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Abstract Reverse stream flood routing determines the
upstream hydrograph in a stream reach given the down-
stream hydrograph. The Muskingum model of flood
routing involves parameters that govern the routed
hydrograph. These parameters are herein estimated using
simulation methods coupled with optimization tools to
achieve optimized parameters. Different simulation
methods are shown to perform unequally in the estima-
tion of nonlinear Muskingum parameters. This paper
presents two simulation methods for nonlinear Muskin-
gum reverse flood routing: (1) Euler equations and (2)
Runge-Kutta 4th order equations. Moreover, the general-
ized reduced gradient (GRG) is used as the optimization
tool that minimized the sum of the squared deviations
(SSQ) between observed and routed inflows in a bench-
mark flood routing problem. Results show the Runge-
Kutta 4th order equations yield better routed hydrographs

with smaller SSQ than obtained in previous research and
with the first simulation method (Euler equations).

Keywords Reverse stream flow routing . Nonlinear
Muskingummodel . Euler equations . Runge-Kutta
equations, generalized reduced gradient

Introduction

Flood routing calculates outflow hydrographs along a
river given inflow hydrographs. In contrast, reverse
flood routing determines the inflow hydrograph given
the outflow hydrograph. Das (2009) cited applications of
reverse flood routing (Das 2009). Those applications
enable enacting emergency rehabilitation projects after
the passage of large floods. An understanding about
flood damage in the upstream reaches of the river can
be gained by implementing reverse routing. Human
activities, such as commercial open sand and gravel
mining on river beds, construction of flow retarding
structures and bridges, and the like, may alter the local
flow characteristics in a reach of the river. Reverse flood
routing can assist in determining the upstream inflow
hydrograph whenever a desired downstream hydrograph
is specified.

Generally, hydraulic and hydrologic approaches are
applied for flood routing through water bodies. Hydrau-
lic approaches rely on the equations of conservation of
energy or momentum in streams that are applied to flood
routing using geometric and hydraulic data. One well-
known hydraulic model is the river analysis system
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(RAS) (Hydrologic Engineering Center 2010). Hydro-
logic flood routing, on the other hand, is simple in
comparison and relies on limited parameters coupled
with linear and nonlinear equations based on the conti-
nuity equation to route flood hydrographs (Orouji et al.
2013). McCarthy (1938) introduced and applied the
Muskingum routing method in the Ohio River.

The nonlinear Muskingum flood routing model
parameters can be found by trial and error, al-
though this may take a large number of trials
and become computationally burdensome. Thus,
use of an optimization method coupled with a
hydrography simulation model is recommended to
find optimally simulated hydrographs (Fallah-
Mehdipour et al. 2011). The Muskingum model
applies a continuity equation that has a first-order
differential structure and is solved by forward and
backward methods in forward routing and reverse
routing, respectively. Tung (1985) applied Euler
and Runge-Kutta 4th order equations as the simu-
lation methods in applications of the Muskingum
model. Other mathematically based optimization
tools, such as segmented least squares (S-LSQ),
nonlinear least squares (N-LSQ), Broyden–Fletch-
er–Goldfarb–Shannon (BFGS), Lagrange multiplier
(LM), nelder-mead simplex (NMS), and GRG were
applied respectively by Gill (1978), Yoon and
Padmanabhan (1993), Geem (2006), Das (2004,
2009), and Hamedi et al. (2014).

Pattern search (PS) (Tung 1985), genetic algorithm
(GA) (Mohan 1997), harmony search (HS) (Kim et al.
2001), particle swarm optimization (PSO) (Chu and
Chang 2009), parameter-setting-free HS (PSF-HS)
(Geem 2011), differential evolution (DE) (Xu et al.
2012), simulated annealing (SA), and shuffled frog leap-
ing algorithm (SFLA) (Orouji et al. 2013) were evolution-
ary algorithms applied to Muskingum forward routing.

