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Abstract

A search for new physics in multijet final states of pp collisions at
√
s = 13 TeV using the

ATLAS detector at the Large Hadron Collider

by

Brian Thomas Amadio

Doctor of Philosophy in Physics

University of California, Berkeley

Professor Marjorie Shapiro, Chair

Supersymmetry, one of the of the most promising extensions to the Standard Model of Par-
ticle Physics, predicts a number of as-yet-undiscovered particles, evidence of which could be
found in LHC collision events. This thesis presents a search for R-parity violating Super-
symmetric signal events in ATLAS proton-proton collision data. The search uses 36.1 fb−1

of
√
s = 13 TeV collision data, taken by ATLAS in 2015 and 2016. As no excess of events

above the background prediction was found, limits are set on the production cross sections
of gluinos and neutralinos under two different decay scenarios. The resulting limits are a
significant extension beyond the reach of the Run-1 search for the same process.
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Chapter 1

Introduction

Experimental particle physics is the systematic probing of the fundamental constituents
of matter, in order to uncover new insights into laws of nature applicable at the smallest
distance scales. To date, the most successful and predictive theory explaining the interactions
of elementary particles is the Standard Model. The Standard Model accounts for all of the
known elementary particles and their interactions, with the notable exception of gravitational
interactions.

In July 2012, the final piece in Standard Model particle puzzle, the Higgs boson, was
discovered by the CMS and ATLAS experiments at the Large Hadron Collider. This was the
last particle predicted by the Standard Model that had yet to be discovered. But there are
still many questions left unanswered by the Standard Model. Answering these questions will
require a new theory. This theory must be consistent with all the experimentally-confirmed
predictions of the Standard Model, but also go further to explain what the Standard Model
can’t. Such theories are known as Beyond-the-Standard-Model (BSM) theories.

One of the most promising BSM theories is known as Supersymmetry, or SUSY, which
posits a new symmetry of nature. This new symmetry connects the two types of fundamental
fields - fermions and bosons. SUSY provides an elegant solution to many of the mysteries
of the Standard Model. However, it also predicts a slew of new fundamental particles which
have yet to be observed.

The ATLAS detector at the Large Hadron Collider was built with a wide-ranging set
of physics goals. In addition to the discovery of the Higgs, the LHC and ATLAS were
built to search for evidence of Supersymmetric particles. SUSY has a large number free
parameters, whose values can’t be predicted from first principles, but would have to be
measured experimentally. A SUSY search that fails to discover a new particle nonetheless
will often result in constraining the viable parameter space for the theory.

This thesis focuses on a search for a proposed SUSY particle called the gluino. In a
specific variant of SUSY, known as R-Parity-Violating or RPV SUSY, the gluinos produced
in LHC collisions would decay to large numbers of Standard Model quarks and gluons . These
events would leave a characteristic signature in the detector, consisting of a large number
of high-mass jets. If gluinos with a low enough mass exist, the rate of these events could
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be significantly higher than the rate of such events generated by known Standard Model
processes. The aim of the first half of this thesis is to explain the context and motivation
for the analysis. The second half will consist of explaining the methods used in the analysis,
and a discussion of the results.

Chapter 2 gives more detail about the Standard Model. The mathematical formalism, in
the form of Quantum Field Theory (QFT) will be described. The representations of the fields
and the Lagrangian governing their dynamics will also be explained. After a discussion of the
phenomenological predictions of the theory, section 2.3 will detail several of the limitations of
the Standard Model, which help motivate the need for a BSM theory like SUSY . Chapter 3
details how SUSY can resolve several of the questions left unanswered by the Standard Model.
A brief description of the theory and the particles it predicts is given. The chapter ends with
a discussion of R-Parity violation, and the specific process that is the subject of this search.
Next, chapter 4 provides technical descriptions of the Large Hadron Collider and the ATLAS
detector. The first section of the chapter explains how the LHC accelerates protons, including
the magnet systems that guide the beams around the ring, as well as the ones used to focus
the beams at the collision points. The second section details the ATLAS detector, one of the
two general-purpose detectors built at the LHC . ATLAS is comprised of many sub-detectors,
each with their own specific purposes, which will be described in detail. Chapter 5 explains
the phenomenon of jets in particle collision experiments. The mechanisms that give rise to
jets in proton-proton collisions are first explained, before detailing the experimental methods
used to measure jets. This includes a discussion of jet clustering algorithms that can be used
in any particle detector, as well as the specifics of how jets are measured and calibrated in
ATLAS in particular. Chapter 6 introduces the strategy used in this particular search. A
description of the signal and its signature in the detector is given, followed by details of the
discriminating variables and how they can be used to distinguish signal from background.
Chapter 7 details the simulated events that were generated for use in the analysis. Simulated
signal events are generated for limit-setting, and simulated background events are generated
for validating the data-driven background estimation method. Following this, chapter 8
describes the data and event selection used for the analysis, as well as the particular choice
of jet reconstruction parameters and requirements. The data-driven background estimation
method, involving jet mass templates, is described in detail in chapter 9. A key part of
the analysis is the estimation of systematic background uncertainties. Additionally, the
treatment of possible signal contamination is discussed. The determination of systematic and
statistical uncertainties on the signal yields is given in chapter 10. Finally, chapter 11 shows
the results of the search, including the observed and predicted yields in the signal region.
The statistical interpretation of these results is also given in this chapter. Conclusions are
presented in chapter 12.
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Chapter 2

The Standard Model of Particle
Physics

The Standard Model is a theory describing the interactions between elementary particles. It
explains three of the four known fundamental forces, namely the electromagnetic force, the
weak nuclear force, and the strong force. It does not include or account for gravitational
interactions. It can be fairly characterized as one of the most successful theories in science.

A huge number of predictions made by the theory have been confirmed experimentally,
some to an astounding degree of accuracy. Precision measurements of the magnetic moment
of the electron have shown the experimental and theoretical values of the fine structure
constant to agree better than one part in one billion [1]. The ATLAS detector at the LHC
has confirmed the predicted rate of particle production for a very wide range of production
processes and final states. A summary of Standard Model measurements made by ATLAS,
and their comparisons to theoretical predictions can be seen in figure 2.1. The Standard
Model predicted the existence of the W boson, the top quark, and the Higgs boson, which
were all later confirmed by experiment.

The Standard Model is expressed in the language of Quantum Field Theory. The theory
consists of three generations of matter fields, specified by their representation under the
gauge group SU(3) × SU(2) × U(1) and the Poincaré group, as well as a complex scalar
field. Poincaré symmetry consists of the Lorentz symmetry of special relativity, plus global
translational symmetry.

The Standard Model is a complete theory in the sense that it is internally self-consistent,
and all particles predicted by the theory have been observed experimentally. However, the
Standard Model does not account for all known physical phenomena, and so cannot be
considered a complete theory of nature.
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Figure 2.1: Summary of Standard Model production cross sections measured by ATLAS,
compared to theoretical predictions [2].

2.1 Electroweak sector and the Higgs mechanism

The symmetry constraining the electroweak sector of the Standard Model Lagrangian is
SU(2)L × U(1)Y . The subscript L for the SU(2) group indicates that it only acts on the
left-handed fields in the theory. Right-handed fields appear as SU(2) singlets.

2.1.1 Matter fields

All left-handed matter fields are SU(2) doublets, while their corresponding right-handed
fields are SU(2) singlets. There are three generations of left-handed lepton fields:

ψL =

(
νe
le

)
L

,

(
νµ
lµ

)
L

,

(
ντ
lτ

)
L

(2.1)

and three generations of right-handed lepton fields:

ψR = eR, µR, τR (2.2)

Similarly, there are three generations each of the left-handed SU(2)-doublet quark fields,
each of which comes in three colors:

ψL =

(
qu
qd

)
L

,

(
qc
qs

)
L

,

(
qt
qb

)
L

(2.3)
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Quark color plays a role in QCD interactions, which will be described in the next section.
There are also the corresponding SU(2)-singlet right-handed fields:

ψR = quR, qdR, qcR, qsR, qtR, qbR (2.4)

2.1.2 Symmetries and Lagrangian

The Lagrangian density satisfying the required symmetries, including all renormalizable
terms, can be written as:

LEW = Lkin + Linteractions (2.5)

where the kinetic part of the electroweak Lagrangian is:

Lkin = −1

4
W µν
a W a

µν −
1

4
BµνBµν (2.6)

W a
µ are the three SU(2)L gauge bosons, Bµ is the U(1)Y (hypercharge) gauge boson, and

Wµν = ∂µWν − ∂νWµ. The part of the electroweak Lagrangian describing electroweak inter-
actions is:

Linteractions =
∑

generations

[g
2
ψ̄Lγ

µσiW i
µψL + g′Bµ

(
YψL

ψ̄Lγ
µψL + YψR

ψ̄Rγ
µψR

)]
(2.7)

where γµ are the Dirac gamma matrices, and Y is the hypercharge associated with the
relevant field.

Left-handed leptons and quarks have weak hypercharge Y = −1 and Y = 1/3, respec-
tively. Right-handed leptons have weak hypercharge Y = −2. Right-handed up-type quarks
have weak hypercharge Y = 4/3, and right-handed down-type quarks have weak hypercharge
Y = −2/3.

This Lagrangian describes the charged-current and neutral-current weak interactions,
as well as weak gauge boson self-interactions. However, it is insufficient to describe nature
because the gauge bosons are massless in this theory. It would be impossible to include gauge
boson mass terms in the electroweak Lagrangian without explicitly breaking the symmetry.
Similarly, it’s impossible to introduce Lorentz-invariant fermion mass terms that keep the
Lagrangian invariant under SU(2)L × U(1)Y . In order to reconcile this theory with the
experimentally observed fact of massive weak gauge bosons and massive fermions, a scalar
field will have to be introduced to the theory.

2.1.3 Spontaneous symmetry breaking

The original SU(2)L×U(1)Y symmetry will be spontaneously broken, via the nonzero Higgs
vacuum expectation value, to U(1)QED. This process of spontaneous symmetry breaking
(SSB) generates fermion masses, electroweak gauge boson masses, and the Yukawa coupling
terms between fermions. It also generates a new massive real scalar field, known as the Higgs
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field. We can introduce a new SU(2)-doublet complex scalar field, φ, as well as a potential
of the form:

V (φ) = µ2φ†φ+ λ(φ†φ)2 (2.8)

with λ > 0 and µ2 < 0. The minimum energy state satisfies: φ†φ = −µ2
2λ

. We can then
re-parameterize the scalar field as:

φ = exp
(
i
σi
2
θi(x)

) 1√
2

(
0

v +H(x)

)
(2.9)

where H(x) and θi(x) are real-valued fields, and v =
√
−µ2
λ

is the vacuum expectation value

of the Higgs field. Because of the SU(2)L symmetry of the theory, we are free to choose
convenient values for θi(x), without affecting the outcome of any observable predictions.
Selecting θi(x) = 0, the additional kinetic term required in the Lagrangian is:

∆LEW = (Dµφ)† (Dµφ) =
1

2
∂µH∂

µH +
1

2
(v +H)2

(
g2

4
W †
µW

µ +
g2

4 cos2 θW
ZµZ

µ

)
(2.10)

where Wµ and Zµ are mass eigenstates of the electroweak gauge fields. Each mass eigenstate
is a linear combination of the original W a

µ and Bµ. This results in interaction terms between
the Higgs field and the W and Z bosons, as well as quadratic terms for these same bosons.
A quadratic term in the Lagrangian is physically the same as having a mass term in the
Lagrangian. So we find that the W and Z boson masses are:

Mw =
1

2
vg, MZ =

MW

cos θW
(2.11)

Thus, through spontaneous symmetry breaking, electroweak gauge boson masses are gener-
ated without explicit mass terms in the Lagrangian. The introduction of this scalar field and
its associated potential also generates fermionic mass terms, couplings between the fermions
and the scalar field, and a mass term for the scalar field itself. Like with the gauge bosons,
adding an explicit fermionic mass term would have broken the SU(2)L × U(1)Y symmetry
of the theory. However, the introduction of the new scalar field allows for additional terms
in the Lagrangian, which can be written, in unitary gauge, as:

LY =
1√
2

(v +H)
(
c1d̄d+ c2ūu+ c3ēe

)
(2.12)

Once again, after spontaneous symmetry breaking, there appear terms in the Lagrangian
that are quadratic in the fields. These are mass terms for the fermions. As with the gauge
bosons, fermion masses are proportional to the Higgs vacuum expectation value:

md = −c1
v√
2
, mu = −c2

v√
2
, me = −c3

v√
2

(2.13)
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Unlike for the gauge bosons, we find no testable relationship between fermion masses, since
the coefficients are independent free parameters of the theory.

