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ABSTRACT OF THE DISSERTATION

Revealing Design Principles of Biological Networks

through Optimization and Dynamical System Approaches

by

Shyr-Shea Chang

Doctor of Philosophy in Mathematics

University of California, Los Angeles, 2019

Professor Marcus L. Roper, Chair

Biological networks, such as vascular networks and neural circuits, are ubiquitous in nature.

An understanding of these networks can help us understand their response to damages, which

could lead to novel treatments. They can also inspire the design of man-made networks, as

evolution has millions of years to figure out optimal designs. The advancement in imaging

techniques has created high-dimensional data streams, which is difficult to analyze by conven-

tional approaches. On the other hand, quantitative tools are naturally suited for processing

large data sets, and they become more and more important in improving our knowledge

on biological networks. Among existing tools ranging from network science to stochastic

analysis, here we focus on optimization and dynamical system approach. Optimization links

biological functions to corresponding network structures, which can give predictions to be

compared with the data. The dynamical system approach is suited for analyzing time series

data and complex interaction between the vertices, which is often exploited in biological

systems for intricate signalings and regulations.

This thesis is devoted to the study of biological networks with optimization and dynam-

ical system, focused on two specific biological systems: microvascular network and bipolar

disorder. For microvascular networks, we first study a specific example of embryonic ze-

brafish trunk network, and reveal the significance of flow uniformity in this network. Then

we derive analytical structures of networks with optimal transport efficiency, which is widely
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regarded as the organizing principle of vascular networks, especially for large vessels such

as aorta. To compare the morphologies of transport efficient and uniform flow networks, we

develop algorithm that is capable of finding optimal networks with general target functions

and constraints, and show that the principle of uniform flow creates more realistic microvas-

cular networks under many different topologies. Finally, we propose an vessel adaptation

mechanism based on stress sensing dynamic to explain how microvascular networks stay

resilient to noise, and how they grow into uniform flow networks. For bipolar disorder, we

mathematically analyze a dynamical model based on the interaction of mood and expecta-

tion. We show that bipolar disorder can be viewed as a bifurcation in the direction from

normal to cyclic personality. We also consider the case where positive and negative events

are sensed differently, and describe the bifurcation in this case. Finally we apply commonly

used medicine on the model, and recover clinically observed phenomena on bipolar disorder

patients.
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produced by bootstrapped regressions of flux against Se No., which is a num-

bering of Se vessels starting from the rostral trunk. (B) A model incorporating

tuned occlusion strength (black curve) agrees well with the data from a single

4dpf zebrafish (black circles), see Section 2.3. Bars: standard deviation of flux. . 19
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time resolution of our videos. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

2.4 Occlusion of SeAs by cells feeds back onto the flow through the SeA. (A) Equation
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4.2 Zebrafish trunk microvascular network (red square) optimizes uniform flow in

fine vessels at a high transport cost, compared to untuned networks (blue dots).

The untuned networks are obtained by randomly permuting the conductances

of fine vessels in a real zebrafish trunk network [CTB17]. The transport cost is

characterized by dissipation [BM07, Ach90], and the flow variation is quantified

by the coefficient of variation of flows in the fine vessels. . . . . . . . . . . . . . 69
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one control surface. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77
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2
).
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descent method exhibits tree structure as predicted in [Dur07]. We imposed a
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(B). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85
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4.5 Minimally dissipative networks consist of a single conduit on capillary bed topol-

ogy (with target function
∑
κkl(pk − pl)

2 and material constraint
∑
κγkl = Kγ

with γ = 1
2

on a 10×10 square grid). (A) We represent the capillary bed network

by a square grid where a single source and a single sink locate at upper-left and

lower-right corners respectively. (B, C) Different initial conductances produce

different optimal networks, but all optimal networks are made of a single wide

conduit. Here we use a constant step size throughout the process, and at each

step we project by surface normal to maintain the material constraint. Each edge

is initially assigned a positive uniformly random conductance to impose no prior

knowledge on the algorithm. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86

4.6 Uniform flow networks have a seemingly random morphology, but can be shown

to have the same flows as a uniform conductance network (Here we show a 20×20

square grid network with 400 vertices). (A) An optimal network has an apparently

random distribution of conductances. The edge widths are proportional to the

conductances. (B) A closer view reveals that the conductances of the optimal

network (blue circle) are quite different from uniform (red cross), and do not seem

qualitatively different from initial conductances drawn from a uniform random

distribution (green star). The conductances are normalized such that
∑
κ

1
2 are

the same. Each edge is initially assigned a positive uniformly random conductance

to impose no prior knowledge on the algorithm. (C) The differences of flows from

those in a uniform conductance network (blue circles) are uniformly zero, while

the differences of initial flows from those in a uniform conductance network (green

stars) are not. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88
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4.7 Minimal dissipative networks for zebrafish trunk vasculature do not explain ob-

served morphology. (A) The zebrafish trunk vasculature can be simplified into a

ladder network with arterial (red) and venous parts (blue). The edges e1, e3, ..., e2n−1

are aorta segments and e2, e4, ..., e2n are capillaries. We use n = 12 in all the fol-

lowing calculations on zebrafish network. (B) The optimal dissipative network

with γ = 1
2

and fixed inflow does not correctly describe the zebrafish trunk net-

work since all the conductances are concentrated on the first capillary (red circle),

and the whole aorta is deleted (blue cross). In this calculation we imposed a fixed

inflow on v1 and fixed zero pressure on vn+1, ..., v2n+1. We started with κ = 20 for

aorta segments and κ = 1 for capillaries to reflect the difference in radii in real

zebrafish. This initial condition is used for all the following simulations. (C) The

optimal dissipative network with γ = 1
2

and fixed outflows has a tapering aorta

(blue cross) and capillaries with the same conductances (red circle). We imposed

zero pressure on v1 and fixed outflows on vn+1, ..., v2n+1 with vn+1 taking half of

the total outflow (i.e. 1
2
F ) and vn+2, ..., v2n+1 evenly dividing the other half of F .

(D) However the pressures on the ends of capillaries are decreasing to maintain

uniform flows among capillaries, which is non-physical since this means that the

blood flows toward the tail in the principal cardinal vein, due to the aorta-vein

symmetry. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98
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4.8 The uniform flow networks quantitatively explains the zebrafish trunk vascular

network morphology. (A) The uniform flow network dictates a constant conduc-

tance on aorta segments (blue cross) but assigns conductances to Se vessels that

increase exponentially from head to tail (red circle). We scale the conductances

such that
∑
κ

1
2 remains the same for comparison with minimal dissipative net-

works. We started with κ = 20 for aorta segments and κ = 1 for capillaries to

reflect the difference in radii in real zebrafish. (B) The predicted hydraulic re-

sistance (blue curve) agrees well with experimentally measured data (red curve,

with 95% confidence intervals). The data is obtained from our previous work

[CTB17] under the assumption that the volume fraction of the red blood cells is

0.45 [PS05]. Theoretical resistances are normalized by the mean since optimiza-

tion only controls the relative resistances of vessels. . . . . . . . . . . . . . . . . 99

4.9 Uniform flow networks under Murray constraint have the same flows as the ana-

lytic solution in Sec 4.3.2, but exhibit tradeoff between dissipation and material

cost as a increases. (A) For small a the uniform flow network with Murray

constraint is equivalent to a network with material constraint. The network is

constrained with a = 36.8, and the solution is selected from the best network

visited during the gradient descent, with relative error in energy cost < 10−4, as

in the following simulations. Widths show the relative conductances. (B) When a

is increased, the dissipation in the network increases (blue crosses), while the ma-

terial cost decreases (red circles). The simulations were carried out in the manner

of numerical continuation, i.e. the simulation for each a starts with the solution

from previous a, and the simulation for a = 0 starts with a random conductance

configuration. All the networks have the same fixed total energy cost K = 1174.9. 100
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4.10 Uniform flow networks on zebrafish trunk topology exhibit a phase transition

when a, the relative cost of dissipation to total material, is varied in the Murray

constraint. (A) The target function remains zero for small a until ac = 33.3 where

a phase transition occurs and the value of target function suddenly increases

(blue crosses). The dissipation (red circles) increases with a for a < ac just

as for the capillary bed, but has a sharp decrease right after the critical value

ac. Here we adopted numerical continuation as in Fig. 4.9B, but when a local

minimum around previous initial condition does not satisfy Murray constraint the

initial configuration at a = 0 is reused for the initial conductances. The minimal

value for the total energy cost upon scaling of conductances is used whenever the

Murray constraint cannot be maintained. The Murray energy K is maintained

to be 70.43 in all simulations by the projection method described in Section

4.2.6. The total energy cost is fixed to that of initial configuration (with uniform

conductances in fine vessels being 1 and those in aorta being 20) when a = 1. The

solution is selected from the best network visited during the gradient descent,

with relative error in energy cost < 10−4 (B) The conductances of capillaries

change qualitatively after the phase transition. The morphology resembles the

unconstrained network (Fig. 4.8A) before the phase transition (blue cross and

red circle), but changes qualitatively afterwards (green square). (C) The flows

are uniform before the phase transition (blue cross and red circle), but decrease

from head to tail afterwards (green square). . . . . . . . . . . . . . . . . . . . . 101
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5.1 The radii of capillaries in embryonic zebrafish are tightly constrained. (A) A

diagram for embryonic zebrafish trunk microvascular network. We focus on the

microvascular network in the trunk and the tail (left: a 4dpf zebrafish), which has

a topology like a ladder, with the dorsal aorta (DA) and the posterior cardinal vein

(PCV) being the rails, and the intersegmental arteries (SeAs) and intersegmental

veins (SeVs) being the rungs of the ladder (right) [IHW01]. (B) Zebrafish trunk

networks can tolerate up to 7% of random perturbation in SeAs before the red

blood cell flux becomes significantly less uniform than measured. We perturb

the SeAs in the uniform flow zebrafish trunk network [CTB17] by independently

normally distributed noises, with standard deviations ranging from 1% to 25% of

the vessel radii. At about 7% perturbation of SeA radius, more than 97.5% of the

simulated networks have higher Coefficient of Variation (CV) of red blood cell

(RBC) fluxes than the mean value in 6 4dpf fish (red line), signified by that the

measured CV is lower than the mean (blue curve) minus 2 standard deviations

(blue error bars) of the simulated CV. . . . . . . . . . . . . . . . . . . . . . . . 105

5.1 (C) The radii of capillaries in zebrafish networks are tightly constrained. We

calculate the radii of first 6 SeAs by solving for the conductances according to

the measured RBC fluxes in these vessels [CR19], and then recovering the SeA

radii from conductances by Eqn. 5.2. The CV of SeA radii ranges from 0.03%

to 0.3%, with the rostral SeAs more constrained than the caudal SeAs. SeAs

with smaller numberings are closer to the heart. (D) The blood flow pattern

is consistent in 4 to 7 dpf zebrafish. Both the mean RBC flux (blue, left axis)

and the ratio of RBC fluxes in rostral and caudal trunk (orange, right axis),

measured respectively by the sum of RBC fluxes in 4 SeAs closest and farthest

from the heart, stay relatively constant throughout this developmental stage.

Shown: mean ± s.d. from 2–3 samples each dpf. . . . . . . . . . . . . . . . . . . 106
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5.2 A shear stress activation model for vessel adaptation. (A) The small gap distance

between the red blood cell and the endothelial wall creates large shear stress,

compared to that generated by plasma flow only (up). The stress under the

presence of a cell can be calculated by assuming a drift distance δ between the

center of the cell from that of the vessel, and considering the gap distance d

between the cell and the endothelial wall on a line that passes through the center

of cell at an angle θ (down). (B) The shear stress experienced by an endothelial

cell exceeds the empirical threshold for notch-1 activation when a cell is present.

The stress shows strong fluctuations in a 33 second interval (blue line, left). When

we look at a 4 second interval, we see that the shear stress created by red blood

cells (red stars) is indeed much higher than that when the cell is absent. This

difference crosses a threshold of 23 ± 8 dyne/cm2 (green line and green dashed

lines) previously measured to trigger notch-1 expression [BLB17]. . . . . . . . . 108

5.2 Shown: shear stresses measured at the middle of a Se vessel in a 4dpf zebrafish.

The velocities are measured by optical flow method [BFB92] and the cells are

found by detecting the extrema of intensity. Then the shear stress is calculated

by an integration similar to Eqn. 5.2, with r = 3.02 µm and rRBC = 3µm. (C)

One reason for the instability of the conventional shear stress adaptation model

[HC13] is that the model only stabilizes a single vessel under the flow boundary

condition (orange dotted) but not under the pressure boundary condition (blue

line), as the stress increases as vessel dilates, which further increases the stress.

We used a velocity of 130 µm/s for the flow and a pressure drop of 4300 dyne/cm2

for the pressure boundary condition, which are on the same order with that

experienced by a Se vessel in a 4dpf zebrafish. (D) The shear stress fraction

from the stress activation model, on the other hand, stabilizes a single vessel

under both boundary conditions, suggesting that it is more stable than the shear

stress adaptation model. We used a threshold σt = 380 dyne/cm2 and the same

parameters as in (C). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 109
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5.3 The stress activation (SA) model stabilizes network topologies commonly used

to model microvascular networks, and creates realistic zebrafish trunk network.

(A) The SA model stabilizes the parallel network with 2 vessels (left). The

equilibrium is a saddle point in the previous shear stress model (middle) but

a stable node in the activation model (right). The effect of red blood cells is

included in both models (Eqn. (5.2)). We set the target shear stress and target

stress fraction to be such that the state (r1, r2) = (3.01, 3.01)µm is stationary.

We used a flow boundary condition with inflow F = 1.5× 104 µm3/s. The stress

threshold σt = 380 dyne/cm2 is used in panels (A)-(C) and hematocrit 0.014

1/µm measured from a 4dpf fish is used in panels (A)-(D). (B) The SA model

stabilizes hierarchical networks. We applied the model on hierarchical networks

with 1–7 levels (left: a level 5 tree), with the lowest vessels following the dynamics

(5.4) and the rest of vessel radii determined by Murray’s law [Mur26b]. We start

the vessels independently uniformly at random between radii 3.005–3.3 µm (up

right), and all 70 networks (10 for each level) converge to networks with uniform

capillary radius 3.01 µm, which we set to be the stationary state (bottom right).

The ODEs are solved with a total time of 200 and C = 40. . . . . . . . . . . . . 113
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5.3 (C) The SA model stabilizes square grid networks and produces uniform flow

networks. We applied the model on 8 × 8 grids with 112 vessels, with a single

inflow F = 1.1 × 105 µm3/s on the top left and outflow in the bottom right

vertices. all vessels following the dynamics (5.4). The target stress fraction f̄ is

set uniformly to 0.025. All 10 networks converge to unpruned networks (shown),

and the flows agree to those in the uniform conductance network (mean flow error:

9.1× 10−3 ± 1.3× 10−3, mean ± SE), showing that these networks optimize flow

uniformity [CR19]. The ODEs are solved with a total time of 400 and C = 40.

(D) The SA model creates a realistic 4dpf zebrafish trunk network. We applied

the model on the arterial part of the trunk network with 12 SeAs (Fig. 5.1A)

[CTB17]. Due to asymmetry introduced by varied distances of SeAs from the

heart, we set the stress thresholds σt according to a uniform flow zebrafish trunk

network [CR19], but a constant stress fraction 0.085. The dynamics (5.4) on

SeAs produced an unpruned network with radius increasing from head to tail.

We start with a uniform SeA radius 3.6 µm, and the ODEs are solved with a

total time of 80, an inflow F = 3 × 105 µm3/s, and C = 50. SeAs with smaller

numberings are closer to the heart. (E) This SeA radius distribution creates a

network with uniform red blood cell flux (black line). The measured RBC fluxes

are more fluctuatory (N = 6, colored curves), but do not show systematic increase

or decrease, which is captured by the uniform flow prediction. . . . . . . . . . . 114
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5.4 The stress activation (SA) model becomes unstable as hematocrit decreases,

which predicts the pruning during zebrafish development from 4 to 13 dpf. (A)

The stress fraction signal becomes weaker as the hematocrit decreases. At low

hematocrit (0.2× normal hematocrit, yellow dash-dotted curve) the stress frac-

tion at all vessel radii lies below a target stress fraction (red line), suggesting the

occurrence of pruning. The parameters in panels (A), (B), (C) are the same as

those in Fig. 5.2D (pressure boundary condition), Fig. 5.3A and D, respectively.

(B) The hematocrit-induced pruning occurs in the parallel system with two ves-

sels. When the hematocrit halves the normal value, the equilibrium is shifted

toward smaller vessels (left, red dot: original equilibrium), and then at lower

hematocrit an equilibrium with both vessel radii larger than the radius of the

RBC ceases to exist (right). (C) The SA model with experimentally measured

hematocrit predicts the pruning of Se vessels during zebrafish development. . . . 117

5.4 We apply the dynamics (5.4) on zebrafish trunk topology with 12 SeAs, and

change the hematocrit according to previous data [SUP03]. The model predicts

a decrease in the number of vessels with RBC flow (blue curve), with a variation

induced by uncertainties in hematocrit measurement (blue dashed curves: pre-

diction from mean + SD hematocrit, and vice versa). This prediction matches

our measurements of the fraction of Se vessels with RBC flow from 4 to 13 dpf

(black dots, mean ± SD, 2–4 fish per dpf). A single parameter C = 50 was fitted

to the data. The viscosity in the aorta is adjusted according to [GWS81]. (D)

Additionally the SA model predicts the head tail asymmetry of RBC flow during

zebrafish development. The model predicts a decrease in head tail ratio (blue

solid and dashed curves), determined by the fraction of vessels with RBC flow in

the rostral third of the trunk divided by that in the caudal third, that matches

our measurements (black dots and error bars). The symbols have same meanings

as in (C). Star: one data in 8 dpf with infinite ratio is ignored. . . . . . . . . . . 118
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5.5 The stress activation (SA) model can explain the pruning pattern in gata-2 ze-

brafish where the number of red blood cells is reduced by half. (A) Gata-2 4dpf

fish show a similar level of vessel pruning as wild type 12dpf fish, compared to

wild type 4dpf fish (box plot), due to a reduced level of hematocrit. (B) Our

simulations suggest that gata-2 4dpf fish can have a different pattern in RBC

flow from wild type 12dpf fish, though they have a similar level in hematocrit.

We simulate 2 days of development with different uniformity in initial radius

(interpolated from a uniform radius of 3.065µm and the wild type 4dpf radius

distribution shown in Fig. 5.3D) and scales in shear stress threshold, represented

by a factor that multiplies the stress threshold distribution in wild type 4dpf fish

shown in Fig. 5.3D. The parameters that model gata-2 4dpf fish produce focused

RBC flow in the rostral trunk (red triangle), while those modeling wild type

12dpf fish reproduce focused RBC flow in the caudal trunk (blue triangle). (C)

Our prediction of RBC flow pattern is verified by our measurements on gata-2

4dpf and wild type 12dpf fish. We plot the fractions of number of Se vessels with

RBC flow in rostral and caudal thirds of the trunk. The vessels with RBC flow

in gata-2 4dpf fish concentrate in the rostral trunk (red crosses), while those in

wild type 12dpf fish focus in the caudal trunk (blue circles), compared to wild

type 4dpf fish where most of the Se vessels have RBC flow (green stars). . . . . 120
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6.1 The mood and expectation of normal subjects become more oscillatory as the

mood sensitivity fηm increases towards the critical value ηv + k from below. (A)

Oscillations in expectation are highly damped for normal subjects (blue solid,

fηm = 0.3(ηv +k)), but become less damped when the mood sensitivity increases

(green dotted, fηm = 0.6(ηv +k), and red dash-dot, fηm = 0.9(ηv +k)). Since we

start the solutions at (m, v) = (0,−1), the constant reality r(t > 0) = 0 represents

a permanent increase in reality from r(t < 0) = −1. The numerical values

ηv = 0.37, f = 0.3, k = 0.37, and k3 = 2.8× 10−3 are used in all figures. (B) The

mood shows similar oscillatory behavior that become less damped with increasing

mood sensitivity. (C) When subjected to random reality events, models with

large mood sensitivities exhibit larger responses in expectation. (D) Similarly,

the fluctuation in mood is greater for in systems with larger mood sensitivity

under random reality conditions. Realizations of the random reality function are

generated as described in the Mathematical Model section, with σr = 2, kr = 1.

In (C) and (D), mood and expectation are initialized at (m, v) = (0, 0). . . . . . 129

6.2 Our theory predicts that the onset of bipolar disorder occurs through a super-

critical Hopf bifurcation as the mood sensitivity fηm crosses the threshold value

ηv + k and a limit cycle in mood m(t) is established. (A) In a bipolar state, the

expectation v(t) (dotted green) persistently oscillates, in contrast to the normal

case (solid blue). We set the reality r(t > 0) = 0 and use (m, v) = (0,−1) as the

initial condition. The bipolar state is modeled using fηm = 1.5(ηv + k), whereas

the normal state is computed using fηm = 0.3(ηv + k). The numerical values

ηv = 0.37, f = 0.3, k = 0.37, and k3 = 2.8 × 10−3 are used in all plots. (B)

Mood of bipolar subjects also persistently oscillates. (C) The magnitude of mood

oscillations increases as the mood sensitivity fηm increases. The amplitude of

oscillations obtained from numerical simulations (green stars) compares well to

amplitude estimates using Eq. (6.8) (black dots) when fηm � ηv + k. . . . . . . 132
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6.2 (D) Expectation v(t) in the bipolar state responds to changes in reality but re-

mains oscillatory (green dashed). This behavior is distinct from the expectation

of normal subjects (solid blue curve) that more closely follow the reality function.

(E) Under the same reality function as in (D), the mood is much more oscillatory

in the bipolar state (green dashed curve) than in the normal state (solid blue

curve). (F) The model predicts intermittent spikes in the QIDS score. Real-

izations of the reality function are generated as described in the Mathematical

Model section, with σr = 2, kr = 1. For (D), (E), and (F), the initial condition is

(m, v) = (0, 0). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 133

6.3 Response to jumps in reality with r(t) = −4 for t ∈ [0, 1) and r(t) = 4 for

t ∈ [1, 2]. Here, normal, manic, and depressive subjects are defined by asymmet-

ric learning rates such that (fη+
m/(ηv + k), fη−m/(ηv + k)) = (0.4, 0.4), (0.8, 0.1)

and (0.1, 0.8), respectively. Numerical values for other parameters, common to

all subjects, are ηv = 1.85, f = 0.3, k = 1.85, and k3 = 0.014. Initial conditions

are set to (m, v) = (0, 0). (A) The predicted expectations v of a normal sub-

ject (solid blue), a manic subject (red dash-dot), and a depressive subject (green

dotted) all attempt to follow reality (black dotted). In the depressive state, v(t)

overshoots decreases in r(t), whereas expectations in the manic state overshoot

rises in r(t). (B) Mood levels m(t) exhibit significant systematic differences in

the normal, manic, and depressive cases, showing how asymmetric mood sensi-

tivity can lead to unipolar depression/mania when reality r(t) is changing. (C)

Prolonged periods of negative mood are reflected by longer periods of large QIDS

scores in depressed subjects. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 135
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6.4 Phase plane diagrams depicting possible scenarios of linear stability and instability.

(A) Linearized dynamics in the fm < v half-plane show stable node behavior whereas

fm > v half-plane supports spiral dynamics. The overall stability is determined by

the stability property of the nodal half-plane, whether or not the trajectory crosses

into an unstable spiral half-plane. In the illustrated example, the green rays show the

stable eigendirections. (B) Both half-planes support spiral dynamics: one stable, one

unstable. The overall stability is determined by whether the trajectory starting at

(m0, v0) increases or decreases in magnitude as it completes a cycle. . . . . . . . . . 137

6.5 Bipolar disorder can be triggered by large unidirectional changes in mood sensitiv-

ity, even when one of the mood sensitivities does not cross the stability threshold.

(A) Numerical computations were performed within the period t ∈ [0, 162.5] us-

ing r(t > 0) = 0. The stability is characterized by the standard deviation of

mood when t ∈ [81.25, 162.5], and the stability boundary (white solid curve)

is determined by the contour of mood variability of model with critical mood

sensitivities, i.e. fη+
m = fη−m = k + ηv. Other parameter values used in the

simulations are ηv = 1.48, f = 0.3, k = 0.37, and k3 = 2.8 × 10−3. The curve

f(η+
m + η−m) = 2(k + ηv) (red-dashed line) solves Eq. 6.11 and matches well with

the numerically computed stability boundary (white solid curve) when both half-

planes support spirals (inside the green-dotted box). When both half-planes are

stable (inside the gray-dot-dashed box), the solutions are stable as expected since

eigenvalues in both half-planes have negative real parts. . . . . . . . . . . . . . . 140
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6.5 When one half-plane is an unstable spiral and the other is a stable node (upper-

left and lower-right rectangles with one gray-dot-dashed and two green-dotted

sides), the solutions are stable according to our analysis in Fig. 6.4, consistent

with the numerical results. Finally, when an unstable node is present (upper and

right to green dotted lines), the system is unstable. We show that the coexistence

of stable spiral and unstable node half-planes leads to instability. Stability of the

case in which both stable and unstable node half-planes arise depends on initial

conditions. (B) Under constant reality, bipolar disorder triggered by mood sensi-

tivity asymmetry in different directions induce different behavior in expectation

v(t). Compared to the normal state (solid blue), higher negative mood sensitiv-

ity (depressive bipolar state, fη−m = 2(ηv + k) and fη+
m = 0.5(ηv + k)) lowers

expectations (green-dotted lines) while higher positive mood sensitivity (manic

bipolar state, fη−m = 0.5(ηv + k) and fη+
m = 2(ηv + k)) leads to higher expecta-

tions (red dash-dot). Initial conditions are (m, v) = (0,−1). Parameter values

used in this and in the following subfigures are ηv = 0.37, f = 0.3, k = 0.37, and

k3 = 2.8×10−3. (C) Under constant reality, bipolar disorder induced by asymme-

try in mood sensitivities in different directions biases the mood m(t) in different

directions. (D) The biases in the asymmetry-induced oscillations in the expec-

tation persist under random reality conditions, with depressive/manic bipolar

states leading to statistically lower/higher expectations. The realization of real-

ity is drawn as described with σr = 2, kr = 1. Initial conditions: (m, v) = (0, 0).

(E) The mood trajectories m(t) show qualitatively similar biases as in (B). (F)

Predictions of QIDS scores of depressive and manic bipolar individuals. . . . . . 141
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6.6 Possible effects of antidepressants and lithium on subjects with bipolar disorder,

including the mania-inducing effect of antidepressants and the sedative effects

of lithium, are assessed in our model. (A) Numerical calculation of the mood

of a bipolar subject (solid blue curve) using fηm = 1.5(ηv + k). At t = 9.2

weeks, within a depressive episode, the patient is treated with antidepressants,

modeled by an elevation in mood [Gol11]. Trajectories corresponding to dosages

that instantaneously decrease the depression to 70% of its lowest value (green

dotted), 30% of its lowest value (red dash-dot), and 10% of its lowest value

(black dotted) are shown. Note that higher doses lead to an earlier onset of

mania. This antidepressant-induced mania is observed clinically [APL95, GT03].

The numerical values for the simulations are ηv = 0.37, f = 0.3, k = 0.37, and

k3 = 2.8 × 10−3; the initial conditions are (m, v) = (0,−1). (B) The quick

transition to a manic phase results in a depressive episode that occurs sooner

than in untreated subjects, as indicated by an earlier peak in QIDS score for

subjects treated with a high antidepressant dose. . . . . . . . . . . . . . . . . . 142

xxviii



6.6 (C) When the effect of antidepressants is modeled by an increased positive mood

sensitivity, an earlier manic episode is observed with larger amplitude. The

frequency of mood oscillation also increases as dosage increases. The positive

mood sensitivities used in the simulations for low to high dosage are fη+
m =

2.25(ηv + k), 3(ηv + k), 3.75(ηv + k), respectively, while the negative mood sensi-

tivities are the same as those used in (A). (D) The quick transition to mania also

induces an earlier depressive episode, with larger QIDS score as the dosage in-

creases. (E) Simulated mood dynamics for mania-biased mood sensitivity asym-

metry (red dotted, fη+
m = 1.5(ηv + k), fη−m = (ηv + k)) and depression-biased

mood sensitivity asymmetry (blue solid, fη+
m = (ηv +k), fη−m = 1.5(ηv +k)). The

sedative effects of lithium are modeled via a symmetric 20% reduction in mood

sensitivity and are implemented in our numerics at t = 27.1 weeks (black arrow).

This treatment decreases oscillation amplitudes consistent with clinical observa-

tions [PK01]. (F) The reduction in mood oscillation amplitudes yields smaller

predicted QIDS scores. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 143

A.2 Occlusive effects are measured in all 12 Se arteries in a 4 dpf zebrafish; we regress

the reciprocal of the average velocity 1
u

against the cell number n. Line: linear

regression with intercept determined by the numerical solution with no cells. . 174

A.3 Predicted cell fluxes in wildtype zebrafish due to variability in Se spacing variant.

The wildtype cell fluxes (star) becomes oscillatory under variant spacing (circle),

but shows similar overall uniformity. If the feedback variation is adjusted then

uniform partitioning of cell fluxes is restored (cross, overlapped with the stars.

Se vessels with smaller numberings are closer to the heart.). . . . . . . . . . . . 175
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A.4 Predicted cell fluxes in mibta52b mutant zebrafish. In this mutant, the DA and

PCV are directly connected by a shunt, which creates a short-circuit in the net-

work. A shunt introduced at the location of the 6th Se leads to lower and less

uniform fluxes (circle) compared to wild type embryos (star), and there is almost

no cell flux posterior to the shunt location. Se vessels with smaller numberings

are closer to the heart. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 175
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CHAPTER 1

Introduction

Biological networks are networks applied to biology, with either vertices and edges represent-

ing biological entities, or a theoretical interpretation of the system under study. A biological

network can be a physical representation of a biological system, such as vascular networks in

animals and plants [BTK13, MSA03] and hypha networks in fungi [RSH13], with edges being

vessels and vertices being junctions, and the neural networks in brain [BB06], with vertices

being neurons and the edges being synaptic connections. It can also be a higher-level repre-

sentation of a biological process, such as the relation between emotion and memory [SS88],

that serves as an abstraction of an otherwise overly complicated network that potentially

involves billions of neurons. An understanding biological networks can help us predict their

response in pathological situations, such as acute damage like stroke and trauma, and chronic

condition such as dementia, which could lead to novel treatment for the diseases. For ex-

ample, after removal of coronary occlusion, the perfusion in the heart is often not restored,

blocked by endothelial protrusions and cell rouleaux [RK06]. Knowing the mechanism of

capillary responses may lead to new medicine that help preventing this pathology. The

study on these networks could also guide the construction man-made networks and improve

their performance. For example, the slime mold network connects to food sources placed on

major japanese cities around Tokyo with comparable efficiency and robustness as the Tokyo

rail system in several days, and the rail system took tens of years to build [TTS10]. While

man-made networks such as highways suffer from congestion, the transport speed of nuclei

in fungal networks increases with the number of nuclei in the group [HDF16].

Gaining insight into biological networks requires quantitative tools, as a network can have

thousands of vertices and edges, often coupled with complex dynamics. For example, the

1



capillary network in mouse brain cortex contains tens of thousands of vessels in a millimeter

cube [BTK13]. The blood flows are in the Stokes regime [Ach90], and changes in the radius

of a vessel can lead to global redistribution of flow. The advancement of technology has

enabled production of large data sets. Time series data of gene expression can be obtained for

thousands of genes [HEB05], and the neuronal connectivity in mouse brain can be established

by the fMRI techniques [AST12]. Despite our ability to generate high-resolution data on

biological networks, there is much space for theoretical development that links these data to

the underlying structure of the networks, which will point to new experiments that help us

understand these networks.

One mathematical tool that gives insight to biological networks is optimization. The or-

ganisms are under the constant force of evolution over millions of years, and the hypothesis

is that the networks with better performance on their functions, which may vary from net-

work to network, tend to persist and be seen in present days. Mathematically speaking, this

means that the observed network structure can be predicted by optimizing the hypothesized

function of the network. Indeed this has been the case for vascular networks in animals

and plants. In 1926 Murray proposed a law for vascular networks, now named after him,

derived from the optimal transport efficiency [Mur26b]. The Murray’s law, which states the

blood flow is proportional to the cubic power of the vessel radius, has been verified in both

animals and plants [She81, MSA03]. Recent studies continued his philosophy of transport

efficient networks [BM07], but also turned to other biological functions, such as robustness

and fluctuation, to explain vascular networks with morphologies not explainable by transport

efficiency [KSM10, Cor10].

Another powerful tool to dissect biological networks is through dynamical system ap-

proaches. Many biological processes are not well-characterized by their current states, but

can only be intrinsically described by the trajectories of the variables. One example is the

bipolar disorder, which is characterized by an emotional state oscillating between manic and

depressive episodes. At any given time point, a bipolar emotional state will be mistaken with

mania, depression, or even euphoria state, and the dynamic of the oscillations is intrinsic

to the pathology. The dynamic also provides a mechanism to form the observed network

2



structure revealed by optimization, as it is unlikely the organism construct its network by

carefully following a genetic blueprint that specifies every single detail, such as the positions

of all the cells. In vascular networks, the adaptation of the vessel to the endothelial shear

stress exerted by its blood flow is shown to create transport efficient network [HC13], and

the pruning by this adaptation has been observed [CJL12]. On the other hand, it has been

argued that this shear stress adaptation along cannot generate all the observed vascular

networks, as no loops can be preserved by this process [HVS96].

In this dissertation, we will explore biological networks with the afore mentioned quan-

titative tools. We aim to discover the design principles of these networks – what functions

they perform, what structures correspond to these functions, and how the networks grow

into these structures. We will focus on vascular networks at the capillary network, and the

dynamical system of bipolar disorder models. In the dissertation, we create new mathemati-

cal tools that provide quantitative predictions, and we compare them to biological data from

our own experiments.

The rest of the dissertation is organized into five parts and a concluding chapter:

Chapter 2: We study the trunk vascular network in zebrafish embryos. We show that

the occlusions of the red blood cell in the capillaries are finely tuned to create uniform blood

flow. We also reveal the trade-off between flow uniformity and transport efficiency, and that

zebrafish trunk vasculature achieves uniform flow at the cost of transport efficiency.

Chapter 3: We study the analytical structure of transport efficient networks under both

Neumann and Dirichlet boundary conditions. Previous work has shown that these networks

are trees under Neumann boundary conditions. However this is not true for general boundary

conditions, as we show by a counter-example. We prove that transport efficient networks

globally satisfy Murray’s law, and derive conditions under which transport efficient networks

are trees.

Chapter 4: We propose a gradient descent algorithm that can find optimal networks

with general target functions and constraints. Previous works focus on finding transport

efficient networks with a fixed amount of building material. However we saw that flow uni-
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formity is prioritized in certain biological systems, and there are likely to be other biologically

relevant target functions and constraints. We use our algorithm to compare transport effi-

cient and uniform flow networks under different network topologies, such as branching tree

and square grids. We also impose transport cost as a constraint, and reveal a bifurcation in

zebrafish trunk vasculature when the relative cost of transport exceeds a threshold.

Chapter 5: We study the adaptation of capillary networks. Previously we showed

that zebrafish trunk vascularture are uniform flow networks. However it is unclear how

the network grows into its final form, and how the network resists noise perturbation, as

tiny change in vessel radius can largely alter its conductance by perturbing the lubrication

layer. We propose an adaptation mechanism based on the distinct shear stress signal created

by the red blood cells. We show that this mechanism can create large loopy networks,

unlike the previous mechanisms based on average shear stress signaling, and zebrafish trunk

vasculature can be generated by this mechanism. Under growth or genetic perturbation, the

red blood cell concentration is perturbed, which can destabilize this mechanism. We show

that this instability is observed in experimental data, and our model quantitatively predict

the changes.

Chapter 6: We study a dynamical model for bipolar disorder based on the interaction of

mood and expectation. By a close analysis on a variant of a previously proposed model, we

show that bipolar disorder naturally occurs when the mood sensitivity exceeds a threshold,

in the direction from normal to cyclic personality. We derive an asymptotic expression for

the magnitude of mood oscillation, and we analyze the quantitative behavior of the threshold

when positive and negative events are perceived differently. Finally we apply commonly used

medicine on the model, and explain clinically observed phenomena, such as the early manic

episodes introduced by antidepressants.
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CHAPTER 2

Optimal occlusion uniformly partitions red blood cells

fluxes within a microvascular network

This chapter was based on: Shyr-Shea Chang, Shenyinying Tu, Kyung In Baek, Andrew

Pietersen, Yu-Hsiu Liu, Van M Savage, Sheng-Ping L Hwang, Tzung K Hsiai, and Marcus

Roper. “Optimal occlusion uniformly partitions red blood cells fluxes within a microvascular

network.” PLoS Computational Biology, 13(12), e1005892, 2017.

2.1 Introduction

Vascular networks transport oxygen, carbon dioxide and sugars within animals. Exchange of

both nutrients and gases occurs primarily in narrow vessels (e.g. capillaries) that are typically

organized into reticulated networks. The narrowest vessels are comparable in diameter to red

blood cells, forcing cells to squeeze through the vessels. Accordingly, hereditary disorders or

diseases affecting the elasticity of cells and preventing them from contorting through narrow

vessels can disrupt microvascular circulation [Tom14]. The cost of blood flow transport in

the cardiovascular system is thought to dominate the metabolic burden on animals [WBE97].

The rate at which energy must be expended to maintain a constant flow of blood through

a vessel is inversely proportional to the 4th power of the vessel radius. Red blood cells

occlude the vessels that they pass through, further increasing the resistance of those vessels

[SBM16]. Accordingly capillaries and arterioles account for half of the total pressure drop

within the network, and thus half of its total dissipation [Hal15]. Experiments in which cells

are deformed using optical tweezers, or by being pushed through synthetic micro-channels

have shown that the extreme deformability of mammalian red blood cells requires continous
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ATP powered-remodeling of the connections between membrane and cytoskeleton. ATP

released by deformed cells may induce vasodilation facilitating passage of cells through the

narrowest vessels [WRS08]. Thus, chemical as well as hydraulic power inputs are needed to

maintain flows through microvessels [BLJ09, PBA10].

Why do micro-vessels need to be so narrow? A textbook answer to this question is

that smaller, more numerous capillaries allow for more uniform vascularization of tissues –

ensuring that “no cell is ever very far from a capillary” [Hal15]. If smaller vessels are favored

physiologically and red blood cell diameter acts as a lower bound on capillary diameters, then

networks in which capillary diameters match those of red blood cells may be selected for.

However, red blood cell sizes do not seem to be stiffly constrained – for example measured

red blood cell volumes vary over almost an order of magnitude (19 to 160 femto-liters)

between different mammals [HBG91]. Since for a fixed capillary diameter, a small decrease

in red blood cell diameter would greatly reduce rates of energy dissipation for red blood cells

traveling through capillary beds [SH96], the evolutionary forces maintaining red blood cells

and capillary diameters remain unclear.

There is a natural analogy between occlusion of vessels by red blood cells, and the con-

gestion that occurs in data or road networks [CJ89, YH98]. Efforts to construct efficient

transport networks often focus on reducing congestion [CJ89], yet although cardiovascular

networks are thought to be organized to minimize transport costs (i.e. the viscous dissipa-

tion occuring within the network) [Mur26b, She81]; the presence of congestion at the finest

scales seems at odds with minimizing these costs. Could the extreme deformation of cells

passing through capillaries be an adaptive feature of the cardiovascular network? By directly

stretching cells using optical tweezers Rao et al. [RBC09] showed that deforming red blood

cells releases oxygen. But it remains an untested hypothesis that squeezing cells so that

they may pass through capillaries accelerates oxygen release, and therefore contributes to

the function of the network. Indeed, earlier models suggest that alterations in the shape of

the red blood cell surface decrease rates of oxygen exchange [WP93].

In this work we use mathematical modeling to reveal a previously unreported contribution

of occlusive dynamics to the efficient functioning of the cardiovascular network. Moreover we
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link occlusive dynamics to a different open mystery of cardiovascular function. Specifically

given that microvessels are distributed throughout the body and at very different distances

from the heart, there is surprising consistency among measured flow rates in different cap-

illaries [KMH98, COA03, SUP03] (with some exceptions [PSG95]). Indeed consistency in

flow rates may be biophysically necessary: if flow rate in a capillary is too low, the cells

surrounding the capillary may not receive enough oxygen, but if the flow rate is too high,

then red blood cells may leave the capillary bed before surrendering their oxygen to the sur-

rounding cells. If the cardiovascular system is treated as an idealized symmetric branching

network (such as in [WBE97]) then flows are automatically uniformly partitioned at each

level of the network, including among capillaries. But real cardiovascular networks have

complex topologies, and it is not clear how the uniform flow can be achieved among billions

of capillaries whose distances from the heart can range over several orders of magnitude.

In this work we show that in the embryonic zebrafish, a model system for studying

cardiovascular development [CIC08], answers to these two questions may be closed linked.

Tuned occlusion – i.e. small differences in the resistance that vessels present to cells – ensures

that red blood cells are uniformly partitioned between the finest vessels within the zebrafish

trunk. Although zebrafish red blood cells have quite different morphologies from mammalian

red blood cells, the matching in sizes of red blood cell and narrow vessel means that occlusive

dynamics occur in the zebrafish network. Our experimental observations confirm previous

measurements that red blood cells are uniformly partitioned between fine vessels [SUP03],

yet in the absence of tuned occlusion, we demonstrate that the vessels closest to the zebrafish

heart would receive 11-fold higher rates of flow that vessels furthest from the heart. In other

words these vessels would act as hydraulic short-circuits. In further support of the hypothesis

that occlusion is an adaptive feature of the network we calculate optimal occlusive dynamics

– i.e. the distribution of occlusive feedbacks (the negative feedbacks each cell exerts on cells

trying to enter the same vessel) that leads to the most uniform partitioning of red blood

cells between the smallest vessels. The occlusive feedbacks within the real zebrafish conform

very closely to this optimal distribution.

Microvascular networks have been postulated to be organized to minimize the cost of
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transport (i.e. the total viscous dissipation associated with blood flow) [BCF00, BM07,

Mur26b, KSM10]. Certainly in larger vessels within both the arterial and venous vascular

network, vessel radii appear to be organized to minimize dissipation [She81, ZSW92]. Yet,

our results suggest that rather than eliminating cellular congestion, fine vessels make use of

it. As a direct demonstration of the tradeoff between minimizing the cost of transport and

tuning occlusion to route red blood cells uniformly, we show that the optimal distribution

of occlusive feedbacks that uniformizes red blood cell partitioning increases hydraulic dis-

sipation in the network 11 fold compared with a network in which the smallest measured

occlusive feedbacks occur within each vessel. Thus, taken together, our results advance a

potential new optimization principle – uniform routing of red blood cells – that may underlie

the organization of microvascular networks generally.