The forward Muskingum method is applied to calcu-
late the outflow hydrograph from the inflow hydrograph
and a set of Muskingum model parameters. Ideally, the
same set of parameters would apply to reverse routing,
whereby an inflow hydrograph is calculated from an
outflow hydrograph. In actuality, inflow and outflow
hydrograph data are not ideal. Therefore, one set of
Muskingum model parameter values may not be appli-
cable for forward and reverse routing of flood
hydrographs (Das 2009). Das (2009) applied LM to find
optimal parameters of a reverse routing Muskingum
model minimizing the sum of squares of the normalized

difference between observed and estimated inflows sub-
jected to the satisfaction of the routing equation. The
results indicated parameter values for three types of
Muskingum channel storage models and corresponding
inflow hydrographs fit the observed inflows satisfactori-
ly. LM was shown capable of estimating optimal param-
eters for use in reverse routing, although it does so
through a time-consuming process employing the deri-
vations of different Muskingum parameters (K, X, and
m), inflow (I), and Lagrange multiplier (λ) simultaneous-
ly. Thus, application of less computationally burdensome
optimization methods could decrease processing time in
reverse flood routing.

This paper couples Euler and Runge-Kutta 4th order
differential methods with GRG as the optimization tool
in reverse flood routing of a benchmark problem. This
paper’s results contrast the capability of the Euler meth-
od with that of the Runge-Kutta 4th order method in
hydrograph simulation. Moreover, the performance of
LM and GRG are compared to determine optimal non-
linear Muskingum parameters in the optimization step
for parameter estimation.

Methodology

The optimal nonlinear Muskingum model for reverse
flood routing herein presented applies the Euler and
Runge-Kutta 4th order equations as the simulation
methods and GRG as the optimization tool.

Hydrograph simulation methods

McCarthy (1938) stated the continuity and storage equa-
tions used in the Muskingum routing model, as follows:

Continuity:

dSt
dt

¼ I t−Ot ð1Þ

Storage:

St ¼ K XIt þ 1−Xð ÞOt½ � ð2Þ

in which, St, It, and Ot= storage, inflow, and outflow at
time t, respectively; K= storage-time constant for a river
reach; which has a value reasonably close to the travel
time of flow through the river reach; and X= weighting
factor usually ranging between 0 and 0.5 for reservoir
storage, and between 0 and 0.3 for stream channels
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(Mohan 1997). There are two nonlinear forms of the
Muskingum model, which were applied by Chow
(1959) and Gill (1978), as follows:

St ¼ K XIt þ 1−Xð ÞOt½ �m ð3Þ
St ¼ K XImt þ 1−Xð ÞOm

t

� � ð4Þ
in which, m= exponent that presents nonlinearity be-
tween storage and weighted flow.

Reverse flood routing proceeds backwards in
time, starting with the last of N simulation steps.
The fol lowing steps are appl ied to route
hydrograph using the Euler equations:

Step (1). Initial values are assumed for the parameters
K, X, and m.

Step (2). The storage volume at last time step, SN, is
calculated with Eq. (5). It should be noted

that the estimated input flow (Î N ) is the same
as the observed output flow (ON) in the last

routing time step (step N), ÎN ¼ ON :

SN ¼ K X Î̂N þ 1−Xð ÞON
� �m

j ¼ N ð5Þ

Step (3). ΔS j

Δt is the rate of storage volume variation,
determined as follows:

ΔS j

Δt
¼ 1

X

� �
S j

K

� �1=m

−
1
X

� �
Oj j ¼ N ;N ‐1;…; 1 ð6Þ

Step (4). Storage volume is calculated with Eq. (7):

S j ¼ S jþ1−Δt
ΔS jþ1

Δt

� �
j ¼ N ‐1;N ‐2;…; 0 ð7Þ

Step (5). Input flow is estimated with Eq. (8):

Î̂ j ¼ 1
X

� �
S j

K

� �1=m

−
1−X
X

� �
Oj j ¼ N ‐1;N ‐2;…; 0 ð8Þ

Step (6). Steps (3) to (5) are repeated for all N time
steps.