The Higgs mechanism allows for the generation of masses for fermions and electroweak
gauge bosons without explicitly breaking the original symmetry of the theory. Additional
consequences arising from the Higgs mechanism are the relationship between Z and W boson
masses, the existence of a new massive scalar field, and interactions between this field and
the fermions and gauge bosons. The massive particle associated with this field, the Higgs
boson, was discovered in 2012 by the ATLAS and CMS collaborations [3, 4].

2.2 Quantum Chromodynamics

Quantum Chromodynamics (QCD) is the part of the Standard Model concerned with strong
interactions. Because protons are bound states of quarks and gluons, QCD is needed for
making any calculation of event rates at a proton-proton collider. It’s especially important
for understanding the behavior of jets, which will be described in detail in chapter 5. The
particular structure of the theory yields very different behavior at high energy and low
energy. At high energy, where the coupling strength is low, quarks and gluons are only
weakly bound, so the theory behaves as an approximately free theory, a property known as
asymptotic freedom. At lower energies, the coupling strength grows, and quarks and gluons
become strongly bound, a property known as confinement.

2.2.1 Matter fields

The fields involved are the quark fields, which also participate in electroweak interactions.
In the case of QCD, the quarks are in the fundamental 3 representation of SU(3):

ψ =

ψRψG
ψB

 (2.14)

where R, G, B stand for the red, green, and blue color charges. The theory will be invariant
under local transformations in this color space.

2.2.2 Symmetries and Lagrangian

Like the electroweak theory, QCD is a non-Abelian gauge theory. The Lagrangian is gener-
ated by positing the transformations under which the Lagrangian is invariant, and including
all terms that respect these symmetries. For QCD, the symmetry group is SU(3), yielding
the following Lagrangian:

LQCD =
∑

generations

iψ̄Dµγ
µψ − 1

4
Ga
µνG

µν
a (2.15)
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where
Dµ = ∂µ − igsGa

µT
a (2.16)

is the gauge-covariant derivative, gs is the strong coupling constant, Ga
µ are the eight gluon

fields, and T a are the infinitesimal generators of SU(3). The gluon field strength tensor,
Ga
µν , is defined as:

Ga
µν = ∂µG

a
ν − gsfabcGb

µG
c
ν (2.17)

where fabc are the SU(3) structure constants. This Lagrangian describes the kinematics of
massless quarks, their interactions with gluons, and gluon self-interactions. Quarks are given
mass through electroweak symmetry breaking, as described in 2.1.3.

2.2.3 QCD coupling constant

The value of the strong coupling constant, gs, depends on the energy scale of the process
under consideration. The rate of change of the coupling as energy increases is governed by
the β function,

β (αs) =
αs
2π

(
11

3
ncolors −

4

3
nflavors

)
(2.18)

where αs = g2
s/4π. In QCD, there are three colors and three flavors, the consequence of

which is that the coupling constant decreases with energy. This is known as the ”running”
of the coupling constant, and results in very different predictions for the theory at different
energy scales. Figure 2.2 shows the predicted value of αs over a range of energies, along with
values measured through a variety of physics processes.

Figure 2.2: Measured values of the strong coupling constant αs and its predicted values
across a range of energies [5].
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Asymptotic freedom

At high energies, at or above the GeV scale, the strong coupling constant becomes small. As
a result, QCD calculations in this regime are perturbative, meaning they can be approximated
by a finite sum of terms expanded in powers of the coupling constant. This is similar to the
way calculations are done in quantum electrodynamics (QED).

Asymptotic freedom means that as energy grows infinite, quarks and gluons can be
treated as completely un-coupled, free particles. At very high energies, their interactions can
be treated as small perturbations about the free theory. At the LHC, the hard-scattering
cross-section of a quark from one proton colliding with a quark from another proton can be
calculated in this perturbative way. However, the full proton-proton collision cross-section
calculation requires a combination of both perturbative and non-perturbative calculations.

Confinement and Hadronization

At lower energies, the strong coupling constant grows larger, and the theory can no longer
be treated as perturbative. Because the coupling constant is large, a finite series expanded
in powers of the coupling constant is no longer sufficient to estimate the full predictions.
Instead, higher-order terms grow larger and larger, which means an infinite number of such
terms would be needed to make an accurate prediction. As can be seen in figure 2.2, per-
turbation theory begins to fail below ≈ 1 GeV .

Confinement is a consequence of the large coupling constant at low energies. Since quarks
and gluons are strongly coupled, they can no longer exist as free states. Instead, they can
only exist as color-neutral bound states, called hadrons. In a collision event, when a quark
is generated in the final state, the strong force between the quark and other quarks in
the event remains constant as distance between them increases. Equivalently, the potential
energy between quarks increases with distance. Eventually it becomes energetically favorable
for new quarks to be created from the vacuum, with the correct color charge to neutralize
the color charge of the escaping quark. These new particles become bound together in color-
neutral free states. This process is known as hadronization. Experimental evidence suggests
that hadronization occurs at energies of a few hundred MeV .

Hadronization, along with parton showering, is responsible for the emergence of jets from
LHC collisions. Rather than observing the quarks and gluons produced in the collision, the
detector can only observe the spray of hadrons that result. Jets will be discussed in detail
in chapter 5. Confinement has not been rigorously proven from a theoretical standpoint.
However, the existence of color confinement is consistent with empirical evidence.

2.2.4 Parton distribution functions

The QCD Lagrangian describes how individual quarks and gluons behave. But the LHC
collides protons, not individual quarks. Protons consist of three valence quarks: two up
quarks and one down quark, and a ”sea” of quarks, antiquarks, and gluons. When calculating
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collision cross-sections for the LHC, the internal structure of the protons must be taken into
account.

This internal structure is accounted for using parton distribution functions (PDFs). PDFs
are expressed as probability density functions fi(x,Q

2), where i denotes the flavor of the par-
ton, x is the fraction of momentum carried by the parton, and Q is the momentum transfer
at which the proton structure is probed, or the energy scale of the hard-scatter process. The
values of these PDFs cannot be calculated from first principles, but thanks to the QCD fac-
torization theorem, they can be measured experimentally. The factorization theorem allows
for the cross section to be factorized into a hard-scattering part and a normalization factor
from the PDFs. By comparing the experimental and theoretical cross sections for a given
process, the PDFs can be inferred. Since the PDFs are independent of the hard-scattering
process, the data from a variety of processes can be combined. Using the Dokshitzer-Gribov-
Lipatov-Altarelli-Parisi (DGLAP) equations [6], which describe how the PDFs depend Q2,
data from different processes at different momentum-transfer scales can all be combined into
a global fit. For PDFs used by ATLAS, the global fit includes data from deep inelastic
scattering (DIS) e − p collisions from the HERA-II experiment, jet and tt̄ production from
ATLAS and CMS, and observables from several other processes [7].

Figure 2.3 shows the proton PDFs evaluated at NLO for Q2 = 10 GeV 2 and Q2 =
104 GeV 2

Figure 2.3: Parton distribution functions for the proton, evaluated at NLO for two different
energy scales [8].

When calculating LHC cross-sections, the hard-scattering cross-section for different types
of partons must be convolved with the PDFs for each parton. The proton-proton cross-
sections are thus an average of partonic cross-sections, weighted by the PDFs for those
partons.
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2.3 Limitations

Experimental tests of the Standard Model to date have shown no significant deviations from
its predictions, across a very wide range of physical processes and energy scales [2]. However,
it is quite clear that the Standard Model is not a complete theory of nature. There are many
problems and questions that it leaves unanswered.

2.3.1 Fine tuning and the Higgs mass

The Higgs field, which is responsible for the mass of all fundamental fermions and the
massive electroweak gauge bosons, was confirmed by the discovery of 125 GeV Higgs boson
by ATLAS and CMS in 2012 [3, 4]. The fact that the Higgs mass should be so small is
an unsolved mystery of particle physics. When performing QFT calculations, there often
arise terms in the perturbation expansion that are formally infinite. A procedure known as
renormalization is used in order to tame these divergences. One method of renormalization
involves cutting off the divergent integrals at some scale, Λ, then canceling the infinities by
redefining some of the free parameters of the theories.

When calculating the physical mass-squared of the Higgs, there are some terms in the
series which are proportional to the square of the cutoff scale. The cutoff scale is considered
to be some very large energy scale, usually the Planck energy 1019 GeV . As a result, an
infinite sum of positive and negative terms with absolute values on the order of 1038 GeV 2

must cancel out to yield physical Higgs mass-squared, which is on the order of 104 GeV 2. This
kind of cancellation is philosophically unsatisfying, because it seems to be an unreasonable
amount of fine-tuning [9].

The fine-tuning is closely related to the so-called ”hierarchy problem”. Why is gravity
so much weaker than the other fundamental forces? That is, why do we observe GF � GN?
Since GF ∝ 1/M2

W , and GN ∝ 1/Λ2
Pl and because MW is proportional to the Higgs vev, the

Higgs-mass fine-tuning and the hierarchy problem are really the same thing. A possible way
to avoid fine tuning and the hierarchy problem comes from Supersymmetry, which will be
covered in chapter 3

2.3.2 Grand unification

The symmetry groups and representations of the Standard Model have great explanatory
power, but they are, at heart, axiomatic rather than derived. And the Standard Model
contains a large number of free parameters, the values of which are not explained by the
model, but must be measured by experiment. It’s possible that a simpler model could be
found, one which embeds the baroque structure of the Standard Model in a much simpler
set of symmetry groups and representations. Such an idea is known as Grand Unification.
A Grand Unified Theory (GUT) would predict relationships between some of the free pa-
rameters of the Standard Model, resulting in a simpler and more elegant theory. This would
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be analogous to electroweak unification, which explains the relationship between W and Z
boson masses and their couplings, and results in a theory with only three free parameters.