2.2 Materials and methods

2.2.1 Ethics statement

All animal experiments performed at Academia Sinica were approved by the Animal Use

and Care Committee of Academia Sinica (protocol # 12-12-482). Zebrafish were bred and

maintained at the UCLA Core Facility. Zebrafish experiments were performed in compliance

with the Institutional Animal Care and Use Committees (IACUC) at the University of

California, Los Angeles (UCLA) (under animal welfare assurance number A3196-01)

2.2.2 Imaging zebrafish trunk vessels and red blood cell movements

To measure the red blood cell fluxes in zebrafish trunk vascular network we cultured double

transgenic Tg(fli1:GFP; gata1:ds-red) zebrafish embryos, in standard E3 medium supple-

mented with 0.05% methylene blue solution at 28.5 ◦C. In this transgenic fish line, fli1, a

transcription factor associated with blood vessel morphogenesis is tagged with green fluores-

cent protein, causing the endothelial cells surrounding blood vessels to fluoresce green. Ad-

ditionally, GATA-1, a transcription factor associated with erythrogenesis is tagged with red
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fluorescent protein, so that the red blood cells traveling through the GFP-labelled network

fluoresce red. Zebrafish larvae were sedated with neutralized 0.02% tricaine solution(Sigma,

MO) and mounted in 1–2% low melting agarose (Sigma-Aldrich, MO) for imaging. Erythro-

cytes were imaged at 4 day post fertilization (dpf) under a fluorescent microscope (Zeiss,

Germany) with 50 ms exposure time. To measure detailed geometry and occlusive feedback

of zebrafish trunk network we re-imaged a single 4 dpf zebrafish. We measured vessel lengths

and radii from GFP-images taken under 10× magnification using a Zyla sCMOS camera on a

Zeiss Axio Imager A2 fluorescent microscope. To measure the flow velocity, the same scope

was used to take images in the DsRed channel at time intervals of 0.078–0.107 sec. Red

blood cells were manually tracked in image sequences using ImageJ [SAF12].

2.2.3 Mathematical modeling of occlusion and parameter estimation

Flow is laminar within each zebrafish microvessel[HKF03, JNE06]. The Womersley number

[Ped03] that characterizes the importance of unsteadiness effects in time-dependent flow,

which for a vessel of diameter d, carrying blood with kinematic viscosity ν, and with heart

rate f , is given by Wo =
√

2πfd2

ν
. Within the largest trunk vessels d ≈ 12µm, the viscosity

of whole blood is ν ≈ 5 × 10−6 m2/s [WBP03], and the heart-rate is approximately f = 2

s−1, so Wo = 1.9 × 10−2 � 1, meaning that we may neglect pulsatile effects. Flow is

uniform along each vessel, except within an entry region whose length is ` � Ud2/ν for a

vessel of diameter d, through which blood travels at a speed U [Lig75]. Maximum blood

velocities are on the order of 0.3 cm/s [MSS07], so using the diameter of the largest trunk

vessels we obtain: `� 0.3µm. Since the entry region is much smaller than the typical vessel

length, we treat the flow in each vessel as being uniform along its length. Putting these

ingredients together, we find that the flow through each vessel is inversely proportional to

the resistance of the vessel, and the resistance may be calculated using Stokes’ equations

(i.e. the equations for slow-creeping flows [Lig75]) from the geometry of the vessel and from

the number of red blood cells that it contains. Mechanistic models to predict the motions

of red blood cells through micro-vessels or through microfluidic channels with comparable

diameters have been developed in previous works [SBM16, WTD07, PS05]. Throughout this
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work we adopt a simple model for red blood cell occlusion in which the resistance of each

vessel increases linearly with the number of red blood cells present. That is, if the number

of red blood cells in a narrow vessel is given by n, then its resistance is given by an equation:

R(n) = R0 + nαc . (2.1)

where R0 is the resistance of the vessel in the absence of red blood cells, i.e. is given by

the Hagen–Poiseuille law relating the pressure drop and flow rate in a tube carrying viscous

fluid, so that for a vessel of length ` and radius r: R0 =
8µpl`

πr4
, where µpl ≈ 1cP is the

viscosity of the non-red blood cell component of the flood. Here the parameter αc, which

we call the occlusion strength in this chapter, gives the increase in vessel resistance per

red blood cell. Equation (2.1) represents a form of non-Newtonian rheology, the deviation

of resistance from simple viscous fluid. In particular, the apparent viscosity of blood, i.e.

R(n)πr4/8µpl`, increases with hematocrit, i.e. with the concentration of red blood cells.

Equation (2.1) can be derived from the micromechanical model of [SHP98]. Indeed any

model in which the pressure drop across the red blood cell is proportional to the velocity of

the cell will produce a relationship like Equation (2.1), and so identical equations are also

used to model the traffic of droplets or particles through microfluidic channels [SA08, FO85].

In all of these models, αc, which we may think of as the intrinsic resistance of a single cell

[SA08, SHP98, SSO86, Poz05], depends on the specific details of how the movements of cells,

droplets or particles along the walls of the capillary or channel are lubricated. αc therefore

depends on parameters that we can not measure experimentally, including the thickness and

porosity of the glyocalyx that coats the endothelial wall of the capillary, as well as being

sensitive to changes in vessel radius [PS05, SHP98] that are too small to be detected in light

microscopy. It also depends upon the elastohydrodynamic deformation of both the cells

and the capillary wall [WTD07]. Accordingly we treat αc as a phenomenological constant,

to be measured directly by fitting Equation (2.1) to real flow data. Specifically for each

micro-vessel, we can measure both the velocity of flow within the vessel and the number of

red blood cells that it contains. We note that due to the Fahraeus effect [FO85, AGP79]

the velocity of red blood cells is in general larger than the flow velocity. However in human
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vessels whose diameters are comparable relative to human red blood cells to the diameter

of the zebrafish vessel relative to the zebrafish’s red blood cells, the ratio of red blood cell

velocity to whole blood velocity is less than 1.09 [AGP79]. Hence we approximate the flow

velocity by the velocity of the red blood cell in this measurement. The pressure difference

across each vessel varies in time due to the variable pressure within the aorta, and also,

less predictably because, since the resistance of all vessels changes from moment to moment,

there are pressure feedbacks across the entire network. But we assume that there is an overall

average pressure drop across each vessel that is constant in time but changes from vessel to

vessel. Under conditions of time-independent pressure drop, the velocity of cell movement,

v, in each vessel will be inversely proportional to the vessel resistance R(n). Thus Equation

(2.1) predicts that a plot of 1/v against n will give a straight line, the slope of which can be

used to calculate αc. Here we used the modeled flows in the fine vessels where no red blood

cell is present to determine the intercepts, which can be calculated by using Hagen–Poiseuille

formula (see Section 2.3.2). By regressing 1/v against n for each micro-vessel we calculate

the variation of occlusive effects through the network (see Appendix A for more details of

the regression).

2.2.4 Incorporating occlusion into transport models

To study how varying occlusive effects between different microvessels may affect distribution

of red blood cells, we incorporated Equation (2.1) into both continuum and discrete models

of transport through the network.

For continuum level modeling, we assumed that the concentration of red blood cells was a

constant, ρ, in each vessel. Phase separation of red blood cells can occur when flows divide at

vessel junctions – that is red blood cells may split in different proportions than whole blood

[PLC89] – but separation was not seen in our data (i.e. all Se vessels had the same average

red blood cell concentration of number per volume), and cannot account for the uniformity of

red blood cell flows, as we discuss in the Results section. Thus if the constant concentration

(number/volume) of red blood cells is ρ, then a vessel of volume V is expected to contain

11



n = ρV cells. Once each vessel in the network has been assigned a resistance, then we

can solve for the flows in the entire network, by applying Kirchoff’s first law (conservation

of flux) to calculate the pressure at each branching and fusion point, and then using the

pressure difference across each vessel to calculate flows [Mur26b, Kro22, ZL77]. We discuss

the geometry of the network and boundary conditions in the Results section.

Since each micro-vessel is so small, typically each vessel contains no more than one or two

cells at a time (but occasionally 3–5 cells were present in a vessel, see Appendix A). For this

reason we expected Poisson noise effects (i.e. fluctuations in the number of cells contained

within each vessel) to influence red blood cell fluxes. We therefore built a discrete model,

in which the trajectories of every single red blood cell traveling through the trunk network

were directly simulated. Our discrete model is based on the droplet traffic model of [SA08].

Initially 990 cells are distributed uniformly through aorta according to measured zebrafish red

blood cell concentrations [MQK03]. At each step we calculate the resistance for each capillary

by Equation (2.1), and then use the hydraulic resistor network model to calculate the whole

blood flow rates within each vessel. We then let cells travel according to the predicted whole

blood velocity in their vessel. Again we assume that the velocity of cell matches with flow

velocity in Se vessels. The diameter of the dorsal aorta (DA) is larger and this mismatch

may be significant in the DA. Since the cell velocity depends linearly on the flow velocity we

expect this effect to increase the cell fluxes in all Se vessels equally and to therefore influence

the partitioning of cells only weakly. While for precise prediction of cell fluxes the inclusion of

this velocity mismatch will be necessary, here we are developing a minimal model that singles

out the effect of occlusive feedbacks, and hence we assume that the cell velocity is the same

as flow velocity in all vessels. When a cell arrives at a node of the network; i.e. at a point

where a vessel branches into two, which vessel it enters is determined randomly by a Bernoulli

process; that is the probability of cell entering a vessel is determined by the flow rate ratio

of the two vessels. We therefore suppress the Zweifach-Fung effect [Fun73]. The Zweifach–

Fung effect characterizes the uneven distribution of red blood cells at a branching point,

depending, amongst other factors, on stream lines at the branching point, and exibility of the

cell [BAR08, SCK16, CHJ16]. Here we use a minimal model that neglects the Zweifach–Fung
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effect because we see that only occlusive feedbacks can account for uniform partitioning of

cells. Indeed, we found no difference between the red blood cell concentration concentration

(number / unit volume) of vessels in the rostral Se artery (2.88× 10−4± 2.19× 10−4 1/µm3)

and in the caudal Se artery (2.18× 10−4 ± 2.72× 10−4 1/µm3). Flows are then recomputed

for the new distribution of cells. Cells that leave the network, i.e. reach the end of one of

the vessels within the simulated part of the network are immediately reintroduced into the

network via the aorta. For each combination of parameters, we simulated 1000 s of red blood

cell movement, with a time step of 0.1 s. Using fluorescence microscopy to track red blood

cells meant that our measurement frame rate was too low to directly measure cell velocities

within the aorta. So we fit total inflow into the trunk via the aorta to match the mean flux

across all fine vessels to the experimentally measured mean flux.

2.3 Results

2.3.1 Geometry of the zebrafish trunk microvasculature

The 4 day post fertilization zebrafish trunk vasculature is topologically simple. Oxygenated

red blood cells (henceforth RBCs) flow into the zebrafish trunk via the dorsal aorta (DA)

and return the heart via the posterior cardinal vein (PCV). The microvasculature consists

of a series of parallel intersegmental vessels (Se) that, if the vasculature were laid flat, would

span between the aorta and cardinal vein like the rungs of a ladder (Fig. 2.1A). Se are divided

into intersegmental arteries (SeA) that connect to the aorta, and intersegmental veins (SeV)

that connect to the posterior cardinal vein. SeA and SeV connect via another vessel called

the Dorsal Longitudinal Anastomotic Vessel (DLAV), and in different parts of the DLAV,

red blood cells flow toward the tail of the fish or toward its head. Red blood cells can enter

the PCV by flowing along one of the SeA, through a section of the DLAV, and then along

one of the SeV. Significantly, however, they can also flow directly from the DA into the PCV,

since the two connect at the far end of both vessels in the tail of the fish.

The positions of SeAs and SeVs vary from embryo to embryo [IHW01]. In particular, SeVs
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and SeAs do not strictly alternate their connections with the DLAV. To form a model that

does not depend on any specific A-V pattern we choose to connect SeAs and SeVs directly

in a pairwise manner (Fig. 2.1B), reducing the model to a bilaterally symmetric network

in which no flow occurs in the DLAV (which can therefore be suppressed). Then we assign

the same conductances for directly connected SeAs and SeVs and the same conductances

for sections of DA as for the symmetric matching segments of PCV. Under these symmetry

assumptions the pressures at the intersection of SeA and SeV is the same for each SeA/SeV

pair, and we can shift this pressure to zero without affecting the calculations. Solving flows

in this network reduces to solving flows in the lower half of Fig. 2.1B with fixed inflow in the

beginning of the aorta and zero pressures at the intersections between SeAs and SeVs, and

between DA and PCV at the tail.

2.3.2 Absence of occlusion produces uneven fluxes within the SeA

As a first step we calculated the RBC flux in intersegmental arteries (SeA) with no occlu-

sion or untuned occlusive effects and compared to experimental measurements. That is we

approximated the resistance of each vessel using (2.1) with αc = 0 and treating the blood

as a continuous phase, so that µpl replaced by µwb, the viscosity of whole blood (µwb ≈ 5 cP

in zebrafish [WBP03]). This reduced model serves as a motivation and readers interested in

the full model may skip to Section 2.3.4. We measured the lengths of each vessel directly

from fli1a-EGFP images. SeAs were all assigned the same radius (2.9 µm), while because

the DA tapers from the head to the tail, we independently measured DA radii between each

SeA (see Appendix A). Although ultimately tuned variation in SeA radii will be one way

to explain changes in occlusive feedbacks, these variations strongly affect the parameter αc

in Equation (2.1) but have little effect on R0. To model flows without feedbacks we can

therefore neglect SeA radius variations. We focus on the arterial half of the network made

up of SeA and DA vessels. We identify the vertices in this network, i.e. the points at which

vessel branch or fuse, as points i = 1, 2, . . . n, with respective pressures pi (Fig. 2.1B). The

number of SeAs, n, increases as the fish grows: for the 4 dpf zebrafish in our experiments

n ranges from 9 to 13. For definiteness in modeling, we assume n = 12. If vertices i and

14



j are connected by a vessel, with resistance Rij, then the total flow of blood along this

vessel will be (pi − pj)/Rij. Solving for the flows in the network is equivalent to finding the

pressures {pi}. For the zebrafish cardiovascular network we labeled vertices along the DA as

i = 1, 2, . . . , n. A vertex, i = n+ 1, represents the end of the DA in the tail of the zebrafish,

where it connects directly to the PCV, and we label the vertices where the SeA meet the

DLAV as i = n+2, n+3, . . . 2n+1. At vertices i = n+1, . . . 2n+1, our symmetry boundary

conditions require that pi = const., and we set arbitrarily the value of this constant to be 0.

Thus only the pressures {pi : i = 1, . . . n} need to be determined. We find these pressures

by applying Kirchoff’s First Law (conservation of flux), at each point where the pressure is

determined, i.e.
∑

j∈n(i)(pi − pj)/Rij = 0, except at i = 1 (the vertex closest to the heart).

At this vertex,
∑

j∈n(1)(p1 − pj)/R1j = F , where F is the total supply of blood to the trunk

which is fit to real data (see Section 2.2). All summations are taken over the neighbor set,

n(i), i.e. over all vertices that are linked to i.

The model of the zebrafish trunk microvasculature as an hydraulic resistor network (ne-

glecting occlusive effects) follows many previous capillary network models (see e.g. [Mur26b,

Kro22, ZL77]). The equations are formally identical to those for an electrical resistor net-

work, with pressures replacing voltages, and flow rates replacing currents. Just as placing

a wire across the terminals of a battery in an electrical resistor network will short circuit

the network (i.e. divert current from higher resistance paths), the first SeA is predicted to

receive a larger-than-even share of the blood flow from the zebrafish trunk, with flow rates

decreasing exponentially rapidly with distance from the heart. In total there is a predicted

11-fold difference between the flows through the first and last SeA (Fig. 2.1C).

A simplified resistor network model that treats each SeA as having the same resistance,

and assigns same resistances to each segment of DA between SeAs (i.e. ignores DA taper)

quantitatively reproduces the exponential decay. To build the simplified model we assume

that each segment of the DA has the same hydraulic resistance, and that each SeA has

the same resistance. Using the measured mean radii and lengths, each DA has the same

conductance, written as: κ1 = 1/R1 = 9.4× 105 µm4s/g, while all Se vessels have the same

conductance, written as: κ2 = 1/R2 = 3.9×104 µm4s/g. Then conservation of flow at vertex
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i = 2, . . . , n gives:

−κ1pi−1 + (2κ1 + κ2)pi − κ1pi+1 = 0 , (2.2)

This is a second order recurrence equation with constant coefficients. Its general solution is:

pi = C+ξ
i
+ + C−ξ

i
−, (2.3)

where ξ± are the roots of the auxiliary polynomial ξ2 − (2 + λ)ξ + 1 = 0, in which there

is a single dimensionless parameter: λ = κ2
κ1

= 0.04. This equation has two roots, with

ξ+ > 1 and ξ− < 1. In general C+ and C− must both be non-zero to satisfy our boundary

conditions (namely pn+1 = 0 and F = κ2p1 +κ1(p1−p2)). However the two components give

rise to exponentially growing and decaying pressures respectively. Typically the first term

will negligible, except potentially in a small boundary layer region consisting of the vertices in

the tail. Therefore over most vertices pi ∼ C−ξ
i
−, i.e. the pressure decays exponentially with

distance from the heart, causing flows in the SeAs to decay exponentially as a result. For

the real zebrafish network: ξ− = 0.81. Despite the simplification in geometry, the analytic

formula agrees quite well with the solution to the full system of linear equations (compare

gray and black curves in Fig. 2.1C). Additionally, we note that for any λ > 0, it is impossible

to organize an auxiliary polynomial without having one root ξ− < 1, so exponential decay

in fluxes is an inescapable feature of the ladder-like geometry of the trunk vasculature.

Although embryonic tissues receive oxygen primarily by diffusion through the skin [PB96,

RD09], vascular transport of oxygen becomes essential to embryo development after 2.5

weeks[WSD95]. So we expect that a zebrafish with the large predicted difference in fluxes

between trunk vessels would be disadvantaged. But because oxygen can diffuse through the

zebrafish tissues, we first verified that the differences in fluxes predicted by the model lacking

occlusive feedbacks would actually lead to differences in oxygenation in the trunk tissues.

To do this, we modeled oxygen diffusion through the trunk by a reaction-diffusion equation,

using the formulation and oxygen consumption coefficients derived by [KBL03], and treating

the vessels as oxygen sources (Fig. 2.1D, and see Appendix A for details of the model). Note

that our model includes only the contribution of oxygen perfusion from the blood to trunk

oxygenation. For a real zebrafish at 4 dpf, these uneven oxygen levels would be compensated
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for by diffusion through the skin. However, our model shows that diffusion of oxygen within

the zebrafish trunk can not compensate even at 4 dpf for uneven flows within the Se vessels.

2.3.3 Red blood cell flows are uniform among trunk vessels

In contrast with the resistor network model, which predicts that the first Se vessel short

circuits the network, measured RBC fluxes are nearly uniform between Se-vessels in living

zebrafish. We tracked fluorescently tagged red blood cells moving through each of the 9–13

SeAs within 6 living, sedated, zebrafish (see Section 2.2), over a total time interval of 26s

per SeA. Fluxes in individual vessels varied greatly in time, due to the rapid change of blood

pressures within the DA over the zebrafish cardiac cycle [MSS07] and likely also due to non-

linear dynamics of the cells themselves within vessels [FYS12], so the variability of flow rates

was large for each vessel. However, mean fluxes varied little from vessel to vessel (Fig. 2.2A).

Each embryo exhibited variable RBC fluxes throughout the trunk. However the envelope of

the lines of best fit for all six fish showed no consistent differences in RBC fluxes between first

and last Se. Specifically from the six sets of zebrafish data we used bootstrapping method

(generating replicate measurements for each Se vessel from the measured mean and standard

deviation over all six fish) to estimate regression statistics. The gray envelope in Fig. 2.2A

shows the 95% confidence interval on all regressions thereby generated. We found that over

all regressions m = 0.012 ± 0.032 (mean ± standard deviation), showing no statistically

changes in RBC flux from vessel to vessel.

2.3.4 Occlusive feedbacks with variable strengths determine red blood cell fluxes

There are two major ingredients missing from the hydraulic resistor network model that

could explain the anomalies between the predictions of that model and the real zebrafish

flow rate data: phase separation of red blood cells and occlusive feedbacks effects [PSG90,

PLC89]. Separation occurs because red blood cells do not divide in the same ratios as

whole blood when blood vessels branch: When a red blood cell passes through a junction

at which a vessel branches into two daughter vessels of different sizes, it is more likely to
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Figure 2.1: The embryonic zebrafish trunk is perfused by a series of parallel intersegmental

arteries (SeAs). Hydraulic models for the network predict that the first of these SeA will

short circuit flow through the trunk. (A) 4 day post-fertilization zebrafish embryo trunk

network and wiring diagram showing PCV, DA and Se vessels in which SeA connect directly

to SeV. (B) Representation of the same network as a set of hydraulic resistors. (C) A resistor

network model predicts that cell fluxes decrease exponentially with distance from the heart

(Black curve: numerical solution using real geometric parameters, Gray line: asymptotic

model. For these two curves flow rates are multiplied by the concentration of red blood

cell ρ = 0.003 µm−3 measured in [MQK03]). By contrast an occlusive feedback model

incorporating uniform occlusion strength αc = 1.01 × 10−6g/µm4s did not lead to more

uniform distribution of red blood cell fluxes between vessels (Gray stars). Se vessels with

smaller numberings are closer to the heart. (D) Anisotropic fluxes produce uneven oxygen

perfusion within the trunk. Simulation results are superimposed on a zebrafish CT image

reproduced from [SMC12], which was permitted under CC BY license by the authors.
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Figure 2.2: Measured cell fluxes in real zebrafish embryos are almost uniform across all

microvessels. (A) Measured fluxes in 6 4dpf zebrafish. Box-and-whisker plots show the

mean measured fluxes for all 6 zebrafish, while the gray region is the envelope produced by

bootstrapped regressions of flux against Se No., which is a numbering of Se vessels starting

from the rostral trunk. (B) A model incorporating tuned occlusion strength (black curve)

agrees well with the data from a single 4dpf zebrafish (black circles), see Section 2.3. Bars:

standard deviation of flux.
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enter the larger daughter vessel than would be expected based on the ratio of fluxes in the

two daughter vessels. Phase separation cannot explain the uniform distribution of red blood

cells seen across real zebrafish microvessels: to correct for an 11-fold difference in flow rates

between first and last Se vessels, there would need to be an 11-fold increase in hematocrit

between these vessels, in the absence of occlusive effects (since then hematocrit must increase

exponentially to compensate for exponentially decreasing flow rates). This was not observed

in our experiments. Indeed Pries et al. [PS05] explicitly fit measurements of red blood

cell fluxes at the branch points of blood vessels, and parameterized the amount of phase

separation that occurred. When we applied their model to the zebrafish microvasculature,

only minute variations in hematocrit were predicted between different SeAs (see Appendix

A).

By contrast, we observed large feedback effects within the SeA, i.e. the presence of a

red blood cell reduces the flow in the vessel and hence the entering probability of the next

cell. We individually tracked red blood cells in a single 4dpf zebrafish, and plotted the

inter-entry intervals, i.e. the times between consecutive red blood cells entering each vessel,

condensing data from all SeAs since all vessels have the same approximate rate of blood cell

entry (see Fig. 2.3). In the absence of feedbacks, we would expect the inter-entry times to

be distributed randomly, i.e. as an exponential random variable. Our red blood cell tracking

shows that a single red blood cell passes through an SeA in a mean time of 0.3s. Inter-

cell entry intervals larger than 0.3s (i.e. cell entries into unoccupied SeAs) were distributed

exponentially (see the inset to Fig. 2.3). However, inter-entry intervals less than 0.3s were

not exponentially distributed, and we saw far fewer cells entering vessels less than 0.3s apart

(i.e. while the vessels were already occupied by other cells) than would be expected based

on the exponential distribution (Fig. 2.3, main panel). In fact we found that inter-entry

intervals less than 0.3s were approximately uniformly distributed. These observations are

suggestive of a negative feedback mechanism, whereby entry of a red blood cell into an SeA

reduces for some time afterward the probability of another red blood cell entering the same

SeA.

We tested for statistical support for the presence of negative feedback by two methods.
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Figure 2.3: Red flood cell flows in the real intersegmental artery network are affected by

feedbacks, as shown by a significantly lower fraction of red blood cells entering the same

vessel within 0.3s of each other. Shown: Distribution of inter-entry times for cells entering

all 12 SeAs. In the absence of feedbacks, inter-entry times will be exponentially distributed

(black curve), while real inter-entry times follow an exponential distribution only when cells

enter the vessel more than 0.3s apart, and have uniform distribution when cells enter the

vessel within 0.3s of each other (black star curve). Inset: The semi-log plot of the linear-

exponential distribution (black curve) fits well to the data (gray dots) above 0.3s, showing

the exponential distribution when the inter-entry time is long enough for the first cell to

leave the vessel. We bin the inter-entry time intervals into 0.1s bins which is the typical time

resolution of our videos.
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First, we extrapolated the exponential fit for time intervals greater than 0.3s to estimate

the number of cells that should enter the SeA between 0 and 0.3s, if cell entries into SeA

were independent events. For the zebrafish trunk data this amounted to 533 cell entries,

compared to the 261 actually observed, and the difference in statistically significant by the

Fisher’s exact test (p = 3.9× 10−22 against independence). Secondly, we fit the distribution

of cell entry times directly, to compare an independent model with an exponential probability

density function (pdf), with a model in which the feedbacks were modeled by a composite pdf,

with uniform probabilities for inter-cell entry intervals less than 0.3s, and an exponential pdf

for cell entry intervals greater than 0.3s. The Akaike Information Criterion score corrected

for small samples (AICc) [HST98] for the composite pdf was 4.02×103, whereas the AICc for

the pdf assuming independence was 4.07× 103, supporting the inclusion of feedback effects.

In mammals red blood cells must squeeze through narrow capillaries. Passage through

these narrow vessels is facilitated by specific cellular adaptations – cells are un-nucleated,

and have a biconcave shape, assisting cell deformation. By contrast zebrafish red blood cells

are almost spherical and are nucleated. However, since the diameters of SeAs are closely

comparable to red blood cell diameters (both 6µm), we speculated that zebrafish red blood

cells may also fit tightly within the SeAs. We directly measured these dynamics by measuring

the dependence of the velocity within a SeA upon the number of red blood cells contained

in the vessel (see Section 2.2). Velocities within each SeA are affected by the phase of the

cardiac cycle as well as by nonlinear cell-cell and cell-wall dynamics [SHP01, SUS80], so

there is large variability in these velocities, and pressures are also affected by changes in

conductances throughout the network (Fig. 2.4A). However, in each vessel we found that

1/v increased linearly with the number of cells, n, consistent with the model for occlusion

in Equation (2.1). In physical terms, when a cell travels through a vessel, it almost blocks

the vessel. Because a large pressure difference must be maintained over the cell to push it

forward through the SeA, flow within the vessel slows, so that fewer red blood cells enter a

vessel once it contains a cell.

We measured the occlusive effect within each SeA, i.e. the parameter αc in Equation

(2.1) by fitting the slope of the graph of 1/v against n (see Fig. 2.4A). The intercept of the
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graph is given by the speed within the SeA when it contains no red blood cells. We get

that speed from the model of flow without occlusive feedbacks, described above, so there

is only one free parameter to be estimated for each SeA. Equation (2.1) represents a form

of non-Newtonian rheology, since it gives that the resistance of each vessel increases as

hematocrit (i.e. n) increases. The parameter αc represents the intrinsic resistance per cell

[SA08, SHP98, SSO86, Poz05], and it depends on the relative size of the cell and SeA (i.e. how

tightly the red blood cell must be squeezed to travel along the vessel), cellular deformation

due to elastohydrodynamic effects [WTD07], as well as upon the surface chemistry of both. In

particular, [SHP98] built a physically informed model of cells moving through a narrow vessel,

including both cell deformation, and interactions between the cell and the vessel glycocalyx:

a polymer brush that covers and lubricates the endothelial lining of the vessel. They found

that αc is highly sensitive to biophysical parameters: the thickness of the glycocalyx layer

as well as its porosity (i.e. to the concentration of polymer), as well as to small changes in

vessel radius.

To assay the potential for controllability for the occlusive effect, αc, we measured αc

independently in each of the twelve SeAs, in all cases by fitting the data for the dependence

of 1/v upon n (see Appendix A for more details of the fit). The experimentally measured

occlusion strength decreased from first to last SeA (Fig. 2.4B), over a range of αc = 3.0 ×

10−7–2.8×10−5 g/µm4s. In physical terms, red blood cells occlude closer vessels to the heart

more than distal vessels. These values are consistent with the range given in Secomb et al.’s

model [SHP98] in which αc could range from αc = 1.8 × 10−7 to 1.6 × 10−5 g/µm4s. Our

measurement of αc also agrees with an earlier theoretical model of Secomb et al.’s which did

not consider glycocalyx (αc = 4.7 × 10−7–3.8 × 10−6 g/µm4s [SSO86]), a numerical model

of Pozrikidis’ which simulated the time course of cell deformation (αc = 2.4 × 10−7–1.1 ×

10−6 g/µm4s [Poz05], as well as an experimental fit to earlier data (αc = 1.4× 10−7 g/µm4s

[FO85])). Note however, that the micromechanical and numerical models of [SHP98, SSO86,

Poz05] was created for mammalian red blood cells in capillaries and must be applied with

caution here; indeed glycocalyx parameters have not been measured in zebrafish. Although

the differences between zebrafish and mammalian RBCs mean that we must allow that the
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Figure 2.4: Occlusion of SeAs by cells feeds back onto the flow through the SeA. (A) Equation

2.1 predicts that the reciprocal of cell velocity increases linearly with the number of cells

in each Se vessel. Displayed: data from the 9th Se artery (Boxplot) and regression to

determine feedback per cell, αc (curve). The y-intercept is determined from the theoretical

plasma velocity in a network with no cells. For data from other Se arteries see Appendix

A. (B) Measured αc values decrease from first to last Se artery. Gray line: linear regression

of αc against Se vessel index. Bars: 95% confidence intervals calculated by those of linear

regressions. Se vessels with smaller numberings are closer to the heart.

parameters controlling occlusive feedback αc may be different in zebrafish than in mammalian

vessels, the mammalian data generally support the possibility of tuning feedbacks over a large

range of values. The intrinsic resistance αc depends on many factors, including cell velocity,

thickness of glycocalyx layer, and the deformation of the cell. Here we focus on the effect

of αc on the partitioning of the cells rather than the detailed mechanism that causes the

variation.

2.3.5 Tuning occlusive effects between different micro-vessels uniformly parti-

tions red blood cells

We simulated around 17 min of red blood cell flow through the zebrafish vascular network,

assuming the same occlusive effect for every microvessel, using a discrete model in which
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every red blood cell trajectory was tracked and in which vessel resistances were modeled

using Equation (2.1) (see Section 2.2) using the same occlusive feedback parameter (αc =

1.01×10−6g/µm4s) for each vessel. The model continued to predict that red blood cell fluxes

within vessels decrease exponentially with distance from the heart (Fig. 2.1C). This can be

rationalized as follows: If αc is identical between intersegmental vessels, and phase separation

is assumed to be negligible, then the model predicts that the resistance of each vessel will

increase on average from the value given by the Hagen–Poiseuille law by αc·Hct·V/Vc, where

V is the volume of the vessel, Vc is the volume of a single cell and Hct is the hematocrit.

The approximate model derived in Section 2.3.2 demonstrates that variation in SeA length

from head to tail of the zebrafish contribute very little to partitioning of red blood cell fluxes

between SeAs, so changing the resistance of each vessel by an amount simply proportional

to its length, will similarly not prevent exponential decay of red blood cell fluxes.

The potential effect size of including occlusive feedbacks is much larger than the effect of

phase separation: predicted red blood cell flux decreased by a factor of more than 7 in the

phase separation model (see Appendix A). We therefore hypothesized that varying occlusive

effects between different SeAs may uniformly distribute red blood cells through the network.

To probe how variations in occlusive feedback could be used to control the distribution of

red blood cells, we studied a reduced model of the vascular network (readers who are mainly

interested in simulation results may skip this analysis by going straight to Section 2.3.6).

Specifically, we built a mean-field model for the flows in a model network including only the

first and last SeAs, as well as the direct connection between the DA and PCVs (the labeling

of vessels and branching points is shown in Fig. 2.5A). In each vessel the cells were assumed

to be well-mixed and cell fluxes are divided in proportion to flow rates at all nodes. Then the

hematocrit will be the same in all vessels. For simplicity we express our equations in terms

of the concentration of red blood cells (number / volume), ρ, rather than the hematocrit. ρ

and hematocrit (Hct) are simply related by ρ =Hct/Vc where Vc is the volume of a cell. Let

Ri be the modified resistance of the ith vessel according to Equation (2.1). Then by applying

Kirchoff’s first law at the branching points at which first and second Se vessel branch off
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Figure 2.5: A reduced vascular network model shows that occlusive effects need to be varied

between SeAs, and exposes trade-offs between flow uniformity and transport efficiency. (A)

Diagram of the reduced model of the network showing vessel lengths li, fluxes Qi, and radii

ri. (B) Increasing the occlusion strength α2 increases flux uniformity, measured by the ratio

of fluxes in the last and the first Se (black curve), but also increases dissipation (gray curve),

if the total flux through both Se vessels is maintained.

from the aorta, we obtain the pressures at these points, i.e. p1 and p2:

F =
p1 − p2

R1

+
p1

R2

,
p1 − p2

R1

=
p2

R3

+
p2

R4

, (2.4)

Here F is the total flux of blood into the network, and we can solve Equations (2.4) by linear

algebra (see Appendix A). Of particular interest is is the ratio of fluxes in the two Se, which

measures how uniformly the different vessels are kept supplied with cells:

Q4

Q2

=
R20 + V2ρα2

R40 + V4ρα4

(
1 +

R1

R3

+
R1

R4 + V4ρα4

)−1

(2.5)

Here α2, α4 are respectively the values of αc in the first and last SeA, R20 , R40 are the

resistances of the two SeAs in the absence of red blood cell occlusion, and Vi is the volume of

vessel i. Most of the parameters in Equation (2.5) are tightly constrained: the dimensions of

the two Se vessels are similar (in fact R20 ≈ 2R40 and V2 ≈ 2V4), moreover, since the vessel

network extends during development and supplies the tail fin in adult zebrafish[PEM09,
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BBW06], the aorta must maintain approximately the same radius along its length, leading

to R1 ≈ 11R3. Thus the second factor of Equation (2.5)
(

1 + R1

R3
+ R1

R4+V4ρα4

)−1

has an upper

bound 1
12

. Therefore the only parameters that can be used to increase Q4/Q2 (i.e. eliminate

short-circuiting of the network by the first SeA) are the relative sizes of α2 and α4. Q4/Q2

is largest if α2 � α4, i.e. if occlusion effects are stronger in the first SeA. Thus uniform

flow requires stronger occlusion in vessels close to the heart, consistent with experimental

observations in real zebrafish (Fig. 2.4B).

However our reduced model also shows that varying occlusion strengths between vessels

creates trade-offs between uniformity and the transport efficiency, measured by the dissipa-

tion:

Dnetwork = 8µwb
πr4a

(`1Q
2
1 + `3Q

2
3) +

8µpl
πr4c

(`2Q
2
2 + `4Q

2
4)

+ρ(Q2
2V2α2 +Q2

4V4α4). (2.6)

(See Appendix A for derivation). Here `i is the length of the ith vessel, ra is the radius of

the DA, and rc is the radius of the Se vessels. To compare equivalent networks as we vary

α2 we also vary F , the total flow into the trunk, to keep the total flux through the pair of

Se vessels (Q2 +Q4) constant. Dissipation in the thin layers of fluid surrounding each RBC

dominates Dnetwork, so as α2 increases Dnetwork increases. The highest ratios of Q4/Q2 are

therefore also the most dissipative networks (Fig. 2.5B).

2.3.6 Observed variation in occlusive effects optimizes uniform distribution of

red blood cells

We modified our simulation from Section 2.3.5 to incorporate the observed variations in

occlusive effects; i.e. using the different measured values of αc in each vessel. We used the

regressed data (gray line in Fig. 2.4B) to capture the decreasing trend of αc from head to tail.

When vessels were assigned the experimentally measured values of αc, red blood cells became

uniformly distributed between SeAs, and matched closely to the real flow observations (see

Fig. 2.2A, B).

Are the measured variations in occlusive effects really evidence of adaptive tuning of
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the zebrafish cardiovascular network, or could they arise from incidental changes caused for

example by the different ages of vessels at different distances along the trunk? New SeAs

are progressively added to the trunk at the tail of the zebrafish as the trunk elongates, and

we wanted to evaluate the alternate hypothesis that the younger vessels farther from the

heart had lower occlusive effects simply because they have a thinner glycocalyx coating, or

else because structural adaptation of vessels to the flows through them may tend to reduce

vessel radii over time [PSG98]. Although neither alternate explanation can be totally ruled

out, we were able to test how close the observed distribution of occlusive effects is to one

that optimizes the uniform partitioning of red blood cell flows between vessels. Specifically,

we ran discrete cell simulations of flow within the network for different distributions of

occlusive effects: that is, we varied ∆αc, defined to be the difference in αc between the

first and last SeAs, assuming a linear variation of αc in the intermediate vessels. For each

model network, we calculated the coefficient of variation (CV) in the red blood cell flux,

i.e. the standard deviation in red blood cell flow rate over all vessels, normalized by the

mean flow rate. Smaller values of CV correspond to a more uniform distribution of red

blood cell flows. Using discrete cell simulations, i.e. tracking every cell trajectory, produces

more accurate estimates of red blood cell fluxes in principle than the continuum modeling

from Section 2.3.5, because cell number fluctuations within each SeA are comparable to the

mean number of cells. Since the change in resistance of a vessel depends on the number of

cells in the vessel according to Equation (2.1), the distribution of red blood cell flows for a

given distribution of occlusive effects depends on hematocrit. Accordingly, we varied both

hematocrit and occlusive effect distributions independently in our simulations. We found

for any fixed hematocrit, near uniform flux (CV close to 0) can be achieved only over a

narrow range of ∆αc (Fig. 2.6A). Too little difference in intrinsic resistance between first

and last SeAs, and the first SeA short-circuits the network, as discussed in Section 2.3.2.

But too large a difference in occlusive effects can have the opposite effect, leading to the

vessels furthest from the heart receiving more flow than vessels closest to the heart. The

optimal distribution the occlusive effects is realized along a single curve in (∆αc, ρ) space.

We found that the observed occlusion effect distribution is close to the optimal value for the
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real zebrafish hematocrit [MQK03] (Fig. 2.6A).
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Figure 2.6: Tuned occlusion strengths uniformly distribute flow across different Se vessels.

(A) Dependence of flux uniformity upon controllable parameters is explored by allowing

blood cell concentration, ρ, and difference in occlusive effects between first and last Se vessel,

∆αc, to vary independently and computing the coefficient of variation (CV) for flow through

all Se vessels. Flux uniformity is achieved only within a narrow manifold of values of blood

cell concentrations and occlusive effect differences. The empirical values (red dot) lie close

to this optimal manifold. (B) Higher uniformity can be achieved if blood cell concentration

is decreased (moving leftward from the red dot) but at the cost of increasing dissipation.

Transport costs are reduced if ∆αc is decreased (moving downward), and can be reduced by

11-fold if there is no difference occlusive effect between different Se arteries but at the cost

of reducing uniformity of RBC fluxes. Colors show CV values from (A) and white curves

show level sets of dissipation; the dissipation is normalized by its value in the real zebrafish.
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CHAPTER 3

Minimal transport networks with general boundary

conditions

This chapter was based on: Shyr-Shea Chang and Marcus Roper. “Minimal transport

networks with general boundary conditions.” SIAM Journal on Applied Mathematics, 78(3),

1511–1535, 2018.

3.1 Introduction

Organisms across the kingdoms of life; including plants, animals, fungi, and water molds

rely on vascular networks to transport fluids, nutrients or cellular materials [RUM11]. In

vertebrate animals, a cardiovascular network transports oxygenated blood from the heart to

tissues throughout the body, and returns waste gases to the heart and lungs. Distruption of

this network even at the level of finest vessels, including the systemic microvessel degradation

associated with diabetes mellitus, or acute damage associated with traumatic brain injury,

has long term irreparable health consequences. Accordingly parallel experimental efforts have

targeted the same goal of complete mapping of microvascular networks [BTK13, WHY14,

KBS15]. Yet interpreting these data streams is held back by lack of information on the

organizing principles underlying the mapped networks.

One principle that has been used to dissect these networks is Murray’s law (Murray, 1926

[Mur26b]). Murray’s law states that if a network made up of hydraulic conduits minimizes

a total cost made up of the sum of the total dissipation and of the material used to build

the network, then the radius of each conduit within the network is proportional to the

cube root of the flow that it carries. Murray’s law has been verified by studies on plant
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and mammalian vascular networks ([She81, MSA03, TNQ01], but also see [She81] for a

discussion of networks that do not apparently obey Murray’s law). This result draws upon

several assumptions that we will systematically analyze in this chapter, so we present a brief

derivation in Section 3.2.1. A key part of this derivation is that changing the radius of

the vessel does not affect the flows passing through it. In other words, flows and radii can

be treated as independent variables. However the flows within a network generally depend

on the conductances within the network – so changing radii of vessels within the network

may alter the flows. Accordingly it is not obvious that when the feedback between vessel

radius and flow is considered, i.e. when conduits are considered assembled within a network,

Murray’s law will continue to hold, or that a dissipation minimizing network configuration

actually exists.

Durand [Dur07] studied optimization of dissipation on networks in which multiple sources

were linked to multiple edges with arbitrarily complex network of edges and vertices. A

prior set of edges can be assigned (potentially including straightline paths between every

pair of sources and or sinks), and one searches for the network that uses some, but not

necessarily all, of the prior edges, and that minimizes the total dissipation for a prescribed

material cost. This approach, in which material is prescribed as a holonomic constraint and

a minimally dissipative network is sought consistent with this constraint, is not obviously

equivalent, in the sense of producing the same family of optimal networks, as Murray’s

approach, which we may view as a penalty function method for optimizing dissipation under

material cost. But it has been adopted in many recent works on optimal networks [Dur07,

BM07, KSM10]. Durand showed that any network that solves this optimization problem

must be simply connected, i.e. given any two vertices in the network there is at most one

path connecting them, so the network is either a tree or a forest. However the proof given

in [Dur07] only addresses networks in which flow rates (i.e. Neumann boundary conditions)

are imposed at the vertices of the network, and leaves open networks where pressures can

be imposed (i.e. both Neumann and Dirichlet boundary conditions). We can quickly see

that for some combinations of boundary conditions the minimally dissipative network is

not simply connected, and we give an example in Section 3.2.2. This example shows that
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minimizing dissipation on a network with multiple pressure boundary conditions produces a

multiply connected, i.e. non-tree network. The relevance of the example network shown in

Figure 3.1 to real biological transport network design may seem unconvincing; however even

quite simple networks commonly used as models for biological transport can exhibit non-

equivalent optima under the different formulations for material costs. To see how substantial

the difference can be in Section 3.2.3 we give an example of a network and target function

for which: the constraint formulation results in a different network from the penalty function

formulation.Moreover, when using the constraint formulation to optimize this network, key

qualitative features of the optimal network depend on the total material allocated to the

network, a fact that has apparently not received scrutiny.

In this chapter we will discuss the consequences of boundary conditions on optimal net-

works, as well as the effect of different formulations of material cost. We will focus on

networks minimizing transport costs, since these have recieved the most attention to date

[BM07, KSM10, BCF00]. We show that under the most general boundary conditions patholo-

gies associated with minimizing dissipation are overcome if one instead minimizes a comple-

mentary dissipation that includes work done by pressure vertices [FTC17, Lov13, Ach90].

