’y(e);EN)
+ P(not(Ey))
L, (X,Y;
<P <s1gp A E 7(6))
DL, (X,Y; :
P <sgp Im(3) - FER T 2 Amm@(m))
which allows to conclude by step 2. O]

Proof of proposition 12
Proof. Note that:

G g (LY ) 0L Y )
id 0 — 852 aﬁ

_ _E(B'd)_la&d(X,Y;Bo) n (Z(ﬁld)l B (32£id(X,Y;5¢d)>l) OL;4(X,Y; Bo)

op o op
Thanks to the compactness of the support of X and of K, %&Yﬁo)

constant M and 8 — ¥(3)~! is bounded by some constant L.
Hence:

is bounded by some

id(X7 Y7 50)
op

Applying the Hoeffding bound to the first term and proposition 11 to the second, we obtain
the desired result. O

L OPL(X, Y )

. oL
1Bia — Bol| < LI| ||+ M sup [|5(5)~
BeEK
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Proof of corollary 7

Proof. Fix € > 0.

P(sup |5, — Bo| > €) < |SIP(|Bia — Bo| > €)

ogeS

and the proposition (12) completes the proof. H

Proof of proposition 13

Proof. Fix some S C Sy and some A € R¥. I want to determine the asymptotic distribution

of:

Z a‘CU(X7 Y; ﬁO)

oeS

Sy M)y 0B N
'SW/ZZ;( O(X,00) - Y"’z)l—@(xa,iﬁo)> = (Bo)” Xo

‘S|N/2Z§ XO'Z7Y0"L

Xo' i Xo- i _
where f(Xoi, o) = (Yougami = (1= You) ;2052205 ) NS(80) Xy Although f de-
pends on A\ and f3, they are omitted to simplify the notation. We can rearrange:

: 0L, (X,Y; ) _
)\|S|Z (‘)ﬁ |S|N/QZOS”f i, )

oc€ES 1<J

with Cg;; = |{c € S:3k: {o(2k —1),0(2k)} = {i,j}}|, the number of times the pair {i,j}
appears in the subset of observations generated by S. Observe that for all ¢, j, by definition:
Cs,ij = Csj; and Cg;; = 0. Also note that for all i:

N
> Csij =18
j=1
since every pair appears exactly once per permutation o € S. Denote:
Q<XZ7 X]J Ula U]) = E(f(‘xz]a Y >|X17 X]) UZ7 Uj)

and

q(Xi, X5, Ui, Uy) = q( X3, X5, Ui, Uy) — h(X5, Ui) — W(X;, Uj)
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where it is assumed that Cg; = 0 for all ¢ and Cg;; = Csj; for all ¢ and j. Observe,
following O’Neil and Redner (1993), that

Y Csia(Xi, X5, Ui, Uy) = > Csi5d(Xi, X5, Ui, Uy) +Z(chw) (X, Us)

i<j i<j
= Cs40(Xi, X;, U3, Uy) + |9 Zh X, Uy)
1<J

So:

= f(X:;,Y: X. X..U:. U
60 |S|Z /6 |S|N/2;CSU %7 1]) ( Qs J?UlJUj>)

|S,N/QZOSUq X, X;, Ui, Uy) + Zh X, Uy)

(2.6)

We have:
(Z Csi (f(Xiy Yig) — a(Xy, X5, Us, Uj))) =Var (f(X12,Y12) — ¢(X1, X2, Up, U2))

1<J
2
X Z C5ij

i<j
r Z Csi;0( X, X5, U3, Uy) | = Var (§(X1, X2, Ur, Uy)) Z C3.;
i<j 1<jJ
(2.7)
Assuming :
Z CS@] N|S| )
1<J
then:
41 L, (X, Y5 Bo) 2
VNNS(Bo) ' — - h(X;,U;) + o,(1
( 0) |S| % aﬂ \/N; ( ) P( ) (28)
—d N(O, 4V@T(h(X1, Ul)))
but

Var(h(Xl, Ul))

o\ -1 ¢(X1250) ¢(X12BO) —-1 (29)
= N¥(B8) Var (E (YHW —(1— Ym)m\Xl, U1)> Y(Bo) A
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therefore, using the wold device:

1 L N O0Lo (X, Y5 Bo)
VNR(B) g % —

op
_ ?(X1260) ?(X12580) -1
—)d/\/ (0,4 X E(ﬂo) lvar (E <Y12 (I)(X12/80) — (1 — YlQ)l—qD(XhﬁoﬂXl’Ul)) E(ﬁo) )
O
Proof of proposition 14
Proof. ( Proposition 14)
Remember:
Bs — Bo
4 1 9L, (X, Y o)
- -y L i e R R
(BO) |S| UEZS 86
N
1 _ L, (XY ) OLs(X, Y o)
+ =5 8By - Ioal 2300
S - (PEGEY) |5

First, I show that:

\/Nﬁ Y|z = 0,(1)

ceSs

BRE 98

Gt (82£U(X,Y;ﬁa)> ] 0L, (X,Y: )

Note that because K is compact and  — (3)! is conitnuously differentiable, then
B — X(B)7! is Lipschitz on K, let 1 be the Lipschitz constant.

_ -1
1 B L, (X,Y; ;) OL,(X,Y; Bo)

o g o - () s

1 =\ _ — 3£U(X,Y;ﬁ)
< H\/ﬁmg [2() 7" = 2(B0) 7] TO ‘

_ —1

1 > N — 82£0’<X7Y;/80') aﬁU(XaY;BO)

+H¢NEU€ZS {z(@» 1—( 5 ) ]—35 |
) L PL(X, Y8 1 Ly (X,Y; Bo)
< (nitelgl|ﬁa—ﬁo|!+;g]gllﬁ(ﬁ) 1—3—52 ||> WE; TO '
First, note:
1 @EU(X,Y;BQ) .
g 2| = o
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because:

oL, XY OL,(X,Y; o)

0250) ¢(Xa,iﬁ0)
<f|S|Z ZH( a(X, %)‘“‘Yw)m> ol

0(XoiBo) o\ 9(Xsibo) ‘
Y"”@(Xa,iﬁo) (1=Yo:) 1— @(Xo,iﬁo)> X””l)

lgb(Xa,iﬁO) o . ] ¢(X0,i/80) )
"D (X,if0) (1=Y20) 1- @(Xa,z‘ﬁo)> Xm|)

il

+|S|<|S|—1>Oov<%§j!l (Y ¢(( jﬁz)) “‘Yw‘)%) e

2 & P(Xor.iB0) ¢(Xoi50)
>l (Y g~ (1= Yo @<Xg.zﬂo>) XoalD)

2 & (X i) O(X pi50)
< NVar (N z; H (Y@iq)(Xm/BO) —(1— Ya,z‘)m) Xo',i‘ )

#(X1250) #(X1250)
—e (H <Y12<D(X1250) - Y12>1 - ‘I’(Xmﬁo)) X12H)

By proposition 11:

L PL(X Y8
;g}gHz(ﬁ) - 0 || = 0,(1)

and
sup |18, — Bol| = 0p(1)
oesS

since: X R
P(sup [|85 — Bol| > €) < [SIP(|[Bia — Bol| > €) = 0

oc€ES
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where the limit is obtained by proposition 12 and by the assumption that |S| = o(exp(AN))
for all A € R.
Finally:

N (2.10)

and proposition 13 allows to conclude.

Proof of corollary 8

Proof. (Corollary 8.) Assume that for all N, S (in fact, Sy) is constructed by drawing
permuations (or perfect matchings) with replacement from the set of perfect matchings.
Denote C; v the number of perfect matchings in which the pair 4, 7 appears in the set Sy.
Let ¢y be a deterministic sequence such that ¢y — +o00 and ey = o(]S]).

Define the events Ey := {C}jn > cy for some pair ¢, j}. Then:

N) < ZP(CU’N > cy)
ij

N(N -1
= %P(CHQ,N > CN)
5]
— w Z P(Chon = k)
k::CN-i-].

