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Physical and Optical Properties of
"Rare Earth Cobalt Magnets
' Klaus Hzlbach

Lawrence Berkeley Laboratory, UC Berkel éy .
Berkeley, CA. 94720

Rare Earth Cobalt (REC) permanent magnets have unique:
properties that permit solutions to some optical ‘tasks that
cannot be accomplished with conventional magnets. A review of
design and of performance characteristics of these magnets
includes an analytical description of the three dimension 1
fringe fields of REC quadrupoles. :

v

1) ~Introduction

There ‘are indications that Rare Earth Cobalt (REC) permanent magnets will
soon be used much more frequently to solve tpiical problems that cannot be
solved with conventional means. It is the purpose of this paper to summarize
information that is useful for the design of REC magnets and 'o assess their
performance characteristics. The optical properties of the devices di cussed
here usually can be obtained directly and very simply from the magnetic field
distributions. The emphasis is therefore on the description of the lat‘:er,
the former following in most cases directly by implication.

Since REC magnets have not yet been used -extensively, the choice of
devices that are discussed in detail refiects my expectation of which kind of
REC magnet will become important in the near future.

Design and performance formulas are given to allow the reader to make a
decision whether a REC device is a good choice for his needs. The specific
designs of magnets that are discussed represent a good compromise between
performance and cost for most applications. If the reader wants %o work out
more details of a particular magnet, he may find Ref. 1 useful. That paper
gives general design philosophy and procedures for the design of REC magnets,
and extensive details about the design of two dimensional (2D) multipoles.
Quantitative details about the fringe fields of quadrupoles as well as a
description of the other devices discussed in this paper will appear in future
publications by the author.

2) Notation

MKS units are used throughout, with uy = 4x x 10~7 ysec A~ m-1.
For 2D fields it is convenient to express fields by analytical functions of a
complex variable. Complex quantities are identified by underlining.
Specifically, z is one of the three space coordinates, but
z = x + iy. 2D fields are described by B = By + iBy, with an asterisk™
Indicating the complex conjugate of a complex number. B, indicates the
magnitude of the remanent magnetization of the material, and B, is the 2D
remanent magnetization vector. »
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3) laterial Properties _ ' B 3; LY

Thé developlent of REC laterials started in 1966 with Strnat's(z) work.
Brief summaries of the manufacturing process can be:found in References 1
and 3 , while Ref.. 4 goes into detail. We give here only a brief

description of the properties of commercially. available REC.

- Oriented REC  matetial ‘is. a'magnétically-anisotropic material with a strong
intrinsic magnetization in the direc¢tion of a preferred crystalline axis,
commonly ca]?ed the easy axis. Fig. 1 shows the relationship between the
fields B, and woH, e in_the direction parallel to .that easy.axis.. This ;

B (uoH ,)—curve s, for: al] .intents and purposes, a straight: 1ine in the

first quadrant and_in a substantia] .part. of the second, or even third
quadrant. The slgpe of the curve in the straight part of the curve. is.

‘typically dB,;/d{ugHs) =-1.04, and the remanent field Bp is usually in

the range .85 - 1.05T.  The lociition of the point where the slope of the
B,,(uoH,,)—curve jncreases significantly, i.e., the knee of the
B,,(uoH,,)-curve, depends on_manufacturing details and cannot be modified by
the user. For readily available materials, the knee is located less deeply in
the second or third quadrant for larger values of B The working point can
be moved neversib)y along the straight part of the E,,(uoH )-curve, but

when one moves .into or beyond the knee, the recoil will occur along. a straight
line parallel to the-initial straight part of the B, (noH 44 )-curve, and the
initial uagnetization can be recovered only by driving the material very far
into the first quadrant . X

The B (u H )—curve in any direction perpendicular to the easy an*s 1s a
straight Tine through the origin By = yoH,= 0, with a slope very simijar to
the slope of the By (poH,,)-curve. Al] ormulas given in this paper have
been derivgd.with the simplifying assumption that the slopes of both curves
are one. Tt most important consequence of this assumption is the .
applicability of the linear superposition of vacur.m fields. In real life,
this assumption is violated only very slightly, particularly because the most
damaging deviations from vacuum fields are sensitive only to the difference in
differential permeability in the directions para11e1 and perpendicular to the .
easy axis. .