A network with minimal complementary dissipation is simply connected for all boundary

conditions, a property previously only proven for minimally dissipative networks with Neu-

mann boundary conditions. Networks optimizing complementary energy resolve pathological

networks like the one in Fig. 3.1 by disconnecting pressure vertices with the same pressure.

The complementary energy reduces to dissipation when all the pressure vertices have the

same pressure, so previous theoretical results for optimal networks are recovered. If at least

one vertex with Neumann boundary condition is present minimally dissipative networks will

disconnect all the Dirichlet vertices from each other, so ultimately our results provide a for-

mal proof that minimally dissipative networks satisfy Murray’s law, are simply connected,

and disconnect pressure vertices under this narrower set of boundary conditions.

Throughout we model material costs via holonomic constraints, rather than using Mur-

ray’s original approach of using penalty functions. The final leg of our argument is to eluci-

date the conditions under which the two formulations are equivalent; that is, they produce
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the same family of optimal networks as the cost or penalty parameters are varied. In partic-

ular we show that the two formulations are equivalent if the network flows are not affected

by uniform rescaling of conductances, a property held by any network in which all pressure

vertices have identical pressures, including any network that minimizes the complementary

energy.

Taken together, our results comprehensively expose the effect of boundary conditions,

especially vertices with specified pressures, and of formulations of material cost on minimally

dissipative networks. It also suggests an energy function that incorporates the work done

by pressure vertices that may be a more suitable target function for optimization than

dissipation.

3.2 Background

3.2.1 Derivation of Murray’s Law

Consider a cylindrical tube with radius r and length ` with a flow f going through. By

flow we mean that a volume f of fluid (e.g. blood) passes through each cross-section of the

network in unit time. In appropriate units, the energy cost of maintaining the vessel can be

written as

E = D + ar2` = f 2R + ar2` (3.1)

where D = f 2R is the dissipation, R is the hydraulic resistance, and a is the energy cost for

maintaining unit volume of blood vessel. Under Hagen–Poiseuille’s law R = 8µ`
πr4

where µ is

the viscosity of the blood. Suppose r is tuned such that the energy cost is minimized under

fixed amount of inflow f . Then the derivative of E over r should vanish, i.e.

dE

dr
= 0⇒ −32f 2µ`

πr5
+ 2ar` = 0⇒ f =

√
aπ

16µ
r3 (3.2)

and hence, as claimed, r ∝ f
1
3 . Note however, that this calculation assumes that we can

treat f as an independent variable – that is, changing the tube radius r does not affect the
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Figure 3.1: A non-tree minimal dissipation network.

flow through the vessel.

3.2.2 An example of a minimal dissipative network with loops

Consider a square network made of 4 edges and 4 vertices, all of which have pressure specified.

Vertices and edges are numbered as shown in Figure 3.1. In this network flows can be

determined locally, i.e. the flow on one link does not depend on flows on others. Specifically

Q1 = κ1, Q2 = κ2, Q3 = κ3, Q4 = κ4. (3.3)

The total dissipation within the network is

D =
4∑
i=1

κi. (3.4)

We follow Durand [Dur07] by specifying the total material available to build the network.

Since all edges have the same length this constraint takes the form
∑

i r
2
i = const, where ri

is the radius of edge i. Now since by the Hagen–Poiseuille law κi ∝ r4
i , we may equivalently

write the constraint in the form:

K
1
2 =

4∑
i=1

κ
1
2
i , (3.5)
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for some K > 0. To minimize dissipation under the material constraint we write the dissi-

pation in the network and add a Lagrange multiplier to enforce the material constraint:

Θ =
4∑
i=1

κi + λ(
4∑
i=1

κ
1
2
i −K

1
2 ). (3.6)

We find the optimal conductances within the network by setting equal to 0 each of the partial

derivatives of Θ with respect to the variables {κi} in the form:

0 =
∂Θ

∂κi
= 1 +

λ

2
κ
− 1

2
i ⇒ κi =

λ2

4
∀1 ≤ i ≤ 4. (3.7)

The Lagrange multiplier λ can be determined from the material constraint:

K
1
2 =

4∑
i=1

κ
1
2
i = 2λ⇒ λ =

K
1
2

2
. (3.8)

We have therefore identified a candidate local extremum with κi > 0 ∀1 ≤ i ≤ 4. but this

local extremum might not be the global minimizer. The set on which we need to minimize

the dissipation, i.e. {(κ1, κ2, κ3, κ4)|
∑4

i=1 κ
1
2
i = K

1
2}, is compact, so the global minimum

must be attained either at the local extremum, or on one of the set boundaries κi = 0 for

some 1 ≤ i ≤ 4. To analyze the dissipation on domain boundaries we can simply assume

that n ≤ 4 conductances are positive and recalculate λ in the same fashion:

K
1
2 =

4∑
i=1

κ
1
2
i =

n

2
λ⇒ λ =

2K
1
2

n
. (3.9)

Now we can calculate the dissipation and see which n gives the lowest dissipation (let K ⊆

1, 2, 3, 4 be the set of positive conductances so |K| = n):

D =
∑
i∈K

1

4
λ2 =

∑
i∈K

K

n2
=
K

n
(3.10)

so n = 4 indeed results in minimal dissipation network; consisting of a single loop through

all four vertices. Note additionally that, on this prior network, treating material costs as

holonomic constraint or penalty function does not produce equivalent results. Indeed the
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Figure 3.2: The different formulations of imposing material as constraint or penalty function

affect the optimal network for the same target function. (A) A network in which a vertex

with prescribed inflow, F3 = 1, is connected to two vertices on which pressures are prescribed.

(B) The asymmetry of the network increases as the total prescribed material K increases,

as predicted by the asymptotic analysis in Section 3.1.

sum of dissipation and material costs is trivially minimized in a network in which all edges

have been eliminated.

3.2.3 Formulation of material costs affects the existence of an optimal network

We demonstrate that the formulation of material costs affects the existence of an optimal

network, by studying an example network. Consider a simple network comprising two edges

(Fig. 3.2A) and minimizing

f =
2∑
i=1

(
Qi −

1

2

)2

. (3.11)

This target function is inspired by our own studies of flow in microvascular networks, which

have shown that uniform partitioning of flows in microvessels is prioritized over transport

costs [CTB17]. By minimizing f we are uniformizing the flows going through the edges to

the pressure vertices. We compare the solutions from following either of our optimization

approaches. First we treat the material cost as a penalty function, i.e. follow Murray’s

formulation, and minimize
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Θ =
2∑
i=1

(Qi −
1

2
)2 + a

2∑
i=1

κ
1
2
i . (3.12)

The pressure at the flow vertex is determined by Kirchhoff’s first law, which states that the

flows along the two edges must sum to the inflow at vertex 3, i.e.:

p3κ1 + (p3 − 1)κ2 = 1⇒ p3 =
1 + κ2

κ1 + κ2

. (3.13)

The total cost function Θ can be rewritten, after p3 is solved for by Equation 3.13, as

Θ =

(
(1 + κ2)κ1

κ1 + κ2

− 1

2

)2

+

(
(1− κ1)κ2

κ1 + κ2

− 1

2

)2

+ a(κ
1
2
1 + κ

1
2
2 ). (3.14)

We will show that Θ does not have a minimizer. First notice (κ1, κ2) = (0, 0) is not allowed

since p3 cannot be determined in this case. The minimum value of Θ is zero, and (κ1, κ2) =

(0, 0) is the only configuration of the network that might achieve this value since otherwise

κ
1
2
1 + κ

1
2
2 > 0. It suffices to show that we can find networks with Θ > 0 arbitrarily close to

zero. If we let κ1 = κ2 = ε > 0 then

Θ =
ε2

2
+ 2aε

1
2 → 0 as ε→ 0 (3.15)

and we showed that Θ does not have a minimizer. On the other hand if we impose the total

material as a constraint we have

Θ = (
(1 + κ2)κ1

κ1 + κ2

− 1

2
)2 + (

(1− κ1)κ2

κ1 + κ2

− 1

2
)2 (3.16)

where

κ
1
2
1 + κ

1
2
2 = K

1
2 (3.17)

with a predetermined total material K. A minimum will happen if Q1 = Q2 = 1
2

with the

material constraint satisfied, so we can search for the global minimum by setting

κ1 + κ1κ2

κ1 + κ2

=
1

2
⇒ κ1 =

κ2

1 + 2κ2

(3.18)
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(the other equation is redundant since Q1 +Q2 = 1). The material constraint then reads

[1 + (1 + 2κ2)
1
2 ]

κ
1
2
2

(1 + 2κ2)
1
2

= K
1
2 . (3.19)

This equation does not admit an analytical solution, but since the left hand side is mono-

tonically increasing with κ2 and can take any value between 0 and ∞, it can be solved for

any finite K > 0. In particular asymptotic solutions can be obtained as K → 0+ and as

K →∞. When K � 1 we have κ2 ≤ K � 1 so

K
1
2 = [1 + (1 + 2κ2)

1
2 ]

κ
1
2
2

(1 + 2κ2)
1
2

∼ 2κ
1
2
2 ⇒ κ1 = κ2 =

K

4
. (3.20)

In the case of K � 1 if we assume κ2 � 1 we can obtain

K
1
2 = [1 + (1 + 2κ2)

1
2 ]

κ
1
2
2

(1 + 2κ2)
1
2

∼ κ
1
2
2 ⇒ κ2 ∼ K. (3.21)

Therefore the increase in total material K increases the network asymmetry κ2
κ1

, as also

suggested by numerical results (Fig. 3.2B).

3.3 Notation

In this work we consider a set of vertices k = 1, ..., V that connect to each other by vessels

or edges. We indicate that vertices are neighbors in the network by writing 〈k, l〉 = 1 if

vertices k, l are linked by an edge and 〈k, l〉 = 0 otherwise. This relation between vertices is

symmetric, in the sense that 〈k, l〉 = 〈l, k〉. If 〈k, l〉 = 1 a non-negative conductance κkl and

a flow Qkl are associated with the edge, with κkl = κlk and Qkl = −Qlk. We model flows

within hydraulic networks by assuming that a pressure pk can be assigned to each vertex k

and there is a linear relation between flow and pressure difference, i.e. Qkl = (pk−pl)κkl. We

divide the vertices of the network into two classes with the definitions as follows: Neumann

vertices where flow into the network is known, i.e.
∑

l : 〈k,l〉=1Qkl = qk, where qk is the flow

into the network at vertex k, and Dirichlet vertices at which pressure is prescribed. Vertices

that are not connected to external fluid sources, sinks or reservoirs are typically of Neumann
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Figure 3.3: A network diagram showing Dirichlet (pressure) vertices P and Neumann (flow)

vertices F , along with vertices N where no boundary condition is imposed. In Chapter 4

we define VN = N ∪ F and VD = P .

type, with inflow qk = 0 (Fig. 3.3). Let P denote the set of pressure (or Dirichlet) vertices

and F the set of flow (or Neumann) vertices with nonzero inflow (we require P∩F = φ since

when combined with the compatibility conditions discussed below this condition is sufficient

for the flows to be unique. In the case P ∩ F 6= φ neither existence nor uniqueness of flows

can be guaranteed). For definiteness we say k /∈ P ∪F if no boundary condition is imposed,

i.e.
∑

l : 〈k,l〉=1 Qkl = 0. A Kirchhoff flow is defined as the flow Qkl = (pk − pl)κkl ∀〈k, l〉 = 1,

where the pressures satisfy


∑

l : 〈k,l〉=1(pk − pl)κkl = 0 , k /∈ P ∪ F

pk = p̄k , k ∈ P∑
l : 〈k,l〉=1(pk − pl)κkl − qk = 0 , k ∈ F , qk 6= 0

. (3.22)

It is well-known that connected networks with P 6= φ have uniquely determined pressures

and therefore they have unique Kirchhoff flows [LP16] (Connected networks are networks

where ∀1 ≤ k, l ≤ V we can devise a path from k to l; that is: ∃k1, k2, ..., kn s.t. 〈k, k1〉 =
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〈ki, ki+1〉 = 〈kn, l〉 = 1 ∀1 ≤ i ≤ n − 1 and κkk1 , κkiki+1
, κknl > 0 ∀1 ≤ i ≤ n − 1). In case

P = φ the Kirchhoff flow is uniquely determined so long as
∑

k∈F qk = 0, and pressures

are determined up to an additive constant. If the condition on total inflow is violated there

is no solution for pk’s and the pressures are ill-defined. This result is quite important for

developing intuition about the role of Dirichlet vertices in networks so we give a proof in

Appendix B. On the other hand if the network is not connected then it consists of finitely

many connected components, and each component would have to satisfy the condition for

the Kirchhoff flow to be uniquely determined. We define a physical network to be a network

whose conductances κkl and pressure conditions admit a unique Kirchhoff flow solution.

3.4 Results

In this section we state the main results of this chapter, and describe several properties of

physical networks that globally minimize the dissipation and the complementary dissipation,

a concept analogous to the notion of complementary energy for externally loaded elastic body.

These results will be proven in Sections 3.5−3.10.

Definition 3.4.1. The dissipation function given flows Qkl and conductances κkl for 〈k, l〉 =

1 is defined by

D =
∑

k>l,〈k,l〉=1

Q2
kl

κkl
(3.23)

Definition 3.4.2. The complementary dissipation of a network given flows Qkl and conduc-

tances κkl for 〈k, l〉 = 1 is defined by

f =
∑

k>l,〈k,l〉=1

Q2
kl

κkl
− 2

∑
k∈P

pk
∑

l : 〈k,l〉=1

Qkl (3.24)

We call f the complementary dissipation because it resembles the complimentary energy

defined in linear elasticity which allows the displacement field within an externally loaded

elastic body to be calculated via minimization of a function [FTC17, Lov13, Ach90]. Notably
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this function, the complementary energy, is defined to be equal to the stored internal elastic

energy minus the work done by any external traction, which is similar to our expression

(rate of dissipation minus twice the rate of working of external tractions). We introduce the

material constraint as

K =
∑

k>l,〈k,l〉=1

κ
1
2
kldkl. (3.25)

Here dkl = `
3
2
kl, where `kl is the length of link kl in the hydraulic network. The dkl can be any

set of positive weights for generality. A fundamental question is whether a global minimizer

of dissipation (4.15) or complementary dissipation (3.24) exists under material constraint or

penalty:

Proposition 3.4.1. Suppose the network topology and boundary conditions are physical, i.e.

κkl > 0 ∀〈k, l〉 = 1 results in a physical network. Then there exists a physical network that

globally minimizes dissipation (4.15) or complementary dissipation (3.24) under material

constraint (3.25). In addition there exists a physical network that minimizes dissipation

(4.15) under material penalty, i.e. minimizes

Θ =
∑

k>l,〈k,l〉=1

Q2
kl

κkl
+ a

∑
k>l,〈k,l〉=1

κ
1
2
kldkl (3.26)

under no constraint.

Observe that the complementary dissipation (3.24) with material penalty might not have

a global minimizer. Consider a simple network made up of two pressure vertices with pre-

scribed pressures p = 1, 0 connected by an edge with conductance κ. Then the complemen-

tary dissipation with material penalty is −κ+ aκ
1
2d12, which goes to −∞ as κ→∞. Thus

a global minimizer does not exist in this example. Now we define Murray’s law:

Definition 3.4.3. A physical network is said to satisfy Murray’s law if there is a constant

a > 0 such that the following relation between Kirchhoff flow Qkl and conductance κkl holds

∀〈k, l〉 = 1:
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κkl = a
|Qkl|

4
3

d
2
3
kl

. (3.27)

If flows obey the Hagen–Poiseuille law (so that κkl ∝ r4
kl where rkl is the radius of edge kl),

then Equation 3.27) implies that |Qkl| ∝ r3
kl. Our first result reframes Murray’s law with

respect to global minimizers.

Theorem 3.4.1. A physical network that globally minimizes the complementary dissipation

(3.24) under material constraint (3.25) satisfies the Murray’s law.

Our second and third results establish properties previously attributed to minimal dissipative

networks [Dur07] but now allowing for both Neumann and Dirichlet boundary conditions.

Let a path between vertices k, l be a set of vertices k = k1, k2, ..., kn = l such that no vertex

is listed more than once and 〈ki, ki+1〉 = 1, κkiki+1
> 0 ∀1 ≤ i ≤ n− 1.

Theorem 3.4.2. In a physical network that globally minimizes the complementary dissipa-

tion (3.24) under material constraint (3.25) there is exactly one path between any pair of

points, except the case this network has no flow in it, i.e. Qkl = 0 ∀〈k, l〉 = 1.

Theorem 3.4.3. A physical network that globally minimizes the complementary dissipation

(3.24) under material constraint (3.25) has no path connecting 2 pressure vertices with the

same prescribed pressure, except the case that the network has no flow in it.

From these results we can rederive properties of minimal dissipative networks for boundary

conditions considered by Durand [Dur07].

Corollary 3.4.1. A physical network that globally minimizes dissipation (4.15) under the

material constraint (3.25) satisfies Murray’s law, has no loops, and has no paths connecting

two pressure vertices if all the pressure vertices have the same specified pressure

Proof. It suffices to show that the complementary dissipation (3.24) reduces to dissipation

(4.15). Since Kirchhoff flow remains the same up to an additive constant on all pressures we

can without loss of generality let p0 = 0. Then f = D and the results carry through.
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While it is possible that two pressure vertices with different prescribed pressures connect in

networks with minimal complementary dissipation, it does not happen for minimal dissipa-

tive networks that have at least one vertex with flow boundary condition.

Proposition 3.4.2. In a physical network that globally minimizes the dissipation (4.15)

under material constraint (3.25) with F 6= φ, no pair of pressure vertices are connected by a

path.

This along with Corollary 3.4.1 establishes a general result on minimally dissipative networks

Corollary 3.4.2. A physical network that globally minimizes the dissipation (4.15) under

material constraint (3.25) with F 6= φ satisfies Murray’s law (3.27), has no loops in the

sense of Theorem 3.4.2, and has no paths connecting two pressure vertices in the sense of

Proposition 3.4.2.

Proof. Suppose we have a physical network that globally minimizes dissipation (4.15) with

|P| = n and the connected components (where two vertices can be connected only by links

with positive conductance) of the network are labeled G1, G2, ..., Gm. From Proposition 3.4.2

we know that two pressure vertices cannot connect, so m ≥ n and each subgraph includes at

most one pressure vertex, i.e. |Gi∩P| ≤ 1 ∀1 ≤ i ≤ m. Now we look at a specific subnetwork

Gi. The subnetwork satisfies the assumptions of Corollary 3.4.1, so it has to satisfy Murray’s

law (3.27) and also contain no loops; or else there is no flow in Gi. Since this argument holds

for all subnetworks the whole network satisfies Murray’s law and contains no loops.

Throughout this work we follow recent work [BM07, KSM10] by imposing material cost

as a constraint rather than following Murray’s approach of imposing it as a penalty function.

Here we discuss the conditions under which these different formulations are equivalent for

minimally dissipative networks.

Proposition 3.4.3. Suppose the flows in each minimally dissipative network under material

constraint (3.25) are invariant when conductances are uniformly rescaled, i.e. the network

with κ′kl = βκkl, β > 0 has the same flows as that in the original network. Then there is
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a bijection K(a) from (0,∞) to (0,∞) such that every minimally dissipative network with

material constraint K is a minimally dissipative network with material penalty under some

coefficient a (3.26) and vice versa.

For networks with at least one flow boundary condition we know from Cor. 3.4.2 that all

the pressure vertices disconnect and hence the flows in minimally dissipative networks under

material constraint are invariant when conductances are uniformly rescaled. Thus

Corollary 3.4.3. If the network has at least one flow vertex, i.e. F 6= φ, then the min-

imal dissipation problem under material constraint (3.25) and material penalty (3.26) are

equivalent in the sense of Proposition 3.4.3.

3.5 Proof of Proposition 3.4.1

Proof. To begin consider the dissipation function (4.15) under material constraint (3.25).

Suppose there are E edges then the intersection of {κi ≥ 0} and the material constraint

surfaces forms a compact set A in RE. For each physical network the flow is obtained by

inverting an invertible matrix with components continuously dependent on the conductances

so the dissipation is continuous in the conductances. Dissipation is finite at each physical

network since κkl = 0 ⇒ Qkl = 0. However not all the networks in this set are physical,

specifically when a subnetwork with unbalanced flow boundary conditions is separated out,

and we need to exclude non-physical networks but keep the set compact. By assumption

κkl > 0 ∀〈k, l〉 = 1 results in a physical network, so a non-physical network must have a

set of edges kili with κkili = 0 for i = 1, 2, ..., n. It suffices to show that physical networks

with κk1l1 , ..., κknln < ε have dissipation uniformly converging to infinity as ε → 0+, so we

can exclude this set without excluding a possible global minimum. If κk1l1 , ..., κknln = 0

gives a non-physical network there will be a connected component C connected by kl /∈

{k1l1, ..., knln} and with
∑

i∈C∩F qi 6= 0 but P ∩ C = φ. Without loss of generality let

qtot =
∑

i∈C∩F qi > 0 and assume k1l1, ..., kmlm with m ≤ n connect C with the rest of the

network, i.e. ki ∈ C and li /∈ C ∀1 ≤ i ≤ m. Then the unbalanced flow in C must flow out

through k1l1, ..., kmlm so
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m∑
i=1

Qkili = qtot ⇒ ∃1 ≤ j ≤ m s.t. Qkj lj ≥
qtot
m
. (3.28)

Then

D =
∑

k<l,〈k,l〉=1

Q2
kl

κkl
≥
Q2
kj lj

κkj lj
≥ q2

tot

m2ε
≥ q2

tot

n2ε
. (3.29)

Since qtot is independent of ε > 0 the dissipation of physical networks in the set {κkili < ε|1 ≤

i ≤ n} goes to infinity uniformly as ε → 0+. Now for each non-physical network we can

identify all the edges with zero conductance and create this set, with ε > 0 chosen such that

ε < K2

(
∑
k>l,〈k,l〉=1 dkl)

2 , where K is the prescribed material cost, and all the physical networks

within this set have dissipation greater than that of the uniform conductance network, i.e.

κi = K2

(
∑
k>l,〈k,l〉=1 dkl)

2 ∀1 ≤ i ≤ E. Then if we exclude this set of networks from A we will

obtain a non-empty set (since the uniform conductance network is in the set) and we will not

exclude the global minimum (since the uniform conductance network has lower dissipation

than all the physical networks in the excluded set). Now we repeat this procedure for all

k1l1, ..., knln if zero conductance on these edges produces a non-physical network. Since there

are only finitely many edge subsets and each operation produces a compact set we know the

remaining set is still compact. Then a globally minimally dissipative network exists since

a continuous function always achieves its global minimum on compact sets. The proof for

dissipation with material penalty (3.26) follows along the same lines except that now A is

defined by {
∑

k<l,〈k,l〉=1 κ
1
2
kldkl ≤ M |κi ≥ 0} and M chosen to be larger than the dissipation

with material penalty (3.26) of the uniform conductance network.

Finally we consider the complementary dissipation (3.24) with material constraint (3.25).

The proof is similar except that now we need to establish a uniform upper bound of

|
∑

k∈P pk
∑

l : 〈k,l〉=1 Qkl| for all physical networks in A. Then since the pressure work term

is continuous with the conductance and we can exclude non-physical networks once we have

this bound we can prove the existence of global minimizer as above. Since the flows depend

linearly on the boundary conditions we can write Qkl = Q
(f)
kl +Q

(p)
kl , where {Q(f)

kl } is obtained

by setting all pressure vertices to have zero pressure and keeping all the flow boundary con-
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ditions and {Q(p)
kl } by setting all the flow vertices to have zero flow (i.e. remove the flow

boundary condition on all flow vertices) and keeping all the pressure boundary conditions.

It suffices to bound the pressure work term in these flows separately. In the network with

Q
(p)
kl notice that the maximum principle applies, i.e. if we let p̄ = maxpi,i∈P , p = minpi,i∈P we

have

p ≤ pi ≤ p̄ (3.30)

for all vertices, i, that are connected to a pressure vertex (let the set of i /∈ P and i connected

to a pressure vertex be C). This is obvious if i ∈ P . If i ∈ C Kirchhoff’s first law at vertex

i may be rewritten as:

pi =

∑
j : 〈i,j〉=1 pjκij∑
j : 〈i,j〉=1 κij

(3.31)

(
∑

j : 〈i,j〉=1 κij > 0 since i connects to a pressure vertex and hence must connect to at least

one adjacent vertex). Suppose for contradiction that ∃pi0 < p with i0 ∈ C. Then we can

without loss of generality have pi0 ≤ pj ∀j ∈ C, and for Equation (3.31) to hold we must have

pj = pi0 ∀κji0 > 0. By assumption i0 connects to a pressure vertex k ∈ P so pk = pi0 < p,

a contradiction. Similarly we can prove that pi ≤ p̄, ∀i ∈ C. Thus if we let the maximum

degree of all the vertices be d we have

|
∑
k∈P

pk
∑

l : 〈k,l〉=1

Q
(p)
kl | ≤ |P|max{|p̄|, |p|}(p̄− p)d K2

min{dkl}2
(3.32)

which is a uniform bound for all the physical networks satisfying the material constraint

(3.25). Now we consider the pressure work term with Q
(f)
kl . Without loss of generality we

can assume |F| = 1 since we can split any flow boundary condition into the sum of boundary

{Q(f,1)
kl }, ..., {Q

(f,|F|)
kl }, where {Q(f,i)

kl } is the flow in which only the ith flow boundary condition

is applied, and for concreteness we let qif < 0 where if denotes the only flow vertex in the

network. Now we focus on a specific {Q(f,i)
kl } and abbreviate it as {Qkl}. We claim that

0 ≤
∑

l : 〈k,l〉=1 Qkl ≤ −qif ∀k ∈ P . Suppose for contradiction that
∑

l : 〈k0,l〉=1 Qk0l < 0

for a k0 ∈ P . Then ∃k1 such that 〈k1, k0〉 = 1 and pk1 > pk0 by the assumption. If
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k1 ∈ P we have a contradiction since pk1 = pk0 = 0, so k1 /∈ P ∪ F or k1 ∈ F . In

either case we have
∑

l 6=k0 : 〈k1,l〉=1Qk1l = qk1 − Qk1k0 , where qk1 = qif if k1 ∈ F and is zero

otherwise. Thus the left hand side sums to a non-positive number so we can find k2 such

that 〈k2, k1〉 = 1 and pk2 > pk1 . Following this procedure we can find distinct k0, k1, ..., kn

such that pki > pki−1
∀1 ≤ i ≤ n (if any two of the vertices are the same they would have the

same pressure). Since n > 0 is arbitrary we can let n = V , the number of vertices, so one of

ki must belong to P , a contradiction. The statement
∑

l : 〈k,l〉=1Qkl ≤ −qif comes from the

fact

∑
k∈P

 ∑
l : 〈k,l〉=1

Qkl

 = −qif (3.33)

so if ∃k0 ∈ P such that
∑

l : 〈k0,l〉=1 Qk0l > −qif there must be a k′0 ∈ P such that
∑

l : 〈k′0,l〉=1Qk′0l
<

0, a contradiction. Similar estimates for qif > 0 can be obtained in the same manner. With

the estimates on the inflow into pressure vertices we have

|
∑
k∈P

pk
∑

l : 〈k,l〉=1

Q
(f)
kl | ≤ |P|max{|p̄|, |p|}|qif |. (3.34)

With these estimates we established an upper bound for the pressure work term and hence

the global minimizer for the complementary dissipation (3.24) under material constraint

(3.25).

3.6 Proof of Theorem 3.4.1

Proof. Consider a physical network that does not satisfy Murray’s law, and we will show that

this is not a global minimizer of complementary dissipation (3.24) under material constraint

(3.25). Suppose our network has flows and conductances Q̃kl, κ̃kl, and assume for now that

Q̃kl 6= 0 ∀〈k, l〉 = 1. Now define κkl to be the conductances that satisfy Murray’s law (3.27)

and the material constraint (3.25) based on the fluxes in our original network, i.e.
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κkl = a
|Q̃kl|

4
3

d
2
3
kl

∀〈k, l〉 = 1, K =
∑

k>l,〈k,l〉=1

κ
1
2
kldkl (3.35)

where a > 0 is uniquely determined by the material constraint. We show that this compar-

ative network has strictly smaller complementary dissipation (3.24), i.e.

∑
k>l,〈k,l〉=1

Q̃2
kl

κkl
− 2

∑
k∈P

pk
∑

l : 〈k,l〉=1

Q̃kl <
∑

k>l,〈k,l〉=1

Q̃2
kl

κ̃kl
− 2

∑
k∈P

pk
∑

l : 〈k,l〉=1

Q̃kl. (3.36)

We show this inequality by proving that the conductances satisfying Murray’s law is the

global minimizer of complementary dissipation (3.24) when flows Q̃kl are held constant and

the material constraint (3.25) is imposed. Consider the dissipation with a Lagrange multiplier

imposing material constraint (since the pressure work term does not change when Q̃kl are

held fixed)

Θ =
∑

k>l,〈k,l〉=1

Q̃2
kl

κkl
+ λ(

∑
k>l,〈k,l〉=1

κ
1
2
kldkl −K). (3.37)

First we find the stationary points:

0 =
∂Θ

∂κkl
= −Q̃

2
kl

κ2
kl

+
λ

2
κ
− 1

2
kl dkl ⇒ κkl = 2

2
3
|Q̃kl|

4
3

(λdkl)
2
3

∀〈k, l〉 = 1 (3.38)

which is Murray’s law when Hagen–Poiseuille’s law is applied. Now λ can be solved for

by plugging Equation (3.38) back into the material constraint (3.25). Since the material

constraint (3.25) along with κkl ≥ 0 ∀〈k, l〉 = 1 forms a compact set this is the unique global

minimum so long as no minima occur on the boundaries, i.e. there is no local minimum

for which ∃〈k, l〉 = 1 s.t. κkl = 0. However since Q̃kl 6= 0 ∀〈k, l〉 = 1 any κkl = 0

will result in f = ∞ and thus global minimizers cannot happen on boundaries. Since

the set of conductances that satisfy Murray’s law on the material constraint surface is the

only stationary point in the interior, and we have dispensed with global minima on the

boundary it must be the unique global minimizer, and the inequality (3.36) holds. Now

to finalize our proof we remove the assumption that Q̃kl 6= 0 ∀〈k, l〉 = 1. Then we need
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to show that the new conductances κkl along with original boundary conditions yield a

physical network under the assumption that κ̃kl with boundary conditions gives a physical

network, and that the conductances κkl that satisfy Murray’s law is still the unique global

minimizer. The first aspect is trivial in the case Q̃kl 6= 0 ∀〈k, l〉 = 1 since this condition

implies that κ̃kl, κkl > 0 ∀〈k, l〉 = 1. However Q̃kl = 0 does not imply κ̃kl = 0 while

κkl will be zero, and the concern is that applying Equation (3.35) will produce a set of

disconnected networks that are not physical networks. Consider a connected subnetwork

of {κ̃kl} containing some edges with zero flows Q̃k1l1 = Q̃k2l2 = · · · = Q̃knln = 0 (the

statement that a network is a physical network is equivalent to all its connected subnetworks

being physical networks). Assume for contradiction that a connected component of this

subnetwork Gs is not a physical network with conductances κkl. By the non-physical network

assumption we have Gs ∩ P = φ and
∑

k∈Gs∩F qk 6= 0. However since Q̃kili = 0 ∀1 ≤ i ≤ n

we have
∑

k∈Gs
∑

l : 〈k,l〉=1,l∈Gs Q̃kl =
∑

k∈Gs
∑

l : 〈k,l〉=1 Q̃kl =
∑

k∈Gs∩F qk 6= 0, contradicting

the fact that there is a well-defined pressure p̃k on Gs since
∑

k∈Gs
∑

l : 〈k,l〉=1,l∈Gs Q̃kl =∑
k∈Gs

∑
l : 〈k,l〉=1,l∈Gs(p̃k − p̃l)κ̃kl =

∑
k,l∈Gs,k>l,〈k,l〉=1(p̃k − p̃l)κ̃kl + (p̃l − p̃k)κ̃kl = 0.

Now we address the second aspect; namely that the set of conductances κkl that satisfy

Murray’s law is still the unique global minimizer of dissipation under fixed flow Q̃kl. Let

us enumerate all the links with zero flows by k1l1, ..., knln. We have n < E where E is

the number of edges since if all the flows are zero the network will already satisfy the

Murray’s law (3.27) with a = 0. It suffices to show that any network with κkili > 0 for

some i ∈ {1, ..., n} cannot be a global minimizer. Then we can restrict ourselves on the

surface κk1l1 = · · · = κknln = 0 and do the same calculation (when Q̃kl = 0 ∀〈k, l〉 = 1

the network already satisfies the Murray’s law with the constant a = 0, so this case can be

excluded). However the result is immediate in this case because if we set κkili = 0 ∀i ∈ I

and scale the rest of the conductances up by a multiplicative constant we will strictly reduce

the dissipation, so it cannot be a global minimizer.

Now we fix the conductances κkl and change the flows in order to satisfy Kirchhoff’s laws.

We claim that among all the flows that satisfy conservation of mass and flow boundary

conditions, i.e.
∑

l,〈k,l〉=1 Qkl = 0 if k /∈ P ∪ F and
∑

l,〈k,l〉=1Qkl − qk = 0 if k ∈ F the
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Kirchhoff flow minimizes the function (3.24) with κkl fixed. Then since the original flow Q̃kl

lies in this category we can show

∑
k>l,〈k,l〉=1

Q2
kl

κkl
− 2

∑
k∈P

pk
∑

l : 〈k,l〉=1

Qkl ≤
∑

k>l,〈k,l〉=1

Q̃2
kl

κkl
− 2

∑
k∈P

pk
∑

l : 〈k,l〉=1

Q̃kl (3.39)

which finishes the proof. To see this we can impose the Lagrange multipliers for conservation

of mass and flow boundary conditions on function (3.24):

Θ =
∑

k>l,〈k,l〉=1

Q2
kl

κkl
− 2

∑
k∈P

pk
∑

l,〈k,l〉=1

Qkl −
∑
k/∈P

λk

 ∑
l,〈k,l〉=1

Qkl − qk

 (3.40)

where λk are Lagrange multipliers (for convenience we set qk = 0 if k /∈ P ∪F). To minimize

this function we take derivatives and set them to zero:

0 =
∂Θ

∂Qkl

=
2Qkl

κkl
− (λk − λl) (3.41)

and we define λk = 2pk if k ∈ P . If we apply conservation of flux and flow boundary

condition on k /∈ P in terms of λk’s, i.e. substituting Qkl’s by λk’s using Equation (3.41),

and impose λk = 2pk for k ∈ P , then λk’s satisfy the exact same equations as the pressure

under Kirchhoff’s laws. We know from Section 3.3 that if P 6= φ then the pressure has a

unique solution; otherwise the pressure is determined up to an additive constant, which has

no effect on the flows. Therefore the flows Qkl’s always have a unique solution. To show

that Kirchhoff flow is a global minimum of the complementary dissipation (3.24) notice that

now the conservation of mass and flow boundary condition constraints might not give us a

compact set, so there is no boundary. However f has quadratic growth in flow through any

link, so we can find M > 0 s.t. f > 2b whenever |Qkl| > M for any 〈k, l〉 = 1, where b is

the value of the complementary dissipation f for Kirchhoff flow. Then since f has a global

minimum in the compact set |Qkl| ≤ M 〈k, l〉 = 1 and it cannot be on the boundary it

will have to be the Kirchhoff flow, which establishes that the Kirchhoff flow is the unique

global minimizer of the complementary dissipation (3.24) given fixed conductances κkl, which

finishes the proof.
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3.7 Proof of Theorem 3.4.2

Proof. Consider a physical network that contains a loop, e, with at least 3 points, i.e.

k1, ..., kn with 〈ki, ki+1〉 = 1, κkiki+1
> 0 ∀1 ≤ i ≤ n (we set kn+1 = k1) and n ≥ 3, and

let C = {(k1, k2), ... , (kn−1, kn), (kn, k1)} be the set of ordered pairs denoting all the edges in

the loop. Without loss of generality we can assume that the loop does not intersect itself, i.e.

|{k1, ..., kn}| = n; otherwise we can choose a non-selfintersecting subloop from it and proceed

with the subloop. First we assume that Qk1k2 , ..., Qknk1 are not all the same. We know from

Section 3.6 that adjusting conductances according to Murray’s law under material constraint

will decrease the dissipation without changing the pressure work term in the complementary

dissipation function (3.24) and that the resulting network will remain physical, so we can

decrease the complementary dissipation by adjusting the conductances on the loop according

to Murray’s law with the material on the loop fixed. Therefore without loss of generality we

can assume that ∃a > 0 s.t. κ̃kiki+1
= a

|Q̃kiki+1
|
4
3

d
2
3
kl

∀1 ≤ i ≤ n. Now we consider adding in a

loop current Q, that is we add the same current Q to each edge in the loop, and adjust the

conductances by Murray’s law under material constraint, i.e. set

Qkl = Q̃kl +Q and κkl = µ
Q

4
3
kl

d
2
3
kl

∀(k, l) ∈ C (3.42)

where

µ =
K2

loop

(
∑

(k,l)∈C Q
2
3
kld

2
3
kl)

2
, Kloop

.
=
∑

(k,l)∈C

κ̃
1
2
kldkl (3.43)

(we say (k, l) ∈ C if the ordered pair (k, l) = (kiki+1) for some 1 ≤ i ≤ n). Notice that

for any Q ∈ R the new flows Qkl, (k, l) ∈ C along with the original flows outside of the

loop Q̃kl, 〈k, l〉 = 1, (k, l), (l, k) /∈ C still satisfy conservation of mass and flow boundary

conditions since the addition of Q does not change the total flow into any of the vertices. If

{k1, ..., kn}∩P = 0 then changing the flow will only change the dissipation on the loop, and

we only need to consider
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Dloop
.
=
∑

(k,l)∈C

Q2
kl

κkl
. (3.44)

If this is not the case suppose that our network contains a certain number of pressure

vertices: kn1 , ..., knm ∈ P with m ≤ n. For any knj if we restrict the sum
∑

l : 〈knj ,l〉
Qknj l

to

edges in the loop, then it can be written as Qknj ,knj+1 + Qknj ,knj−1 (recall that we assumed

the loop has no self-interception). Since Qkl = Q̃kl+Q we will have Qknj ,knj+1 +Qknj ,knj−1 =

Q̃knj ,knj+1 + Q̃knj ,knj−1 ∀Q ∈ R and the pressure work term does not change. Thus in either

case if we find flows and conductances on the loop that decrease the dissipation on the loop

(3.44) they will decrease the complementary dissipation (3.24) as well. Therefore if we show

that Dloop strictly decreases after adding a loop current (3.42), then the Kirchhoff flow on

the new network will have lower complementary dissipation by the argument in Section 3.6,

a contradiction.

To show this first we calculate

Dloop =
∑

(k,l)∈C

Q2
kl

κkl
=
∑

(k,l)∈C

Q
2
3
kld

2
3
kl

µ
=

(
∑

(k,l)∈C Q
2
3
kld

2
3
kl)

3

K2
loop

. (3.45)

The derivative with respect to Q is (we let A =
∑

(k,l)∈C Q
2
3
kld

2
3
kl for simplicity of notations)

dDloop

dQ
=

2A2

K2
loop

∑
(k,l)∈C

Q
− 1

3
kl d

2
3
kl. (3.46)

Since Qkl are not all the same for (k, l) ∈ C we have A > 0 (and Kloop > 0 by definition) and

the factor 2A2

K2
loop

is always positive, so the sign of derivative depends only on
∑

(k,l)∈C Q
− 1

3
kl d

2
3
kl

in this case (we will discuss the case A = 0 later). Now we show that Qkl = 0 for some

(k, l) ∈ C is always a local minimum. Suppose Qkl = ε where ε→ 0+. Then Q
− 1

3
kl →∞ and

we will have
dDloop
dQ

> 0. The same argument applies to Qkl = −ε so Qkl = 0 is indeed a local

minimum. To show that global minima can only happen when Qkl = 0 for some (k, l) ∈ C

notice that there exists at least one global minimum since Dloop →∞ as Q→ ±∞ and Dloop

is a continuous function of Q. This global minimum may be attained only where
dDloop
dQ

= 0

53



or if the derivative is not defined. For the derivative to be not defined we will have at least

one Qkl = 0, which corresponds to a local minimum with a cusp in Dloop as discussed. Now

suppose
dDloop
dQ

= 0 so B
.
=
∑

(k,l)∈C Q
− 1

3
kl d

2
3
kl = 0 and Qkl 6= 0 ∀(k, l) ∈ C. Then we can take

the second derivative:

d2Dloop

dQ2
=

8AB2

3K2
loop

− 2A2

3K2
loop

∑
(k,l)∈C

Q
− 4

3
kl d

2
3
kl < 0 (3.47)

since by assumption Qkl 6= 0 ∀(k, l) ∈ C. Thus the local extrema with Qkl 6= 0 ∀(k, l) ∈ C

are all local maxima, and a global minimum will happen only if ∃(k, l) ∈ C s.t. Qkl = 0.

Now we fix the conductances κkl ∀(k, l) ∈ C and the original conductances outside the loop

κ̃kl ∀(k, l), (l, k) /∈ C and change the flow to Kirchhoff flow. If this is a physical network then

as we have seen in Section 3.6 this process strictly decreases the complementary dissipation

if the flow is not already the Kirchhoff flow, and the proof finishes since the step of adding

a loop current Q strictly decreases the dissipation on the loop and thus the complementary

dissipation since a loop cannot be a global minimizer.

It remains to show that the resulting network is a physical network. Suppose for con-

tradiction that after adding a loop current Q we can produce a non-physical connected

subnetwork Gs of {κkl} by deleting the zero flux edges (when (k, l) /∈ C let κkl = κ̃kl

be the original conductance since the procedure (3.42) does not change conductances out-

side of the loop). Similar to the proof in Section 3.6 it suffices to show that the original

flow {Q̃kl} satisfies
∑

k∈Gs
∑

l : 〈k,l〉=1 Q̃kl =
∑

k∈Gs
∑

l : 〈k,l〉=1,l∈Gs Q̃kl since the non-physical

network assumption implies
∑

k∈Gs
∑

l : 〈k,l〉=1 Q̃kl =
∑

k∈F∩Gs qk 6= 0, contradicting that∑
k∈Gs

∑
l : 〈k,l〉=1,l∈Gs Q̃kl = 0 . To establish the equality we split the sum into the parts

k ∈ Gs\e and k ∈ Gs ∩ e where e = {k1, ..., kn} is the set of vertices in the loop. The

equality
∑

k∈Gs\e
∑

l : 〈k,l〉=1 Q̃kl =
∑

k∈Gs\e
∑

l : 〈k,l〉=1,l∈Gs Q̃kl holds because for k ∈ Gs\e

any edge connecting it does not lie in C, so 〈k, l〉 = 1, l /∈ Gs implies 0 = κkl = κ̃kl and

Q̃kl = 0. When k ∈ Gs ∩ e we will have to consider connected components of Gs ∩ e

of {κkl} restricted in the loop C. Let G1, ..., Gm,m ≤ n be those connected components,

i.e. if k ∈ Gi, l ∈ Gj, i 6= j then there is no path k = l1, ..., lh = l with (li, li+1) or
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(li+1, li) ∈ C, κlili+1
> 0 ∀1 ≤ i ≤ h − 1. Now consider a specific Gi and let k

(i)
1 , k

(i)
2 be

its two end vertices (the only two vertices that are connected to only one vertex in Gi by

edges in C), with l
(i)
1 , l

(i)
2 be the neighboring vertices in the loop that are not in Gi, i.e.