Let o be the random variable corresponding to a single uniform draw from the set of all
perfect matchings (i.e. permutations in Sy). For any fixed pair 7, we have:®

TATENET  2N)2 1
—\1oN/2—1
P j € o) = D208 _ _

SO

e (9) () ()" (2) ()™

6T abuse notation here: 4,j € o means that the pair 4, j forms an edge in the perfect matching o, or in
the language of permutations that there exists some k such that {o(2k — 1),0(2k)} = {7,5}.
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and
c S|
N(N-1)/ 1 \** 15|
<
P(Ev) < =5 (N - 1) k
k=cn+1
cy+1
NN (LY
1\ Ov-2
0 ((N) )
1
= O(W)
Therefore

By the Borel-Cantelli lemma:

P(limsup Ex) = P(Ny>1 Uity Ex) =0

or equivalently:
P(E]NO VN > NO \V/Z,j < N: Oz‘j,N < CN) =1

as shown earlier, if for all pairs 4,5 Cj; v < ey = 0(|S]), then:

N -1
ZC’?ij < CNZCZ’]’,N =Xy [S] = o(N1S]?)

1<J 1<j

hence with probability one, the condition: Y, C7, v = o(N|[S|?) is satisfied.” The rest of

the proof for proposition 14 follows. O

Proof of proposition 15

Proof. Of proposition 15 Given the conditions of the proposition, denote P the probability
conditional on Sy. By defintion:

Sy T Z 1(ij € o)

O'ESN

the terms in this sum are 4.i.d. conditional on Sy, because the perfect matchings in Sy are
1.1.d., therefore:

c? . . -
"Here I showed that NZ|JSI|V2 — 0 almost surely. In fact, it was enough to show convergence in probability

since that is enough to obtain equation 2.10 and conclude.




E(Cs, ;) = |SN|O|SJJVVZ|J
and o - Csuii Cso i
V(Cy) = |5N||S_z]vvﬂ|a (1 _ |S_JJVV|J)
then |
and:

i Ziq?gwj _ ZE<jCSN,ij Lot 2ici Coy s
N’SNP N’SN‘ X ’SN‘ ’SN‘ N‘SNP

_ ~1 c (1o ~1 Zz’<jcg'1;r,ij
Sl Sl NIS

Remember equation (2.6):
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1 0Ly (X, Y bo) 1 -
'Y — = — Cs. .. (f(Xi;,Y; X, X;,U;,Uj)
(5) wg 37 ez 2 Cons /(X Vo) = 00X X5, U U)
1
+ — CNZq(Xl,X,Ul,U hXZ,U
rsmm% o ’ Z

equation (2.7) becomes:

1<j

=Var (f(Xsz, Yia) — q(Xy, Xo, Uy, UQ)) Z C%N,ij

i<j
T (Z é§N7ijQ<Xi7 X;, Ui, Up)[(Sn) w0, (S’N)N>O)
i<j

:Va?“( (X17X27U17U2 Z Snij

1<J

then

r (Z Cayii (f(Xij. Yiy) — a(Xi, X5, Ui, Uy)) |(Sw) o, (SN)N>0)
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|4 > Coy i (f(Xiy, Yig) — a(Xi, X5, Ui, Up))|(Sn) vo)

1<j

ar
| NI\/_

= Var (f(X125,Y12) — q(X1, X2, Uy, Un)) E Z S id
| N!\/_

1<j

+V [ E( ) Cqy i (f(Xi.Yiy) = (Xi, X5, U Up)) | (S ) wso, (Sn) o

1<j

1 1) 2 C8
= Var (f(Xl,iji/l,Q) - q(Xla XQ; U17 U2)) m + (1 — |S’ |> ]GTSNSF;’ J
N N

where the second equality results from the observation that for all 7, j

E <é§N,ij (f(Xi,Yi;) — a(Xi, X5, U3, U;)) |(Sw) n>0, (SN)N20> =0

likewise:

Var|= \ﬁZCSN 14X, X5, Ui, Uj )(Sn) N0, (Sn) Ns0]

| N| 1<J

~ 1 1 Zz J C%Nil
= Var (§(X1,X2,U1,U3)) (|§N| T <1 B |§N|> ]\<7|JSN|2,J

so equation (2.8) still holds, conditionally on (Sy)n>o this time:

VNNE(Bo) IS\Z a _mzi:h(x,,U,Hop(l)

&
—q4 N(0,4Var(h(X1,U1)))

by dominated convergence, equation (2.8) also holds unconditionally. The rest of the argument
for propositions 13 and 14 follows. O]

Proof of proposition 16

Proof. Proposition 16.
The proof is for some fixed € > 0.

First, without loss of generality, I assume that the sequence of graphs Gy are independent.
Otherw1se I would work on another sequence (a coupling) (G’y)n such that Gy =4 G’y and

1<j CS/ i Zv<g CSU
NIS'|2 —d N|S[2

the G’y are independent. In that case, (the first ratio is computed on
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G’y and the second on Gy ), therefore proving the proposition for G’y implies that it also
holds for Gy.

Let e(G ) denote the number of edges of the graph G . I will show the result conditionally
on the sequence (e(Gn)n)n>o0, then proposition 16 will follow by dominated convergence.
For the rest of the proof, the "ambient” probability is that conditional on (e(Gy)n)nso0: 1
will omit to condition by (e(Gn)n)n>o in my notation. Further, I will use the notation ey
for e(Gy).

Note that, conditional on e(Gy), Gy is uniformly drawn from the set of graphs with
exactly e(Gy) edges.

First, I show that as N — +oc:

N
enN 1 N2
~ NI — N R
E(Sy) ~ N! (NQ) exp | =5 <€N 1)

E(S%) ~ E(Sy)? (2.11)
) , N2 en )2V
E(Coyi5) ~ (N —1)Fexp (1 - a) <m)

The first two statements result immediately from the theorems 1 and 2 in O’Neil (1970)
(cf. the section 8.1 in Lovdsz and Plummer (2009) for details about the link between perfect
matchings in a bipartite graph and the permanent of its bi-adjacency matrix). The proof for
E(C%,, ;) follows similar steps as those of the proofs for theorems 1 and 2 in O’Neil (1970).
As in O’Neil (1970), denote, for any permutation o € Sy,

T, :=1{(i,0(i)) is an edge in Gy for all i € N'}

and for any integers M and k < M, define:
BY :={(o,7) € S3,: |{i € M : (i) = o(i)}| = k}

that is, if we identify every permutation in Sy, to a perfect matching between two sets of
carnality M each, then B is the set of perfect matching pairs that have exactly k edges in
common.

By definition:

CSN,ij = E Lo

cESN:o(i)=]

2 _
C’SN’ij = g ToXr

o,meSN:0(i)=n(i)=j

and:

SO
N
E(C3y) = > IBYS P(zozr = 1|(m,0) € BY)

k=1



the equation (1.9) in O’Neil (1970) yields:

12

N NP 1
Bl =5e <1+O((N—k+1)!)>

and for k < k; := [N°/8], equation (1.14) in O’Neil (1970):

P(x,z, = 1|(7,0) € B,va)

= <%)2N_k exp (2 (1 - %)2 (g—; - 1)) (1 +O(NTV/4) + O(N*%))

hence
E(C3, 35)
2 en 2N k1 2 k
= (N —1)%exp (1 - %) (m) Zﬁ [N exp (4(N/ey — 1/N))]
x (140N £ O(N2)) + 3 BT Plagas = 1(m,0) € BY)
= (N —1)exp (1_2_]\72> <FJ\£) X jj—;exp (4(N/exy — 1/N))

o

+ Z B P(zgan = 1](m,0) € By)
k=ki1+1

= (N —1)exp (1 - 2—N2> (%) X []:—; exp (4(N/ey — l/N))]

2

X exp [ﬂ exp (4(N/ey — 1/N))] X (1+0(1))

EN
N
+ Y B P(aers = 1|(r,0) € BY)
k=k1+1

= (N - 1)Pexp (1 - E) (FNz)QNl x (14 0(1))

+ Z BN P(zya, = 1](7,0) € BY)
k=ki1+1

[N2 exp (4(N/ey — 1/N))] x (1+0(1)) x (1 +O(NY49) + O(N~

142

26))
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noting that |BY| < Nk—',z (from equation 1.8 in O’Neil (1970)), we have:

3 N _ 2 en 2N -k
S BN P(sas = (m o) € BY) < S u< )

(k—1)! \ N2
k=k1+1 k=k1+1
e 2Nt 5/8
=(N-1)" (FN;) x O(N~(/BNE
finally:
N2 en 2N—-1
2 2
E(C5y ;) ~ (N —1)Fexp (1 - a) <m)
Given the asymptotic results in (2.11), I can now show that:
S|
—, 1 2.12
B(Sx) 21

indeed, for any € > 0:

Sul Y _p (ISxl = EQSaDI
P('E(\SND 1'>) P( E(I5w) >)
Var(|Sy|)
S FE(Sx])?
_ E(8xP) - E(SxI)
ETENIE

—0

where the inequality is Markov’s and where the limit is obtained thanks to the equation

(2.11).
Observe that:

E(ZU CgN,ij) N2 x (N —1)"? exp( — ]ev—;) (e
NE(|Sn|?) N x N2 (%)mexp <1— 62)

&

)2N—1

g

|2

N
N
=
=0
therefore: ,
24 O 50
NE(|Sv[) "
then the equation (2.12) gives:
2
ZZ] CSN,ij _>p 0

N|Sy|?

as desired.
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Chapter 3

Asymptotic efficiency of the maximum
likelihood estimator for exponential
families

Introduction

For parametric models on i.i.d. data, the asymptotic properties of the maximum likelihood
estimator are know at least since the work of Le Cam (1953) LeCam (1953) (Stigler (2007)Stigle
(2007) for a historical note). Under some regularity conditions, the maximum likelihood
estimator is known to be consistent, asymptotically normal and efficient within a class
of regular estimators (see for instance chapters 7 and 8 in van der Vaart (1998) van der
Vaart (1998)). These results then allowed for the computation of semi-parametric efficiency
bounds for models on i.i.d. data (Chamberlain (1987) Chamberlain (1987b) and Newey
(1990) Newey (1990)). Apart from extensions to some time series models (Chamberlain
(1987) Chamberlain (1987b) and Newey (1990) Newey (1990)), very little is known about
efficiency (both parametric and semi-parametric) or the asymptotic properties of the maximum
likelihood estimator when the i.i.d. assumption is relaxed. The difficulty when trying to relax
independence is that the space of possibilities in terms of the dependence patterns the data
could follow is huge, so huge that it is hard to imagine universal and unifying results such as
those we know for independent data.

In this work, I study a specific class of models, the exponential family models, with a
focus on exponential random graph models. These models are appealing in at least two
regards. First, they impose enough structure for us to be able to establish fairly general
results and, at the same time, they are general enough to include various models of interest.
In fact, the most general version of the exponential random graph models (corresponding
to a data generating process of the form in equation (3.4) discussed below) includes the
multinomial models which are known to approximate arbitrarily well any well behaved model
(Chamberlain (1987) Chamberlain (1987b)).

Second, exponential random graphs are widely used to model social networks. They are
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particularly suitable to reproduce the distribution of a given statistic (or set of statistics)
that is observed in the network being modeled. For instance, assume the analyst is interested
in modeling a network that is known to have a number of triangles following, say, a Poisson
distribution with parameter A (to be estimated). Further, the analyst assumes that the
observed network is drawn uniformly conditionally on the number of triangles, that is, all the
networks with the same number of triangles are equally likely.! Then this data generating
process corresponds to an exponential random graph model with a sufficient statistic equal
to the number of triangles and with parameter A\. To look at a real world example, in
many contexts, social networks follow have degree distribution that follows a power law (see
for instance Stephen and Toubia (2009) Stephen and Toubia (2009) for social commerce
networks), a random graph model that could reproduce this feature is an exponential random
graph model where the degree distribution is drawn first following a power law with a certain
parameter, then the network is generated following some given distribution conditional on
the degree sequence generated in the previous stage.??

Finally, for some choices of the sufficient statistic, exponential random graph models can
be micro-founded. Mele (2017) Mele (2017) presents a model of network formation where N
agents, picked sequentially randomly, meet at each period and decide whether they want to
send a link to each other or not. Agent i’s utility from a graph with adjacency matrix g and
playing with N — 1 other agents is given by:

N N N
Ui(g, X,0) = ng (X3, X5, 00) + Y 9isg5m(Xi, X5, 0m) + Y 015 > gwv(Xi, Xi, 0,)

i=l k=L

N N
+> g > grw(Xe, X;,0,)

j=1 k=1,#1i,j5
(3.1)

where 0 = (0, 0,,,0,,0,); (X;); are covariates. To the expression of the utility in 3.1, a
different extreme value type 1 error term is added in every period where the agent gets to
decide. The shock terms are assumed to be i.i.d across agents and across time.

The terms in 3.1 can be seen as the utilities from direct links, mutual links, indirect links
and "popularity”, respectively.

Mele (2017) makes 3 additional assumptions: i) when making the decision, agents do not
take the other agents’ future actions into account, but only the state of the graph at the
moment they are making their decision to pair with a given player or not; ii) the meeting
technology is such that the probability of two agents meeting in a given period does not

In fact, the conditional distribution could be any distribution that does not depend on the parameter A
and the unconditional distribution would still be exponential.

2To be precise: the degrees of the nodes in a given network can’t be indenpendent, since the degree
sequence would need to be ”graphic”. One still has to determine the joint distribution of the degree sequence
that yields power law marginals.

3For a more detailed introduction to exponential random graph models: Snijders (2002) Snijders (2002).
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depend on whether they are currently linked or not; and iii) the indirect and mutual links
terms in the utility expression are covariate-symmetric, that is, for all i, j:

w(Xi7Xja9v) = U(Xiana 91})

Given these assumptions, Mele (2017) (theorem 1) shows that the network formation
game converges to a unique stationary distribution over graphs

exp[Q(g, X, 0)]
> weg Xp[Q(w, X, 0)]

G being the set of all directed graphs of N agents and () is the game’s potential function,
defined by:

m(g,X,0) =

Q(g,X,0)
N N N N N N
= Z Zgiju(Xia Xj,0,) + Z Z 93 95:im( Xy, X, 0n) + Zgia‘ Z 9k0(Xi, Xk, 0,)
i=1 j=1 i=1 j>i J=1 k=1,#i,j

In particular, if the utility components u, v m are linear in 6, the unique stationary
distribution becomes exponential:

expl0't(g, X))
> _weg exp[0't(w, X)]

For another illustration micro-founding ERGMs with a different set of sufficient statistics,
see Chandrasekhar and Jackson (2012)Chandrasekhar and Jackson (2012).

This prospectus is organized as follows: the model is presented and discussed in section 1.
In section 2, I show that, under some sufficient conditions, the MLE is asymptotically normal
then I discuss few applications in section 3. Section 4 establishes the parametric efficiency
result, which holds under the same conditions as in section 3. Finally, in section 5, I discuss
a possible extension to an example of a more general exponential random graph model then
the one studied in sections 2 to 4.

(g, X,0) := (3.2)

3.1 The model

Assume that for all N, Yy = (Y};)i<j<n is drawn from an exponential family with the same
k-dimensional parameter 7. That is, assume that for all NV, the density of (Y;;)(ij3<n can be

expressed:
fn(Yasn) = hy(Yy)eTyOn)n=Bx(m (3.3)

for some functions hy : Yy — R, hy >0 as., Ty : Yy :— R¥ and By : R¥ = R; Y, being
the support of Yy.
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The model in 3.3 is restrictive in two main respects. First, I am assuming that the
parameter 7 remains unchanged as the network size increases. A more general specification
would be:

fv(Yain) = hN(YN)eTN(YN)'AN(Ti)*BN(W) (3.4)

for some function A, : R¥ — R*. Indeed, the specification in (3.4) accounts for some very
important cases that cannot be modeled through ( 3.3). For instance, if (Y;;);; follows a
multinomial exchangeable distribution, then we know that the density of (Y;;);; can be
written in form (3.4) and not (3.3). The multinomial distribution is by itself enough to
motivate the interest in (3.4): multinomial distributions can approximate arbitrarily well
other distributions that are not within the exponential family, opening the possibility to
extend some asymptotic or efficiency results on the exponential families to more general
families. However, the results shown in this note heavily rely on the assumption Ay (n) =7
for all n. The proofs presented here don’t go through for the more general models (3.4)
and would most likely require that one makes heavy assumptions on Ay and uses different
technology from what I use here; this is work in progress.

