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D., Domnisoru, C., Bartol, T. M., Hetzer, M. W., Tartakovsky, D. M., Sejnowski, T. J.,

“Anomalous diffusion of single particles in cytoplasm”, 1652-1660, Copyright 2013,

with permission from Elsevier.

Chapter 3 is reprinted from a manuscript under review at Biophysical Journal,

Regner, B. M., Tartakovsky, D. M., Sejnowski, T. J., “Identifying Transport Dynamics

of Single-Molecule Trajectories”.

ix



VITA

2006 B. S. in Engineering Mechanics and Astronautics, University of
Wisconsin, Madison

2007-2009 Graduate Teaching Assistant, University of California, San Diego

2009 M. S. in Mechanical Engineering, University of California, San
Diego

2014 Ph. D. in Eng. Sci. (w/Spec. in Multi-Scale Bio.), University of
California, San Diego

PUBLICATIONS
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ABSTRACT OF THE DISSERTATION
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Random fluctuations play a fundamental role in all biological processes, from

diffusion-reaction pathways to the stochasticity inherent to genetic variability. De-

termining how these random processes interact is critical to both understanding and

eventually engineering biological systems. This dissertation deals with the dynamics

of stochastic transport processes at the cell level. The first chapter presents a descrip-

tion of a novel microscope design to probe diffusive behavior in a cellular extract. The

obtained data reveal both superdiffusive and subdiffusive behavior. This chapter also

introduces several stochastic processes that capture the observed behavior. Differences

in an ergodicity-breaking parameter between the experimental conditions support the

xi



use of these models. The second chapter describes a new algorithm for determining the

anomalous scaling exponent of experimental data. The algorithm, which is based on a

renormalization group operator, enables one to determine a distribution of anomalous

diffusion exponents from single trajectories. When applied to the experimental data

from the first chapter, the algorithm identified a rich distribution of anomalous expo-

nents, signifying the nonstationary behavior indicative of transport process transitions.

The implications of this result and its future applications are discussed. The third chapter

describes a hard-sphere simulation algorithm for modeling reaction-diffusion systems in

complex geometry. Details of the implementation and unresolved issues are outlined.

The fourth section deals with the derivation of effective transport equations for cellular

environments, which are highly crowded and characterized by complex geometry. A

probabilistic formulation is proposed for solving a closure problem, which determines

the effective diffusion coefficient. This chapter concludes with a computational example

that serves both to demonstrate the efficacy and robustness of the proposed framework

and to outline its possible applications.

xii



1 Introduction

1.1 Randomness in Biology

When Robert Brown made observations of the eponymous Brownian motion,

he initially attributed the erratic movement of pollen grains to an intrinsic “life force”.

Subsequent observations of non-organic materials, such as mineral aggregates, refuted

this theory, but it wasn’t until the work of Einstein and Smoluchowski that a molecular

basis for the motion was firmly established [55]. Further developments in physics and

probability theory continued over the 20th century, providing a solid mathematical foun-

dation for Brownian motion. Importantly, these developments described the behavior of

a particle in dilute suspension, where interactions with other particles are minimal. A

description of the dynamics of a particle in a complex environment has only recently

seen substantial progress, with the application of fractional calculus and modern the-

ories of stochastic processes [85]. Physical systems such as charge transport in amor-

phous solids [117], diffusion in porous materials [70], and biomolecular diffusion [46]

are examples in which the interaction of many particles and complex geometries leads

to anomalous dynamics. Due to the ubiquitous nature of anomalous dynamics, it is an

active area of experimental and theoretical research [55, 85].

Regarding biophysical processes, due to technical advances in biochemistry, ge-

netics and microscopy, a deluge of data has provided ample opportunities for answering

long standing theoretical questions. A particularly intriguing question is how biolog-

ical machinery, despite working at the molecular scale where all behavior is stochas-

tic, exhibit robust, repeatable dynamics. Examples include the stochastic release of

neurotransmitter accomplishing reliable signal transmission [50], random patterning ac-

curately guiding embryogenesis [35], and stochastic fluctuations reliably driving the

1
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metabolic cycle [76]. While in some cases these processes must be stochastic due to

their implementation as moleular machines, evolution has developed techniques to in-

crease reliability, but does not utilize them uniformly. For example, muscle innervation

is accomplished using electrical gap junctions, where current is directly coupled be-

tween cells [5]. However, the majority of connections in the central nervous system

are stochastic chemical synapses where cell-to-cell signal transduction has a probability

less than one [61]. Macromolecular complexes provide a reaction substrate for many

processes, trapping reaction partners in close proximity, such as the G-protein cascade

mechanism found at the cell membrane [5]. Yet critical processes, for example the

metabolic pathway, proceed by the interaction of freely diffusing molecules in the cy-

tosol, relying on chance encounters to drive reactions forward [76].

An important goal in biophysics is to understand how inherently stochastic pro-

cesses can produce reliable behavior in living systems. The specific focus of this dis-

sertation is to investigate transport in biological systems, in order to examine how it is

expressed in biology and to produce models for understanding and eventually engineer-

ing these complicated systems.

1.2 Theory of Diffusion

1.2.1 Fickian Diffusion

Inspired by the theory of heat conduction, diffusive behavior was first described

by Fick [85]. The concentration C of a solute will undergo flux J

J =−D
∂C
∂x

(1.1)

and evolve with time by the transport equation

∂C
∂ t

= D
∂ 2C
∂x2 (1.2)

where D is the diffusion coefficient. Fickian diffusion is closely related to Brownian

motion, where Fick’s equations describe the evolution of an ensemble of particles under-

going Brownian motion. The first description of Brownian motion was independently

derived by Einstein and Smolukowski, who elucidated a linear dependence between
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the mean-square displacement (MSD) of a particle undergoing Brownian motion and

time [38, 134], i.e.

〈X2〉= Dt. (1.3)

The diffusion coefficient D can be calculated using the Stokes-Einstein relation, which

relates the drag force of a particle undergoing Stokes’ flow to the momentum relaxation

time, and can be calculated for a molecule of radius r by

D =
RT

6πµrN
(1.4)

where R is the gas constant, T is absolute temperature, µ is the dynamic viscosity and N

is Avogadro’s number. The derivation of (1.3) was early evidence for the atomic nature

of matter, and the first method for calculating Avogadro’s number. It was subsequently

estimated by Perrin with excellent accuracy, 7.15×1023.[103]

The Brownian motion of a single particle was first described by Langevin using

the equation bearing his name

m
d2x
dt

=−λ
dx
dt

+η(t) (1.5)

where m is the mass of the particle, λ is the hydrodynamic friction and η is a time-

varying stochastic forcing due to random collisions with solvent molecules. An alter-

native description is the Fokker-Planck equation where Brownian motion with drift is

given by
∂ p(x, t)

∂ t
=− ∂

∂x
[A(x, t)p(x, t)]+

1
2

∂ 2

∂x2 [B(x, t)p(x, t)] (1.6)

where p(x, t) is a normalized concentration, or probability distribution, A is a drift coef-

ficient and B is a diffusion coefficient [43]. This can be written equivalently in the form

of a stochastic differential equation

dXt = A(Xt , t)dt +
√

B(Xt , t)dWt (1.7)

where Wt is the Wiener process. The Wiener process plays a critical role in the theory of

stochastic processes, and is used extensively in the construction of more sophisticated

processes [96].
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1.2.2 Anomalous Diffusion

Further development of diffusion theory was driven by experimental observa-

tions of anomalous diffusion, in which the MSD has a power law dependence with time,

i.e.

〈X2〉= Dtα (1.8)

where α is the anomalous diffusion coefficient. α < 1 is called subdiffusive, and α > 1

superdiffusive behavior. Recently, an analysis of mean-square displacment proved that

anomalous diffusion can arise from three possible sources. A random walk, or more

generally a stochastic process, will generate anomalous dynamics if the increments of

the process are not independent, the increments are not wide-sense stationary or the

process has non-zero drift [99]. Furthermore, it was shown in the same work that a

linear relation between MSD and time is not a sufficient condition to determine if a

process is Brownian. Providing a more complete alternative to MSD, a renormalization

group operator was proposed to classify the anomalous scaling exponent of stochastic

processes. The stochastic process X(t) is called the fixed point of the operator Rp,r if

X(t) d
= Rp,rX(t)≡ X(rt)

rp (1.9)

where d
= means equal in probability distribution [98]. The anomalous diffusion co-

efficient is related by α = 2p, and a process with scaling p is said to be p-diffusive.

This definition can be rewritten to evoke the Hausdorff dimension, drawing parallels to

known descriptions of self-similar behavior [99].

In Chapter 3, we use this framework to develop an algorithm for determining

the anomalous diffusion exponent from experimental data. The algorithm determines

a distribution of the anomalous scaling for a single realization of a stochastic process.

The mean of the distribution is equivalent to the anomalous diffusion exponent, while the

distribution gives a sense of the local behavior observed in the realization. We analyze

experimental data to show how MSD can give an misleading picture of the observed

dynamics. Finally, using a moving window, a realization can be classified over time to

provide local information about scaling of the process. We propose using this method

to extract functional information from biological systems.
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A variety of dynamical processes that generate anomalous diffusion have been

proposed. A classic process that generates anomalous diffusion is fractional Brownian

motion (fBM) [80]. Fractional Brownian motion is a random walk with a two-point

correlation function given by

〈x(t1)x(t2)〉= KH(t2H
1 + t2H

2 −|t1− t2|2H) (1.10)

where KH is a fractional diffusion constant and H =α/2 is the Hurst exponent. Statistics

resembling fractional Brownian motion have been observed in diffusion processes in

biological systems [60, 40].

Continuous time random walks (CTRW) have been used successfully in describ-

ing a variety of anomalous dynamics [89, 117, 15]. CTRW can be described by a gen-

eralized master equation (GME)

∂ p(s, t)
∂ t

=−∑
s′

∫ t

0
φ(s′− s, t ′− t)p(s, t ′)dt ′+∑

s′

∫ t

0
φ(s− s′, t− t ′)p(s′, t ′)dt ′ (1.11)

where p(s, t) is normalized concentration, and φ(s, t) is a kernel describing the spatial

and temporal dynamics of the system in question. A more intuitive description is to

consider a standard random walk in which the spatial increments are distributed, such as

Brownian motion where they are Gaussian distributed. In a CTRW framework, the time

between steps is also distributed, often following a long-tailed power law distribution

when studying anomalous dynamics [15]. Results from biological diffusion experiments

have been described using CTRW statistics [59, 51].

The equivalence between CTRW and a GME also implies the equivalence be-

tween CTRW and a fractional Fokker-Planck equation (FFPE). The development of

descriptions using fractional dynamics has recently seen rapid progress, exposing a rich

mathematical landscape beyond the scope of this thesis [86]. The FFPE can be derived

from the CTRW framework [11], and is given by

∂ p
∂ t

= 0D1−α
t

[
∂

∂x
V ′(x)
mηα

+Kα

∂ 2

∂x2

]
p(x, t) (1.12)

where 0D1−α
t is the Riemann-Liouville operator. Similarly, a fractional diffusion equa-

tion (FDE) has been derived [85]. The form most similar to the classic diffusion equation

is
∂ p
∂ t

= 0D1−α
t Kα

∂ 2

∂x2 p(x, t) (1.13)
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where Kα is an anomalous diffusion exponent. Recent work has proven equivalence

between CTRW, FFPE and FDE [85], and exploration of the mathematical properties

and applications to data remain an active field of research.

1.3 Light Microscopy

Although diffusion can be observed at the macroscale, such as milk gently intro-

duced to coffee, fundamentally the dynamics occur at the molecular level. In biological

systems, observing diffusing molecules is complicated by a number of factors, includ-

ing encasement by cell membranes, high concentrations of biomass, and the typically

small size of interesting biomolecules. Furthermore, diffusion is a dynamical process,

occuring in sensitive living entities that require percise conditions for normal function.

Electron microscopy allows visualization at these small scales, but requires fixation, ei-

ther chemical or cryogenic, arresting diffusion and the living processes of interest [139].

Due to these complications, descriptions of diffusion in biological systems has been

slow and a number of open questions remain. However, recent advances in light mi-

croscopy have provided a wealth of data and drawn increased interest in understanding

diffusion processes in biology.

1.3.1 Light Microscopy

The simplest light microscope uses bright field illumination, where an entire

sample is illuminated from the back, and images are captured on the retina using an

eyepiece, photographic film, or a CCD camera for digitalization [91]. Biological sam-

ples typically have low contrast, making it difficult to resolve details, although contrast

agents such as dyes can help. Furthermore, the resolution of bright field illumination is

poor. While this technique is still used for a variety of experiments, it is not well suited

for probing diffusive behavior.