(k
(i)
1 , l

(i)
1 ), (l

(i)
2 , k

(i)
2 ) ∈ C, l(i)j /∈ Gi, j = 1, 2 (the order switching comes from the orientation

of the edges). Then
∑

k∈Gi

∑
l : 〈k,l〉=1 Q̃kl =

∑
k∈Gi

∑
l : 〈k,l〉=1,l∈Gs Q̃kl +

∑
j=1,2 Q̃k

(i)
j l

(i)
j

since

again we do not have to consider flows on edges that are not in the loop. Now the sum∑
j=1,2 Q̃k

(i)
j l

(i)
j

= 0 because κ
k
(i)
j l

(i)
j

= 0, j = 1, 2 indicates that Q̃
k
(i)
1 l

(i)
1

= −Q̃
k
(i)
2 l

(i)
2

since this

is the only circumstance that an addition of a loop current eliminates both edges (the minus

sign again comes from the orientation of the edges). Therefore
∑

k∈Gs∩e
∑

l : 〈k,l〉=1,l∈Gs Q̃kl =∑m
i=1

∑
k∈Gi

∑
l : 〈k,l〉=1,l∈Gs Q̃kl =

∑m
i=1

∑
k∈Gi

∑
l : 〈k,l〉=1 Q̃kl =

∑
k∈Gs∩e

∑
l : 〈k,l〉=1 Q̃kl and

the non-physical network hypothesis leads to a contradiction.

Now we discuss the remaining case Q̃kl = Q0 ∈ R ∀(k, l) ∈ C. In this case we must

have Q0 = 0 since otherwise when Q0 > 0 we will have pk1 > pk2 > · · · > pkm > pk1 ,

a contradiction, and similarly for Q0 < 0. By assumption the network has at least one

edge that has flow in it and does not comprise the loop, i.e. there is an edge kl such that

(k, l), (l, k) /∈ C and Qkl 6= 0. Since the loop carries no flow we can set κkl = 0 ∀(k, l) ∈ C

without changing the complementary dissipation. To show that adding these materials back

to edges with flows in them strictly decreases the complementary dissipation we prove a

generalized Rayleigh’s principle that allows for Dirichlet boundary conditions.

Lemma 3.7.1 (Rayleigh’s Principle). The complementary dissipation (3.24) monotonically

decreases with the conductance of each edge, i.e. if we let {κ̃kl}, {Q̃kl} be the sets of con-

ductances and flows that satisfy all boundary conditions and {κkl}, {Qkl} be another sets of

conductances with Qkl being the Kirchhoff flows, and they are on the same network with the

same boundary conditions, then

κkl ≥ κ̃kl ∀〈k, l〉 = 1⇒
∑

k>l,〈k,l〉=1

Q2
kl

κkl
−2
∑
k∈P

pk
∑

l : 〈k,l〉=1

Qkl ≤
∑

k>l,〈k,l〉=1

Q̃2
kl

κ̃kl
−2
∑
k∈P

pk
∑

l : 〈k,l〉=1

Q̃kl.

(3.48)

Moreover, if κkl > κ̃kl on an edge with Q̃kl 6= 0, then the inequality holds.
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Proof. To show the inequality we change the conductances and flows in two steps (we can

without loss of generality change Q̃kl to the Kirchhoff flows corresponding to κ̃kl since from

Section 3.6 we know doing so reduces the complementary dissipation). First we change the

set of conductances from {κ̃kl} to {κkl} and show that the complementary dissipation with

the non-Kirchhoff flows Q̃kl decreases. Then we relax the flows to Kirchhoff flows Qkl, which

we know decreases the complementary dissipation from Section 3.6. In the first step we

can ignore the pressure work term
∑

k∈P pk
∑

l : 〈k,l〉=1 Q̃kl since the flows remain unchanged

and the pressures are prescribed. Then the fact κkl ≥ κ̃kl implies that
∑

k>l,〈k,l〉=1

Q̃2
kl

κkl
≤∑

k>l,〈k,l〉=1

Q̃2
kl

κ̃kl
, which finishes the proof. The strict inequality comes from that

Q̃2
kl

κkl
<

Q̃2
kl

κ̃kl
if

Q̃kl 6= 0 and κkl > κ̃kl.

If we let {κ̃kl} to be the set of original conductances but with κ̃kl = 0 ∀(k, l) ∈ C, and

{Q̃kl} be the set of the original flows, since
∑

k>l,〈k,l〉=1 κ̃
1
2
kldkl < K we can find a new set of

conductances {κkl} with κkl ≥ κ̃kl,
∑

k>l,〈k,l〉=1 κ
1
2
kldkl = K,κkl = 0 ∀(k, l) ∈ C, and ∃〈k, l〉 = 1

such that κkl > κ̃kl, Q̃kl 6= 0, then by Rayleigh’s principle the complementary dissipation of

{κkl}, {Qkl} will be strictly less than that of {κ̃kl}, {Q̃kl} and the proof follows.

3.8 Proof of Theorem 3.4.3

Proof. To prove that there is no path connecting 2 pressure vertices with the same pressure

suppose there is a path k1, ..., kn with 〈kiki+1〉 = 1, κkiki+1
> 0 ∀i = 1, ..., n − 1, n ≥ 2, and

k1, kn ∈ P with pk1 = pkn . As in Section 3.7 we can redistribute the conductances in the

path to satisfy Murray’s law with the material in this path held constant without increasing

the complementary dissipation (3.24). Without loss of generality We may assume that this

path does not self-intersect because we can otherwise extract a subpath that does not self-

intersect. Since we will only adjust flow and conductances on the path we can again restrict

our attention to contribution of this path to the complementary dissipation:

fpath =
∑

(k,l)∈C

Q2
kl

κkl
− 2

∑
k∈Cp

pk
∑

l : 〈k,l〉=1,l∈Cn

Qkl. (3.49)
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Here as before we let C be the set of ordered pairs of edges in the path, i.e. C = {(k1, k2), ..., (kn−1, kn)},

and Cp be the set of all the pressure vertices in the path, and Cn = {k1, ..., kn}. Now we add

in a path current Q that resembles the loop current in Section 3.7, i.e.

Qkl = Q̃kl +Q, κkl = µ
Q

4
3
kl

d
2
3
kl

∀(k, l) ∈ C (3.50)

where

µ =
K2

path

(
∑

(k,l)∈C Q
2
3
kld

2
3
kl)

2
, Kpath

.
=
∑

(k,l)∈C

κ̃
1
2
kldkl (3.51)

and Q̃kl, κ̃kl denote the original flow and conductance, which according to Theorem 3.4.1, are

related via Murray’s law. We can see that if k ∈ Cp but k 6= k1, kn then
∑

l : 〈k,l〉=1,l∈Cn Qkl

consists of 2 terms in which the path current Q cancels, so adding path current does not

affect the pressure work terms for these vertices. Similarly the original flows are constants

in the pressure work term and can be ignored if we only wish to tease out the dependence

of fpath. Thus up to an additive constant:

fpath =
∑

(k,l)∈C

Q2
kl

κkl
− 2(pk1 − pkn)Q =

∑
(k,l)∈C

Q2
kl

κkl
= Dpath (3.52)

where the sign comes from our convention that the path current flows out of k1 but flows into

kn. Thus the complementary dissipation reduces to dissipation on the path in this case. Also

notice that adding a path current will not affect the conservation of mass and flow boundary

conditions since it adds no flow to k2, ..., kn−1 and k1, kn are pressure vertices and do not

have prescribed inflow, so if the procedure (3.50) strictly reduces the dissipation on the

loop fpath we can relax the flows to Kirchhoff flows without increasing the complementary

dissipation, which leads to a contradiction. Since Dpath has the same form as Dloop in

Section 3.7 we can prove in the same way that if Qkl are not all the same for (k, l) ∈ C

the global minimum only happens when Qkl = 0 for some (k, l) ∈ C, which leads to a

contradiction, and if Qkl = Q0 ∀(k, l) ∈ C we must have Q0 = 0 or we will have pk1 6= pkn ,

a contradiction. In this case by assumption we have an edge kl with (k, l), (l, k) /∈ C and
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Qkl 6= 0. Then similarly to Section 3.7 we can remove the materials on the path C and

apply Rayleigh’s principle to decrease the complementary dissipation, which finishes the

argument. One last issue needed to be addressed is whether cutting this path will result

in a non-physical network. As in Section 3.7 we can define connected segments in the path

after the path is cut and suppose for contradiction that there is a subnetwork connected

to multiple connected segments. If this segment contains k1 or kn then there is at least

one pressure vertex and this subnetwork is physical. Otherwise this subnetwork connects to

only connected segments in the middle which have the same original flows into and out of

them, and we have 0 =
∑

k∈Gs
∑

l : 〈k,l〉=1,l∈Gs Q̃kl =
∑

k∈Gs
∑

l : 〈k,l〉=1 Q̃kl 6= 0 where Gs is

the non-physical subnetwork after cutting the path, a contradiction.

3.9 Proof of Proposition 3.4.2

Proof. Suppose we start with a physical network that globally minimizes the dissipation

(4.15) under the material constraint (3.25) with n
.
= |P| ≥ 2 (otherwise there is nothing

to prove). Since the number of paths connecting two different pressure vertices is finite we

can assume that there is a finite number of paths linking pressure vertices. On any path we

can decrease the dissipation restricted on the path by adding a path current and adjust the

conductances according to Murray’s law as in Section 3.8 in the case that not all the flows

(with sign determined by the path direction) are the same, and by simply reducing all the

flows to zero if they all agree and eliminating the whole path while scaling up the rest of

the network by a multiplicative constant to meet the material constraint (3.25), given that

this path does not comprise all the network. This procedure strictly reduces the dissipation

since in the case not all the flows on the path are the same we will cut a proper set of them

as in Section 3.8, which strictly decreases the dissipation. In case where all the flows are

the same on the path, because |F| 6= φ, a flow vertex cannot lie on this path (otherwise the

flows will not all be the same), so there will always be an edge not in this path with nonzero

flow. Thus we can eliminate each path one at a time, strictly decreasing the dissipation while

still satisfying the conservation of mass and flow boundary conditions and also the network
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remaining physical so long as we are not taking out the last path, in which case we have to

worry about this path comprising the whole network.

Up to now we do not solve for the flows according to Kirchhoff’s laws since this might

not decrease dissipation (it is only guaranteed to decrease the complementary dissipation).

Notice that while we might take out multiple paths at a time in case of several paths sharing

common links, the number of paths will never increase since no new edge with positive

conductance can be created in this process. If we never reach the situation where we need to

take out the last path, which is possible because eliminating one path may also disconnect

others, then we do not have to worry about the path we are taking out might comprise the

whole network (since there are other distinct paths), and we reach a network with connected

components G1, ..., Gm with m ≥ n since each component can contain at most one pressure

vertex. Then the complementary dissipation function becomes

f =
∑

k>l,〈k,l〉=1

Q2
kl

κkl
− 2

n∑
k=1

pk
∑

l : 〈k,l〉=1

Qkl (3.53)

if we without loss of generality let k = 1, ..., n be the pressure vertices in G1, ..., Gn respec-

tively. Since Qkl = 0 when k ∈ Gi, l ∈ Gj when i 6= j we can isolate the contribution of a

component Gi to the complementary dissipation, starting from:

0 =
∑

k,l∈Gi,〈k,l〉=1

(pk − pl)κkl =
∑
k∈Gi

 ∑
l∈Gi : 〈k,l〉=1

Qkl



=
∑
k∈Gi

 ∑
l : 〈k,l〉=1

Qkl

 =
∑

l : 〈i,l〉=1

Qil +
∑

k∈Gi∩F

qk. (3.54)

Thus

f =
∑

k>l,〈k,l〉=1

Q2
kl

κkl
+ 2

n∑
i=1

pi
∑

k∈Gi∩F

qk = D + C (3.55)

where C is constant for any flow field Qkl that satisfies conservation of mass, the prescribed

flow boundary condition, and Qkl = 0 whenever κkl = 0, which is necessary for f < ∞
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thus necessary for Qkl being a global minimizer of f when κkl’s are fixed. So, if Qkl is

not already the Kirchhoff flow and we change the current Qkl’s to the Kirchhoff flow (the

network is physical according to the same argument in Section 3.8) then we will decrease

the complementary dissipation, which is now equivalent to decreasing dissipation. Thus

flow adjusting gives us a network with strictly smaller smaller dissipation, contradicting our

assumption that we were starting with a global minimizer.

To complete our proof we must consider the case that we do need to disconnect the

last path and this last path has constant flow on it. This path cannot comprise the whole

network because if it were to comprise the entire network from the assumption F 6= φ we

must have ki ∈ F for 1 < i < N where N denotes the number of vertices in this path (that

is all the path vertices between i = 1 and i = N , exclusively, are flow vertices) and there

is at least one such interior vertex, or there is an isolated k ∈ F that does not connect to

any other vertex, which cannot be true for a physical network. Then
∑

l : 〈ki,l〉=1Qkil = 0, a

contradiction to the fact that ki is a flow vertex. Thus we can disconnect the last path in

any case and the argument goes through as before to a contradiction.

3.10 Proof of Proposition 3.4.3

Proof. The material-invariance property of minimally dissipative network under material

constraint (3.25) means that all the global minimizers will have the same dissipation if their

materials are scaled to be the same. To see this suppose {κkl}, {κ′kl} are minimally dissipative

networks with material K,K ′. Consider the network {βκkl} with β = (K
′

K
)2, so that {βκkl}

has material K ′. Then since {κ′kl} is a minimally dissipative network with material K ′ we

have

D

β
.
=

∑
k>l,〈k,l〉=1

Q2
kl

βκkl
≥

∑
k>l,〈k,l〉=1

Q
′2
kl

κ′kl
= D′. (3.56)

Similarly if we define β′ = ( K
K′

)2 = 1
β

we have
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D′

β′
≥ D ⇒ D′ =

D

β
(3.57)

and the networks {κkl}, {κ′kl} have the same dissipation if their materials are scaled to be

the same. This implies that if {κ̂kl} is a minimally dissipative network with material K = 1,

then {βκ̂kl} is a minimally dissipative network of any K > 0 with β = K2. While {κ̂kl} is not

unique since all the minimally dissipative networks with K = 1 have the same dissipation it

does not matter which network we use. Now consider a minimally dissipative network {κkl}

with material penalty under coefficient a (3.26). Suppose this network has material K. The

network must be a minimally dissipative network with material constraint K. If it were not

also the minimally dissipative network, then the minimally dissipative network would have

a smaller value of Θ in Equation (3.26). Thus we can assume κkl = βκ̂kl where β = K2. A

concern is that global minimizers of (3.26) under the same coefficient a may have different

amounts of material. However since they all have the form {βκ̂kl} for some unit network

{κ̂kl} we can calculate

Θ =
∑

k>l,〈k,l〉=1

Q̂2
kl

βκ̂kl
+ a

∑
k>l,〈k,l〉=1

β
1
2 κ̂

1
2
kldkl =

D̂

β
+ aβ

1
2 . (3.58)

If {βκ̂kl} is truly a global minimizer the derivative must vanish since Θ→∞ as β → 0+,∞,

i.e.

0 =
dΘ

dβ
= − D̂

β2
+
a

2
β−

1
2 ⇒ β = (

2D̂

a
)
2
3 . (3.59)

Since β = K2 where K is the material of the network {βκ̂kl} we have

K = (
2D̂

a
)
1
3 (3.60)

and in particular, all networks must have the same value of K. This bijection K(a) be-

tween material constraint and coefficient of material penalty shows that the two different

formulations are equivalent for minimally dissipative network under the material-invariance

assumption.
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CHAPTER 4

Microvascular Networks with Uniform Flow

This chapter was based on: Shyr-Shea Chang and Marcus Roper. “Microvascular networks

with uniform flow.” Journal of Theoretical Biology, 462, 48–64, 2019.

4.1 Introduction

The large vessels within animal ardiovascular networks are widely believed to be shaped

primarily by the necessity of minimizing the cost of transport. This minimization leads to

Murray’s law for the relationship between a vessel’s radius and the flow of blood through it,

which has been verified in dog intestine microvasculature and plant bundle network [She81,

MSA03]. The idea that networks should be organized to optimize transport costs for given

amount of material investment provides a powerful tool for understanding the organization

of networks, and underpins use of CFD models to optimize vascular geometries in cardiac

surgery [MBR09], as well as studies explaining the scaling of metabolic needs with organism

size [WBE97, GBW01]

Work on cardiovascular network optimization has focused primarily on the largest vessels

in the network. Do the same optimization principles and constraints apply for finer vessels –

arterioles and capillaries? Indeed if we divide the cardiovascular network into levels, we can

estimate the total dissipation within each level as the product of the pressure drop between

the level and the next and the total volume of blood passing through all vessels in that level

per unit time. Now since we expect the same volume blood to be cleared through every level

of the network in its passage from the heart to the finest vessels of the network, pressure

drops alone become a proxy for the relative dissipations occurring at different levels. In the
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pressure measurements summarized in Guyton and Hall [Hal15], we find the pressure drop

from the arteriole level to the capillary level (∼ 60 mmHg) accounts for half of the total drop

from the heart to the capillary level (∼ 120 mmHg).

Mathematical modeling of microvascular networks has illuminated how networks with

statistically predictable properties may emerge from the growth of vessels following rules

for oxygen taxis and self avoidance [LPS01, HCR12], the disconnection and reconnection of

capillaries [NEL06], and the remodeling of small vessels in response to the blood flows they

carry [CJL12]. However, despite the success of these mechanistic models for network forma-

tion, there are, to our knowledge, no works that have identified physical principles that may

explain microvascular network organization and vessel geometries in the same way that Mur-

ray’s law describes the largest vessels within the network. For example, while Hu and Cai

[HC13] have hypothesized that capillary networks minimize transport costs, we are aware of

no data that shows that principles of dissipation minimization extend to these vessels. Indeed

microvascular networks typically contain abundant loops [COA03, WHY14, BTK13, SRB15]

(also see Fig. 4.1), but minimally dissipative networks, when subject to constant loads, can be

proven to never contain loops [Dur07, CR18], at least when supplying steady flows of blood.

Hence, the minimization of dissipation alone can not explain organization in microvascular

networks [HVS96, PHL10]. Our study of zebrafish trunk vasculature suggests that blood

flows are uniformly distributed among fine vessels at the cost of transport efficiency, that is

red blood cells are delivered at identical rates to the finest vessels of the trunk (i.e. the in-

tersegmental vessels) [CTB17]. Maintaining uniform flows across each vessel requires precise

tuning of vessel radii. To show that tuning is needed we compare the real zebrafish trunk

flow with flows in a ensemble of theoretical zebrafish trunk vasculatures. These theoretical

vasculatures are created by simply permuting the radii measured in the real zebrafish trunk

vessels. In all of 10, 000 theoretical trunk vasculatures, we found that the partitioning of

blood flows between finest vessels, measured by the coefficient of variation (CV) of flow was

less uniform than in the real zebrafish trunk (Fig. 4.2). The same analysis reveals a trade-off

between transport efficiency and flow uniformity: All of the simulated networks had lower

dissipation than the real network, and in general dissipation decreased as CV of flows in-
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creased. Thus, uniform flow is bought at the cost of decreased transport efficiency. Why

might microvascular networks, like the zebrafish trunk, be adapted for uniform flow? Blood

flow may serve as a proxy for oxygen perfusion; since red blood cells carry oxygen that then

diffuses from the vessel into the tissue that surrounds it, uniform delivery of red blood cells to

vessels may be an important precondition for uniform perfusion (but see Discussion). Indeed

when we simulated oxygen perfusion in a model zebrafish trunk in which every fine vessel

was assigned the same radius, we found that oxygen entering the trunk from the blood was

strongly concentrated around the fine vessels closest to the fish’s heart [CTB17]. The evolu-

tionary adaptation to vessels to create oxygen perfusion [MM07] may result in microvascular

networks with optimally uniform blood flow, but a detailed comparison between networks

with uniform blood flow with real microvascular networks is lacking. To determine whether

optimization for uniform flow can explain the structure of real microvascular networks, we

develop in this chapter an algorithm for generating networks that optimize arbitrary func-

tions of flow, going beyond previous works (summarized in Table 4.1) that have computed

networks that optimize transport costs (and in the case of [KSM10] resistance to damage).

To find the uniform flow networks we devise a gradient descent algorithm with Lagrange

multipliers to tune the hydraulic conductances of vessels and derive uniform flow networks

under fixed network topologies. At each step gradient descent algorithms calculate the opti-

mal direction to perturb the variables in a system to optimize a target function, and approach

the optimum after several small steps [CZ13]. Lagrange multipliers are used widely to solve

constrained optimization problems [NR18]. In our algorithm they are implemented to im-

pose the laws of flow conservation in the network and to constrain the cost of maintaining

the network. We use the algorithm to study uniform flow networks (1) on a model capil-

lary bed consisting of a rectangular grid with single inflow (arteriole) and outflow (venule)

(Fig. 4.1A), and (2) on a model of the zebrafish trunk that includes both main trunk vessel

(dorsal aorta) and the fine (intersegmental) vessels that branch off from it (Fig. 4.1B).

In particular, we compare the morphologies of minimally dissipative and uniform flow

networks. We find that uniform flow capillary beds contain loops that are not present in min-

imally dissipative networks. We are able to analytically show that, in a class of networks we
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call stackable, the blood flows in uniform flow networks agree with those in uniform conduc-

tance networks (See Section 4.3.2), hence they provably contain loops. Stackable networks

include other popular models for capillary beds branching trees and honeycomb grids, as well

as square grids. We show that, in zebrafish trunk topology, the real conductances of vessels

are in almost exact accordance with the conductances required to create uniform flow. These

results suggest that principle of uniform flow explains the zebrafish trunk network geometry.

By contrast, minimization of dissipation produces networks with unrealistic morphologies.

Our algorithm will then allow the uniform flow to be evaluated as an optimization principle

for general microvascular networks.

To explore how uniform flow networks may yet be constrained by transport costs, we

calculate networks in the zebrafish trunk while constraining both the total cost of the vessel

material and the blood flow dissipation. When the relative importance of transport cost is

gradually increased, we observed an abrupt change in both the flow uniformity and network

morphology, resembling a phase transition: in particular, up until dissipation reaches a

critical point, the optimal network is apparently unconstrained by dissipation. Thus even

when a network is actually subject to multiple constraints, it may apparently be organized

to ignore all but a subset of these constraints. Thus optimizing a single target function (e.g.

dissipation) may be endowed with surprising power to predict shapes of real networks that

are, in reality, targeting multiple functions [Mur26b].

The rest of this chapter is organized as follows: In Section 4.2.1 we introduce the math-

ematical notations for describing microvascular networks. In Section 4.2.2 we describe a

gradient descent algorithm to find general optimal networks. In Sections 4.2.3 – 4.2.7 we

write down the detailed formulation of the algorithm when finding minimally dissipative

and uniform flow networks under different topologies and constraints. In Section 4.3.1 we

use the algorithm to calculate minimally dissipative networks and show that they agree with

previous work. In Section 4.3.2 we compare minimally dissipative and uniform flow networks

on the capillary bed model (a square grid). In Section 4.3.3 we extend our results to uniform

flow zebrafish trunk networks, and show that the principle of uniform flow produces networks

that match experimental data. In Section 4.3.4 we impose both material cost and dissipa-
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tion as constraints on uniform flow networks, and describe a phase transition in network

morphology that occurs as the relative weight of the two constraints is varied.

Target functional Constraint Method∑ Q2
kl

κkl

∑
κγkl local topological optimization

[Dur06], global optimization

[BM07], structural adaptation

[HC13], growth and structural

adaptation [RK16], Section 4.3.1∑ Q2
kl

κkl
with damage

and flow fluctuations

∑
κγkl global optimization [KSM10],

fluctuating source [Cor10]∑
1
2
Q2
kl

∑
κγkl Section 4.3.2∑

1
2
(Qkl − Q̄)2

∑
κγkl Section 4.3.3∑

1
2
Q2
kl

∑(
κγkl + a

Q2
kl

κkl

)
Section 4.3.4∑

1
2
(Qkl − Q̄)2

∑(
κγkl + a

Q2
kl

κkl

)
Section 4.3.4

Table 4.1: Comparison between previous works on optimal transport networks and the results

presented in this work. Previous works focus on optimizing dissipation either alone or in

combinations with damage resistance or flow fluctuations (first two rows). They constrain

the network by imposing a fixed material cost of vessels. Our work agrees with previous

work on the morphologies of minimally dissipative networks under material constraint (first

row), but extends the classes of the target functions and constraints. Specifically we study

uniform flow networks, under both material constraint and a Murray constraint that includes

dissipation (last four rows).

67



Figure 4.1: Examples of complex microvascular networks and the corresponding model net-

works. (A) Capillary bed in salamander skin [MJ79]. (B) Microvascular network of zebrafish

7.5 days post fertilization (dpf) embryo [IHW01, CTB17].

4.2 Methods

4.2.1 Physical modeling and notation

First we mathematically frame the problem of finding optimal networks for general network

topology. Consider an undirected graph (V , E) with V vertices k = 1, . . . , V . For any given

2 vertices k, l we write 〈k, l〉 = 1 if there is a edge linking k and l and 〈k, l〉 = 0 if k and l are

not linked. Each edge in the network is assigned a conductance κkl; the flow Qkl in the edge

is then determined by Qkl = (pk − pl)κkl, where pk and pl are respectively the pressures at

the vertices k and l. In typical microvascular networks vessel diameters are on the order of

10 µm, and blood flow velocities are on the order of 1 mm/s, so the Reynolds number, which

represents the relative importance of inertia to viscous stresses, is Re = UL/ν ≈ 4 × 10−3,

using the viscosity of whole blood ν ≈ 2.74 mm2/s. Since Re � 1 inertial effects may be

neglected, and the conductances of individual vessels will be obtained by Hagen–Poiseuille’s

68



Figure 4.2: Zebrafish trunk microvascular network (red square) optimizes uniform flow in fine

vessels at a high transport cost, compared to untuned networks (blue dots). The untuned

networks are obtained by randomly permuting the conductances of fine vessels in a real

zebrafish trunk network [CTB17]. The transport cost is characterized by dissipation [BM07,

Ach90], and the flow variation is quantified by the coefficient of variation of flows in the fine

vessels.

law [Ach90]:

κ =
πr4

8µ`
(4.1)

where κ is the conductance, µ is the blood viscosity, ` is the vessel length, and r is the

vessel radius. In ascribing a well-defined pressure to each vertex within the graph, and

applying the Hagen–Poiseuille law to compute edge flows from pressures, we assume that

there are unidirectional flows within each vessel, ignoring the entrance and exit effects that

occur when vessels branch or merge [CTB17]. In capillary networks hydraulic conductances

might change with concentration of red blood cells, a physiological effect known as Fahraeus–

Lindqvist effect [PS05], which can change our expression here. Although our method can

be generalized to include this effect (see Discussion), we will use our default model (4.1)

throughout this work.

The networks we consider consist of vertices and predescribed edges where conductance
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may be positive (or zero if required by the algorithm, in which case the vessel is pruned)

along with two kinds of boundary conditions on vertices (Fig. 3.3). At any vertex in the

network we can either impose Kirchoff’s first law (conservation of flux)

∑
l : 〈k,l〉=1

Qkl =
∑

l : 〈k,l〉=1

κkl(pk − pl) = qk ∀1 ≤ k ≤ V , (4.2)

where qk is the total flow of blood entering the network (or leaving it if qk < 0) at vertex

k, or we impose pk = p̄k (i.e. pressure is specified). We say a vertex is in VD = P (or is

Dirichlet) if pressure is specified, or in VN = F ∪ N (is Neumann) if Kirchhoff’s first law

is imposed (possibly with inflow or outflow). This system of V linear equations forms a

discretized Poisson equation with Neumann and Dirichlet boundary conditions imposed on

selected vertices, and the flow is uniquely solvable if and only if each connected component

of the network (connected by edges with positive conductances) either has at least one

Dirichlet vertex or
∑

k∈VN qk = 0 with sum restricted to the component [LP16, CR18]. The

uniform flow network has the flows on all edges being as uniform as possible, that is the

flows κkl(pk − pl) on some subset of the edges are close to being identical (See Section 4.2.4

for a detailed discussion). However, to understand the tradeoffs between perfusion and other

network objectives, we may also add e.g. total viscous dissipation as an additional cost.

We therefore have the general goal of how to tune the conductances within the network to

minimize arbitrary predetermined objective function f({pk}, {κkl}), where {pk} means the

set of all pk’s and {κkl} denotes the set of all κkl’s. Previous works (see Table 4.1) have shown

how to generate networks that minimize the total viscous dissipation occurring within the

network: f({pk}, {κkl}) =
∑

k>l,〈k,l〉=1 κkl(pk − pl)2.

This optimization is complicated by the coupling of the pressures {pk} and conductances

{κkl} through Equations (4.2). Since the relationship between {pk} and {κkl} is holonomic,

we may incorporate it into a functional via Lagrange multipliers. Lagrange multipliers are

a widely used method to solve optimization problems when the variables are subject to

holonomic constraints (i.e. must solve some differentiable equation). They allow us to treat

the variables as if they were independent for the purpose of calculating partial derivatives,

at the cost of introducing new auxiliary variables – one for each constraint [CZ13]. The
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functional that we want to minimize in this chapter will take the form:

Θ =f({pk}, {κkl}) + λ

 ∑
k>l,〈k,l〉=1

(
aκkl(pk − pl)2 + κγkld

1+γ
kl

)
−K


−
∑
k

µk

 ∑
l,〈k,l〉=1

κkl(pk − pl)− qk

 . (4.3)

which has VN + 1 Lagrange multipliers: a set {µk|k ∈ VN} enforcing Kirchoff’s first law on

Neumann vertices (the set VN with |VN | = VN), and a single multiplier λ that constrains

the amount of energy that the organism can invest in pushing blood through the network

and in maintaining the vessels that make up the network. The transport constraint is

made up of two terms:
∑
κkl(pk − pl)2 represents the total viscous dissipation within the

network, while
∑
κγkld

γ+1
kl represents the total cost of maintaining the network (the material

constraint) [Mur26b, BM07, KSM10], with dkl being the vessel length. K is the total amount

of material and dissipation to which the network should adhere. The exponent γ can be

altered to embody different models for the cost of maintaining a network. In our default

model (Equation (4.1)) conductance of an edge is proportional to the fourth power of its

radius, so if the cost of maintaining a particular vessel is proportional to its surface area

(and thus to its radius), then we expect γ = 1/4, while if the cost is proportional to volume

then γ = 1/2. In general we need γ < 1 to produce well posed optimization problems

(otherwise, the cost of building a vessel can be indefinitely reduced by subdividing the vessel

into finer parallel vessels). We initially adopt the same material cost function definition

as was used in previous work, i.e. a = 0 [KSM10, BM07], but in the latter part of the

chapter we will incorporate a parameter a > 0 that represents the relative importance

of network maintenance and dissipation to the cost of maintaining the network. When

presenting optimal networks, we will discuss the effect of varying a (as well as asymptotic

limits in which a → 0) upon the network geometry. Since Murray’s work on dissipation-

minimizing networks [Mur26b, Mur26a] is equivalent to minimizing the constraint function

[CR18], we will adopt the shorthand of calling the network cost term the Murray constraint.

Table 4.1 gives a systematic description of previous work on minimizing functionals across

networks, as well as outlining the new results that will be presented here on the optimization
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of (4.3).

4.2.2 A gradient descent method with extended Lagrange multipliers

At any local minimum of Θ, each of the partial derivatives of (4.3) must vanish. In order

to locate such points, we adopt a gradient descent approach, in which κkl are treated as

adiabatically changing variables. That is: ∂Θ
∂κkl

is calculated, and an optimal perturbation

of the form δκkl = −α ∂Θ
∂κkl

is applied to ensure Θ decreases each time the conductances

in the network are updated. At the same time, the other variables in the system, namely

{pk, µk, λ}, are assumed to vary much more rapidly, to remain at a local equilibrium, so that:

∂Θ

∂pk
=
∂Θ

∂µk
=
∂Θ

∂λ
= 0 . (4.4)

Our ability to perform gradient descent therefore hinges on our ability to solve the system of

2VN + 1 equations (4.4) for each set of conductances {κkl} that the network passes through

on its way to the local minimum. Fortunately it turns out that for general target functions

f only one nonlinear equation in a single unknown variable needs to be solved for to solve

all of the conditions (4.4); the other equations are linear and can be solved with relatively

low computational cost.

Because we will consider multiple variants of the Murray constraint, in what follows we

will write the summand that enforces the Murray constraint in the general form: λg({pk}, {κkl}).

Then the condition that ∂Θ
∂µk

= 0, k ∈ VN , merely enforces the system of mass conservation

statements at each Neumann-vertex in the network (4.2). These equations represent a dis-

cretized form of the Poisson equation and can be solved by inverting a sparse VN×VN matrix

with O(E, VN) entries [LP16]. That is, we write:

Dp = f (4.5)

where fk = qk is the prescribed inflow at Neumann vertices and fk = p̄k, the prescribed
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pressure at Dirichlet vertices. −D is a form of graph Laplacian:

Dkl
.
=



∑
l,〈k,l〉=1 κkl , k = l, k /∈ VD

−κkl, 〈k, l〉 = 1 , k /∈ VD

κ(1), k = l , k ∈ VD

0 , otherwise

(4.6)

where κ(1) = 1. (For any κ(1) 6= 0, D is full rank; we will make use of other positive constant

values for κ(1) later.)

To solve for {µk}, we consider the system of equations ∂Θ
∂pk

= 0, k ∈ VN :

0 =

(
∂f

∂pk
+ λ

∂g

∂pk

)
−

∑
l,〈k,l〉=1

(µk − µl)κkl. (4.7)

If λ, {pk} and {κkl} are all known then these equations again take the form of a discrete

Poisson equation, however, just as with the solution of the pressure equation, these equations

themselves do not admit unique solutions unless a reference value of µk is established. If

VD 6= φ, i.e. if pressure is specified at least one vertex within (V , E), then µk = 0 ∀k ∈ VD

and Eqns. (4.7) admit a unique solution; otherwise the µk’s are determined up to a constant

(see Appendix C). For some forms of target function f and constraint function g, we will

show that µk’s for the minimizer are directly related to the pressures, with no need to solve

the Poisson equation by a separate matrix inversion.

However, to use Equation (4.7) to solve for µk it is still necessary to know the Lagrange

multiplier that enforces the Murray constraint (i.e. λ). The simplest way to derive λ is to

dictate that the variational of the constraint function should vanish when κkl is updated,

since the constraint function should remain constant under changes in conductances, i.e.:

0 =
∑
k/∈VD

∂g

∂pk
δpk +

∑
k>l,〈k,l〉=1

∂g

∂κkl
δκkl (4.8)

(we set δpk = 0 if k ∈ VD) where

δκkl = −α ∂Θ

∂κkl
= −α

(
∂f

∂κkl
+ λ

∂g

∂κkl
− κkl(µk − µl)(pk − pl)

)
. (4.9)

At this point in our calculation {δpk} and {µk} are undetermined. The Lagrange multipliers

{µk} can be solved in terms of the still unknown λ from (4.7) (see Appendix C). The {µk}
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are linear functions of λ since (4.7) is a linear system. To obtain δpk for each k ∈ VN we

calculate the variational in Kirchhoff’s first law:∑
l,〈l,k〉=1

δκkl(pk − pl) + κkl(δpk − δpl) = 0. (4.10)

When written in matrix form, the matrix multiplying {δpk} is again the negative of the

graph Laplacian, −D. Thus {δpk} can be solved in terms of λ so long as the original matrix

system is solvable for {pk}. Since {µk} are linear in λ, {δpk} are also linear in λ, which

implies that the right hand side of Equation (4.8) is linear in λ. Therefore λ can be solved

in closed form from Equation (4.8), and the optimal variation δκkl can be determined from

equation (4.9).

With {pk}, {µk}, and λ solvable given {κkl} we can perform gradient descent using

Equation (4.9) and numerically approach a minimizer. However our descent method has

the following limitations: 1. For finite step sizes α, conductances may drop below 0 when

perturbed according to Equation (4.9). 2. The method only conserves the Murray function

up to terms of O(δκ).

To avoid negative conductances we truncate at a small positive value ε at each step, i.e.

set:

κ
(n+ 1

2
)

kl = max{κ(n)
kl − α

∂Θ

∂κkl
, ε}. (4.11)

To ensure that the constraint is exactly obeyed we then project the conductances {κ(n+ 1
2

)

kl }

onto the constraint manifold g({pk}, {κkl}) = 0, via a projection function:

κ
(n+1)
kl = h(κ

(n+ 1
2

)

kl ) ∀〈k, l〉 = 1, k > l. (4.12)

Throughout this work we consider three possible projection functions: One choice is to

project according to the normal of the constraint surface:

κ
(n+1)
kl = κ

(n+ 1
2

)

kl − β ∂g

∂κkl
({p(n+ 1

2
)

k }, {κ(n+ 1
2

)

kl }), ∀〈k, l〉 = 1, k > l (4.13)

The value of β must be chosen numerically to ensure that g({p(n+1)
k }, {κ(n+1)

kl }) = 0 exactly.

This entails recomputing the pressure distribution {p(n+1)
k } for each β value, and secant

search on β to obtain the root. Another approach we have followed is varying the parameter
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λ. This method has comparable complexity to projection on {κ(n+ 1
2

)

kl }; since the {µk} depend

linearly on λ via Equation (4.7), {κ(n+1)
kl } depends linearly on the parameter λ. However,

just as with the projection method, we must still recompute the {p(n+1)
k } for each trial set

of {κ(n+1)
kl }. Moreover, for some target functions f or constraint functions g, it is difficult to

derive closed-form expressions for λ (i.e. to calculate the partial derivatives ∂f
∂pk

and ∂g
∂pk

). In

this case λ may only be computed numerically, by solving g({p(n+1)
k (λ)}, {κ(n+1)

kl (λ)}) = 0.

A third approach that we have adopted is to simply scale the conductances:

κ
(n+1)
kl = βκ

(n+ 1
2

)

kl , ∀〈k, l〉 = 1, k > l (4.14)

where β is chosen to satisfy the Murray constraint. This method produces theoretically

suboptimal corrections on the conductances, but it is typically easy to compute a value of

β that satisfies the Murray constraint. In particular, under certain boundary conditions,

e.g. pk = p̄, ∀k ∈ VD within each connected component of the network (meaning that

all pressure vertices within a single connected component have the same imposed pressures,

which is trivially true if there is only one Dirichlet vertex in each connected subcomponent of

the graph), a rescaling of the conductances throughout the network leaves the fluxes on each

edge unaffected. For a uniform flow network, this rescaling affects the constraint function g,

but not the target function f .

4.2.3 Calculating minimally dissipative networks

To calculate minimally dissipative networks we set the target function to be the dissipation∑
〈k,l〉=1,k>l κkl(pk − pl)

2 and the constraint to be the total amount of material. Thus the

function to minimize becomes:

Θ =
∑

〈k,l〉=1,k>l

κkl(pk−pl)2 +λ(
∑

〈k,l〉=1,k>l

κγkl−K
γ)−

∑
k/∈VD

µk

( ∑
l,〈k,l〉=1

κkl(pk−pl)−qk
)
. (4.15)

Here we ignore dkl since we assume all the vessels have the same length which may be scaled

to 1 by choice of units, but different vessel lengths can be readily incorporated by adding

dkl back in the following equations. The equations for adiabatic variation of pk and µk are
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derived from

∂Θ

∂pk
=

∑
l,〈k,l〉=1

2κkl(pk − pl)−
∑

l,〈k,l〉=1

κkl(µk − µl), k /∈ VD (4.16)

and the fixed pressure boundary condition on pressure vertices allows us to specify that:

µi = 0 ∀i ∈ VD (4.17)

The µk are therefore solving a variant of the Kirchhoff flux conservation equations:

Dµ = 2Dp (4.18)

with D as defined in Equation 4.6.

This system can be solved for µk under the same conditions as the pressure equations

being solvable (see Appendix C). In particular if, as in the network topologies we study

in this work, the only pressure boundary conditions imposed at vertices in VD are of the

form p = 0, then µk = 2pk, ∀k ∈ V , i.e. µk’s represent the pressures. Now we calculate the

derivatives of Θ with respect to the conductances:

∂Θ

∂κkl
= (pk − pl)2 + λγκγ−1

kl − (µk − µl)(pk − pl) = λγκγ−1
kl − (pk − pl)2. (4.19)

In general we determine λ from Equations (4.8,4.9,4.10). However the constraint function g

is independent of {pk} in this case, so Equation (4.8) becomes

0 =
∑

k>l,〈k,l〉=1

∂g

∂κkl
δκkl (4.20)

and we can solve λ directly in terms of {pk}, {κkl}:

λ =

∑
〈k,l〉=1,k>l κ

γ−1
kl (pk − pl)2∑

〈k,l〉=1,k>l γκ
2γ−2
kl

(4.21)

As described in Section 4.2.2 we project {κkl} along ∂g
∂κkl

= γκγ−1
kl after each step of the

algorithm. At each step of the algorithm, we solve for the pressures pk from the conductances

{κkl}, then the µk, and then descend according to Eqn. (4.19). Analyzing minimal dissipation

on networks allows us to compare the performance of the algorithm described in this chapter

with previous work [BM07, KSM10] (See Section 4.3.1).
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Figure 4.3: A quadrilateral grid (black) can be divided using a set of non-intersecting control

surfaces (red dashed lines) such that each edge in the grid is intersected by exactly one control

surface.

4.2.4 Calculating microvascular networks with uniform flow

We now turn to other target functions that have not been extensively studied. At the

level of micro-vessels it is likely that uniform flow rather than transport efficiency is the

dominant principle underlying network organization, as shown in the comparison between

the zebrafish trunk network with its untuned counterparts (Fig. 4.2). We frame this question

more generally, i.e. ask what organization of vessels achieves a given amount of flow Q̄ on

all edges or equivalently, how the flow variation

f({pk}, {κkl}) =
∑

〈k,l〉=1,k>l

1

2
(Qkl − Q̄)2 (4.22)

may be minimized by optimal choice of conductances κkl.

To simplify the target function we expand the function f and abandon the constant term:

f({pk}, {κkl}) =
∑

k>l,〈k,l〉=1

(1

2
Q2
kl − Q̄Qkl

)
. (4.23)
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Under the assumption that the total flow on all edges is conserved, i.e.:

∑
〈k,l〉=1,k>l

Qkl = C (4.24)

the function f can be reduced to

f({pk}, {κkl}) =
∑

〈k,l〉=1,k>l

1

2
Q2
kl (4.25)

by ignoring constants. The assumption (4.24) is valid in networks provided that the net-

work may be divided into levels: that is, a series of control surfaces may be constructed

between source (inflow to the network) and sink (outflow from the network), with each edge

intersected by exactly one control surface and each path from source to sink intersecting all

control surfaces (Fig. 4.3). We call networks with this property stackable. The stackability

of a network depends both on its geometry and the positions of sources and sinks: a hon-

eycomb grid is also stackable when source and sink are arranged across the diameter of the

network, but the square-grid network is not stackable if the sink were on the bottom instead

of the right corner. Then since the total flow across each control surface is the same, the

total flow over all network edges is
∑

k>l,〈k,l〉=1Qkl = SF where F is the total sink strength

and S is the number of control surfaces. Both symmetric branching trees and quadrilateral

grids (such as the one shown in Fig. 4.3) are examples of stackable networks, and both can

be used as simplified models of microvascular transport networks [HCR12].