A GUT would explain all particle interactions with a single symmetry group. This
symmetry would be broken below some energy scale to the SU(3)C × SU(2)L × U(1)Y
symmetry of the Standard Model. The details of the symmetry breaking process would yield
relations between the strong and electroweak coupling constants [10]. Going a step further,
if gravitational interactions could also be incorporated into this single theory, it would be a
so-called ”Theory of Everything” (TOE). A very popular TOE candidate, known as String
Theory, requires the existence of Supersymmetry.

2.3.3 Dark matter

The type of matter explained by the Standard Model is known to account for approximately
20% of the matter in the universe. The remaining 80% exists in the form of dark matter.
The exact explanation for dark matter is not yet known, those many of its properties can be
inferred. It is massive and invisible, and its primary interaction with visible matter is through
gravity [11]. Dark matter is known to be massive, because it interacts gravitationally. This
can be seen in its effect on the rotation curves of galaxies, gravitational lensing of distant
galaxies, and on the anisotropy of the Cosmic Microwave Background Radiation [12].

Dark matter could possibly be explained by the Standard Model, if it exists in the
form of Massive Compact Halo Objects (MACHOs). MACHOs are primordial black holes,
formed during the very early universe. If these primordial black holes exist in large enough
quantities to account for the majority of dark matter in the universe, they could in principle
be detected in gravitational lensing surveys. However, these surveys have so far failed to
observe MACHOs in large enough quantities to account for the known quantity of dark
matter. In fact, dark matter in the form of MACHOs with masses greater than 10−7 solar
masses has been ruled out entirely [13].

Another likely explanation for dark matter is that it is composed of a new fundamental
particle, one which is not explained by the Standard Model. Many versions of Supersymme-
try, described in 3, provide a viable dark matter candidate.
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Chapter 3

Supersymmetry

Supersymmetry (SUSY) is an extension to the Standard Model, which introduces a new
spacetime symmetry relating fermionic and bosonic fields [11]. It is a remarkable theory,
which has the potential to resolve many of the known problems of the Standard Model in
one fell swoop.

3.1 Motivation for new physics

As described in 2.3, the Standard Model leaves open some very important questions. These
mysteries all point towards a more fundamental theory, one which is applicable at short
distances scales, or equivalently, higher energies. The most important task of this new theory
is to explain why the Higgs mass is so small, without resorting to the extreme amount of
fine-tuning required by the Standard Model. But a more fundamental theory of particle
physics could potentially simplify the symmetry structure of the model and provide an
explanation for the seemingly arbitrary quantum numbers of the Standard Model particles.
This new theory should not be seen as a replacement for the Standard Model, but rather an
extension of it. Whatever the new theory is, it should be applicable at very short distance
scales, and at low energies, it must reproduce the experimentally-confirmed predictions of the
Standard Model. We know this because all experimental evidence gathered so far indicates
the Standard Model is a correct theory up to the energy scales at which it has been probed.
In this view, the Standard Model is considered an effective field theory (EFT), valid below
the scale of new physics, ΛNP .

3.1.1 Naturalness

As explained in 2.3.1, the Standard Model suffers from a problem of extreme fine tuning.
Quadratic diverges in the quantum corrections to the Higgs mass-squared require the bare
mass of the Higgs to be specified to one part in 1019, which is phenomenally unlikely to
happen by chance [14]. The quadratic divergences occur in loop diagrams, the largest con-
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tribution coming from the top quark loop, shown in figure 3.1. The correction to the Higgs

Figure 3.1: Top-quark loop diagram, the leading correction to the Higgs mass-squared. This
contribution is quadratically divergent in the cutoff scale [15].

mass-squared coming from this diagram is [15]:

δm2
h =

3m2
t

2π2v2
Λ2
UV (3.1)

where mt is the top quark mass, v is the Higgs vacuum expectation value, and ΛUV is the
ultraviolet cutoff.

Supersymmetry introduces a so-called superpartner for each Standard Model particle.
Standard Model fermions have bosonic superpartners, and Standard Model bosons have
fermionic superpartners. Superpartners always have the same quantum numbers as their
Standard Model partners, except for spin. The details of how this comes about will be
discussed in 3.2. The superpartner of the top is called the stop. It’s a scalar particle with
all the same quantum numbers as the top quark, except for spin. The introduction of
superpartners leads to new quantum corrections to the Higgs mass-squared. One of those
corrections can be seen in 3.2. The correction to the Higgs mass-squared coming from this

Figure 3.2: Stop loop diagram, the leading SUSY correction to the Higgs mass-squared. This
contribution is quadratically divergent in the cutoff scale [15].

diagram is [15]:

δm2
h = − 3m2

t

2π2v2
Λ2
UV (3.2)
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Thus, the quadratically-divergent top-loop correction is cancelled exactly. A similar cancel-
lation occurs for all other quadratic divergences in the calculation, leaving terms that are
only logarithmically divergent in the cutoff. In SUSY, the leading correction to the Higgs
mass-squared is proportional to the log of the cutoff scale, and the squared difference between
the top and stop masses [16]:

δm2
h ∝

(
m2
t̃ −m

2
t

)
ΛUV (3.3)

The amount of fine-tuning required can be quantified by mh/δmh, so in order to preserve
naturalness, the stop mass cannot be much heavier than the top quark mass. If we allow
for fine-tuning of only 1 part in 10, then the stop mass shouldn’t be higher than the 1 TeV
scale, which indicates that SUSY should be accessible by the LHC . Lower bounds on the
masses of various suppersymmetric particles from ATLAS range from a few hundred GeV
to 2.4 TeV [17]. Figure 3.3 shows a sample of the SUSY particles and decay channels that
have been searched for with ATLAS, and the resulting lower bounds.

3.1.2 Grand unification

Grand Unification is the idea that the SU(3)C ×SU(2)L×U(1)Y symmetry of the Standard
Model can be embedded in a simpler symmetry group, which constrains the theory at energies
above ΛGUT . In a Grand Unified Theory (GUT), there would be no distinction between
quarks and leptons at energies above ΛGUT , and the differences in interactions between these
two types of matter fields would be explained by the details of the theory and the mechanism
by which its symmetry is broken. Furthermore, at energies above ΛGUT , the three forces of
the Standard Model would be replaced by a single, unified force. Grand unification would
be the logical next step after electroweak unification, in which the electromagnetic and weak
forces are shown to be the same force at energies above ΛEW ≈ 246 GeV . Similarly to how
electroweak unification gives a relationship between electric charge and weak isospin, grand
unification would give a relationship between color charge and the electroweak quantum
numbers. Several different symmetry groups have been proposed as GUTs. Among these
are SU(5), SO(10), E6, and SU(5)× SU(5) [18].

In order for unification to occur, the value of the three Standard Model coupling constants
must converge at some energy scale. The running of coupling constants is determined by the
renormalization group equation (RGE):

∂g

∂ log µ
= β(g) (3.4)

where g is the coupling constant of interest, µ is the energy scale at which the coupling is being
measured, and β is a function that depends on the gauge structure and matter content of the
theory. Using the RGE, and measured values of the coupling constants at specific starting
energies, one can calculate the value of the three constants over a large range of energy
scales. For the Standard Model, there is no energy scale at which all three Standard Model
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Figure 3.3: A representative sample of the various SUSY searches performed by ATLAS,
and their resulting mass lower bounds [17].

constants converge, as would be required for a grand unified theory. However, when the β
function is modified to include supersymmetric particles, it is possible for all three Standard
Model forces to unify. In one particular SUSY model, known as the Minimal Supersymmetric
Standard Model (MSSM), unification of the forces occurs at µ ≈ 2 × 1016 GeV [18]. The
running of the coupling constants under the Standard Model and MSSM can be seen in
figure 3.4.

3.1.3 Dark matter

As mentioned in 2.3.3, SUSY can provide an explanation for Dark Matter, which comprises
approximately 80% of matter in the universe, but cannot be explained by any known par-
ticle. In SUSY models that conserve R-parity1, the lightest supersymmetric particle (LSP)

1See section 3.3 for a discuss of R-parity and R-parity violation
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Figure 3.4: Running of the three Standard Model coupling constants under the Standard
Model (left) and MSSM (right) RGEs. For the MSSM, unification occurs at µ ≈ 2 ×
1016 GeV [16].

must be stable because R-parity prevents the LSP from decaying to a final state without
SUSY particles, and conservation of energy prevents it from decaying to a final state with
SUSY particles. In so-called ”natural” SUSY, the LSP is a neutralino, χ1

0. The neutralino
is a mixture of the electroweak gauge superpartners, the wino and bino, and the Higgs su-
perpartner, the higgsino. The neutralino in this theory would be stable, massive, electrically
neutral, and it would interact via the weak force. As such, it is a viable candidate for WIMP
dark matter.

Intriguingly, if one assumes that dark matter was thermally produced in the early uni-
verse, and calculates the required production cross-section to match the dark matter abun-
dance measured today, the result is 〈σv〉 ≈ 3 × 10−26 cm3/s, which is very close to what
would be expected for a weakly-interacting LSP [19].

3.2 Theory and phenomenology

Supersymmetry starts by positing a transformation that converts a boson field to a fermion
field and vice versa, and a Lagrangian which is invariant under such transformations. Fields
are represented in supermultiplets, each of which always contains a Standard Model particle
and its superpartner. Standard Model bosons are always paired with fermionic superpart-
ners, and Standard Model fermions are always paired with bosonic superpartners. SUSY
transformations commute with all symmetries of the Standard Model, except for the Lorentz
transformations. As a result, a Standard Model particle has all the same quantum numbers
as its superpartner, except for spin. Additionally, SUSY requires both members of the su-
permultiplet to have the same mass. Experiments have ruled out the existence of same-mass
superpartners for all Standard Model particles, so for SUSY to be compatible with exper-
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imental evidence, it must be broken. The method by which SUSY is broken should have
an impact on the phenomenology of the model, specifically on the differences in mass be-
tween the Standard Model particles and their superpartners. A framework called soft SUSY
breaking allows for the specifics of the SUSY breaking to be factored out, by adding effec-
tive terms to the SUSY Lagrangian which account for the consequences of SUSY breaking
without specifying the mechanism. These new terms break SUSY explicitly, and so this is
an effective field theory, valid only at energies well below the SUSY-breaking scale [20].

3.2.1 Superfields and superpotentials

Superfields can be categorized into chiral and gauge superfields. Standard model fermions
and their superpartners will belong to chiral supermultiplets, while Standard Model gauge
bosons and their superpartners will belong to gauge supermultiplets. A generic chiral su-
perfield can be represented as Φ(x, θ), where x represents spacetime, and θ denotes the
additional two fermionic degrees of freedom needed for supersymmetry transformations. It
can alternatively be represented as Φ = (φ, ψ), where φ is the complex scalar component,
and ψ is the fermion component. A generic vector superfield can be represented at V (x, θ, θ̄),
where θ̄ are the conjugate degrees of freedom to θ. In component form, vector supermulti-
plets can be represented as V = (Aµ, λ), where Aµ is the gauge boson and λ is the fermionic
superpartner.

The generic supersymmetric action can then be written as [18]:

S =

∫
d4x

∫
d2θd2θ̄Φ†eV Φ +

∫
d4x

∫
d2θ (W (Φ) +Wλ(V )Wλ(V )) + h.c. (3.5)

where the first integrand is the kinetic term for the matter fields, and the second integrand
contains the generic superpotential, W (Φ) and the gauge kinetic term Wλ(V )Wλ(V ). The
function Wλ(V ) is defined as:

Wλ(V ) = (D)2D̄V (3.6)

where D ≡ ∂θ − iσ∂̇x [18].