A second - perhaps more worrying - concern with the model in (3.3) is its potential
inconsistency: by assuming that Yy,; and Yy are both distributed following (3.3), the
distribution of Yy ought to be obtained by marginalizing (or projecting) that of Yy, 1. Shalizi
and Rinaldo (2013) Shalizi and Rinaldo (2013) characterize the constraints imposed on the
model (3.3) in order for it to be consistent. These constraints (on the sufficient statistic
Tyn(Yy)) turn out to be very restrictive and exclude some of the specifications of interest
in econometrics (for instance, Shalizi and Rinaldo (2013) Shalizi and Rinaldo (2013) show
that, if Tv(Yy) is, say, the number of tryads or stars in the graph Yy, then consistency is
violated, to mention just two important examples). Shalizi and Rinaldo (2013) Shalizi and
Rinaldo (2013) conclude that ” Since these models are not projective, however, it is impossible
to improve parameter estimates by getting more data, since parameters for smaller sub-graphs
just cannot be extrapolated to larger graphs (or vice versa).”*

Although Shalizi and Rinaldo’s point in the preceding quote does make a lot of sense,
one can still use exclusively the assumption that Yy is drawn from the model (3.3), without
assuming consistency, and the results would still be mathematically valid. The proofs of
the results in this note do not involve marginalization. In addition, Shalizi and Rinaldo’s
argument does not account for instances where the distribution in (3.3) results from some
underlying micro-founded model. Mele (2017) Mele (2017)’s model (discussed in more detail
above) is a good illustration. In Mele’s model, the observed network is assumed to be drawn
from the stationary (asymptotic) distribution of some sequential network formation game
(asymptotic in the sense that the game’s stages repeat ”infinitely” many times, but keeping
the number of agents fixed). There is no reason why the (stationary) graph distribution for
the game with NN players should be consistent with the graph distribution obtained in a game
with NV + 1 players. Mele’s model does not impose any consistency restrictions on the choice

¥ Projective” = ”consistent”; as I loosely defined it earlier.
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of sufficient statistic T (Yy). Other examples can be found in Chandrasekhar and Jackson
(2012) Chandrasekhar and Jackson (2012).

One last remark to connect these two concerns: Shalizi and Rinaldo’s conclusion holds
true for models in the form (3.3), but it is silent about more general models in the form (3.4).

3.2 The asymptotic distribution of the maximum
likelihood estimator

Under the specification in (3.3), the log-likelihood function can be written:

(Ya;n) = log(hn(Ya)) + Tn(Yn)'n — By (n)

Assuming By(.) is twice continuously differentiable - which would be the case for instance
if Ty (Yn) has its first 2 moments, then 7, the MLE estimator of 7, is characterized by:

00BN (7
81\;7(77) = Tn(Yn) (3.5)
and the fisher information matrix is given by:
, 0Bn(n)\’ OB (1) 0*Bn (1)

Proposition 1. Denote k := dim(n). Assume that:

1. In(n) = KnI'n(n) Ky, Where I'y(.) is bounded function such that: 0 < I'y(n) < b
for some b > 0 and inf, inf,cx I'n(n) > 0 for any compact K and Ky is an invertible
matriz such that: Ky' = O(1).

2. For any compact set K and for any 7 < k:

ezl
1,01
—5——— =0(1)
n,neK ||—82§TJ;’Q(")H3/2
3. 1 1is tight.
then:
In(n)"2(5 = n) =4 N(0, 1) (3.6)

where I, is the identity matriz of dimension k.

The Ky in the first condition can be seen as a matrix of rates of convergence. For the
iid. case, Ky is simply VN x I;. For non i.i.d. settings, different components of the
MLE estimator can converge at different rates, one example is the dyadic Gaussian linear
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regression discussed in the next section. The conditions imposed on I'y(.) are simply to
guarantee that K fits with this interpretation: for instance, if I'y(.) converges to 0 as N
grows, then the actual rate of convergence would be slower than K in the representation:
In(n) = KnI'n(n) Ky, the same remark applies if I'y(.) diverges to oo, i.e. if some of its
eigenvalues diverges to infinity. That is why I would need the eigenvalues of I'y(.) to be
bounded away from 0 and +o0.

To gain some intuition around the role of the second condition, note that the moments of
the score function map one to one to the differentials of By:

0?°B
Var(sy) = 8—7];,2(77)
and: & Bun)
E(sn sn =
(SNJSN,‘]SN»]‘:) anzan]a/r/k

Therefore, the second condition assumes that the third moment of the score grows at a higher
speed than the second moment so that, asymptotically, only the first two moments matter,
as if the case for the normal distribution. Showing the asymptotic linearity of the score is
first step towards showing the final result and does in fact not require the last condition.

Finally, the third condition is important in performing a ”delta-method like” manoeuvre,
which constitutes the final step of the proof.

Before discussing some examples, note that the first two conditions are always satisfied
for exponential i.i.d. models. This remark yields the following corollary:

Corollary. For i.i.d. exponential models, if 1) is tight then:
In ()20 = n) —a N(0, L) (3.7)
in particular, 1) 18 consistent.

The proof of proposition 1 comes in two steps. First, I show that the score has an
asymptotically normal distribution, precisely:

In(n) " 2sn(n) =4 N(0, 1)

this is done by showing the convergence of the moment generating function of the left
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hand-side to that of the (multivariate) standard normal. Note that:

My(din) : = E(e¢’1N(n)*1/25N(n))

= [ e (cb'fN(n)-W(TN(y) - angf”)) T Taly)n - BNm)) dy

= ¢ 3?0 / h(y) exp ((n+ en)'Tn(y) — Bn(n + en)) exp(—Remainder of order 3)

— o299 exp(—Remainder of order 3) / ha(y) exp ((n+ en) T (y) — Bu(n + en))

o 1/280

where ey = ¢'In(n)~"/2. The rest of the argument consists of showing that the last
approximation holds true asymptotically, that is, showing that the remainder vanishes to 0.
This is one place where the second hypotheses of the proposition is required.

The second part of the argument starts by noting that:

_ 9By()) _ 9Bx(n)
an on

sn(n)

then using a ”delta method-like” argument to show:

) 1/2 ) ~1/2
(813—71;(77)) m—m:(@g—gﬁ) s () + op(1)

and conclude. Please refer to the appendix for a detailed formal proof.

3.3 Examples

The linear regression with Gaussian residuals

Let (Y;;)i<j<n be a random variable such that:
Yii=Xi;B+A +A,+V,;
with:
— fis a K x 1-dimensional parameter;
— (Xij)ij is a random vector such that X;; = X; for all 7, j;
= Ai~iiaN(0,1);
- Vz‘j = V}z ~iid N(O, 1);

— (Xij)ici<n, (Ai)i<n and (Vj;)i<;<n are independent of each other.
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Consider the function n : (i,5) — U=2U=Y 4 for all i < ), note that n is one to one
J 2 J

from {(7,7) : 4,7 € N" and i < j} into NT. Consider the following stacked vectors/matrices:

~ Yy = (Yi),cvwv-n), where Y; = Y1, for all 4;
)

= Xy = (X Xy ) is @ M5 5 K matix, where X, = X107
NN-1)
Note that:

YN - XNB ~ N(()?QN>

where Qy == (Wm.n) (v-1) and, using the same abuse of notation above:

N
m,n< )

3 if {i,j} = {k,1}
Wij kl *= 1 if |{i:j} A {k’l}‘ =1
0 otherwise

It is easy to check that the density of Yy (conditional on X') can be written as a member
of the family (3.3) with:

By (B) = _%6,XJIVQNXN6

Therefore:
In(B) = X\OQOnXn
and:
9°Bn(p)
55~ 0= o))

Hence, applying proposition 1:
(XNONXN)Y2(Barr — B) — N(0, 1)

In fact, in this easy case, this result could have been obtained without using the proposition,
simply by observing that:

Burp = (XN Xn) T (XN YN) ~ix N (B, (X0 X))
To take a concrete example, consider the example where:

Xij = (1, XiX;)

5This is to say that I am ordering the pairs i, j with i < j in a ”lexicographic-like” order: (1,2) — 1,
(1,3) = 2, (2,3) — 3, (1,4) — 4, (2,4) — 5, (3,4) — 6... This is only one labeling among others and this
choice plays no role in what follows.
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for some i.i.d random variables (X;);<;<n. That is, we are considering the regression model:

Yii=m+mX:X;+ U, +U; + V;

where the U;’s and Vj;’s satisfy the same set of conditions as above.
After some tedious computations (detailed in the appendix), I find:

N (5 +0p(1)) N(E(Xl +0p(1 )

XN Xy =
NN N (2522 4 0,(1)) N2 (Var(X,) +0,(1))

which can be decomposed:

2
, o1 L+ o,(1) 7 (B -iram))
XNQN XN = KN X 1 E(X1)2 1 2 : KN
L <T -1+ Op(1)> N2 (Var(X:1)? + 0,(1))
where:

Assuming E(X;) # 0 and Var(X;) # 0, Ky is a rate matrix satisfying the conditions of
proposition 1. Other choices of the rate matrix are possible. Trivially, a K, for any a # 0 is
another rate matrix.