Fluorescent microscopy is the most commonly used light microscopy technique

in use today [91]. Molecules of interest can be tagged, through chemical or genetic

means, with a fluorophore molecule that is excited by incident light. The fluorophore

is excited into a higher energy state, before rapidly decaying, emitting a photon. A
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fluorophore will have a specific excitation and emission spectrum that is a function of

their structure. Fluorophores commonly used in microscopy have a large shift between

their excitation and emission spectra, called the Stokes shift. This shift is exploited

in the epifluoroescent microscope, in which the excitation light and the emission light

traverse the same optical path. Because the excitation and emission spectra are different,

dichroic mirrors and optical filters can be used to ensure only the photons emitted by the

molecules of interest are collected on the imaging device [91].

A common imaging modality is video microscopy, in which the entire sample

is illuminated using a lamp and the emitted photons are collected on a CCD camera.

An alternative design is to raster scan a laser across the sample using galvanized mir-

rors, collecting emitted photons with a photomultiplier, and obtaining a photon count

for each specific location in space. A 2D image is then reconstructed, pixel by pixel,

using these photon counts. In order to obtain 3D data, the focal plane must be shifted,

typically using a motorized stage. An improvement on this basic scheme is confocal

methods, which improves resolution by removing out-of-plane photons [29]. Another

improvement is multiphoton excitation, in which two lower energy photons simultane-

ously excite a fluorophore. Advantages of two-photon microscopy is improved tissue

penetration due to lower scattering of low energy photons, reduced photodamage, and

improved resolution in the z dimension due to a narrower point spread function [34].

A main issue for resolving biomolecules of interest is the diffraction limit, first

recognized by Abbe [1]. The diffraction limit determines the limit of separation between

two point sources at which the point spread functions are indistinguishable [91]. Recent

work has shown that improvements can be made to the classically assumed limit [105],

but it is not possible to completely overcome this limit. However, a single particle can be

localized to the nanometer accuracy by fitting a Gaussian to the point spread function,

so that high spatial resolution can be obtained if single particles can be isolated.

One method for superresolution imaging is the probabilistic photoactiviation of

small numbers of molecules, such that only a few are fluorescing during a given imag-

ing sequence, decreasing the probability that the currently illuminated molecules over-

lap. Two methods using this idea were recently developed in parallel, photo activated

localization microscopy (PALM) [17] and stochastic optical reconstruction microscopy
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(STORM) [109]. Further refinements have been made to these methods, but in general

they suffer from poor temporal resolution. Another superresolution method involves

shaping the excitation area by depleting the surrounding area, referred to as stimu-

lated emission depletion microscopy (STED) [52]. Although excellent localization is

achieved using this modality, the method is difficult to implement, and again the tempo-

ral resolution for large fields of view is poor.

Techniques for capturing data in 3D have also seen recent advances. Light sheet

microscopy structures the excitation beam into a thin plane of light that can be rapidly

scanned across the sample [62]. While this method has good temporal resolution, the

spatial resolution is limited. Several techniques have been proposed that rely on post-

processing of the images to accurately obtain the location. In structured illumination

microscopy, spatial modulation of the excitation beam is introduced using a fine grating.

The resulting images are analyzed using frequency analysis to recover the fluorophore

positions [48]. Another method of improving spatial resolution is by engineering the

point spread function of the excited fluorophores. A recently proposed method uses a

double helix point spread function and post processing to obtain accurate positions of

molecules in 3D [102]. These techniques are undergoing rapid development and im-

provement, and will continue to be a critically important field of research to probe new

experimental questions.

In Chapter 2, we discuss an epifluorescent microscope design in which the gal-

vanized mirrors and stage are replaced by acousto-optic deflectors. The design allows

rapid acquisition of 3D volumes with no moving parts [135]. We use this microscope to

explore 3D anomalous diffusion in a cellular extract taken from Xenopus oocytes. By

tracking polymer microspheres, we observe superdiffusive transport along microtubules

with an anomalous exponent of α = 1.5. We then apply nocodazole, a chemical known

to depolymerize microtubules, and observe subdiffusive transport with α = 0.6. We

propose the use of fractional Brownian motion to model microtubule transport, and a

CTRW to model the subdiffusive transport in the cytosolic fraction. Finally, we validate

the use of these models by comparing distributions of an ergodicity-breaking parameter

for experimental and simulated data.
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1.3.2 Analysis Techniques

Given the microscopy methods described above, there are several ways in which

they can be used for probing diffusive behavior. A common method for diffusion anal-

ysis is fluorescence correlation spectroscopy (FCS). In this method, correlations in the

fluctuations of fluorescence intensity are used to derive diffusion dynamics. This is ac-

complished by looking at fluctuations in a very small volume, where the entrance and

exit of individual molecules produces significant changes in the intensity. By measuring

the correlations in these fluctuations and applying an appropriate model, the average

concentration and diffusion coefficient can be derived [127].

An alternative is fluorescence recovery after photobleaching (FRAP). In this

modality, a focal spot is intensely irradiated by the excitation laser to photobleach the

fluorophores present in that location. Photobleaching occurs when a fluorophore is over-

exposed and loses the capability to fluoresce. The photobleached spot is then imaged

over time as unbleached molecules diffuse into the dark area. The rate at which the

intensity in the area increases can be used to derive the diffusion coefficient [8].

The most straightforward method is to track the trajectory of an individual par-

ticle, or single particle tracking (SPT). However, a variety of problems arise in video

analysis, including localization in high particle densities, heterogeneity of particle mo-

tion, the disappearance of particles due to blinking or moving out of the focal plane

and the apparent merging and splitting of particles as they diffuse past each other [57].

Although superresolution techniques have been designed to overcome some of these

problems, they often have poor temporal resolution, precluding analysis of small parti-

cles with rapid diffusion. Despite these problems, it is the gold standard for diffusion

studies due to the unparalleled detail it provides.

1.4 Anomalous Transport in Biological Systems

Characterizing and distinguishing transport mechanisms within a biological cell

is critical to understanding cellular function. Stochastic transport processes, such as

diffusion, active transport, and cytoskeletal transport, perform the majority of signal

transduction within the cell. These processes can be characterized by the mean-square
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displacement (1.8), with the two parameters of interest being the diffusion coefficient

D and the anomalous diffusion exponent α . The molecular diffusion coefficient can be

calculated using (1.4), but in the presence of crowding the effective diffusion coeffi-

cient may be smaller. This has been observed in a variety of biological contexts [55].

Conditions in which anomalous diffusion is observed, where α 6= 1, remains relatively

underexplored. An excellent review by Höfling and Franosch compiles much of the lit-

erature on intracellular and membrane transport [55]. Below is a short overview of the

available literature, with specific focus on intracellular transport.

In biological systems, molecules are present at high concentrations, with es-

timates putting macromolecular volume fraction between 20-30% [39]. Electron mi-

croscopy studies have illuminated the large macromolecular complexes, organelles, and

cytoskeletal components which combine to produce a dense environment that interact-

ing biomolecules must navigate [83]. For small molecules, the result is to lessen the

effective diffusion coefficient, while the dynamics remain well described by Fickian

diffusion [32]. However, it is thought that as the volume fraction φ =Vmolecule/Vtotal ap-

proaches the percolation threshold, anomalous diffusion begins to dominate [114]. The

conditions in which anomalous diffusion is observed at this scale, and whether experi-

mental observations have been real or an artifact, remain controversial [37]. However,

there is sufficient evidence to suspect that more sophisticated treatments will improve

our understanding of these systems. Furthermore, high volume fraction changes the

effective concentration for a given molecule by decreasing the available volume, signif-

icantly impacting non-specific interactions and macromolecular association rates [88,

141]. Obtaining accurate reaction rates in vivo remains a problem, further complicat-

ing questions about the role molecular interactions play in observations of anomalous

diffusion [49].

Early studies of biological diffusion focused on the cell membrane, due to the

ease of microscope access. Experimental investigation of the membrane led to observa-

tions of diverse transport modalities, including Brownian motion, directed motion, con-

fined motion and anomalous diffusion [115]. An important finding is that diffusion can

show transient anomalous behavior at short times and Brownian motion at long times,

although interpretation of this result can be complicated [113]. Another important class



11

of motion is confined motion, in which a particle appears to undergo Brownian mo-

tion, but is trapped in a subdomain [75]. Finally, directed motion, in which a molecule

appears to move at constant velocity, has been oberved in the cell membrane [115].

Compared to the intracellular space, the cell membrane has received significant atten-

tion. An important goal is to understand if and how these transport processes manifest

in the intracellular space [114].

At present, there are few studies that have shown anomalous diffusion in living

cells. Caspi et al. introduced microspheres into a cell and observed superdiffusive trans-

port along the cytoskeleton with α ≈ 1.5 [25, 26]. Seisenberger et al. observed single

viruses infecting a cell and analyzed their diffusive motion. They found that the virus

underwent subdiffusive transport in the cytoplasm (0.5 < α < 0.9) and in the nuceleus

(0.6 < α < 0.9). Furthermore, they observed directed transport, which they modeled

using Brownian motion with drift [119]. Tolic-Norrelykke et al. tracked lipid granules

inside yeast cells and observed subdiffusive behavior in the cytoplasm (α ≈ 0.7) [128].

Golding et al. tracked the diffusion of mRNA within E. Coli and observed subdiffusive

scaling in the cytoplasm (α ≈ 0.7) [46]. Bronstein et al. observed the diffusion of telom-

eres in the nucleus of eukaryote cells and found subdiffusive behavior (α ≈ 0.3) [20].

Niu and Yu used a photo activatable version of a cytoskeletal protein FtsZ to obtain in-

tracellular diffusion trajectories, finding one population that was roughly stationary and

another population undergoing anomalous subdiffusion (α ≈ 0.7) [95].

In order to broadly consider the effects of molecule size and concentration on

anomalous diffusion, Banks and Fradin used FCS to measure diffusion curves of a va-

riety of tracer proteins of different sizes in a solution crowded by dextran molecules

of varying size. They produced effective diffusion coefficient and anomalous expo-

nent curves at different concentrations for many combinations of tracer and dextran

molecules, and found that the anomalous diffusion exponent decreases with increasing

crowding concentration [9]. A similar study was conducted by Sanabria et al., who

found anomalous diffusion for various biomolecules in silica nanostructures [112].
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1.5 Modeling Diffusion Processes

In Chapter 4, we use a probabilistic formulation to obtain the effective diffusion

coefficient in a reconstruction of brain tissue. Homogenization and upscaling of the

pore-scale diffusion equation leads to the definition of an effective diffusion coefficient

for a unit cell. In the case of purely diffusive flow, the diffusion coefficient is calculated

by the solution of a Neumann problem. We use Monte Carlo simulations of a reflecting

Brownian motion to obtain a solution to the Neumann problem [21], where the boundary

conditions are specified by the upscaling procedure. We apply this method to a surface

mesh reconstruction of rat neural tissue, in hippocampal CA1, to obtain an effective

diffusion coefficient.

In Chapter 5, we discuss implementation of volume-filling hard sphere particles

in the MCell simulation environment. MCell is a Monte Carlo simulator of diffusion-

reaction equations in complex surface geometries. In the current version, all molecules

are represented as point particles. In order to begin to investigate the effects of crowding

in real tissue, we began an implementation of hard sphere molecules using the Bullet

physics engine. MCell solves the ray tracing problem of a reflecting Brownian motion

in a complex geometry with surface reactions. The intent was to replace the ray tracing

algorithms in MCell with the Bullet implementation in which objects can be any shape.

However, it was realized mid-development that the dynamics of hard sphere simulations

require simultaneous time stepping of all molecules, instead of the queue-based time

stepping allowed with point particles. Impending changes to the code base will make

implementing simultaneous time stepping significantly easier.



2 Anomalous Diffusion of Single

Particles in Cytoplasm

2.1 Introduction

Diffusion plays a fundamental role in every biochemical process in living cells.

Just as essential for intracellular transport is cytoskeletal migration, which includes all

motor protein-mediated transport. Characterizing and distinguishing these and other

transport mechanisms within a cell is critical to understanding cellular function. Topo-

logic complexity of crowded intracellular space renders mathematical representations

of processes as basic as molecular diffusion problematic. While some studies [28, 66]

relied on Brownian motion to represent intracellular diffusion, others [88, 132] found

evidence of anomalous (non-Fickian) diffusive behavior that requires the use of more

evolved random walk models (e.g., fractional Brownian motion and continuous time

random walk described below).

Modeling cytoskeletal transport is even more challenging, since it involves a

complex interplay of various mechanisms. These include the variety of molecular mo-

tors that traverse the cytoskeleton [131, 72], cytoskeleton self-assembly kinetics [65,

45], and the interaction between microtubule and actin filament transport [121, 22].

