
UC Irvine
ICS Technical Reports

Title
Computation modules and petri nets

Permalink
https://escholarship.org/uc/item/5rt921kz

Author
Gostelow, Kim P.

Publication Date
1975

Peer reviewed

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/5rt921kz
https://escholarship.org
http://www.cdlib.org/

Notice: This Material
-may be protected

_____ py_ Copyright Law
(Title t7 U.S.C.)

_ __:1

COHPU'fATION HODULES AND PETRI NETS*

Kim P: Gostelow
Department of Information & Computer Science

University of California, Irvine

ABSTRACT
Petri-nets are used as a model of processes, and a property of a net called
Eroper termination is defined and discussed. Proper termination is argued to be
a useful property which a construct called a "module" should possess. This
property assures reentrancy and freedom from deadlock in.the ne~ and a theorem
is given concerning the substitution or interchange of modules in a larger
environment.

1. INTRODUCTION

My study of theoretical models stems from an

intPrest in system design, whereby when it is

shmm that some useful properties of a model of,

say, "proc-ess" behavior can be defined, then it

may be advantageous to build these properties into

systems from the beginning. That is, if good

theo;~ies can be found, machines could be designed

to· fit the,se theories and hence be more predict­

able, buildable, eff~cient, and perhaps elegant.

In this pap.er, the focus is on moving towards a

precise characterization of a module - a unit of

hard~are or software (or both) which is replace­

able, usable as a building block, etc. The

problem, of course, is to restrict the allowable

actions of a module so as to prevent disagree~ble

*This research was supported in part by the U.S.
/.to:nic Energy C0111mission contract no. AT(O!i-J)-34,
PA214, and in part by the National Science
Foundation under Grant GJ-1045 (Distributed
Computer SystC'm Project).

behavior within a larger environment, yet permit

enough freedom so as to ensure versatil.;ty ir.

module use.

Flow of control is the object of the in,~est:ig::t.ioc.

a Petri-net is the tool, and ~er_~~!~~na_t_J.::1!

(PT) is the primary ingredient in the charact1.:r­

ization of a module. Petri-nets can conveniently

model a wide variety of computational tasks

(including resource allocation, ~ynchronization,

and interprocess comaunication), and a net wh:.ch

is properly terminating possesses certain use~ul

properties, such as being deadlock-free and

reentr{lnt. To demonstrate, theorems concerni1··g
. [1-3]

"harmonious cooperation" and module rcplnce-

ment are given.

2. THE HODEL

2 .1 PETRI-NE"l'.S

Activity which may occur in the control of a

process is described here by mean~ of a Petri­

net[4J. An example of a Petri-net is given in

Figure 1

A Petri-Net N

(the circle named "a") contains a token (the dark

spot in place a) and place a is the only place

referenced as an input place by transition t 1
(there is a directed arc from pla~e a inbranching

to the bar named 11 t
1

11
); t

1
is en'.ihled since every

input place of t
1

holds at least one token, and

t
1

may fire whenever desired. · Wh·~n t
1

fires (no

other transition in Figure 1 can fire ~t this

point) one token is rerr:oved from each· :i.r:put ·place

(place a in this example) and one token is placed

on each of the output places b and c (there is a

directed arc outbranching from t
1

to each of placffi

b and c). This is the end of one basic operational

cycle in the interpretation of the Petri-net of

Figure 1. At this point, transitions t. 2 and t
3

are both enabled and may fire in an arbitrary

and unspecified order. However, for simplicity,

we require that only one transition be in the

a~t of firing at any given instant i~ time. (Note

that the asynchronous nature of the coriputation

is thus represented by the absence of cny

sequencing constraints; for example, b·- tween t 2
and t 3.) Once one of the transitfons 1: 2 or t 3 is

chosci1 to fire af tcr t
1

, then operation is just

ns it was for t
1

: input place tokens .~ire dimin­

ished by one and output place tokens are increased

by one. In Figure 1, one possible firing sequence

or computation is given by the string of

transition fir'.ngs <t 1 ,~ 3 ,t 4 ,t5 ,t 2 ,t 6 ,t 7 >, and Lhe

sequence Clf m.'.lr:~ings (a specification of the nurilber

of tokens on each place) generated by the above

firing sequence is <a, be, bde, hdf, bh, gh, gi, j>.

