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Abstract

Background and purposes: The aim of this study was to develop morphological analytic 

methods to analyze the tumor-fat interface and in different peritumoral shells away from the 

tumor, and to compare the results among three molecular subtypes of breast cancer.

Materials and methods: A total of 102 women (mean age 48.5 y/o) with solitary well-defined 

breast cancers were analyzed, including 46 human epidermal growth factor receptor 2 (HER2) (+), 

46 HER2(−) hormonal receptor (HR) (+), and 10 triple negative (TN) breast cancers. The tumor 

lesion, the breast, the fibroglandular and fatty tissue were segmented using well-established 

methods. The whole breast fat percentage and the peri-tumor interface fat percentage were 

measured. Three shells (SH1, SH2, SH3) surrounding the convex hall of the three dimensional 

(3D) tumor were defined and in each shell the volumetric percentage of fat was calculated. The 

peri-tumor interface fat percentage and the volumetric percentage of fat in the three peri-tumoral 

shells were compared among different subtypes.

Results: In the TN group, the fat percentage on the tumor boundary was 43 ± 20% and 78 ± 12% 

for two dimensional (2D) and 3D measurement, respectively, which were the highest among the 

three subtypes but not significantly different. The fat percentage in SH2 and SH3 in the TN group 

was 82 ± 7% and 85 ± 7%, which was significantly higher compared to the two other two 

subtypes. The results remained after controlling for the whole breast fat percentage.

Conclusions: This study provided a feasible method for quantitative analysis of peri-tumoral 

tissue characteristics. Because of small patient number, the finding that TN tumors had the highest 

peri-tumor fat content among the three subtypes needs to be further verified with a large cohort 

study.

*Corresponding author at: John Tu and Thomas Yuen Center for Functional Onco-Imaging, 164 Irvine Hall, University of California, 
Irvine, CA 92697-5020, USA. jeonhc@uci.edu (J.-H. Chen). 
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1. Introduction

The peritumoral region, the area surrounding the tumor, may possess valuable information. 

Peritumoral tissue may be different from the normal tissue due to tumor invasion [1, 2], 

tissue reactions [3], and tissue changes [4, 5]. The breast is composed of two predominant 

tissue types, the fibroglandular tissue and the adipose tissue [6]. Although breast carcinoma 

arises from the epithelial cells that line the lobules and terminal ducts of breast glandular 

tissue, many epidemiological studies have shown that excessive body adipose tissue is a risk 

factor for several cancer types, including breast cancer, and can also lead to poorer treatment 

outcome [7]. It has been shown that peritumoral adipose tissue and secreted steroids and 

adipokine contribute to the occurrence of breast cancer [8]. The adipose tissue that is 

abundantly present around the ductal epithelium of the mammary gland may function as a 

slow-release depot for lipid-soluble carcinogenic agents, and thus may affect cancer risk [9].

Studies have also shown that fat tissue close to malignant and benign lesions exhibited 

distinctive gene expression profiles and functional characteristics [10]. Fatty acid fractions in 

breast adipose tissue were also different in malignant and benign breast tumor [11]. A recent 

study using magnetic resonance imaging (MRI) showed invasive breast cancer preferably 

and predominantly occurs adjacent to breast adipose tissue [12]. Another study also found 

that malignant lesions were located in or near the interface in significantly higher 

proportions than benign lesions [13]. The tumor-surrounding adipose tissue was also 

reported as a key component of breast cancer progression [14, 15]. In women with early 

stage breast cancer, peritumoral fat correlates positively with the ratio of pathologically 

involved axillary nodes [14]. Imaging studies of breast peritumoral tissue have been 

performed to predict treatment response [16] and lymphovascular invasion [17], and to 

correlate with pathological biomarkers [18].

The purpose of this study is to use MR imaging to evaluate the peritumoral adipose tissue 

quantitatively. The interface of the tumor adjacent to fat vs. fibroglandular tissue, and the 

percentage of fat volume in the peritumoral shells at different distances from the tumor 

periphery were measured. Molecular biomarkers including HER2, estrogen receptor (ER), 

progesterone receptor (PR), or combined Hormonal receptor (HR) were used to differentiate 

breast cancer subtypes. Since different subtypes have different tumor morphology and 

aggressiveness, the measured peritumoral fat results in three subtypes: HER2(+), 

HER2(−)HR(+), and HER2(−)HR(−) (i.e. triple negative TN) were reported and compared.