For the sake of completeness, it should be pointed out that some ferrites

" behave qualitatively similar to REC, but are quantitatively different: the

differential permeabilities are > 1.1 and B, is only .2 - .35 T.

It is difficult to talk aboui the price of finished piaces of magnetized
REC because many different variabies entor, like magnetic characteristics of
the material, size and shape of pieces, tolerances of dimensions and magnetic
properties, total volume of order, etc. But to give a rough guideline for .
pricing, it can be said that most commercial orders will cost between 1.5 and
30 llc-3 Ferrites are substantially less expensive.

&) General Properties of REC ﬁagnets for Particle Optics Applications

This section preseats a number of facts that are applicsble to all REC
mageets. These facts are often compared with egquivaleat properties of
conventional magnets to give an indication under what c1rcunstances the REC
wagnet would be preferable.
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A. When one. sccies a]] d1mensiens ‘of ;& permanent magnat, the angnctic

- fields do not change.. When one ‘reduces_the size of a: conventions

and wants the fields to remain-constant, the current density-ia the coils
must increase. At some size this'will lead to insurmountable cooling
problems that force a reduction of the-ficld strength. Consequently, a

REC magnet can.always prodice higher fields-below-a certain size-of. thc
magnet or working volume. : To.avoid.a misinterpretation of tlis statement,
it-has ‘to be added that for-some types:of magnets, the REC, can-be.
made stronger than the-equivalént conv»nt1onal nagnet regardless of size.

B. REC magnets are usually qu1te compact and lvght and; obviously do not
require power supplies or cooling. . Thesie properties are of great
importance in some applications, :1ike drift tube quadrupoles in a LINAC,
or spectrometers in satellites or rockett.

C. The absence of power supply 1eads and plumbing assoc11ted with e1ther
conventional or He cooling makes REC magnets very attractive for.some
applications, for examp]e a variable gap undulator 1n51de a ‘vacuum
envelope: : . : e .

D. Thl,applicability,of,]inear superposition of'nagnetic fie1ds makes
analytical description of REC magnets very easy. .I consider this quite
important because analytical treatment nearly always leads to good
understanding, from which good design and innovation nearly always flow.
The validity of linear superposition of fields also leads to a nuwber of
remarkable and unusual configurations and system properties, some of which
are discussed below in subsections E and F.

E. REC magnets can be placed inside other magnets, with linear
superposition of fields in the common working volume, and very little
magnetic interference in the rest of the magnetic field volume. Typical
anticipated applications are: a) A strong final focussing REC quadrupole
inside the solenoid of a storage ring or single pass collider interaction
region detector. b) A REC undulator with weak quadrupole windings. c) A
REC quadrupole inside the working volume of another REC quadrupole, giving
a variable strength quadrupole when the two quadrupoles are rotated
relative to each other.

F. Because of the superposition principle, most pure REC magnets produce
fields that are very small outside the working volume as well as the
magnet itself, and decay there over very short distances.

G. There is not very much known about the behaviour of REC magnets in a
high radiation environment. Materials experts do not believe that the
magnetic properties deteriorate easily. Some preliminary uork conflrns
this, and dotliled work will commence in the near future :

H. REC magnats can easily be tskem to zod°c. and even highcr telperatures
if proper precautions are taken. However, the temgerature should always
be fairly uniform and, for that reason, should not be changed too rapidly.

1. With the presently most widely used manufacturing tochniqnes. the
smallest dimension of a REC block cannot be larger than a few
centimeters. Even though magwets can be (and are) assesbled from many
blocks, devices invoiving large volumes of REC become very expeasive
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becmvof the utern! ¢ostss and the: labor costs involnd n making and
_ hﬂli iuﬁa very large number of individuel mts.

: 5) m]tipoie ihgmts ‘\g + SRS

To»’roduc: 4 smng ZD ultipo!e with pod field qulity ('i.e., a REC
mgaet WIthiB . ) :the-REC -idénlly. shoild .filT the area between two }
concentric. cTrc‘ie!. ‘ind the easy akis of ‘the uteriai at. the polar coordmate
Jocation r; ¢- should fom the angle ;..