Here, since Ky is lower triangular, the diagonal terms have a simple interpretation. They
represent uni-dimentional convergence rates of the individual components of 7. That is, in
this example, the intercept is converging at a rate of v/N, the usual convergence rate in i.i.d.
models, whereas the slope (coefficient on X;; = X;X;) converges at rate N.

Inference on the Erdos-Renyi graph

Let’s now look at inference on few examples of Erdos Renyi graphs. These are random graphs
such that a link between any two nodes forms with a given probability py, independently
of all the other links in the graph. The probability py is allowed to depend on the number
of nodes N. The independence between edges immensely simplifies the computations and
allows for many tractable illustrations.

An Erdos-Renyi graph with probability of link formation py is drawn from a distribution
with probability mass function:
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In(y) =exp [ > wislog(py) + (1 — yi;) log(1 — pw)

tj

DN
= exp %:yij log(1— pN) + log(1 — pw)

In the following three examples, I look at three specific cases: one where py = p,
independent of N, which corresponds to an i.7.d Bernouilli model. This example will simply
confirm that the result of proposition 1 extends the results on maximum likelihood estimation
in the 72.2.d. setting. The second example corresponds to the more popular Erdos-Renyi
graph model with py = %.6 The value of p is this second case plays a very important role
in determining the shape of the graph as N grows to infinity: it is well known (see van
der Hofstad (2016) Hofstad (2016), chapter 4) that there is a regime change at p = 1, if
p < 1, then asymptotically, the graph is almost surely composed of small (size of O(log(N)))
disconnected subgraphs and if p > 1, then we get a giant component along with smaller
components of size O(log(N)). The question of testing whether p is larger or smaller than
one is of great importance. The last example will be a less common choice of py with the
single purpose of illustrating the use of proposition 1 to show the inconsistency of a maximum

likelihood estimator.

Example 1:

Assume the link between nodes i and j forms following the probability p = 1-6;71' The model
is then of the form in equation (3.3):

f(y) = exp(>_ yisn — Bn(n))

v

with:

By(n) = log(}_ explnt(w)])
weg
N(N—1)/2

“log| S (N(]\;— 1)>enk

k=0
= log ((1 + e")N(N_l)/2>

6In fact, I will be looking at a very close model: py = NLﬂj. The usual Erdos Renyi model with p = £ is

not an Exponential random Graph model in the sense of equation (3.3).
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The information matrix is given by:

_8QBN(6)_N(N—1) el

o2 2 (1+em)?

It is easy to check that the condition of the proposition 1 is satisfied:

In(0)

Tt = Ox(V%) = ol I ()"

for any n and 7.
The maximum likelihood estimator 7,y is given by:

2t(Yy)
finrr, = log (eN<NN1> - 1)

where Yy here is the observed adjacency matrix.
By the proposition 1:

In()*(farr, —n) —a N(0,1)

or:

en

N(ﬁML _77) —d N (O7 M)

Example 2:

Consider a graph with N nodes with a probability of link formation equal to:

_ p
N +p

The probability mass function of the model can be expressed:

PN -

fn(y) = exp Zyz] 108;(%) - 109;(Ni+p)
=€exp | — Zyij log(N) | exp (Z yij) log(p) — N(NQ_ 2

154
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So by re-parametrizing: 7 := log(p), we get a model of the form in equation (3.3) with:

y) = Z Yij
ij

N(N —-1) N N(N -1) N(N —-1)
B = 1 = log(N) — log(N + €
v(n) 5 los(y ) 5 log(N) 5 log(N +¢")
we can compute
N(N—-1) e
B; =
n(n) B N & en
N(N —1) Nen
B// — I
" N(N —1) N%e" — Ne*"
BN( )=
2 (N +en)
S0: .
In(n) ™ = 0(1) = 0(1)
also, for any compact K:
3B
|| G| 1
J
= pu— 1
AT TR

finally, the MLE estimator can be expressed:
R Ny
Nvre = log Tz
-y

To see that ny/E is tight, it is enough to show that 1]\% converges in probability to a positive
number. Note that:

E(y) = e+ V) — 0
_ 2 Nem
Var(y) NN =D (e + V) —0
SO
Y —p 0
also:
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2N? Nen
N7 =
Var(Ny) NN —1) (" + NP2 — 0

this allows to conclude that the MLE estimator is consistent:

NMLE —p 1

it is therefore tight. Proposition 1 gives:

\/N(N —1)  Nen (iaren 1) —a NOL1)

2 (N +em)
or:

2
VN (i — 1) —a N(0, e—n)

Note that this model could be extended to allow for the probability of link formation to
depend on covariates that are specific to the pair (i, j). That is, a more general model would
be one where a link between nodes 7 and j forms with probability:

Py = 1X) = 205

for some known function ¢, where I condition on X = (X;;);;. Links form independently
conditionally on X.

For this model to be an Exponential Random Graph Model, one has to set: ¢(x) = e* for
all . The function By then becomes:

N(N —1)

By(n, Xn) := Bn(n) 9

log(N) — ) log(N + *%)

]
Example 3:

Assume that the random graph is drawn from a distribution with probability mass function:

fly) = exp (Zf;'vy”n - BN<n>>

This corresponds to an Erdos-Renyi model with probability of link formation:

e/N

Floa =1 = o



N(N —1)

By(n) = — log(1 + e"™)
N—1 eV
/ J—
By(n) = 2 1+eVN
N —1 e'N
B =1 = =0(1
B () = N —1e"N(1 —en/N)
2N2 (1 +e/N)3
Hence, for any compact K:
[t
;021
SUp —5r-—— = 0(1/N) = o(1)
miek || =522
The expression of the MLE estimator:
. - (]
e = N log (?)
-y
I need to show that 7y g is tight, note:
TN 1
Y —p 9
and that:
X log(1+35) 25 — 1
NmMLE = N 25—1 1—4
Ty Yy
since:
1
1-— Y _>p 5
log(1 + 21337—1) .
1 P
1-g
SN2 e

Var(N(2y — 1)) = 4N*Var(y) =

proposition 1 yields:

1
5(77MLE —1n) =4 N(0,1)

NN —1) (1+ e~y

157
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Interestingly, this shows that MLE is not consistent. In this example, any consistent
estimator is more efficient, in a sense that I will precise shortly, than the MLE. The result on
efficiency in the next section will take this finding even further to show that there exists no
consistent estimator for 7 in this model.

The fact that the probability of link formation in converging to % as N — oo does not
explain this phenomenon. There is nothing particular about %, I could have the probability
converge to any number p := Fstrictly between 0 and 1 (i.e. ¢ > 0, known), by setting:

ceN

Pow =V = 1w

which corresponds to the model:

) = exp (ETy log(c)n - BN<n>>

assuming c is know.
Note that this amounts to a rescaling of the initial model, the same conclusions follow.

3.4 The parametric efficiency of MLE for model (3.3)

Let Ky be any given sequence of invertible square matrices of dimension equal to dim(n).” I
will adopt the same definition of a (K - ) regular estimator as the one presented in Hajek
(1970) Hajek (1970) :

Definition. (Ky - regular estimator) An estimator 7y is said to be regular if there
exists a distribution L,(.) such that for any h € R*:

Pn+K;,1h(KN(77N —n) —h <v) = Ly(v)

Before asking whether the MLE is efficient, let’s first show that it is regular. The following
lemma provides a necessary and sufficient condition for the ML estimator of a model satisfying
the condition of proposition 1 to be regular for some rate matrix Ky:

Lemma:

"So far, I have assumed the density function in equation (3.3) was defined for any 7. If  were constrained
to belong to some set E, then K should be such that for any h, the perturbed parameter 7 + Kg,lh be in E
for N large enough. That would for instance be the case if F is open and the minimal eigen value of Ky K
goes to +o0.
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Assume that the assumptions of proposition 1 hold, let Ky be a sequence of invertible

symmetric matrices. Then 7,7 is Ky-regular if and only if for all n there exists a symmetric
definite positive I'(n) such that:

Ky (%m)) Ky = T()

Proof. Assume 1,7, is Ky regular. We know, by proposition 1, that:

) 1/2
(aang (U)) (v —n) —a N(0, I,)

Then, using the definition of regularity with h = 0:

~1/2 1/2
0*°B 0*°B

~1/2
First, this implies that Ky (E);%N (17)) is bounded (otherwise L, would be degenerate,

~1/2
can be checked by assuming the maximum eigen value of Ky (azfQN (n)) diverges then

using the characterization of convergence in distribution in terms of pointwise convergence of

-1
characteristic functions ). Then assume Ky (6255 (77))

/2
has a subsequence that converges
to some X(n), then:

Ly ~4 N(0,%(n)%(n)")

Therefore Ky (%fQN (77)) K converges to X(n)X(n) for any converging subsequence.
N

Given that Ky (6252 (n)) Ky is bounded, then it converges to X(n)X(n)" along all subse-
quences.