The narking "a" in Figure 1 is the ini.tial marbng,

and at any civen point in the operation of a net,

the current token configuration is called the

current marking. Marking "j" is said to be

reachable.from marking "a" or from any other

marking which may precede it (such as "bh11
,

11bc11
,

etc.). The above "bag of symbols" notation to

denote a marking is sometimes more convenient than

the formal specification of a marking as a vector,

with ea.ch component in the vector corresponding to

the count of tokens on a given place. Both

notations are used in· this paper.

2.1.1 Notation - syntax

Definition: A Petri-net is a triple N (PLACESN'

TR&\SIT.IONSN, qzeroN) where

PLACESN = a finite indexing set of elements
called (names of) places

TRANSITIONSN ~ a finite indexing set of elem~nts
called (names of) transitions
referencing places in PLACESN as
i11put places and as output plc.ces

initial marking of N, given as a vector
with one component of the vector
assigned to count the number of tokens
on one place.

Since PLACESN in net N is an indexing set, if the

current marking is q and we want to know the number

of tokens on place p, just write q • Also, it is
p

necessary to define some subsets of PLACESN: p e:

INPUT PLACESN iff p is an input place of some

transition t e: TRANSITIONSN; p E OUTPUT PLACESN i~f

p is an output. place of some transition t c

TRANSITIONSN; p r. ENTRY PLACESN iff p t OUTPUT

PLACESN; p £ EXl! PLACESN iff p i INPUT PLACESN.

Let "t references p .!!:!. N" be a predicate which is

true if p is an input place or an output ~lace of

transition t in 11et N. Finally there is a simple

syntax to a net which must be stated: every trans­

ition must have :Lt least one input place, and ref­

ences (directed ~res) are made only by transitions

2.1.2 N0tation - semantics

T0 describe the dynamics of a net, we need only

om: definition. Let the reachab.ility set RSN(q)

be the set of all markings which can be reached

from current marking q on net N.

2.2 PROCESS DESCRIPTiON

. (5)
This section comes, in part, from reference in

a slightly different formulation. The purpose is

tp_capture the notion of a process, or rather, of

a pro~ess description.

2.2.1 Definition of process and subprocess
descriptions

Given a net N (Figure 1), some subsets of the

places and transitions in N may be partitioned or

recognized as significant in their own right for

various reasons; for example, Figure 2 recognizes

Figure 2

N and T are process descriptions,
while U is not a process description

three such collections (N, T, and U) of places and

transitions. However, it is not nece~sarily true

that an arbitrary collection of subsets of places

and transitions will itself be a Petri-net. For

example, T in Figure 2 is a Petri-·net whereas U is

no~- a Pc•·ri-nct C;in;-l: t
6

£ 'lT ... :'i.NS.lTlG;,sl' <:•Hi t:::

ref~renc~ i fo N, but i ~ PL.l.CESU).

Defini_ti•">tl: Let.. i.~ = (FLACESW ~-r:::N!" rtro~:sN,

qzc~·oN) l1e a Pe tr:l.-ne t anrl let

PLACESP f; PLACESN .

'l'RANSITIONSP ~ TP ... ANSITIONSl\

(qzerop) = (qzero~)J, for all r E PLACESP.
r .. r

Then P = (PLACESP' TRAi.~SITIO:\Sp, qzerop) is a

pr~cess'description if Pis a Petri-n~t (i.e.,

if t e: TRANSITIONSP & t refer12nces r in_

N=> re: PLACESp);

That is, if P includes some subset of transitions

of N and if every ple"ce in N referencf'..d by those

transitions is also in the PLACES component of P,

then P is a process ~escription. This implies

that activity caused by the fir:i.ng of transitions

in P is confined to r. If, hom~ver, the action

of ·one process does affect anotner process, then

those processes must share some component of the5 .. r

description. For exc;mple, there may be a non-11ull

intersection of. the PLACES component of two

different process descriptions, indicating at

least one place common to both J.>rocesses. Agaj_n

in Figure 2, note that N is itself a process

desc:riptj on, and T is complete}.:1 contained withi~1

N. In such cases we sometimes say that T is a

subrrocess descrintion of process· descriprj_on N

and write T s N.