2. Materials and methods

2.1. Patients

This was a retrospective study approved by our Institutional Review Board and the informed 

consent was waived. From August 2013 to December 2014, 102 women (range 22–75, mean 

age 48.5 y/o) with pathologically proven solitary well-defined breast cancer (tumor size 0.4–

5.0 cm, mean 2.6 cm) were studied. These were clinical patients receiving MRI for diagnosis 

or pre-operative staging. Most patients (N = 97) had invasive cancer and 5 patients had 

ductal carcinoma in situ (DCIS). For cancer subtypes, 46 patients had HER2 positive, 46 had 

HER2 negative HR positive, and 10 patients had triple negative (TN) cancer.
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2.2. MR imaging

All MR examinations were done by using a 1.5-Tesla scanner (Magneton Skyra, Siemens 

Medical Solutions, Erlangen, Germany), with a 16-channel Sentinelle breast coil. DCE-MRI 

was acquired by using the fat-suppressed 3D-FLASH with one pre-contrast and four post-

contrast frames, with TR/TE = 4.50/1.82 msec, flip angle = 12 degrees, number of signal 

average = 1, matrix size = 512 × 512, FOV = 32 cm, and slice thickness = 1.5 mm. The 

imaging resolution (voxel size) was 0.6 × 0.6 × 1.5 mm. The segmentation of the 

fibroglandular tissue and fat was done on the pre-contrast images. The segmentation of the 

tumor was done on the subtraction images obtained by subtracting the pre-contrast images 

from the first frame of the post-contrast images acquired at 90 s after injection of Gd 

contrast agent.

2.3. Breast and fibroglandular tissue segmentation on MRI

We used a fully automatic template-based segmentation method to segment the breast and 

the fibroglandular tissue on MRI. Detailed procedures were described in Lin et al. [19, 20]. 

The segmentation of the breast was done by using a chest model with three body landmarks: 

the thoracic spine and the lateral margins of the bilateral pectoralis muscles. This chest 

template was coregistered to each subject’s chest region to obtain a subject-specific chest 

model, and the three mapped landmarks were used to perform the initial V-shape cut to 

define the lateral boundaries [19]. The second step was to identify the chest wall muscle for 

further exclusion, by using edge detection algorithm and the Bezier curve fitting. The third 

step was to exclude the nipple and the skin using Bezier splines and dynamic search, 

detailed algorithms described in [20]. The left and right breasts were separated based on 

sternum. Within the segmented breast, the bias-field correction and k-means algorithm was 

applied to perform the segmentation of fibroglandular and fatty tissues.

2.4. Segmentation of the tumor

The tumor was segmented on the subtracted images using a fuzzy c-means (FCM) clustering 

based algorithm [21]. A square ROI selection was placed on maximum intensity projection 

map to indicate the location. The tumor within the selected ROI was enhanced using an 

unsharp filter [22] with a 5 by 5 kernel constructed using the inverse of the two-dimensional 

Laplacian filter [22]. FCM algorithm was applied to obtain the membership map of all 

voxels indicating the likelihood of each voxel belonging to the tumor or the non-tumor 

cluster. The weighting component on each fuzzy membership is chosen as 2, whereas the 

stopping criteria is the absolute change in objective function in consecutive iterations less 

than a pre-specified number 105 [23], and then the tumor membership map was binarized 

with the selected threshold to separate tumor from non-tumor voxels.

2.5. Evaluation of the tumor-fat interface

After obtaining the tumor mask, 2D connected-component labeling [24] was applied to 

remove the scattered voxels not connecting to the main body of lesion, and then the edge 

detection method [22] was utilized to obtain the boundary of the tumor mask. To evaluate 

the tumor-fat interface, both two dimensional (2D) and three dimensional (3D) analyses 

were performed. For the 2D analysis, the slice containing the largest tumor area among all 
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the slices was selected. The pixels on the tumor boundary were identified, and for each pixel 

whether it was abutting to fat and fibroglandular tissue was determined. Three case examples 

are shown in Figs. 1–3. For the 3D analysis, the same analysis was performed for the tumor 

boundary pixels on all slices containing the tumor. The percentage was calculated as the 

ratio of the number of pixels abutting to fat to the total number of pixels.