The Runge-Kutta 4th order equations are widely
applied in numerical simulation because of their high
accuracy. The following steps are applied with the
Runge-Kutta 4th order equations:

Step (1). Initial values are assumed for K, X, and m.
Step (2). Storage volume at last time step, SN, is cal-

culated with Eq. (5) where Î N ¼ ON .
Step (3). ΔS j

Δt is calculated with:

K j1 ¼ 1
X

� �
S j

K

� �1=m

−
1
X

� �
Oj j ¼ N ;N ‐1;…; 1 ð9Þ

K j2 ¼ 1
X

� �
S j þ 0:5K j1Δt

K

� �1=m

−
1
X

� �
Oj þ Oj−1

2

� �

j ¼ N ;N ‐1;…;1

ð10Þ

K j3 ¼ 1
X

� �
S j þ 0:5K j2Δt

K

� �1=m

−
1
X

� �
Oj þ Oj−1

2

� �

j ¼ N ;N ‐1;…;1

ð11Þ

K j4 ¼ 1
X

� �
S j þ K j3Δt

K

� �1=m

−
1
X

� �
Oj−1

j ¼ N ;N ‐1;…;1

ð12Þ

ΔS j

Δt
¼ 1=6 K j1 þ 2K j2 þ 2K j3 þ K j4

� �
j ¼ N ;N ‐1;…; 1 ð13Þ

Fig. 1 Nonlinear relation
between storage and weighted
flow
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in which, Kj1= rate of storage volume variation at jth
time step calculated usingK,Kj2= rate of storage volume
variation between j-1th and jth time step calculated
usingKj1, Kj3= rate of storage volume variation between
j-1th and jth time step calculated with Kj2, Kj4= rate of
storage volume variation at jth time step calculated
using Kj3.

Step (4). Storage volume is calculated with Eq. (7).
Step (5). Input flow is estimated with Eq. (8)
Step (6). Steps (3) to (5) are repeatedly calculated for

all N time steps.

Theminimization of the SSQ is the objective function
use to estimate the Muskingum parameters K, X, and m.

Fig. 2 Observed and calculated
hydrographs with Euler equations

Table 1 Calculated input hydrograph using the Euler equations

j Time (hour) Oj (m
3/s) Jj (m

3/s) Sj (m
3/s) ΔS j

Δt (m3/s) Î j (m
3/s) I j−Î j

� �
2 (m3/s)

0 0 22 22 24.12 – 24.12 4.51

1 6 21 23 77.34 − 8.06 12.94 101.26

2 12 21 35 200.86 20.59 41.59 43.38

3 18 26 71 483.59 47.12 73.12 4.50

4 24 34 103 850.36 61.13 95.13 61.97

5 30 44 111 1224.40 62.34 106.34 21.70

6 36 55 109 1540.67 52.71 107.71 1.66

7 42 66 100 1748.17 34.58 100.58 0.34

8 48 75 86 1834.95 14.46 89.46 12.00

9 54 82 71 1788.05 − 7.82 74.18 10.13

10 60 85 59 1636.79 − 25.21 59.79 0.62

11 66 84 47 1420.03 − 36.13 47.87 0.76

12 72 80 39 1164.11 − 42.65 37.35 2.73

13 78 73 32 903.95 − 43.36 29.64 5.57

14 84 64 28 655.62 − 39.72 24.28 13.84

15 90 54 24 466.87 − 33.13 20.87 9.77

16 96 44 22 326.68 − 23.36 20.64 1.86

17 102 36 21 235.67 − 15.17 20.83 0.03

18 108 30 20 159.96 − 12.62 17.38 6.86

19 114 25 19 134.01 − 4.33 20.67 2.80

20 120 22 19 88.20 − 7.63 14.37 21.47

21 126 19 18 82.20 − 1.00 18.00 0.00

Sum – – – – – – 327.78
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Moreover, Eq. (15) is imposed as a constraint to avoid
negative input flows:

Min SSQ ¼ ∑
N

j¼1
I j‐Î̂ j
� �2

j ¼ 0; 1; 2…;N ð14Þ

1

m
>

I j 1−Xð ÞOj
� �

I j
S j

K

� � j ¼ 0; 1; 2…;
N ð15Þ

in which, Ij= observed input flow at jth time step.

