UC Irvine
ICS Technical Reports

Title
Computation modules and petri nets

Permalink
https://escholarship.org/uc/item/5rt921k4

Author
Gostelow, Kim P.

Publication Date
1975

Peer reviewed

eScholarship.org

Powered by the California Diqgital Library

University of California

https://escholarship.org/uc/item/5rt921kz
https://escholarship.org
http://www.cdlib.org/

Notlce: This Materlal
- may be protected
~_by Copyright Law

(Title 17 U.S.C.) -

COMPUTATION MODULES AND PETRI NETS#* ’

Kim P. Gostelow
Department of Information & Computer Science
University of California, Irvine

c ABSTRACT
Petri-nets are used as a model of processes, and a property of a net called

proper termination is defined and discussed.

Proper termination is argued to be

a useful property which a construct called a "module" should possess. This
property assures reentrancy and freedom from deadlock in the net, and a theorem
is given concerning the substitution or interchange of modules in a larger

envircnment.

1. IRTRODUCTION

My study of theoretical models stems from an
interest in system design, whereby when it is
shoun that some gseful properties of a model of,
say, "process" behavior can be defined, then it
may be advantageous to build these properties into
‘systems from the beginning. That is, if good
theories can be found, machines could be designed
to fit these theories and hence be more predict-

able, buildable, efficient, and perhaps elegant.

In this paper, the focus is on moving towards a
precise characterization of a module - a unit of
hardware or software (or both) which is replace-
able, usable as a building block, etc. The
’problem, of course, is to restrict the allowable

actions of a module so as to prevent disagreeable

*This research was supported in part by the U.S.
Atomic Energy Commission contract no. AT(04-3)-34,
FA214, and in part by the National Science
Foundation under Grant GJ-1045 (Distributed
Computer System Project).

behavior within a larger environment, yet permit

enough freedom so as to ensure versatil<ty in

module use.

* Flow of control is the object of the ianvestigstior,

a Petri-net is the tool, and proper terminati:un
(EI) is the primary ingredient in the charactnr-
ization of a module. Petri-nets can conveniently
model a wideﬂvariety of computational tasks
(including resource allocation, synchronizatiom,
and Interprocess communication), and a net which
is properly terminating possesses certain uselal
properties, such as being deadlock-free and
reentrant. To demonstrate, theorems concernivg

wl[1-3]

“harmonious cooperation and wodule replace-

ment are given.
2. THE MODEL
2.1 PETRI-NETS

Activity which may occur in the control of a

process is described here by means of a Petri-

net[AJ. An example of a Petri-net is givén in

Figuse 1 aud the net operates as folls-s: place a

Figure 1
A Petri-Net N

(the circle named "a") contains a token (the dark
spot in place a) and place a is the only place
referenceg as an input plaée by transition ty
(there is a directed arc from place a inbranching
to the bar named "tl"); t; is ensbled since every
input place of tl holds at least one token, and
t; may fire whenever desired. When ty fires (no
other transition in Figure 1 can fire at this
- point) one token is removed from each input place
~ (place a in this example) and one token is placed
on each of the éutgut places b and ¢ (there is a
directed arc outbranching from t, to each of places
b and c¢). This is the end of one basic operational
cycle in the interpretation of the Petri-net of
Figure 1. At this point, transitions tz and t3
are both enabled and may fire in an arhitrary
and unspecified order. However, for simplicity,
we require that only one transition be in the
act of firing at any given instant in time. (Note
that the asynchronous nature of the computation
is thus represented by the absence of ény
seqpencing constraints; for example, brtween t2
and c3.) Once onc of the transitions ty or t3 is
chosen to fire after tl, then operation: is just
as it was for ty: input place tokens .are dimin-
ished by one and output place tokens are increased
by one. In Figure 1, one possible firing sequence
or computation is given by the string of

transition firings <tl,§3,t4,t5,té,t6,t7>, and the
sequence of markings (a specification of the number
of tokens on each place) gencrated by the above
firing sequence is <a, bc, bde, bdf, bh, gh, gi, j>
The marking "a" in Figure 1 is the initial marking,
and at any given point in the operation of a net,

the current tokem configuration is called the

current marking. Marking "j" is said to be

reachable from marking "a" or from any other

marking which may precede it (such as "bh", "bc",
etc.). The above "bag of symbols" notation to
denote a marking is sometimes more convenient than
the formal specification of a marking as a vector,
with each component in the vector corresponding to
the count of tokens on a given place. Both

notations are used in this paper.