2.6. Evaluation of the peritumoral fat

To analyze the peritumoral fatty tissue, three shells (SH1, SH2, SH3) surrounding the 

convex hall of the 3D tumor were defined, as demonstrated in Figs. 1–3. SH1 was defined as 

the shell between 150% volumetric expansion of the tumor convex hall subtracting the tumor 

convex hall (150%–100%); SH2 was (200%–150%); and SH3 was (250%–200%). In each 

shell the volumetric percentage of the peritumoral fatty tissue was calculated by dividing the 

fat volume to the shell volume.

2.7. Statistical analysis

A total of 5 parameters were measured: the 2D and 3D tumor-fat interface percentage and 

volumetric percentage of the peritumoral fatty tissue in the three shells. The distribution of 

each parameter, including the range, median, mean and standard deviation was reported. 

Two-tailed t-test was applied to evaluate the between-group difference. Person correlation 

was used to test the association between two continuous variables. A chi-square test was 

used to test whether the proportion of case numbers separated based on a cutoff value was 

significantly different between different tumor subtypes.

3. Results

3.1. Tumor-fat interface percentage

In all 102 tumors, the mean tumor-fat interface percentage was 39.7 ± 20.9% (median 

38.4%, range, 0.5% – 85.1%) for 2D analysis performed on the tumor slice of the largest 

diameter, and 70.2 ± 18.9% (median 75.7%, range 15.3%–99.1%) for the 3D analysis 

performed on all tumor slices. The 3D measurement was significantly higher than the 2D 

measurement (p < 0.001), but they were highly correlated by using Pearson correlation (r = 

0.82). There was no correlation between the tumor-fat interface percentage and tumor 

volume (r = 0.18 for 2D, and r = 0.29 for 3D). The results in each of the three molecular 

subtypes are shown in Table 1. In the TN group, the tumor-fat interface percentage was 43 

± 20% and 78 ± 12% using 2D and 3D measurement, the highest among the three subtypes 

but not significantly different (p > 0.05). In each molecular subtype, the number of cases 

was further separated into four groups by using the tumor-fat interface percentage of < 25%, 

25–50%, 50–75%, and > 75%, and the results are shown in Table 2. No cut-off value could 

be used to significantly separate two tumor subtypes. For example, if using 2D tumor-fat 

interface percentage of > 50% as the cut off value, the proportion in HER2 positive group 

(19/46 = 41%) was higher than in HER2 negative groups (14/56 = 25%), but not significant 

(p = 0.09).
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3.2. Peritumoral volumetric fat percentage

The volumetric fat percentage of the whole cohort (N = 102) in SH1, SH2, and SH3 were 

65.4 ± 18.0%, 73.1 ± 16.4%, and 76.7 ± 15.3%, respectively. The results in three molecular 

subtypes are shown in Table 1. The fat percentage increases from SH1 to SH2 to SH3, all 

significant, indicating that the tissue becomes fattier and fattier away from the tumor. Since 

the fibroglandular tissue density is higher in the nipple than the peripheral region of a breast, 

this finding is highly anticipated. Another possibility is that the malignant cells may take 

energy from the nearby fatty area as fuel for their tumor growth. The volumetric fat 

percentage in SH2 and SH3 in the TN group is 82 ± 7% and 85 ± 7%, which was 

significantly higher compared to the non-TN (two other) tumor subtypes (p = 0.038 and p = 

0.047 respectively). The significance remained after controlling for the whole breast fat 

percentage.

4. Discussion

The motivation to conduct this study was based on the biological fact that peritumoral tissue 

plays an important role in tumorigenesis [25]. The high spatial resolution of 3D MRI 

provided a good tissue contrast between fatty and fibroglandular tissue as well as the strong 

contrast enhancement of the tumor, made the tissue segmentation possible for developing the 

quantitative analysis method. In this study we measured 5 parameters, including the tumor-

fat interface percentage on a 2D slice with the largest tumor area and on the 3D tumor from 

all slices, as well as the peritumoral volumetric fat percentage in three shells surrounding the 

tumor.