For the model capillary bed network we have only one pressure vertex, which means that

a multiplicative scaling in all the conductances does not affect the flow. Therefore solving

unconstrained optimal networks is equivalent to solving those with material constraints.

Without any constraint the function to be optimized can now be written as

Θ =
∑

〈k,l〉=1,k>l

1

2
(pk − pl)2κ2

kl −
∑
k∈VN

µk

 ∑
l,〈k,l〉=1

κkl(pk − pl)− qk

 . (4.26)

To do the gradient descent we calculate

∂Θ

∂pk
=

∑
l,〈k,l〉=1

κ2
kl(pk − pl)−

∑
l,〈k,l〉=1

(µk − µl)κkl, k /∈ VD (4.27)
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∂Θ

∂κkl
= κkl(pk − pl)2 − (µk − µl)(pk − pl). (4.28)

At each step we can solve for µk by setting ∂Θ
∂pk

= 0 in Eqn. (4.27), along with µk = 0, k ∈ VD,

and we can calculate the gradient from Eqn. (4.28). Note that here we have neither Murray

nor material constraint, so a numerical projection is not required to ensure that the constraint

is being exactly met, and the network can be obtained by repeating the procedure until

convergence (See Section 4.3.2).

4.2.5 Calculating embryonic zebrafish trunk vasculatures with uniform flow

To compare putative network optimization principles on the zebrafish trunk vasculature, we

start by identifying our model for the trunk network. Blood flows into the trunk of the

zebrafish from the heart through the dorsal aorta and then passes into minute vessels called

intersegmental (Se) vessels. Blood then returns to the heart via the cardinal vein. These

vessels are arranged just like rungs (Se) and parallels (cardinal vein and dorsal aorta) of a

ladder (Fig. 4.7A). Most gas exchange in the network is assumed to occur in the Se vessels.

As the zebrafish develops further minute vessels form between the Se vessels, converting the

trunk into a dense reticulated network [IHW01]. We focus on the mechanisms underlying

flow distribution in the main fine vessels. Since the zebrafish trunk network is symmetric,

we can consider only half of the network consisting of the aorta and intersegmental arteries,

designated by vertices v1, ..., v2n+1 and edges e1, ..., e2n with n being the number of Se vessels.

Since this topology does not satisfy the assumption (4.24) we have to consider the full uniform

flow target function:

f({pk}, {κkl}) =
n∑
i=1

1

2
(Q2i − Q̄)2, (4.29)

where Q̄ is a predetermined flow for all the capillaries (in the following arguments edge-

defined quantities such as Qi are indexed with the edges, and vertex-defined quantities such

as pi are indexed with the vertices). Using this indexing scheme, the function to be optimized
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becomes:

Θ =
n∑
i=1

1

2
κ2

2ip
2
i −

n∑
i=1

Q̄κ2ipi −
n−1∑
i=2

µi[κ2i−3(pi − pi−1) + κ2i−1(pi − pi+1) + piκ2i]

− µ1[κ1(p1 − p2) + p1κ2 − F ]− µn[κ2n−3(pn − pn−1) + pnκ2n−1 + κ2npn]. (4.30)

Just as in Section 4.2.4 we do not need to introduce a Lagrange multiplier enforcing the

material constraint because the target function only depends on flows, and we can scale all

conductances to realize any material constraint without affecting the target function. For

performing gradient descent method on this function we calculate the partial derivatives of

Θ:

∂Θ

∂pi
=


κ2

2ipi − Q̄κ2i − (κ2i−1 + κ2i−3 + κ2i)µi + κ2i−1µi+1 + κ2i−3µi−1 , i 6= 1, n

κ2
2p1 − Q̄κ2 − (κ1 + κ2)µ1 + µ2κ1 , i = 1

κ2
2npn − Q̄κ2n − (κ2n−3 + κ2n−1 + κ2n)µn + κ2n−3µn−1 , i = n

. (4.31)

∂Θ

∂κi
=


κip

2
i/2 − Q̄pi/2 − µi/2pi/2 , i|2 = 0

−(µ i+1
2
− µ i+3

2
)(p i+1

2
− p i+3

2
) , i|2 = 1, i 6= 2n− 1

−µnpn , i = 2n− 1

. (4.32)

Then we impose the physical boundary conditions, i.e. fixed inflow into the network and

zero pressure on the ends of the main aorta and the capillaries, and perform gradient descent

to find the optimal network (See Section 4.3.3).

Since no constraint is imposed on the uniform flow zebrafish trunk network the explicit

relation between vessel radius and conductance does not need to be specified (see Section

4.2.1). Therefore when we compare the uniform flow network to experimental data in Section

4.3.3 we can assume that, instead of the default model (4.1), the occlusive effect of red blood

cells contribute to the effective vessel conductance [CTB17].

4.2.6 Calculating uniform flow network on capillary beds under Murray’s con-

straint

So far we have followed previous work [BM07, KSM10] by calculating all of our optimal

networks under constraints on the total material (or without constraints if the target function
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does not involve conductances). However both material investment and transport costs (i.e.

dissipation) may contribute to the total cost of a particular network. We modify our cost

function, g, to include both costs. In this case g({pk}, {κkl}) =
∑

(aκkl(pk − pl)2 + κγkl)−K

depends on both pressure and conductance, and the full mechanism for keeping g constant

during the gradient descent needs to be used. Specifically now we are minimizing the function

Θ =
∑

〈k,l〉=1,k>l

1

2
Q2
kl+λ

 ∑
〈k,l〉=1,k>l

(aκkl(pk − pl)2 + κγkl)−K

−∑
k∈VN

µk

 ∑
l,〈k,l〉=1

κkl(pk − pl)− qk


(4.33)

with γ = 1
2

and a > 0. To calculate the optimal network by this method we need an explicit

formula for λ. We introduce several notations to be used later. Suppose {bij} is a set of

quantities defined on the edges of the network. For any real constant c we define the matrix

for the graph Laplacian with specified boundary conditions as

M
(c)
b =



∑
l,〈k,l〉=1 bkl , k = l, k /∈ VD

−bkl , 〈k, l〉 = 1

c , k = l, k ∈ VD

0 , otherwise

. (4.34)

We also abbreviate Mb = M
(1)
b . In the notation of Equation (4.6) D = Mκ. We define

D(n) = Mκn for notational convenience. For a quantity v that is defined on the vertices of

the network (such as pressure) we define the graph difference vector ∇v ∈ RE as

∇vkl = vk − vl (k, l) ∈ E , (4.35)

where E denotes the set of ordered pairs of edges so that each edge only appears once

in E . Now we can derive explicit formulas for λ and δκ. From ∂Θ
∂pk

= 0 we obtain µ =

D−1D(2)p+2λap (recall here we have f =
∑

k>l,〈k,l〉=1
1
2
κ2
kl(pk−pl)2, g =

∑
k>l,〈k,l〉=1 aκkl(pk−

pl)
2 + κγkl −Kγ), and so:

∂Θ

∂κkl
= λ[γκγ−1

kl − a(∇pkl)2] + κkl(∇pkl)2 −∇(D−1D(2)p)kl∇pkl. (4.36)
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We determine λ from the variational:

0 = dg =
∑

k>l,〈k,l〉=1

γκγ−1
kl δκkl + aδκkl∇p2

kl + 2aκkl∇δpkl∇pkl

=
∑

k>l,〈k,l〉=1

−α(γκγ−1
kl + a∇p2

kl)
{
λ[γκγ−1

kl − a∇p
2
kl]

+ κkl∇p2
kl −∇(D−1D(2)p)kl∇pkl

}
+ 2aκkl∇δpkl∇pkl. (4.37)

This formula depends on δp; the change in p produced by the change κ 7→ κ + δκ. If we

assume pi = 0 ∀i ∈ VD we can write Equation (4.10) in matrix form as

Mδκp+Dδp = 0 (4.38)

so

δp = −D−1Mδκp. (4.39)

(Equation (4.38)) can be modified by adding a non-zero vector on the right hand side,

if inhomogeneous pressure boundary conditions are applied.) Thus if we define auxiliary

variables: β
.
= γκγ−1 − a∇p2, χ

.
= κ∇p2 −∇(D−1D(2)p)∇p, so that δκ = −α(λβ + χ), then:

0 = −α
{
λ

∑
k>l,〈k,l〉=1

(γκγ−1
kl + a∇p2

kl)βkl +
∑

k>l,〈k,l〉=1

(γκγ−1
kl + a∇p2

kl)χkl

}
− 2a

∑
k>l,〈k,l〉=1

κkl∇pkl∇(D−1M−α{λβ+χ}p)kl,

0 = λ
∑

k>l,〈k,l〉=1

γ2κ2γ−2
kl − a2∇p4

kl − 2aκkl∇pkl∇(D−1M
(0)
β p)kl

+
∑

k>l,〈k,l〉=1

(γκγ−1
kl + a∇p2

kl)χkl − 2aκkl∇pkl∇(D−1M
(− 1

α
)

χ p)kl. (4.40)

Finally we can write down the formula for λ as

λ =
−
∑

k>l,〈k,l〉=1(γκγ−1
kl + a∇p2

kl)χkl − 2aκkl∇pkl∇(D−1M
(− 1

α
)

χ p)kl∑
k>l,〈k,l〉=1 γ

2κ2γ−2
kl − a2∇p4

kl − 2aκkl∇pkl∇(D−1M
(0)
β p)kl

. (4.41)

The value of λ in Eqn. (4.41) ensures that g remains constant up to O(δκkl) terms. However,

we must also adjust {κkl} at each step to exactly maintain the constraint following the

method given in Section 4.2.2. In previous applications since g was a function of κ alone this

82



additional projection step did not require perturbation of pressures. Now both the change in

κkl and the change in flow must be considered when adjusting conductances. We calculate

here the additional terms created by the pressure variation. To project along the constraint

surface normal we need to calculate the normal vector:

nkl =
∂

∂κkl

{ ∑
i>j,〈i,j〉

(
κγij + aκij(pi − pj)2

)
−Kγ

}
= γκγ−1

kl + a(pk − pl)2 +
∑
〈i,j〉,i>j

2aκij(
∂pi
∂κkl

− ∂pj
∂κkl

)(pi − pj). (4.42)

To obtain ∂pi
∂κkl

we differentiate Kirchhoff’s first law with respect to κkl:∑
j

κij(
∂pi
∂κkl

− ∂pj
∂κkl

) + (δikδjl − δilδjk)(pi − pj) = 0 (4.43)

or: ∑
j

κij(
∂pi
∂κkl

− ∂pj
∂κkl

) = −(pk − pl)(δil + δik). (4.44)

Notice that ∂pi
∂κkl

= 0 ∀i ∈ VD since these pi are fixed by the boundary conditions. Then

we can solve for ∂pi
∂κkl

, 1 ≤ i ≤ V by solving the linear system (solvability was discussed in

Appendix C) and calculate the normal vector.

4.2.7 Calculating uniform flow zebrafish microvascular network under Murray’s

constraint

The gradient descent method with Murray constraint closely follows Section 4.2.6 with the

target function

Θ =
∑

(k,l)∈E

1

2
(κkl(pk − pl)− Q̄)2Ikl + λ

 ∑
〈k,l〉=1,k>l

(aκkl(pk − pl)2 + κγkl)−K



−
∑
k∈VN

µk

 ∑
l,〈k,l〉=1

κkl(pk − pl)− qk

 (4.45)

where E = {(k, l) : 〈k, l〉 = 1, k < l} and the index convention here follows Fig. 4.7A. Here

Ikl = 1 if and only if the edge kl is an intersegmental vessel. To carry out the gradient
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descent we calculate

∂Θ

∂κkl
= (κkl(pk − pl)− Q̄)(pk − pl)Ikl − aλ(∇p2)kl

+λγκγ−1
kl −∇(D−1ζ)kl∇pkl

.
= λβkl + χkl ∀(k, l) ∈ E (4.46)

Now given {κkl}, {pk} we need to solve for {µk}, λ for the algorithm. Again from ∂Θ
∂pk

= 0 we

get

µ = 2aλp+D−1ζ (4.47)

where

ζk
.
=


∑

l,〈k,l〉=1(κkl(pk − pl)− Q̄)Iklκkl , k /∈ VD

0 , k ∈ VD
. (4.48)

To solve for lambda we can use Eqn. (4.41) if we calculate β, χ in Eqn. (4.46). Since the

target function here is the same as that in Section 4.2.6 we have βkl = γκγ−1
kl . The χ can be

calculated as

χkl = (κkl(pk − pl)− Q̄)(pk − pl)Ikl −∇(D−1ζ)kl∇pkl (k, l) ∈ E (4.49)

With these expressions we can solve for λ by Eqn. (4.41) and obtain the expression for {µk}

by Eqn. (4.47). Then we can carry out the gradient descent by Eqn. (4.46). Notice that if

we set Q̄ = 0, Ikl = 1 ∀〈k, l〉 = 1 then f is the same as in Section 4.2.6 and the expression of

χ agrees with the auxiliary variable defined in that section.

4.3 Results

4.3.1 The algorithm finds known minimally dissipative networks

To evaluate the ability of our algorithm to find optimal networks we start with minimally

dissipative networks that have been thoroughly studied. It has been proven that, when the

exponent in material constraint γ is less than one, as is the case for vascular networks, the

minimally dissipative networks with flow (Neumann) boundary conditions contain no loops
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Figure 4.4: Minimally dissipative networks agree with previous work [BM07, Dur07] (with

target function
∑
κkl(pk−pl)2 and material constraint

∑
κγkl−Kγ with γ = 1

2
). (A) We use

a branching grid as our basic topology. There are N = 20 layers of vertices and a total of

380 edges, connecting a single source (red filled circle) with 8 sinks (red open circles). (B) A

minimal dissipative network calculated by gradient descent method exhibits tree structure

as predicted in [Dur07]. We imposed a fixed zero pressure on the top vertex and 8 evenly

distributed outflows on the bottom. Each edge is initially assigned a positive uniformly

random conductance to impose no prior knowledge on the algorithm. (C) Murray’s law

[Mur26b] is obeyed by the minimal dissipative network, indicated by the nearly constant

sum of radius to an exponent 3.004 among different hierarchies in network shown in (B).

[Dur07] (this result was generalized to both flow and pressure (Dirichlet) boundary conditions

in [CR18]). Those networks are also known to satisfy Murray’s law [Mur26b, She81], which

states that the sum of third power of vessel radii in the same hierarchy is a constant. Although

the original derivation by Murray in 1926 was based on local optimization in a network in

which flows are unaffected by changes in conductances, Murray’s law is also necessary for

a network to be a global minimizer [CR18]. To see whether our algorithm recovers these

theoretical properties we consider a model for the branching vasculature in animals [WBE97]

(Fig. 4.4A). We impose distributed sinks on the bottom and a single source on top (with

pressure imposed to ensure solvability [LP16]). We apply the algorithm described in Section
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4.2.3 starting from a network with no prior knowledge, i.e. all edges have the same uniformly

random distribution of conductances. All 20 networks we simulated are trees (Fig. 4.4B),

agreeing with previous theoretical work. To further validate our algorithm we calculate the

Murray exponent by minimizing the coefficient of variation (CV) of sums of vessel radii in the

same hierarchy to the exponent (Fig. 4.4C). The Murray exponents cluster tightly around 3

(3.01± 0.03, mean ± sd, 20 networks), which is the exponent in Murray’s law [Mur26b]. So

our algorithm recovers both properties of minimally dissipative networks [BM07].

Figure 4.5: Minimally dissipative networks consist of a single conduit on capillary bed topol-

ogy (with target function
∑
κkl(pk−pl)2 and material constraint

∑
κγkl = Kγ with γ = 1

2
on

a 10×10 square grid). (A) We represent the capillary bed network by a square grid where

a single source and a single sink locate at upper-left and lower-right corners respectively.

(B, C) Different initial conductances produce different optimal networks, but all optimal

networks are made of a single wide conduit. Here we use a constant step size throughout the

process, and at each step we project by surface normal to maintain the material constraint.

Each edge is initially assigned a positive uniformly random conductance to impose no prior

knowledge on the algorithm.
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4.3.2 Uniform flow qualitatively explains network structure of capillary beds

Here we compare these organizing principles on the topology of capillary beds [TH03, MJ79]

(Fig. 4.5A). We follow Section 4.2.3 to calculate minimally dissipative networks, and Section

4.2.4 to calculate uniform flow networks. We assume that the capillary bed is supplied by

a single arteriole and blood leaves from a single venule. Networks formed according to the

minimal dissipation principle consist of a single pipe following a geodesic route (Fig. 4.5B,

C), which can be shown theoretically to be the optimal solution. Specifically, since the

network cannot contain loops, and connects a single source to a single sink, there can only

be one pipe in the network. Longer pipes have less material in each segment but the same

flows as shorter pipes, so have higher total dissipation. Finally uneven material distribution

has been ruled out by [Dur06]. This morphology contrasts sharply with empirically observed

capillary structure [TH03, MD09, MJ79], suggesting that minimizing dissipation is not the

dominant factor for capillary systems.

Uniform flow networks, on the other hand, might explain capillary bed morphology.

Starting from a uniformly random configuration, our algorithm finds a network with an

apparently random distribution of materials (Fig. 4.6A). The conductances have a smaller

variance compared to the initial configuration, but do not have a clear pattern otherwise

(Fig. 4.6B). While the uniform flow networks more closely resembles a capillary bed than

a minimally dissipative network, it is not clear what quantitative characters can be used to

compare the networks. As discussed in Section 4.2.4, the uniform flow target function sim-

plifies to 1
2

∑
Q2 on capillary bed topology, which allows us to analytically derive properties

of uniform flow networks.

Theorem 4.3.1. Any critical point of the target function (4.26) in which pk = 0 ∀k ∈ VD

has the same set of flows as a uniform conductance network with the same support on edges.

That is, suppose we let κkl, Qkl be the conductances and flows on the stationary network, and

κ′kl, Q
′
kl be those on the uniform conductance network, i.e.

κ′kl =

 1 , if 〈k, l〉 = 1 with κkl > 0

0 , if 〈k, l〉 = 1 with κkl = 0
. (4.50)
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Figure 4.6: Uniform flow networks have a seemingly random morphology, but can be shown

to have the same flows as a uniform conductance network (Here we show a 20×20 square grid

network with 400 vertices). (A) An optimal network has an apparently random distribution

of conductances. The edge widths are proportional to the conductances. (B) A closer view

reveals that the conductances of the optimal network (blue circle) are quite different from

uniform (red cross), and do not seem qualitatively different from initial conductances drawn

from a uniform random distribution (green star). The conductances are normalized such that∑
κ

1
2 are the same. Each edge is initially assigned a positive uniformly random conductance

to impose no prior knowledge on the algorithm. (C) The differences of flows from those in a

uniform conductance network (blue circles) are uniformly zero, while the differences of initial

flows from those in a uniform conductance network (green stars) are not.

Then

Qkl = Q′kl ∀〈k, l〉 = 1. (4.51)

(The proof will be presented in the end of this subsection.) The theorem states that a

uniform flow network, i.e. a local minimum of target function (4.26), will have the same

flow as the network where all the edges with positive conductances are assigned unit con-

ductance. In order to evenly distribute the flows, networks with all allowed edges present

will have higher uniformity than networks in which some subset of edges have been cut (in-
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deed among 100 uniform flow networks those with all edges present have an average value

for the target function of 1.9465, compared to 1.9470 for networks with at least one edge

cut). Therefore the uniform conductance network can predict the flows in all uniform flow

(Fig. 4.6C). While the flows in uniform flow networks are tightly constrained, many possi-

ble configurations can achieve the same uniformity, and there is no visible pattern in the

distribution of conductances for those networks, unlike minimally dissipative networks.

Proof of Theorem 4.3.1. The assumption that all pressure vertices have pressure zero is re-

ally an assumption that all pressure vertices have the same pressure: In the latter case since

a constant shift in all pressures does not change the flows. To find the critical points of Θ

we recall the derivatives in Eqns. (4.27, 4.28), along with µi = 0 ∀i ∈ VD by assumption.

First we show that a uniform distribution of conductances would result in a critical point

({pk}, {µk}, {κkl}), by rewriting the equation ∂Θ
∂pk

= 0 (4.27) into the matrix form:

Dµ = D(2)p. (4.52)

Here Dkl is in Equation (4.6) and −D(2) is another graph Laplacian:

D
(2)
kl

.
=



∑
l,〈k,l〉=1 κ

2
kl , k = l, k /∈ VD

−κ2
kl , 〈k, l〉 = 1, k /∈ VD

κ(2) , k = l, k ∈ VD

0 , otherwise

(4.53)

in which the matrix is made full-rank if κ(2) > 0 (similarly to the κ(1) constant in D). The

κ(1) entries in Dkl enforce µk = 0 at each k ∈ VD. The entries in D(2) are not needed since

pk = 0 at each k ∈ VD, but we add values here to emphasize the symmetry between {µk}

and {pk}. Now consider uniform conductances, i.e. κkl = a > 0 ∀〈k, l〉 = 1. We can set

κ(1) = a and κ(2) = a2. Then we have D = aD(2) and since D is invertible (see Appendix C)

µ = D−1D(2)p = ap. (4.54)

Now this set of µk’s and pk’s then also satisfies ∂Θ
∂κkl

= 0 because
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∂Θ

∂κkl
= a(pk − pl)2 − a(pk − pl)2 = 0. (4.55)

Thus the network with uniform conductances along with pressures solved from the Kirch-

hoff’s first law is indeed a critical point.

Now we show that any interior critical point, i.e. satisfying κkl > 0 ∀〈k, l〉 = 1, has the

same flows as the uniform conductance network. We will see that for any such network the

µk’s represent the pressures of the uniform conductance network. Since all the conductances

are positive we have ∂Θ
∂κkl

= 0 ∀〈k, l〉 = 1. Assume for now pk− pl 6= 0 ∀〈k, l〉 = 1. Then from

Equation (4.28) we obtain that the {µk} obey a system of equations

κkl(pk − pl)− (µk − µl) = 0, ∀〈k, l〉 = 1 (4.56)

which may be rewritten as

µk − µl = κkl(pk − pl) = Qkl, ∀〈k, l〉 = 1. (4.57)

Kirchhoff’s first law in terms of µk’s then reads

∑
l,〈k,l〉=1

(µk − µl) = qk ∀k ∈ VN , µk = 0 ∀k ∈ VD. (4.58)

In matrix form the equations can be written as

Dµ = F (4.59)

where Fk = qk if k ∈ VN and is zero otherwise, and D is defined as for network made up of

unit conductances:
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Dkl
.
=



∑
l,〈k,l〉=1 1 , k = l, k /∈ VD

−1 , 〈k, l〉 = 1, k /∈ VD

1 , k = l, k ∈ VD

0 , otherwise

(4.60)

Because D is invertible we can solve for µk’s from Eqn. (4.59). The {µk}’s represent the

pressures that would occur at each vertex if all conductances in the network were set equal

to 1, creating uniform conductance network. Since the flows Qkl = µk − µl are determined

by µk’s we conclude that the locally optimal networks would have flows the same as in the

network of uniform conductances.

To derive (4.56) from (4.28) we had to assume that pk 6= pl whenever 〈k, l〉 = 1. Consider

the case where in the optimal network pk − pl = 0 for some 〈k, l〉 = 1. For these (k, l)’s

Eqn. (4.56) no longer holds and we have to set ∂Θ
∂pk

= 0 in Eqn. (4.27) to obtain extra

information. We claim that µk = µl if pk − pl = 0. This can be seen from a loop current

argument similar to that used in Appendix C to prove existence and uniqueness of the {µk}.

Specifically, suppose for contradiction that µk1 6= µk2 for some pair of vertices with pk1−pk2 =

0 and without loss of generosity let µk1 > µk2 . If k1 and k2 ∈ VD then µk1 = µk2 = 0; so at

least one of the two vertices does not lie in VD. If k2 /∈ VD then ∂Θ
∂pk2

= 0 implies:

∑
l,〈k2,l〉=1

κ2
k2l

(pk2 − pl) =
∑

l,〈k2,l〉=1

κk2l(µk2 − µl). (4.61)

Since Eqn. (4.56) holds when pk − pl 6= 0 we have

0 =
∑

l,〈k2,l〉=1,pl=pk2

κ2
k2l

(pk2 − pl) =
∑

l,〈k2,l〉=1,pk2=pl

κk2l(µk2 − µl). (4.62)

Since κkl > 0 ∀〈k, l〉 = 1 and the sum includes the negative summand κk2k1(µk2−µk1) we can

find l for which µl < µk2 and pl = pk2 . We let k3 = l and repeat the process to find a neighbor

of k3 such that pl = pk3 but µl < µk3 . We then can keep repeating this process until we reach

a vertex kN ∈ VD (no vertex may be visited more than once). We have imposed µkN = 0.

Now we trace through increasing µk’s starting from k2 and k1 and we get k′1, ..., k
′
N ′ such
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that µk′n < µk′n+1
∀n = 1, ..., N ′− 1 and µk′1 > µk1 . By the same reasoning we have kN ′ ∈ VD

and we reach a contradiction since 0 = µk′
N′
> µk′

N′−1
> · · · > µk′1 > µk1 > · · · > µkN = 0.

Therefore µk = µl when pk = pl and Eqn. (4.56) actually holds for all 〈k, l〉 = 1. Again

we conclude that the flows of a locally optimal network with non-zero conductances are the

same as the flows in the uniform conductance network.

Finally we discuss the boundary case where κkl = 0 for some 〈k, l〉 = 1, and we denote

this set of edges by I. To avoid ill-posedness of pressures we require that that the matrix D

is invertible. In this case we do not have Eqn. (4.56) for κkl = 0 because ∂Θ
∂κkl

need not be

zero on these edges. However since there is no flow through edges with κkl = 0 we can write

down Kirchhoff’s first law as

Dµ = 0, (4.63)

where −D is again the graph Laplacian, but with zero conductance edges removed and other

edges with conductance 1:

Dkl =



∑
l,〈k,l〉=1,(k,l)/∈I 1 , k = l, k /∈ VD

−1 , 〈k, l〉 = 1, (k, l) /∈ I

1 , k = l, k ∈ VD

0 , otherwise

. (4.64)

We can safely remove the zero conductance edges from the network because the difference

µk − µl no longer represents the flow Qkl, and that we know Qkl = 0 for these edges. By

assumption we can solve for µ from Eqn. (4.63) so {µk} represent the pressures within the

uniform conductance network, but with edges κkl = 0 removed from the network.

4.3.3 Optimal zebrafish microvasculature

Comparison of the different organizing principles on our model capillary bed network suggests

that uniform flow is prioritized more than transport efficiency for these networks. The

comparison remains qualitative because although capillary beds in e.g. salamander skin do
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resemble square grids [MJ79] (and Fig. 4.1A), this resemblance is only approximate, so it

is difficult to test our theoretical predictions. The embryonic zebrafish trunk vasculature,

on the other hand, can be completely mapped, down to the finest vessels. Moreover, the

blood flows can be measured by tracking the motion of red blood cells ([SUP03, MSS07], as

well as our previous work [CTB17]), thereby directly testing the flows predicted in optimal

networks.

First we show how far the embryonic zebrafish network is from minimizing dissipation.

The optimal morphology of the network depends on the boundary conditions we impose,

and there are two conceivable ways to assign boundary conditions. One way is to assume a

fixed inflow from the heart into the trunk from v1. If one thinks of the venous part of the

trunk as symmetric to the arterial part then the pressures in the middle of fine vessels need

to be the same, and we can set pn+1 = pn+2 = · · · = p2n+1 = 0 (since a constant shift in the

pressure does not change the flow). Under this boundary condition we can find the minimally

dissipative network by methods described in Secion 4.2.3. The minimally dissipative network

eliminates all the edges but e2, on which all the allowed material is used (Fig. 4.7B). This

agrees with prior theoretical predictions since minimally dissipative networks cannot have

loops, nor can they connect vertices with the same assigned pressure [CR18]. Therefore

there are only n + 1 possibilities: the flow returns through one of the fine vessels e2, ..., e2n

or the tail e2n−1. Since the shortest route would be going through the first fine vessel e2, the

minimally dissipative network concentrates all the material on e2.

Instead of imposing a fixed pressure in the middle of the fine vessels, one can also impose

a fixed flow [BM07, KSM10, Dur06] through each vessel. This boundary condition interprets

into a uniform flow at each of the vertices vn+2, ..., v2n+1, and we can find a distribution

of conductances that minimizes dissipation from Section 4.2.3. Now equal amount of flow

passes through each fine vessels, leading to a decaying flow in the aorta from head to tail.

Therefore the material is concentrated on the rostral part of the aorta, with all the fine

vessels having equal amount of material (Fig. 4.7C). The imposed fixed flow then requires

a decrease of pressure in the middle of fine vessels from head to tail, to compensate for the

pressure drop in the aorta (Fig. 4.7D). Under symmetry of arterial and venous parts, this
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pressure distribution then creates an unrealistic blood flow in the vein toward the tail, i.e.

away from the heart.

Since the principle of minimal dissipation is unable to generate networks that resemble

the observed zebrafish trunk microvasculature, we look at uniform flow networks and see

if they match the observed vasculature. To avoid back flow in the vein we impose fixed

pressure in the middle of fine vessels, and a fixed flow into the trunk from v1. The zebrafish

trunk vasculature is not stackable, so we use the square error target function (4.29) instead

of (4.25), and we use methods described in Section 4.2.5 to find the uniform flow network.

Instead of concentrating all the materials on the first capillary or tapering the aorta, the

uniform flow network has constant conductance along the aorta and conductances on the fine

vessels that increase exponentially with the distance from the heart (Fig. 4.8A). If vessels

obeyed the Hagen–Poiseuille law (Eqn. (4.1)) a 20-fold change in conductance would require

a 2-fold change in radii of fine vessels, which is not observed in the real zebrafish trunk

[IHW01]. However, these fine vessels have radii that match the size of red blood cells; thus

red blood cells almost totally occlude the vessels they pass through, adding a large increment

to the vessel’s hydraulic resistance [SBM16]. This increment depends sensitively on the gap

distance between the cell and the endothelial wall, which is typically on the scale of 10–300

nm, and is smaller than the optical resolution for fluorescence microscopy [SHL10]. In our

previous work, we proposed an indirect method that measures this increment based on the

correlation between the flow speed and the number of cells in each fine vessel [CTB17].

When we compare the measured hydraulic resistance with the resistances of fine vessels in

the uniform flow network, we see an excellent agreement between the predicted and measured

resistances (Fig. 4.8B). Our results show that the principle of uniform flow quantitatively

reproduces the zebrafish trunk geometry.

4.3.4 Murray constraint on optimal networks

So far we show that capillary networks prioritize uniform flow over minimizing dissipation,

but biological networks may be subject to more than one constraint at a time. In capillary
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networks the total dissipation will be higher when the density of capillaries increases, which

in turn requires more energy input. As we noted in the introduction, fine vessels account

for half of the cost of blood transport in the human body [Hal15], suggesting that capillaries

will be constrained not only in respect to materials but also by dissipation. In this case the

function to be optimized takes the full form of (4.4) with a constant a > 0, representing

the relative importance of dissipation compared to material cost. Following Section 4.2.6

we can calculate uniform flow networks with the model capillary bed geometry under the

Murray constraint (Fig. 4.9A). The uneven distribution of conductances resembles that in

Section 4.3.2, and indeed for 20 networks with a ranges from 0 to 50, the function 1
2

∑
Q2

clusters closely at the optimal value (1.9461 ±9.25 × 10−6, mean ± sd, 20 networks), i.e.

that of uniform conductance network. This result is counter-intuitive since we would expect

that constraining dissipation would prevent the network from achieving the non-constrained

optimal uniformity in flows. However, on the capillary bed topology we can reason by

a scaling argument. Suppose we find an optimal network under the material constraint.

We calculate the total material cost K of this network. Then we calculate the optimal

network in which Murray’s constraint is imposed with allowed total energy K including both

material costs and dissipation. Denote by κkl the conductances in the network under Murray

constraint, and by κ′kl the conductances in the optimal network under material constraint. If

a is sufficiently close to zero then the target function of Murray network will be lower or equal

to that of material network. The reasoning is that although
∑
κ′γkl+a

Q2
kl

κ′kl
= K does not hold,

we can try to solve for a multiplicative scaling β > 0 that satisfies
∑

(βκ′kl)
γ + a

Q2
kl

βκ′kl
= K.

Notice that Qkl does not change under the scaling for this class of networks, so the value

of target function is unaffected by scaling conductances. Now if a > 0 is small enough we

expect to be able to find a solution β and {βκ′kl} is an admissible network in the sense that

it obeys the Murray constraint. Thus the optimal network under the Murray constraint

must have equal or smaller target function value than the optimal network obeying only the

material constraint. By reversing this argument we can see that the optimal networks for

small enough a > 0 actually agree with those with a = 0. The question is how large a has to

be so that the Murray network is truly constrained by the total energy cost, and the optimal
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networks under the Murray constraint and under the material constraint diverge. From

our numerical simulations we can see that large changes of a can be accommodated with

changing the morphology of the uniform flow networks from its unconstrained counterpart.

We observe that increasing a decreases material costs (Fig. 4.9B), which is unintuitive since

increasing a adds weight to dissipation, and we might expect this to encourage the network

to decrease its dissipation. If we study the curve of
∑

(βκ′kl)
γ + a

Q2
kl

βκ′kl
as a function of β, the

function is U-shaped and diverges when β → 0 or β →∞. When a increases the total energy

increases, and the network has to adjust itself to a low energy state. If the network is on the

left side of the U this means increasing β, which increases the material cost to realize the

constraint. In contrast when the network is on the right side of the curve, decreasing β will

be the only way to lower the total energy, which explains the trends depicted in Fig. 4.9B.

The simulation suggests that, on the capillary bed topology, constraining dissipation seems

to have little effect on the morphology of uniform flow network.

Would uniform flow models of the zebrafish trunk follow the same trend? Using methods

described in Section 4.2.7, we can calculate uniform flow networks under Murray constraint,

with different values in a. When a is close to zero, the constrained networks have optimal flow

uniformity, and dissipation increases as in the case of capillary bed topology (Fig. 4.10A).

However, at a critical value around ac = 33.3, a phase change occurs; the flows become less

uniform and dissipation starts dropping (Fig. 4.10A). The network morphology changes dra-

matically, in particular conductances of the fine vessels become non-monotonic, and the flows

are concentrated toward the head side of zebrafish (Fig. 4.10B, C). Our results suggest that,

when a biological network has multiple constraints to meet, the network morphology will

conform only to the tightest constraint, and then if the relative weight of these constraints is

changed, the network changes dramatically only when another constraint becomes dominant.
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Figure 4.7: Minimal dissipative networks for zebrafish trunk vasculature do not explain

observed morphology. (A) The zebrafish trunk vasculature can be simplified into a ladder

network with arterial (red) and venous parts (blue). The edges e1, e3, ..., e2n−1 are aorta

segments and e2, e4, ..., e2n are capillaries. We use n = 12 in all the following calculations on

zebrafish network. (B) The optimal dissipative network with γ = 1
2

and fixed inflow does not

correctly describe the zebrafish trunk network since all the conductances are concentrated on

the first capillary (red circle), and the whole aorta is deleted (blue cross). In this calculation

we imposed a fixed inflow on v1 and fixed zero pressure on vn+1, ..., v2n+1. We started with

κ = 20 for aorta segments and κ = 1 for capillaries to reflect the difference in radii in real

zebrafish. This initial condition is used for all the following simulations. (C) The optimal

dissipative network with γ = 1
2

and fixed outflows has a tapering aorta (blue cross) and

capillaries with the same conductances (red circle). We imposed zero pressure on v1 and

fixed outflows on vn+1, ..., v2n+1 with vn+1 taking half of the total outflow (i.e. 1
2
F ) and

vn+2, ..., v2n+1 evenly dividing the other half of F . (D) However the pressures on the ends of

capillaries are decreasing to maintain uniform flows among capillaries, which is non-physical

since this means that the blood flows toward the tail in the principal cardinal vein, due to

the aorta-vein symmetry.
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Figure 4.8: The uniform flow networks quantitatively explains the zebrafish trunk vascular

network morphology. (A) The uniform flow network dictates a constant conductance on aorta

segments (blue cross) but assigns conductances to Se vessels that increase exponentially

from head to tail (red circle). We scale the conductances such that
∑
κ

1
2 remains the

same for comparison with minimal dissipative networks. We started with κ = 20 for aorta

segments and κ = 1 for capillaries to reflect the difference in radii in real zebrafish. (B)

The predicted hydraulic resistance (blue curve) agrees well with experimentally measured

data (red curve, with 95% confidence intervals). The data is obtained from our previous

work [CTB17] under the assumption that the volume fraction of the red blood cells is 0.45

[PS05]. Theoretical resistances are normalized by the mean since optimization only controls

the relative resistances of vessels.
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Figure 4.9: Uniform flow networks under Murray constraint have the same flows as the

analytic solution in Sec 4.3.2, but exhibit tradeoff between dissipation and material cost as a

increases. (A) For small a the uniform flow network with Murray constraint is equivalent to a

network with material constraint. The network is constrained with a = 36.8, and the solution

is selected from the best network visited during the gradient descent, with relative error in

energy cost < 10−4, as in the following simulations. Widths show the relative conductances.

(B) When a is increased, the dissipation in the network increases (blue crosses), while the

material cost decreases (red circles). The simulations were carried out in the manner of

numerical continuation, i.e. the simulation for each a starts with the solution from previous

a, and the simulation for a = 0 starts with a random conductance configuration. All the

networks have the same fixed total energy cost K = 1174.9.

100



Figure 4.10: Uniform flow networks on zebrafish trunk topology exhibit a phase transition

when a, the relative cost of dissipation to total material, is varied in the Murray constraint.

(A) The target function remains zero for small a until ac = 33.3 where a phase transition

occurs and the value of target function suddenly increases (blue crosses). The dissipation

(red circles) increases with a for a < ac just as for the capillary bed, but has a sharp decrease

right after the critical value ac. Here we adopted numerical continuation as in Fig. 4.9B, but

when a local minimum around previous initial condition does not satisfy Murray constraint

the initial configuration at a = 0 is reused for the initial conductances. The minimal value for

the total energy cost upon scaling of conductances is used whenever the Murray constraint

cannot be maintained. The Murray energy K is maintained to be 70.43 in all simulations

by the projection method described in Section 4.2.6. The total energy cost is fixed to

that of initial configuration (with uniform conductances in fine vessels being 1 and those in

aorta being 20) when a = 1. The solution is selected from the best network visited during

the gradient descent, with relative error in energy cost < 10−4 (B) The conductances of

capillaries change qualitatively after the phase transition. The morphology resembles the

unconstrained network (Fig. 4.8A) before the phase transition (blue cross and red circle),

but changes qualitatively afterwards (green square). (C) The flows are uniform before the

phase transition (blue cross and red circle), but decrease from head to tail afterwards (green

square).
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CHAPTER 5

A stable shear stress adaptation mechanism for growth

of microvascular networks

5.1 Introduction

Animal microvascular networks perfuse tissues with oxygen and sugars and remove waste.

Since red blood cells almost fill the finest vessels, changes in vessel radius even at the order

of tens of nanometers can potentially strongly alter the flows within the network [SBM16].

At the same time there are too many vessels for network growth to be fully determinate.

Yet, although they may operate under many different constraints and objective functions,

networks show remarkable levels of adaptation to create efficient or robust networks. For

example, in the zebrafish trunk microvasculature a precise tapering of vessel radii from tail

to head ensures that each vessel receives the same overall flow [CTB17]. Microvascular ves-

sels are highly variable in radii, which can significantly change the conductances and the

blood flow in the system. Penatrating arterioles and first capillaries in the mouse cortex,

for example, vary more than 25% in diameter [CFJ18], and more than 10% variation in the

diameters of arterioles in striated muscles is observed [KDG82]. To determine the precision

with which vessel radii must be tuned to ensure uniform flow, we performed ensemble simula-

tions in which vessel radii were perturbed from their real values, and counted the fraction of

simulations in which the uniformity of flow, measured by the Coefficient of Variation (CV) of

flow between all intersegmental (Se) vessels, was less than that in 4dpf zebrafish (Fig. 5.1A).

Consistent with previous permutation based tests [CR19], including variation in vessel radii

quickly led to decrease in uniformity, reflecting the fact that the true vessel radii are close to

their optimal values for uniform flows. Once the radius permutation reaches 7%, fewer than
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2.5% of the simulated networks had the same or more uniformity than the real networks

(Fig. 5.1B). We interpret these results to mean that uniform flows constrain vessel radii to

within 7% of an optimal set of values. To see whether Se vessels in zebrafish have similar

constraints, we estimated the radii of first 6 SeAs in 6 zebrafish at 4 days post fertilization

(dpf), using the measured red blood cell (RBC) fluxes in the SeAs and the relation between

conductance and radius based on cell occlusion (Eqn. (5.2)). Even if the RBC fluxes in SeAs

are flucuatory, with CVs ranging from 0.8 to 1.2, the radii of SeAs are tightly constrained,

with the variation ranging from 0.03% to 0.3% (Fig. 5.1C). Indeed the conductance of Se

vessels is proportioanl to the gap distance between the red blood cell and the endothelial

wall. Since this distance is typically less than 10% of the capillalry radius [SBM16], small

changes in the vessel radius can lead to significant changes in vessel conductances.

Accordingly it is generally thought that vessel radii are set by an adaptive process,

changing in response to the blood flows passing through the vessel. Indeed endothelial cell

growth is known to be highly responsive to flow, and many of the actors in the growth

mechanotransduction pathways are known [KSK93, KT80, DH17, TG99, BLB17]. However,

the precise physical form of this adaptation remains mostly unknown. Shear stress on the

endothelium provides a natural read out of the flow in a vessel; Hu and Cai [HC13] showed

that a network programmed to grow toward a state of uniform shear stress on each vessel

realizes a minimally dissipative spanning tree on a given set of sources and sinks (the optimal

transport network has uniform shear stress). However, real microvascular networks cannot be

explained simply from the point of view of dissipation-minimization – e.g. they contain loops,

which are not consistent with optimal transport only when additional constraints (fluctuating

sources or sinks, resistance to damage) are added [Dur07, BM07, KSM10]. Moreover, when

source and sink boundary conditions are replaced by fixed pressure conditions, then the

same algorithm is unstable, and will disconnect all but two pressure nodes from the network

[CR18]. [HCR12] sought to achieve stability to flow adaptation by incorporating variable

network geometry – having vessels open and close within the network. However the limits

on network size, or whether the need for coordinated vessel opening and closing may create

tradeoffs with the other functioning of the network. Accordingly, recent models of network
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structural adaptation have included chemical cues such as oxygen or glucose supply, along

with shear stress, in order to remove vessel instabilities [PSG98]. However, we are not ware of

any quantitative comparison between such models, and the trajectories of real networks. The

developing zebrafish microvascular network, a widely used developmental model [IHW01],

has already been used as a test system for models of vascular adaptation; in particular

[CJL12] showed that flows decreased within vessels ∼ 2.5 hours prior to the onset of decrease

in vessel diameter, consistent with shear-responsive pruning of the network.
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Figure 5.1: The radii of capillaries in embryonic zebrafish are tightly constrained. (A) A

diagram for embryonic zebrafish trunk microvascular network. We focus on the microvascular

network in the trunk and the tail (left: a 4dpf zebrafish), which has a topology like a ladder,

with the dorsal aorta (DA) and the posterior cardinal vein (PCV) being the rails, and the

intersegmental arteries (SeAs) and intersegmental veins (SeVs) being the rungs of the ladder

(right) [IHW01]. (B) Zebrafish trunk networks can tolerate up to 7% of random perturbation

in SeAs before the red blood cell flux becomes significantly less uniform than measured. We

perturb the SeAs in the uniform flow zebrafish trunk network [CTB17] by independently

normally distributed noises, with standard deviations ranging from 1% to 25% of the vessel

radii. At about 7% perturbation of SeA radius, more than 97.5% of the simulated networks

have higher Coefficient of Variation (CV) of red blood cell (RBC) fluxes than the mean value

in 6 4dpf fish (red line), signified by that the measured CV is lower than the mean (blue

curve) minus 2 standard deviations (blue error bars) of the simulated CV.
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5.1 (previous page): (C) The radii of capillaries in zebrafish networks are tightly constrained.