3.2.2 SUSY particles

In the MSSM, the minimum number of new particles and free parameters are added to the
already large assortment of Standard Model ones. Each Standard Model fermion is paired
with a spin-0 superpartner, and each Standard Model gauge boson is paired with a spin-
1/2 superpartner. For the Higgs boson, introducing a single superpartner is not enough.
There must be at least two Higgs chiral supermultiplets, with hypercharge values 1/2 and
−1/2. This is needed in order to keep the electroweak theory anomaly-free, and for the Higgs
mechanism to still give mass to all the fermions [15].

Superpartner states will be denoted with a tilde, and are also referred to as sparticles.
For example, the superpartner of the electron, called the selectron, will be denoted as ẽ.
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The MSSM chiral superfield content is summarized in table 3.1, and gauge superfields are
summarized in table 3.2.

Table 3.1: The MSSM chiral superfields, including their names, symbols, and compo-
nents. Quantum numbers for the Standard Model symmetry group transformations are
also given [15].

Table 3.2: The MSSM gauge superfields, including their names, symbols, and compo-
nents. Quantum numbers for the Standard Model symmetry group transformations are
also given [15].

The MSSM superpotential is:

W = hijl e
c
iLjHd + hijd Qid

c
jHd + hijuQiu

c
jHu + µHuHd (3.7)

where the indices i, j, k are generation indices. The superpotential includes all renormalizable
terms that preserve the gauge symmetries and are holomorphic in the chiral superfields,
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except for terms that violate baryon or lepton number conservation. The superpotential is
expressed here only in terms of the left-handed superfields and components. The hermitian
conjugate terms are implied.

3.3 R-Parity and R-parity violation

In equation 3.7, certain terms were excluded from the superpotential because they violate
either baryon number or lepton number conservation. But this requirement is in fact overly
constraining. While processes that violate baryon number or lepton number conservation
have never been observed experimentally, neither have they been ruled out. Additionally,
while there are no explicit B or L-violating terms in the Standard Model, and no perturbative
process in the Standard Model violates either, there are in fact non-perturbative effects in
the Standard Model which lead to violations of both [21].

3.3.1 R-parity

R-parity is a symmetry which is introduced in order to eliminate the explicit B and L-
violating terms from the theory, without have to postulate that B and L are individually
conserved. Each particle has an R-Parity quantum number, defined as:

PR = (−1)3(B−L)+2s (3.8)

where B is the particle’s baryon number, L is its lepton number, and s is its spin. Quarks
and squarks carry baryon number 1/3, leptons an sleptons carry lepton number 1, and
their corresponding antiparticles carry baryon number −1/3 and lepton number −1. Every
Standard Model particle has PR = +1, and every sparticle has PR = −1.

A necessary consequence of R-Parity conservation is that the lightest supersymmetric
particle (LSP) must be stable. In an R-parity-conserving (RPC) theory, interaction vertices
that involve Standard Model particles cannot involve an odd number of sparticles. As a
result, when a sparticle decays, there must be at least one sparticle amongst the decay
products, along with any Standard Model particles. So the lightest sparticle cannot decay,
since there is no lighter sparticle for it to decay to. Furthermore, in RPC SUSY, sparticles can
only be produced in pairs at collider experiments, since their production vertices necessarily
include Standard Model particles.

3.3.2 R-parity violating superpotential terms

If R-Parity conservation is not required, additional terms must be added to the MSSM
superpotential. Each term explicitly violates either baryon number or lepton number by one
unit. These R-Parity-violating (RPV) superpotential terms are:

WRPV =
1

2
λijkLiLj ēk + λ′ijkLiQj d̄k + µ′iLiHu +

1

2
λ′′ijkūid̄j d̄k (3.9)
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where µ′, λ, λ′, and λ′′ are new coupling constants. The first three terms result in interaction
vertices with ∆L = 1, and the last term has ∆B = 1. The term with the coupling constant
λ′′ijk gives rise to the signal processes under consideration in this analysis. The coupling
constant has three generation indices, and must be antisymmetric in the last two terms in
order to preserve gauge invariance.

3.3.3 Rapid proton decay

In general, RPV SUSY would result in proton decay rates far higher than experimental upper
bounds. The main process leading to rapid proton decay requires both the λ′ and λ′′ terms
from equation 3.9. In this process, the proton decays to a neutral pion and a positron, via
an off-shell squark. The tree-level diagram leading to such a decay is shown in figure 3.5
The tree-level rate for this process is approximately [15]:

Figure 3.5: Tree-level diagram for the decay p+ → π0e+, with both L-violating and B-
violating vertices [15].

Γp+→π0e+ ∼
m5
p

m4
d̃

∑
i=2,3

∣∣λ′11iλ′′11i
∣∣2 (3.10)

Experimental bounds on the proton lifetime are greater than 1023 years, so in order for RPV
SUSY to be consistent with experiment, either the squark masses have to be extremely large,
or one of the couplings λ′, λ′′ must be extremely small. Specifically, the coupling and squark
masses must satisfy [22]:

λ′11kλ
′′
11k < 10−23

( mq̃

100 GeV

)2

(3.11)

For the search presented here, the ad-hoc assumption that λ′ = 0 is made, in order to prevent
predicted proton decay rates inconsistent with experiment.
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3.3.4 R-parity violating gluino decays

The λ′′ijk RPV term in the superpotential allows for two potential gluino discovery channels
at the LHC . The first involves pair-produced gluinos each decaying to three quarks via an
effective vertex with an off-shell squark propagator. This decay mode will be referred to
as the direct decay model. The second decay mode has the gluino first decaying to two
quarks and an on-shell neutralino, via an RPC vertex, and then the neutralino decaying
to thre quarks through an effective RPV vertex, which also includes an off-shell squark
propagator. This is the cascade decay model. Both decay modes result in a large number
of high-momentum jets in the event. Diagrams for these two decay modes are shown in
figure 3.6. As mentioned in 3.3.2, the generation indices on λ′′ijk must be antisymmetric in
the last two terms. The values of λ′′ for different combinations of i, j, k will determine the
branching fractions for the gluinos decaying to different quark flavors.

Figure 3.6: Diagrams for the two decay processes that are the subject of this search. The
direct decay (left) and cascade decay (right) both involve effective RPV vertices containing
off-shell squark propagators.

The production and decay rates will depend on the values of the gluino mass, neutralino
mass, and λ′′. A detailed discussion of the signal modeling is presented in chapter 7.
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Chapter 4

The LHC and ATLAS Detector

ATLAS is a system of particle detectors built to measure collisions of both proton-proton and
heavy ion collisions generated by the LHC [23]. The full detector is 44 m long and 25 m in
diameter. It consists of an inner detector subsystem for charged particle tracking and electron
identification, electromagnetic and hadronic calorimeters, and a muon spectrometer.

4.1 The Large Hadron Collider

The Large Hadron Collider (LHC) is the world’s largest, highest-energy, highest-luminosity
particle accelerator. It is located inside a 27 km circular underground tunnel below the
French-Swiss border. The LHC was designed to produce up to 14 TeV center-of-mass en-
ergy proton-proton collisions, as well as lead-ion collisions at a center-of-mass energy of
2.7 TeV/u. There are two counter-rotating beams of particles, which are accelerated to
nearly the speed of light and steered into each other at predefined collision points along the
ring, where detectors have been built to measure the particles generated in the collisions.
The highest collision energy achieved to date for proton-proton collisions is 13 TeV , with a
peak luminosity of 1034 cm−2s−1 [24].

Collisions generated by the LHC are measured by seven different experiments. The
original four experiments are ATLAS, CMS, LHCb, and ALICE . ATLAS and CMS are the
two general-purpose detectors designed for a variety of measurements and searches for physics
beyond the Standard Model. They are mainly used to study proton-proton collisions, but
are also used for heavy-ion collisions. LHCb, as the name implies, is a specialized detector
built to measure the decays of B mesons. ALICE is a specialized detector for studying
Pb−Pb collisions. In addition to these four experiments, there are three smaller, specialized
experiments called TOTEM, LHCf, and MoEDAL .

The LHC is actually the last in a chain of progressively larger accelerators, each of which
adds additional energy to the proton beams until they are injected into the LHC for the final
acceleration. Atoms from a bottle of Hydrogen gas are passed through an electric field to
strip their electrons, resulting in bare protons. These bare protons are passed into a linear
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accelerator known as Linac2, which accelerates them to 50 MeV . The Proton Synchrotron
Booster (PSB) then accelerates the beams to 1.4 GeV , before injecting them into the Proton
Synchrotron (PS), which accelerates them to 25 GeV . The final link in the injection chain
before the LHC is the Super Proton Synchrotron, which accelerates the beams up to 450 GeV
per proton. The LHC provides the final boost up to 6.5 TeV per proton. This final stage
of acceleration takes approximately 20 minutes, after which the beams can circulate at this
energy for at least 10 hours.

The LHC did not always operate at 13 TeV . It took a number of years, over which
the energy was increased in steps, before this energy could be reached. The cumulative
luminosity delivered over time each year from 2011 to 2018 is shown in figure 4.1.

Figure 4.1: Cumulative luminosity delivered by the LHC over time for each of the years from
2011 to 2018 [25].

The first two years of data taking, during which the LHC operated at
√
s = 7 TeV and

later at
√
s = 8 TeV are known as Run 1. The first long shutdown (LS1) took place during

2013 and 2014, during which the accelerator was upgraded needed to reach
√
s = 13 TeV .

The most time-consuming part of the upgrade involved cycles of cooling and quenching of the
superconducting dipole magnets, referred to as ”training” the magnets. The LHC restarted
for Run 2 in early 2015, operating at

√
s = 13 TeV , with a goal of delivering 150 fb−1 of
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proton-proton collision data over a four-year period. After Run 2, the LHC will be shut
down again for 2 years to enable the upgrade to the full 14 TeV design energy. In 2024,
it will be shut down again to begin work on the upgrades needed for the high-luminosity
LHC (HL-LHC), which aims to increase the instantaneous luminosity by a factor of five [26].
Figure 4.2 shows the planned operation timeline of the LHC from the first collisions in 2011
through to the HL-LHC upgrade in the 2020s.

Figure 4.2: Planned operation timeline of the LHC, showing the different run periods, shut-
down periods, and the energy and luminosity goals, up to and including the HL-LHC up-
grades [26].

4.1.1 Layout

The LHC was built inside an already existing tunnel, which originally housed a previous
accelerator called the Large Electron-Positron Collider (LEP). The tunnel is roughly circular
and 27 km in circumference. It is buried at an average depth of 100 m below ground, sloping
at a gradient of 1.4% from its deepest point of 175 m to its shallowest at 50 m below ground.

The ring consists of eight arcs and eight straight regions. The straight regions are referred
to as insertions, and the arcs are called sectors. Octants span from the halfway point of
one sector to the halfway point of the next sector, and each contains contain exactly one
insertion. The sectors contain dipole magnets which generate the field needed to bend the
beams around the ring. Four of the insertions are used for particle collisions, where the
two beams are focused with quadrupole magnets in order to collide the greatest number
of particles in the smallest possible space. Each of the four main detector experiments are
located at one of these insertions. The other four insertions are used for beam injection,
cleaning, and dumping. Figure 4.3 shows a schematic of the layout of the LHC, including
locations of the four major detector experiments.