2.2.2 Operations on process descriptions

In the following, assume that P and Q are process

descriptions and that TRANSITIONSP n TRANSITIONSQ

= ~· Figure 3a shows a pair of process

descriptions P and Q which have identical nar.1es

for two places,, while Figure 3b shows process

description S which ls the result of comb::i .. ning P

and Q in a particular way:

Definition: S z:: P u Q is the union proce~~

description of process descriptions P and Q if

TRANSITIONS5 = TRANSITIONSP u TRANSITlONSQ

.PLACESS = PLACESP u PLACESQ

(1jzcr0S/r ~' {•iZt:i:o})r ; (<;ze:;.·oq\ ::ir a 1
j r r:

PL/,c__ss,_ whe1·f' (qz.:rop\. 6- 0 if r ~ PLAG!-SP,

lrn~l ~~imi.larly for Q.

Figure 3a

Two proce_ss descripti.ons P and Q

Figure 31-

S = P u Q is the
union process description of P and Q

'J'hat :i.s, S :i.s composed of the tran~.itieins of P

and of Q, the places of P and of Q, a_nd any

tokens on a place p in P or in Q will ~ppear in

S. Note that if p £ PLACESP o PLACESQ, the p

appears only once in S, p is a place shared by P

· aud Q, and p holds tokens equal in num'·-er to the

sum of tokens on p from P and Q. (Recall that

·shared transitions are riot considered here.)

·G!ven that P and Qare process descriptions, it

is easy to show that P u Q is indeed a process

description.

In Figure 4a, S and P £ S are process descrip­

tj ons. Removal of P from S leaves Q in Figure 4b

called the difference of S and P.

Definition: Q = S - P is the difference process

description of process descriptions S and P if

TRANSITIONSQ = TRANSITIONSS - TRANSITIONSP

Pi..l.CES~ (P~~CESS - PLACESP) _

u {p e: l'IACESS It £ TRA1\~I'i'IGr~SQ

h t referC'1:!£~~. p .:!:I!. s}

(qzero~) (qze~cs) - (qzero 0) ~ 0 for all
~ r · .. r - .r r

r £ l'L\CESQ.

Figure l1a

S and P. !:: S are process descriptions

Figure 4b

Q=S-P is· the difference process description

Also, the set of places common to two process

descriptions P-Q and Q is called ATTACHMENT PLACES •.

In Figure 3, P and Q have e and f in comruori and

these are the AITACHHENT PLACES of P to Q; places

c, d, f, and· g in Figure 4 are the ATTACHMENT

PLAC~S of Q=S-P to P.

3. PROPER TERHINATION

3.1 \.:HAT IT IS AUD WHY

Proper termination (introduced in [6] and general­

ized here) is a property which a process

dcccripu.on ma.y or i;:ay tt.)t po=:-sess.

sp.!..!akint~, the process dc:.;c-::-iption of Fig•_.::.·e 1 is

prupcrl)• terminating becal!s~ ..:i1ere is a bound c.:1

· t:-hc number of token~ whL.:h it ~;ill hold ~i r uny

point, nnd because it is al~a~s po~sible •o re.-!h

the "en~" of the net (represented by place j)

whc'.re tht! 11 en<l 11 in no way feeds any tokens to

other portions of the net. Such a process

deccripU.on, as witi1 all properly terminating

process descriptions, is "well-behaved" or

"structured" in the sense of an asynchronous

system. For example, Figure s·is a process

description which is not prop0rly terminating

because the token count on place b is unbounded.

__ CJ!)
~··

Figure 5

Place b is unhnunded, and this
process description is not properly tcrmine~i~J

Such behavio_r is not considi::red proper. S in

Figure 4a is not properly term7.na ting .since the

marking "ff" is reachable from qzeros, but

marking "ff" cannot reach the "end" of the. net

(place h). Lastly, consider F~gure 4a wit11 new

transitions t 1 , t
2

and place i as shown ir

Figure 6. This process description (which is not

properly terminating for thL same reasons as

Figure 4a) demonstrates thai: "isolated regions"

are the reason that the end of the net can;iot b·!

reached, where the isolated region o~ Figure 6

i~ the set of markings {ff, if, ii} which

alternate among one another. Once an isoL:ited

region has been entered, it is not possibl~ to

leave it. Note that a terminal marking, such as

ff in Figure 4a, is actually a special case of

an isolated region.