We calculate the radii of first 6 SeAs by solving for the conductances according to the mea-

sured RBC fluxes in these vessels [CR19], and then recovering the SeA radii from conduc-

tances by Eqn. 5.2. The CV of SeA radii ranges from 0.03% to 0.3%, with the rostral SeAs

more constrained than the caudal SeAs. SeAs with smaller numberings are closer to the

heart. (D) The blood flow pattern is consistent in 4 to 7 dpf zebrafish. Both the mean RBC

flux (blue, left axis) and the ratio of RBC fluxes in rostral and caudal trunk (orange, right

axis), measured respectively by the sum of RBC fluxes in 4 SeAs closest and farthest from

the heart, stay relatively constant throughout this developmental stage. Shown: mean ±

s.d. from 2–3 samples each dpf.

Here we directly compare models for adaptation with measured blood flows in the embry-

onic zebrafish trunk. The zebrafish trunk is perfused by a single aorta connected to a single

vein, via 20–30 intersegmental vessels resembling the rungs of a ladder [CTB17] (Fig. 5.1A).

This simple topology allows simultaneous measurement of red blood cell fluxes in multiple

fine vessels. We measured red blood cell flows in all of the intersegmental arteries (hence-

forth; SeAs), among fish ranging from 4 to 7 days post fertilization (dpf). We quantified the

flow by two measures: the average flow per Se artery, and the heterogeneity of flow between

rostral and distal vessels (namely the ratio of the average flow in the first 4 vessels closest to

the heart, to the 4 SeAs furthest from the heart). During an imaging period from 4 to 7 dpf

there is very little change in the mean flow through the Se arteries (Fig. 5.1. Additionally,

and in line with our previous measurements in 4dpf embryos, although there is a high degree

of variability among vessels [CTB17], there is no systematic bias of flow toward either tail

or head (Fig. 5.1D). As mentioned above, uniform partitioning of flows between the two

trunk regions requires fine tuning of vessel radii: all vessels had the same radius then those

closest to the heart would shortcircuit the trunk, creating high flow eterogeneity. However

the state in which all vessels receive the same flows is not a steady state of previous models

of stress responsive growth. We used the model of Hu and Cai, in which the radius of vessel
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adapts itself to the shear stress via dri
dt

= C(τi − τ̄i)ri, where ri is the radius, τi is the shear

stress, and τ̄i is the target shear stress of vessel i [HCR12]. Here vessels are assigned target

stress values, τ̄i, obtained from the desired steady state. However, although the uniform flow

network is a steady state of this model, the growth model is unstable. The mechanism of

instability is the same as for a simple parallel vessel network, which will be discussed shortly.

Simulated networks eliminate all but one Se vessel, thereby producing minimal dissipation

networks [CR19].
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Figure 5.2: A shear stress activation model for vessel adaptation. (A) The small gap distance

between the red blood cell and the endothelial wall creates large shear stress, compared to

that generated by plasma flow only (up). The stress under the presence of a cell can be

calculated by assuming a drift distance δ between the center of the cell from that of the

vessel, and considering the gap distance d between the cell and the endothelial wall on a line

that passes through the center of cell at an angle θ (down). (B) The shear stress experienced

by an endothelial cell exceeds the empirical threshold for notch-1 activation when a cell is

present. The stress shows strong fluctuations in a 33 second interval (blue line, left). When

we look at a 4 second interval, we see that the shear stress created by red blood cells (red

stars) is indeed much higher than that when the cell is absent. This difference crosses a

threshold of 23 ± 8 dyne/cm2 (green line and green dashed lines) previously measured to

trigger notch-1 expression [BLB17].
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5.2 (previous page): Shown: shear stresses measured at the middle of a Se vessel in a 4dpf

zebrafish. The velocities are measured by optical flow method [BFB92] and the cells are

found by detecting the extrema of intensity. Then the shear stress is calculated by an

integration similar to Eqn. 5.2, with r = 3.02 µm and rRBC = 3µm. (C) One reason for the

instability of the conventional shear stress adaptation model [HC13] is that the model only

stabilizes a single vessel under the flow boundary condition (orange dotted) but not under

the pressure boundary condition (blue line), as the stress increases as vessel dilates, which

further increases the stress. We used a velocity of 130 µm/s for the flow and a pressure drop

of 4300 dyne/cm2 for the pressure boundary condition, which are on the same order with

that experienced by a Se vessel in a 4dpf zebrafish. (D) The shear stress fraction from the

stress activation model, on the other hand, stabilizes a single vessel under both boundary

conditions, suggesting that it is more stable than the shear stress adaptation model. We

used a threshold σt = 380 dyne/cm2 and the same parameters as in (C).

In this work we propose a new shear stress adaptation mechanism in microvascular net-

works that takes into account that stresses in real vessels are highly unsteady. In Se vessels,

just as in capillaries, cells travel in single file [SUP03]. The gap distance between the cell and

the endothelial wall is typically ten to hundreds of nanometers [SBM16], so the shear stress

on the portion of the endothelial wall around a red blood cell is much higher than the average

shear stress (Fig. 5.2A). For comparison we show threshold stress values that are known to

induce and to not induce expression of notch-1 [BLB17], which is implicated in vessel growth

and repair. Our data show that shear stresses large enough to induce vessel remodelling are

only attained during passage of a red blood cell. The endothelial cell experiences pulses of

shear stress as red blood cells pass through (Fig. 5.2B). We therefore propose that the vessel

radius change is driven by the time averaged fraction of endothelial cells that are activated

by a shear stress higher than the target threshold.

109



5.2 Results

To calculate the fraction of activated endohelium for a given microvascular network we

first calculate the blood flow in the network and then the shear stress on every point on

the endothelial wall. The flow is laminar in microvascular vessels [Hov04, JNE06], so the

hydraulic conductances of the vessels in the absence of red blood cells can be calculated by

Hagen–Poiseuille law [Ach90]. Red blood cells temporarily occlude vessels they pass through.

This occlusive effect has been modeled by adding a fixed increment to the vessel resistance

per cell it contains [SHP01, SA08, CTB17]: R = R̄ + nαc, where R and R̄ are the effective

and Hagen–Poiseuille resistances of the vessel, n is the number of red blood cells in a vessel,

and αc is the occlusive strength per cell. The occlusive strength αc depends on physiological

properties of the vessel, such as radius and the protein coating on the endothelial wall

[CTB17], but it singularly depends on the gap distance between the red blood cell and the

endothelial wall [SBM16].

This gap thickness depends on the position of the cell within the vessel. Both interactions

with the endothelium and the entropy of fluctuations in cell shape tend to push the cell away

from the endothelial wall, and into the center of the vessel. We assume the center of the

cell is normally distributed around the center of the vessel, with variance σ2
n. Since normal

distribution is isotropic we can instead consider a distribution on the drift distance δ between

the centers of the cell and the vessel. Thus the distribution p(δ) of the drift distance δ is:

p(δ) =



δ
σn
e
− δ2

2σn

1−e−
δ2t
2σn

, δ ≤ δt

0 , otherwise

. (5.1)

The cell is confined within the vessel so we need a truncation at δt < r − rRBC , where rRBC

is the radius of the cell. Here we choose σn = r
2

and δt = 9
10

(r − rRBC) through out the

chapter. The gap distance d around the endothelium depends on the angle θ made with the

point of closest separation (Fig. 5.2A). If r − rRBC � rRBC , we may use lubrication theory

[Ach90] effectively approximating the flow at each angle as Couette flow. Then αc can be
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approximated as:

αc =
µ`RBC
π2r3

∫ δt

0

p(δ)

∫ 2π

0

1

d(θ, δ)
dθdδ (5.2)

if we approximate the coordinate system centered at the vessel by that centered at the cell.

The gap distance d is d = δ tan θ+
√
r2 sec2 θ−δ2

sec θ
− rRBC ., where µ is the plasma viscosity, `RBC is

the length of the cell, r is the radius of the vessel, and d is the gap distance between the cell

and the wall. With the αc and conductances of each vessel in the network calculated, the

flows in the network can be solved for [CR19, MA18]. We can then calculate the fraction

of activated endothelial cells. For fixed flow speed, the shear stress on the endothelial wall

is inversely proportional to the gap distance. Therefore the shear stress increases from the

top (θ = π
2
) to the bottom (θ = −π

2
) of the vessel. Cells are activated if their shear stress

is higher than a threshold σt. For each drift distance δ a critical θt can be solved for such

that the shear stress at the angle θt: σ(θt) = µ u
d(θt,δ)

= σt, where u is the flow speed (we set

θt = π
2
, if the whole circumference exceeds σt, and −π

2
if no part does). Typically the shear

stress outside of the gap cannot exceed σt, so the fraction of activated cells is:

f =
n`RBC
`

1

π

∫ δt

0

p(δ)(θt(δ) +
π

2
)dδ. (5.3)

The numerical value of θt(δ) can be found quickly by bisection [BF10] since the shear stress

is monotonic in θ. Then numerical integration is used to integrate in δ.

Single vessels remodel according to the rule

dri
dt

= C1(fi − f̄)(ri − rRBC), (5.4)

where ri is the radius of the ith vessel, Ci is the rate of adaptation, and f̄ is a target fraction

of activated cells. To regularize the system we set a lower bound rRBC on the vessel radius.

During zebrafish trunk ontogeny, even if a Se vessel does not carry flow, it is not completely

pruned [IHW01, SUP03]. We compare dynamics under this form of shear stress adaptation

with a similarly modified form of the model in [HCR12]:

dri
dt

= C2(τi − τ̄)(ri − rRBC), (5.5)

where τi is the average shear stress in vessel i, and τ̄ is the target shear stress. In both

models [HCR12, HC13], we include the occlusive effect of the red blood cells upon their
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resistance when calculating flows (5.2). Since red blood cells cannot enter vessels with

small diameters, we assume that the linear hematocrit h (i.e. number of cells per length

of Se vessel) is a constant when r > rRBC + ε, and zero otherwise. ε > 0 is small enough

to not have physical meaning, and our results do not depend on the precise value it is

assigned. Our model represents a highly simplified version of the Zweifach–Fung effect

[ZL77, BAR08, SCK16, CHJ16, Poz05], which ensures that by volume hematocrit is not

necessarily constant through a network of blood vessels. We can evaluate the stability of

either model of adaptation by plotting the signals, τ and f , against the vessel radius. The

dependence of the signals on the vessel radius is plotted for both mechanisms (5.4, 5.5) when

either the flow through the vessel or the pressure drop is fixed while its radius is changed,

these being the two common boundary conditions imposed on a flow network [BM07, CR18].

Under a constant flow constraint, the shear stress decreases as the vessel radius increases,

due both to increase in the gap between cells and the vessel walls, and smaller peak plasma

velocities. Thus under model (5.5) the vessel radius converges globally to a value meeting

the desired target shear stress. However, when constant pressure drop boundary conditions

are imposed on the same vessel, then shear stress increases with vessel radius; since increases

in radius increase the vessel’s conductance, and hence blood velocity increases more rapidly

than the cell gap does. Thus the radius of a vessel evolving according to model (5.5) will

either decay to rRBC or diverge. By contrast, the fraction of stress activated cells decreases

monotonically with vessel radius, under both conditions of constrained flow or pressure

drop. The effect of vessel radius for constrained flow vessels is the same as for the shear

stress model. However, when pressure drop is conserved, a O(r − rRBC) increase in vessel

radius will strongly affect the cell-gap thickness, while only mildly affecting the velocity of

cells. This is because, while the shear stress simply scales with the vessel radius under fixed

pressure, the decrease of the shear stress fraction with the increased gap distance is stronger

than its increase with the flow velocity.
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Figure 5.3: The stress activation (SA) model stabilizes network topologies commonly used

to model microvascular networks, and creates realistic zebrafish trunk network. (A) The SA

model stabilizes the parallel network with 2 vessels (left). The equilibrium is a saddle point in

the previous shear stress model (middle) but a stable node in the activation model (right).

The effect of red blood cells is included in both models (Eqn. (5.2)). We set the target

shear stress and target stress fraction to be such that the state (r1, r2) = (3.01, 3.01)µm is

stationary. We used a flow boundary condition with inflow F = 1.5× 104 µm3/s. The stress

threshold σt = 380 dyne/cm2 is used in panels (A)-(C) and hematocrit 0.014 1/µm measured

from a 4dpf fish is used in panels (A)-(D). (B) The SA model stabilizes hierarchical networks.

We applied the model on hierarchical networks with 1–7 levels (left: a level 5 tree), with

the lowest vessels following the dynamics (5.4) and the rest of vessel radii determined by

Murray’s law [Mur26b]. We start the vessels independently uniformly at random between

radii 3.005–3.3 µm (up right), and all 70 networks (10 for each level) converge to networks

with uniform capillary radius 3.01 µm, which we set to be the stationary state (bottom

right). The ODEs are solved with a total time of 200 and C = 40.
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5.3 (previous page): (C) The SA model stabilizes square grid networks and produces uniform

flow networks. We applied the model on 8 × 8 grids with 112 vessels, with a single inflow

F = 1.1 × 105 µm3/s on the top left and outflow in the bottom right vertices. all vessels

following the dynamics (5.4). The target stress fraction f̄ is set uniformly to 0.025. All 10

networks converge to unpruned networks (shown), and the flows agree to those in the uniform

conductance network (mean flow error: 9.1× 10−3 ± 1.3× 10−3, mean ± SE), showing that

these networks optimize flow uniformity [CR19]. The ODEs are solved with a total time

of 400 and C = 40. (D) The SA model creates a realistic 4dpf zebrafish trunk network.

We applied the model on the arterial part of the trunk network with 12 SeAs (Fig. 5.1A)

[CTB17]. Due to asymmetry introduced by varied distances of SeAs from the heart, we set

the stress thresholds σt according to a uniform flow zebrafish trunk network [CR19], but a

constant stress fraction 0.085. The dynamics (5.4) on SeAs produced an unpruned network

with radius increasing from head to tail. We start with a uniform SeA radius 3.6 µm, and

the ODEs are solved with a total time of 80, an inflow F = 3×105 µm3/s, and C = 50. SeAs

with smaller numberings are closer to the heart. (E) This SeA radius distribution creates a

network with uniform red blood cell flux (black line). The measured RBC fluxes are more

fluctuatory (N = 6, colored curves), but do not show systematic increase or decrease, which

is captured by the uniform flow prediction.

The convergence of adaptation under both boundary conditions promises well for its

stability in large networks, where each vessel experiences some hybrid of the two constraints.

To quantitatively test the stability of the proposed mechanism we applied both models to

a set of archetypal vascular networks. First we consider a simple parallel network with two

vessels (Fig. 5.3A, left) with constant inflow into the network. We set the target signals τ̄ , f̄

to be the same in two vessels, so that there is one equilibrium with both vessels unpruned,

i.e. ri > rRBC , with uniform vessel radius. As observed in [HCR12], the parallel network

is unstable under model (5.5), and the only stable equilibrium points are the ones where

one vessel is pruned (Fig. 5.3A, middle). In contrast, the proposed model (5.4) has a single

114



stable equilibrium point where both of the vessels have the same conductances and flows

(Fig. 5.3A, right). The activation model also stabilizes large symmetric branching tree

networks (Fig. 5.3B, left); we use the model to evolve radii of capillaries (the deepest vessels

in the tree), and assume that all shallower branches have fixed radii determined by Murray’s

law [Mur26b]. Capillaries stably maintain the same radii in networks whose depth ranges

from 2 to 7 vessels (i.e. 4 to 128 capillaries); over the same range of depths the most unstable

eigenvalue increases from −0.56 to −0.21. Moreover, the equal capillary size constraint is

robust even against finite perturbations: we simulated the adaptation of networks in which

capillary initially varied from the equilibrium radius by ∼ 10%, and they still converged to

networks in which all of the capillaries had the prescribed radius (Fig. 5.3B, right). Model

(5.4) therefore allows stable adaptation of networks on a scale exceeding the vessel opening

and closing model of [HCR12], which was shown to ensure stable adaptation of networks

with depth 4.

We also applied the adaptation model to a square grid network, which has been used as

a model for a capillary bed (Fig. 5.3C) [OWB10, CR19]. Although uniform activation of cell

of the vessels does not physically require that each vessel receives the same flow, structural

adaptation nonetheless produces a network with maximally uniform flow: it is impossible

to creat any network on which flows in each vessel are the same, because of the number

of vertices in which three vessels meet, but at which flow must nonetheless be conserved.

However, the square grid is an example of a stackable network – it can be divided by surfaces

that cut each vessel exactly once – so maximal uniformity occurs for a family of networks

each of which has the same set of flows as one in which all vessels have the same conductance

[CR19]. Under activation adaptation, the final, stable networks have an apparent hierarchy

of vessel radii, thickest at the inlet and out let and along the mid-line of the grid, but matches

the flows produced by a uniform conductance network to within 0.91%. Flow uniformity is

tightly related to oxygen and metabolite exchange [MA18], and the proposed mechanism

provides a theoretical guidance on creating microvascular networks with uniform flow.

Can activation adaptation produce the embryonic zebrafish trunk? Previous calculations

[CTB17] have shown that the resistance of vessels must decrease from rostral to distal vessels
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to ensure uniform flow. To achieve this we allow the shear stress threshold σt to vary

between Se vessels, which may be determined by the pressure in the aorta before Se vessels

form [IHW01]. Here we set the stress thresholds by the known structures of zebrafish trunk

networks with uniform flow (computed in [CTB17, CR19]). The stress threshold is a simple

function that monotonically decreases from head to tail (Fig. 5.3D). We evolved the zebrafish

trunk network using model (5.4) starting with each Se vessel having a radius of 3.6µm,

initially therefore vanishing activation fraction of each Se vessel. From these initial conditions

activation adaptation generates an unpruned network with vessel radii increasing from head

to tail [CTB17, CR19]. The shear stress fractions match the target values, showing that

the mechanism stabilizes the trunk network. The variation in vessel radius creates a blood

flow pattern that agrees with the measured blood flow among N = 6 4dpf zebrafish trunks

(Fig. 5.3E): blood flow varies between Se vessels but does not systematically increase or

decrease from head to tail.
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Figure 5.4: The stress activation (SA) model becomes unstable as hematocrit decreases,

which predicts the pruning during zebrafish development from 4 to 13 dpf. (A) The stress

fraction signal becomes weaker as the hematocrit decreases. At low hematocrit (0.2× normal

hematocrit, yellow dash-dotted curve) the stress fraction at all vessel radii lies below a target

stress fraction (red line), suggesting the occurrence of pruning. The parameters in panels

(A), (B), (C) are the same as those in Fig. 5.2D (pressure boundary condition), Fig. 5.3A

and D, respectively. (B) The hematocrit-induced pruning occurs in the parallel system

with two vessels. When the hematocrit halves the normal value, the equilibrium is shifted

toward smaller vessels (left, red dot: original equilibrium), and then at lower hematocrit an

equilibrium with both vessel radii larger than the radius of the RBC ceases to exist (right).

(C) The SA model with experimentally measured hematocrit predicts the pruning of Se

vessels during zebrafish development.
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5.4 (previous page): We apply the dynamics (5.4) on zebrafish trunk topology with 12

SeAs, and change the hematocrit according to previous data [SUP03]. The model predicts a

decrease in the number of vessels with RBC flow (blue curve), with a variation induced by

uncertainties in hematocrit measurement (blue dashed curves: prediction from mean + SD

hematocrit, and vice versa). This prediction matches our measurements of the fraction of Se

vessels with RBC flow from 4 to 13 dpf (black dots, mean ± SD, 2–4 fish per dpf). A single

parameter C = 50 was fitted to the data. The viscosity in the aorta is adjusted according

to [GWS81]. (D) Additionally the SA model predicts the head tail asymmetry of RBC flow

during zebrafish development. The model predicts a decrease in head tail ratio (blue solid

and dashed curves), determined by the fraction of vessels with RBC flow in the rostral third

of the trunk divided by that in the caudal third, that matches our measurements (black dots

and error bars). The symbols have same meanings as in (C). Star: one data in 8 dpf with

infinite ratio is ignored.

The fraction of stress-activated cells in a vessel depends on hematocrit. If the pressure

difference across a single vessel is maintained, we plot the fraction of activated cells as a

function of vessel radius for different hematocrits (Fig. 5.4A). The overall shape of the stress

activation function remains the same, but the maximum fraction of activated endothelial

cells decreases as the hematocrit decreases (Since hematocrit also affects the velocity of

the cells changing hematocrit does not simply rescale the stress activation curve.). Hence,

unless there is a compensatory decrease in the f̄ or σt, the equilibrium radius of the vessel

will decrease with hematocrit. At small enough hematocrit, f̄ can no longer be attained

at any radius, and the vessel will continue to shrink until red blood cells may no longer

pass through it. When we reduce hematocrit in the same way in the two parallel vessels,

equilibrium radius initially decreases in both vessels (Fig. 5.4B, left), and eventually vanishes

with the whole network pruned (Fig. 5.4B, right).

Does the embryonic zebrafish network show the same structural evolution when hemat-

ocrit changes? During normal zebrafish development, there is a 3.5-fold decrease in hemat-
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ocrit between 4dpf and 15dpf – i.e. immediately after the period of network stability assay

in Fig. 5.1D [SUP03]. The reasons for this decrease are not known, but it may be part of

the process of transition from short-lived primitive red blood cells to mature red blood cells

[WSA96]. Accordingly the average hematocrit in Se vessels decreases in 4 to 14 dpf fish

[SUP03]. Does the network adapt? We simulate the continuing development of zebrafish

trunk vasculature by following model (5.4) using previous time series data of hematocrit

[SUP03]. Our model predicts that reduced activation of endothelial cells causes vessels to

shrink, and actually become unstable to carry red blood cells. The predicted increasing the

number of Se vessels without red blood cell flux quantitatively agrees with real measure-

ments of embryonic trunk flow (Fig. 5.4C). Additionally our model for structural adaptation

predicts that the remaining RBC-carrying vessels will be primarily located in the tail of

the zebrafish, partly since the tail vessels have the largest stable radius and partly because

they maintain this radius by having the lowest threshold for shear stress activation, and will

therefore be the slowest vessels to become too small to admit red blood cells. This, too, is

supported by real zebrafish data. In Fig. 5.4D we show the fraction of the ratio of the vessels

in the rostral third trunk that carry red blood cells to those in the caudal third trunk. The

decrease of this head tail ratio over development, reflecting the skew of low toward the most

distal of Se vessel, quantitatively matches the predictions of model (5.4).
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Figure 5.5: The stress activation (SA) model can explain the pruning pattern in gata-2

zebrafish where the number of red blood cells is reduced by half. (A) Gata-2 4dpf fish show

a similar level of vessel pruning as wild type 12dpf fish, compared to wild type 4dpf fish (box

plot), due to a reduced level of hematocrit. (B) Our simulations suggest that gata-2 4dpf

fish can have a different pattern in RBC flow from wild type 12dpf fish, though they have a

similar level in hematocrit. We simulate 2 days of development with different uniformity in

initial radius (interpolated from a uniform radius of 3.065µm and the wild type 4dpf radius

distribution shown in Fig. 5.3D) and scales in shear stress threshold, represented by a factor

that multiplies the stress threshold distribution in wild type 4dpf fish shown in Fig. 5.3D.

The parameters that model gata-2 4dpf fish produce focused RBC flow in the rostral trunk

(red triangle), while those modeling wild type 12dpf fish reproduce focused RBC flow in

the caudal trunk (blue triangle). (C) Our prediction of RBC flow pattern is verified by our

measurements on gata-2 4dpf and wild type 12dpf fish. We plot the fractions of number of Se

vessels with RBC flow in rostral and caudal thirds of the trunk. The vessels with RBC flow

in gata-2 4dpf fish concentrate in the rostral trunk (red crosses), while those in wild type

12dpf fish focus in the caudal trunk (blue circles), compared to wild type 4dpf fish where

most of the Se vessels have RBC flow (green stars).

To test whether the decrease in hematocrit drives changes in the geometry of the network,

we performed additional experiments in which the GATA-2, a hematopoiesis transcription

factor, was knocked down by injecting the fish with antisense morpholinos [VFL09]. Knock-
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down fish had approximately half of the number of red blood cells seen in wild type fish

[VFL09]. As our model predicts, structural adaptation of the network meant that only a

small fraction of vessels (55% at 4 dpf) remained wide enough open to admit RBCs, which is

close to that in wild type 12 dpf fish (45%) that has a similar hematocrit (Fig. 5.5A). However,

unlike decreasing hematocrit during normal development, gata-2 fish did not experience a

period of normal hematocrit level before the decrease in hematocrit initiates. This sets gata-

2 4dpf fish apart from wild type fish in a later developmental stage, say 12dpf, and this

difference can change the distribution of vessels with RBC flow throughout the trunk. To

simulate this effect we explore how the head tail asymmetry depends on two parameters:

the initial radius distribution and the scale of shear stress threshold. In later developmental

stages the vessel radii have already adapted to the blood flow, while in early stages the

vessels have less information from blood flow. The hematocrit also affects the viscosity in

aorta, which in turn changes the shear stress experienced by budding Se vessels and can

set a different scale of stress threshold in early developmental stages. Therefore while the

wild type 12dpf fish have normal stress thresholds and initial radius distribution close to a

wild type 4dpf fish, we expect gata-2 fish to have lower stress thresholds and more uniform

distribution of vessel radius. This difference leads to different head tail asymmetry in gata-2

4dpf and wild type 12dpf fish in our simulations, with RBC flow focused in the rostral trunk

in gata-2 4dpf fish (Fig. 5.5B). This prediction matches our measurements on gata-2 4dpf

fish where vessels with RBC flow aggregate in rostral trunk, in sharp contrast with wild type

12dpf fish where those vessels concentrate in the caudal trunk (Fig. 5.5C).
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CHAPTER 6

A dynamical bifurcation model of bipolar disorder

based on learned expectation and asymmetry in mood

sensitivity

This chapter was based on: Shyr-Shea Chang and Tom Chou. “A dynamical bifurcation

model of bipolar disorder based on learned expectation and asymmetry in mood sensitivity.”

Computational Psychiatry, 2, 205–222, 2018.

6.1 Introduction

Bipolar disorder is characterized by cycling between manic and depressive episodes [GL97].

Its prevalence is estimated to be 0.3%−1.5% of the total population [WBC96]. The lifetime

cost for a single patient can reach several million US dollars [BAS01], and medication use

associated with bipolar disorder comprises about 7% of that used to treat all mental disorders

[WDR13]. Bipolar disorder has a serious societal impact, with 65.5 work days lost per year

per patient [KAA06] and its early onset a major risk factor for suicide [HSH05]. Despite the

significance of bipolar disorder, there is limited structural understanding of the underlying

mechanisms [GM13]. Modern techniques such as functional magnetic resonance imaging

(fMRI) have located neural circuits including limbic networks and attentional systems, whose

dysfunction may be correlated with bipolar disorder [SAH04, CSL11]. However, how the

dysfunction of these circuits leads to emotional vulnerability remains unclear.

In order to understand the mechanism of bipolar disorder and accelerate the develop-

ment of treatment [GM13], many mathematical models have been proposed and fit to ex-
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perimental data. An oscillation in mood, either observed or self-reported, is the defining

feature of bipolar disorder [GL97]. Thus, early models focus on explaining this oscillation

[BGG15, DRU09, Gol11, MLM12]. The models describe mood as being formed from an

intrinsically oscillatory brain circuit and explain self-reported mood scores as well as the ef-

fects of medication. Following these studies, a natural next step is to clarify the mechanism

of the oscillations and distinguish key differences between normal individuals and patients

with bipolar disorder (see also [Gol11]). A popular theory states that dysregulation of the

Behavioral Approach System (BAS) and the resulting interaction between mood, expecta-

tion, and behavior can explain bipolar disorder [UAH08]. Psychological observations provide

evidence of malfunction of the BAS, and models have been built to explain bipolar disorder

based on this malfunction [SW13]. A key difference between BAS-based models and some

earlier models is that BAS models show bistability in mood instead of oscillations and re-

quire external input or noise to trigger switching between states of mania and depression

[CSM17].

Can a model exhibiting periodic mood oscillations and other observed features be de-

rived by from self-contained and general models that incorporate expectation and behavior?

Recent psychological experiments have shown that emotion is affected by the mismatch be-

tween expectation and reality instead of the reward value [RSD14]. Theoretically, it has been

shown that the interaction between mood and expectation captures the qualitative features

of self-reported mood in psychological experiments [EN15] and can indeed lead to bipolar

disorder. In reality, there are many factors that can interact with mood and expectation.

For example, it was suggested [ERD16, MER17] and reported both clinically and in psy-

chological experiments [GKY04, PB17] that the sensitivities toward positive and negative

events can be different.

In this work, we develop and analyze a variant of the models proposed by [EN15, ERD16]

and [MER17]. Like these models, our model is based on an interaction between mood and

expectation and incorporates experimentally measurable variables (for example, see [PB17]).

Following a similar analysis as that in [EN15], we prove that our model exhibits oscillatory

mood behavior when a particular psychological parameter, the mood sensitivity, exceeds a
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threshold value. Our analysis further quantifies the amplitude and frequency of oscillations

in mood and expectation. We also explore the effects of different amplitudes of responses

of mood to positive and negative events–or asymmetric mood sensitivity. In our model, we

will show that depending on the initial level of asymmetry, changing the response to either

positive or negative events may lead to a bipolar state. We introduce a piecewise-linear reality

function with random amplitude and time intervals but whose mean does not change over

time, and show that it preserves many of the qualitative features predicted under constant

reality but produces irregular mood trajectories that qualitatively resemble observations

[BGG15]. Finally, we model the effects of pharmaceutical intervention, including those of

antidepressants and lithium.

6.2 Mathematical Model

In this work we want to investigate how the interaction between the mood and the expecta-

tion models both normal individuals and bipolar disorder patients. The idea of the model is

that the mood and expectation are both affected by the difference between perceived reality

and the expectation, since the expectation sets a baseline for us to judge the reality, and

the current mood can affect how we see the reality. The mood is assumed to be confined by

chemical limits, which is reflected by the decay terms in the mood equation. The equations

in terms of mood m(t), expectation v(t), and reality r(t) can be written as:

dm

dt
= ηm(fm+ r − v)− km− k3m

3 (6.1)

dv

dt
= ηv(fm+ r − v). (6.2)

Here, ηm and ηv are learning rates for mood and expectation, respectively; f is a scale factor

for how mood contributes to perceived reality fm+r; and k, k3 are linear and cubic recovery

rates for mood, respectively. The perceived reality fm+r in our model represents, in a linear

way, the modification that mood has on reality. Thus, fm+r−v reflects the extent to which

an individual is surprised and how strongly she should respond. Unlike for the expectation

v(t), the mood equation contains a separate term that drives it to a baseline level, even after
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positive reality events such as winning a lottery [BCJ78]. This recovery “force” for the mood

is captured by the −km(t) term, with k−1 a mood relaxation timescale. We will see that

this linear recovery term is essential for explaining the cyclothymic transition from normal to

bipolar models. Finally, if mood is viewed as a physiological quantity, its magnitude should

be bounded. To prevent the mood from growing indefinitely, we include a higher-order

nonlinear cubic term (corresponding to a quartic “potential”) in the mood equation. Thus,

both linear and cubic recovery terms play key roles in explaining how the bipolar disorder

occurs in our model.

The reality r(t) is derived from external events and is not affected by personal mood

or expectation. This assumption distinguishes the proposed model from those based on the

Behavioral Approach System (BAS) [SW13]. By eliminating the expectation v(t), our model

can also be written in terms of a single nonlinear oscillator in mood (assuming that r(t) is

differentiable):

d2m

dt2
− (fηm − k − ηv − 3k3m

2)
dm

dt
+ ηvkm+ ηvk3m

3 = ηm
dr

dt
. (6.3)

This is a Liénard equation [Str14] similar to the general Liénard oscillators invoked in previ-

ous theories [DRU09, BGG15]. The main new features here are the forcing term ηm(dr/dt)

that depends on changes in reality, the higher order term ηvk3m
3, and a possibly non-

constant parameter ηm as we will explore later in this section. The main mechanism behind

our model is that positive and negative surprises, i.e. the difference between perceived reality

and expectation, drive mood in corresponding directions, which in turn adjust the perceived

reality and speed up the adaptation of expectation. In this sense, the rate of change of mood

is analogous to the momentum of a damped harmonic oscillator [ERD16]. From our daily

experience it is apparent that mood changes the way we perceive reality: a minor drawback

may have little effect on us when we are happy, but can be a source of depression if we are

not in good spirits.

Our model is actually a variant of the one proposed in [ERD16] but differs in three ways.

First, the mood affects the perceived reality in the mood dynamics. Second, the linear decay
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term −km has an independent parameter k. This is different from the [ERD16] model in

which the mood recovery rate is assumed to be the same as the mood learning rate ηm and

allows for more mathematical generality, since psychologically the mood recovery rate may

be able to vary independently from the mood learning rate. Finally, as noted above, we have

added a cubic mood recovery term −k3m
3. A nonlinear suppression term and the linear

decay term are essential for the system to admit limit cycle behavior that captures bipolar

disorder.

The model exploits a similar central mechanism as that proposed in [EN15], but with a

number of technical differences. In [EN15] the mood is defined through a sigmoidal function

tanh of a quantity that reflects recent “prediction-error history.” In contrast, the mood in

our model directly reflects the prediction-error history, but is susceptible to the effects of a

higher order recovery term −k3m
3, distinguishing it from both [EN15] and [ERD16]. This

difference represents two mechanisms for bounding the mood: explicitly specifying the limits

of the mood through the tanh function and limiting the mood through a general (allowed by

symmetry) cubic “force” term in the dynamics. Our model is also different from [EN15] in

that the effect of mood on perceived reality assumes an additive rather than a multiplicative

form. In summary, our model has a simpler mathematical form yet generalizes the previous

models by [EN15, ERD16] and [MER17] in a way that allows for a clean, self-contained

mathematical analysis and a spectrum of qualitative behaviors.

Throughout this chapter we will explore the effects of two forms of the reality function

r(t): a constant r(t) = r0, and a random r(t). In the random case, we assume a piecewise

constant form for r(t) with normally distributed values and log-normally distributed times

between jumps. This functional form reflects the abrupt nature of changes in reality such

as salary raises or the death of relatives cause a dramatic change that lasts for certain

period of time. We set the mean, standard deviation of r(t) to be 0, σr. The time intervals

between jumps in r(t) are drawn from a log-normal distributions with mean log time 1/kr and

standard deviation of the log time 1/kr. The parameters f, k, k3, ηv are treated as positive

constants throughout the chapter. It has also been shown that learning rates ηm can be

different for positive and negative events [PB17], which we model using a Heaviside function
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of fm+ r − v:

ηm =

 η+
m , if fm+ r − v > 0

η−m , if fm+ r − v ≤ 0
, (6.4)

where η+
m, η

−
m are positive constants. We will show in the Results section how asymmetry in

ηm (the case η+
m 6= η−m) can influence the onset of disorders. The parameters are tuned such

that the timescale of mood variation matches the experimental data in [BGG15], except in

Fig. 6.3 the timescale is tuned so that the adaptation of mood to positive and negative events

fits more to the observed time scale.

To better connect our results with clinical observations, we calculate QIDS-SR16 (Quick

Inventory of Depressive Symptomatology) scores [RBT06] from our model. The QIDS-SR16

(QIDS for short) is commonly used for analyzing and testing treatments of bipolar disorder

[BWG12, HBH16] and consists of a 16-item self test that measures the level of depression. We

calculate this score by taking −min(0,m) since negative mood corresponds to depression.

In principle, our model predicts mood and expectation but does not capture all specific

indicators of depression and mania. Here, we adjust the scale of mood to QIDS score to

connect our work with clinical observations. The system (6.1,6.2) is solved by explicit 4th

to 5th order Runge-Kutta solvers [DP80], carried out by the ode45 function in MATLAB.

6.3 Results

6.3.1 Mood and expectation become more oscillatory as the mood sensitivity

increases

For normal subjects we expect that if the reality r(t) = r0 is constant the expectation

should approach r0 and the mood will relax to zero as there is no additional stimuli; this

justifies shifting r0 → 0 without loss of generality and linearizing Eqs. (6.1-6.2) around the

fixed point (m, v) = (0, 0). In this way we can define the parameter regime within which

the origin becomes linearly unstable (suggesting the onset of bipolar disorder) and which
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parameters are crucial in this process. Before we study more general cases, we first assume

symmetry in the mood learning rate ηm, i.e., η+
m = η−m, to gain insight into the basic model.

Upon linearizing Eqs. (6.1-6.2) or Eq. 6.3 about (m, v) = (0, 0) for r = 0, we find the two

eigenvalues

λ± =
ηmf − ηv − k

2
±
√

∆

2
, (6.5)

where the discriminant

∆ ≡
(
ηmf − ηv − k

)2 − 4ηvk. (6.6)

Thus, the origin is linearly stable when fηm − k − ηv < 0 and Re(λ±) < 0, and unstable

when fηm − k − ηv > 0, corresponding to at least one eigenvalue containing a positive real

part. This analysis agrees with that of [ERD16] in which bipolar disorder arises either when

f is large or ηm � ηv. Here, we focus on mood and base our study on the quantity fηm,

which we call the mood sensitivity parameter. In the linearly stable case, the system can

support transiently oscillating behavior in mood and expectation, similar to that of a damped

harmonic oscillator [Mar13]. For oscillatory behavior that is underdamped or undamped,

there are potentially associated qualitative clinical presentations such as cyclothymic and

bipolar personalities [MER17].

Oscillation frequencies are characterized by the imaginary part of the eigenvalues, deter-

mined by the sign of ∆. When ∆ is positive there will be no oscillation in the solutions,

while negative ∆ corresponds to oscillatory solutions, with oscillation frequency determined

by
√
|∆|/2. As a function of the mood sensitivity parameter fηm, we see that ∆ is a

parabola with minimum at fηm = ηv + k, the critical value for linear stability, with a nega-

tive discriminant −4ηvk. Thus, as fηm increases toward the critical value ηv + k, the mood

and expectation become oscillatory with the frequency in the oscillations increasing. As the

mood sensitivity fηm exceeds the critical value, a Hopf bifurcation occurs, the linearized

dynamics become unstable, and linear analysis can no longer predict system behavior. This
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Figure 6.1: The mood and expectation of normal subjects become more oscillatory as the

mood sensitivity fηm increases towards the critical value ηv +k from below. (A) Oscillations

in expectation are highly damped for normal subjects (blue solid, fηm = 0.3(ηv + k)), but

become less damped when the mood sensitivity increases (green dotted, fηm = 0.6(ηv + k),

and red dash-dot, fηm = 0.9(ηv + k)). Since we start the solutions at (m, v) = (0,−1), the

constant reality r(t > 0) = 0 represents a permanent increase in reality from r(t < 0) = −1.

The numerical values ηv = 0.37, f = 0.3, k = 0.37, and k3 = 2.8 × 10−3 are used in all

figures. (B) The mood shows similar oscillatory behavior that become less damped with

increasing mood sensitivity. (C) When subjected to random reality events, models with large

mood sensitivities exhibit larger responses in expectation. (D) Similarly, the fluctuation in

mood is greater for in systems with larger mood sensitivity under random reality conditions.

Realizations of the random reality function are generated as described in the Mathematical

Model section, with σr = 2, kr = 1. In (C) and (D), mood and expectation are initialized at

(m, v) = (0, 0).

argument suggests that mood fluctuations even in normal (subthreshold) systems nonethe-

less increase as the mood sensitivity increases. We verify these arguments by numerically

solving Eqs. (6.1,6.2) using constant r(t) = 0 and different mood sensitivities. The numerical
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solutions show that the oscillation frequency in mood and expectation increases as the mood

sensitivity fηm becomes larger, as predicted by our linear analysis (Fig. 6.4A, B). Notice that

when k = 0 and there is no linear dissipation of mood, the eigenvalues are strictly real and

the system does not support a cyclothymic regime across the stability threshold. The mood

dynamics transition from exponentially decaying directly to exponentially growing behavior.

Linear stability analysis does not fully apply when the reality r(t) is time-dependent.

However, numerical solutions show that for larger fηm, expectation v(t) deviates more from

reality r(t) and that mood m(t) experiences higher variations about its baseline (Fig. 6.4C,

D). These results suggest that the mood sensitivity controls a spectrum of personality re-

sponses, from normal to cyclothymic, and is a key determinant in triggering bipolar disorder

as its threshold is exceeded.

6.3.2 A limit cycle occurs as mood sensitivity crosses the critical value, repre-

senting a bipolar state

Once the mood sensitivity fηm exceeds the threshold ηv + k, linear analysis no longer holds

since the origin becomes unstable and nonlinearities quickly become important. However,

for two dimensional systems, we can rely on the Poincaré–Bendixson theorem to predict the

existence of a limit cycle, a periodic solution that attracts solutions starting nearby [Str14].

For this analysis, and in the rest of this subsection, we still assume η+
m = η−m and a constant

r(t) = 0. Since the origin is linearly unstable, we search for a limit cycle by constructing

an outer boundary on which the vector fields are pointing inward. One way of finding this

boundary is to draw a rectangle whose edges connect two nullclines v = (f − k
ηm

)m− k3
ηm
m3

and v = fm. Since η+
m = η−m, both nullclines are rotationally symmetric allowing us to find

the distance to the right edge of the boundary by setting −fm∗ equal to the m-nullcline:

−fm∗ = (f − k

ηm
)m∗ − k3

ηm
m∗3, (6.7)

which leads to

m∗ =

√
2fηm − k

k3

. (6.8)
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Thus, the rectangle with vertices (±m∗,±fm∗) serves as an outer boundary confining all

trajectories that start inside it, leading to existence of a limit cycle [Str14].
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Figure 6.2: Our theory predicts that the onset of bipolar disorder occurs through a super-

critical Hopf bifurcation as the mood sensitivity fηm crosses the threshold value ηv+k and a

limit cycle in mood m(t) is established. (A) In a bipolar state, the expectation v(t) (dotted

green) persistently oscillates, in contrast to the normal case (solid blue). We set the reality

r(t > 0) = 0 and use (m, v) = (0,−1) as the initial condition. The bipolar state is modeled

using fηm = 1.5(ηv+k), whereas the normal state is computed using fηm = 0.3(ηv+k). The

numerical values ηv = 0.37, f = 0.3, k = 0.37, and k3 = 2.8× 10−3 are used in all plots. (B)

Mood of bipolar subjects also persistently oscillates. (C) The magnitude of mood oscillations

increases as the mood sensitivity fηm increases. The amplitude of oscillations obtained from

numerical simulations (green stars) compares well to amplitude estimates using Eq. (6.8)

(black dots) when fηm � ηv + k.
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6.2 (previous page): (D) Expectation v(t) in the bipolar state responds to changes in reality

but remains oscillatory (green dashed). This behavior is distinct from the expectation of

normal subjects (solid blue curve) that more closely follow the reality function. (E) Under

the same reality function as in (D), the mood is much more oscillatory in the bipolar state

(green dashed curve) than in the normal state (solid blue curve). (F) The model predicts

intermittent spikes in the QIDS score. Realizations of the reality function are generated as

described in the Mathematical Model section, with σr = 2, kr = 1. For (D), (E), and (F),

the initial condition is (m, v) = (0, 0).

