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Physical and Optical Properties of 
Rare Earth Cobalt Magnets 

Klaus Halbach 
Lawrence Berkeley Laboratory, UC Berkeley, 

Berkeley, CA. 94720 
Rare Earth Cobalt (REC) permanent magnets have unique 
properties that permit solutions to sone optical tasks that 
cannot be accomplished with conventional magnets. A review of 
design and of performance characteristics of these magnets 
includes an analytical description of the three dimension 1 
fringe fields of REC quadrupoles. 

1) Introduction 
There are indications that Rare Earth Cobalt (REC) permanent magnets will 

soon be used much more frequently to solve optical problems that cannot be 
solved with conventional means. It is the purpose of this paper to summarize 
information that is useful for the design of REC magnets and 'd assess their 
performance characteristics. The optical properties of the devices di cussed 
here usually can be obtained directly and very simply from the magnetic field 
distributions. The emphasis is therefore on the description of the lat er, 
the former following in most cases directly by implication. 

Since REC magnets have not yet been used extensively, the choice of 
devices that are discussed in detail reflects my expectation of which kind of 
REC magnet will become important in the near future. 

Design and performance formulas are given to allow the reader to make a 
decision whether a REC device is a good choice for his needs. The specific 
designs of magnets that are discussed represent a good compromise between 
performance and cost for most applications. If the reader wants to work out 
more details of a particular magnet, he may find Ref. 1 useful. That paper 
gives general design philosophy and procedures for the design of REC magnets, 
and extensive details about the design of two dimensional (2D) multipoles. 
Quantitative details about the fringe fields of quadrupoles as well as a 
description of the other devices discussed in this paper will appear in future 
publications by the author. 
2) Notation 

MKS units are used throughout, with v0 * ** x 10~ 7 Vsec A -* rtr*. 
For 2D fields it is convenient to express fields by analytical functions of a 
complex variable. Complex quantities are identified by underlining. 
Specifically, z is one of the three space coordinates, but 
z - x + iy- 2D fields are described by JJ * B x + iB y, with an asterisk* Tndicating the complex conjugate of a complex number. B r indicates the magnitude of the remanent magnetization of the material, and Bj. is the 2D 
remanent magnetization vector. 
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3] Material Properties 
the development of REC materials started in 1966 with Strnat' work. 

Brief summaries of the manufacturing process can be found in References 1 
and 3 , while Ref. 4 goes into detail. Ue give here only a brief 
description of the properties of commercially available REC. 

Oriented REC material is a magnetically anisotropic material with a strong 
intrinsic magnetization in the direction of a preferred crystalline axis, 
commonly called the easy axis. Fig. 1 shows the relationship between the 
fields B„ and n 0 H M in the^direction parallel to that easyLaxis. Thjs , 
B^twoH^J-curye Is' for all intents and purposes, a straight line in the 
first quadrant and In a substantial part of the second, or even third, 
quadrant. The slope of the curve in the straight; part df the curve is 
typically dB„/d(iir>HH) - 1.04,,and the remanent field Br is usually in. the range .85 - 1.05T. The locution of the point where the slope of the 
B H (VQH,, )-curve increases significantly, i.e., the knee of the 
B H " ( P O H # / )-curve, depends on manufacturing details and cannot be modified by 
the user. For readily available materials, the knee is located less deeply in 
the second or third quadrant for larger values of B c. The working point can 
be moved raversibly along the straight part of the Bfj (JIQH,, )-curve, but 
when one moves into or beyond the knee, the recoil will occur along a straight 
line parallel to the initial straight part of the B,, (p 0H„ )-curve, and the initial magnetization can be recovered only by driving the material very far 
into the first quadrant. 

The B<(voHf j-curve in any direction perpendicular to the easy aivfs is a 
straight line "through * he origin B x - noHf °> w i t n a slope very similar to 
the slope of the Bft (y0Hff)-curve. All formulas given in this paper have 
been derived with the simplifying assumption that the slopes of both curves 
are one. .tfcaaost important consequence of this assumption is the 
applicability of the linear superposition of vacui.ro fields. In real life, 
this assumption is violated only very slightly, particularly because the most 
damaging deviations from vacuum fields are sensitive only to the difference in 
differential permeability in the directions parallel and perpendicular to the 
easy axis. 

For the sake of completeness, it should be pointed out that some ferrites 
behave qualitatively similar to REC, but are quantitatively different: the 
differential permeabilities are _> 1.1 and Br is only .2 - .35 T. 