Conversely, assume that for all n there exists a symmetric definite positive I'() such that:

Ky' (%(n)) Ky' = Tn).

I want to show that:

En_’_K;rlh(e(ﬁ/KN(ﬁML*TI*KX;lh)) . e%qﬁ/r‘(n)_lq&
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For that, note that:

¢ Kn (e —n—Ky'h
EnJrKX,lh(e N )

_ e ¢'h / e BN (= py ()TN W) HE N ) =B (K yh) gy,

_ e—¢’h/e¢’KN(ﬁML—n)hN(y)eTN(y)n—BN(n)eTN(y)KNlh)—(BN(n+KN1h)—BN(77))dy
_ o~ h o~ (BN (K h) =By (m) = 25 (n)

« / e KN (ﬁA/fL*Tl)hN(y)eTN(y)TI*BN (n)e(TN(y)—%(n))’K;h) dy

o (BN (K =B ()= 25X () K )

) . OB o _
X /exp <¢ Ky —n) + (Tn(y) — a—nN(n)) KN1h> h ()TN @n=Bn () gy,

_ o h g~ (BN (KR =B ()= 25X () Ky )

X /eXP (¢'Kn(aer —n) + WKy 'sn(n)) ha(y)e™@n=Brm gy

Denote: Kjy' <8;sz ('r])) K" =: T'n(n); and note from the proof of proposition 1:

Kn(r —n) = Tn(n) ' Ky'sn(n) + op(1)
hence:

E

(e Kn i —n—Ky'hy — o~ o= (BN (4K h)=By (m) = 52 () K 'h)

x K, (eXP((QbTN(??)_I + h/)KNISN(U))

-1
n+Kyh

Note that (shown in the proof of proposition 1):
Ky'sn(n) —a N(0,T(n))

So:
OTn(n) ™+ H)Ky'sn(n) —=a N0, (¢'Tn(n)~" + )C(n)(¢Tn(n)~" + 1))

and:
E, (exp((¢Tn(n)~" + K)Ky'sn(n)) —wexp G(dfw(n)l +R)T () (¢ T ()~ + h’)/)

— exp (10T )6 + 200+ 1T ()1
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on the other side:

00BN

9B
Ky 1h——h’K 12 =N
877()

BN(W*'K]?rlh)_BN(??)_ N a 2

———(n)Ky'h

, PBBy
+ = ZhKN la QaN()KNlh(KNlh)j

for some 7 between 7 and 1 + Kx'h. By assumption, since Ky' = O(1), there exists a
compact K such that 7 € K for all N. Therefore, by proposition 1’s assumptions:

0Bn

Bty + K5'h) = Ba(n) = S50 K3 = ST +o1)

Finally:
’ - —1 / -
EHK&%(& Kn(mr—n—Ky h)) I e3®T(m) "¢
which shows that the MLE is regular with:

Ly =4 N(0,T(n)™")

We can now state the second result:
Proposition 2.

Assume that the model (3.3) satisfies the condition of proposition 1, then the maximum
likelihood estimator is efficient within the class of Ky regular estimators.

Proof. The likelihood ratio (following the notation in Hajek (1970) Héjek (1970)):

ry(h,Yy) = exp (WKy'Tn(n) — (Bn(n+ Ky'h) — By (n)))

. OB B 3.8
:exp(hKNlTN() hKlaN() 2M(Nlaf()f( h) (3:8)

where 7 is some vector such that 7; is between 7; and (1 + Kx'h); for all indices i.
Hence:

o, Yao) = explh K5 (L (n) — 2 () — LD () — S (K]; N Ky F(n)) h

1 OBy . 9By B
—§hKN (877 (1) — 8—772(77)> Ky h)
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By the proposition’s first assumption:

By, . OBy

7 (1) a—ng(ﬁ) — 0

and by the second assumption:

e the maximum likelihood estimator is K - regular; and

o Ky'ZPE(mKy =T (n) — 0

Therefore by the Hajek- Le Cam convolution theorem (Hajek (1970) Hajek (1970)), Barr
is efficient (within the class of Ky-regular estimators).
[

The fact that this efficiency property, along with the result on asymptotic normality
(proposition 1), allow for ”constant rates of convergence” yields interesting conclusions when
the information matrix is bounded. Take the example 3 of the Erdos-Renyi random graph
model discussed in the previous section. I have shown that in that example the MLE is
inconsistent. Note that any consistent estimator is 1-regular, therefore, MLE is efficient
compared to 1-regular estimators, i.e. there can’t be any consistent estimator for 7 in that
example.

3.5 An example of model (3.4): a simple binomial

In this section, I look at a basic example of a model that falls under the specification in
equation (3.4), that is in the form:

In(Yain) = b (Yy)e™v W An(m=Bx o)

with An(.) # id(.). As I mentioned earlier, this more general exponential model allows for
many specifications of interest including in particular the multinomial.
Assume:

Vij=1(a+U+U;+V;; >0) (3.10)

for some 7.7.d standard normal U; and V;;. I am interested in estimating a.
To see that the model is of the form (3.4), note that the probability mass function (Y;;)
can be expressed:

fuy; a) = VW AN@-Bx(@)

with:

e Tn(y)isa 275 % 1 vector that has zeroes everywhere except in the line corresponding
to the value of y
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o An(a) = (log(Pua(Y = 11)), log(Pa(Y = 91)), ..., log(Fa(Y = ywev-n )
e By(a) =0 for all a.

The maximum likelihood estimator cannot be expressed in closed form and even it’s
numerical approxiamtion is time consuming. At this stage, I do not have formal results about
MLE in this setting. In the rest of this section, I explore different estimators of a, I try
compare the three through simulations. The first estiamtor is a simple method of moments
estimator for which inference is simple. The second estimator is a fixed effects estimator and
the last is the MLE. For these two last estimators, I am not able to determine the asymptotic
distribution. For the MLE, I try to apply the same arguments I used for model (3.3) and
show why they don’t go through in this general setting.

The three estimators
The method of moments and composit likelihood

Note that for any i, j:

(3.11)

where Z is some random variable Z ~ N(0,3), and ® is the CDF of the standard normal.
The equation 3.11 suggests the following (method of moments) estimator:

CALMM = \/gq)_l(Y)
Y being the sample mean of Yi;.

Straightforward algebra shows that a,sy, coincides with the composit likelihood estimator
of a.I follow standard arguments to find the asymptotic distribution of a,sys. First, note that:

- 2
Y:m;(}@—E(YMUi,Uj)) ZE ilUi, Uj)
and that:
Var ZY — BE(Y,|U,U; | = _1 ZV&T (Y — E(Yy|U:, Uy))
4
= m‘/ar (1/12 — E(Yig|Um U])>
—n 0
Since N(N 1y 2i; E(Yi3|Us, Uj) is a U-statistic, we get:
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VN(Y — E(Y)) =4 N (0,4Var[E(Y12|U1)))
The delta method yields:

VN(anr —a) = N (0, 12VW[E(Y12|U1)]>

o(5)?
¢: the PDF of the standard normal.

The fixed effect estimator

For every i:
a+ Ul

V2

E(Y;;|Ui) = & )

and note that:

XN
NZG—FUZ' —as A
i=1

this suggests the following estimator:

) V2em o 1
UFE "= 37 Z o N1 Z Yij
i=1 j#i
The maximum likelihood estimator.

Let’s write the likelihood function of ¥ = (Y};)icjeq1..ny. For that, denote, for any y €

N(N-1)

{0,1} 7=
N(y) =2y —1

That is, N(y) is an N(]\;l) x 1 vector with entry 4, j equal to 1 when y;; = 1 and —1 when
Yij = 0.