There are also three smaller experiments, not shown in the figure, called TOTEM, LHCf,
and MoEDAL. TOTEM and LHCf are specialized for measuring protons and heavy ions
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emerging from LHC collisions at extremely small angles. The TOTEM detectors are located
close to the interaction point along beamline on either side of the CMS experiment, and
LHCf detectors are similarly situated near the ATLAS collision point. MoEDAL detectors
are located within the LHCb insertion, and are designed to search for evidence of magnetic
monopoles.

Figure 4.3: Schematic of the LHC layout. The clockwise-rotating beam, shown in red, is
referred to as beam 1, and the counter-clockwise-rotating beam, shown in blue, is beam 2.
Locations of the four major detector experiments are labelled [27].



CHAPTER 4. THE LHC AND ATLAS DETECTOR 27

4.1.2 Magnets

Dipoles

Each of the eight sectors uses 154 dipole magnets to bend the beams around the ring.
All dipole magnets in a sector are connected in series and cooled in the same continuous
crystotat. Each sector is powered independently. The magnetic field generated by these
magnets points in the y-direction in order to generate a force that points towards the center

of the LHC, according to the Lorentz force law ~F = q
(
~E + ~v × ~B

)
.

The design and performance of the dipole magnets is crucial to achieving the high energies
needed by the LHC physics goals. This is because the maximum beam energy that can be
kept in orbit is proportional to the strength of the magnetic field generated by the dipole
magnets. The dipole magnets are superconducting electromagnets, which generate a field
of 8.3 T . The superconducting wires are made of NbTi, which has a critical temperature
of 10 K, but are cooled to and operated at 1.9 K. Cooling is done with superfluid helium,
which has a very high heat capacity at this temperature. The wires are made of 7 µm
filaments, thousands of which are twisted together into 15 mm strands. Each cable is then
composed of 36 of these strands twisted together. In order to generate the 8.3 T magnetic
field, a current of 11.85 kA passes through the superconducting wires. Each dipole magnet is
15 m long and weighs 35 tonnes. A schematic of the cross-section of an LHC dipole magnet
can be seen in figure 4.4.

Quadrupoles and higher order

Quadrupole magnets are located near the interaction points of each detector experiment, for
focusing the beams into the smallest possible area before collisions. When a beam passes
through a quadrupole magnet, it is squeezed along one axis perpendicular to the direction of
travel of the beam. It is simultaneously un-squeezed in the direction perpendicular to both
the beam and the squeezing direction, but the magnitude of the un-squeezing is less than the
magnitude of squeezing. When a beam passes through two successive quadrupole magnets
with squeezing directions at 90 degrees to each other, the net effect is a uniform squeezing
of the beam towards its center. Before entering ATLAS, a series of quadrupole magnets
squeezes the beams from approximately 0.2 mm to less than 20 µm. Additional higher-
order magnets are used in locations around the LHC for beam corrections and damping of
oscillations. There are also special single-bore dipoles which are used to separate the beams
in the region of the RF cavities, so that separate RF cavities can be used for each beam.

4.1.3 Radio frequency cavities

Superconducting radio frequency (RF) cavities, operating at 400 MHz, and 2 MV , are used
to accelerate and store the beams. The RF cavities accelerate the beams to their nominal
energy, and continue to supply power over the lifetime of the beams to compensate for energy
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Figure 4.4: Cross-section schematic of an LHC dipole magnet [28].

lost through synchrotron radiation. There are a total of 16 RF cavities, contained within 4
cryomodules. Figure 4.5 is a schematic of an RF cavity cryomodule.

The RF cavities are tuned such that the resonant frequency of electromagnetic waves
inside the cavity is 400 MHz. Protons passing through the cavity will be accelerated or
decelerated by the electromagnetic field, depending on their time of arrival in the cavity. A
proton travelling with the exactly the right energy will enter the cavity with just the right
timing to experience zero overall force. Protons travelling slightly too slowly or too quickly
will be decelerated or accelerated until their energy is exactly right. This process results in
protons bunching up around the beam, with all protons traveling at nearly the same 13 TeV
energy. The energy spread (rms δp/p) for the LHC is approximately 1× 10−4 [11].

4.1.4 Beams and luminosity

Each beam consists of 2,808 bunches of 1011 protons each. The frequency of cycles around
the LHC is 11, 245 Hz. Bunches are mostly evenly spaced, with a few gaps that are needed
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Figure 4.5: Schematic of a cryomodule, containing four RF cavities used to accelerate and
store the LHC beam [27].

for beam injection or dumping. Except for the gaps, bunches are spread out to arrive at the
collision points every 25 ns. When the gaps are taken into account, actual bunches cross
with an average frequency of 30 MHz. At a luminosity of 7.7× 1033 cm−2s−1, there will be
approximately 40 inelastic collisions per bunch crossing. Thus the average number of events
delivered to ATLAS per second is approximately 1 billion [24]. Instantaneous luminosity is
defined as:

L =
1

σ

dN

dt
(4.1)

where σ is the cross-section of the physics process under consideration, N is the number
of events of that type, and t is time. Luminosity is a property of the accelerator itself,
independent of the type of physics process being considered. It is therefore a useful metric
for characterizing the performance of the LHC .

In order to maximize luminosity (and therefore maximize the number of potentially
interesting collision events), the most important factor to increase is the number of particles
per bunch. That’s because luminosity is proportional to the square of the number of particles
per bunch, according to 4.2.

L =
N2
b nbfrev

2πΣxΣy

(4.2)

where Nb is the number of particles per bunch, nb is the number of bunches per beam, frev
is the frequency of revolutions around the LHC, and Σx, Σy are the transverse widths of
the beam in the x and y direction. This equation tells us how to maximize instantaneous
luminosity: put as many protons as possible into as small a space as possible, and accelerate
them as fast as possible. The peak luminosity delivered to ATLAS by the LHC is 2.06 ×
1034cm−2s−1 for proton-proton collisions, and 6.2× 1027cm−2s−1 for Pb-Pb collisions.
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4.2 The ATLAS detector

4.2.1 Coordinates

The coordinate system used in this document is the standard ATLAS coordinate system,
detailed here. For both Cartesian and polar coordinates, the origin is defined as the nominal
interaction point. The z-axis points down the beamline. The x-y plane is perpendicular to
the beamline. The positive y-direction points up, and the positive x-direction points towards
the center of the LHC ring. The positive z-direction therefore points counterclockwise along
the LHC, when viewed from above, as required by a right-handed coordinate system.

For cylindrical coordinates, the z-axis is defined the same way as for Cartesian coordi-
nates. The azimuthal angle φ is the angle from the positive x-axis, while the polar angle θ is
the angle from the beamline. A more convenient measure of angle from the beamline is the
rapidity, because rapidity differences are invariant under Lorentz boosts in the z-direction.
Rapidity is defined as:

y =
1

2
ln
E + pz
E − pz

(4.3)

Another frequently used quantity is the pseudorapidity, which is defined as:

η = − ln
θ

2
(4.4)

Pseudorapidity differences are also invariant with respect to longitudinal Lorentz boosts.
In the limit where pT � m, rapidity and pseudorapidity are equal. Pseudorapidity ranges
from zero to plus or minus infinity. The x-y plane, which is perpendicular to the beamline,
is described by a pseudorapidity η = 0. The z-axis, which is parallel to the beamline, is
described by pseudorapidity η = ±∞.

A distance measure in η − φ space is often used, especially when describing jets. This
distance, ∆R is defined as:

∆R =
√

∆η2 + ∆φ2 (4.5)

4.2.2 Magnet systems

The two ATLAS magnet systems are used to curve the tracks of charged particles passing
through the detector, so that their momenta can be measured. The layout of the magnet
systems can be seen in figure 4.6.

The first magnetic field is produced by the central solenoid, which surrounds the entire
inner detector, and is surrounded by the barrel calorimeters. It generates a uniform 2 T axial
magnetic field in the inner detector. The coils are made of Al-stabilized NbTi. The length
is 5.8 m, and the outer diameter is 2.56 m [23]. The second magnet system, used to bend
the trajectories of muons passing through the muon spectrometer, has a more complicated
geometry. It consists of a barrel toroid section, and two symmetrical end-cap toroids. The
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Figure 4.6: A diagram showing the layout of the ATLAS magnet system. The central
solenoid is used to apply a force that curves the trajectories of charged particles in the inner
detector. In red are the toroid coils, used to bend the tracks of charged particles passing
through the muon spectrometer [23].

exact shape of the resulting magnetic field is quite complex, but roughly runs in a circular
direction around the calorimeters.

The axial length of the barrel toroid is 25.3 m, and the outer diameter measures 20.1 m.
The average field strength is 0.5 T and the superconducting material used is similar to that
used in the central solenoid[23]. The magnetic field in the region |η| < 1.4 is dominated by
the barrel toroid, while the end-cap field dominates the region 1.6 < |η| < 2.7. The region
1.4 < |η| < 1.6 is the transition region, where both sources contribute significantly to the
magnetic field. Figure 4.7 shows an end-on view of the barrel toroid, after installation, and
before the calorimeters are inserted. The end-cap toroids are used to generate the magnetic
field for muons passing through the end-cap region of the muon spectrometer. The properties
and geometry of the end-cap toroids are similar to the barrel toroid, with peak magnetic
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field reaching 4.1 T [23].

Figure 4.7: A picture of the ATLAS barrel toroid after installation. In the center of the
image is the calorimeter and central solenoid, before being moved into the final position [23].

4.2.3 Inner detector

The inner detector consists of silicon pixel detectors, silicon strip detectors, and transition
radiation trackers. It covers a region from R = 33 mm to R = 1082 mm and |η| = 0 to
|η| = 2.5. The layout of inner detector subsystems is shown in figure 4.8.

Pixel Detector

The innermost layer of ATLAS detectors is the pixel system. Since it lies closest to the
interaction point, the pixel system experiences the highest flux of any ATLAS subdetector.
This means that the pixel detector must have the greatest radiation hardness, greatest
resolution, and greatest occupancy of any subdetector [23]. The pixel system consists of
1744 solid-state pixel sensors, arranged into a barrel region and two endcap regions. There
are a total of 8 × 107 silicon pixels, with a total silicon surface area of 1.7 m2, and 80.4
million pixel readout channels [23].
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Figure 4.8: A quarter-section plan showing the layout of inner detector subsystems and
their dimensions. Not shown is the innermost layer of the pixel detector, the IBL, which was
installed in May 2014 [27].

The barrel region consists of four concentric cylindrical layers, coaxial with the beamline.
The two endcap regions are each made up of three disks, arranged perpendicular to the
beamline. The pixel barrel envelope covers a region from z = 0 to |z| = 400.5 mm. The
four layers are located at increasing distances from the beamline, at R = 33 mm, 50.5 mm,
88.5 mm, and 122.5 mm. The six endcap disks are located at |z| = 495 mm, 580 mm, 650 mm
and cover the region 88.8 mm < R < 149.6 mm [23]. Figure 4.8 shows a quarter-section of
the entire inner detector, as well as a detailed view of the pixel subsystem, not including the
Insertable B Layer (IBL), which was installed in 2014.