2.1.1 Notation ~ syntax

Definition: A Petri-net is a triple N = (PLACESN,

TRANSITIONSN, qzeroN) where

PLACES, = a finite indexing set of elements
called (names of) places

TRANSITIONS & = a finite indexing set of elemcnts
called (names of) transitions
referencing places in PLACESy as
input places and as output places

qzeroN = initial marking of N, given as a vector
with one component of the vector
assigoed to count the number of tokens
on one place.

Since PLACES in met N is an indexing set, if the
current marking is q and we want to know the number
of tokens on place p, just write qp. Also,'it is
necessary to defime some subsets of PLACESN:- PE
INPUT PLACESN iff p is an input place of some
transition t € TRANSITIONSN; p € OUTPUT PLACESN iff
P is an output‘place of some transition t €
TRANSITIONS; p € ENTRY PLACES, iff p ¢ OUTPUT
PLACES,; p € EXIT PLACES, 1ff p ¢ INPUT PLACES .
Let "t refercnces p in N" be a predicate which is
true if p is an input place or an output place of
transition t in uet N. Finally there is a simple
syntax to a net which must be stated: every trans— -
ition must have nt least one input place, and ref-

ences (directed ares) are made only by transitions

to ;laces —~ never bLetveen two pliaces or between

2.1.2 Nctation - semantics

To describe the dynamice of a net, we need only

one definition. Let the reachaﬁility set RSN(q)

be the set of all mérkings which can be reached

from current marking q on net N.

2.2 PROCESS DESCRIPTION

This section comes, in part, from reference[S] in
a slightly different formulation. The purpose is
to capture the notion of a process, or rather, of

2 process description.

2.2.1 Definiticn of process aud subprocess
descriptions

Given a net N (Figure 1), some subsets of the
Places and transitions in N may be partitioned ox
recognized as significant in their own right for

various reasons; for example, Figure 2 recognizes

Figure 2

N and T are process descriptions,
while U is not a process description
three such collections (N, T, and U) of places and
transitions. However, it is not necessarily true
that an arbitrary collection of subsets of places
and transitions will itself be a Petri-net. For

example, T in Figure 2 is a Petri-net whereas U is

not a Perri-net (since te € TRANSLTLONS,, aud .
v .
references i in N, but i ¢ PLACESU).

Definition: Lel W = (FLACES

TR&N(ITIONSQ,
3

N,
qzcroN) e a Parri-net and let
PLACESP [PLACESN
TRANSITIONSP [= TRANSITIONSR
. 2 -
(qzeroP)r = (qzeroN)r, for 211l r € PLAC&SP.
. Then P = (PLACESP, TRANSITIONSP, qzeroP} is a
pr&cess‘description if P is a Petri-net (i.e.,
if t & TRANSITIONS

N=reg PLACESP);

p&t references r in

That is, if P includes some subset of transitiouns
of N and if every plece in N referenced by those
transitions is also in the PLACES component of P,
then P is a process description. This implies
that activity caused by the firing of transitioas
in P is confined to Y. If, however, the action

of -one process does affect anotner process, then
those processes must share some component of their
description. Tor exsmple, thers may be a non-null
interseétion of the PLACES component of two
different process descriptions, indicating at
least one place common to both procesées. Again
in Fiéure 2, note that N is jtself a process
description,"and T is completely contained within
N. In such cases we sometimes say that T is a

subrrocess description of process description N

and write T € N.
2,2,2 Operations on process descriptions

In the following, assume that P and Q are process
descriptions and that TRANSITIONSP n TRANSITIONSQ
= ¢. Figure 3a shows a pair of process
descriptions P and Q which have identical nanes
for two places, while Figure 3b shows process
description S vhich is the result of combining P

and Q in a particular way:

Definition: S = P u Q is the union proccéi
description of process descriptions P and Q if
TRANSITIONSS = TRANSITIONSP v TRANSITIONSQ

.PLACESS = PLACESP u PLACESQ

azevo.} or ali r £

- (yzero ; .
A O if r ¢ PLACKS

S}r s (WZ€IO,\r
PLAC"SS,_whnro (qzuroP) P’

and cimilarly for Q.