B ORI I I 1)
~ with the‘-Odirection. L ' o

Smce it would be very difficult to :produce such a magnet one has to make
a compromise between performance and cost of the magnet. The following:™
‘ practical design is such a compromise: - Break up the material between the - .
concentric circles into M qeoaei:ricnly identical blockss  Within_each block
the easy axis has the same orientation, and that orientation is given by.eqn.
(1), with ¢ now identifying a fiducial mark on the block. Fig. 2 shows a
schematic cross-section of such a multipole magnet (in this case a quadrupoie,
i.e., N = 2), with.-the arrows inside the blocks indicating the’ directions of.
the easy axes, e
If the individual blocks are’ touching trapezoids, the ZD fields produced
by a 2N-pole magnet inside the working aperture is given by .

Blz,)- BZ(“' ;_,,[ -C,

m=N+vV:M -
C,= <os (7c/m)- sinlam/m)/(n7e/M)

[ - i

By is the complex representation of the magnetization vector of the
reference trapezoidal block that is bisected by the positive x-axis; rj and
ry are the distances between the coerdimate-origin and the intersections
between the referemce block and the pesitive x-axis;-and M is the sumber of
trapezoidal blocks per magnet. Ref. 1 gives also the formulas for muitipoles
with differently shaped or arranged blocks. They are structurally identical
to Eqn. [2), but with different expressioms Cj,.

The ﬂelds outsiQ such 2 magnet are given by




' (3)

60$ m/M} MWz/M)/{nr/M)

Fron Egn's. (2) and (3) follow three Inportant facts

A. The segmentation of the magnet, iJe.,. the f1n1te magnitudeof M, leads
to a reduced mignetic field (expressed by Cp) and to harmonics that may be
harmful. -For. a quadrupole (N = 2) with M = 16, = .94 and the first two
undesired harmonics are n = 18 and. n = 34. Clear?y is adequately close
to the ideal value Y. 1In the unlikely case that the f rst undesired harmonic
is bothersome, its amplitude can be made zero by separating the REC blocks by
thin non-nagnetic shins according'to a prescription given in Ref. 1.

B. The segnentation of the multipole leads also to non-zero fields:
outside the magnet. However, for reasonably large values of M these fields
are so small and decay so rapidly that they are rarely of concern.

C. The field strength of the fundamental at the multipole aperture

= grN-L ’
(B ﬁgT' t}- (F%) :] Cy) can, for low order multipoles like dipoles

and quadrupoles. exceed B, significantly. It has to be remembered that this
field strength is attained only if the material under these operating
conditions is not driven into or beyond the knee of the

B (uo Hye )-curve. Some materials are commercially available that allow
aperture fields of 1.2 T.

In addition, if the ends of a multipole are cut off with two planes
perpendicular 1o the magnet axis, the following statements are true:

D. The effective magnetic length equals its physical length.

E. Higher harmonics that are not present in the 2D cross-section are not
present in the fringe field region either. Ih this context, higher harmonics
are identified by the dependence of fields cr potentials on §.

6) AMdditional Details for Quadrupoles and Dipoles.

A. If one replaces all REC inside a closed scalar potential surface by
high permeability steel, the performance of the magnet will mot be affected as
long as the penleability of the steel is la encugh. One can find such
closed scalar potential surfaces for multipoles, but the savings in REC
saterials cost is wsually not worth the complication in constructien, except

possibly for a dipole. UWhen a dipole is needed with a working velume whose



, cross-section much wider than it is high this te;hnlque can lead to a rather
~ attractive design. However, detailed design studies »nd comparison with
conventiona] combined REC-steel magnet designs have not yet been dene.

Ouadrupoles of the basic des1gn shown in Fig, 2 have been built in
Iarge numbers by R. F, Holsinger. They have all the expected properties.
Details of design and measuremen’s of these quadiupclac £2n be found in Ref. 5
and 6.