The ATLAS pixel sensors are solid-state silicon detectors. The basic operating principle
is that charged particles passing through a material generate electron-hole pairs, which are
accelerated towards opposite ends of the material via an electric field. This generates a
current, which can be measured by charge-sensitive sensors at the edge of the material [29].
The active material is a pn-junction, operated with a reverse bias voltage, until fully depleted.
This reduces the thermal noise from free charge carriers to a low enough level that electron-
hole pairs from signal particles can be detected [29]. The operating principle is illustrated
in figure 4.9, which shows the electron-hole pairs generated in the depletion region by an
incoming ionizing particle, and the directions in which the electrons and holes are accelerated
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under the electric field.

Figure 4.9: The basic operating principle of a solid-state particle detector. A reverse bias
is applied across a pn-junction, creating a depletion region. When a charged particle passes
through this depletion region, electron-hole pairs are created, and the electrons and holes
are accelerated in opposite directions under the electric field. The flow of electrons generates
a current in the readout electronics.

In ATLAS, the pixel sensors consist of an n-type bulk, with p+ implants on the back side
and n+ implants on the front side. Before irradiation, the active pn junction region exists
between the n-type bulk and p+- implanted side. Irradiation leads to the reduction in the
effective doping concentration, until the bulk material undergoes type inversion. After type
inversion, the active pn junction region switches to the n+-doped side [30]. This process is
illustrated in figure 4.10. This n+-in-n design allows the sensors to continue to operate both
before and after large doses of radiation. Each pixel tile has 47232 pixels, laid out in a grid
of 144 columns by 328 rows. Some of the pixels are grouped to common read-out channels,
resulting in 46080 read-out channels. This grouping is done so that an equal number of
read-out channels can be connected to each of the 16 front-end read-out chips [30]. In 128
of the columns, each pixel implant is 382.5× 30 µm2, with pitch (center-to-center distance)
of 400 × 50 µm2. In the remaining 16 columns, the pixel sizes are 582.5 × 30 µm2, with a
pitch of 600× 50 µm2 [30].

A major upgrade that occurred during the long shutdown in 2014 was to install the In-
sertable B-Layer (IBL) to the pixel detector. The IBL became the fourth and innermost layer
of the pixel detector. It provides several key improvements to the tracking system, which
will allow the pixel detector to maintain good performance even in the higher-luminosity
environment that will be present in the High Luminosity LHC (HL-LHC) [31]. The IBL
does this by improving tracking robustness against module failures, adding measurement



CHAPTER 4. THE LHC AND ATLAS DETECTOR 35

Figure 4.10: Graphic illustrating how n+-in-n pixel sensors continue to operate after the type
inversion that results from irradiation. In (a), the unirradiated state, the bulk is n-type, and
the depletion zone occurs between the p+-doped back side. After type inversion, in (b), the
depletion zone occurs between the now p-type bulk and the n+-doped front side [30].

redundancy to mitigate the effects of pileup, and adding an additional measurement closer
to the interaction point [31]. As part of the IBL insertion project, the original beam pipe was
removed, and replaced with a smaller-radius beampipe. Precision tooling and methods for
insertion were developed and practiced for two years before the procedure was finally carried
out. The tolerances were extremely tight, with only a 0.2 mm gap between the IBL and
inner supporting tube [32]. An image of the IBL being inserted can be seen in figure 4.11

Silicon Strip Tracker

After the pixel detector system, the next innermost subdetector is the SemiConductor
Tracker, or SCT . The SCT consists of 4088 modules, with a total silicon surface area
of 63 m2 [23]. Like the pixel system, the SCT barrel region consists of four concentric cylin-
drical layers, coaxial with the beamline. The two endcap regions are each made up of nine
disks, arranged perpendicular to the beamline. The SCT barrel envelope covers a region
from z = 0 to |z| = 746 mm, and the four layers are located at increasing distances from
the beamline, at R = 299 mm, 371 mm, 443 mm, and 514 mm [33]. The nine endcap
disks on each side range from |z| = 853.8 mm to |z| = 2720.2 mm, and cover the region
275 mm < R < 560 mm [23].

Like in the pixel system, the SCT sensors are solid-state silicon detectors. Instead of
pixels, the base unit is a strip of silicon, ranging in length from 6 to 13 cm. The modules
are arranged in back-to-back pairs at a stereo angle of 40 mrad, in order to provide two-
dimensional resolution. These strips are made of p-type silicon, and are embedded in n-type
silicon. The average pitch is 80 µm [34]. The resolution resulting from this design is 17 µm
in the r − φ direction, and 580 µm in the z-direction [34].
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Figure 4.11: The IBL as it was inserted into the pixel detector [32].

Transition Radiation Tracker

Moving outwards from the pixel system and SCT, the final inner detector subsystem is the
transition radiation tracker, or TRT . Unlike the pixel or SCT systems, the TRT uses propor-
tional drift tubes, referred to as straws, as sensors. To make accurate track measurements,
the TRT relies on a larger number of hits over a longer distance than the pixel system or
SCT . Since the TRT measures approximately 36 hits per track, and makes measurements
over a longer distance, less spatial precision is required per hit [23]. The TRT only provides
tracking information in the R − φ direction, unlike the pixel and SCT systems, which each
provide three-dimensional tracking information. The main purpose of the TRT is to provide
additional tracking information. But transition radiation photons generated in the TRT
gas-filled tubes can also aid in electron identification [23].

The TRT uses proportional drift tubes to detect charged particles. A tube is filled with
a mixture of two or more gases, including an inert gas such as Xenon, and an electric field
is applied across the tube. When a charged particle passes through the tube, ion pairs are
generated from the inert gas. Positive and negative ions drift in opposite directions, towards
the cathode and anode, respectively. If a particle’s energy is completely absorbed in the
tube, the number of ions produced in stopping the particle is proportional to the original
energy of the particle [35]. In addition to the inert gas, it is common to add another gas,
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such as Carbon Dioxide, to stabilize the ionization process. This additional gas is referred
to as a quencher gas.

Like the pixel system and SCT systems, the TRT consists of a barrel region and two
end-cap regions. In the barrel region, straw tubes are arranged coaxial to the beamline
and measure 144 cm in length. In the end-cap region, straw tubes are arranged radially,
and measure 37 cm in length [23]. The TRT barrel envelope covers a region from z = 0
to |z| = 780 mm, and 554 < R1082 mm, and the end-cap envelop covers a region from
z = 848 to |z| = 2710 mm, and 644 < R1004 mm. This provides tracking coverage out
to |η| = 2.0 [23]. A charged track passing trough the TRT will typically produce 36 hits.
Each straw provides a hit resolution of 130 µm. The TRT has a total 351,000 total readout
channels.

Figure 4.12: Part of a TRT end-cap, showing the radial layout of the 37 cm straw tubes [36].

The TRT straw tube walls are constructed of two layers of 25 µm-thick Kapton film.
The Kapton is coated with a 0.2 µm-thich layer of aluminum, followed by a 6 µm-thich layer
of carbon-polyimide. The Aluminum layer serves to provide electrical conductivity, and
the carbon-polyimide layer is to protect the aluminum. The two Kapton layers are sealed
together with a 5 µm-thick polyurethane layer [36]. The TRT straw wall design is shown in
figure 4.13

The straws are filled with a mixture of 70% Xe, 27% CO2, and 3% O2. Carbon dioxide
is used as a quencher gas, which is needed to guarantee that the ionization procedure is
stable. The addition of a small amount of oxygen increases the voltage difference between
the working point and the breakdown voltage, further stabilizing the process [36].
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Figure 4.13: Schematic of the TRT straw wall design. Two coated Kapton layers are sealed
together with polyurethane [36].

In order to maximize hit efficiency, the straw diameter should be as large as possible.
But there is a tradeoff: as straw diameter increases, so does the drift time. The optimal
diameter to ensure acceptable time resolution for 25 ns bunch-spacing was determined to be
4 cm [36].

Tracking Resolution

The number of layers crossed per track and the intrinsic accuracy for each inner detector
subsystem is summarized in table 4.1. The TRT provides the largest number of hits per
track, but has the poorest resolution, and only provides resolution in R− φ. The Pixel and
SCT systems have much better resolution in R−φ and also provide z-resolution in the barrel
region, and R-resolution in the disks.
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number of layers R− φ resolution z resolution (barrel) / R resolution (disks)

Pixel 3 10 µm 115 µm
SCT 8 17 µm 580 µm
TRT 36 130 µm N/A

Table 4.1: Summary of number of layers crossed per track as well as intrinsic accuracy in
R− φ and z for each of the inner detector subsystems.

4.2.4 Calorimeters

The ATLAS calorimeters are designed to absorb and measure the energy of both electro-
magnetic and hadronic showers. Different materials and geometries are used for different
calorimeter subsystems, but the operating principle is the same. In each calorimeter, there
is an absorber medium, and a sampling medium. When a particle strikes the absorber
medium, it triggers a shower of particles which then pass into the sampling medium. The
sampling medium is ionized by these showering particles, and instrumentation is used to mea-
sure the amount of ionization. In order to accurately measure shower energy, the ATLAS
calorimeters are designed to fully absorb both electromagnetic and hadronic showers.

The innermost calorimeter is a high-granularity detector optimized for measuring elec-
tromagnetic showers, which covers the range |η| < 3.2. In the electromagnetic calorimeter,
lead is used as an absorber and LAr as the sampling medium. The outer calorimeter has a
coarser granularity and is optimized for measuring jets and ETmiss . It consists of scintilla-
tor tiles and uses steel as the absorber. In addition to the EM and hadronic calorimeters,
there is copper-tungsten/LAr calorimeter providing coverage out to |η| < 4.9, known as the
forward calorimeter, or FCal. The layout of the full ATLAS calorimeter system can be seen
in figure 4.14

Electromagnetic Calorimeters

The electromagnetic calorimeter is located just outside the solenoid that surrounds the inner
detector. It is optimized for measuring the energy of electromagnetic showers. The EM
calorimeter is also designed to measure the direction of neutral particles, which cannot be
tracked by the inner detector. In the barrel region, the EM calorimeter covers the range
|η| < 1.475. In the end-cap region, it covers a range of 1.375 < |eta| < 3.2.

The calorimeters have to be thick enough to fully absorb shower energy and to minimize
punch-through into the muon system. The EM calorimeter depth was designed to be 22
interaction lengths (X0) in the barrel, and 24 X0 in the end-caps. An interaction length is
defined as the average distance traveled by a particle through a material when it has lost
1− 1/e of its original energy [37].

The calorimeters consist of accordion-shaped lead absorber plates with copper-kapton
electrodes in between. The accordion shape provides full symmetry in |φ| with no gaps. The
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Figure 4.14: Layout of the ATLAS calorimeter system [23].

absorber plates are grounded and the electrodes are kept at 2000 V in the barrel region and
between 1000 and 2500 V in the end-cap region. The whole system is immersed in liquid
argon [23]. A particle passing through the lead absorbers generates a shower of particles,
which ionize the LAr. Due to the electric field between the absorber plates and electrodes,
ions drift towards the electrodes. This generates a pulse in the electrodes which can then be
recorded.