Many of these processes are fundamentally different from Fickian diffusion, and initial

work has successfully modeled cytoskeletal transport as anomalous diffusion [25, 26].

A major goal of our analysis is to extend this knowledge by elucidating the underlying

processes from single-particle measurements and to identify useful modeling tools for

future efforts.

An immediate impetus for studying intracellular transport comes from electron

13
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microscopy studies, which revealed how large macromolecular complexes, organelles,

and cytoskeletal components combine to produce a dense environment that interact-

ing biomolecules must navigate, either through diffusion or cytoskeletal transport [83].

However, the fixation required for electron microscopy arrests diffusive motion mak-

ing light microscopy critical for characterizing these processes. Recent advances in

light microscopy gave rise to a number of experiments looking at intracellular transport

[9, 20, 119, 25, 128, 46]. The three-dimensional (3D) single-particle tracking exper-

iments reported below will add to the growing understanding of diffusion and other

transport mechanisms in biological systems.

2.1.1 Experiment Description

We consider three distinct, biologically relevant conditions to acquire particle

trajectories. Specifically, single fluorescent microspheres are tracked in a buffer so-

lution, a cellular extract with microtubules intact, and an extract with depolymerized

microtubules. The use of an extract, prepared from Xenopus eggs (rather than from

intact live cells) greatly simplifies the experiments, while maintaining an environment

statistically similar to the in vivo intracellular space. The protein concentration in the

cytosolic fraction was approximately 100 mg/ml, similar to protein concentrations seen

in live cells.

Single-particle tracking is a powerful technique that has become common in an-

alyzing diffusion in biological systems [59]. However, particle tracking methods are

typically limited to two dimensions due to the physical constraints on the speed of mov-

ing the sample or the microscope objective in the third dimension. We developed a

light microscopy technique that employs acousto-optic deflectors (AODs) to realize 3D

imaging of volumes with high temporal resolution and no macroscopically moving parts

[135, 23]. Several recent AOD microscopes employed a 4-AOD setup to produce 3D

random access, two-photon imaging in tissue; these devices use point scanning to in-

crease temporal resolution [47, 68, 110]. Point scanning is inappropriate for tracking

single molecules, because the stochastic nature of their movements requires rapid scan-

ning of the entire volume within which the particle is moving. Our microscope employs

a simpler 2-AOD setup to perform rapid raster scans of small volumes, which enabled
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us to record single-particle trajectories.

2.1.2 Fickian and non-Fickian Diffusion

Single-particle tracking microscopy enables one to track how the position Xi(t)

of the i-th fluorescent microsphere changes with time t. These trajectories can be used

to compute the mean-square displacement (MSD) over N microspheres,

〈δ 2(t)〉= 1
N

N

∑
i=1
‖Xi(t)−Xi(0)‖2 (2.1)

where 〈·〉 denotes the ensemble average. The MSD characteristic of Fickian diffusion

grows linearly with time,

〈δ 2〉= 6Dαt (2.2)

where Dα is a diffusion coefficient. For diffusion in free space (solvent fluid), Dα can

be calculated from the Stokes-Einstein relation

Dα =
kBT

6πµr
(2.3)

where kB is the Boltzmann constant, T is temperature, µ is the viscosity of the solvent

fluid, and r is the radius of the diffusing molecule. If Fickian diffusion takes place

in a crowded environment whose pores are filled with a solvent fluid, the value of Dα

is reduced to account for the medium’s porosity and tortuosity. Such a reduction in

“effective” diffusion coefficient Dα has been observed in a variety biological phenomena

[9, 90, 78].

Diffusion processes in which the MSD grows nonlinearly with time,

〈δ 2〉= 6Dαtα , (2.4)

are referred to as anomalous or non-Fickian. A process is called sub-diffusion if 0<α <

1, and super-diffusion if 1 < α < 2; α = 1 corresponds to Fickian (classical) diffusion,

and α = 2 is known as the ballistic limit [86]. Anomalous diffusion has been observed

at a variety of scales in a plethora of applications, including solute transport in geologic

formations [16, 92], transport of polynucleotides through pores [84, 12], and diffusion of

fluid through tissue [73, 97]. Anomalous diffusion has also been observed in cytoskeletal
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transport [25, 26], and a main goal of this report is to identify transport mechanisms that

could give rise to this behavior.

A time-averaged MSD provides a useful alternative to the ensemble-averaged

MSD, especially in biological systems in which it is common to have only a few tra-

jectories with a relatively short observation time. The time-averaged MSD of the i-th

microsphere is defined by

δ 2
i (∆, t) =

1
t−∆

∫ t−∆

0
[X(t ′+∆)−X(t ′)]2dt ′ (2.5)

where ∆ is a lag time [104]. The ensemble average of the time-averaged MSDs for all

N experimental trajectories, 〈δ 2〉= (1/N)∑
N
i=1 δ 2

i , is then fit with an equation

〈δ 2〉= 6Dα∆
α +C. (2.6)

The fitting parameter C accounts for noise in the measurements of trajectories, such that

a noiseless MSD would be fit with C = 0. In the following analysis the experimental

MSD is shifted by subtracting this constant, which can be thought of as removing noise.

Analysis without this shift gave qualitatively similar but quantitatively inferior results.

Despite a long history of using the ensemble-averaged MSD for analyzing random walks

[59], recent work has shown that it can produce misleading results [77, 129]. Further-

more, many single-particle tracking experiments in biology have shown that comparing

the time-average MSD for different particles does not necessarily match the ensemble-

averaged MSD [10].

Stochastic processes whose time-averaged behavior differs from its ensemble

(over multiple realizations) average are called non-ergodic [44]. Ergodicity or lack

thereof is an intrinsic property of a process. Experimental verification of a process’

ergodicity requires observation times that are sufficiently long for the process to self-

average. The practical limits on observation time imposed by our microscope do not

provide sufficient time for a given trajectory to self-average, making ergodicity analysis

inappropriate. Instead, we analyze a pre-ergodic regime in which robust non-ergodic

measures can be observed [59]. We define the dimensionless ratio ξi = δ 2
i /〈δ 2〉, and

obtain a distribution φ(ξi) of time-averaged MSDs. This distribution can be used to

characterize the ergodic properties of the process, such that φ(ξ ) = δ (ξ −1), where δ
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is the Dirac delta function, denotes an ergodic process, and divergence from this distri-

bution reveals ergodicity breaking.

2.1.3 Random Walk Models of Anomalous Diffusion

In “classical” random walk models, the final position XN of a particle after N

equal time steps is a sum of N random spatial increments ∆xn (n = 1, . . . ,N),

XN =
N

∑
n=1

∆xn. (2.7)

The choice of a probability density function (PDF) for these increments, ψ∆x(·), unique-

ly specifies a model of this class. For example, a Gaussian PDF ψ∆x(·) corresponds to

Brownian motion (BM).

The continuous time random walk (CTRW) generalizes this classical framework

by allowing for time increments, ∆tn (n = 1, . . . ,N), of variable (and random) duration.

Thus, CTRW is characterized by two PDFs: one for random time increments, ψ∆x(·),
and the other for random time increments, ψ∆t(·). After N steps of the CTRW, it takes a

particle the time

TN =
N

∑
n=1

∆tn (2.8)

to reach its position Xn given by Eq. 2.7. The choice of the PDFs ψ∆x(·) and ψ∆t(·)
defines a manifold in the space of CTRW models. For example, selecting ψ∆x(·) to

be a power law and requiring ψ∆t(·) to have a finite mean value yields a family of

Lévy flight models. The latter were used to describe a wide range of seemingly random

phenomena, such as search patterns of flying albatrosses [133], human travel [19], and

financial markets [81]. Another combination of these two PDFs, a Gaussian ψ∆x(·) and

a power-law ψ∆t(·), results in a particle’s MSD that exhibits sub-diffusive scaling with

time [116, 85] and was used to model sub-diffusive transport in biological systems [60,

10]. In this regime, a particle’s MSD exhibits weak ergodicity breaking and the mean

value of random time increments ∆tn does not exist [51]. This renders the calculation

of a time-averaged MSD problematic and necessitates the reliance on an analytically
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derived distribution of time-averaged MSDs [51],

lim
t→∞

φα(ξ ) =
Γ1/α(1+α)

αξ 1+1/α
lα

[
Γ1/α(1+α)

ξ 1/α

]
. (2.9)

Here α comes from the underlying temporal distribution used in the derivation, ψ∆t(·)∼
∆t−(1+α), Γ(x) is the gamma function, and lα(x) is the one-sided Lévy stable distribu-

tion. Using this analytical distribution, the pre-ergodic analysis performed on the exper-

imental data can be directly compared to a CTRW model.

Fractional Brownian motion (fBM) is another generalization of the classical ran-

dom walk, which postulates that taking a step in one direction changes (increases or

decreases, depending on the correlation) the probability that the next step will be in

the same direction [56]. This non-Markovian process is characterized by a two-point

correlation function

〈x(t1)x(t2)〉= KH(t2H
1 + t2H

2 −|t1− t2|2H) (2.10)

where KH is a fractional diffusion constant and H =α/2 is the Hurst exponent. The fBM

framework was used to model intracellular diffusion [40]. It has been shown recently

that fBM is ergodic in the limit of large observation times, although for short observation

times this is not the case [59].

We use measurements of single-particle trajectories in cytoplasm to discriminate

between these three alternative random-walk interpretations, i.e., to select a model that

captures best both molecular diffusion in crowded environments and cytoskeletal trans-

port along microtubules. To achieve a robust model selection, we rely on the fact that

BM, CTRW, and fBM have distinct ergodic behaviors, particularly when observation

time is short [59]. This makes pre-ergodic analyses uniquely suited for single-particle

tracking in biological systems that are often characterized by strict limits on observa-

tion time. We show that a pre-ergodic analysis can be leveraged to differentiate each

experimental condition and to identify a corresponding random walk model.
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2.2 Methods

2.2.1 Xenopus Egg Extract Preparation

Xenopus egg extract is prepared using the protocol described by Hetzer et al.

[53]. Only the cytosolic fraction described is used in this study.

2.2.2 Microsphere Preparation and Imaging

Streptavidin coated fluorescent microspheres from Polysciences (Warrington,

PA) are prepared as specified by manufacturer instructions, resuspended in PBS/BSA

binding buffer (0.02 M phosphate buffer, 8 mg/ml NaCL, 10 mg/ml BSA) at a concen-

tration of 1.25% and stored at 4◦ C. The microspheres have a diameter of 1.019 µm

(±0.018 µm), excitation frequency peak at 441 nm and emission peak at 486 nm. These

are introduced into extract at a concentration determined by experiment where a concen-

tration is chosen based on sparse but plentiful microsphere coverage when viewed by

microscope, allowing easy acquisition of long trajectories without capturing trajectories

where some frames have overlapping microspheres. This resulting solution is deposited

onto uncoated glass slides, covered with a coverslip, and sealed using nail polish to

minimize evaporation. The sample thickness is estimated to be roughly 10 µm. This is

determined by focusing on microspheres stuck to the slide, and measuring the distance

traveled by the stage to put the microspheres stuck to the coverslip in focus. As the ex-

tract contains microtubules, there is also a question as to how they are ordered. Although

this is difficult to determine with our setup, it is expected that the microtubules will be

randomly distributed and unordered, although it may be there is some bias toward the

plane of the slide, as the sample volume is comparatively narrow in the orthogonal di-

rection. For the case of the buffer solution, the microspheres are diluted in PBS to again

obtain a sparse coverage. To remove cytoskeletal transport along microtubules and in-

vestigate free diffusion in the cytosolic fraction, nocodazole is applied, which is known

to interfere with microtubule polymerization. The extract is incubated at 37◦ C for 1

hour with 10 µM nocodazole, similar to previous protocols [25]. The resulting solution

is again deposited onto coverslips with sparse coverage.



20

2.2.3 Acousto-optic Deflector Microscopy

In this study we use a microscope that uses acousto-optic deflectors (AODs) to

guide a laser beam instead of mirrors [135]. A block diagram of this microscope can be

found in Fig. 2.1 A. An AOD is a device that introduces sound waves into a transparent

crystal to form a transient diffraction grating. The angle of optical diffraction is related

to the frequency of sound so that the available range of beam deflection is given by the

equation

∆θ ≈ λ∆ f
v

(2.11)

where ∆θ is the total sweep angle, λ is the optical wavelength, ∆ f the acousto-optic

bandwidth, and v the speed of sound in the acoustic medium. It is apparent from this

equation that sweeping the acoustic frequency through a given range will direct the focus

along a line. The use of two orthogonal AOD’s therefore produces raster scanning in the

(x,y) plane [23]. A cylindrical lensing effect is created by the finite propagation time of

the sound wave, so that the effective focal length (F.L.) of an AOD sweeping through a

range of acoustic frequencies is given by

F.L.=
v2

λ

(
d f
dt

)−1

, (2.12)

where d f/dt is the rate of change of the sound frequency. By prescribing a precise range

of frequencies and several rates of sweeping, one for every desired focal plane, a full 3D

volume can be imaged at a rate on the order of 100 Hz [23].