Optimization tool

The GRG is applied for finding the best Muskingum
parameters. GRG is a reduced gradient or gradient pro-
jection method that extends algorithms suitable for han-
dling linear constraints to cope with nonlinear con-
straints. The general form of the optimization problem
herein considered is as follows:

Minimize f xð Þ ð16Þ

Fig. 3 Observed and calculated
hydrographs with Runge-Kutta
4th order equations

Table 2 Calculated input hydrograph using Runge-Kutta 4th-order equations

j Time (hour) Oj (m
3/s) Ij (m

3/s) Sj (m
3) Kj1 (m

3/s) Kj2 (m
3/s) Kj3 (m

3/s) Kj4 (m
3/s) Î j (m

3/s) I j−Î j
� �

2 (m3/s)

0 0 22 22 290.3 – – – – 23.1 1.08

1 6 21 23 232.4 − 4.2 − 8.0 − 9.9 − 17.9 16.8 6.22

2 12 21 35 405.4 19.9 27.1 29.5 40.0 40.9 5.90

3 18 26 71 825.6 46.0 66.5 71.6 98.0 72.0 0.97

4 24 34 103 1373.7 61.2 87.7 93.0 125.4 95.2 7.77

5 30 44 111 1947.2 63.6 92.2 97.1 131.3 107.6 3.41

6 36 55 109 2459.9 54.3 82.1 86.4 119.3 109.3 0.28

7 42 66 100 2833.6 35.6 60.1 63.7 92.6 101.6 1.56

8 48 75 86 3037.2 14.3 32.1 34.7 55.7 89.3 3.33

9 54 82 71 3053.4 − 9.3 1.6 3.2 16.0 72.7 1.74

10 60 85 59 2895.4 − 27.5 − 26.5 − 26.3 − 25.1 57.5 1.52

11 66 84 47 2610.7 − 38.6 − 46.5 − 47.8 − 57.5 45.4 1.62

12 72 80 39 2244.1 − 44.6 − 59.2 − 61.7 − 80.2 35.4 3.58

13 78 73 32 1838.9 − 44.0 − 64.5 − 68.5 − .2 29.0 3.03

14 84 64 28 1439.6 − 38.7 − 62.5 − 67.7 − 100.2 25.3 2.68

15 90 54 24 1080.1 − 30.3 − 55.0 − 61.2 − 96.8 23.7 0.29

16 96 44 22 729.4 − 19.7 − 42.6 − 49.2 − 84.2 24.3 2.28

17 102 36 21 587.1 − 11.8 −29.5 − 35.3 − 64.0 24.2 3.20

18 108 30 20 434.9 − 7.9 −21.2 −26.2 − 49.5 22.1 2.14

19 114 25 19 334.6 − 3.2 − 13.2 − 17.4 − 35.9 21.8 2.81

20 120 22 19 265.3 − 2.6 − 9.0 − 12.0 24.7 19.4 0.40

21 126 19 18 209.5 − 1.0 − 6.7 − 9.7 − 21.9 18 0.00

Sum – – – – – – – – – 226.50
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g j xð Þ≤0 j ¼ 1; 2;…;M ð17Þ

xLi ≤xi≤x
U
i i ¼ 1; 2;…; L ð18Þ

in which, f(x), g(x), and h(x)= continuously differentiable
real valued functions, x= decision variable vector, M =
number of constraints, L = number of decision variables

[herein L = 3 (K, X, m)], and xLi and x
U
i ¼ lower and upper

allowable values for ith decision variable, respectively.
The GRG transforms inequality constraints to equal-

ity constraints using nonnegative slack variables which
are added to the constraints.

The GRC relies on the a first-order Taylor’s expansion
for minimizing a linearized objective subject to linearized
constraints at a current feasible point x. More information
about the GRG is available in Martin (2013).

Results and discussion

The performance of the methods stated in the previous
section relies on a benchmark problem (Wilson (1974)).
Figure 1 depicts a nonlinear relation between S and
[XI + (1 − X)O] with 6 time intervals (Δt = 6) and 21

Table 4 Observed and calculated
input hydrographs j Time Observed data: m3/s Calculated inflow: m3/s