Only a few studies investigated the association of breast fatty tissue with tumor 

characteristics using qualitative [12, 13, 26] or quantitative analysis approaches [13]. In an 

early study using mammograms in women younger than 50 years of age, it was noted that 

most mammographically detected cancers (63 of 86 = 73%) were located at the periphery of 

the parenchymal cone, which was defined by a 1-cm wide zone beneath the subcutaneous or 

retromammary fat [26]. In this study we also investigated how many tumors were located at 

the periphery of the parenchymal cone using MRI. We selected the slice with the largest 

tumor area in each patient. On this slice, the convex hull of the fibroglandular tissue mask 

was extracted.

We then calculated a 1-cm isotropic area expansion, and a 1-cm isotropic area shrinkage, 

around the convex hull. Then a shell was obtained by subtracting the shrinkage area from the 

expansion area. If a tumor contacted with the shell, the location of the tumor was considered 

as at the periphery of the parenchymal cone. With this definition we noted that 61 out of 102 

patients (59.8%) had tumor growing from this location. In an MRI study of 294 patients with 

biopsy-proven invasive breast, the location of breast tumor in relation to the fatty tissue was 

visually assessed by comparing the contrast-enhanced MRI images and the corresponding 

T1-weighted pre-contrast images [12], and the results showed a very high percentage of 

tumor abutting fatty tissue (29½94, 98.9%). Another large series study of 881 women 

evaluated the location of breast lesions with respect to the fat-gland interface in MR imaging 

using both qualitative and quantitative approaches [13]. For qualitative analyses, the 

radiologists visually graded the breast lesions based on their spatial relationships with the 
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fat-gland interface in the breast using five categories (2 = within the gland; 1 = near the fat-

gland interface, gland side; 0 = fat-gland interface; −1 = near the fat-gland interface, fat side; 

and −2 = within the fat). For quantitative approaches, the radiologist measured the shortest 

distance between the center of the lesion and the fat-gland interface on the sagittal or axial 

image. A positive value was assigned when the tumor center was in the gland tissue, and a 

negative value was assigned when the tumor center was in the fatty tissue. It was found that 

most breast lesions were located in or near the fatty tissue interface either by qualitative 

(89.7%) or quantitative (90.0%) analyses [13]. All these studies support that local breast 

fatty tissue is biologically important in development of breast cancer.

Our study applied a morphological segmentation method to quantitatively measure the 

tumor-fat interface percentage using 2D and 3D approaches. To achieve the goal, 

sophisticated breast and fibroglandular tissue segmentation methods, as well as the tumor 

segmentation methods, were needed. The segmentation methods used in this study were 

well-developed and have been used in many previous publications. Our results noted the 

average of tumor-fat interface percentage using 2D and 3D measurement was 40% and 70% 

respectively, and measurements from the both methods were highly correlated (r = 0.82). 

The higher value in 3D analysis was anticipated, since the outer layer of the breast was more 

likely to be fat. We also noted that both 2D and 3D results did not show significant 

difference between TN and non-TN tumors, or between HER2 positive and HER2 negative 

tumors.

We further measured the percentage of peritumoral fatty tissue in different shells 

surrounding the tumor. The idea of dividing the peritumoral tissue into several layers with 

various distances from the center of the tumor has been conducted in several previous 

studies [14, 16, 18, 27, 28]. This approach allows for examining the tissue changes from the 

proximity of the tumor to the far field. There were two general methods used in the 

literature, one with various distances of radius from the tumor margin [16, 18, 27], and the 

other with isotropic volumetric expansion around the tumor [14]. Our study adopted the 

second approach. We determined to select 150%, 200% and 250% to define the peritumoral 

shells. For the first shell near the tumor (SH1), if a smaller ratio was used, such as 125%, it 

might lead to thin shells which sometimes could not be correctly processed, especially in 

small tumor lesions, to extract the tissue characteristics within the shells. If a larger ratio, 

such as 300%, was utilized, large amount of normal fibrograndular tissue might be included 

and the tissue heterogeneity inside the shells would be too substantial, which was 

meaningless for this study. With this approach, the thickness of the three peritumoral shells 

thus was variable patient to patient according to their tumor size. For example, if a patient 

had a tumor measured 2 cm in one-dimension, the thickness for each of the three 

peritumoral shells was 0.5 cm. If a patient had a 5 cm tumor, the thickness for each of the 

three peritumoral shells was 1.25 cm.