This result, along with the instability of the (m, v) = (0, 0) state as fηm surpasses ηv +k,

implies a supercritical Hopf bifurcation at fηm = ηv + k. Psychologically, this means that

the expectation and mood persistently oscillate under constant reality conditions, in sharp

contrast to the behavior in a normal non-bipolar state (Fig. 6.2A, B). It is difficult to predict

how the amplitude of the oscillation scales with the psychological parameters since this

requires analytically solving the nonlinear system. However, the formula for outer boundary

Eq. (6.8) could give us a prediction. Eq. (6.8) predicts that, after the onset of bipolar

disorder, the mood sensitivity fηm still positively correlates with the mood amplitude. This

prediction is verified by numerical calculations using large fηm (Fig. 6.2C), suggesting that

the mood sensitivity parameter plays an essential role even after the onset of bipolar disorder.

How the amplitude of the oscillations depends on the mood sensitivity fηm & ηv + k can

possibly be estimated using weakly nonlinear analysis [BO13] of Eq. 6.3 but will not be

treated here.

While the current analysis applies only in the case of constant reality, the qualitative

feature of persistent oscillations does not change even if the reality r(t) varies in time. Nu-

merical solutions show that the oscillations are not destroyed by changes in reality but take

on an autonomous nature (Fig. 6.2D, E). The QIDS score for the bipolar case shows inter-

mittent peaks that match qualitatively with experimental data [BMG10, BGG15]. Together,

our analyses and numerical solutions show the onset of bipolar disorder as the mood sensi-
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tivity fηm crosses a critical value, leading to persistent oscillations in mood and expectation

qualitatively similar to those observed in mood profiles of bipolar patients.

6.3.3 Asymmetric mood sensitivity to positive and negative events can lead to

unipolar depression/mania

Asymmetric response to positive and negative events and its effects on human learning

have been widely reported and inferred from psychological experiments [PB17, Lep06]. It

has been observed that patients with major depression respond more strongly to negative

stimuli than to positive stimuli [GKY04, GKT04]. Patients with mania, on the other hand,

show less response to negative stimuli [LJC04]. Interestingly, patients with bipolar disorder,

even during euthymic or depressive episodes, show stronger responses to both positive and

negative stimuli [LWS04], consistent with our results in the previous subsection where the

response was characterized by the mood sensitivity fηm.

When the learning rate for mood ηm is asymmetric [as in Eq. (6.4)] and r is constant,

the v −m plane is split into two half-planes, separated by the nullcline dv
dt

= 0 (v = fm for

r = 0). The different values η±m apply in each of the half-planes, leading to a continuous but

non-differentiable vector field. This feature complicates the linear stability analysis (see next

subsection), but it is clear that if both fη+
m < ηv + k and fη−m < ηv + k, the origin is linearly

stable (the non-bipolar state). We show our asymmetric learning model, even in a non-

bipolar (stable when r is constant) state, can support unipolar depression/mania when the

reality r(t) varies in time about r = 0. Consider three different systems with different values

of η±m such that (fη+
m/(ηv+k), fη−m/(ηv+k)) = (0.4, 0.4), (0.8, 0.1) and (0.1, 0.8). These sets of

learning rates will correspond to “normal,” “manic,” and “depressive” subjects, respectively.

Figs. 6.3 show simulations started well in the past with r(t < 0) = 0. The reality is

then decreased to r(0 ≤ t < 1) = −4, followed by an increase to r(t ≥ 1) = +4. We see

that the expectation of depressive subjects overreacts to negative reality and fails to fully

recover by t = 2 after the reality switched positive at t = 1 (Fig. 6.3A). This lag in recovery

leads to a prolonged time of depression compared to that of normal and manic subjects,
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Figure 6.3: Response to jumps in reality with r(t) = −4 for t ∈ [0, 1) and r(t) = 4 for

t ∈ [1, 2]. Here, normal, manic, and depressive subjects are defined by asymmetric learning

rates such that (fη+
m/(ηv + k), fη−m/(ηv + k)) = (0.4, 0.4), (0.8, 0.1) and (0.1, 0.8), respec-

tively. Numerical values for other parameters, common to all subjects, are ηv = 1.85, f =

0.3, k = 1.85, and k3 = 0.014. Initial conditions are set to (m, v) = (0, 0). (A) The predicted

expectations v of a normal subject (solid blue), a manic subject (red dash-dot), and a de-

pressive subject (green dotted) all attempt to follow reality (black dotted). In the depressive

state, v(t) overshoots decreases in r(t), whereas expectations in the manic state overshoot

rises in r(t). (B) Mood levels m(t) exhibit significant systematic differences in the normal,

manic, and depressive cases, showing how asymmetric mood sensitivity can lead to unipolar

depression/mania when reality r(t) is changing. (C) Prolonged periods of negative mood are

reflected by longer periods of large QIDS scores in depressed subjects.

reflected in both mood and QIDS scores (Fig. 6.3B, C). The deviation in mood observed in

the model can be explained in terms of psychology. Systems with a higher mood sensitivity

for negative events will experience a larger change in mood during negative events, resulting

in a lower expectation than reality. Since reality is typically changing, this overshoot in

mood and expectation can last until the next event. Since systems in depressive states will

always overshoot in response to negative events and undershoot in response to positive ones,

their overall mood level remains lower than that of a normal system. A similar reasoning

applies to subjects in a manic state, which results in average mood values higher than those

in normal subjects. Interestingly, our mechanism for unipolar depression/mania is distinct
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from another model based on the interaction of mood and expectation [ERD16], which

asserts that asymmetric learning rates lead to expectations higher than reality for people with

depression, resulting in constant negative surprise and low mood level. Our simulations show

that a different mechanism – the experimentally observed asymmetric mood sensitivity – can

possibly underlie unipolar depression/mania when reality fluctuates. A rigorous analysis of

the systematic deviation of mood or expectation under more general random reality functions

would require more involved stochastic analysis.

6.3.4 Unidirectional changes in asymmetric mood sensitivity can trigger bipolar

disorder

Mathematically, bipolar disorder reveals itself in the form of a limit cycle as the origin

(m, v) = (0, 0) becomes linearly unstable. When asymmetric mood sensitivity is considered,

stability depends on two parameters, fη+
m and fη−m, and its delineation is more involved.

Nonetheless, it is easy to show that for r = 0, the origin (m, v) = (0, 0) remains stable if

both positive and negative mood sensitivities are below the critical value, i.e. fη+
m, fη

−
m <

ηv+k. Similarly, the origin is unstable if both mood sensitivities are above the critical value.

However, when only one of them is above the critical value, the dynamics will be unstable

in one half-plane defined by dv
dt

= 0 (v = fm), and stable in the other. In such cases,

solution trajectories starting in the unstable half-plane may cross into the stable half-plane

and eventually arrive at the origin. Alternatively, they may cross back into the unstable half-

plane and ultimately move farther from the origin. To obtain heuristic criteria on overall

system stability, we can track the trajectories of the linearized system as it traverses the two

half-planes.

Consider the linearization of Equations (6.1) and (6.2) about (m, v) = (0, 0) by neglecting

the −k3m
3 term and assume that one half-plane is stable and the other is not, e.g. fη+

m >

ηv + k and fη−m < ηv + k. Within the positive, unstable half-plane (fm− v > 0), there are

two additional parameter regimes corresponding to ηv + k < fη+
m < ηv + k +

√
4ηvk where

the eigenvalues are complex but with at least one of them having a positive real part, and
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fη+
m > ηv + k+

√
4ηvk, for which both eigenvalues are real and positive. We do not consider

the case at the boundary values as it holds for only a very special parameter relationships.

Approaching the origin from the positive half-plane, these two parameter regimes give rise

to an unstable spiral and an unstable node, respectively. Similarly, there are two regimes in

Figure 6.4: Phase plane diagrams depicting possible scenarios of linear stability and instability.

(A) Linearized dynamics in the fm < v half-plane show stable node behavior whereas fm > v

half-plane supports spiral dynamics. The overall stability is determined by the stability property

of the nodal half-plane, whether or not the trajectory crosses into an unstable spiral half-plane.

In the illustrated example, the green rays show the stable eigendirections. (B) Both half-planes

support spiral dynamics: one stable, one unstable. The overall stability is determined by whether

the trajectory starting at (m0, v0) increases or decreases in magnitude as it completes a cycle.

the negative plane (fm−v < 0): ηv +k > fη−m > ηv +k−
√

4ηvk and fη−m < ηv +k−
√

4ηvk,

corresponding to a stable spiral and a stable node at the origin, respectively. Nodes determine

the stability/instability of the origin over spirals since most solutions starting in the node

half-plane will stay in that half-plane. The only exceptions are trajectories starting in the

wedge between the eigenvector corresponding to an eigenvalue with a larger absolute value

and the half-plane boundary v = fm. As shown in Fig. 6.4A, if a node and a spiral coexist,

solutions starting in the spiral half-plane (or the wedge in the node half-plane) will end up

in the part of the node half-plane and follow the stability properties of the node. Hence, the

node determines the stability when it coexists with a spiral.
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When spiral node behavior arises in both half-planes, the two spiral dynamics alternate

along the trajectory and compete in strength. As shown in Fig. 6.4B, solutions starting in

one half-plane will enter the other after half a cycle. We can deduce the overall stability

by tracking trajectories through a full cycle and returning to the original half-plane. The

stability can be inferred from determining the change in magnitude of the trajectory after a

full cycle. In the positive half-plane the general form of solutions is

m(t) = e
fη+m−ηv−k

2
t
(
A cos(

√
4ηvk − (fη+

m − ηv − k)2

2
t) +B sin(

√
4ηvk − (fη+

m − ηv − k)2

2
t)
)

(6.9)

v(t) = e
fη+m−ηv−k

2
t
(
C cos(

√
4ηvk − (fη+

m − ηv − k)2

2
t) +D sin(

√
4ηvk − (fη+

m − ηv − k)2

2
t)
)
.

(6.10)

Here the constants A,B,C,D are determined by the initial conditions associated with the

linearized equations but do not affect the following stability analysis. Suppose a trajec-

tory starts on the boundary of the two half-planes at (m0, fm0). After a time of ∆t =

2π√
4ηvk−(fη+m−ηv−k)2

, the trajectory reaches the boundary again at point (m1, fm1). The dis-

tance to origin will change by a multiplicative factor of exp

[
π(fη+m−ηv−k)√

4ηvk−(fη+m−ηv−k)2

]
. A similar

argument applies to the negative half-plane, and the criterion for the solution to move closer

to the origin after a full cycle, i.e. linear stability, is

π(fη+
m − ηv − k)√

4ηvk − (fη+
m − ηv − k)2

+
π(fη−m − ηv − k)√

4ηvk − (fη−m − ηv − k)2
< 0. (6.11)

This approximate stability analysis is consistent with the results of the numerical simu-

lations shown in Fig. 6.5A. When spirals are induced in both half-planes, the origin is stable

when f(η+
m + η−m) < 2(ηv + k). Since

√
4ηvk − (fη+

m − ηv − k)2 is symmetric for fηm around

ηv +k, it is clear that f(η+
m + η−m) = 2(ηv +k) (red dashed line) leads to equality in Equation

(6.11). This approximate analytic stability boundary (white solid line) closely matches that

inferred from numerical solutions. Coexistence of a node and a spiral yields the same stabil-

ity as that of the node half-plane, predicted by our analysis. However, when a stable node

coexists with an unstable node numerical solution show that the origin is always unstable.
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The simple linear analysis does not establish the existence of a limit cycle in this case, so

the instability may not correspond to bipolar disorder.

Bipolar disorders triggered by asymmetric mood sensitivities show oscillation in mood

and expectation that are similar to those predicted in the symmetric case, but they contain

systematic biases (Fig. 6.5B, C) which were not observed in the symmetric case. As in

unipolar depression/mania, the biases in mood and expectation always have the same sign,

i.e., mood and expectations are systematically either both lower or higher. The depression-

biased case may describe type II bipolar disorder. The same pattern persists when the

reality is treated as random (Fig. 6.5D, E), with the mood and expectation responding to

changes in reality as well as exhibiting their intrinsic oscillations. As expected, the predicted

QIDS scores for depressive bipolar (or type II) subjects are much higher than those of

normal and manic bipolar subjects, but even bipolar manic subjects are predicted to exhibit

larger QIDS scores than normal individuals (Fig. 6.5F). Moreover, manic and depressive

bipolar subjects could often show high QIDS scores when normal individuals have stable

moods. Our numerics suggest that bipolar disorder can be caused by extreme asymmetry

in mood sensitivity, which leads to systematically biased mood and expectation patterns.

The direction and magnitude of mood sensitivity asymmetry may be an underlying feature

of different types of asymmetric bipolar disorders.
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Figure 6.5: Bipolar disorder can be triggered by large unidirectional changes in mood sen-

sitivity, even when one of the mood sensitivities does not cross the stability threshold. (A)

Numerical computations were performed within the period t ∈ [0, 162.5] using r(t > 0) = 0.

The stability is characterized by the standard deviation of mood when t ∈ [81.25, 162.5], and

the stability boundary (white solid curve) is determined by the contour of mood variability

of model with critical mood sensitivities, i.e. fη+
m = fη−m = k + ηv. Other parameter values

used in the simulations are ηv = 1.48, f = 0.3, k = 0.37, and k3 = 2.8 × 10−3. The curve

f(η+
m + η−m) = 2(k+ ηv) (red-dashed line) solves Eq. 6.11 and matches well with the numeri-

cally computed stability boundary (white solid curve) when both half-planes support spirals

(inside the green-dotted box). When both half-planes are stable (inside the gray-dot-dashed

box), the solutions are stable as expected since eigenvalues in both half-planes have negative

real parts.
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6.5 (previous page): When one half-plane is an unstable spiral and the other is a stable node

(upper-left and lower-right rectangles with one gray-dot-dashed and two green-dotted sides),

the solutions are stable according to our analysis in Fig. 6.4, consistent with the numerical

results. Finally, when an unstable node is present (upper and right to green dotted lines),

the system is unstable. We show that the coexistence of stable spiral and unstable node

half-planes leads to instability. Stability of the case in which both stable and unstable

node half-planes arise depends on initial conditions. (B) Under constant reality, bipolar

disorder triggered by mood sensitivity asymmetry in different directions induce different

behavior in expectation v(t). Compared to the normal state (solid blue), higher negative

mood sensitivity (depressive bipolar state, fη−m = 2(ηv + k) and fη+
m = 0.5(ηv + k)) lowers

expectations (green-dotted lines) while higher positive mood sensitivity (manic bipolar state,

fη−m = 0.5(ηv + k) and fη+
m = 2(ηv + k)) leads to higher expectations (red dash-dot). Initial

conditions are (m, v) = (0,−1). Parameter values used in this and in the following subfigures

are ηv = 0.37, f = 0.3, k = 0.37, and k3 = 2.8 × 10−3. (C) Under constant reality, bipolar

disorder induced by asymmetry in mood sensitivities in different directions biases the mood

m(t) in different directions. (D) The biases in the asymmetry-induced oscillations in the

expectation persist under random reality conditions, with depressive/manic bipolar states

leading to statistically lower/higher expectations. The realization of reality is drawn as

described with σr = 2, kr = 1. Initial conditions: (m, v) = (0, 0). (E) The mood trajectories

m(t) show qualitatively similar biases as in (B). (F) Predictions of QIDS scores of depressive

and manic bipolar individuals.
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Figure 6.6: Possible effects of antidepressants and lithium on subjects with bipolar disorder,

including the mania-inducing effect of antidepressants and the sedative effects of lithium, are

assessed in our model. (A) Numerical calculation of the mood of a bipolar subject (solid blue

curve) using fηm = 1.5(ηv + k). At t = 9.2 weeks, within a depressive episode, the patient

is treated with antidepressants, modeled by an elevation in mood [Gol11]. Trajectories

corresponding to dosages that instantaneously decrease the depression to 70% of its lowest

value (green dotted), 30% of its lowest value (red dash-dot), and 10% of its lowest value

(black dotted) are shown. Note that higher doses lead to an earlier onset of mania. This

antidepressant-induced mania is observed clinically [APL95, GT03]. The numerical values for

the simulations are ηv = 0.37, f = 0.3, k = 0.37, and k3 = 2.8 × 10−3; the initial conditions

are (m, v) = (0,−1). (B) The quick transition to a manic phase results in a depressive

episode that occurs sooner than in untreated subjects, as indicated by an earlier peak in

QIDS score for subjects treated with a high antidepressant dose.
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6.6 (previous page): (C) When the effect of antidepressants is modeled by an increased pos-

itive mood sensitivity, an earlier manic episode is observed with larger amplitude. The fre-

quency of mood oscillation also increases as dosage increases. The positive mood sensitivities

used in the simulations for low to high dosage are fη+
m = 2.25(ηv +k), 3(ηv +k), 3.75(ηv +k),

respectively, while the negative mood sensitivities are the same as those used in (A). (D)

The quick transition to mania also induces an earlier depressive episode, with larger QIDS

score as the dosage increases. (E) Simulated mood dynamics for mania-biased mood sen-

sitivity asymmetry (red dotted, fη+
m = 1.5(ηv + k), fη−m = (ηv + k)) and depression-biased

mood sensitivity asymmetry (blue solid, fη+
m = (ηv + k), fη−m = 1.5(ηv + k)). The sedative

effects of lithium are modeled via a symmetric 20% reduction in mood sensitivity and are

implemented in our numerics at t = 27.1 weeks (black arrow). This treatment decreases

oscillation amplitudes consistent with clinical observations [PK01]. (F) The reduction in

mood oscillation amplitudes yields smaller predicted QIDS scores.

6.3.5 Effects of antidepressants and lithium

In this section, we explore the effects of common medications used to treat bipolar disorder.

First we want to see if our model can explain the antidepressant-induced mania seen in

bipolar patients. Antidepressants are a category of medicine for treating depression disor-

der, and their effects on patients with depression are significant [MB74]. For patients with

bipolar disorder, it has been reported that 20−40% of their manic episodes are induced by

antidepressants [APL95, GT03]. This unanticipated effect was previously studied by [Gol11]

using a bistability model of depression and mania. Our model for bipolar disorder is in-

trinsically oscillatory, and it is not clear whether there is a threshold of dosage above which

the manic episodes will be induced, as predicted in [Gol11]. Nevertheless, when the effect

of antidepressants is modeled by a shift in mood [Gol11], simulations of our model show

that there is, indeed, a threshold of dosage below which a transient alleviation of depression

occurs, followed by a usual manic episode. Above this dose threshold, manic episodes are

induced earlier (Fig. 6.6A). This result is surprising since small perturbations in mood do

143



not qualitatively change the subsequent dynamics and our model does not have a built-in

mechanism for bistability. Subjects treated with high doses of antidepressants are predicted

to show a phase shift in the mood oscillations (Fig. 6.6A). This phase shift would yield an

earlier peak in the QIDS score (Fig. 6.6B). Another way to model the effect of antidepres-

sants is to increase the positive mood sensitivity [Har08]. This effect also leads to an earlier

manic episode, but with greater strength and a higher frequency (Fig. 6.6C). The QIDS

score also shows a sooner and stronger depressive episode (Fig. 6.6D). The observed rapid

cycle is consistent with clinical observations [APL95].

The sedative effects of lithium were first discovered in 1949 but its molecular mechanisms

of action have not yet been fully elucidated [PK01, CV03]. Nonetheless, lithium is one of the

most prescribed treatments for bipolar disorder [PK01]. While our model does not explicitly

involve details at the molecular level, it suggests a crucial behavioral property, characterized

by the mood sensitivity, that might be regulated by lithium. To see this, we simulate

the mood m(t) in the bipolar state and decrease the mood sensitivity parameter after a

certain time point (Fig. 6.6E). We observe that after the mood sensitivity is decreased, the

amplitudes of oscillations in mood gradually decrease, eventually becoming constant over

time. Depression is lessened after treatment, as indicated by a decrease in the QIDS score

(Fig. 6.6F); moreover, decreases in mood sensitivity do not induce mania. In contrast to

antidepressants, lithium does not trigger manic episodes, which makes it suitable to treat

bipolar depression [PK01]. This result suggests that the sedative effect of lithium might be

achieved by decreasing the mood sensitivity parameter rather than directly modifying mood.
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CHAPTER 7

Conclusion and discussion

In the dissertation I studied the physical principles and dynamics on biological networks,

and derived new quantitative tools to analyze them. I started with a particular biological

network, the microvascular network in the trunk of embryonic zebrafish, and discovered that

the conductances of the fine vessels are carefully tuned to uniformize the red blood cell fluxes

in those fine vessels. This finding stands in sharp contrast with the principle of transport effi-

ciency and Murray’s law previous proposed for the vascular networks, since I found that there

is a trade-off between flow uniformity and transport cost, so a biological network can only

optimize one of them or strike a balance between them. To explore the morphologies of net-

works that follow these principles, I first generalized previous analytical results on transport

efficient networks. I showed that the network properties, such as the loopless property and

Murray’s law, might not hold for transport efficient networks when the pressure boundary

conditions are involved, and they are actually properties of networks with minimal compli-

mentary energy, which includes the work done by pressure boundary conditions. Through

the introduction of complimentary energy, I expanded the set of boundary conditions under

which these properties are true for transport efficient networks. Then I developed a gradient

descent algorithm that finds optimal networks for general target functions and constraints.

The algorithm used Lagrange multipliers to ensure constraints such as conservation of mass

are satisfied during the gradient descent. Through this algorithm I compared the principles

of uniform flow and transport efficiency on model microvascular networks, and showed that

the principle of uniform flow gives closer morphologies to observed microvascular networks.

By exploiting the generality of the algorithm, I also explored the trade-off between these

principles, and showed that a bifurcation occurs when the balance between flow uniformity
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and transport efficiency changes.

Many biological networks are not static but have features that change with time. To

explore that aspect on microvascular networks I took a different look on the microvascular

network in the zebrafish trunk. Previously the vessels are assumed to dilate and constrict

according to the information given by the blood flow inside, particular the shear stress

applied on the endothelial cells. This mechanism has a well-known instability that would

prune all but one vessels. By including the particle effect of the red blood cells, I proposed a

stable dynamics that generate realistic zebrafish trunk networks that quantitatively describe

the observed vasculature. The model correctly predicts the number of fine vessels with flow

and the head-tail asymmetry during zebrafish development. Then I looked at a different

topic: the dynamics of bipolar disorder. Bipolar disorder is characterized by the alternation

of manic and depressive episodes, and mathematical models have been proposed to explain

this oscillation in mood. We analyzed a model based on the coupling between mood and

expectation, and showed that bipolar disorder can be viewed as an extension from normal

to cyclic personalities. We also discussed the effect of asymmetric perception of positive

and negative effects, and showed that the model reproduces the clinically observed effects of

medicines.

In Chapter 2 we show that feedbacks associated with the occlusion of fine vessels by the

red blood cells that pass through may be associated with previously unreported adaptive

benefits for control of blood flows within the microvasculature. Although the existence

of occlusive feedbacks is well known [SUS80, OWB10, FYS12, SRW15], to our knowledge

they have not previously been shown to be associated with adaptive benefits for oxygen

perfusion. Although our experimental observations and modeling are focused on zebrafish,

which are a model for vascular development, it is likely that similar feedbacks are significant

within mammalian microcirculatory systems, where the deformation of cells to pass through

capillaries is, if anything, even more extreme than in the zebrafish. Indeed the apparent

intrinsic resistance of cells in human blood vessels has a wide range of variability [SSO86,

SHP98], and precise tuning of blood flows is already known to be vital e.g. to maintain

perfusion-ventilation balance in the lungs [Wes77, WD60, WSW74]. The proposed occlusion

146



feedback mechanism may be able to explain the variation of capillary blood flow and how it

affects the ventilation-perfusion ratio, as well as blood flows in other vascular systems such

as brain capillary network.

Capillary networks have been hypothesized to be organized to minimize the cost of blood

transport [She81, Mur26b]. Although large vessels seem to conform very closely to this or-

ganizing principle [She81, ZSW92], the tuning of occlusive effects to uniformly distribute red

blood cell flows takes the zebrafish vascular network far from the configuration that mini-

mizes transport costs. In particular, at the physiological hematocrit, if the same (smallest)

occlusive effect, αc, is assigned to each vessel then the dissipation in the network could be

reduced by a factor of 11 (Fig. 2.6B). At the same time, more uniform partitioning of cell

fluxes between different SeAs (i.e. a lower value of the Coefficient of Variation of red blood

cell flow rates) is possible but altering physiological parameters further decreases the trans-

port efficiency. For example decreasing blood cell concentration, ρ, increases uniformity of

flux, but at the cost of increasing dissipation if the total cell supply to all Se vessels is to

kept fixed (Fig. 2.6B).

The ability of SeAs to vary the occlusive effect αc over three orders of magnitude is

consistent with previous modeling of red blood cell and microvessel mechanics, and endows

the network with tremendous control over red blood cell flow rates. It is natural to ask

whether and how uniform red blood cell flux partitioning can be maintained against the

numerous sources of perturbation that occur in real cardiovascular networks. Microvascular

networks may be disrupted by trauma, micro-anneurysms, or by systemic conditions like

diabetes mellitus [FJ05, PRB90, RNR93, BSB06]. As a first step toward answering this

question, we considered the effect of well-characterized natural variability in SeA spacing

[IHW01], and of the notch mutation which alters the trunk network connectivity [LSP01]

upon the ability of the network to uniformly distribute red blood cell fluxes. We found

that under a wide range of vessel spacing variability, red blood cell fluxes remained uniform

across all SeAs (see Appendix A). Indeed vessel spacing variability has no detectable effect

on zebrafish growth and maturation. By contrast, in notch mutant zebrafish the cardiovas-

cular network is malformed, with a shunt connection forming between aorta and principal
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cardinal vein (Appendix A). Since the diameter of the shunt is much larger than the cell

diameter, there is negligible occlusive feedback within the shunt, causing it to irreparably

short-circuit the vascular network. Shunt formation is lethal in embryos, and our model

shows that it creates conditions under which uniform perfusion of the trunk is impossible.

Note however that mechanisms not described in the model can still play significant roles in

both developmental process and mutant network phenotypes. For example in the gridlock

mutant [WSD95] the blood flow to the tail is impeded by a localized vascular defect, but the

collateral vessels not present at 4dpf was observed to redirect the flow around the blockade

and rescue the embryo. During the development process both the number of vessels and

size of zebrafish embryo change dramatically. Therefore we expect an observable change in

occlusive feedbacks to maintain uniform cell partition throughout the developmental stages.

Extending our analysis to include the topological changes observed as embryonic zebrafish

develop [WSD95] is an ongoing effort.

Although we are able to directly demonstrate that occlusive feedbacks vary between

different the SeAs, and this variation is consistent with optimization of feedback strengths

to ensure uniform distribution of red blood cells across trunk vessels, our model cannot

reveal what physical changes within vessels are used with the zebrafish network to modulate

the occlusive effect. In our experiments we cannot visualize the glycocalyx lining of the

SeAs, and in fact we are aware of no previous works in which glycocalyx was measured

in blood vessels simultaneously with flow. However, previous studies have reported large

variations in glycocalyx porosity and thickness between different vessels [HCW94, WTD07].

Since cells must squeeze into SeAs, variations in vessel radius below the resolution limit

of our microscopy method could also account for the variation in occlusive effect. Finally

elastohydrodynamic effects associated e.g. with changes in the speed of cells, [WTD07],

may affect feedback models. The analysis is also silent on the mechanisms for coordinating

occlusive effects across the network. Recent works have dissected structural adaptations

in microvascular networks [PSG98], as well as in biological transport networks generally

[HC13, HLM10, RK16]. These works have focused on the question of how a set of vascular

elements that have information only about their own flows can alter their resistances in
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response to these cues to minimize dissipation within the network. This question is directly

relevant to other objective functions i.e. to networks that maximize uniformity rather than

maximizing hydraulic efficiency – can vessels adapt their occlusive effects to the their flow

to achieve uniform red blood cell transport?

The use of tuned occlusive effects creates uniform distribution of red blood cell fluxes

through the zebrafish vascular network, but at the cost of increasing transport costs. Indeed if

the network simply used the same value of αc in every SeA we found that an 11 fold decrease

in transport costs would be possible within the zebrafish trunk vasculature (Fig. 2.6B).

Physically feedbacks from occlusion represent a form of congestion, and efficient transport

networks, both natural [HDF16] and artificial [CJ89, YH98], are often organized to avoid

congestion. Previous works have provided algorithms for constructing minimally dissipative

networks given a prescribed set of sources and sinks [BM07, KSM10]. Our work suggests

that other optimizing principles may govern microvascular network organization. Extending

network optimization algorithms to include flow uniformity is likely to further reveal the

tradeoffs between uniformity and efficiency.

Murray’s law has shaped understanding of biological transport networks including ani-

mals and plants [She81, MSA03]. However, the derivation of Murray’s law has until now been

heuristic, ignoring both the coupling between flows and conductances (i.e. assuming flows

remain constant while conductances are optimized), and the potential for different boundary

conditions on the network [Mur26b, Dur07]. Chapter 3 establishes Murray’s law as a neces-

sary condition for networks globally minimizing a complementary dissipation function (3.24),

and for minimal dissipative networks under both Neumann and Dirichlet boundary condi-

tions. As subsidiary steps we reformulated Thomson’s principle and Rayleigh’s principle for

networks with Dirichlet boundary conditions.

Minimally dissipative networks with flow boundary conditions have been studied both

theoretically and numerically [BM07, Dur07, KSM10]. However the effect of pressure bound-

ary conditions upon network structure seems to have received little scrutiny. Imposing pres-

sure rather than flow boundary conditions can be convenient when dealing with complex

networks in which only a small part of the entire network may be mapped, for example
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in high resolution cerebrovascular imaging, which is currently being used to understand the

connection between brain function and vascular development or damage [BTK13]. It may be

appropriate to apply pressure boundary condition at the vertices making up periphery of the

mapped network. Here monotonicity and boundedness results derived from our extension

of Rayleigh’s theorem can provide useful estimation tools, and insight into the effect, for

example, of adding additional pressure vertices to a cardiovascular network.

Our work in Chapter 3 is also among the first to elucidate differences between imposing

the total material as a constraint or penalty on minimally dissipative networks. Historically

Murray derived his law based on a material penalty formulation [Mur26b], but later work

treated material as a constraint [BM07, KSM10, Dur07]. Our results show that for minimally

dissipative networks these formulations are equivalent, and so recent results are consistent

with Murray’s original derivation. However the equivalence of the two formulations hinges

on two key results: 1. That flows in physical networks minimize complementary dissipation,

which is equivalent in tree-networks to minimizing dissipation. 2. Optimal networks are

trees. However, these two results can not be appealed to when optimizing other functions on

networks. Indeed for general target functions and constraints the formulation one chooses

has fundamental effects on the optimal network; as we demonstrated when we optimize

flow uniformity, optimal networks may only exist for one formulation and not for the other.

Moreover the optimal network may also vary quantitatively as a function of the total allowed

material, and possibly with the coefficient of material penalty. Our work in Chapter 4 on

optimizing flow uniformity showed evidence of phase transitions as penalty coefficients varied.

For general functions and constraints one needs to analyze the physics and biology carefully

to find the appropriate formulation.

Minimal dissipation arguments give theoretical insights in biological networks [Mur26b],

but are not universal explanatory tools. It has been shown that the leaf vascular network

and slime mold network are adapted for robustness [KSM10, TTS10] whereas some fungal

networks are adapted to maximize mixing [RSH13]. Moreover even when we seek to minimize

dissipation, our function f may be non-Newtonian. For example the effective viscosity of

blood changes with the cell concentration and with vessel radius [PS05], and it is possible

150



that Murray’s law has to be modified in this occasion. The techniques we present in Chapter

3 might be generalized to establish the modified Murray’s law as a necessary condition for

the minimal dissipative networks. Our work in Chapter 2 on zebrafish embryo showed that

the uniformity of blood flow is maintained at the cost of dissipation. While numerical

algorithms have been designed for finding optimal networks other than minimal dissipation

[KSM10], to our best knowledge there is no theoretical result on the morphology of optimal

networks under other functions with either material constraint or penalty. Critically the

results presented here draw extensively on monotonicity and boundedness results that cannot

be readily generalized to the general case. New methodology is needed to deduce theoretical

results for general functions.

Microvascular network mapping tools have until recently lagged far behind our ability to

measure the morphology of large vessels using e.g. plasticization. However, recent advances

in microscopy have created detailed digitization of microvascular networks [COA03, BTK13,

FFS09]. For example Knife-Edge Scanning Microscopy (FESM) and Micro-optical Sectioning

Tomography (MOST) have been used to map the blood vessels within rodent brains to micron

resolution [MKS11, WHY14]; while mapping the blood vessels in the human brain is one

of the central goals of the BRAIN initiative [ILC13]. Meanwhile long working distance two

photon microscopes can be used to directly measure blood flows within living rodent brains

[COA03, DDD05]. But the revolution in microvascular imaging has not been matched by new

theorizing about what are the organizing principles for microvascular networks. For large

vessels minimization of dissipation and the concomitant laws for vessel radii have proven

to be powerful organizing tools with which to understand both the morphology of healthy

and pathological cardiovascular networks [PHL10]. By comparison it is not known whether

any optimization principles underly real microvascular networks. In Chapter 4 we explore

the principle of uniform flow as a candidate organizing principle for microvascular networks

[CTB17] in both an idealized capillary bed geometry and the real embryonic zebrafish trunk.

To do so, we devised an algorithm for optimizing general functions on transport networks.

On the model capillary bed we showed analytically that the flows in a uniform flow network

are identical to a network with constant conductances. In the zebrafish trunk, achieving
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uniform flow requires careful tuning of vessel conductances, and implies a distribution of

conductances that matches the real zebrafish trunk.

Finally in the chapter we expose a phase transition that occurs if dissipation costs are

also modeled, as the relative size of transport and material costs is increased. Surprisingly,

networks that are constrained by both material costs and dissipation do not continuously

interpolate between optimizing uniformity and optimizing dissipation, but instead are ini-

tially invariant under changes in the cost of dissipation, and then undergo a sudden phase

transition-like reconfiguration when this cost exceeds a certain threshold. Although fur-

ther work is needed to show whether such phase transitions occur for other combinations

of target functions, it offers two surprising biological insights. First, no two functions will

likely shape the network simultaneously, explaining the remarkable power of single target

functions to predict the geometry of biological networks. Secondly, the departure of real

zebrafish networks from the optimum for creating uniform distributions of fluxes cannot

readily be explained as a result of the network needing to balance tradeoffs between multiple

target functions. We believe that the non-optimal features of the zebrafish trunk network

are more likely due to another cause; for example variability (e.g. due to biological noise)

during vessel formation. For example a 10% variation in vessel radius, as has been observed

in small arterioles [KDG82], leads to a 40% variation in vessel conductance under the Hagen–

Poiseuille model (4.1), and the variation will be even larger when the occlusion of red blood

cells is considered [SBM16]. Under even such mild perturbations, variation in red blood cell

flux can reach 0.7 (1/s) standard deviation, comparable to the variations measured for real

zebrafish in [CTB17].

The principle of uniform flow may be relevant to other biological transport networks

as well. Many organisms build networks for transport, such as plants and slime molds

[KSM10, AAP13]. Previously the loopy structure of leaf vascular networks was attributed

to damage resistance [KSM10]. Yet uniform flow also favors loopy structures, and provides

an alternative optimal principle for these networks.

Real blood is a multi-phase fluid containing both plasma and cells. By assuming Hagen–

Poiseuille law we omit two of the complexities of real blood flow: non-Newtonian viscosities
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and Zweifach–Fung effect [PS05]. Hydraulic conducances depend both on vessel radius (the

Fahraeus–Lindqvist effect) and on the concentration of cells due to both the occlusion of

red blood cells in narrow capillaries and the disordered flow of cells within large vessels

[CTB17, SBM16, SA08]. The Zweifach–Fung effect refers to variation of hematocrit between

vessels following uneven partitioning of red blood cells at branching points [ZL77, DPP11].

Our algorithm has the flexibility to incorporate the Fahraeus–Lindqvist effect by changing

the constraint term into a non-power law representation of vessel radius. For simplicity we

considered the default model (4.1) throughout the chapter, except when comparing uniform

flow zebrafish trunk vasculature to experimental data in Section 4.3.3. To incorporate the

Zweifach–Fung effect the hematocrit has to be re-calculated each time we calculate blood

flows which will affect oxygen perfusion. Although [PLC89] proposed an empirical formula

for the Zweifach–Fung effect, the effect of vessel radius and cell geometry upon the Zweifach–

Fung effect is still under active research [BAR08, SCK16, CHJ16].

Throughout this work we have used uniformity of flow as a proxy for uniform perfusion.

This is defensible if perfusion in limited by the rate of delivery of oxygenated red blood cells

to a particular tissue. However it is also affected by the rate at which it subsequently diffuses

through the surrounding tissue – which is in turn affected by levels of oxygen saturation and

pH in the tissues and blood and may indeed vary in the same tissues due to functional acti-

vation of capillaries in response to time varying metabolic demands [ADG04]. Thus although

we have previously presented direct evidence of uniform flow across the zebrafish trunk mi-

crovasculature, and in Chapter 4 show that this uniformity results from conductances being

close to the unique maximum of a constrained optimization problem, the connection between

uniform flow and uniform perfusion is not proven.

Although our algorithm easily handles the relatively small number of vessels in the ze-

brafish trunk or model capillary, the mouse cortex contains about 14, 000 capillaries per mm3

[BTK13]. Further tool development is needed to determine whether such networks obey the

same principles of uniform flow.

There are many other relevant biological functions that have been identified as candidates

for optimization in biological transport networks, for example damage resistance [KSM10]
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and mixing [RSH13]. Our algorithm has the flexibility to find optimal networks for general

biological functions that can be represented by closed-form target functions. Previous nu-

merical work focused on dissipation and functions derived from it [BM07, KSM10], but we

hope that our algorithm will help to catalyze systematic study of other target functions.

Our networks are constrained either by material or total transport cost (i.e. material

plus dissipation). However, we could equally impose network cost as a penalty function

rather than as a constraint. Indeed, in Murray’s original paper, optimal vessel geometries

were derived by minimizing the total energy formed as a sum of material and transport costs

(i.e. by a penalty function approach) [Mur26b, She81]. In contrast, recent works on minimal

dissipation networks impose the material cost as a constraint and minimize dissipation under

this constraint. The two approaches carry different physical meanings; and under many, but

not all conditions, they produce equivalent networks [CR18].

In Chapter 5 We have proposed a physical mechanism for vessel adaptation based on

activation by shear stress. Since endothelial cells are stress activated only during the passage

of red blood cells, we have considered the new changes in the hematocrit can induce network

remodelling, producing predictions that agree quantitatively with the real developmental

progression of the zebrafish trunk. Additionally the model is able to stably develop optimally

uniform flows in archetypal vascular networks, including branching trees and square grid

networks. However the activation of vessels will also be affected by other features of blood’s

complex rheology – most obviously the Fahraeus effect (which influences wall-cell spacings)

and the Zweifach–Fung effect which influences the hematocrit within individual vessels. Our

model phenomenologically incorporates both effects, which are incompletely understood,

despite a lot of investigation [DPP11, BAR08, SCK16, CHJ16, Poz05, FAB06], so it is

surprising that it makes quantitatively accurate predictions.

In its use for the zebrafish trunk, the model requires that different vessels be assigned dif-

ferent shear stress thresholds of activated endothelial cells. Support that different thresholds

are possible in different vessels is provided by our data on the networks’ changing geometry,

where the distal vessels in wild type zebrafish, with the lowest stress threshold for activation,

are the last to become too small to allow passage of red blood cells. However the mechanism
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by which different scales of the stress threshold can be established remains to be elucidated;

in the zebrafish trunk there is a simple monotonic decrease in the threshold from head to tail,

which may potentially be induced by a head-tail gradient of morphogens, such as already

been observed for retinoic acid, Sdf1 and CXCR7 [SIK13, CM14], or simply by the pressure

gradient present in the aorta. However it would be highly interesting to see whether the

same precision in shear stress activation tuning is possible or needed in other parts of the

zebrafish’s circulatory system. In these and other more topologically complex networks, such

as the brain [BTK13], physiological demands such as for oxygen or glucose may shape shear

stress thresholds [PSG98]. We note that the recovery of uniformly distributed flows across

the zebrafish trunk following the decrease of hematocrit charted in this chapter appears to

occur after 14 dpf, at which stage the oxygen transport function of blood becomes essential

to the zebrafish [WSD95].

Comparison between different isogenic zebrafish individuals shows a high level of vari-

ability in vessel radii so that only network adaptation can account for a lack of systematic

anisotropy in flows between distal and rostral vessels. Yet our data show that even with

adaptation there is a high level of non-uniformity of flow between different vessels. Part of

this non-uniformity must result from topological constraints – in some networks a single Se

vein may be fed by two different Se arteries – it is unavoidable then for this vein to have a

higher flow. At the same time, some of the variability speaks to imprecision in the mechanism

of adaptation, and it is a highly interesting next problem for us to study how fluctuations

in flows resulting from this variability scales with the size of the circulatory system, or its

topological complexification, as during growth, additional fine vessels are added [IHW01]

and pruned [CJL12].

Existing models for bipolar disorder are based on one of two basic mechanisms: bistabil-

ity and biological rhythm. Models invoking bistability assume that there are multiple stable

states representing different phenotypes of depression and mania. Here, variations in mood

are triggered by random external perturbations arising from life events [CSM17, SW13]. Bi-

ological rhythms assume an intrinsic oscillation in the brain. In this case, mood oscillations

persist without perturbations [EN15, DRU09, BGG15, Gol11, MER17]. In Chapter 6, we
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proposed and analyzed a variant of a model by [ERD16] for bipolar disorder based on the

intrinsically oscillating interaction between mood and expectation. Our model exhibits oscil-

latory mood behavior when the mood sensitivity exceeds a threshold. Previous models have

explained such oscillations via the dynamics of intrinsic brain circuits or mutual inhibition

of depression and mania [BGG15, DRU09, Gol11]. Our model proposes that mood oscilla-

tions arise from a psychological mechanism in which high expectation induces high mood

until it reaches a physiological limit. The mood then decreases, followed by a concomitant

decrease in expectation. This mechanism is similar to that proposed by [EN15], [ERD16],

and [MER17], but we identified a key psychological property, defined by the mood sensitivity

fη±m, that may control a whole spectrum of states, from normal to cyclothymic personality

to type I and type II bipolar disorders. Measuring mood sensitivity may result in a more

refined method to diagnose, classify, and describe such disorders.