Figure 3a

Two process descriptions P and Q

Figure 31

S =P uQis the
union process description of P and Q

That is, S is composed of the tranaiti5ns of P
~and of Q, the places of P and of Q, and any

tokens on a place p in P or in Q will zppear in

ﬁ. Note that if p € PLACESP n PLACESQ, the p
appears only once in S, p is a place shared by P
-aud Q, and p holds tokens equal in num“er to the
suh of tokens on p from P and Q. (Recall that
-shared transitions are not considered here.)
_Given that P and Q are process descriptions, it
is easy to show that P u Q is indéed a process

description.

In figure 4a, S and P ¢ 8 are process descrip—
tions. Removal of P from S leaves Q in Figure 4b

called the difference of S and P.

Definition: Q = S -~ P is the difference process

description of process descriptions § and P if

TRANSITIONSQ = TRANSITIONSS - TRANSITIONSP

PLACES, = (PLACESy - PLACES,)
. S _
v {p e rracus, |c e TRANSITIONS
A t references p in S}

(qzeroQ)r = (qzercs)r - (qzerop)r 2 0 for all
Y e PLACEsq.

Figure 4a

S and P.c § are process descriptions

Figure 4b

Q=5-P is' the difference proceés description

Also, the set of places common to two process

- descriptions P-Q and Q is called ATTACHMENT PLACES. .

In Figure 3, P and Q have e and f in common and
these are the ATTACHMENT PLACES of P to Q; places
c, d, £, and' g in Figure 4 are the ATTACUMENT

PLACES of Q=S-P to P.

3. PROPER TERMINATION

3.1 WHAT IT IS ARD WHY

Proper termination (introduced in [6] and general-

ized here) is a property which a process

p
. desceription may or way not petsess. Infeswilly
spuaking, the process deseriprion of Figure 1 is
properly terminating because there is a bound on
-the number of tokens which it will hold ar any
point, and because it is always pocsible <o re-s:h
the "enc" of the net (represented by place j)
vhere the "end” in no way feeds any tokens to
other portioné of the net. Such a process
description, as witii all properly terminating
process descriptions, is "well-behaved" or
"structured" in the sense of an asynchroncus
system. For example, Figure 5'is a process
description which is not properly terminating

because the token count on place b is unbounded.

Figure 5

Place b is unbnunded, and this
process description is not properly terminaiing
Such behavior is not considered proper. £ in
' Figure 4a is not properly termiunating since.thc
marking "ff" is reachable from qzerog, but
marking VEf" cannot reach the "end" of the net
(place h).

transitions ts t

Lastly, consider Figure 4a with new
2 and place 1 as shown ir
This process description (which is not

Figure 6.
properly terminating for th. same reasons as
Figure 4a) demonstrates that "isolated regions"
are the reason that the end of the net cannot b:
reached, where the isolated region of Figure 6
is the set of markings {ff, if, ii} which
alternate among one another. Once an isolated
region has been entered, it is not possible to
leave it. Note that a terminal marking, such as
ff 4in Figure 4a, is actually a special case of
an isolated region.

Definition: I ¢ RSy, (qzeroP) is an isolated

region (sometimes called a knot) of a process

Prcof - Keller

doLogiption T ¢ -' ¢ I -> RS, \¢'y =T -=nd ¥ ie

noncapty.

~ Figure 6

Places f and i contributed to form an
isclated region with the given initial marking

Thus I = {ff, 5f, ii} is an isolated region of
Figure 6 since every marking in I can reach every
other marking -in I. Again, once a marking gets

ince I, it cannot get out.

Delinition: Process description P is properly
terﬁinating (rT) it
(6)] l RSP(qzeroP) [is finite,
an¢ (2) If ¥ is any isolated region in
RSP(qzerof),
qp ¢ 0_=9 p € EXIT PLACES

then for 2ny g € It
P

That is, the only isolated regions allowed are
singleton isolated regions (e.g., I = {j} in
Figure 2) which are therecfore terﬁinal markings,
and furthermorc, amy plaée with a token in such a-
marking must not be an input place to any transi-

tion in that process description.