In a study to characterize breast cancer and adjacent peritumoral stroma using high-

resolution diffusion-weighted imaging, three peritumoral shells (2–6 pixels, 14–18 pixels, 

and 26–30 pixels outside the tumor ROI) were defined [18]. In a study using multi-

parametric MRI to evaluate the prognostic impact of peritumoral fat in early stage breast 

cancer, the shell was constructed by subtracting the tumor volume from a 1-cm isotropic 
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volumetric expansion around it [14]. Overall, the peritumoral tissue is a loosely defined 

term, as there is no consensus about how far away from the tumor or how wide the zone 

should be. Our results showed that the volumetric fat percentage in SH2 and SH3 in the TN 

group was significantly higher than in non-TN tumor subtypes (p = 0.038 and p = 0.047 

respectively). The results remained significant after controlling for the whole breast fat 

percentage.

Although the findings of the higher volumetric fat percentage in the peritumoral shells in TN 

tumors were preliminary, pending further clarification, there may be potential clinical 

relevance which can improve patient management. TN subtype was very aggressive and 

found to have a statistically significant association with an increased risk of residual tumor 

and locoregional recurrence, regardless that margin status, size, and multifocality were 

similar among the TN and luminal subtypes [29]. Studies had also found the association of 

adiposity with cancer incidence, morbidity and mortality [14]. The mechanisms by which 

peritumoral human adipose tissue contributes to TN breast cancer cell invasiveness and 

dissemination has been studied [29]. The study reported that cancer cell growth and/or 

metastasis predominantly occur in adipocyte-rich microenvironment [30]. In nodal positive 

patients, the peritumoral fat ratio was found to correlate with the axillary lymph node status 

[14]. A recent study [31] further showed that TN tumors may depend on fat as fuel for the 

tumor growth; an unusual abundance of fatty acid oxidation metabolites was noted, 

indicating that TN cancer cells may be oxidizing fat to satisfy their energy needs. With all 

these findings, it may be interesting to develop new therapeutic strategies to target fat 

oxidation to control the growth of TN tumor, or the findings may help the breast surgeons to 

plan the surgical resection margin to reduce the recurrence rate.

This study had limitations. The total case number was small, especially the TN subtype. 

Thus all the findings in this study were very preliminary and no definite conclusion could be 

drawn yet. Also, breast volume, the tumor location, and tumor size may affect the definition 

of peritumoral shells. For some patients with large tumor volume compared with the breast 

volume, the difference among the peritumoral shells became small. If a patient had a tumor 

close to the skin, the assignment of the peritumoral shells, especially for SH2 and SH3, 

might be limited by the breast boundary, thus tissue information surrounding the tumor in 

these shells could not be completely evaluated.

In conclusion, in this study a three-dimensional (3D) morphological analytic method was 

developed to quantitatively measure the tumor-fat interface percentage and the volumetric 

fat percentage in different peritumoral shells surrounding the tumor. This method was 

relying on the precise tissue segmentation, which was only feasible based on the high tissue 

contrast between fibroglandular and fatty tissue on MRI, as well as the strong contrast 

enhancement of the tumor for identifying the tumor boundary on MRI. The results showed 

that the peri-tumor fat content was the highest in the most aggressive TN tumors compared 

to other subtypes. But due to the small case number, the significance of the findings was not 

confirmed yet and should be validated in a larger dataset. The developed quantitative 

analysis method may be applied to further investigate the clinical significance of the 

peritumoral fat in the development and prognosis of breast cancer.
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Fig. 1. 
A 75-years-old woman with a triple negative TN cancer in the left breast. (a) Contrast-

enhanced subtraction image; (b) Corresponding fibroglandular tissue mask; (c) Zoom-in 

image to show the lesion boundary. The red and green contours represent pixels interfacing 

with fibroglandular tissue and fat, respectively. (d) SH1 defined as the shell between (150%–