N(N—-1)
2

Also, M(y) := (M(y)(ij)k)icjecfi..N}k<n is the x N matrix, with :

1 ify;=1and k€ {i,j}
M(y)(z]),k = —1 if yij =0 and k & {Z,j}
0 otherwise.

write, U = (Uy,...,Uyn)"; and V = (Vi2, Vi3, ..., Vy_1.n). We can express the likelihood
. N(N—1)
function, for all y € {0,1} = :
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fly;a) == Po(Y = y) = Pu(aN(y) + M (y)U + diag(N (y))V > 0)

3.12
— Pz >0) G12
for some random variable Z ~ N (aN(y), Innv-1)2 + My )M(y)) = N (aN(y),9),
In(n-1)/2 being the identity matrix of dimension N (N — 1)/2, and Q := Inv_1)2+M (y) M (y)'.
The inequality in 3.12 is in the element-wise sense.

Therefore:

Fy:a) o e~ 3o Nw20) NG / 50w 12 N (W) OW) 2 g,
z>0

Hence, the loglikelihood:

log(f(y;a)) = constant + log (/

2>0

-1 -1 / -1 1
e%zﬁ(y) zeaN(y)Q(y) ZdZ) __GQN(y)IQ(y)le(ZD

This function is strictly concave, the maximum likelihood estimator solves:

szO N(?J)IQ(y)_lze%lz’ﬂ(y)‘1zeaN(ny(y)_1ZdZ

[s 0672’9() 2 0aN (y)QUy) "tz

= aN(y)Uy) "' N(y)
which is equivalent to:

E (N(y)Q(y)~'Z|Z > 0) = aN(y)'Qy) "' N(y) (3.13)

where, as before, Z is some random vector distributed following N (aN (y), Q)

The MLE can’t be obtained in closed form, but can be computed numerically using the
equation (3.13). The question now is to determine the asymptotic distribution of a,; . and
compare it to the method of moments (or composit likelihood) estimator obtained earlier.

The likelihood function of Y can be written as an exponential distribution of the form
the equation (3.4):

In(yin) = eIn (W) An (n)=Bn (n)
where 1 = a (to link the notation of the example to that of the general framework), Ty (y)
isa 277 x 1 vector that has zeroes everywhere except in the line corresponding to the value

N(N

of Y, and AN(n) = (f(ylan)af(y2>77)7 7f(yw#7))/7 where {yh . 7yN(N 1)} {O 1}

is list of al possible values of y. Finally, By(n) = 0 for all 7.
First, I want to show that:

SN(H)
V=Tn()A"x(n) + B x(n)

—4 N(0,1)
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for sy(n) = E(N(y)QUy)~Z|Z 2 0) [y—vy — aN(y)'Qy)'N(y) = Tn(Yn)Ay(n) -
Bl (n), the score.

It is enough to show that the characteristic function of o (77) converges
/=T ( (m)+B”n(n)

to ¢ — e_%¢2, the characteristic function of the standard normal.

sy (n)
\/ TN (YN)A” N () +B” N (1)
n e

_ Tn(y ) (n)—B (n) B
= / hn(y) eXP( N O O )+TN(y)AN(n) BW?)) dp(y)

:e—§¢2/hN(y)exp< ya TN( )A”( m - e J]Vg( )( )+TN(y)AN(77)_BN(77)+;¢2> duy) (314

=49 [ hav(w) explZy) Ax (n+ 6/ =T A w )+ B v ()

T (y)A® (77) —
~Tn(y)A"~(n) + B" N (1)

— By(n+ ¢/v/=Tn(y)A"n(n) + B" n(1))] exp <—;¢2

the last lity uses a Taylor expansion, 77 is some scalar i ¢ .
e last equality u ylor expansion, 77 is som rin [n,n+ \/—TN(y)A”N(n)+B”N(n)]

Therefore, we obtain the following proposition:

Proposition. Assume that for any n and 7:

Tn(Ya) A (7 — B (7]3
[ N( N) N (77 N (77]3 — 0; almost surely.
n

[T (Ya)A” n(n) — Bi(n)]?

then:
SN(TI)

V=T (WA N (0) + B n ()

Note that the proof is not over, I haven’t shown that the binomial model satisfies the (very
strong) condition of the proposition. Moreover, the condition is sufficient but no necessary, I
suspect it is too strong for our purposes. The fact that the argument used with model (3.3)
requires such a strong condition to be satisfied suggests that those arguments might not yield
any results in the more general model (3.4).

—d N(07 1)

The simulations

Because the MLE cannot be computed in closed form, the runtime to numerically approximate
it makes its computation more time consuming than the fixed effect and method of moment
estimators. Therefore, I run two sets of simulations, the first is (figures 3.1, 3.2 and 3.3)
is composed of 250 simulations of graphs of 25 nodes, the second (figures 3.4 and 3.5)is
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composed of 1000 simulations of graphs of 250 nodes . These simulations are performed using
Gnez (2007)Genz (1992)’s sampler sampler that exploits the properties of Gaussian random
vectors.
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Figure 3.1: Maximum Likelihood, N=25  Figure 3.2: Method of Moments, N=25 nodes,
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Figure 3.3: Fixed Effects, N=25 nodes,
n=250 simulations

These simulations suggest that the fixed effects estimator is asymptotically normally
distributed but that it is asymptotically biased. This relates to the well known incidental
parameters problem that pertains to the fixed effects estimation in the panel data literature
(see for instance Hahn and Newey (2004) Hahn and Newey (2004)). The simulations are
less conclusive for the maximum likelihood estimator but suggest that it is also normally
distributed. The simulations also confirm what we already knew about the method of
moments estimator (it is unbiased and asymptotically normal).

Conclusion

The results in this prospectus provide partial answers to the question of parametric efficiency
for models of exponential families. Many related questions are left open. First, the sufficient
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conditions that I propose for asymptotic efficiency are often hard to check. When the
normalizing constant By (n) in model (3.13) cannot be obtained in closed form, as is usually
the case, then it is not clear how one can verify the condition on its second and third
differentials.

Second, this work does not discuss the implementation of the maximum likelihood
estimator. When the normalizing constant By(n) can’t be computed in closed form, it has
to be approximated numerically. MCMC methods are often used for this purpose but remain
unsatisfactory ( Snijders (2002) Snijders (2002)). Some more recent developments exploit
large deviation principles of random graphs (Chatterjee and Diaconis (2013) Chatterjee and
Diaconis (2013), Mele and Zhu (2020) Mele and Zhu (2019)) but the existing results impose
rather binding constraints on the choice of the sufficient statistic.

Finally, extending these results to the more general exponential family model (equation
(3.4)) seems to be hard, the arguments behind the proofs in this prospectus do not extend in
an obvious way. Model (3.4) is much more general than the class of models studied here and
could pave the way to extensions to non-exponential models.

3.6 Proofs

Proof of proposition 1

Define the score:

_ OL(Yasn) dBn(n)
sn(n) = o Tn(Yn) — o

Let’s first show that the score has an asymptotically normal distribution:

In(n) " 2sn(n) =4 N(0, 1)



The moment generating function of In(n)~"/2sy(n) evaluated at some given ¢:

~(95m)
- E(eqb’lw(n)*l/?sw(n))

=

[ by esp (¢'IN<n>—1/2<TN<y> - aBaLn(")) T Taly)n - BN<n>) dy

= [h(yexp (0 SI(0) Y Tulw) = Bun + () 1)

x exp(—Remn(¢'In(n) "%, n)
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where the last equality results from a Taylor expansion and where Remy(¢'In(n)"'/2,n), the

reminder term, can be expressed as:

Remn (&' In(n) ™2 m) = 3 Ro (& In(m) ™" + 1) (6 I () )’
18]=3

where 3 here is a multi-index, and
1
Rﬁ,N(Cb,IN(n)_l/Q + 77) = ——/0 (1 - T)QDSBN|n+T¢'1N(n)*1/2dT
=2 [l 2oty i
Therefore:

My (p,n) = exp (—%ﬁblﬁb) exp (—RemN(ﬁb/fN(U)_l/Qm))

Since In(n)™*

7¢'In(n)~'/? € K. Also, given the condition that for any j < k:

[Eaal "
SUp —5»————— = O
n,neK ||—8252N||3/2

we get:

1
My (6,1) —+n exp(—506)

is bounded, then there exists a compact K such that for all N: n +

o — exp(—%@ﬁ’ ) being the moment generating function of the standard normal, we obtain

the desired result.