Theorem: PT is decidable for any process

description, .
t73 has extended Karp & Miller's[8]
reachability trece work to include Petri-nets, and
has shown that: finiteness of the reachability set
is decidable, and thus, condition (1) of PT. Given
that the reachability set is finite, it is possible
to enumerate the isolated regions and 1nspect the

markings for condition (2) of PT. [J

Also, let YTP(q) c Rsp(q) be the set of isolated
repions in RSP(q) if P is a PT process description,

and ot PTF(Q) = ¢ 1f P is wot MT. Thus, PTyiq)
is a cot of sets, where the latter setc are each
an isolnated regior in RSP(q) wien P ois PT with
initial marking q, but PTP(q) is empty 1f P is
rnot PI. Note that a process déscription P may be
PT with initial marking q, but not PF with initial

marking q'#q.
%.2 RESOURCEZ ALLOCATION, DEADLOCK, AND HODULARITY‘

Complex forms of resource allocation are easily

modelled by Petri-nets. Figure.7 shous an

Figure 7

Resouiice allocation wi:h Petri-nets

eiample vhers places b and c each represent a
resource to bte allocated and returned i one of
two possible ways depending upon a decision made
by transition t2 or t3; (The small numeral 2 in
the figure next to a directed arc means LWO
Atokens are implied by actions directed along that
arc - thus, two tokens arc placed on place ¢ by
firing tl). In general, allocation dependencies
and conditions far beyond any present computer
systém's capabilities can be represented. And
with this capability comes the problem of dead-
lock, or rather, how to ensurc freedom from
deadlock and obtain "harmonious cooperation” in

the words of labermann and Dijkstra[1“33.-

9] [3]

Hahermann[, Holt , and others havé developed
systems to avoid or detect deadlock - that lock-

ing condition duc to unfortunate scheduling of

reguosts for rcsources vhich causes 2 svstem o
come to a prinding halt. MHosever, thesc previous
studies have ewbedded thielr systems in coapara-
tively strict onvironments. Yvor exanple, no
alternative recuests, conditionals, or ;ariable
paths were allowed, and single initial maximum
resource use had to be staled with a promise never
to exceed that maximum: ‘These assumptions allowed
a fairly straight-forward and simple definition of

"deadlock" itself. _However with the power of

‘Petri-nets to express much more sophisticated

resource systems, the definition of just what

_constitutes "deadlock" becomes a list of all the

ways in which control fails to behave "properly".
It was apparent that there was no purpese to this
approach, largely because thelproblem was not
really corfined simply to "resources" but to "flow
of control" in ger=ral. This is especially clear
when one sealizes that in a Petii—nét representing

process/resource interaction, there is po distinc-—

tion beiween resources and program cointrol con-—

ditions; they are identical. Since "harmonious

cooperation" or "proper flow" was the original

_'goal, this sheuld te the case regardless of the

presence or rot of "resonrce allocation”
specifications. .
H

Proper termination fills tke need. Thus, rather
than define some rather complex condition called
"deadlock" and show that it does not occur, the

approach here is to show that proper termipation

guarantees hazmonious cooperation - the original

goal. Harmornious cooperation of a finite num-

-ber of process descriptions Pl’ PZ’ oo P

. L3 n ?
as defined by ‘Habermann and Dijkstra[l’zj, means

that thg system Pl u P2 U'... u Pn'will complete
if for each Pi: :
(1) only a finite number of firings of

transiticns in Pi are necessary for Pi
‘ to complete,
and (2) once a transition in Pi beco&es enabled,
either 11 becomes disabled due to the
firing of other transitions, or it fires

within a finite period of time (the
[8])

finite dulay property

Loana: Given 2 finite cystem of process descrip- unifies vhe probier. T will semark beve cthut some

tions Pl’ ceey Pn and tl.e above couditioirs, if work on rapid decirion of the T conditinn has
P . L6 . crs .
the system P1 u PZ 2 ... U P is PT then there is becn investlgateu[and a siguificant ertensian
n .

harmonicus cooperation. . of that work is o be reported on stoitl:.

Proof - let P be the union process description of

Pl, PN Pn. Now, if all enabled transitions S 4. MODULARITY

eventually fire, system behavior must imply

Modularity becomes impgrtant because it zs nice to

either)
(a) entering a loop and never selectipg the' build upon the w.rk of others (utilize tlei:
exit (infinite loop), ’ . moduies), and because our only really useful
(b) entering an infinite path of distinct method of solving large problems is to break ihe
markings in the reachability set, problem into several smaller ones, solve each of
or (c) entering a finite isolated region. these, and fhén combine the solutions. .
But (a) is not possible by conditions (1) and (2) ’
of harmonious cooperation, and PT implies that (b) The approach taken here is subprocess replacement.
camnot occur, so (c) must be the case. But, PT . For example, Figure 8a gives a PT system P con-~