The perturbations from life events in biological rhythm models are usually treated as a

noise term in oscillator models. We have modeled life events explicitly by a known time-

dependent reality function r(t) to explore the response of our model to specific changes in

reality. This also enables a direct comparison of the two mechanisms since different forms

of r(t) can be used to investigate which mechanism better explains the observations. For

example, when an individual experiences a prolonged negative life event, biological rhythm

models would predict a persistence in mood oscillation, while bistability models would likely

predict a prolonged state of depression. By directly incorporating reality r(t) into models

with different central mechanisms and then comparing their predictions with observations,

we may be able to decide which model better describes bipolar disorder. This may also

reveal a need for combination of different mechanisms.

We also explored in detail the effects of asymmetric mood sensitivity on unipolar depres-

sion/mania and bipolar disorder. Humans are known to react differently toward positive

and negative events [PB17], and patients with major depression and bipolar disorder have a

stronger bias toward these events [Lep06]. It was suggested by [ERD16] that this asymmetry

can lead to unrealistic expectation and low mood in depressive patients. Our analysis shows

that depression can result from a higher mood sensitivity toward negative events, which leads
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to a reasonable expectation but negative mood. Our model also predicts that depression is

a dynamical phenomenon, i.e. when no strong environmental stimulus is present, depressive

patients may appear normal, but they react more negatively than normal subjects once real-

ity fluctuates. Our prediction is supported by clinically observed processing bias [FWC04],

but additional psychological experiments should be performed to test our model hypothe-

ses. Our model also shows that unidirectional changes in mood sensitivity can trigger a full

bipolar state.

Our mathematical framework can explain the paradoxical observation that while depres-

sive patients react more strongly to negative events, bipolar patients in the depressive phase

can react more strongly to positive events [Lep06, LWS04]. Asymmetry in the mood sensi-

tivity introduces an interesting mathematical question on stability. Conventionally, the local

stability of an equilibrium is determined by the stability of the system linearized around the

equilibrium point [Str14]. To analyze our model with an asymmetric parameter, we concate-

nated the linear solutions in the two half-planes. Our conclusions accurately match those

derived from numerical simulations of our full nonlinear model.

Our work focused on the effect of mood sensitivities on unipolar depression/mania and

bipolar disorder. Similar analyses can be carried out with an emphasis on e.g. the expecta-

tion learning rate ηv or linear decay rate of mood k, but clarification of the main parameter

that triggers bipolar disorder would require experimental input such as quantification of

those parameters from both normal and bipolar subjects. The characterization of mania can

include complex, multi-dimensional traits such as irritability, rapidity of thoughts, inability

to concentrate, increased goal-directed behavior, etc. [BCB91]. Despite this, models for

bipolar disorder, including ours, simplify mania to a one-dimensional variable in order to

focus on the bipolar behavior of mood [EN15, BGG15, Gol11]. Development and analysis of

multi-dimensional models may highlight the role of more specific traits in triggering bipolar

disorder, e.g., goal-directed behavior through a BAS-type model [UAH08].

Due to a lack of understanding of the underlying physiological mechanisms of bipolar dis-

order, the parameters in models, including ours, for bipolar disorder are often phenomenolog-

ical and treated as fitting parameters to the experimental data. However, we have identified
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parameters that can be expressed in psychological terms, such as learning rate for expec-

tation, recovery rate for mood, etc., that can be measured by psychological experiments

instead of fitting to data. For example, reaction toward events can be measured by fMRI

or pupilometry [LWS04, FWC04, PB17], which can then be used to estimate the learning

rates and the mood sensitivity parameter. In fact, the measurements of [LWS04] showing

that bipolar patients react more strongly to both positive and negative events agree with

our model predictions.

Finally, our model parameters have been assumed to be constant in time. In reality,

higher-order nonlinearities may arise if these physiological parameters themselves depend

mood and expectation. At the cellular level, neural synapses can be modified by the synaptic

current [Fai99], which suggests that recurrence of negative events might strengthen reactions

to them. It has been observed that depression is correlated to chronic pain [GRT00] and that

an initial depression might become long-term because of prolonged negative realities such

as environmental difficulties and lack of social support, the so-called cognitive vulnerability

[PM92]. This evidence suggests a possibility that the psychological parameters in our model

are dynamical and affected by the environment instead of heredity, so the depression persists

even if the reality returns to normal level. Therefore, a natural next step in our work

is to the incorporate the dynamics of mood sensitivity as well as other parameters – that

incidentally may lead to bistability – to explore how recurrences of external events can trigger

depression/mania or bipolar disorder.
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APPENDIX A

Measurements and additional calculations on zebrafish

blood flow

A.1 Lengths and radii of trunk vessels

In Table. A.1, we record the measurements of lengths and radii of aorta segments and

intersegmental arteries.
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i li (µm) ri (µm) i li (µm)

1 150 5.9 2 151

3 183 7.6 4 141

5 178 6.1 6 156

7 174 6.6 8 160

9 155 6.0 10 172

11 175 6.4 12 166

13 169 5.9 14 163

15 166 6.1 16 156

17 174 5.4 18 146

19 168 6.0 20 138

21 168 4.8 22 123

23 169 3.5 24 113

Table A.1: The lengths of all 24 vessels and radii of all 12 aorta segments in a 4dpf zebrafish

embryo. The radius of capillaries is set to be the mean value 2.9 µm in Fig. 1C and Fig. S1.

Vessels are numbered as in Fig. 1B (i.e. odd numbered vessels correspond to sections of

dorsal aorta, even numbered vessels to intersegmental arteries).
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A.2 Modeling oxygen perfusion

In the early stages of embryogenesis, diffusion of oxygen through the zebrafish’s skin is gen-

erally sufficient to supply zebrafish tissues with oxygen[RD09]. However, circulatory system

looping defects are typically lethal by 17.5 d.p.f.[WSD95], suggesting oxygen transport by the

circulatory system contributes to oxygen supply relatively early in embryonic development.

To determine whether diffusion of oxygen through tissues might compensate for unequal par-

titioning of oxygen supply between micro-vessels, we directly model the diffusive transport

of oxygen through the zebrafish torso using a reaction-diffusion model[KBL03]. Within the

zebrafish trunk the oxygen partial pressure, P , obeys a reaction diffusion equation:

Dα∇2P = −C + S (A.1)

where S represents the distribution of oxygen supply from the blood, and C the rate of oxy-

gen consumption per volume of tissue, α is the solubility of oxygen and D is the diffusivity of

dissolved oxygen. We solved this Partial Differential Equation by creating a Finite Element

Model with first order tetrahedral elements implemented in Comsol Multiphysics (Comsol,

Los Angeles). We extracted the geometry of the trunk muscles from the Zebrafish Anatomy

Portal [SMC12], and the distribution of intersegmental vessels within the trunk from the

Zebrafish Vascular Atlas [IHW01]. The parameter Dα, sometimes called the oxygen perme-

ability, was measured by [KBL03] to be: Dα = 8 × 10−14 m2/(s mmHg). We modified the

oxygen consumption rate found by [KBL03] to: C = 5.1 × 10−4P/40 ml oxygen/(ml tissue

mmHg). This formula agrees with the rate measured by [KBL03] when P = 40 mmHg,

but is smaller at lower oxygen partial pressures, representing the regulation of tissue oxy-

gen consumption with oxygen availability. The source term represents the rate of oxygen

release from blood, and is compactly supported on the intersegmental vessels. We used the

following conversion factors: assuming that when a red blood cell enters a vessel with all of

its hemoglobin molecules bound to oxygen, and that all of this oxygen is released, the total

oxygen release from each intersegmental vessel can be computed from:

rate of oxygen release (ml/s) = 1.39× 10−10 × flow rate (in cells/s) (A.2)
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we distribute this flux uniformly across the length of each segmental artery. We apply

no-flux boundary conditions on the boundaries of the trunk. By applying this boundary

condition, our model represents only the contribution of oxygen transport in the circulatory

system to tissue oxygen levels. Oxygen diffusing through the skin of the fish will increase

the oxygen partial pressure everywhere by a constant amount and will ensure that all tissues

are sufficiently oxygenated, but does not affect the absolute differences in partial pressure

that our model is designed to measure. The results of this calculation are shown in Figure

1D in the main text.
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A.3 Incorporating phase separation in the zebrafish trunk net-

work model

In our models for red blood cell transport within the trunk vasculature, we assume that red

blood cells divide at branching points in the same ratio as whole blood. In fact, red blood

cells are more likely to enter the larger of the two daughter vessels at a branching point than

would be expected based on the ratio of fluxes [PS05] an effect known as phase separation.

We use the mathematical model developed in [PS05], to see whether phase separation can

lead to uniform distribution of red blood cells between SeAs.

Incorporating the phase separation model of [PS05] significantly alters hematocrits be-

tween different SeAs. However the overall change in fluxes is much smaller than the predicted

11-fold decrease in flux between the first and last SeA. The ratio of SeA diameters to DA

diameters ranges from 0.39 for the first SeA to 0.85 for the last SeA (Table A.1) and veloc-

ities are similar over the entire length of the DA. Due to the increasing in the ratio of SeA

to DA radius with distance from the heart the red blood cells are more likely to enter SeAs

further from the heart than those closer. This leads to a 2-fold increase of SeA hematocrit

(Fig. A.1B) from Hct = 0.35 in the first SeA to Hct = 0.65 in the twelfth SeA. However the

increase in Hct is not enough to compensate for the 11-fold change in whole blood fluxes

between first and last SeA: when phase separation was incorporated into the model we still

saw a 5 fold decrease in red blood cell fluxes between first and last SeAs (Fig. A.1A).

The phase separation model of [PS05] parameterizes observations blood flows in the rat

mesentery. The difference between the sizes, shapes and mechanical properties of zebrafish

red blood cells and rat red blood cells may mean the the model is not quantitatively accurate

for the zebrafish microvasculature. It is therefore worth asking whether any model for phase

separation could account for the experimental observations. Recall that the model predicts

an 11-fold difference between the red blood cell fluxes in the first and last of the SeAs. To

compensate for this difference the hematocrit in the last SeA would need to be 11 times

larger than the hematocrit in the first SeA. Such a large difference in hematocrit would

be easy to detect, and is not supported by our observations, nor are such large differences
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Figure A.1: Incorporating phase separation into the model does not produce uniform red

blood cell fluxes between the SeAs. (A) Predicted red blood cell fluxes in the SeAs

continue to decay with distance from the heart, when the model from [PS05] is used to

parameterize phase separation. Se vessels with smaller numberings are closer to the heart.

(B) Hematocrit is predicted to increase with the distance from the heart but Hematocrit

changes are not enough to compensate for the decrease in flow predicted by the hydraulic

resistor network model. Bars show the hematocrits in the different SeAs, while the black

reference line shows the mean hematocrit in the DA.
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observed in any of the mammalian vessels measured by [PS05].
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A.4 Mean-field model for a two-vessel network

To understand the role of variations in the occlusive effect between SeA-vessels, we develop

a continuum model on a reduced network that included only the DA and the first and

last of the SeAs. The results of this analysis are summarized in the main text. Here, we

describe in more detail the equations that are set up within the model, as well as their

solution. The reduced network consists of 4 blood vessels indexed 1 (the segment of DA

between the two Se), 3 (the segment of DA after the last Se, which connects directly to

the PCV) and 2, 4 being the two Se-vessels (Fig. 5A in Chapter 2). We define variables

ni, li, Si, Vi, Qi, Ri0, Ri i = 1, 2, 3, 4 to be the number of cells contained in vessel i, its

length, cross-section area, volume, total flow rate, resistance when no red blood cells are

present within the vessel, and resistance modified by the presence of cells following Equation

(1) in the main text. Since our analyses from Section A.3 suggest that phase separation

effects are slight in these trunk microvasculature, we neglect them altogether, assuming

constant hematocrit in each vessel. In the mean-field formulation, the effect of this is to take

ni
Vi

= ρ, i = 1, 2, 3, 4, where ρ is the constant concentration (# per volume) of red blood cells.

ρ is related to the hematocrit (or volume fraction of red blood cells) by Hct= ρVc where Vc

is the volume of a cell. Thus the flux of red blood cells in vessel i is equal to ρQi. Finally

we define pj, j = 1, 2 to be the unknown pressures at the two branching points within the

network (as in the model without feedbacks, the symmetry of the network allows us to assign

the same pressure value, p = 0 at the points where the SeAs meet the DLAV and where the

DA terminates at the tail of the fish). We make a continuum or mean-field approximation

for the effect of the red blood cells contained in each vessel. Specifically, we assume that red

blood cells in each vessel are uniformly dispersed through that vessel. Then, in steady state

we can balance the flux of cells into each vessel with the flux of cells out of each vessel. For

example, for vessel 1, the flux of cells (number/time) out of the vessel is equal to the volume

of blood leaving the vessel in unit time Q1 multiplied by the density (number/volume) of

cells: n1/V1. Similarly the flux of cells into the vessel is given by the total flux of cells

entering the network through node 1, in unit time multiplied by the ratio in which flow is
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divided between vessels 1 and 2 ( Q1

Q1+Q2
). Since the total number of red blood cells in the

network is constant in the continuum approximation, the number of red blood cells entering

the network in unit time must be equal to the number leaving, i.e. n2Q2

V2
+ n3Q3

V3
+ n4Q4

V4
. Thus

in steady state: (
n2Q2

V2

+
n3Q3

V3

+
n4Q4

V4

)
Q1

Q1 +Q2

=
n1Q1

V1

. (A.3)

Similar conservation statements for each of the other 3 vessels in the network give:(
n2Q2

V2

+
n3Q3

V3

+
n4Q4

V4

)
Q2

Q1 +Q2

=
n2Q2

V2

n1Q1

V1

Q3

Q3 +Q4

=
n3Q3

V3

n1Q1

V1

Q4

Q3 +Q4

=
n4Q4

V4

(A.4)

Flux conservation at each node, plus the resistance-to-cell number relationship in Eqn.

(1) from the main text then allows us to compute the fluxes Qi. Specifically, suppose the

fluid inflow is F into the first node. Then since flow rate is proportional to the pressure

difference across a vessel:

Q1 =
p1 − p2

R1

, Q2 =
p1

R2

, Q3 =
p2

R3

, Q4 =
p2

R4

. (A.5)

while conserving fluxes at the two nodes gives:

F =
p1 − p2

R1

+
p1

R2

p1 − p2

R1

=
p2

R3

+
p2

R4

(A.6)

We can solve for the nodal pressures p1, p2 by linear algebra. Define a matrix determinant:

∆ =

∣∣∣∣∣∣
1
R1

+ 1
R2

− 1
R1

1
R1

−( 1
R1

+ 1
R3

+ 1
R4

)

∣∣∣∣∣∣ = −
(

1

R1

+
1

R2

)(
1

R1

+
1

R3

+
1

R4

)
+

1

R2
1

. (A.7)

Then Cramer’s rule gives:

p1 =
1

∆

∣∣∣∣∣∣F − 1
R1

0 −( 1
R1

+ 1
R3

+ 1
R4

)

∣∣∣∣∣∣ =
−F ( 1

R1
+ 1

R3
+ 1

R4
)

∆

p2 =
1

∆

∣∣∣∣∣∣
1
R1

+ 1
R2

F

1
R1

0

∣∣∣∣∣∣ =
− F
R1

∆
. (A.8)
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From the formulas for the nodal pressures pi we can use Eqn. (A.5) to calculate the fluxes

in each vessel, Qi:

Q1 =
−F
∆R1

(
1

R3

+
1

R4

)
, Q2 = − F

∆R2

(
1

R1

+
1

R3

+
1

R4

), Q3 =
−F

∆R3R1

, Q4 =
−F

∆R4R1

(A.9)

Although these represent volume fluxes (volume/time), the cell flux in each vessel can then

be computed by multiplying by the cell concentration, ρ. Using Equation (1) from the main

text, we may rewrite R2 = R20 + α2ρV2, and so on.

To analyze flows within the network we focused on two measures of efficiency, (i) One is

the ratio of the cells fluxes in the two SeAs:

flux ratio =
ρQ2

ρQ4

=
Q2

Q4

=
R1R4

R2

(
1

R1

+
1

R3

+
1

R4

)
=

R̄4 + V4ρα4

R̄2 + V2ρα2

(
1 +

R1

R3

+
R1

R4 + V4ρα4

)
. (A.10)

(ii) We also compute the viscous dissipation within the network when the flux through

all SeAs, i.e. ρ(Q2 + Q4), is fixed. The dissipation for a single vessel is given by D = Q2R

where Q is the flow rate of the vessel, R is the resistance of the vessel. Thus the dissipation

of the entire network is

Dnetwork =
4∑
i=1

Q2
iRi. (A.11)

For the aorta segments, we assume constant resistance (not strongly affected by the number

of red blood cells) so

Daorta =
8µwb
πr4

a

2∑
i=1

l2i−1Q
2
2i−1. (A.12)

In contrast the dissipation within SeAs depends on the number of cells traveling through

them:

DSe =
2∑
i=1

Q2
2iR2i =

2∑
i=1

Q2
2iR2i0 +

2∑
i=1

Q2
2in2iα2i (A.13)

Substituting ni = ρVi, we obtain:

DSe =
8µpl
πr4

c

2∑
i=1

l2iQ
2
2i + ρ

2∑
i=1

V2iα2iQ
2
2i (A.14)
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and

Dnetwork = Daorta +DSe =
8µwb
πr4

a

2∑
i=1

l2i−1Q
2
2i−1 +

8µpl
πr4

c

2∑
i=1

l2iQ
2
2i + ρ

2∑
i=1

V2iα2iQ
2
2i (A.15)

which is Equation (6) in the main text.
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A.5 Estimation of occlusive effects in a 4 dpf zebrafish

To analyze the effect of occlusive feedbacks upon the distribution of red blood cell fluxes

within the trunk vessels, we directly measured the occlusive feedback parameter αc from

Equation (1). Namely, for each vessel, we fit an equation for the resistance of the vessel as

a function of the number, n of cells that it contains:

R = R0 + nαc (A.16)

where R is the resistance of Se, R0 is the resistance of the SeA when it contains no cells,

which is given by Hagen–Poiseuille law calculated with plasma viscosity µpl ≈ 1cP , and αc

is the occlusive effect per cell. We directly measure the coefficient αc by tracking red blood

cells in a real zebrafish embryo. To do this me must convert Eqn. (A.16) into an equation

for velocity in the vessel. Here we expand our discussion of how this model was fit to the

real data, and show the fits for each of the SeAs.

Since the resistance R is the ratio between the pressure drop ∆p over the Se vessel and

the flow rate Q in the vessel we have

QR = ∆p. (A.17)

Plugging Eqn. (A.16) into Eqn. (A.17) we obtain:

R0 + nαc =
∆p

Q
=

∆p

uπr2
, (A.18)

where u is the mean plasma velocity and r is the radius of the vessel. Hence in the vessel 1
u

is linearly related to n:
1

u
=
πr2

∆p
(R0 + nαc), (A.19)

assuming that ∆p is constant. Since in the theory developed in [SHP98], red blood cells

travel at the mean velocity of the plasma, we calculated 1
u

by tracking by hand the cells

traveling through the Se arterial network. If we regress 1
u

against n then the slope a and the

intercept b of the line satisfies

a =
πr2αc

∆p
, b =

R̄πr2

∆p
, (A.20)
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which allows us to calculate the resistance per cell αc:

aR̄

b
= αc. (A.21)

Fig. A.2 shows the experimental measurements and the regression. The maximum num-

ber of cells in a vessel is quite low due to the occlusive effect, which greatly decreases flow

when a vessel contains multiple cells. Therefore we decided to use the theoretical prediction

of plasma velocity with no cells from Figure 1C in the main text to fit 1/v when n = 0,

and thereby the pressure drop ∆p. In applying the cell-free model we ascribed all Se ves-

sels the same radius and also fixed the radii of all aorta segments. This reduces the noise

caused by variation of radius but preserves the key feature of exponential decay. The result-

ing apparent intrinsic viscosities αc are shown in Fig. 2.4B in the dissertation. Note that

there is considerable scatter in the mean velocity data shown in Fig. A.2 (a single panel of

this figure is displayed in the main text as Fig. 2A). This scatter is probably dominated by

the complex stick-slip dynamics of red blood cells even when propelled by steady pressure

gradients[SHP98], and by the variation in the pressure drop ∆p across each Se vessel over

each cardiac cycle. Previous measurements have shown that flow rates in the aorta vary by a

factor of 6 over a single heart beat[MSS07]. By lumping together velocimetric measurements

from different phases of the cardiac cycle, our data include unavoidable velocity variation,

distinct from measurement error. However, our theory and fits extract the average values of

∆p over a full cardiac cycle.

A.6 Effect of network perturbation upon red blood cell partition-

ing

Real zebrafish vascular networks, and microvascular networks generally vary from individual

to individual[IHW01, ZL77]. Some forms of anatomical variation lead to embryo death,

while others do not affect embryo viability at all. We used the model of feedbacks due to

vessel occlusion to determine whether uniform red blood cell fluxes could be achieved in two

previously studied forms of vascular network variability.

171



A.6.1 Variation in spacing between intersegmental vessels

In real vascular networks the SeAs are not evenly spaced. In our model (and supported

by visualization of the dsRed-tagged cell movements), we assume that the Se vessels alter-

nate artery-vein-artery-. . . etc.. Real trunk vasculature does not always follow this pattern

of strict alternation; in fact arteries and veins can be ordered in many different ways, and

the particular ordering of vessels seems to have little impact on embryo growth[IHW01], we

therefore infer that it does not affect oxygen perfusion through the trunk. To investigate

whether the feedback mechanism robustly uniformizes cell fluxes, independently of the order-

ing of arteries and veins, we simulated cell partitioning between SeA in zebrafish with large

variations in SeA spacing. Specifically, we define a vector {Pa(i) : i = 1, ...11} of normal-

ized intersegmental distances. The entries of Pa are normalized such that
∑11

i=1 Pa(i) = 11.

The lengths l2i−1, i = 1, ..., 11 of the DA segments are then given by

l2i−1 = laortaPa(i), (A.22)

where laorta = 169 µm is the mean Se spacing in a 4 dpf zebrafish. Fix the length of the last

DA segment (between the final Se and the direct connection to the PCV) to be l23 = 169 µm.

We create a network with high variation in the Se spacing by setting Pa(2i− 1) = 1.69, i =

1, . . . , 6 and Pa(2i) = 0.169, i = 1, . . . , 5, so that successive spacings differ by a factor of

10. Just as in Fig. 4, we assume a linearly decreasing feedback strength (i.e. a linear form

for the resistance per cell αi), in which the resistance per cell in the i-th SeA is given by a

formula:

αi =
(αmin − αmax)i

n− 1
+ αmax −

αmin − αmax

n− 1
, i = 1, . . . , n (A.23)

where αmax = 2.334×10−5 g/µm4s is the feedback strength within the first Se from the data

and αmin = 1.01×10−6 g/µm4s is that of the last Se. αmax and αmin are obtained from linear

regression on the measured feedback strengths (see main-text, Fig. 2C). We then used a

direct numerical simulation of the cell dynamics in this network (see Materials and Methods

in the main text) to calculate the partitioning of cells in the modified network. We estimate

the uniformity of flows for each set of network parameters by computing the Coefficient of

Variation (CV) of the cell flux. The CV is 0.2538 in the uneven spacing case, which indicates
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a lower uniformity compared to a network with the empirically determined Se spacings (with

CV value 0.1815, see Fig. A.3). However, if the feedback strength varies with distance along

the DA, (i.e. with vessel distance from the heart, rather than simply being a function of

vessel index), namely:

αi = (αmax − αmin)

∑n−1
j=i Pa(j)∑n−1
j=1 Pa(j)

+ αmin (A.24)

then the CV of cell fluxes under the same simulation conditions as were used to create Fig.

2, is 0.1827, which is almost identical to the unperturbed network.

A.6.2 DA-PCV shunt

Genetically modified mibta52b mutant zebrafish have altered differentiation of vessels into

arteries or veins. In particular the mutant trunk vasculature includes a circulatory loop

(shunt) between DA and PCV in the middle of the trunk [LSP01]. mibta52b mutants die before

two weeks post fertilization [LSP01]. To simulate the effect of mibta52b upon the partitioning

of cells through the zebrafish trunk vasculature we created a model of the network, by

starting with the same wild type network geometry as in Fig. 1B in the main text but with

the 6th SeA being assigned a radius 7 µm (identical to the aorta) and a length 17 µm,

based on vessel measurements from [LSP01]. The length of the DA vessel segments on either

side of the shunt connection were set to be one half of the mean DA vessel segment length,

mimicking the DA malformation seen around the shunt in real zebrafish [LSP01]. The cell

flux in the shunt, 39 s−1, is much greater than the mean cell flux in all the SeAs, 0.3 s−1.

Because cells have smaller radii than the shunt connection, cells do not occlude this vessel,

there is no negative feedback and cells are not redistributed to SeAs beyond the shunk (Fig.

A.4). We expect the low cell fluxes in the other vessels to be associated with low oxygen

transport to the rest of the trunk, which may contribute to the lethality of the mibta52b

mutation.
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Figure A.2: Occlusive effects are measured in all 12 Se arteries in a 4 dpf zebrafish; we regress

the reciprocal of the average velocity 1
u

against the cell number n. Line: linear regression

with intercept determined by the numerical solution with no cells.
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Figure A.3: Predicted cell fluxes in wildtype zebrafish due to variability in Se spacing variant.

The wildtype cell fluxes (star) becomes oscillatory under variant spacing (circle), but shows

similar overall uniformity. If the feedback variation is adjusted then uniform partitioning of

cell fluxes is restored (cross, overlapped with the stars. Se vessels with smaller numberings

are closer to the heart.).

Figure A.4: Predicted cell fluxes in mibta52b mutant zebrafish. In this mutant, the DA and

PCV are directly connected by a shunt, which creates a short-circuit in the network. A

shunt introduced at the location of the 6th Se leads to lower and less uniform fluxes (circle)

compared to wild type embryos (star), and there is almost no cell flux posterior to the shunt

location. Se vessels with smaller numberings are closer to the heart.
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APPENDIX B

Well-posedness of Kirchhoff’s Laws

For completeness we give a proof on well-posedness of Kirchhoff’s laws. If the network has

several connected components we can prove that each component has a unique Kirchhoff flow

so without loss of generality we can consider a connected network G, i.e. ∀k, l ∈ G ∃k1, ..., kn

s.t. 〈ki, ki+1〉 = 1, κkiki+1
> 0 for all i = 1, ..., n− 1 and k1 = k, kn = l, where κkl denotes the

conductance of the link kl. Now we write down the Kirchhoff system

Dp = b (B.1)

where

Dkl
.
=



∑
l,〈k,l〉=1 κkl , k = l, k /∈ P

−κkl , 〈k, l〉 = 1, k /∈ P

1 , k = l, k ∈ P

0 , otherwise

(B.2)

and

bk =


qk , k ∈ F

p̄k , k ∈ P

0 , otherwise

. (B.3)

Here the notations follow those in Section 3.3. First we show that if P 6= φ then D is

invertible, which is equivalent to showing that

Dp = 0⇒ p = 0 . (B.4)
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The solution p for Equation (C.1) corresponds to a network where we do not have any flows

into the system except possibly at vertices with pressure boundary conditions prescribed

zero pressures, denoted by P . The goal is to show that pk = 0 ∀k. Suppose for contradiction

that ∃i /∈ P s.t. pi 6= 0 (since we already have pj = 0 ∀j ∈ P). Then we would have Qkl 6= 0

for some 〈k, l〉 = 1 since the network is connected, and without loss of generality let Qkl > 0.

Now we can trace this flow throughout the network in the following procedure:

1. Given that Qkn−1kn > 0 first check if kn ∈ P , and stop if this is the case.

2. Consider all vertices l s.t. 〈kn, l〉 = 1. According to Kirchhoff’s first law there must be

an l s.t. Qknl > 0. Since the network is finite we can pick e.g. the smallest l satisfying

these conditions and let kn+1 = l.

3. Repeat the procedure until kN ∈ P for some N and stop.

If we start with k1 = k, k2 = l we can initiate the process since the first condition

is satisfied. This procedure has to stop eventually because the network is finite and that

k1, ..., kn are all distinct for any given n > 1. To see this suppose kn = km with m > n. Then

we would have pn > pn+1 > · · · > pm = pn, a contradiction. Thus we would end up with

a chain of distinct vertices k1, k2, ..., kN with 〈kn, kn+1〉 = 1, Qknkn+1 > 0 ∀n = 1, ..., N − 1,

and N ∈ P . Now we repeat the same procedure just with k′1 = l, k′2 = k to trace the

flows upstream, and we would end up with another chain k′1, k
′
2, ..., k

′
N ′ with 〈k′n, k′n+1〉 =

1, Qk′nk
′
n+1

< 0 ∀n = 1, ..., N ′ − 1, and N ′ ∈ P . Notice that there is no repetition in the

set {k1, ..., kN , k
′
1, ..., k

′
N ′} since kn = k′m would lead to the same contradiction due to loop

flow. Now we have a loop flow starting and ending at vertices in P , a contradiction since all

vertices in P have pressure zero. Therefore we have pk = 0 ∀1 ≤ k ≤M and D is invertible.

Now suppose P = φ but
∑

k∈F qk = 0. We want to show that solutions p exist and are

determined up to an additive constant, so the flows Qkl are uniquely determined. Notice

that if we replace say the last row of D by eV then D is invertible by the previous argument,

so rank(D) ≥ V − 1. Also notice that
∑

kDkl = 0 ∀1 ≤ l ≤ V , so rank(D) = V − 1. Now

without loss of generality let vertex 1 ∈ F and we want to find a solution (if F = φ then
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p = (0, ..., 0)T is a solution). If we change the first row of D to e1 it is equivalent to setting

1 ∈ P with p̄1 = q1, which admits a unique solution p′k by our previous argument. Now

calculate

0 =
∑
〈k,l〉=1

(p′k − p′l)κkl =
∑
k

∑
l : 〈k,l〉=1

Q′kl =
∑

l : 〈1,l〉=1

Q′1l +
∑

k∈F ,k 6=1

qk (B.5)

⇒
∑

l : 〈1,l〉=1

Q′1l = q1 (B.6)

so p′k is a solution to the original linear system. By
∑

kDkl = 0 ∀1 ≤ l ≤ V and rand(D) =

V − 1 we know that the null space of D is {(a, ..., a)T |a ∈ R}, so the general solution is

pk = p′k + a ∀1 ≤ k ≤ V (B.7)

for every a ∈ R. Thus p is determined up to a constant and the flow is uniquely determined.

Finally we show that there is no solution of p when
∑

k∈F qk 6= 0. This is straight-forward

since suppose for contradiction that ∃p ∈ RV s.t.

Dp = b. (B.8)

Then if we multiply both side from the left by (1, ..., 1) then since (1, ..., 1)D = 0 we gent

0 =
∑
k∈F

qk, (B.9)

a contradiction.
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APPENDIX C

Solvability of {µk}

Here we prove that {µk} in Equation (4.7) are uniquely solvable under a general configuration

of flow (i.e. Neumann) and pressure (i.e. Dirichlet) boundary conditions (BCs). We assume

that κkl > 0 ∀〈k, l〉 = 1 (since κkl = 0 is the same as 〈k, l〉 = 0) and that the network is

connected. It suffices to show that the matrix D is invertible. This is the same matrix in

the linear system for solving {pk} with the specified boundary conditions, so we only have

to show that there exists a unique flow given any flow and pressure boundary conditions,

which is a well-known [LP16]. Since our derivation makes use of multiple invertibility results

for different matrices D,D(2) and so on, we provide a proof in order to highlight under what

conditions invertibility is allowed. The problem is equivalent to showing that

Dp = 0⇒ p = 0. (C.1)

The solution p for Eqn. (C.1) corresponds to a network where we do not have any flows into

the system except possibly at vertices with pressure boundary conditions, denoted by VD.

The goal is to show that pk = 0 ∀k. Suppose for contradiction that ∃i /∈ VD s.t. pi 6= 0

(since we already have pj = 0 ∀j ∈ VD). Then we would have Qkl 6= 0 for some 〈k, l〉 = 1

since the network is connected, and without loss of generality let Qkl > 0. Now we can trace

this flow throughout the network in the following procedure:

1. Given that Qkn−1kn > 0 first check if kn ∈ VD, and stop if this is the case.

2. Consider all vertices l s.t. 〈kn, l〉 = 1. According to Kirchhoff’s first law there must be

an l s.t. Qknl > 0. Since the network is finite we can pick e.g. the smallest l satisfying

these conditions and let kn+1 = l.

179



3. Repeat the procedure until kN ∈ VD for some N and stop.

If we start with k1 = k, k2 = l we can initiate the process since the first condition

is satisfied. This procedure has to stop eventually because the network is finite and that

k1, ..., kn are all distinct for any given n > 1. To see this suppose kn = km with m > n. Then

we would have pn > pn+1 > · · · > pm = pn, a contradiction. Thus we would end up with

a chain of distinct vertices k1, k2, ..., kN with 〈kn, kn+1〉 = 1, Qknkn+1 > 0 ∀n = 1, ..., N − 1,

and N ∈ VD. Now we repeat the same procedure just with k′1 = l, k′2 = k to trace the

flows upstream, and we would end up with another chain k′1, k
′
2, ..., k

′
N ′ with 〈k′n, k′n+1〉 =

1, Qk′nk
′
n+1

< 0 ∀n = 1, ..., N ′ − 1, and N ′ ∈ VD. Notice that there is no repetition in the set

{k1, ..., kN , k
′
1, ..., k

′
N ′} since kn = k′m would lead to the same contradiction since pressures

must be ordered.
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[CSM17] Amy L Cochran, André Schultz, Melvin G McInnis, and Daniel B Forger. “A com-
parison of mathematical models of mood in bipolar disorder.” In Computational
Neurology and Psychiatry, pp. 315–341. Springer, 2017.

[CTB17] Shyr-Shea Chang, Shenyinying Tu, Kyung In Baek, Andrew Pietersen, Yu-Hsiu
Liu, Van M Savage, Sheng-Ping L Hwang, Tzung K Hsiai, and Marcus Roper.
“Optimal occlusion uniformly partitions red blood cells fluxes within a microvas-
cular network.” PLoS Computational Biology, 13(12):e1005892, 2017.

[CV03] B Corbella and E Vieta. “Molecular targets of lithium action.” Acta Neuropsy-
chiatrica, 15(6):316–340, 2003.

[CZ13] Edwin KP Chong and Stanislaw H Zak. An introduction to optimization. John
Wiley & Sons, 2013.

[DDD05] Andrew K Dunn, Anna Devor, Anders M Dale, and David A Boas. “Spatial extent
of oxygen metabolism and hemodynamic changes during functional activation of
the rat somatosensory cortex.” Neuroimage, 27(2):279–290, 2005.

[DH17] Yvonne L Dorland and Stephan Huveneers. “Cell–cell junctional mechan-
otransduction in endothelial remodeling.” Cellular and Molecular Life Sciences,
74(2):279–292, 2017.

[DP80] John R Dormand and Peter J Prince. “A family of embedded Runge-Kutta
formulae.” Journal of Computational and Applied Mathematics, 6(1):19–26, 1980.

[DPP11] Vincent Doyeux, Thomas Podgorski, Sarah Peponas, Mourad Ismail, and Gwen-
nou Coupier. “Spheres in the vicinity of a bifurcation: elucidating the Zweifach–
Fung effect.” Journal of Fluid Mechanics, 674:359–388, 2011.

[DRU09] Darryl Daugherty, Tairi Roque-Urrea, John Urrea-Roque, Jessica Troyer, Stephen
Wirkus, and Mason A Porter. “Mathematical models of bipolar disorder.” Com-
munications in Nonlinear Science and Numerical Simulation, 14(7):2897–2908,
2009.

[Dur06] Marc Durand. “Architecture of optimal transport networks.” Physical Review E,
73(1):016116, 2006.

184



[Dur07] Marc Durand. “Structure of optimal transport networks subject to a global con-
straint.” Physical Review Letters, 98(8):088701, 2007.

[EN15] Eran Eldar and Yael Niv. “Interaction between emotional state and learning
underlies mood instability.” Nature Communications, 6:6149, 2015.

[ERD16] Eran Eldar, Robb B Rutledge, Raymond J Dolan, and Yael Niv. “Mood as
representation of momentum.” Trends in Cognitive Sciences, 20(1):15–24, 2016.

[FAB06] Magalie Faivre, Manouk Abkarian, Kimberly Bickraj, and Howard A Stone. “Ge-
ometrical focusing of cells in a microfluidic device: an approach to separate blood
plasma.” Biorheology, 43(2):147–159, 2006.

[Fai99] Gordon L Fain. Molecular and cellular physiology of neurons. Harvard University
Press, 1999.

[FFS09] Cassot Francis, Lauwers Frederic, Lorthois Sylvie, Puwanarajah Prasanna, and
Duvernoy Henri. “Scaling laws for branching vessels of human cerebral cortex.”
Microcirculation, 16(4):331–344, 2009.

[FJ05] Vivian Fonseca and Ali Jawa. “Endothelial and erectile dysfunction, diabetes
mellitus, and the metabolic syndrome: common pathways and treatments?” The
American Journal of Cardiology, 96(12):13–18, 2005.

[FO85] MB Furman and WL Olbricht. “Unsteady cell distributions in capillary net-
works.” Biotechnology Progress, 1(1):26–32, 1985.

[FTC17] Yuan-cheng Fung, Pin Tong, and Xiaohong Chen. Classical and computational
solid mechanics. World Scientific Publishing Company, 2017.

[Fun73] Yuan-Cheng Fung. “Stochastic flow in capillary blood vessels.” Microvascular
Research, 5(1):34–48, 1973.

[FWC04] Cynthia HY Fu, Steven CR Williams, Anthony J Cleare, Michael J Brammer,
Nicholas D Walsh, Jieun Kim, Chris M Andrew, Emilio Merlo Pich, Pauline M
Williams, Laurence J Reed, M T Mitterschiffthaler, J Suckling, and E T Bullmore.
“Attenuation of the neural response to sad faces in major depressionby antide-
pressant treatment: a prospective, event-related functional magnetic resonance
imaging study.” Archives of General Psychiatry, 61(9):877–889, 2004.

[FYS12] Omid Forouzan, Xiaoxi Yang, Jose M Sosa, Jennie M Burns, and Sergey S Shevko-
plyas. “Spontaneous oscillations of capillary blood flow in artificial microvascular
networks.” Microvascular Research, 84(2):123–132, 2012.

[GBW01] James F Gillooly, James H Brown, Geoffrey B West, Van M Savage, and
Eric L Charnov. “Effects of size and temperature on metabolic rate.” Science,
293(5538):2248–2251, 2001.

185



[GKT04] Ian H Gotlib, Karen L Kasch, Saskia Traill, Jutta Joormann, Bruce A Arnow,
and Sheri L Johnson. “Coherence and specificity of information-processing biases
in depression and social phobia.” Journal of Abnormal Psychology, 113(3):386,
2004.

[GKY04] Ian H Gotlib, Elena Krasnoperova, Dana Neubauer Yue, and Jutta Joormann.
“Attentional biases for negative interpersonal stimuli in clinical depression.” Jour-
nal of Abnormal Psychology, 113(1):127, 2004.

[GL97] Barbara Geller and Joan Luby. “Child and adolescent bipolar disorder: a review
of the past 10 years.” Journal of the American Academy of Child & Adolescent
Psychiatry, 36(9):1168–1176, 1997.

[GM13] John R Geddes and David J Miklowitz. “Treatment of bipolar disorder.” The
Lancet, 381(9878):1672–1682, 2013.

[Gol11] Albert Goldbeter. “A model for the dynamics of bipolar disorders.” Progress in
Biophysics and Molecular Biology, 105(1-2):119–127, 2011.

[GRT00] Michael E Geisser, Randy S Roth, Mary E Theisen, Michael E Robinson, and
Joseph L Riley III. “Negative affect, self-report of depressive symptoms, and
clinical depression: relation to the experience of chronic pain.” The Clinical
Journal of Pain, 16(2):110–120, 2000.

[GT03] Joseph F Goldberg and Christine J Truman. “Antidepressant-induced mania: an
overview of current controversies.” Bipolar Disorders, 5(6):407–420, 2003.

[GWS81] P Gaehtgens, G Will, and F Schmidt. “Comparative rheology of nucleated and
non-nucleated red blood cells. II. Rheological properties of avian red cells suspen-
sions in narrow capillaries.” Pflugers Archiv, 390(3):283–287, 1981.

[Hal15] John E Hall. Guyton and Hall textbook of medical physiology. Elsevier Health
Sciences, 2015.

[Har08] Catherine J Harmer. “Serotonin and emotional processing: does it help explain
antidepressant drug action?” Neuropharmacology, 55(6):1023–1028, 2008.

[HBG91] CM Hawkey, PM Bennett, SC Gascoyne, MG Hart, and JK Kirkwood. “Erythro-
cyte size, number and haemoglobin content in vertebrates.” British Journal of
Haematology, 77(3):392–397, 1991.

[HBH16] EA Holmes, MB Bonsall, SA Hales, H Mitchell, F Renner, SE Blackwell, P Wat-
son, GM Goodwin, and M Di Simplicio. “Applications of time-series analysis to
mood fluctuations in bipolar disorder to promote treatment innovation: a case
series.” Translational Psychiatry, 6(1):e720, 2016.

[HC13] Dan Hu and David Cai. “Adaptation and optimization of biological transport
networks.” Physical Review Letters, 111(13):138701, 2013.

186



[HCR12] Dan Hu, David Cai, and Aaditya V Rangan. “Blood Vessel Adaptation with
Fluctuations in Capillary Flow Distribution.” PloS One, 7(9):e45444, 2012.

[HCW94] KA Haldenby, DC Chappell, CP Winlove, KH Parker, and JA Firth. “Focal and
regional variations in the composition of the glycocalyx of large vessel endothe-
lium.” Journal of Vascular Research, 31(1):2–9, 1994.

[HDF16] Patrick C Hickey, Haoxuan Dou, Sierra Foshe, and Marcus Roper. “Anti-jamming
in a fungal transport network.” arXiv preprint arXiv:1601.06097, 2016.

[HEB05] Sui Huang, Gabriel Eichler, Yaneer Bar-Yam, and Donald E Ingber. “Cell fates as
high-dimensional attractor states of a complex gene regulatory network.” Physical
Review Letters, 94(12):128701, 2005.
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[UAH08] Snežana Urošević, Lyn Y Abramson, Eddie Harmon-Jones, and Lauren B Alloy.
“Dysregulation of the behavioral approach system (BAS) in bipolar spectrum dis-
orders: review of theory and evidence.” Clinical Psychology Review, 28(7):1188–
1205, 2008.

[VFL09] Julien Vermot, Arian S Forouhar, Michael Liebling, David Wu, Diane Plum-
mer, Morteza Gharib, and Scott E Fraser. “Reversing blood flows act through
klf2a to ensure normal valvulogenesis in the developing heart.” PLoS Biology,
7(11):e1000246, 2009.

194



[WBC96] Myrna M Weissman, Roger C Bland, Glorisa J Canino, Carlo Faravelli, Steven
Greenwald, Hai-Gwo Hwu, Peter R Joyce, Eile G Karam, Chung-Kyoon Lee,
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