100%) expansion of the tumor convex hall; (e) SH2 (200%–150%); and (f) SH3 (250%–

200%). The whole breast fat percentage is 94%. The peri-tumor interface fat percentage is 

35%, and the volumetric fat percentage in SH1, SH2, and SH3 is 72%, 84%, and 87%, 

respectively. (For interpretation of the references to color in this figure legend, the reader is 

referred to the web version of this article.)
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Fig. 2. 
A 58-years-old woman with a HR(−)HER2(+) cancer in the left breast. (a) Contrast-

enhanced subtraction image; (b) Corresponding fibroglandular tissue mask; (c) Zoom-in 

image to show the lesion boundary. The red and green contours represent pixels interfacing 

with fibroglandular tissue and fat, respectively. (d) SH1 defined as the shell between (150%–

100%) expansion of the tumor convex hall; (e) SH2 (200%–150%); and (f) SH3 (250%–

200%). The whole breast fat percentage is 86%. The peri-tumor interface fat percentage is 

52%, and the volumetric fat percentage in SH1, SH2, and SH3 is 79%, 75%, and 71%, 

respectively. (For interpretation of the references to color in this figure legend, the reader is 

referred to the web version of this article.)

Chen et al. Page 11

Magn Reson Imaging. Author manuscript; available in PMC 2019 November 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Fig. 3. 
A 58-years-old woman with a HR(+) cancer in the left breast. (a) Contrast-enhanced 

subtraction image; (b) Corresponding fibroglandular tissue mask; (c) Zoom-in image to 

show the lesion boundary. The red and green contours represent pixels interfacing with 

fibroglandular tissue and fat, respectively. (d) SH1 defined as the shell between (150%–

100%) expansion of the tumor convex hall; (e) SH2 (200%–150%); and (f) SH3 (250%–

200%). The whole breast fat percentage is 58%. The peri-tumor interface fat percentage is 

4%, and the volumetric fat percentage in SH1, SH2, and SH3 is 17%, 39%, and 54%, 

respectively. (For interpretation of the references to color in this figure legend, the reader is 

referred to the web version of this article.)
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Table 1

The mean ± standard deviation of the tumor-fat interface percentage and peritumoral volumetric fat percentage 

in three molecular subtypes.

HER2(+)
N = 46

HER2(−)HR(+)
N = 46

TN
N = 10

2D Tumor-Fat Interface Percentage 43 ± 21% 36 ± 21% 43 ± 20%

3D Tumor-Fat Interface Percentage 72 ± 18% 67 ± 21% 78 ± 12%

Shell-1 (SH1) Volumetric Fat Percentage 65 ± 18% 58 ± 21% 67 ± 12%

Shell-2 (SH2) Volumetric Fat Percentage 75 ± 14% 69 ± 17% 82 ± 7%*

Shell-3 (SH3) Volumetric Fat Percentage 78 ± 14% 73 ± 16% 85 ± 7%*

*
Denotes significant difference (p < 0.05) between TN and non-TN tumors.
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Table 2

Number of patients based on tumor-fat interface percentage of < 25%, 25–50%, 50–75%, > 75%.

HER2(+)
N = 46

HER2(−)HR(+)
N = 46

TN
N = 10

2D

Tumor-Fat Interface Percentage < 25% 11 (24%) 15 (33%) 1 (10%)

Tumor-Fat Interface Percentage 25–50% 16 (35%) 21 (46%) 5 (50%)

Tumor-Fat Interface Percentage 50–75% 17 (37%) 8 (17%) 3 (30%)

Tumor-Fat Interface Percentage > 75% 2 (4%) 2 (4%) 1 (10%)

3D

Tumor-Fat Interface Percentage < 25% 1 (2%) 2 (4%) 0

Tumor-Fat Interface Percentage 25–50% 4 (9%) 6 (13%) 0

Tumor-Fat Interface Percentage 50–75% 17 (37%) 16 (35%) 3 (30%)

Tumor-Fat Interface Percentage > 75% 24 (52%) 22 (48%) 7 (70%)
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