Definiti~11_: I ~ RSP (qzerop) is an isolated

reBion .. (someti.mes called a knot) of a proc•·ss

d •.... riptioa r -; .: - ' c I - -> 1~Sr

nora:;npty.

.Figure 6

'' \"t I J

Places f and i contributed to form an
isolated region with the given initial marking

Th1~s I - {ff, if, ii} is an isolated region of

Figure 6 since every marking in I can reach e\'E>.ry

other marking-in I. Again, once a marking gets

inco I, it cannot get out.

D~!.inition: Process description P is .E.!:_'?_EerlL

terminating (PT) if

(1) R~p(qzerop) I is finite,

and (2) If I is any. isolated region in

RSP(q2ero~), then for ~ny q s I:

q :,!: 0 => p e: EXIT PLJ,CESP.
p .

That- is, the only isolated regions allowed are

singleton iso.J.ated regions (e.g.,. I= {j} in

Fig~re 2) which are therefore tenninal markings,

and furthermore, 2ny place with a token in suc~1 a ·

marking must not be an input place to any transi­

tion in that process description.

Theorem: PT is decidable for ~ny process

description.

Prcof -. Keller[7] has extended Karp & Hiller's[B)

reachability tree vork to include Petri-nets, and

has shown that· finiteness of the reachability set

is decidable, :.10d thus, condition (1) of PT. Given

that the reachability ~et is finite, i~ is possible

to enumerate the isolated regions and inspect the

markings for condition (2) of PT. D

Also, let PTP(q) ~ RSP(q) he the set of :fsolnted

~-8..?.~ in RSI' (q) if P is a PT process description,

.:!!'h.' Ll ;>T;.:fq) = y if Pis 1;ot ~·T. Thu~~ PT11 iq)

is a, !''..t of sets, \..'here the latter set:::: ;:ire cac:~1

.:tn isol:it:cd Tf'8ir'~ in RSP(q) \·.'h(::l P is PT with

)nit bl marking q, but PTP (q) .is empty if P is

r.at J>T. Not~ thn.::: a process de&cription P may be

)''f with initial marking q, but not PT wi~h initial

mnrking q'/q.

~. 2 RESOURC!: /.LLOCATION, DEADLOCK, AND HODUI..ARITY

Complex forms of resource allo~ation are easily

modelled by Petri-nets. Figure 7 shows an

Figure 7

Resou;~ce allocation wj :_ h Petri-nets

example where places b and c each represent a

resource to he allocated and returned i& one of

two possible ways depending upon a decision made

by transition t 2 or t 3 ~ (The small numeral 2 in

the figure next to a directeci arc means two

tokens are ioplied by actions directed along that

arc - thus, two tokens arc placed on place c by

tiring t 1). In general, allocation dependencies

and conditions far beyond any present computer

system's capabilities can be represented. And

with this capability comes the problem~! dead­

lock, or rather, how to ensurr freedom from

deadlock and obtain "harmonious cooperat:i.on" in
[1-3]

the words of Habermann and Dijkstra • ·

[9) [3]
llnhermann , Holt , and others have developed

systems to avoid or detect deadlock - that lock­

in~ condition due to unfortun.-i Le scheduling of

n~~u:-r: ts ! 01: rLsourcc~ \:~lich ~a uses e svs t~m tl.)

cmne to r~ gri.r.t75.n3 halt. Ho·.·:t:ver, thes(: previous

r:tud:ic.·s :!ave e;,.be..ided tbcir systems in cu.npara­

t:i.vely sL:rj_ct ·.~nv:-.ron!nents. For exan ;>le, no

alteli1dti·vl! requests, co:::idit:!or1.::;.ls, or :.ariable

paths were allowed, and single initial illaximum

resource use had to be staled with a promise never

to exceed· that raaximum~ ·These assumptions allowed

~ fairly straight-forward and simple definition of

"deadlock" itself. However with the power of

Petri-nets to express much more sophisticated

resource systems, the definition of just what

constitutes. "deadlock" becomes a list of all the

ways in which control fails to behave "properly''.