implies that the only isolated regions which are
possible are those vwhich are also terminal
narkings. These terminal markings are composed °
only of EXIT PLACES, so no transition can be '
partially enabled yet wait forever to be fired
(i.e., hung-up). Tbus, the system completes. []
The converse is not true only because; within the

language of Petri-ncts, there iz no way to distin—

guish a control condition from a resource. Thus,

some terminal marking could simply represent a Figure 8a
control hang-up as opposed to a deadlock of : - Process descriptions P and Q ¢ P
resources, in which case strict adherence to the . .
. ? ! . to t taining subprocess description Q ¢ P, and the
definition of "harmonious cooperation' would . . .

t 1Lous coope " woul _point is to replace Q with R (Figure 8b), obtain

allovw such a marking. But since this fact (that
the hang-up is due to -control and not due to
-resources) cannot be represented with Petri-nets,
there is no way to distinguish it from the case
of hang-up due to resource allocations. lowever,
- the question also arises, should such a distinc-
tion be made? I think not since hang-up cue to

resources or hang-up due to control is st:ll

“hang-up, but rather than change the definition

of "harmonious cooperation" the lemma is sllowed : H
to remain as above. P Figure 8b .
S - Process description R

The condition of PT also allows detection of such S = (P-Q)u R (Figure 8c), and determine under
cases as processes requesting more resources than what conditions we can be sure that S will bechave
are avallable, since it appears in a Petri-net just like P behaves for any process descriptions

simply as a control hang-up condition. PT P, Q¢ P, and R, N L i o

Figure 8c

Process description S

In general, to achieve this'équivalence in
behavior between P and S, Q and R (considered as
completely isolated systems) must have identical
input-output terminal characteristics where the
terminals are the ATTACHMENT PLACES. This is
done by requiring Q and R, each in a stand-aldne
environmeﬁt, to be identically PE. Furthermore,
Q and R must behave identically when they are
placed into the environment P-Q. This is equiva-
lent to saying that the subsystems Q and R must
behave identically "under load". This latter con-—
dition is assured by local structural conditions
called “proper substitution", and the fact that P

and Q are PT. ..

In the following, let P, Q € P, and R be process
descriptions, and assume
A'TRANSIlIONSP_Q n TRANSITIONSR = ¢.

Definition: R is properly substituted for Q in P
to form § = (P-Q) u R if

= 0, and qzero

(¢)) qzeroQ R= 0,
(2) -p € INPUT PLACESQ = p ¢ INPUT.PLACESP_Q,
P € INPUT PLACES, => p ¢ INPUT PLACES
the following relation holds for the
ATTACHMENT PLACES:

ATTACHMENT PLACES = PLACESQ

PLACES, n PLACES = PLACES.
P-Q Q P=Q

P-Q’
and (3)

n PLACES, =
n PLACES.

Theorem: Let R be properly substituted for Q
in T to-give § = (P-Q) v R, and let q be any

marking with tokcus ouly on places in A)TACHMEIT
PLACES.,
marking ¢, cnd furthermore, PTQ(q) = PTR(q)), then

If (vq) (Q and R are PT with initial

PTP(qzero) = PTS(qzcré) vhere qzero is rastricted
to tokens only on places in PLACESP_Q.

Proof - (schema) - By-the PT hypothesis, Q and R
have identical PT bchavior at the ATTACHMENT
PLACES (cXternél termiaals) vhen in an isolated

environment. Hence, to ensure their identical

_behavior in the environment P-Q, we need only
‘respect that isolation.

“(A) Q and R can receive and give tokens in P-Q

only through the ATTACHMENT PLACES, either as

initial tokens or due to firings in P-Q, by coundi-

“tion (1) of proper substitution and by the re-

P-Q in the theorem

Please see Figure 9,

striction of qzero to PLACES

statement.

Figure 9

Q(R) receive and give tokens only
via the pi in ATTACHMENT PLACES

1) With respect to Q: ATTACHMENT PLACES =

PLACES

P-Q n PLACESQ are the only elements in

fcommon between P-Q (condition (3) of proper suk-

stitution). Furthermore, each place p € ATTACEMENT
PLACES is used uni-directionally by condition (2)
That is, P-Q and Q are
behaviorally isolated except at the ATTACHMENT
PLACES.

pletely characterized by the PTQ(q) hypothesis for;

of proper substitution.