It is difficult to talk about the price of finished pieces of magnetized 
REC because many different variables entsr, like magnetic characteristics of 
the material, size and shape of pieces, tolerances of dimensions and magnetic 
properties, total volume of order, etc. But to give a rough guideline for 
pricing, it can be said that most commercial orders will cost between 1.5 and 
30 I/cm3. Ferrites are substantially less expensive. 
4) General Properties of REC Magnets for Particle Optics Applications 

This section presents a number of facts that are applicable to all REC 
magnets. These facts are often compered with equivalent properties of 
conventional magnets to give an indication under what circumstances the REC 
magnet would be preferable. 
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A. When one scales all dimensions of a permanent magnet,the Mfnttic••„." 
fields do not change.. When one reduces the size of a coflv««%toeal magma* 
and wants the fields to remain constant, the current density in the coils 
must increase. At some size this will lead to Insurmountafcta cooling 
problems that force a reduction of the -field strength. Consequently, a 
REC magnet can always produce higher fields below a certain size of the 
magnet or working volume. To avoid a misinterpretation of tiiis statement, 
it has to be added that for some types of magnets, the REC.Magnet can fee 
made stronger than the equivalent conventional magnet, regardless of size. 
B. REC magnets are usually quite compact and light, and obviously do not 
require power supplies or cooling.; These properties are of great 
importance in some applications, like drift tube quadrupoles in a LINAC, 
or spectrometers in satellites or rockets. 
C. The absence of power supply leads and, plumbing associated with either 
conventional or He cooling makes REC magnets very attractive for some 
applications, for example a variable gap undulator inside a Vacuum 
envelope; 
D. The applicability of linear superposition of magnetic fields makes 
analytical description of REC magnets very easy. I consider this quite 
important because analytical treatment nearly always leads to good 
understanding, from which good design and innovation nearly always flow. 
The validity of linear superposition of fields also leads to a number of 
remarkable and unusual configurations and system properties, some of which 
are discussed below in subsections E and F. 
E. REC magnets can be placed inside other magnets, with linear 
superposition of fields in the common working volume, and very little 
magnetic interference in the rest of the magnetic field volume. Typical 
anticipated applications are: a) A strong final focussing REC quadrupole 
inside the solenoid of a storage ring or single pass collider interaction 
region detector, b) A REC undulator with weak quadrupole windings, c) A 
REC quadrupole inside the working volume of another REC quadrupole, giving 
a variable strength quadrupole when the two quadrupoles are rotated 
relative to each other. 
F. Because of the superposition principle, most pure REC magnets produce 
fields that are very small outside the working volume as well as the 
magnet itself, and decay there over very short distances. 
G. There is not. very much known about the behaviour of REC magnets in a 
high radiation environment. Materials experts do not believe that the 
magnetic properties deteriorate easily. Some preliminary work confirms 
this, and detailed work will commence in the near future. 
H. DEC magnets can easily be taken to 20CTC, end even higher temperatures 
if proper precautions are taken. However, the temperature should always 
be fairly uniform and, for that reason, should not be chaogad too rapidly. 
1. With the presently most widely used manufacturing techniques, the 
smallest dimension of a REC block cannot be larger than a few 
centimeters. Even though magnets can be (and ere) assembled from many 
blocks, devices involving large volumes of REC become very expensive 
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because «f the water Hi costs-ami the labor costs involved In making and 
MMIfni** fery large number of individualcomponents. 

5) Multipole Magnets / - • 

„ To produce a strong 2D mtiltipole with good field quality ( i . e * a «EC 
magnet #1tt'B - * M ) the REC ideallyishould fiIT the area between two 
conceMHc cTrcle?, and the easy axii of 4*e material at the polar coordinate 
location f, # should form the angle 

i f f ) * 1" ••Us* #•"•" 
with the* # « 0 direction. 

(1) 

Since it would be very difficult to produce such a magnet, one has to make 
a compromise between performance and cost of the magnet. The following 
practical design 1s such a compromise: Break up the material between the 
concentric circles into M geometrically identical blocks. Within each block 
the easy axis has the same orientation, and that orientation is given by eqn. 
(1), with # now identifying a fiducial mark on the block. Fig. 2 shows a 
schematic cross-section of such a multipole magnet (in this case a quadrupole, 
i.e., N « 2), with the arrows inside the blocks indicating the directions of 
the easy axes. / 

If the individual blocks are touching trapezoids, the 2D fields produced 
by a 2N-pole magnet inside the working aperture is given by 

-'w.fc£(*f^-srK 

Bj. is the complex representation of the magnetization vector of the 
reference trapezoidal block that is bisected by the positive x-axis; r\ and 
rj are the distances between the coordinate origin and the Intersections 
between the reference block and the positive x-ax1s; and M 1s the number of 
trapezoidal blocks per magnet. Ref. 1 gives also the formulas for multipoles 
with differently shaped or arranged blocks. They are structurally Identical 
to Eqn. (2), but with different expressions C„. 