It \-las apparent th3.t the:..·e was no purpo!;e to this

approach, largely because the problem WC!S not

really confined simply to "resources" but to "flow

of coi~trol" in geL==-.ral. This is especially clenr

when one ;·eal:i..zes that in a Petri-net representinr,

process/resou!"ce interaction, there is rio distinc­

tion between -resou:::-ces and program control con­

ditions; they are identical. Since "harmonious

cooperation" or "proper flow" was the original

goal, thfr ·should te the case. regardless of the

presence or not of "resonrce <illocation11

specifications.

Proper termination fills tl&e need. Thus> rather

than define sowe rather complex condition called

"deadlock" and show that it does not occur, the

approach here is to show that proper termination

guarantees har~onious cooperation - the original

goal. Hannor.ious cooperation of a finite num­

ber of process descriptions P
1

, P2, ..• P,

d f . db H b d D''k [l,Z]n as e ine y · a ermann an 1J stra , means

that th~ system P1 u P2 u ••• u Pn will complete

if for each P. :
1

(1) only. a f:i-nite numbe1~ of firin~s of

transitions in Pi are necessary for Pi

to cornpl~te, .
and (2) once a transition in Pi become~ enabled,

either it becomes disabled due to the

firing of other transitions, or it fires

within a finite period of time (the
[8]

fini tc dcli21. propert:y) •

J,c_,;,uw: (~i.ven .::i fin:~tc ~/stem of P' .•ccs~ dt~sr·,-.,_p­

tfons rl, ••• , pn c.nd tL~ above condit:ioi'S, H

thP syst~m P1 u r 2 u .•• u Pn is PT then thcr~ is

harmonious cooperation.

Proof -],et P be the union process clescriptio11 of

P1 , .•. , Pn. Now, if all enabled transitions

e'Ventually fire, system behavior' must imply

either

(a) entering .'.l loop and never selecting the

exit (infinite loop),

(b) entering an infinite ·path of distinct
markings in the reachability set,

or (c) entering a finite isolated region.

But (a) is not possible by conditions (1) and (2)

of harmon:f.ous cooperation, and PT implies that (b)

cannot occur, so (c) must be the case. But, PT

implies_ that the only isolated regions which are

possible are those \-:hich are also t~ri:;.inal

markings. These terminal markings are co;nposed

only of EXIT PLi\CES, so no transition can be

partially enabled yet wait forever to be fired

(i.e., hung-up). Thus, the syst~m completes. D

The converse is not true only because, within the

lanzuage cif Pct!'i-nc~s, there i:> no way to distin-

guish a control condition from a resource. Thus>

some terminal m2rkin~ could simply represent a

control hang-up as opposed to a deadlock of

resources> in which case strict adherence to the

definition of "harmo!1ious cooperation" would

allow such a marking. But since this fact (that

the hang-up is due to ·control and not due to

-resources) cannot be represented with Petri-nets,

there is no way to distinguish it from the case

of hang-up due to resource allocations. l~wever,

·the question also arises, should such a distinc­

tion be made? I think not since hang-up clue to

resources or hang-up due to control i.s sL.11

'hang-up, but rather than change the defin:i.tion

of "harmon:i.ous cooper a tio11" the lemma is ;: llowed

to remain as above.

The condition of PT also allows detection of such

cases as processes requesting more resources th3n

are available, since it appears in n Petri-net

simply .as D control hang-up cond~tion. PT

• . l

unif lcs •·l:c proh.~er.. I \lill - 1 cniark h•·re th~.t ;o:.;1e

work on rapid clecif.'ion of the !'T con di tL"n ha:.;

been investigate}<·] and a significant c.1:ensi::m

of tha~ work is to be r~porte<l on cto1cl:~

i.. MODULARITY -----

)

Modularity becorn-:s important because it ::..s rdce to

l:>uild upon the w.·.rJ:. of others (utilize tl.eh

modules), and be~au~e our only really useful

method of solving large problems is to break ;_ ~1e

problem into severai smaller ones, solve each of

these, and then combine the solutior:s.