Thus, the behavior of Q in P-Q is com-

all possible inputs from P-Q. : i
2) With respect to R: R's behavior in the
environment P-Q is identical to its behavior in -
isolation, for the same reasons as for Q above.

3). withlrespect to P-Q: P-Q receives and

gives tokens to Q and R only via ATTACHMENT PLACES,

anﬁ Q and R have no initial tokens by condition (1)

of pf:;cr substitution. By conditions (2) and

(3) of propar substitution, P-Q io behaviorally_
icoiated frcm Q and R. '
(k) Due to the behavioral i&olation demonstrated
.fﬁ pari A of P-Q to ' Q (R), and the PT hypothesis
cf Q(R), tokens input to Q (R} at the ATTACHMENT
FLACES from P-Q must output {rom Q (R) at '
ATTACHMENT PLACES.

and R requires that P;Q see no -distinction in

But the PT equivalence of Q

reachability from input to Q and output from Q,

to that of R.

(C) Now for the PT conditions of P and S:

' Condition (1) - The ideatical PT behavior of
Q 2nd R in P-Q assures that]RSP(qzero), is
rinits <=]RSS(qzero) | is finite.

Condition (2) - Now, I, is an isolated
region in RSP(qzero) iff
Case 1)
d (R), and thus IP

Case 2) There is traversal through

There is no traversal through
= IS in S.

Q <> there is traversal through
R <> IS exists in S for the same
reasons of reachability that IP'exists
in P, »
In either case, IS is in S. FNow, the identical
PT behavior of Q and R implies that EXIT PLACE_SQ =
EXIT PLACESR, and thus EXIT PLACESP = EXIT PLACESS
and q # 0 only if p € EXIT

0 only if p € EXIT

Finally, q € ip
PLACES

PLACESS, since the rresence of Q or R has no

<&==> € I and
q° qp

effect on such terminal markings (Q and R never
retain any tokens internally due to their PT

behavior). 0
. 5., CONCLUSIONS .

Petri-nets were used here as a model of asynchro-

nous system opcration, and a condition of control

flow called proper termination was described.

This property constrains activity to a point where
such systems are free of deadlock and can be used

as rcplaccable subsystems, as shogn in the paper,

However,‘propcr termination also allows a wide
latitude in behavlior, and I feel that the

appropriate iline between module versatility and
restriceive behavior lies near that of proper

termination,

6. ACKNOWLEDGEMENTS

)
Estrin, and S. Volansky contributed to

V. Cerf, G.
early work in proper termination concerning its
defi;ition and decision algorithms, and

T. van Weert contributed to the formulation of
process deseription. Also, thanks to Wil Plouffe
fqr his reading of the paper, and to Peg Gray for

her typing.
7. REFERENCES

[1J Habermann, A.N. On the Harmonious Coopera—
ti~n of Abstract Machines:, Ph.D. Thesis,
Mathematics Dept., Technische Hogeschool
Eindhoven, Eindhoven, The Netherlands, 1967.

[2} Dijkstra, E. "Cooperating Sequential
* Prccesses" in Programming Languages, F. Genuys,
ed., Academic Press, New York, 1968.

{3} Holt, R.C. bn Deadlock in Computer
Systems, Technical report CSRu-6, Unlverslt)
of Toronto, Aplil 1971.

[41 Bacr, J.-L. "A Survey of Some Theo-
retical Aspects of Multiprocessing", Computing
Surveys, 5,1 pp. 31-80, 1973.

[5] Gostelow, K.P. and
T.J. van Weert Processes and Networks,
Report from Stichting Academisch Rekencentrum
Amsterdam/Rekencentrum Rijksuniversiteit
- Groningen, The Netherlands.

[6] Gostelow, K.P. and
V.G. Cerf,
S. Volansky,
G. Estrin "Proper Termination of
Flow of Control in Programs Involving Con-
current Processes', Proceedings ACM National
Conference, August, 1972,

[7} Keller, R.M. Vector Replacement Systems:

A Formalism for Modcling Asynchronous Systems,
TR 117, Dept. of EECS, Princeton UanLISity,
January, 1974, .

[8} Karp, R.M. and
- R.E. Miller "Parallel Program Schemata",
J. of Computer & System Sciences, 3, 2,
Pp. 147-195, May, 1969.

"Prevention of System
12, 7, pp. 373-377, July,

[9] Nabermann, A.N.
Deddlocks" CACM,
1969.