Our setup uses an integrated 2D acousto-optic deflector from Brimrose (Sparks,

Maryland), model 2DS-100-45-100, which consists of two orthogonally mounted TeO2

AODs. This device is placed in line with a collimated 405 nm single mode laser diode.

A 1:1 telescope directs the beam onto the back aperture of a 40× oil immersion objec-

tive with 1.35 NA. The refractive index of the oil used for all slides imaged is 1.518.

Emitted light is collected by a Hamamatsu (Bridgewater, NJ) H7422-40 photomultiplier

tube and acquired by a LeCroy (Chestnut Ridge, NY) WaveRunner 64Xi oscilloscope.

The AODs are driven by an Analog Devices (Norwood, MA) AD9959 direct digital

synthesizer (DDS), which is controlled by custom firmware on an Altera (San Jose, CA)

Cyclone 2 field-programmable gate array (FPGA). The FPGA circuit is designed and

implemented in-house and provides tight control over the timing of the scan. Further
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details can be found in Appendix A. All acquired images are saved in the NetCDF

scientific data format [107] which preserves the intensity of each pixel and allows la-

beling with metadata for parameters such as voxel size in physical units. Conversion to

common graphical formats for post-processing and analysis is provided by an in-house

ImageJ plugin [2]. This setup results in a maximum field of view of approximately

102× 102 µm2, and a varying focal length up to 20 µm from the fixed nominal focal

plane of the objective.

In previous work using AODs it was noted that a 2-AOD scanner necessarily

produces astigmatic 3D scans [110]. This is incorrect. A simple solution for the astig-

matism is to scan at an angle to the 2-AOD system’s acoustic propagation axes. If both

AOD channels are sweeping the sound frequencies at the same rate, this results in a

raster scan oriented at 45 degrees to the AOD devices’ orientations with the effective

focal lengths of both AODs being equal, i.e., without astigmatism. If the two AODs

are simply mounted behind one another without a 1:1 telescope between them as in our

simple system, the effective focal planes will not be parfocal; in such a setup the astig-

matism is fully corrected by tilting the scan direction at an angle slightly different from

45 degrees so the effective focal planes line up in space. The appropriate correction

depends on the details of the entire optical system and must be calculated for every fo-

cal plane. In this work the proximity of the two AOD devices and the small excursions

from nominal focal plane make the astigmatism negligible relative to other sources of

measurement error, so every plane is scanned at 45 degrees to simplify volume recon-

struction.

2.2.4 Imaging Protocol

The protocol for imaging is the same for all acquisitions. The scan parameters

used are 100×100 pixels, with a focal area of 102×102 µm2. Each volume contained

10 focal planes, or slices, captured with a distance between them of 1 µm. An example

of a single slice and z-projection is shown in Fig. 2.1 B. The data acquisition rate is set

at 1 Mhz, so that with the time to fill the AOD the total acquisition time per volume

is 86 ms. At these rates some slight “smearing” of the point spread function is appar-

ent due to movement of the particle during the acquisition; this does not significantly
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affect the results of our analysis. Due to memory constraints on the oscilloscope used,

100 frames are collected before pausing to offload the memory, and then repeated 10

times for a total of 1,000 frames. Each 100 frame acquisition takes 8.6 seconds, follow

by approximately 6 seconds spent clearing the oscilloscope memory. Therefore, for a

full 10 repeat acquisition, the final observation occurs at 140 seconds. Throughout all

experiments there are sufficient microspheres on a slide to image a single microsphere

for one full scan, followed by focusing on a different particle. This minimized photo-

bleaching, and assured a broad coverage of the available space for diffusion. Images

are gathered for a maximum of 4 hours per slide, at which time diffusive motion is no

longer evident. This is due to the microspheres sticking to the slide and coverslip, as can

be seen by moving the focal plain to show immobile populations in each plane. While

microspheres become stuck continually through the experiment, these are not tracked

during the image analysis stage. No temperature control is used during the experiments.

For all experiments room temperature is approximately 22 ◦C. Any small variation in

temperature should have a small effect on the resulting behavior. Refering to Eq. 2.3, a

difference of 1 K changes the diffusion constant by approximately 0.3%, which is well

within experimental error.

2.2.5 Data Analysis

The resulting volumes are analyzed using the Imaris software suite (Bitplane,

South Windsor, CT). A first pass of particle positions is automated by the software, using

the internal particle tracking algorithm. This is followed by hand-picked filtering to

eliminate extraneous points, and finally each frame is examined by eye to ensure proper

positioning of particles. This step is very time consuming and is the limiting factor in

obtaining the 3D particle trajectories used in this study. The resulting output consists

of the x, y and z coordinates of each particle Xi over time t. Example trajectories for

each experimental condition is shown in Figs. 2.1, C-E. These trajectories are analyzed

as described in the introduction.
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2.2.6 Random Walk Model Simulation

Brownian motion and fractional Brownian motion processes are simulated to

compare with the experimental results. A BM process is simulated as a solution to a

Langevin equation

X(t +dt) = X(t)+B[X(t)]η
√

dt (2.13)

where η is Gaussian white noise with zero mean and unit variance, and B is a diffusion

tensor, which in this case is diagonal and isotropic. fBM is characterized by zero mean,

variance that scales algebraically, and a two-point correlation given in Eq. 2.10. fBM

trajectories are generated using the Hosking method [56].

The diffusion constants chosen are informed from the experimental results re-

ported below. In the case of BM, the diffusion constant used is B = 0.92I where I is the

identity matrix. In the case of fBM, KH = 0.02. To calculate the correct value for B it is

important to remember that the Dα reported in the experimental results is a 3D diffusion

constant, where 〈δ 2〉= 6Dαt. This is in contrast to simulations of random walks in each

coordinate direction, which has the relation 〈X(t)2〉 = 2Dαt. Therefore, to find B, we

take the experimental value and multiply it by 2. This is not the case for fBM, where we

directly use the value found in experiments. The fBM simulations are calculated with

H = 0.75, again chosen based on the experimental results. For both BM and fBM, 30

trajectories are simulated for 500 time steps, similar to the data available from the ex-

perimental results. Simulations of CTRW are not performed because with time steps of

varying length calculating a time-averaged MSD is unfeasible. All resulting trajectories

are analyzed using the same methods as the experimental trajectories.

2.3 Results

2.3.1 Experimental Results

As described above, images are acquired under three distinct conditions: for

microspheres in buffer, in a cellular extract with intact microtubules, and in a cellular

extract treated with nocodazole where the microtubules are depolymerized. There are

28, 40 and 31 trajectories acquired for each case respectively. The time averaged MSD



24

is calculated for each trajectory according to Eq. 2.5. These trajectories are ensemble

averaged, and the resulting averaged trajectory is fit using Eq. 2.6. These average trajec-

tories and the resulting fit parameters are shown in Figs. 2.2, A and B for short and long

times. An important note is that the variance grows with lag time, as there are fewer

segments to average over as lag time increases. This accounts for the poor fitting seen

at large lag times, and is the reason the full trajectory of 140 seconds is not shown.

Looking at the buffer condition first, Eq. 2.6 is applied to both short and long

lag time data to obtain α = 0.98 and 1.12, respectively. This suggests normal Brown-

ian motion, as expected for this case. Calculating the diffusion constant using Eq. 2.3

gives a diffusion constant of Dα = 0.24 µm2/s, which matches well with the values of

Dα = 0.42 and 0.45 µm2/s. The error most likely comes from uncertainty in position

measurement during the image analysis phase.

For the extract condition, which captures cytoskeletal transport along micro-

tubules, we find α = 1.48 and 1.47 for the short and long lag time analysis. These

values are consistent with the α = 1.47 (±0.07) reported in [25] (our α is equivalent to

their γ). Furthermore, the fact that α does not appear to be a function of time suggests

the observed superdiffusive behavior arises from long term correlations. Comparing the

fit diffusion constant is inappropriate in this case due to the assumptions inherent to

Eq. 2.3, namely that the observed particle is in a dilute suspension.

In the case of nocodazole treated extract, α = 0.65 in the short lag time analysis,

but α = 0.98 is observed in the long time lag case. This transition from anomalous to

classic Fickian diffusion has been observed previously, and typically results from pro-

cesses with a finite correlation length [71]. Because α is not a function of time in the

extract case, this suggests these two processes are fundamentally different. There have

been a number of recent studies of intracellular anomalous diffusion in which this tran-

sition has been noted [20, 119, 25, 128, 46]. These results also show that the diffusion

constant Dα is smaller and similar in both extract cases compared to buffer, as would be

expected for hindered diffusion. Again, comparision to Eq. 2.3 would be inappropriate.
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2.3.2 Pre-ergodic Analysis

As suggested above, analyzing experimentally obtained particle trajectories in

terms of their ergodicity could potentially distinguish what type of underlying processes

govern diffusion in each of our experimental conditions. Several groups have investi-

gated the ergodicity of random walk processes and shown differences in the distribution

of time-averaged MSDs φ(ξ ), which acts as a representation of the underlying ergodic-

ity of the process [51, 77, 60]. We calculate the parameter ξi = δ 2
i /〈δ 2〉 for each exper-

imental condition and plot histograms of the distributions at four lag times in Fig. 2.3.

These snapshots at discrete lag times give a good idea of the shape of these distribu-

tions, and suggest that they each evolve differently with respect to lag time ∆. To get a

complete picture of the distribution with respect to lag time, the distribution for many

values of ∆ are plotted in Fig. 2.4. To help compare these figures, note that the y axis

for all plots in Fig. 2.3 corresponds to the heat values in Fig. 2.4, whereas the y axis

in Fig. 2.4, ∆, is a fine discretization of the four lag times spanned in Fig. 2.3 from the

top to bottom row. With this in mind, it is immediately clear that each condition shows

markedly different statistics.

To categorize these distributions, the same statistics for random walk processes

shown to result in anomalous diffusion are examined. Based on a comparison of the

plots in Fig. 2.4 with previous work [59], we use CTRW with a power-law ψ∆t(·) to

model the free diffusion condition (extract + noc) and fBM to describe the cytoskeletal

transport condition (extract). Both BM and fBM random walks are simulated, and the

MSD is calculated for each resulting trajectory. The ensemble-averaged MSD from

these simulations is compared to the experimental results in Fig. 2.2 C, which shows

excellent agreement between a BM process and the buffer case, and fBM and the extract

case.

In addition, a distribution of time-averaged MSDs is calculated from the simu-

lated trajectories. For the case of CTRW, an analytically derived distribution of time-

averaged MSDs, Eq. 2.9, is used. Note that the distribution does not depend on lag time

∆. Although this distribution assumes an infinite observation time, is has been shown

that this result matches simulated data with a much shorter observation time, on the

order of 100 time steps [59]. To aid visual comparison, Gaussian white noise (µ = 0,
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σ = 0.05) is added on top of the distribution to simulate the noisy appearance. Using this

analytic distribution and the simulated data, the distribution φ(ξ ) is plotted as a function

of lag time in Fig. 2.4. In the simulations of fractional Brownian motion α = 1.5, as

seen in the experimental data. For the CTRW distribution, a best fit is obtained with

α = 0.6. This value is motivated from the short lag time result, as it appears normal

Fickian diffusion is recovered at long lag times, and we are interested in the anomalous

behavior.

Examining the distributions of time-averaged MSDs and recalling that these dis-

tributions are analagous to ergodicity, the differences between these processes become

clear. As seen in Fig. 2.4, for a BM process the distribution remains Gaussian and cen-

tered around ξ = 1 for all lag times, as expected. fBM is ergodic at short lag times

with a peak centered at ξ = 1, and slowly shifting toward ξ = 0 with increasing lag

time. This evolution of the distribution of time-averaged MSDs with lag time is similar

to previously reported results looking at fBM with short observation times [59]. CTRW

is a non-ergodic process which is characterized by a peak independent of lag time and

shifted toward ξ = 0, and again was reported previously [51].