The approach ~aken here is subprocess replacement.

For example, Figure 8a gives a PT system P con-·

Figure Sa

Process descriptions P and Q ~ P

taining subprocess description Q £ P > and the

point is to replace Q with R (Figure Bb), obtain

Figure Sb

Process description R

S = (P-Q)u R (Figure 8c), and determine under

what condltio"ns we can be sure that S will behave

just like P belwvcs for any process descriptions

P, Q S P, and R •

Figure Be

Process description S

In general, to achieve this e;ruivalence in

behavior between P and S, Q and R (considered as

completely isolated systems) must have iJentical

input-output terminal characteristics where the

terminals are the ATTACHMENT PLACES. This is

done by requiring Q and R, each in a stand-alone

environment, to be.identically PT. Furthermore,

Q and R must behave identically when they are ·

placed into the environment P-Q. This i~ equiva­

lent to saying that the subsystems Q and R must

behave identically "under load". This latter con­

dition is as$ured by local structural conditions

called 11proper substitution", and the fact that P

and Q are PT.

In the f ollowh1g, let P, Q s P, and R be process

descriptions, and assume

.· TRANSITIONSr-Q n TRANSITIONSR = cf>.

Defjnition: R is properly substituted for Q in P

to form S = (P-Q) u R if

(1) qzeroQ = O, and qzeroR O,

(2) ·p € INPUT PLACESQ => p i INPUT PLACESP-Q'

p € INPUT PLACESR ,,...,> p t INPUT PLACESP-Q'

and(3) the following relation holds for the

ATTACHMENT PLACES:

ATTACIIHENT PUCES = PLACESQ n PLJ\CESR ==

PLACESP-Q n PLACESQ = PLACESP.:.Q n P_LACESR.

Theor~: Let R be proper.ly substituted for Q

in~ to· give S ~ (P-Q) u R, ond let q be ony

~ .. ·

m:nl~inr; ·,.,j th toke.as onl)· on piaces :I.n lc'l 'fACHl-IKTI

PLACES. If (Vq) (Q and Rare PT wlth init:I.al

marking q, .:.i.nd ft.rtnermorc, PTQ(q) = PTf<(q)), tl1en

PTP (qzero) = PTS (<!zero) where qzero is ;·;;!strictcd

to tokens only on places in P!...ACESP-Q'

Proof_ - (schema) - By·the PT hypothesis, Q and R

have identical PT behavior at the ATTACHNENT
.)

PLACES (external terminals) w!"ien in an isolated

~nvironment. Hence, to ens01~e their identical

-behavior in the environment P-Q, we need only

respect that isolation.

(A) Q and R can receive and give tokens in P-Q

only through the ATTACil.HENT PLACES, either as

initial tokens or due to firings in P-Q, by condi­

tion (1) of proper substitution and by the re­

striction of qzero to PLACESP-Q in the theorem

statement. Please see Figure 9.

Figure 9

Q(R) receive and give tokens only
via the pi in .ATTACHHENT PLACES

1) With respect to Q: ATTACHMENT PLACES

PLACESP-Q n PLACESQ are the only elements in

conunon between P-Q (condition (3) of proper sub­

stitution). Furthermore, each place pc ATTACHMENT

PLACES is use~ uni-directionally by condition (2)

of proper substitutioq. That is, P-Q and Q are

behav"iorally isolated except at the ATTACHMENT

PUCES. Thus, the behavior of Q in P-Q is com­

pletely characterized by the PTQ(q) hypothesis for

all possible inI?uts from P-Q.

2). With respect to R: R's behavior in the

environment P-Q js identical to its behavior in

isolation, for the same reasons as for Q above.

3). With respect to P-Q: P-Q receives and

gives tokens to Q nnd R only via .ATTACHMENT PLACES,

and Q and R have no inltJal tokens by condition (1)

0f pr=~cr substitution. Hy conditions (2) and

~ 1) of prop•~f f;iib~~itution, P-Q :I;., behaviorally

icolatcd frcm Q and R.