The fields outside such a magnet ere given by 

fe) 
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-H C = CM {7i$M)$i*fr*:/M)/hK/:M) 
From Eqn's. (2) and (3) follow three important facts: 

A. The segmentation of the magnet, i.e., the finite magnitude of M, leads 
to a reduced magnetic field (expressed'by C n) and to harmonics that may be harmful. For a quadrupole (N - 2) with M - 16, C? - .94 arid the first two 
undesired harmonics are n - 18 and n - 34. Clearly, C? is adequately close 
to the ideal value 1. In the unlikely case that the first undeslred harmonic 
is bothersome, its amplitude can be made zero by separating the REC blocks by 
thin non-magnetic shims according to a prescription given in Ref. 1. 

6. The segmentation of the multipole leads also to non-zero fields 
outside the magnet. However, for reasonably large values of N these fields 
are so small and decay so rapidly that they are rarely of concern. 

C. The field strength of the fundamental at the multipole aperture 

<", -A-f-pn C NJ can, for low order multipoles like dipoles 

and quadrupoles, exceed B r significantly. It has to be remembered that this 
field strength is attained only if the material under these operating 
conditions is not driven into or beyond the knee of the 
Bji (wo H M )-curve. Some materials are commercially available that allow 
aperture fields of 1.2 T. 

In addition, if the ends of a multipole are cut off with two planes 
perpendicular to the magnet axis, the following statements are true: 

0. The effective magnetic length equals its physical length. 
E. Higher harmonics that are not present in the 2D cross-section are not 

present in the fringe field region either. In this context, higher harmonics 
are identified by the dependence of fields cr potentials on p. 
6) Additional Details for Quadrupoles and 01 poles. 

A. If one replaces all REC inside a closed scalar potential surface by 
high permeability steel, the performance of the magnet will not be affected as 
long as the permeability of the steel 1s large enough. One can find such 
closed scalar potential surfaces for multipoles, but the savings In REC 
materials cost is usually not worth the complication in construction, except 
possibly for a dipole. When a dlpole Is needed with a working volume whose 

5 



cross-section much wider than it is high, this technique can lead to a rather 
attractive design. However, detailed design studies *sd comparison with 
conventional combined REC-steel magnet designs have not yet been done. 

B. Quadrupoles of the basic design shown in Fig. 2 have been built in 
large numbers by R. F. Holsinger. They have all the expected properties. 
Details of design and measurements of these quadrupolss c*s--bs found in Ref. 5 
and 6. 

C. It is often desirable to adjust the strength of quadrupoles. This can 
be done in"at least three different ways with steel-free REC magnets, a) As 
mentioned in Sect. 4Ec, one segmented quadrupole (or a quadrupole assembled 
from rods of circular cross-section, as proposed in Ref. 7) could be placed 
inside the working volume cf a larger quadrupole of the same design. If both 
quadrupoles produce the same field gradient, the combined gradient can be 
changed without changing the quadrupole shield orientation if the two 
quadrupoles are rotated by the same amount in opposite directions. However, 
since the end-fringe fields from the two quadrupoles behave differently, the 
fields in the end regions will change direction. (See Sect. 6 0.) This in 
turn will lead to some optical coupling between the usually decoupled two 
major planes of a quadrupole. b) To avoid this drawback, one can build a 
segmented quadrupole with radially movable segments. The trouble with this 
design is its mechanical complexity, c) One can also break up a quadrupole 
into a number of axial"slices" and rctete them individually in such a manner 
that the optical strength of the system is modified without introducing the 
coupling associated with the method described in Sect. 6 Ca. R. L. Sluckstern 
has studied this problem, found a solution, and will present it at this 
Conference^8). 

D. The fringe field of a quadrupole can be of interest for a number of 
reasons, for instance to assess the coupling introduced by an adjustable 
quadrupole system of the kind described in Sect. 6 Ca, or to obtain 
information about optical aberrations. Since the higher harmonics are usually 
of such high order that their contribution to the fringe fields is of no 
interest, only the fringe field of the fundamental is described here. The 
configuration considered here is a semi-infinite quadrupole with a flatly cut 
end, as shown in Fig. 3. The fringe field can be derived from the scalar 
potential V(x, y, z), given by the following equations: 

Jr. v! lva)! ' II l-n> 
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F*h) = i (i^ikl7(/^z7nljV- [h W)»?) (H e] 
8 z> \ 

These formulas are valid when the quadrupole segments fill tlte space 
between two circles with radii rj and rg completely. In this case, 

C, - sin(3w/MJ/(3«/M) . (4f) 

However, if M is reasonably large, Eqn's. (4} adequately describe the case of 
a quadrupole assembled from trapezoidal blocks. 