2.4 Discussion

Comparing the experimental and model plots in Fig. 2.4 similarities are immedi-

ately apparent. For free diffusion in a buffer, the distribution has the same characteristics

as a BM process. For the case of free diffusion in the extract after treatment with noco-

dazole, a shifted distribution that is independent of lag times is observed, similar to a

CTRW process. An interesting facet of this result is that although we saw a transition

from anomalous to Fickian diffusion in the MSD analysis, in the ergodicity analysis it

appears there is no dependence on lag time. However, as we are analyzing these re-

sults in a pre-ergodic regime, this may simply reflect the lack of self-averaging achieved

over the time period analyzed. Future investigation of this relationship may provide in-

sight into the relationship between ergodicity and this transition. Finally, in the case of

cytoskeletal transport along microtubules (extract), a distribution starting centered and

slowly shifting toward zero with increasing lag time is seen. In the untreated extract
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case, one would expect free diffusion and cytoskeletal transport along microtubules to

occur in concert, but the statistics suggest that cytoskeletal transport dominates in this

experimental condition. The similarities to the simulated data are striking and illumi-

nating. A word of caution: it is very important to recognize that there are a variety

of random walk processes and the field remains rapidly evolving. We are not claiming

that the intracellular processes are exactly represented by the described random walk

processes, but simply that the statistics seen here appear to be well modeled by such

processes.

The lack of consensus in the published literature suggests that intracellular trans-

port is very complicated. Here, we have shown that cytoskeletal transport along a micro-

tubule is statistically distinct from free diffusion within the cytosolic fraction examined.

This result shows cytoskeletal transport is not simply diffusion with a higher diffusion

constant, but a distinct process, providing a unique method for transport. This supports

the idea that cytoskeletal transport is essential, as traditional diffusion would be unable

to mimic this behavior. Furthermore, we have shown these process are well modeled

by fBM and CTRW, respectively. Despite this success, there is still contrary evidence

regarding the intracellular diffusion process. As already mentioned, both fBM [40] and

CTRW [60] have successfully modeled experimental data from free diffusion in the

cytosol. Our data and analysis suggests that CTRW is a more accurate model for in-

tracellular free diffusion, although the difference between our experiments on a slide

and results from living cells may explain this discrepancy. Although they are instruc-

tive, the measures of diffusion used here, the scaling over time (α) and a measure of

ergodicity (ξ ), provide an incomplete description of these processes. Organization and

structure within cells likely has a major impact on transport, and improvements in track-

ing smaller particles in living cells, for extended observation times, will allow a more

complete characterization of intracellular transport. However, the models proposed here

present a powerful tool for beginning to understand these processes.

There are a few previous results that relate to what we have shown here. In

this work the boundary effects present with cell membranes are not accounted for, yet

previous work has shown that boundaries can have a non-negligible effect on random

walk processes [93, 24]. Therefore, an important next step is to perform these experi-



28

ments in vivo to properly account for these effects in experiments. Another recent study

focused on the diffusion of membrane-bound proteins in migrating cerebellar granule

cells; the authors observed a net forward transport towards the leading front [136]. This

biased diffusion was modeled using Brownian motion with a drift component, despite

the presence of “bursts” of biased motion in which the observed protein moved in the

same direction for several consecutive steps. The similarity with our observations in

the extract case suggests that an fBM process with positive correlation may provide an

accurate model for the described behavior. An important distinction is their finding that

the process is dependent on the motor protein myosin II, which interacts with actin fil-

aments. In our case the transport appears to be microtubule mediated, but cytoskeletal

transport on either actin or microtubules have similar mechanics, suggesting the mod-

els proposed here may be appropriate. Another intriguing result involves assuming the

cytoskeletal transport is modeled by a fractional Brownian process, as suggested above.

The Hurst exponent can be calculated for the cytoskeletal transport data to be H = 0.75

from the definition α = 2H. The Hurst exponent is a measure of long term correlations

in a time series [80]. Deng and Barkai found that the ergodic behavior of fBM is depen-

dent on the Hurst exponent, and that a non-smooth transition occurs as H → 0.75 [33].

While it isn’t clear exactly how this detail effects the physical process, it is intriguing.

Future experiments and theory may shed light on whether this is important or merely a

coincidence.

Understanding intracellular transport is essential to understanding complicated

cellular processes. While there remain many questions, we have shown strong evidence

that CTRW with power-law distributed temporal increments is a good model for in-

tracellular free diffusion, and similarly fBM is a good model for cytoskeletal transport

along microtubules. The fact that these are statistically distinct processes, as opposed to

parametrically different examples of a single process, is an interesting and powerful re-

sult. Future studies exploring this result in vivo combined with extensive modeling will

continue to improve the characterization of a variety of intracellular processes. These

results also offer an interesting perspective on cellular processes that take place in the

cytosol. Cells could be organized in a way that CTRW-like processes directly impact

reaction processes, where the locally anomalous diffusion increases reaction rates by
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increasing the encounter rate. This increase in encounter rate emerges from the long

waiting times that can occur in a CTRW process, keeping a molecule in a given local

space longer than would be expected for a BM process. Opposing this is an fBM-like

process that can act as a regulatory mechanism to transport proteins away from local

traps and separate reaction partners as necessary. This idea is supported by the corre-

lated stepping seen in fBM that could lead to a rapid removal of a molecule from a local

space. The interplay of these processes would allow fine control over cellular processes

without relying on organelles or membranes for segregation. Proving this interaction

will require clever experiments to tease out the details, but the work presented here

suggests the appropriate mechanisms exist.

In the following chapter we will analyze the data presented here using an algo-

rithm based on a renormalization group operator for determining the anomalous diffu-

sion exponent of single trajectories.

Chapter 2 is reprinted from Biophysical Journal, 104(8), Regner, B. M., Vučinić,

D., Domnisoru, C., Bartol, T. M., Hetzer, M. W., Tartakovsky, D. M., Sejnowski, T. J.,

“Anomalous diffusion of single particles in cytoplasm”, 1652-1660, Copyright 2013,

with permission from Elsevier.



30

Figure 2.1: Summary of data collection and methods A) Block diagram of the mi-
croscope used in this work. Custom PC software controls all microscope functions and
finalizes data acquisition. After scan parameters are entered, the scan program is sent
to a field-programmable gate array (FPGA) as a meta language string of hexadecimal
characters and saved into onboard memory. A start command is sent with the number
of repeats to begin a scan by driving a direct digital synthesis (DDS) board, producing
a series of frequencies and chirp rates directing the acquisition of the volume, while a
concurrent trigger signal is sent to the data acquisition oscilloscope. A laser diode (LD)
is directed by the acousto-optic deflectors (AOD), through a telescope tube (TT), and
reflected by a dichroic mirror (DM) onto the back aperture of an objective (OBJ). The
light emitted by the sample is collected on a photomultiplier tube (PMT) and converted
into an image on the PC. B) Example image from the microscope. Note that high and
low concentrations, as seen here, are common, and that all trajectories are taken from
single molecules that never overlap. The broken line indicates the z cut shown to the
right. C-E) Example trajectories of a bead in a C) buffer solution D) extract E) extract
treated with nocodazole.
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Figure 2.2: Time courses of mean-square displacement A,B) Comparison of aver-
aged trajectories for diffusion in cellular extract, buffer solution, and cellular extract
treated with nocodazole. A) Short lag time analysis. B) Long lag time analysis. C)
Comparison of random walk models to experimental results. Note that a time-averaged
MSD of CTRW trajectories is inappropriate, therefore there is no comparison to the
experimental condition of extract with nocodazole.

Figure 2.3: Time-averaged mean-square displacement distributions for all experi-
ments Snapshots of the distribution φ(ξ ) for the three experimental conditions at four
different lag times ∆. In the case of buffer, 28 trajectories are analyzed, in the untreated
extract case, 40 are analyzed, and in the case of extract treated with nocodazole, 31 are
analyzed. All figure axes mirror those in the bottom left, but are removed for clarity.
Note the trend in the case of buffer and extract+nocodazole is independent of lag time
whereas the case of extract shows a shifting peak with increasing lag time. To see this
trend more clearly, compare this figure with Fig. 2.4 which plots the distribution for
many values of ∆.
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Figure 2.4: Temporal evolution of time-averaged MSD distributions Comparison
of distribution φ(ξ ) for the three experimental and three modeling conditions. BM
denotes Brownian motion, CTRW denotes continuous time random walk, and fBM de-
notes fractional Brownian motion. In the case of the experimental data, although there
is noise due to the limited number of trajectories, the trends in each case are distinctive.
Furthermore, the three modeling conditions shown are quite similar to the paired experi-
mental conditions, suggesting these processes are good representations of the biological
process.



3 Identifying Transport Dynamics of

Single-Molecule Trajectories

3.1 Introduction

Stochastic fluctuations arise in biological systems at all length and time scales.

An example is the diffusion of biomolecules, driven by thermal fluctuations, providing

transport for biochemical processes. A familiar process that can generate such behavior

is Brownian motion, although in biological systems the explicit assumption that par-

ticles are dilute is often violated. Diffusion processes that do not produce Brownian

statistics are said to exhibit anomalous (non-Fickian) diffusion. Occurrence of anoma-

lous diffusion has been reported in diverse phenomena, and has enriched understanding

of biological systems [55].

Particle trajectories produced by single-molecule experiments are particularly

suitable for characterizing biological diffusion behavior. A particle trajectory of length

M is represented by a sequence of time-ordered random variables X = {Xi}M
i=0, where

Xi = X(ti) is the particle’s location at time t = ti. Anomalous behavior arises when a

trajectory has non-zero drift, correlated increments, nonstationary increments, or some

combination [99]. Equivalently, Brownian motion is observed when these conditions are

absent. The trajectory of a particle undergoing Brownian motion exhibits a mean-square

displacement (MSD) that grows linearly with time t. Anomalous diffusion typically

produces an MSD, 〈X2〉, that is a nonlinear function of t, e.g. a power law

〈X2〉= Dαtα , 0 < α < 2. (3.1)

Here Dα is the diffusion coefficient, and 〈·〉 denotes an average over an ensemble of

33
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random trajectories. The process X is called subdiffusive if the exponent α < 1 and

superdiffusive if α > 1 [18].

Although many experiments use MSD as a key statistic describing the observed

dynamics, it might not be an appropriate metric for classification of stochastic trajec-

tories. MSD-based classifications are often plagued by systematic [63] and localiza-

tion [87] errors; fail to classify a broad class of processes whose dynamics are not Brow-

nian but produce MSD growing linearly with time [99]; are problematic for analysis of

microscopy experiments, which are often limited by short observation times and few

captured trajectories [63], and cannot handle multiple transport mechanisms occurring

over a given time span, e.g., on-off switching in cytoskeletal transport [5].

Renormalization group operators (RGO) can provide an alternative classification

approach [99, 98]. A random trajectory X has a set of increments I = {Ii}M
i=0, with each

increment computed as Ii = Xi+1−Xi. An RGO Rp,n is defined by

(Rp,nI)i ≡
(i+1)n−1

∑
k=in

Ik

np , p > 0, n≥ 1, (3.2)

and a new replica trajectory J is determined as Jp,n
i = (Rp,nI)i. A sequence I is called a

fixed point of the RGO if for a fixed p, the relationship

Jp,n d
= I (3.3)

holds for all n ≥ 1, where d
= means equal in distribution [111]. A process that is a

fixed point with scaling p is said to be a p-diffusive, or p-self-similar, and is related to

the anomalous diffusion exponent by α = 2p [99]. Example replicas Jp,n are shown in

Fig. 3.1, visually demonstrating replica trajectories that are a fixed point of Eq. 3.3. A

generalization is a random renormalization group operator, in which the scaling is a ran-

dom variable P [98]. In this framework, a single experimental trajectory is a realization

of a process that samples a scaling distribution fP(p).

In this chapter, we propose an algorithm that compares replicas Jp,n with varying

n and uniformly distributed p to the original trajectory I to determine a scaling distri-

bution fP(p). The average scaling exponent for a single trajectory is given by α = 2p̄,

where p̄ is the mean of the empirical distribution fP. The goal of this algorithm is to ob-

tain p̄ from single, short trajectories of experimental data; other methods may be more

appropriate for analytic processes [100].
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3.2 Methods

The proposed algorithm consists of the following steps:

First, a single trajectory X is transformed into the increment process I. Second, an em-

pirical cumulative distribution function (CDF), F0
I (x), of I is computed. Third, multiple

realizations p of a random variable P equally spaced on the interval [0,1] are drawn,

and multiple replicas of Jp,n = Rp,nI are generated from Eq. 2 for a fixed n and each p.

Fourth, these replicas are used to compute FP,n
J (x), an empirical CDF of JP,n. Fifth,

Kuiper’s two-sample test is used to compare the CDFs F0
I (x) and FP,n

J (x) for each

p, resulting in a goodness-of-fit statistic gP,n = supx |F0
I (x)−FP,n

J (x)|+ supx |F
P,n
J (x)−

F0
I (x)| [74]. Sixth, the p that results in the best (smallest) goodness-of-fit gP,n is stored

for each n. These steps are repeated for many values of n to obtain corresponding best-

fit values of p that are plotted as a histogram to obtain a distribution fP(p) for a given

realization. Finally, the scaling exponent is computed as α = 2p̄, where p̄ is the mean

of the empirical distribution fP; the corresponding diffusion coefficient is defined by

Dα = σ2
I /(2δ tαd), where σ2

I (t) is the variance of I, δ t is the time step and d is the

spatial dimension [85].