C. It is often desirable to adjust the strength of quadrupoles. This can
““be done in‘at least three different ways with steel-free REC nets. a) As
mentioned in Sect. 4Ec, one segmented quadrupole (or a’‘quadrupole assembled
from rods of circular cross-section, as proposed in Ref. 7) could be placed
inside the working volume cf a larger quadrupole of the same desiga. If both

quadrupoles produce the same field gradient, the combined gradient can be
changed without changing the quadrupole jield orientation if the two.
quadrupo1es are rotated by the same amcant in oppasite directions. However,

' since the end-fringe fields from.the two quadrupoles behave differently, the
fields in the end regions 'will change direction. (See Sect. 6 D.} This in
turn will lead to some optical ‘coupling between the usually decoupled two
major planes of a quadrupole. b) To avoid this drawback, one can build a
segmented quadrupole with radially movable segments. The trouble with this
design is its mechanical complexity. c) One can also break up a quadrupole
into a number of axial %slices" and rcta2te them individually in such a manner
that the optical strength of the system is modified without introducing the
coupling associated with the method described in Sect. 6 Ca. R. L. Gluckstern
has studie? Shis problem, found a solution, and will present it at this
Conference :

D. The fringe field of a quadrupole can be of interest for a number of
reasons, for instance to assess the coupling introduced by an adjustable
quadrupole system of the kind described in Sect. 6 Ca, or to obtain
information about optical aberrations. 35ince the higher harmonics are usually
of such high order that their contribution to the fringe fields is of no
interest, only the fringe field of the fundamenta) is described here. The
confrgurat1on considered here is a semi-infinite quadrupole with a flatly cut
end, as shown in Fig. 3. The fringe field can be derived from the scalar
potential V(x, y, 2), given by the following equations:

(xiy.2)= 8 —%,"LEJ Oy L)L T Fla)
Lola)=) 2Lahy) _ (o4, ..

vee Vv 42)! B P

(#a)
(4b)

=l/t/7+(2/77)7' (4c)
F(z)- (,s Btk L UV (W )| )
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These formulas -are valid when the quadrupole segments fill the space
between two circles with radii ri and rp completely. In this case, ‘

c

;= s‘j’n(s./'n.)/(fslmv)_. o o o . (af)

»

However, if M is reasonably large, Eqn's. (4} adequately describe the case of
a quadrupole assembled from trapezo1da1 blocks.

Notice that the coordinate system used here is rotated by 45 relative to
the system normally used to ‘describe quadrupoles.

F*(z) (Eqn. 4e) describes the strength of the lowest order aberration
associated with the varying quadrupole strength. Plots of F and F" are
reproduced in Figures 4 and 5 for z > 0. The values of F and F* for z < O
follow from the obvious symmetry properties of F and F¥. If one expands F for
z > rp, the dominant term is given by

5 5 :
r -r rar .
Z

indicating a pleasantly fast decay.

Of the many different uses of Eqn's. (4), one deserves special notice.
The integrals involved for calculaticn of the kick received by a particle
going in a straight line through the fringe field region are very simple, and
cne obtains, with R' = field gradient deep inside the quadrupole:

§a8 dz = j(x»rx,,zj Fla)dz= B-(xxf2 + X 1,1/8) (4

~&

In thﬂ; equation, the genesis of the existing and non-existing terms is as
follows: 2 term proportional to x3 is al absent; the term
proporticnal to x5 is absent because F*(-z) = - F*(z); the coefficient of
the terw proportional to xo' is independant of the detailed behavior of



"F(z); only the coeff1c1ent of the term proport1ona| to x°‘3 depends on the
" shape. of. F(z). ;

7) Linear Undu]ators

“Linear undulators can be essential components of free eleciron lasers, and
can be used. to produce synchrotro? sad1at1on from an electron beam, or even a
proton beam (for beam diagnostics{9) purposes). Under some circumstances,
- REC undulators are preferable to conventional ones, and Ref. 10 describes the
use of a REC undulator in an optical clystron, but w1thout giving any of the
undulator design deta1]s, .