Notice that the coordinate system used here is rotated by 45 relative to 
the system normally used to describe quadrupoles. 

F"(z) (Eqn. 4e) describes the strength of the lowest order aberration 
associated with the varying quadrupole strength. Plots of F and F" are 
reproduced in Figures 4 and 5 for z > 0 . The values of F and F M for z < 0 
follow from the obvious symmetry properties of F and F". If one expands F for 
z » rj, the dominant term is given by 

indicating a pleasantly fast decay. 
Of the many different uses of Eqn's. (4), one deserves special notice. 

The integrals involved for calculation of the kick received by a particle 
going in a straight lint through the fringe field region are very simple, and 
r-ne obtains, with R' « field gradient deep inside the quadrupole: 

In this equation, the genesis of the existing and non-existing tents is as 
follows: h tern proportional to xj* 1s always absent; the term 
proportional to XQ 1s absent because F"(-z) « - F"(z); the coefficient of 
the term proportional to V is independent of the detailed behavior of 
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F(z); only the coefficient of the term proportional to x 0'^ depends on the shape of F(z). 
7) Linear Undulators 

Linear undulators can be essential components of free electron lasers, and 
can be used to produce synchrotron radiation from an electron beam, or even a 
proton beam (for beam diagnostics'9) purposes). Under some circumstances, 
REC undulators are preferable to conventional ones, and Ref. 10 describes the 
use of a REC undulator in an optical clystron, but without giving any of the 
undulator design details. 

Fig. 6 shows a schematic cross-section of a linear undulator with period 
length x and M' = 4 blocks of REC per period in each half of the undulator. 
If the undulator is long enough in the direction perpendicular to the paper 
plane, the purely 2D field inside the undulator (i.e., -h < y < h) is given by 

> — - * A A y • -nkL) . , l W 

•>i= M V'h* i /<= 2A./ X 
It has been assumed that from each block to the next, the easy axis is rotated 
by 2WM'. 

The structure of this equation is very similar to the structure of the 
equation describing the field of a segmented multipole: Because of the 
segmentation, there are harmonics present; as in the case of multipoles, the 
harmonics corresponding to negative n lead to fields outside the device 
(i.e., fy/ > h + L), but are rot given here. For most practical values of kh, 
the higher harmonics are not of great importance. The first of the harmonics 
can be cancelled by using t « 1/(1 + 1/M'). However, there is a loss of 
amplitude of the fundamental involved (which can be reduced with a more 
complicated shap* of the blocks), so that one would use this procedure only 
when absolutely necessary. 

If one ignores the synchrotron radiation effects, the effect of the 
undulator fields on particle trajectories 1s, to lowest order in 
(Bmax/k)/(P/e) ("max * maximum field for y - 0; p and e are momentum and 
charge of the particle}, as follows: in the z direction, the device acts for 
ail intents and purposes like a pure drift space, and the motion in the y 
direction is governed by 

y" + y ^ m a x ^ 2 / 2 * °« 
Eqn. (5) shows the same hard limit on the achievable field strength that 

charaterizes all pure REC magnets: for given geometric parameters, the 
obtainable field strength 1s limited by the properties of the REC material. 
For this reason, high field undulators with large gaps and period lengths 
should be built with conventional technology. However, for most of the 
presently interesting combinations of geometric parameters and field strength, 
the REC undulator is the Ideal solution. If one wishes to have an undulator 
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with a small period length and a higher field than is obtainable with a REC 
unduiator, one has to consider a superconducting unduiator. Unfortuantely, .-, 
the cost and operational complexity of such a device are often so prohibitive 
that one has to be content with the performance of the REC unduiator. 

It is often important to adjust the fields at the entrance and exit of the 
unduiator in such a way that the total flux traversed by th« beam is zero and 
a field symmetry condition is accurately satisfied. These adjustments can be 
done either by mechanically rotating RtC blocks at the ends or by energizing 
tuning coili. These systems are too specific to be included here. 

In the construction of an unduiator it is important to make the device 
long enough in the z direction of Fig. 6 so that the finite length of the 
device does not modify significantly the 2D fields seen by the beam. On the 
other hand* for coit and other reasons one does not want to make the unduiator 
wider than necessary. 

To provide the Information needed to determine the proper width of an 
unduiator, the following Eqn's. (6) can be used to evaluate By in the 
midplane of a semi-infinite unduiator (as shown in Fig. 7), thereby permitting 
the calculation of the effect of the "missing" parts of an unduiator of 
infinite width. 