The use of increments I∆
i = Xi+∆−Xi for a lag time ∆ (the number of time steps)

improves estimation of Dα . The diffusion coefficient is then calculated as

Dα =
1
M

M

∑
∆=1

σ2
I∆
(t)

2d(∆δ t)α
. (3.4)

This calculation also acts as an indicator of the accuracy of the calculated scaling. If

an estimate of p̄ is inaccurate, then Dα(∆) will change significantly with ∆, indicating a

poor fit.

A trivial extension is to perform the operation over a population of trajectories,

and to produce an ensemble histogram for the population. An ensemble distribution is

analogous to previous methods of computing the scaling, but has the advantage that each

trajectory is treated individually, a fact particularly useful when the population contains

a mix of processes. A further refinement is to break each trajectory into subtrajectories,

and treat each as an independent trajectory. If the trajectories are stationary and ergodic,

a good approximation of the distribution fP(p) results. Otherwise, the method may

provide a way to analyze nonstationarity and ergodicity breaking of stochastic processes.
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Figure 3.1: Examples of trajectory replicas Jp,n Three examples of fractional Brown-
ian motion (dark blue) with example replicas for multiple values of n (multiple colors).
The replica trajectories are a fixed point of the proposed renormalization group operator
with p = H.

The RGO can be thought of as “resampling” of the probability space (Ω,U ,P).

Given a sequence of independent identically distributed (i.i.d.) random variables X∈Ω,

the RGO provides a means of properly constructing a new sequence of i.i.d. random

variables X′ ∈ Ω, improving the ability to classify the sampled probability space. The

MSD calculation only considers the statistical information in the original sequence, and

therefore requires averaging across realizations to cover the probability space. In con-

trast, new sequences constructed using the RGO extract a maximum of statistical infor-

mation from the given realization. While this does not ensure coverage of the probability

space, it is an improvement relative to the MSD method.

3.3 Results

3.3.1 Validation on Simulated Data

To demonstrate the efficacy of our classification algorithm, we use it to analyze

data generated by fractional Brownian motion (fBM), a diffusion process often used to

model anomalous behavior. It is denoted BH and defined with initial condition BH
0 = 0,

zero mean 〈BH〉= 0, and a two-point correlation 〈BH
t BH

s 〉= (|t|2H + |s|2H−|t−s|2H)/2

where H is the Hurst exponent. It can be shown that BH is a fixed point of Eq. 4 with

p = H. Therefore, a proper classification algorithm should yield a distribution fP(p)

centered around the mean p̄ = H.
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Figure 3.2: RGO analysis of fBM data Ten trajectories of a fractional Brownian mo-
tion BH are simulated for H = 0.25 and H = 0.75 over 1000 time steps. Our algorithm
is applied to these trajectories to obtain distributions of the critical exponent P. (a) and
(b) Single trajectory histograms for H = 0.25 and H = 0.75, respectively. (c) Ensemble
histogram from a population of ten trajectories with H = 0.25. (d) Ensemble histogram
of all trajectories combined, revealing an expected bimodal distribution that MSD would
fail to detect.

We simulate ten realizations of BH with H = 0.25 and 0.75, for 1000 time steps,

using the circulant method as implemented in the R package dvfBm [140, 27]. Their rep-

resentative distributions fP are shown in Figs. 3.2(a) and (b) for H = 0.25 and H = 0.75,

respectively. In all cases good agreement with the scaling of the underlying process is

observed. The exact scaling, δ (x−P) where δ is the Dirac delta function, is replaced

with a finite-width distribution that accounts for uncertainty introduced by the trajec-

tory’s short length. An ensemble histogram of the population of ten trajectories with

H = 0.25 in Fig. 3.2(c) shows weak convergence to the expected mean. A mixed pop-

ulation of ten trajectories from each H in Fig. 3.2(d) demonstrates that the algorithm

robustly recovers a bimodal distribution for the mixed case. MSD methods are unable

to replicate this result, while Bayesian methods require the use of mixture models, which

can be difficult to implement [98, 82].
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Figure 3.3: MSD analysis of experimental trajectories (a) At short times, transport
is superdiffusive in the extract case (due to active transport along microtubules) and
subdiffusive in the nocodazole case. (b) At long times, transport is superdiffusive in the
extract case and Fickian in the nocodazole case.

3.3.2 Application to Experiments

The validated classification algorithm is used to analyze previously reported

data [106]. Briefly summarizing, we obtained 3D particle trajectories of a fluores-

cent microsphere, diameter 1 µm, diffusing in a cellular extract prepared from Xeno-

pus oocytes. Another set of trajectories was also obtained from the same extract treated

with nocodazole, which is known to depolymerize microtubules. Previously, an MSD-

based analysis using Eq. 3.1 classified transport as superdiffusive along microtubules in

the extract case (α = 1.5 for both short and long times; and Dα = 0.014 and 0.038 in

short- and long-time analyses). The units for all experimental diffusion coefficients are

µm2/sα , in agreement with Eq. 3.1. Addition of nocodazole led to subdiffusive trans-

port at short times (α = 0.6), and classical diffusion (α = 1.0) at long times; in both

cases, Dα = 0.16 [106]. Figure 3.3 exhibits the resulting MSDs.

Figure 3.4 presents the results obtained with our classification algorithm for the

extract (left column) and nocodazole (right column) cases. Distributions from single

representatives trajectories are shown in Figs. 3.4(a) and (b). Both cases exhibit su-

perdiffusive and subdiffusive signatures, though they are less evident in the nocodazole
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Table 3.1: Calculated diffusion coefficients Diffusion coefficients calculated with the
MSD and RGO methods for different time windows. Units are µm2/sα .

Short time Dα Long time Dα

MSD RGO MSD RGO
Ext 0.014 0.029 0.038 0.046
Noc 0.16 0.043 0.17 0.126

case. This behavior in the extract case is to be expected, as the dynamics of microtubule

transport include rapid switching between on and off states [5]. The MSD classifica-

tion misses this phenomenon, classifying the transport as superdiffusive. Superdiffusive

transport in the nocodazole case suggests incomplete depolymerization of the micro-

tubules, which remained undetected by the MSD analysis. Fig. 3.4(c) and (d) show

ensemble population distributions, with N = 38 in the extract case and N = 19 in the

nocodazole case. In the extract case, multiple scalings occur during the time course of

the collected data. The ensemble distributions reveal that in the case of nocodazole,

while the majority of trajectories undergo subdiffusion, there is a strong signature of

superdiffusive transport.

Table 3.1 contains the values of the diffusion coefficient Dα computed with Eq.

S1. The MSD and RGO methods predict similar values of Dα , with the small disagree-

ment attributed to the MSD’s use of Eq. 3.1, in which Dα is sensitive to the fitting of

α .

3.4 Conclusions

We have shown that renormalization group operators accurately classify pro-

cesses with known scaling, and reveal rich dynamics in experimental data that is misin-

terpreted by MSD. The analysis presented in this chapter suggests that while fluctuations

in short-time windows can produce “improbable” sequences that scale differently from

the underlying process, their average behavior is sufficient to correctly estimate the scal-

ing exponent and to classify the process. Many biological phenomena are characterized

by broad distributions for which it may be difficult (or even inappropriate) to assign a

single value of the scaling exponent α . This reflects the presence of multiple transport
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Figure 3.4: RGO analysis of experimental data (a) and (b) Representative histograms
of the empirical scaling distribution fP(p) of individual trajectories from the extract and
nocodazole cases, respectively. Three examples are shown with each color indicating
results from a single trajectory. (c) and (d) Ensemble histograms for the two cases.
In the extract case, subdiffusive behavior is observed, which was not indicated by the
MSD analysis. Similarly, weak superdiffusive behavior is observed in the nocodazole
case, suggesting incomplete depolymerization of microtubules. The large mass at P = 0
arises from noise.

mechanisms (e.g., free diffusion, varieties of cytoskeletal transport, and active transport

through pores) that may act upon biomolecules during different time windows or events

[42]. From a regulatory perspective, diverse transport mechanisms with different scaling

would provide a powerful means of control over biochemical pathways. The assortment

of scalings seen in Fig. 3.4 is evidence of diversity in microtubule transport. The MSD

analysis of individual trajectories of diffusing chromosomal loci [58] provides further

support for this conclusion. The MSD-based estimates of the scaling exponents for indi-

vidual trajectories were collected into a histogram shown in Fig. 2a of [58]. It is similar

to the histogram for the extract case shown in Fig. 3.4(c). The proposed algorithm could

also be used to classify the distinct short-time diffusive behaviors observed in differ-

ent subcellular regions reported by [58], and to analyze rare events without ensemble

averaging.

In summary, we developed a classification technique to analyze a short trajec-

tory of a single biomolecule. It employs a renormalization group operator (RGO) [99],
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and allows computing both the anomalous scaling exponent and diffusion coefficient of

a biomolecule’s motion. The RGO-based classification alleviates key impediments to

accurate identification of anomalous transport, which stem from scarcity of observed

biomolecule trajectories, short duration of observation, and measurement errors, which

render classifications based on the mean-square-displacement (MSD) calculations un-

reliable. After validation on data generated with fractional Brownian motion, we used

the new method to analyze trajectories of diffusing microspheres observed in several bi-

ological environments. The RGO approach identified multiple transport processes that

affect the observed particle migration, which were not apparent with the MSD-based

method.

Chapter 3 is reprinted from a manuscript under review at Biophysical Journal,

Regner, B. M., Tartakovsky, D. M., Sejnowski, T. J., “Identifying Transport Dynamics

of Single-Molecule Trajectories”.



4 Monte Carlo Simulations of Hard

Sphere Hydrodynamics

4.1 Introduction

Biological systems are characterized by broad heterogeneity in spatial and tem-

poral scales with many degrees of freedom, in which a multitude of interacting parts

work in concert to perform a given function. Describing these systems with general

concepts and mathematical modeling is a daunting task. Computational simulations and

modeling are powerful tools in making analysis of these complex systems tractable. A

broad class of problems that fit this description are the many interconnected biochemical

pathways underlying cellular function [5].

A number of simulation environments have been developed for spatially mod-

eling biochemical networks, typically using either particle-based or lattice-based meth-

ods [69]. Many familiar problems in engineering are adequately handled by lattice-

based methods, but advantages of particle-based methods in biology include relatively

small numbers of particles, the ease of computing fluctuating concentrations, and the

presence of complex geometries that are difficult to mesh volumetrically. Particle-

based methods have been used successfully in modeling a variety of biological pro-

cesses [124, 28, 118, 36]. However, the majority of simulation environments use point-

particle representations.

As has been discussed in previous chapters, macromolecular crowding is often

present in biological systems, and has a significant effect on the transport and reaction

dynamics [88, 141]. Although complex geometries can be explored using point-particle

representations, the effects of macromolecular crowding are absent. Recently, efforts
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have been made to investigate diffusive behavior with crowding. For example, Sun et al.

used an elastic collision model combined with a mean field hydrodynamic interaction

model to show how diffusion and reaction kinetics change with volume fraction [126].

Ridgway et al. investigated reaction-diffusion dynamics using a hard sphere particle rep-

resentation. They used a distribution of molecule sizes from the cytosol of the bacteria

E. Coli to inform their model, giving them a uniquely cell-like environment compared

to previous work [108]. Ando and Skolnick used similar methods to Sun et. al. while

introducing more complex molecular shapes and comparing to simulations using only

spherical representations. They showed that spheres provide an accurate approxima-

tion for globular proteins [6]. These studies have shown the importance of including

crowding in computational models, but we are unaware of any general simulation en-

vironment that solves diffusion-reaction equations and accounts for particle size within

an arbitrary geometry. The aim of the work proposed here is to implement hard sphere

representations of particles in the MCell simulation environments.

MCell is a Monte Carlo simulator of diffusion-reaction systems in complex ge-

ometries. Currently, all volumetric particles are treated as point particles. In a given

time step, a particle performs a ray trace to determine intersections with other particles

and boundaries. Interactions with volumetric particles are determined based on a fixed

interaction radius, while the boundaries are defined by the user. Reactions can be set

for both particles and boundaries, and are probabilistically resolved. Further details can

be found in [123, 64]. In order to investigate crowding, we began implementing a hard

sphere particle representation using the Bullet physics engine.