Fig. 6 shows a schematic cross-section of a linear undulator with period
“length 5 and M* = 4 blocks of REC per period in each half of the undulator.
If the undulator is long enough in the direction perpendicu]ar to the paper
‘plane, the pure]y 2D field inside the undulator (i.e., -h < y < h) is given by

-nkho o el

B (z)= {2 B Zus(fn/cz; 2. ‘(}'-—4 ) ;(n(mz’z;’/y')/’(,;/ﬂ'/r

e veR! s k= 27) A

It has been assumed that from each block to the next, the easy axis is rotated
by 2x/M'.

The structure of this equation is very similar to the structure of the
equation describing the field of a segmented multipole: Because of the
segmentation, there are harmonics present; as in the case of multipoles, the
harmonics corresponding to negative n lead to fields .outside the device
(i.e., Jy[ > h + L), but are rot given here. For most practical values of kh,
the higher harmonics are not of great importance. The first of the harmonics
can be cancelled by using ¢ = 1/{1 + 1/M'). However, there is. a loss of
amplitude of the funcamental involved (which can be reduced with a more
complicated shapa of the blocks), so that one would use this procedure only
when absolutely necessary.

If one ignores the synchrotron radiation effects, the effect of the
undulator fields on particle trajectories is, to lowest order in
{Bpax/k}/ {p/e) (B.‘x = maximum field for y = 0; p and e are momentum and
charge of the particle), as follows: in the x dirsction, the device acts for
all intents and purposes like a pure drift space, and the motion in the y
ds rect10n is governed by : .

y"+ y-(Bmaxe/p) /2 =0,

Eqn. (5) shows the same hard limit on the achievable field strength that
charaterizes all pure REC magnets: for given geometric parameters, the
obtainablb\fiefd strtn?th is liwmited by the properties of the REC material.:
For this reason, hi ield undulators with large gaps and period lengths
should be built with convcntional technology. However, for most of the
presently interesting combinations of geometric parlllters,aud field strength,
the REC undulator is the ideal solution. If one wishes to have an undulator

X



with a small period length and a higher field than is obtainable.with a REC
_undulator, one has to consider a superconducting undulator. Unfortuantely, .
“the cost and operational complexity of such a device are often so prohibitive
that one has to be .content with the performance of the REC undulator.

It is often important to adjust the fields at the entrance and exit of the
undulator in such:a way that the total flux traversed by the besm is zero and .
a field symmetry condition is accurately satisfied. These adjustments can be
done either by mechanically rotating REC blocks at the ends or by energizing
tuning coils. These systems are too specific to be included here.

In the construction of an unduiator it is important to make the dev1ce
-Tong enough in the z direction of Fig. 6 so that the finite length of the
device does not modify significantly the 2D fields seen by the beam.. On the
other hand; for cost and other reasons one does not want-to make: the undulator
wider than necessary.

To provide the information needed to determine the proper width of an
undulator, the following Eqn's. (6) can be used to evaluate B, in the
midplane of a semi-infinite undulator (as shown in Fig. 7), thereby permitting
the talculation of the effect .of the “missing” parts of an undulator of
infinite width.

s =kh; 8y =k(h+L);ynkeipn\ 82 %y (6)
S é
Be = 2 By ~senle/m') {7/ ') - Gc)
B, (2)= B, (U ﬁ,,y)--"u{/%u v (sd)
(P,x)-ifx(m'/ﬁw Wipy) | (;e)
1, (~ew/(l~u |
0 j \[fT H‘,'fﬁiur,; (6£)
-u={<§-x,f‘(x--u), =1 /(8)  (eg)

»

Information for v < 0 is obtainable from the behaviour for v > 0 through

yi

U(B,-r)= £ ~Uif. ¥) (6h)
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; "output' mfomation i3 obtained from Eqn. {6d), vnth Eqn's. (6e) and
. (6f) providing the essential inpuiifor Eqn. (6d). Instead of a graph of
U(s,v), Fig: 8 shows the less v101ently changing function U(s,v)'eﬂ

8. He11cal Undulator

. Under- some c1rcumatances it is more advantageous to use a hel1ca1
undulator, i.e., a device that produces a field that has on axis a dipole .
component in the direction perpendicular to the axis, with the direction of -
. that field chanqing uniformly as one moves along the axis uniformly. -