(H) Dae to the behavioral i~olation demonstrated

!n part A of P-Q to Q (R), and the PT hypothesis

cf Q(R), tokens input to Q (R) at the ATTACHHENT

Y:',J\CES from P-Q must output i rom Q (R) at

ATTACHHENT PI,ACES. But the PT equivalence of Q

and R requires that P-Q see no.distinction .in

reachability from input to Q and output from Q,

to that of R.

(C) Now for the PT conditions of P and S:

Condition (1) - The ideatical PT behavior of

Q nnd R in P-Q assures that jRSP(qzero)j is

:-:!.nH~: <=> j RSS (qzero) I is finite.

Condition (2) - Now, Ip is an isoldted

region in RSP(qzero) iff

Case 1) There is no traversal through

Q (R), and thus IP~ IS in S.

Case 2) There is traversal through

Q <=> there is traversal th~:ough

R <=-> 18 exists in S for the sam8

reasons of reachability that rp·exists

in i~.

In either casr~, IS is in S. }~ow, the identical

PT behavior of: Q and R implies that EXIT PLACE.SQ

EXIT PLACESR, 8.nd thus EXIT PLACESP == EXIT PLACES
8

•

Finally, q £ lp and qp ~ 0 only if p £ EXIT

PLACESP <=> q' £IS and q~ ;I= 0 only if p £EXIT

PLACES
5

, since the presence of Q or R has no

effect on such terminal markings (Q and R never

retain any to1~cns internally due to their PT

behavior). 0

. 5, CONCLUSIONS

Petri-nets were used here as a model of asynchro­

nous system operation, and a condition of control

flow called proper termination was described.

This property constrains activity to & point where

such systems are free of dca<llock and can be used

ns r.cplaccablc subsystems, as shown in the paper. . .

However, proper terminc_1tion also allows n wide

latituJe ln behavior, and .1 feel that the

appropriate line b~~ween module vcrPntility and

restrictive beha.vior lies near that of proper

termin.:ition.

6 I l!CKNOWLEDGE~·fENTS

,
V. Cerf, G. Estrin, and S. Volansky contributed to

early work in prO(Jt!r ten:iination concern::.ng its

definition and decislon algorithms, and

T. van Weert contributed to the formulation of

process description.· Also, thanks to Wil Plouffe

for his reading of the paper, and to Peg Gray for

her typing.

7. REFERENCES

[1] Ha~errnann, A.N. On the Harmonious Coopera­
ti:~:i of Abstr3ct Hachine£~, Ph.D. Thesis,
Mathematics Dept., Technische Hogcschool
Eindhoven., Eindhoven, The Neth.::rlan::l.s, 1967.

[2] Di~ikstra, E. "Cooperating Seqw~ntial.
Prc..cesses" in Programming Langua~, F. Gent}ys,
ed.~ Academic Press, New York, 1968.

[3J Holt, R.C. On Deadlock in Computer
~~terns, Technical Keport CSR~-6, University
of Toronto, April, 1971.

[4) Baer, J.-L. "A Survey of Some Theo-
retical Aspects of Multiprocessing", Computing
Surveys, 5,1 pp. 31-80, 1973.

[5] Gostelow, K.P. and
T.J. van Weert Processes and Networks,
Report from Stichting Academisch Rekencentru~1
Amsterdam/Rekencentrum Rijksuniversiteit
Groningen~ The Netherlands.

[6] Gostclow, K.P. and
V.G. Cerf,
S, Volansky,
G. Estrin "Proper Termination of
Flow of Control in Programs Involving Con­
current Processes", Proceeding_s ACM National
Conference, August, 1972 •

[7] Keller, R.M. Vector Replacement Systems:
A.J'orm3l~3m for; Modeling Asynchronous Systems,
TR 117, Dept. of EECS, Princeton University,
January, 19711.

[8] Karp, R.M. and
ILE. Mill~r "Parallel Program Schemata",
J. of Computer & System Sciences, 3, 2,
pp. 147-195, May, 1969.

[9) llabcnnann, A.N. "Prevention of System
Detidlocks" CACM, 12, 7, pp. 373-377, July,
1969. -~