In this work, we replace the ray tracing algorithms used in MCell with those

available in the Bullet physics engine. Bullet is a multiphysics engine that can perform

Newtonian dynamics with accurate collision detection [30]. The library is split into dy-

namics and collisions components, facilitating implementation of collision detection for

complex shapes into MCell. In a given time step, Bullet determines for each particle a

list of interactions using a convex cast, the equivalent of a ray trace for an object with

finite size, which are subsequently handled by MCell. An example is shown in Fig-

ure 4.1. Hydrodynamic interactions also play a crucial role in mesoscale simulations,

particularly as the volume fraction approaches the percolation threshold [126]. In the



44

proposed implementation, we make a mean field approximation of hydrodynamic inter-

actions by measuring the local volume fraction and modifying the diffusion step length

at each time step.

Figure 4.1: Ray trace diagram Examples of a ray trace (black line) and convex cast
(shaded gray) for particle and wall collisions.

4.2 Methods

Implementation of hard sphere particle interactions using the Bullet physics en-

gine is the main contribution in this work. A main problem to address is how to handle

particle interactions with the introduction of finite size particles. Analogous to MCell,

intersections with the boundary can either reflect, freely cross, react with surface parti-

cles or absorb. Intersection with another volumetric particle will either lead to reflection

or initiate a probabilistic reaction event if the particles can react. With the introduction

of hard sphere particles, handling the placement of reaction products requires a clear set

of rules.

A limit on reactions is that only two products are allowed. While reactions with

multiple products are both physically possible and essential for certain processes, typi-

cally a series of equivalent reactions producing short-lived intermediates can be used to

mimic this behavior [64]. There are four possibilities with two reactants and two prod-

ucts. There are two bimolecular reaction cases, when two volumetric particles collide.

In the case of A+B→ C, the product is placed at the location A and B collided. In
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the case A+B→ C+D, the reactants A and B are replaced by the products C and D,

and the choice of which product replaces which reactant is chosen at random. There are

also two unimolecular cases, decay of A→ B in which the product replaces the reactant,

and A→ B+C, which is a nontrivial case. In this case, a center location is fixed as the

center of A. A random orientation vector is chosen, and the two products are placed

a distance of rB + rC + rtol apart, where rtol is a tolerance to ensure they don’t overlap

within numerical precision. If the products cannot be placed without overlap due to

crowding, a new orientation vector is generated at random. The user can specify how

many times placement should be attempted before the reaction is considered blocked,

and A remains in place. A count of all blocked reactions is kept and reported at the

end of the simulation. Surface reactions are handled similarly, with the products moved

away from the wall one radius. Again, overlaps are checked to handle cases of narrowly

separated boundaries, with overlap leading to a blocked reaction.

Hydrodynamic interactions are handled by a mean field approximation that pre-

viously has been shown to agree well with theoretical and experimental results [126,

130, 54]. The scheme adjusts the diffusion step length for each particle at each time step

by computing local crowding information. First, all particles within two radii and four

radii of the center of the particle of interest are found, e.g. Figure 4.2. If a particle j

is found within two radii of the diffusing particle p, a separation distance is calculated

d = lp j− rp− r j. The effective diffusion coefficient is modified by Deff(u) = D0/β (u)

where

β (u) =
6u2 +13u+2

6u2 +4u
, (4.1)

D0 is the prescribed molecular diffusion coefficient and u is a nondimensional distance

u = d/rp [130]. If more than one particle is within two radii, the closest is used for the

calculation.

If there are no particles within two radii, we compute the local volume fraction

φl based on the total volume occupied by other particles within four radii. The diffusion

is altered by the factor

Deff(φl) = D0/

[
1+

2b2

1−b
− c

1+2c
− bc(2+ c)

(1+ c)(1−b+ c)

]
(4.2)

where b = (9φl/8)1/2 and c = 11φl/16 [126]. Only the overlapping particle volume is
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used in the computation of φl (light shaded region in Figure 4.2).

Figure 4.2: Diagram of hydrodynamic interaction approximation Diagram of a
scheme for approximating hydrodynamic interactions. Given a particle of radius rp,
if another particle is within 2rp, the next diffusion step is adjusted using (4.1). An ex-
ample is the particle with dark shading. If no particle is found in this range, the local
volume fraction is computed using the volume occupied within four radii, and the cor-
rection factor is computed using (4.2). Examples of the volume used for this calculation
are lightly shaded.

4.3 Results

While validating the implementation of the modeling described above, results

for an effective diffusion coefficient at increasing volume fraction diverged from the ex-

pected result. After several attempts to track down possible bugs, this problem led to

a deeper literature review in which we found references mentioning the importance of

simultaneous time stepping for Brownian dynamics simulations [125]. In such a time

stepping scheme, all particles are moved forward in time until the first collision is de-

tected. After handling this interaction, all particles continue on their path until the next

collision, etc. In MCell, time stepping is performed with a queue in which a given parti-

cle completes its motion for a single time step in one continuous path. By maintaining a

short time step, this approximation is acceptable in the case of point particles. Although
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we are performing probabilistic simulations compared to the Newtonian dynamics per-

formed in Brownian dynamics simulations, by introducing hard sphere interactions, the

importance of the time stepping algorithm becomes more pronounced.

Despite having a solution to this problem in hand, we decided to shelf the work

until the current refactoring of the code base is completed. Ongoing efforts by the MCell

development team are fundamentally changing the code from a monolithic simulator to

a set of interacting modules. When complete, it will be significantly easier to change

the time stepping algorithm compared to the current code structure. The majority of the

code for hard sphere interactions is ready, and will be fully implemented later this year

as the new MCell library nears completion.



5 Discrete Modeling of Effective

Diffusion

5.1 Introduction

5.1.1 Modeling Biological Tissues

The brain exhibits structural heterogeneity across many length scales, and hosts

dynamical processes that act across many time scales. Combined with the brain’s brit-

tle structure that is easily damaged by invasive methods, this heterogeneous multiscale

behavior makes the brain notoriously difficult to observe [61]. Noninvasive imaging

modalities, such as electroencephalography (EEG), magnetoencephalography (MEG),

positron emission tomography (PET) and magnetic resonance imaging (MRI), collect

continuum-scale data with limited spatial resolution [31]. Relating these continuum-

scale measurements to pore-scale geometry remains an active research question. This

chapter deals with quantitative analysis of neural tissue at cellular (pore) and tissue (con-

tinuum) scales, both of which are critical to understanding neural systems and producing

accurate models of brain activity. We use a computational reconstruction of fixed brain

tissue from rat hippocampus to begin elucidating the relationship between the pore and

continuum scales.

The hippocampus, a highly heterogeneous region of the brain, plays a vital role

in semantic and episodic memory and is strongly susceptible to diseases [120]. The

scale of hippocampal subregions is on the order of centimeters, while the cell bodies and

processes are on the order of microns, a difference in scale of four orders of magnitude.

Evidence suggests that local cellular connectivity is critical to understanding neuronal

48
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firing patterns [122]. Coupling pore-scale measures of diffusivity to continuum-scale

processes is crucial for inferring the functionality from continuum-scale measures of

activity.

While continuum-scale models are of practical importance and can be param-

eterized/validated by gross (continuum-scale) measurements, they rest on a number of

assumptions and simplifications and employ largely phenomenological equations. In

contrast, descriptions of dynamics at the pore scale are derived from first principles but

suffer from epistemic uncertainty that reflects the scarcity or absence of pore-scale data.

Furthermore, pore-scale models are computationally intractable when conducted over

a tissue-scale domain. In response to these problems, a variety of upscaling methods

have been proposed to couple these scales, improving continuum scale models through

knowledge of the pore scale. Methods include volume averaging [138], homogenization

by multiple-scale expansion [4] and pore-network models [3]. An overview of these and

other upscaling methods can be found in [13]. In all cases, assumptions are made in the

derivation of the upscaling procedure and care must be taken to ensure they are met to

obtain accurate results.

All upscaling methods require knowledge about the pore space to inform the

model, although obtaining an accurate pore-scale description can be difficult. In the case

of biological tissue, the heterogeneity is at the nanoscale. The main imaging modality

for resolving features at this scale is electron microscopy (EM), which requires chem-

ical or cryogenic tissue fixation, This precludes dynamic analysis, such as temporal

variability of concentration and species diffusivity. Mathematical modeling is used to

reconstruct the dynamic nano-scale behavior of tissue from a series of electron micro-

graphs. Figure 5.1 provides an example of such a reconstruction of rat neural tissue [67],

which was collected in the hippocampus CA1 neuropil in the region stratum radiatum.

The reconstruction procedure used in [67] consists of the following steps. First,

a standard protocol for perfusion and fixation is followed to prepare the brain before

slicing. Second, serial-sectioning is performed on the resulting tissue block to produce

an ordered series of sections. Third, these sections are scanned on a transmission elec-

tron microscope and compiled into a stack of images. The data set in [67] contained

160 slices with 45-50 nm separation in the z direction between them; 100 slices were



50

Figure 5.1: Model of tissue reconstruction Image from the computational reconstruc-
tion of rat neural tissue with approximate dimensions 5× 5× 6 µm3 [67]. Identified
cell types include axons (green), dendrites (yellow) and astrocyte (blue). Although not
visually apparent, extracellular space occupies 20% of the volume. The reconstruction
is a surface mesh generated from cell body contours. The contours are obtained from a
series of 100 images with a spacing of 45-50 nm in the z direction between slices.

Figure 5.2: Example of electron micrograph segmentation A representative example
of the electron micrographs used for the computational reconstruction and the process of
image segmentation. The color of the cell types is the same as Figure 5.1. The contours
indicated are matched up with contours from slices above and below to obtain the 3D
representation of every cell in the volume.
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used in this reconstruction. Fourth, each image is segmented by hand to produce a stack

of cell outlines or contours (an example is shown in Figure 5.2). Fifth, these contours

are connected using computational algorithms to produce a three-dimensional surface

mesh. Finally, refinement is performed to ensure the mesh is computationally viable

and to correct for fixation artifacts such as compression and stretching. The resulting

mesh in [67] has dimensions of approximately 5× 5× 6 µm3, and is assumed to be

representative of a typical geometry in CA1.

We use homogenization by multi-scale expansion to determine an effective diffu-

sion coefficient in this tissue. This diffusion coefficient provides a good approximation

of the tissue-scale dynamics in the CA1 region of the hippocampus. Comparison with

other regions is necessary to determine the generality of the result.

5.2 Diffusion Equations at Pore and Tissue Scales

Consider a macroscopic tissue domain of volume V . The tissue consists of the

solid phase (cells) Vs and the liquid phase (extracellular space) Vl , such that V =Vs+Vl .

The liquid-solid interface is denoted by Γls. Continuum-scale (macroscopic) descrip-

tions of porous media, including tissues, rely on the concept of a representative elemen-

tary volume (REV) Ω that is large enough to average-out the effects of individual pores

but is small enough to allow for macroscopic variability of the tissue. If the REV Ω

consists of the solid phase Ωs and the extracellular space Ωl , then the porosity φ of the

tissue is defined as

φ =
Vl

Ωs +Ωl
. (5.1)

Diffusion through the tissue is modeled at two scales. The microscopic (pore)

scale has a characteristic length l representing, e.g., a typical dimension of the extra-

cellular space; a microscopic (pore-scale) model of solute diffusion through the tissue

requires on to resolve the pore geometry and to solve a diffusion equation in the highly

irregular (and possibly multi-connected) extracellular space Ωl . The macroscopic (con-

tinuum) scale has a characteristic length L corresponding to the size of tissue under in-

vestigation; a macroscopic (tissue-scale) model of solute diffusion treats the tissue as a

continuum composed of a single phase and involves solving an effective diffusion equa-
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tion in a regular domain V (e.g., a cube). The two scales satisfy a condition ε = l/L� 1.

The upscaling procedure requires one to assume that the pore-scale geometry is is com-

posed of periodically repeated REVs that form “unit cells”, but it also provides adequate

representation of effective (upscaled) processes in disordered domains lacking periodic

structure [14, 94].

The microscopic molar concentration c(x, t) of solute within the extracellular

space Ωl satisfies a diffusion equation

∂c
∂ t

= Dm∇
2c, x ∈Ωl (5.2)

where Dm is the molecular diffusion coefficient for a species in the free extracellular

fluid. This equation is subject to an appropriate initial condition and the boundary con-

dition on the outer surface of the tissue volume V . It is also subject to a boundary

condition on the internal liquid-solid interface,

−n ·∇c = 0, x ∈ Γls, (5.3)

which reflects the fact that the latter is impermeable to diffusion. Here n is the unit

normal vector to the surface Γls.