To implement sucﬁ an undu1ator with REC, one can build short (in the
z-direction) segmented dipoles, and rotate each short dipole relative to the
previous dipole so that one obtains the des1red period length A in the z
direction. If there are N' such slices per period A, one obtains for the
strength, on axis, -of this REC undu]au

B=BaC, ¢ S:'l'"': g - Tk (72)
T(x) = K (x) + 5+ K;(x) : (70)
X = 2wr/ . : L (7¢)

Eqn. {7a) is valid for the casec where the segments i1l the space between
two circles with radii r] and rp conpletely, and

sin 2«/M .
¢ = S — > « . (7d)

w

" with M = number of segnents in a dipole slice. However, these equations can
be applied to the design with trapezoidal segments with very little error when
M is reasonably large.

) Ko and Ky in Eqn. (7b) are modified Bessel functions, and a graphic
representation of In(T(x)) is reproduced in Fig. 9.

9) Production of Solen.idal Fields with REC

It is cléar that some properties of fields produced by solenoids are
impossible tc reproduce with REC structures. The most obvious condition that
is always satisfied by REC devices that produce fields of the same symmetry as
solenoids is

ol
J 8,(z)dz = 0. ‘ (8)
~o8 S :

¥



Hh1.e fhe same 1ntegra1 s in general not zero when so]en01ds produce the
f1e1ds, Eqn..{8). is not a. severe restriction under many circumstances, since
matrix elements-m(z). of the.first- order opt1ca1 transfer matrices of a beam
travelling along the axis satisfy the differential equation .

m{z)" + KZm(z) = 0 N
- . o (9)
. Bz(z) o
Kz) = %7

In Eqn. (9), p and e are momentum and charge of the particié, and it is
assumed that the matrix is expressed in.a coordinate system that is rotated by

a{z) = - K(z)dz (10)

NV\N

start

relative to its orientation at the start1ng point. Since it is K¢ that
appears in Eqn. (9), the sign reversals of B,(z) are usually not of major
1mportanc=

To give a feeling of what one can accomplishk with REC, consider a
segmented periodic array of magnetized REC rings, as shown in Fig. 10. With
M' rings per period A, and an easy axis rotation of 2x/M' from one ring to the
next, one obtains for the scalar potential

sin fnkz) : sin nx/M’
V=- Br‘; _'—nk_ o1, (kr) s (G(nk]) - G(nkz)c —n;m%——-— . (Ma)

and for the field on axis

—

B iz)= Bpr 2 cos(nhz)-{ 6fnx)-6(n h_})-fr‘h(mn//'/'/;/[?!/?/ﬂ’) (16,

/}1:i4V‘l'1j!' k= AT.//‘\I' Y':k’r," X5 K71 . U/c)

613)=X K W)+ KoL)+ (Kot dic (1t4)
) |

1



In Eqn’s.’ (11a) and (i1d), Iq, Ko. and K1 are modified Bessel
fenctions. They, as well as the integral in Egn. (lld), are tzbulated in Ref.
11. A graphical representation of Eqn. (11d) is given in Fig. 11. It should -
be noted again that ‘the asymptotic amplitude of {1 + 5/2)+B, for B(z) cannot
“be ‘reached 1mless the mat:orial has-a knee sufficiently far 1n the tnird
guadrant of the By (uOH“ )=curve. S =
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FIGURE - CAPTIONS
B, (uoH,,)—curve for REC.

2D crc))ss—sectwn of segnented REG quadrupole (beam in drawing
plane

Cross-section through semi-infinite REC quadrupole (beam in
drawing plane). -

‘REC quadrupole fringe field strength.

Secend derivative of‘REC quadrupole fringe field strength.
2D cross-section of linear REC undulator (beam in drawing plane).

Cross-section tnrough semi-infinite REC undulator (beam
perpendicular to drawing plane).

Fringe field strength of REC undulator.
Strength of helical REC undulator.
Periodic array of REC rings (beam in drawing plans).

Field strength on axis of periodic array, of REC rings.
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