(hour) Oj Ij LM Euler equations-GRG Runge-Kutta 4th-order
equations-GRG

0 0 22 22 20.4 24.1 23.1

1 6 21 23 21.2 13.0 16.8

2 12 21 35 39.2 41.6 40.9

3 18 26 71 66.0 73.1 72.0

4 24 34 103 89.5 95.1 95.2

5 30 44 111 103.5 106.3 107.6

6 36 55 109 106.8 107.7 109.3

7 42 66 100 1006 100.6 101.6

8 48 75 86 89.4 89.5 89.3

9 54 82 71 73.7 74.2 72.7

10 60 85 59 59.1 59.8 57.5

11 66 84 47 47.3 47.9 45.4

12 72 80 39 37.3 37.4 35.4

13 78 73 32 30.4 29.6 29.0

14 84 64 28 26.1 24.3 25.3

15 90 54 24 23.7 20.9 23.7

16 96 44 22 23.5 20.6 24.3

17 102 36 21 22.7 20.8 24.2

18 108 30 20 20.7 17.4 22.1

19 114 25 19 20.2 20.7 21.8

20 120 22 19 17.5 14.4 19.4

21 126 19 18 18.0 18.0 18.0

Table 3 Comparison of optimal SSQ and Muskingum parameters
by LM and GRG

Method K X m SSQ

LM 0.852 0.292 2.263 329.56

Euler equations-GRG 0.162 0.358 2.129 327.78

Runge-Kutta 4th-order
equations-GRG

0.916 0.287 1.855 226.50
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time steps (N = 21). This problem was applied to exem-
plify reverse flood routing by Das (2009).

Table 1 presents results from the Euler equations
reported by Wilson (1974). Figure 2 illustrates
observed input and output hydrographs and calcu-
lated inflow hydrograph. The optimal SSQ equals
327.78 with optimal parameters m = 2.129, X =
0.358, and K = 0.162.

Table 2 presents optimal parameters from the
Runge-Kutta 4th order equations. The minimum
(best) value of objective function is SSQ = 226.5,
m = 1.855, and X = 0.287, and K = 0.916. Figure 3
shows obs e rv ed and op t ima l c a l cu l a t ed
hydrographs. Clearly, the Runge-Kutta 4th order
equations yielded smaller (better) SSQ than the
Euler equations.

Das (2009) determined the input routed
hydrograph for the benchmark problem by Wilson
(1974) using LM as the optimization tool. In this

paper, the GRG was applied for optimization and
results are listed in Table 3.

It is seen in Table 3 that the obtained SSQ using the
Runge-Kutta 4th order equations-GRG method is 30
and 31% smaller (better) than those calculated with the
Euler equations-GRG and LM methods, respectively.
Moreover, the GRG performed better than the LM.
Table 4 and Fig. 4 show observed and calculated input
hydrographs calculated with the different methods.

The sensitivity of SSQ objective function to increas-
ing nonlinear Muskingum model parameters using Eu-
ler and Runge-Kutta 4th order equations was analyzed
and results are listed in Table 5. It is evident in Table 5
that a given parameter value was raised by 1%, while the
other two parameters were kept unchanged at their
optimal values. The results listed in Table 5 demonstrate
that the parameters from the simulation method based
on Runge-Kutta 4th order equation and GRG are more
sensitive than those from the simulation method based

Fig. 4 Observed and calculated
input hydrograph with several
methods

Table 5 Sensitivity analysis of objective function with respect to increasing nonlinear Muskingum model parameters

Method Parameters of the nonlinear Muskingum model Percent variation
of SSQ

K X m

Euler equations Optimal values 0.162 0.358 2.129 –

Sensitivity analysis 0.164 0.358 2.129 0.01

0.162 0.362 2.129 0.00

0.162 0.358 2.150 0.61

Runge-Kutta 4th order equations Optimal values 0.916 0.287 1.855 –

Sensitivity analysis 0.925 0.287 1.855 0.02

0.916 0.290 1.855 0.01

0.916 0.287 1.874 1.66
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on the Euler equations with GRC. Moreover, m was the
most sensitive parameter, as compared to K and X.

Concluding remarks

This paper applied the Euler and Runge-Kutta 4th order
equations to reverse-simulate flood hydrographs. These
two methods were coupled with GRG as the optimiza-
tion tool. Our results established the Runge-Kutta 4th
order equations exhibited better performance in this
benchmark reverse flood routing problem than the Euler
equations. Moreover, the GRG outperformed the LM as
an optimization tool in the reverse flood routing
example.
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