The calorimeter cells are arranged into three layers, with highest granularity closest to the
interaction point. Cells in layer 1 have a granularity of δφ× δη = 0.0245× 0.0031. This very
fine segmentation is useful in accurately determining the direction of incoming particles. It is
also useful in discriminating between an individual photons and a neutral π meson decaying
to two photons [37]. In the second layer, the granularity is reduced δφ×δη = 0.0245×0.025.
In the third and final layer, the granularity is further reduced to δφ × δη = 0.0245 × 0.05.
The geometry of the EM calorimeter cells can be seen in figure 4.15

Inside the innermost layer of the barrel EM calorimeter is an 11 mm-thin presampler,
covering a range of |η| < 1.8. The purpose of this presampler is to correct for energy lost to
material upstream of the EM calorimeter.
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Figure 4.15: Schematic of EM calorimeter, showing the granularity of each layer [37].

Hadronic Calorimeters

The most important ATLAS subdetector for measuring jets is the hadronic calorimeter
system. The hadronic calorimeter system consists of central and extended tile calorimeter
barrels, two end cap calorimeters, and a forward calorimeter.

The central tile barrel covers the range |η| < 1.0, the extended tile barrels cover the
range 0.8 < |η| < 1.7, and the end-cap calorimeters cover the range 1.5 < |η| < 3.2. The
forward calorimeters (FCal) cover the extreme forward region, 3.1 < |η| < 4.9. The central
barrel is 5.8 m long, and the extended barrels are each 2.6 m long. Both the central and
extended barrels cover the range 2.28 m < R < 4.25 m. Each of the three tile calorimeters is
composed of 64 wedge-shaped modules. The geometry of the hadronic calorimeter system,
not including the end-caps, can be seen in figure 4.14.

The hadronic calorimeters in the central and extended barrel regions are tile calorimeters,
which consist of alternating steel absorber plates and scintillating tiles. Particles that pass
through the steel plates generate hadronic showers. The hadrons from these showers then
stimulate the production of photons in the scintillating tiles, which are then collected by
photomultiplier tubes, producing a current that can be measured. A wavelength-shifting
fiber is used to convert the ultraviolet photons produced in the scintillator into optical
photons before entering the photomultipliers. A schematic of a tile calorimeter module
can be seen in figure 4.16 The η- and depth-dependent segmentation of the tile calorimeter
modules can be seen in figure 4.17

The hadronic end-cap calorimeter (HEC) consists of two cylindrical wheels on each side
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Figure 4.16: Schematic of a tile calorimeter module [23].

of the barrel, each of which has a radius of 2.03 m. Each of these wheels is made up of 32
modules. The HEC wheels closest and farthest from the interaction point are called HEC1
and HEC2. HEC1 modules have higher granularity and sample fraction than HEC2 modules.
A schematic of the HEC modules can be seen in figure 4.18.

The HECs use LAr as the sampling material and copper as the absorber material. The
copper plates are separated by gaps of 8.5 mm, with three electrodes in between. This
creates four drift zones between each copper plate. Typical drift time across the drift zones
is 430ns, at a potential difference of 1800V [23]. There are a total of 5632 readout cells. In
the region |η| < 2.5, the readout cell size is δφ × δη = 0.1 × 0.1, and δφ × δη = 0.2 × 0.2
elsewhere.

Forward Calorimeters

Special forward calorimeters (FCal) were designed to cover the forward region, 3.1 < |η| <
4.9. This region experiences very high particle flux compared to the barrel or end-cap
regions, so a different design was needed. Each FCal consists of three modules. The module
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Figure 4.17: Schematic of the central (left) and extended (right) tile calorimeter, showing
the η- and depth-dependent segmentation [23].

Figure 4.18: Schematic of hadronic end-cap calorimeter module [23].

closest to the interaction point (FCal1)is optimized for EM showers, while the middle and
outer modules (FCal2 and FCal3) are optimized for hadronic showers. All three modules are
45 cm deep, and use LAr as the sampling material.

FCal1 uses copper as the absorber material, while FCal2 and FCal3 use tungsten as
the primary absorber. To further reduce punch-through into the muon system, a copper
shield plug is placed behind FCal3. The location of the FCal with respect to the end-cap
calorimeters can be seen in figure 4.19 The FCal, hadronic end-cap, and electromagnetic
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end-cap calorimeters are all contained in the same end-cap cryostat. The overlapping design
of the end-cap and forward calorimeters allows for hermetic coverage with minimal energy
loss out to |η| < 4.9.

Figure 4.19: Schematic showing the layout of the forward calorimeters and end-cap calorime-
ters [23].

In order to provide accurate energy measurements of photons, jets, and ETmiss, it is
necessary for the calorimeters to absorb as much shower energy as possible. Any particles
that don’t get absorbed by the calorimeter are considered punch-through particles. These
punch-through particles reduce the accuracy of calorimeter measurements and add noise
to the muon system, so they should be minimized. For hadronic showers, the analog to a
radiation length is called an interaction length, λ . The amount of material for each part of
the calorimeter, as measured in interaction lengths, can be seen in figure 4.20.

Energy Resolution

The energy resolution of the LAr calorimeters is parameterised as [38]:

σ(E)

E
=

a√
E(GeV )

⊕ b (4.6)

Electron test beams ranging from 10 GeV to 240 GeV are used to measure the electron
energy resolution of the LAr calorimeters. The resulting parameters were found not to exceed
a = 10%

√
GeV and b = 0.7% over both the EM barrel and EM end-cap calorimeters. The

hadronic end-cap calorimeter has design resolution 50%√
E
⊕ 3%, while the forward calorimeter
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Figure 4.20: Amount of material, in units of interaction length, versus pseudorapidity, includ-
ing all material before the EM calorimeter, the EM calorimeter, and the hadronic calorime-
ters. The light blue indicates the amount of material in front of the muon spectrometer for
|η| < 3.0 [23].

has design resolution 100%√
E
⊕ 10%. The hadronic tile calorimeter provides a jet resolution of

σ(E)/E = 50%/
√
E [23].

4.2.5 Muon spectrometer

The outermost ATLAS system is the muon spectrometer, used to measure the momenta of
charged particles that exit the calorimeter systems. Muons are not absorbed by the EM
calorimeter because they undergo less bremsstrahlung than electrons due to their high mass.
They are also no absorbed by the hadronic calorimeter because they do not interact strongly.
As a result, muons are the most common particle to escape the calorimeter system.

The overall dimensions of the muon spectrometer, which define the demensions of ATLAS,
are 44 m long by 22 m high. The muon spectrometer consists of four subsystems. The
monitored drift tubes (MDTs) and cathode strip chambers (CSCs) are used for high-precision
tracking, while the resistive plate chambers (RDCs) and thin-gap chambers (TGCs) are
used for triggering and bunch-crossing identification. The location of each of the four muon
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subsystems can be seen in figure 4.21

Figure 4.21: Layout of the muon spectrometer, indicating the location of barrel and end-cap
toroids, along with the four subsystems [23].

As described in 4.2.2, the magnetic field in the muon system runs in a roughly circular
direction around the beamline. As a result, charged particles are bent in the η direction in
the muon spectrometer. In the barrel region, covering |η| < 1.0 the muon system is laid out
in three concentric cells, located at 5 m, 7.5 m, and 10 m from the interaction point. Full
coverage is provided in this region, except for a small gap at |η| = 0, to allow for services
to the solenoid, calorimeters, and inner detector systems. The size of the acceptance gap is
|η| < 0.04 in the innermost layer, and |η| < 0.08 in the outer layers. The end-cap consists of
large wheels, located at |z| ≈ 7.4 m, 10.8 m, 14 m, and 21.5 m. Figure 4.22 shows a cross-
section of the barrel region of the muon spectrometer in the x− y plane, and a cross-section
of the barrel and end-cap regions in the y− z plane. The small acceptance gap at η = 0 can
be seen.

The muon spectrometer provides high-precision momentum measurements out to |η| <
2.7, and triggering on high-momentum muons out to |η| < 2.4. The ATLAS design specifi-
cation requires momentum resolution of 10% for 1 TeV muons. This resolution is achieved
or exceeded for the range 10 GeV < pT < 1 TeV . The contribution to pT resolution from
various sources at different pT is shown in figure 4.23. The dominant contribution at low-pT
is from energy loss fluctuations, while at high-pT it’s from wire resolution and autocalibra-
tion [39].

Most of the precision momentum measurements in the muon spectrometer are performed
by monitored drift tubes (MDTs). The MDT subsystem covers the region |η| < 2.7, except
for the innermost end-cap layer, where they cover out to |η| = 2.0. There are a total of 1174
MDT chambers, each made up of between 3 and 8 layers of drift tubes. The aluminum tubes
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Figure 4.22: Cross-sections in x− y (left) and y − z (right) of the muon spectrometer [39].

Figure 4.23: The contribution to muon spectrometer pT resolution from various sources over
a range of pT [39].

are 3 cm in diameter and range between 0.9 m and 6.2 m in length. They are filled with a
mixture of 80 %Ar and 20 %CO2. The MDTs provide a resolution of 80 µm per tube, and
35 µm per chamber. In order to provide high-precision measurements, the locations of all
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chambers and their support structures are constantly monitored. Temperature and magnetic
field conditions are also monitored, in order to account for thermal expansion and changes
to drift time [39]. The MDTs can be safely operated at a rate of up to 150 Hz/cm2.

In the innermost end-cap layer, covering the region 2.0 > |η| > 2.7, the background rate
is too high for safe operation of MDTs. Instead, precision momentum measurements are
performed using cathode strip chambers (CSCs), which can be safely operated at rates up
to 1000 Hz/cm2 [23]. The CSC chambers use the same gas mixture as MDT chambers, but
instead of drift tubes there are grids of anodes and cathodes, allowing for measurements of
η and φ based on the charge induced in the wires. There are a total of 32 CSC chambers,
arranged into 4 disks of 8 chambers each. Each chamber contains 4 CSC layers, resulting in
4 independent measurements of η and φ for each track. Cathodes are made of 17 mm copper
strips, and anodes are gold-plated tungsten measuring 30 mm in diameter. Sense-wire pitch
is 2.54 mm, but resolution is limited by readout pitch, which is 5.08 mm. This results in
an η resolution of 60 µm, and a φ resolution of 5 mm [39]. Since the magnetic fields bend
muons in the η plane, precise momentum measurements require far greater resolution in η.

Resistive plate chambers (RPCs) are used for the muon trigger in the barrel region
|η| < 1.05. In the middle station, there are two layers of RPCs, used for the low-pT threshold
trigger, which has a threshold of 6 − 9 GeV . In the outer station, there is a single layer of
RPCs, used for the high-pT threshold trigger, with a threshold of 9− 35 GeV .

Each RPC consists of two rectangular detectors, called units. Standard RPCs are paired
with MDTs, and have the same dimensions. A few additional smaller RPCs are included
in areas where MDTs cannot be installed due to lack of space. Each RPC provides two
measurements of η and φ for a charged particle passing through it. A charged particle
passing through all three layers therefore generates 6 η − φ measurements. To reduce fake
tracks, 3 out of 4 of the middle-station detectors and at least one outer layer station must
register hits.

An RPC detector consists of two plastic insulating plates, separated by 2 mm, with
a gas occupying the internal space, and a voltage difference of 9.8 kV across the plates.
Charged particles passing through the plates generate an avalanche of charge which can
then be measured by metallic strips connected to the plates. The insulator plates are made
of phenolic-melaminic plastic laminate, and the gas is a mixture of C2H2F4, Iso− C4H10,
and SF6 in the proportions 94.7%, 5%, 0.3% [23]. The RPCs provide a time resolution of
2 ns.