B 1 - k h; B 2 - k(h + L); Y - kz; P - \j S 2 + i2 ' (6a) 

o. 

Information for y < 0 is obtainable from the behaviour for > > 0 through 

V{^,-y)-- j£f-uw.r) Uh) 
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The "output" information is obtained from Eqn. (6d), with Eqn's. (6e) and (6f) providing the essential input for Eqn. (6d). Instead of a graph of U(«,r), Fig. 8 shows the less violently changing function U(s,-r)*eP. 
8. Helical Undulator 

Under some ci remittances it is more advantageous to use a helical undulator, i.e., a device that produces a field that has on axis a dipole component in the direction perpendicular to the axis, with the direction of that field changing uniformly as one moves along the axis uniformly. 
To implement such an undulator with REC, one can build short (in the z-direction) segmented dipoles, and rotate each short dipole relative to the previous dipole so that one obtains the desired period length x in the z direction. If there are N' such slices per;period », one obtains for the strength, on axis, of this REC undulater 

B . B tC, • iilL_»Z!i' , (T(x,) - T(xJ) (7a) 
r X w/N' ' z 

T(x) -K Q(x) + $ • K }(x) (7b) 
x - 2wr/x . (7c) 
Eqn. (7a) is valid for the case where the segments fill the space between 

two circles with radii ri and rg completely, and 

r sin 2»/H t7d\ 

with M » number of segments in a dipole slice. However, these equations can be applied to the design with trapezoidal segments with very little error when M is reasonably large. 
Kg and Kj in Eqn. (7b) are modified Besiel functions, and a graphic 

representation of ln(T(x)) is reproduced in Fig. 9. 

9) Production of Soleniidal Fields with REC 
It 1s clear that some properties of fields produced by solenoids are impossible tt reproduce with REC structures. The most obvious condition that Is always satisfied by REC devices that produce fields of the same symmetry as solenoids is 

CM 

J •z(z)* - 0. (8) 
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While the same integral is in general not zero when solenoids produce the 
fields, Eqn. (8) is not a severe restriction under many circumstances, since 
matrix elements m(z) of the first order optical transfer matrices of a beam 
travelling along the axis satisfy the differential equation 

m{z)" + K 2im(z) = 0 
(9) 

B z(z) 

In Eqn. (9), p and e are momentum and charge of the particle, and it is 
assumed that the matrix is expressed in a coordinate system that is rotated by 

a{z) = -C K(z)dz (10) 
zstart 

relative to its orientation at the starting point. Since it is K^ that 
appears in Eqn. (9), the sign reversals of B 2(z) w e usually not of major importance. 

To give a feeling of what one can accomplish with REC, consider a 
segmented periodic array of magnetized REC rings, as shown in Fig. 10. With 
H 1 rings per period x, and an easy axis rotation of 2it/M' from one ring to the 
next, one obtains for the scalar potential 

^ i™Mi>, I o ( k r), (G(nk]) - G(nk 2) t *£$'"' , (11a) V - - B r» 
V' 

and for the field on axis 

B /z) 5 Br• ^ use*hz).( 6fr*!) - 6l« fcj) • «*(*&/#)/(**/*') Ol L>; 
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In Eqn's. (11a) and (lid), I 0, K 0, and K-\ are modified Bessel 
functions. Ibey, as well as the integral in Eqn. (lid), are tabulated in Ref. 
11. A graphical representation of Eqn. (lid) is given in Fig. 11. It should 
be noted again that the asymptotic amplitude of (1 • «/2)*Br for B(z) cannot be reached unless the Material has a knee sufficiently far in the third 
quadrant of the B« (n 0

Hw )-curve. -
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FIGURE CAPTIONS 
Figure 1 - B / ; (POH/,« )-c"rve for REC. 
Figure 2 - 2D cross-section of segmented RE& quadrupole (beam in drawing 

plane). 
Figure 3 - Cross-section through semi-infinite REC quadrupole (beam in 

drawing plane). 
Figure 4 - REC quadrupole fringe field strength. 
Figure 5 - Second derivative of REC quadrupole fringe field strength. 
Figure 6 - 2D cross-section of linear REC undulator (beam in drawing plane). 
Figure 7 - Cross-section 'tiirough semi-infinite REC undulator (beam 

perpendicular to drawing pl-ine). 
Figure 8 - Fringe field strength of REC undulator. 
Figure 9 - Strength of helical REC,undulator. 
Figure 10 - Periodic array of REC rings (beam in drawing plans). 
Figure 11 - Field strength on axis of periodic array of REC rings. 
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