The macroscopic molar concentration C(x, t) of solute within the tissue V satis-

fies a diffusion equation

∂φC
∂ t

= ∇ · (D∇C), x ∈V (5.4)

where D is the effective diffusion coefficient tensor. This equation is subject to an appro-

priate initial condition and the boundary condition on the outer surface of the tissue vol-

ume V . The fundamental difference between the diffusion coefficients in (5.2) and (5.4)

is worthwhile emphasizing. The molecular diffusion coefficient Dm is a unique property

of the solute and solvent; it is readily measured and (for a given temperature) is likely

to be a scalar constant. In contrast, the effective diffusion coefficient D(x) is a space-

varying tensor, which captures not only the diffusive properties of the solute and solvent

but also those of the tissue. The latter include tissue anisotropy and heterogeneity.

Upscaling allows one to relate the effective diffusion coefficient tensor the pore

geometry of a tissue. We accomplish this by homogenizing the pore-scale diffusion
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equation (5.2) via an asymptotic series expansion in powers of ε . The approach is based

upon an assumption that the tissue is composed of a periodic arrangement of unit cells

Ω, the introduction of a fast space variable y = x/ε , and the representation of the pore-

scale concentration c as an asymptotic series in powers of ε ,

c(x,y, t) =
∞

∑
m=0

ε
mcm(x,y, t) (5.5)

where each cm(x,y, t) is Ω-periodic in y. This procedure allows one to express the

diffusion tensor D in (5.4) as [14, 7]

D
Dm

= I+
1

Ωl

∫
Γls

nbdA (5.6)

where I is the identity matrix and a “closure variable” b(y) is strictly a function of the

pore-scale geometry. It is an Ω-periodic vector field that satisfies a unit-cell problem

∇
2b = 0, y ∈Ωl; n · (I+∇b) = 0, y ∈ Γsl. (5.7)

A similar homogenization procedure can be carried out to upscale pore-scale

biochemical reactions [14]. We focus solely on diffusive transport to elucidate the nature

of the effective diffusion coefficient tensor.

5.2.1 Particle-based Solution of the Unit-Cell Problem

Given the complex geometry of the extracellular space Ωl , mesh-based (Eule-

rian) numerical solutions of the unit cell problem (5.7) would require a fine numerical

mesh and can become computationally prohibitive. Instead, we implement a mesh-free

particle-based method to solve three scalar Neumann problems corresponding to (5.7),

∇
2u = 0, y ∈Ωl; n ·∇u = f , y ∈ Γsl (5.8)

where u(x) stands for the b1, b2 or b3 components of the vector b, and the source f (y)

represents the corresponding components of the unit normal vector n(u) = (n1,n2,n3)
>.

A probabilistic solution to the Neumann problem (5.8) is given by [21]

u(x) = lim
T→∞

Ex

∫ T

0
f (Xs)dLs (5.9)
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where Xs is a reflecting Brownian motion (RBM) and Ls is the local time on the bound-

ary. This formulation is analogous to the Feynman-Kac representation of parabolic

PDEs [41]. An RBM is a stochastic process with a transition density function p(t,x,y)

that satisfies
∂ p
∂ t

=
1
2

∇
2 p, lim

t→0
p = δy(x),

∂ p
∂n

= 0 (5.10)

This process remains in a closed domain by reflecting back into the domain when the

path intersects the domain boundary. The local time is defined as

Ls(t) = lim
ε→0

1
ε

∫ t

0
IDε

(Xs)ds (5.11)

where

Dε = {x ∈ D̄ : d(x,∂D)≤ ε} (5.12)

and d(x,∂D) is the shortest distance between x and the boundary. The local time is

the time the RBM has spent on the boundary. Estimating these functions is critical to

generating an accurate estimate of (5.9)

Recently, Monte Carlo estimation of the local time was done by projecting the

position of the random walk onto the nearest wall and weighing the added local time

using a delocalization parameter with a Gaussian kernel [79]. An advantage to this

strategy is the ability to calculate the solution away from the boundaries, but in our case

this is an unnecessary complication, as we only need the solution at the boundary. The

strategy we employ is to estimate the local time by keeping track of each intersection a

random walk makes with a face composing the boundary during a single time step dt.

We increment only once even if the random walk reflects back into that face a second

time during a single time step. Note that if the time step is small enough, this is never a

problem, but we impose this condition for completeness. We obtain the solution bi for

each face i by

bi =
1
N

T/dt−1

∑
k=0

niI(k)dt, i ∈ Γls (5.13)

where N is the total number of realizations, T is the total simulation time and I(k) is an

indicator function for a collision with the boundary during time step k. The diffusion

coefficient can be estimated by summing across all faces,

D∗ = I+
1

Ωl

N f a

∑
i=0

nbiAi (5.14)
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where N f a is the total number of faces making up the boundary.

The Laplace equation with pure Neumann boundary conditions has a unique

solution up to a constant. In order to set this constant, we will introduce a Dirichlet

boundary condition where appropriate. The Dirichlet boundary condition in this prob-

abilistic framework has been previously discussed [79], and is handled by halting the

random walk when it intersects with that boundary. Because we are setting this constant

to zero, in practice it is an absorbing boundary condition.

A simple example may illuminate the purposed method. Consider a 2D unit box

with outward facing normals. In 2D, (5.7) for bx is

−nx +nx
∂bx

∂x
+ny

∂bx

∂y
= 0 (5.15)

(5.16)

On the boundaries x = 0 or 1, we have ∂bx/∂x = 1. When a random walk intersects a

face belonging to those boundaries, a local count will be incremented. On the boundary

y = 0 or 1, ∂bx/∂y = 0, and bx is therefore an arbitrary constant. We set this constant to

0, which in the probabilistic formulation is an absorbing boundary condition, where the

random walk is halted and removed from the simulation.

In the case where neither (nx,ny) is zero, a probabilistic representation of the

boundary condition is unclear. Inspired by the asymptotic behavior in the unit cube, we

propose the following algorithm:

1. Each time step the RBM intersects with a boundary, choose a random variable

pn ∈ [0,1)

2. If pn < nd , reflect and increment a local count for that face

3. If pn ≥ nd , remove the particle from the simulation (absorb)

where d = {x,y,z} depending on solving for b = {bx,by,bz}. In the 2D unit box de-

scribed above, on the boundaries x = 0 or 1, condition 2 will always apply, and the

RBM will always reflect on that boundary, as desired. Similarly, when an RBM in-

teresects with a face on y = 0 or 1, that RBM will be halted and removed from the

simulation. Presently, results using this method have been mixed. We are currently

exploring permutations of this method, but the basic idea seems to be on the right track.
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5.2.2 Preliminary Results

An initial validation can be performed by comparing the proposed probabilistic

formulation with classic finite difference methods. Consider the unit cube in 3D. In this

case the effective diffusion coefficient is unitary, as there are no diffusive barriers, but

we can compare the solution b(x) on the boundary. A comparison of a finite difference

solution and the probabilistic solution with different numbers of realizations N is shown

in Figure 5.3. These plots show the same quantitative solution, and a plot of the cen-

terline solution in Figure 5.4 shows good agreement. Current efforts are geared toward

improving the accuracy of the solution.

5.3 Conclusions

We have shown preliminary results of a probabilistic framework for solving the

Neumann problem, with a proposed application to determine the effective diffusion co-

efficient in a computational reconstruction of neural tissue. Although issues remain, the

qualitative agreement seen in Figure 5.3 suggests the method is tractable. The remain-

ing task is to determine the source of the error in the solution seen in Figure 5.4, and

to determine how to properly account for nonorthogonal boundary conditions. We be-

lieve these problems are surmountable and suggest this method will provide a powerful

means of analyzing problems with complex surface meshes in a variety of contexts. A

possible alternative application is chemistry within a battery with a complex shape, a

problem being addressed by another member of our group.
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Figure 5.3: Probabilistic solution in a cube A comparison of the solution of (5.7)
using finite difference (upper left), and the probabilistic framework with N realizations.
The solution improves as the number of realizations increases, as expected.

Figure 5.4: Comparison of solutions along the centerline A comparison of the so-
lutions along the centerline for finite difference (smooth black) and the proposed prob-
abilistic method (broken red). Differences in shape and scale can be seen, indicating
errors in the method.



6 Conclusions

Biological systems are particularly interesting to study due the fundamental in-

fluence of stochasticity. As imaging technology has undergone rapid improvements in

spatial and temporal resolution, theoretical models of these systems have become in-

creasingly important for understanding new data. In parallel with efforts in the hydroge-

ological community, biological multi-scale models are becoming increasingly common,

elucidating complex mechanisms that cannot be understood by simple models alone.

The connection between molecular dynamics, diffusive dynamics and tissue dynamics

is rapidly being bridged as each subfield has begun to have the computational power

necessary to push a significant overlap between the scales. The field is reaching a point

in which general guiding principles are becoming discernible , and sophisticated engi-

neering of these systems is becoming feasible.

In this work, we investigate a model biological system by tracking single dif-

fusing particles. These trajectories are used to find mathematical tools for both analysis

and modeling. Specifically, we found that different stochastic processes may be good

models for specific biological transport motifs, e.g. fractional Brownian motion in ac-

tive cytoskeletal transport and continuous time random walks for free diffusion within

the cystsol. We also propose a new scheme for finding the anomalous diffusion coeffi-

cient from stochastic trajectories that is particularly suited for discerning nonstationary

behavior in single trajectories. Using this method, we show how a broad distribution of

scalings can be seen for a given environment.

To probe the effect of crowding, improvements are proposed to a Monte Carlo

simulator of diffusion and reaction. Specifically, a method of implementing hard sphere

particle representations and a mean field hydrodynamics approximation is described.

We discuss how to handle interactions between particles and surfaces of complex ge-
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ometries in this framework. A possible application is to investigate how space filling

particles effect dynamics in realistic geometries.

Finally, a novel approach for finding the effective diffusion coefficient in a sur-

face mesh is introduced. The method uses Monte Carlo simulations of reflecting Brow-

nian motion to probabilistically calculate the solution to a closure problem. We present

preliminary results in a simple geometry showing good agreement to the solution calcu-

lated using a finite difference method. Furthermore, we outline a possible way to extend

the method to a more complex geometry, which we are currently resolving.

An interesting prospect is how anomalous transport could be used actively in a

system to control biochemical pathways. Evidence suggests subdiffusive transport acts

to increase reaction rates by increasing the rate of encounter, providing an evolutionary

advantage to designs with highly concentrated systems. An intriguing control method is

using actively superdiffusive transport, such as that seen on the cytoskeleton, to control

rates in a reaction scheme. For example, one could imagine a scheme in which reaction

partners are kept separate by the dense intracellular matrix of proteins, organelles and

cytoskeletal components, but are brought into the same region when a reaction is needed.

In this way, segregation of chemical partners could be accomplished without the use of

discrete structures, such as an organelle. There is also evidence that the ability to dif-

fuse freely is strongly effected by the presence of ATP. [137, 101] Cytoskeletal transport

in biology uses ATP, and it has been suggested that this relationship between ATP and

diffusive motion is evidence that transport not only moves cargo along the cytoskeleton,

but may also provide local fluctuations that allow molecules to diffuse more freely. Un-

derstanding how these transport motifs interact will be critical in understanding cellular

function.



A Appendix A

A.1 Microscope Control Details

Initial designs of our microscope used a software solution to communicate with

the DDS using the common USB protocol. This allowed simple scanning, but was limit-

ing due to USB packet timing constraints and the inherent asynchrony in USB. To reach

the physical limits of our scanner, for this study a custom FPGA firmware is developed

to drive the DDS. An FPGA provides an affordable and powerful method to implement

a hardware solution, which is excellent for time sensitive tasks where hardware will

greatly outperform software. The main problem this avoids is the intrinsic USB inter-

packet delays, therefore guaranteeing excellent timing control. Furthermore, limits on

USB packets require repeated volume scans to be broken into smaller chunks, which

creates obvious problems due to inter-packet delays, but also creates synchronization

issues due to limits on the number of sync signals an oscilloscope will recognize in a

single acquisition. By ensuring timing is fully controlled by the FPGA, with the only

control coming from a single external start signal, greatly improving our scan capabili-

ties given the limitations of the hardware.

Standard operation proceeds as follows. A description of the volume to acquire is

sent over USB using a metalanguage in hexadecimal characters, and saved into memory.

At that point, either a “Start” signal can be included in the original signal, or the FPGA

will stand ready waiting for a new signal, in both cases containing the number of repeats

and instructions to begin scanning. At the start of a scan the metalanguage is converted

into a series of commands that are delivered to the DDS, which will perform the required

series of frequency sweeps to produce the desired scan pattern. The start signal will also

pulse a synchronization to the oscilloscope, triggering the acquisition of the incoming
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photomultiplier output. Finally, the acquired data is computationally reconstructed into

a final stack of images for each time point.
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Real-time single-molecule imaging of the infection pathway of an adeno-
associated virus. Science, 294(5548):1929–1932, 2001.
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