Now let’s show:
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In(n)'?(7 =) —a N(0, I)

Note that: Ty (Yy) = 83%7(77) (remember, 7 is the MLE estimator of 7, since 825772 is

positive definit, it is unique whenever it exists).
Observe:

f] = (08377]\[)_1(838]\;7(77)) _ (88377]\[)_1(635\;7(77))
d 0By~' 0By(n), (0BNx(h) 9Bn(n)
=l oy >( o Oy )

i 602 o5t aBN(ﬁ)) (aBN(ﬁ) - aBN(n)) <8BN(77) B aBN(n))

77]377 377 on on n on an
for some 7 between 7 and 7, also denote T := 6381\;] (@)
Then:
=1
-1
0°Bn (n)
- 3772 SN (77)
k - -
1 0 (0B 0*By (1) o (0*Bn(i)\ [ 82By(7)
DI [% (52) >]l ( i) o (T (Tt ) s
0’B
_ ( ~(n) sv()

1|0 foBy\7"', 2Bx()\  (0Bx@) (@Bx@))
S () o] o (750) (Ga) (Fa) o

1| (e2By 2By [(*Bxm)\ [ 0*By@)\
iy [( o (n)) ] sN<n>< 8772(”)) <6n265;7>>( W(”)) sw()
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Finally:

) 1/2
(—a g;;;m) ()
-1/2
o 32BN(77)
= (8—772> sn(n)

1 & N P ey (0By@) (By@m))
+52< > (8—772 oo )\ or

X sn(n) <8852N (U)) sn(n)

L.

If there exists a compact K such that 7 € K almost surely, then for all [ = 1..k, if:

A (a?BN(n))I/ i (a?zaN(n))l <83BN(77)> (aZBN(n)>1
MU o on? OPon; on?

X sn(n) (36521\7 (n)) sn(n)

l,.

then:

3By (n) —-1/2

| G| a2BN< )

1wl < sup gy s < svI[? = 0p(1)
) 8"72

therefore, since 7 is tight, 7 is also tight, and fix any € > 0, I want to show that:

P (||AN,Z|| > 6) — Nooo 0

by tightness, for any ¢’ > 0, there exists an M > 0 such that P(||7 —n|| > M) < ¢ for all
N; denote Ky :={z : ||z — n|| < M} hence:

P(HAN,ZH > E)
=P ([[Anal| > & |17 =l > M) + P ([[Anyl] > € |7 —nl| < M)
3By (n) —-1/2
|G| 02BN( )
P(l7—nll > M) +P [ sup —mpber— x || sn(n)|]? > e
( R W o

3By (n) —1/2
|5 2x k)| 9B
<d+P| sup O o || N( ) sn(n)]|* > e

€K a1 ||823N(7] |[3/2
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Taking limits on both sides, we get:

J&EI;OP(HAN’Z” >e) <¢

this inequality holds for any €', therefore:
]}EI;O]P(HANJH >¢€) =0

i.e. Any=o0,(1), so:

) 1/2 ) -1/2
(8 57];72(7])) (1 —mn) = <—a g];;(n)) sn(n) + op(1)

which allows to conclude.

Gaussian linear regression example: computational details

Remember: Qy = (W) ~wv—1 and, using the same abuse of notation above:
2

m,n<

3 if {i,j} = {k,1}
wij,kl = 1 lf |{Z,j} M {k’, l}| =1
0 otherwise

and the (conditional) MLE estimator of f3:

B = (XN Xn) (XN YN) ~ix N(B, (X3 Q4 X))
Let’s evaluate the information matrix X }VQ]_VIX ~. For that, I will first need to compute
QN = (W ij ) ig b
Computing ijl
I conjecture® that w1 has the following shape:
an if {Zaj} = {k7l}
wig =19 by {0 {k 1} =1 (3.15)

cy otherwise

Then I solve for ay, by and ¢y, and check that the matrix (w*;;x)ijm given by 3.15 is
indeed Q'

8Thanks to Python!




By definition of the inverse, for all 7, j, p, m:

kl

. 1 if{i,5} ={p,m}
Zwij’klwkl@m = i) dpm) = { 0 otherwise

On the other side, assuming 3.15:

*
E Wi kWt pm = ON X Wijpm + bN § wijr | +en

kl

So:

an X Wijpm + bN

{&,130{p,m}|=1

E wijkl | + N E Wij .kl

{k,030{p,m}|=1 {k,130{p,m}=0

We have 3 cases:

e {i,j} = {p,m}: equation 3.16 is equivalent to:

3CLN + 2(N - 2)bN =1

o —{i,7} N{p,m}| = 0: equation 3.16 is equivalent to:

by + (2N = 5)ey =0

o —{i,j} N{p,m}| =1: equation 3.16 becomes:

CLN+(N+1)bN+(N—3)CN:0

Equations (3.17) - (3.19) yield:

Finally:

ax = § - 20y
CN = —ﬁb]v
an + (N +1)by + (N —3)eny =0

_ 1 2(N-2)
aN = 3 — 3 bn
ey = —=—2-b

N — an—5°N

1
3 2N—5

— 2D py 4+ (N + )by — =8y,

{k,[}n{p,m}=0

= 044} {p;m}

=0
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(3.16)

(3.17)

(3.18)

(3.19)
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an — 2N2-TN+7
N — (N-1)(2N-1)
by = ———2N=5 (3.20)

T (N-1)(2N-1)
_ 4
CN = ND@eN-D
To check that the guess in 3.15 is correct, it suffices to check that ay, by and cy above satisfy
equations 3.17 to 3.19, which they of course do.

A simple example

Take the example where:
Xij = (1, XiX;)

for some i.i.d random variables (X;)i1<;<n.

XN Oy Xy = Z X055 1 X

1<j;k<l
:CLNZXZ{J-XU—.—I)N X Z Xz{ijl—i_cN X Z Xi/ijl
i<j H{i.530{k,1}=15i<g;k< {i,53N{k,1}=05i<j;k<I
_ 1 X X 1 X X,
1<J {7,530 {k,l}=1i<g;k<l
1 X X
.. tcn X Z (Xin XleXin)
{3,7 }0{k,1}=0;i<5;k<l

. [Ax By
"\ Cy Dxn
with:

AN:CLN21+()N Z 1+CN Z 1

i<j {30k, =150<g5k <! {i.g3n{k, 1} =0;i<g;k<l

_ NV N = 1) (N = 2)by

2
+ ((N(N — 1))2 NNV N(N —1)(N — 2)) cn

2 2
_ M- (aN+2<N_2>bN+ (M5 12w - o) cN)
N(N — 1)
2(3+2(N —2))
:%—1—0(]\7)
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BN:CN:aNinXj“‘bN Z Xin—i—CN Z )(1)(J
i<j [{i,5 30 {k,l1}|=15i<j;k<l {3,53N{k,1}=0;i<j;k<l
:aNZXin+bNZXin Z ]-—I—CNZXin Z 1
i<j i<j {3,530 {k,1}|=1;k<1 i<j {t,530{k,1}=0;k<!
=ay Y X X;+2(N - 2)by Y XX
i<j 1<J
N(N —1)
+ (T —1—2(N — 2)) CNZXin
1<)
N(N -1 2
23+2(N -2)) \ N(N - 1) &

= B +0,(V)

where the last equality uses a U-statistic law of large numbers. Similarly:

Dy =ay » XX} +by > Xi X XX, + en > X X XX

i<j i, 08k, =150<g5k <! {i.g3n{k, 1} =0;i<j;k<l

2

OEUELTES

=ay <N> (E(XD)* + 0p(1)) + N(N = 1)(N = 2)by(E(X1)*E(XT) + 0,(1))

en(B(X1)" + 0p(1))

_ (N ) (aBOGRP: 203 ~ 1 BOG RO +

2 CNE(X1)4+OP(1)>

Assuming: F(X?)? — 2E(X,)*E(X?) + E(X1)* # 0, i.e. Var(X;) # 0, then:

Dy = OP(N2)

Let’s now compute (X3Qy' Xy) ™k

1 D -B
r o1y -1 N N
(Xt Xn) ™ = AnDy — B, <—BN An ) (3.21)
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~

So, denoting 8 = <go) and the MLE estimator:3 = <g0) , equation (3.21) shows that:
1 1

Avar(fo) = O(=)

) N (3.22)
Avar(fy) = O(~—
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