In the forward region, 1.05 < |η| < 2.4, muon triggering is provided by thin-gap chambers
(TGCs). TGCs also provide a φ measurement to complement the η measurement provided
by the MDTs. In the MDT end-cap middle layer, there are seven layers of TGCs, and in the
inner layer, there are 2 layers of TGCs. Each TGC layer consists of two concentric rings.

Like the CSCs, the TGCs are multi-wire proportional chambers (MWPCs). To reduce
drift time so that an acceptable time resolution can be achieved, the drift distance must
be kept small, and the electric field kept high. The wire-to-cathode distance is 1.4 mm in
the TGCs, even closer than the wire-to-wire distance of 1.8 mm, and the voltage is kept
at 2.9 kV . A highly quenching gas mixture of 55%CO2 and 45%n− C5H12 is used in the
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TGCs [23]. The resulting time resolution provided by the TGCs is 4 ns [39].

4.2.6 Trigger

Because of the very high event rate at the LHC, and the large amount of data collected per
event, it is impossible to record every single event. There are 40 million bunch crossings per
second, and each collision can generate 1.6 MB of raw data. The ATLAS trigger system is
designed to make very fast decisions about which events to record and which to ignore, in
order to reduce the event rate to approximately 1 kHz. The challenge of trigger design is
to balance processing time against decision accuracy, to make sure that events that could
be useful for physics analysis are not lost. The selection criteria used by each level of the
trigger are known as the trigger menu. A large number of possible trigger selection criteria
are designed, in order to serve the broad range of physics analyses performed at ATLAS .

The ATLAS trigger system consists of a hardware based level 1 (L1) trigger and a
software-based high-level trigger (HLT). The L1 trigger reduces the event rate from the
original 40 MHz to approximately 100 kHz. The HLT further reduces the event rate to
approximately 1 kHz, which is the maximum rate of data transfer from the detector. The
flowchart of data through the trigger system can be seen in figure 4.24

For every event, the L1 trigger system reads reduced-granularity measurements from both
the hadronic and electromagnetic calorimeters. Special calorimeter cells, called trigger tow-
ers, in each calorimeter were designed for this purpose. The trigger towers have a granularity
of δη× δφ = 0.1× 0.1. The location of the trigger towers at the back of the electromagnetic
calorimeter can be seen in figure 4.15. The L1 trigger also reads data from the RPCs and
TGCs of the muon spectrometer system, as discussed in 4.2.5. The calorimeter data will be
used for photon, electron, tau, jet, and ETmiss triggers, and the muon data will only be used
for muon triggers. Data from these two sources are fed into the central trigger processor
(CTP), which makes the decision about whether or not accept each event at level 1.

If an event is accepted at L1, full detector raw data for that event is read out and
temporarily stored until the HLT decision is made, and some amount of reconstruction is
done at this time. Later, if an event is accepted by the HLT, the full tracking reconstruction
algorithm will be applied. The L1 system then sends region-of-interest information to the
HLT . Regions of interest are the subsections of the detector that the L1 trigger has identified
as possibly containing interesting physics objects. The full detector information and L1
region-of-interest data are combined by the HLT, which then makes the final decision on
whether or not to keep an event. Only when an event passes both the L1 and HLT decision
criteria will its be permanently stored. The L1 trigger system decision time is just 2.5 µs,
while the HLT makes decisions on the order of seconds.
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Figure 4.24: Flowchart outlining the level 1 and high-level trigger design and data acquisition
system [40].
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Chapter 5

Jets

A jet is a collimated spray of stable particles measurable in the detector, which arises from
the production of a quark or gluon in the scattering process. Due to QCD confinement,
the quarks and gluons themselves can never be observed, so jets serve as an observable
proxy for these more fundamental particles. However, there is not a simple one-to-one
correspondence between each jet measured in an event and a quark or gluon in the hard
scattering process. Due to the complex nature of proton-proton collisions, as well as the
fundamental probabilistic nature of quantum mechanics, the partonic source for a given
jet can never be specified exactly. Likewise, when performing theoretical calculations, the
number and property of jets that arise from a given parton produced in the hard scattering
can only be specified probabilistically. Section 5.1 will explain the many different parts of a
proton-proton collision that contribute to jet production.

Furthermore, the number and properties of jets measured in a single event will depend
on the choice of jet reconstruction algorithm. In order for experimentalists to test the
predictions of theory, it’s important for standard jet definitions to be decided upon. While
there is no one theoretically correct choice of jet definition, there are certain properties of
jet algorithms that make them more or less desirable. The different kinds of jet algorithms
and their properties will be discussed in section 5.2. Section 5.3 will explain the origin of jet
mass and how it can be accurately reconstructed. And section 5.4 will explain the process
of jet reconstruction and calibration in ATLAS .

5.1 The proton-proton collision environment

As discussed in 2.2.4, the goal of proton-proton collision experiments is to understand the
interactions between fundamental particles, but due to QCD confinement it is impossible
to simply collide the individual partons of interest. Instead, complicated bound states of
quarks and gluons are collided, with the goal of measuring the processes that occur when
constituent partons collide with each other. As a result, proton-proton collision events create
a very messy environment from which the hard-scatter process has to be deduced.
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QCD confinement also has the consequence that the final state quarks and gluons created
in LHC collisions can never be directly detected. Instead, collimated sprays of hadrons, called
jets, must be measured in order to attempt to reconstruct the hard scattering process that
gave rise to them.

Figure 5.1 illustrates a representative proton-proton collision event. Even though this
is not a dijet or multijet production event, it is useful for understanding all the parts of
a proton-proton collision that must be considered when calculating the predicted rates of
multijet production.

Figure 5.1: Diagram of a proton-proton collision event. Illustrated are the initial state
radiation, underlying event, hard-scatter process, final state parton shower, fragmentation,
hadron decays, and final state QED radiation [41].

The incoming protons are illustrated by green blob with three incoming arrows to rep-
resent the constituent valence quarks. The initial state parton shower, governed by QCD,
is shown in blue. The hard scatter process is represented by the large red circle. Quarks
and gluons from the incoming proton that do not participate in the hard scatter process can
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nonetheless interact with each other, creating a so-called underlying event, shown in purple.
All of the strongly-interacting final state quarks and gluons undergo final state parton show-
ering, also in red. Once the final state parton shower particles reach a low enough energy,
they hadronize, in a non-perturbative process represented by the light green blobs. The
resulting hadrons then decay through various decay chains, shown in dark green. Photon
radiation, governed by QED, can occur at any of these stages, and is shown in yellow.

Accurate modelling of multijet events is challenging for several reasons. The first chal-
lenge comes from merging the matrix-element differential cross section with the parton
shower simulation An event with n jets in the final state can arise from a hard scatter-
ing event with n partons in the final state, or from an event with n− 1 partons in the final
state, where the additional jet arises during the parton shower. The contributions from these
two paths cannot be exactly factorized, but different merging schemes have been developed
to combine them in a way that avoids double counting and yields accurate estimates of jet
kinematic observables [42]. Uncertainties necessarily arise from the choice of merging scheme
and scale parameters. There are additional uncertainties from higher-order diagrams, which
can be evaluated by observing the change in cross section as the QCD scale is varied. High
jet multiplicity events require diagrams with more factors of αs, so the uncertainty from
higher-order diagrams grows with jet multiplicity. Additional contributions to uncertainty
come from the choice of PDF and from the underlying event. Figure 5.2 shows the sizable
discrepancy in third-jet pT and jet multiplicity distributions across several event generators.
Because of the challenges in using Monte Carlo to estimate QCD multijet cross sections, the
analysis presented in this thesis will use a fully data-driven background estimation method.

5.2 Clustering algorithms

In order to measure jets in an event, a decision has to be made on the type of jet recon-
struction algorithm to use. The observable result of a collision event can consist of many
clusters of stable particles or calorimeter hits. Exactly which particles to cluster together is
highly non-trivial, and developing the algorithms to make these decisions is an active area of
research in particle physics. The 1990 Snowmass accord defined a set of criteria which should
be met by any jet algorithm. The criteria for a developing a jet reconstruction algorithm
are [44, 45]:

1. Simple to implement in an experimental analysis

2. Simple to implement in the theoretical calculation

3. Defined at any order in perturbation theory

4. Yields finite cross sections at any order of perturbation theory

5. Yields a cross section that is relatively insensitive to hadronization
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Figure 5.2: Distribution of third-leading jet pT vs. leading jet pT (left) and jet multiplic-
ity (right) for events simulated with several different event generators and parton shower
methods. The bottom pane of each plot shows the ratio with respect to the Pythia 8 result.
[43].

Jet reconstruction algorithms that meet all of these criteria allow experimentalists to test
theoretical predictions, because both the theoretical calculations and experimental analysis
can use the same jet definition. Jet algorithms are defined as acting on abstract ”objects”.
The fifth Snowmass criterion ensures that in theoretical calculations, jet algorithms can
be applied at either the parton-level or hadron level. In either case, the object which the
algorithm acts on will be a particle. Jet algorithms can also be applied by experimentalists
to reconstruct jets from either simulated or real calorimeter hits. In this case, the object
which the algorithm acts on is a cluster of calorimeter hits.

Historically, there have been two major types of jet algorithms used in particle physics
experiments: cone-based algorithms and sequential recombination algorithms. Cone-based
algorithms aim to cluster jets in η − φ space. They are fast and easy to implement, and
produce jets with regular boundaries in η−φ space, but have many theoretical and practical
downsides compared to sequential recombination algorithms. They typically use the highest-
transverse-momentum (hardest) object in the event as a seed for a jet cone, then define a
cone around that seed as the leading jet, before moving on to the next-hardest object.
Cone-based algorithms have the advantage of producing regularly-shaped jet boundaries,
which can simplify theoretical calculations and make experimental calibration easier [46].
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However, cone-based algorithms typically lack collinear safety1, which is a property that
must be satisfied to meet the Snowmass criteria.

5.2.1 IRC safety

Jet algorithms should ideally possess infrared and collinear (IRC) safety. This means that
their results should not change due to soft gluon emissions or near-collinear emissions during
either the parton shower or hadronization process. IRC safety is important because soft and
collinear emissions are extremely common in QCD, and create divergences in perturbative
calculations if the algorithm is IRC-unsafe [44].

Collinear safety

A collinear-safe algorithm is insensitive to near-collinear emissions that occur during parton
showering or hadron decays. Most cone-based algorithms are not collinear-safe because they
seed jets with the hardest object in the event, which is very likely to change if there is a
near-collinear emission.

In figure 5.3, for the collinear-unsafe cone-based algorithm, the hardest object in the
event changes depending on whether the radiated gluon is reabsorbed or emitted nearly
collinear to the original quark. Thus, the resulting seed will change, yielding different jet
results. The loop diagram and collinear emission diagram both lead to divergences in the
theoretical cross-section. In a collinear-safe algorithm, the two divergences would cancel out
because both amplitudes must be added to calculate the rate of the single jet being produced.
But in a collinear-unsafe algorithm, the two divergences do not cancel out, so perturbation
cross-sections are not finite.

Infrared safety

A related concept is that of infrared safety. Jet algorithms should insensitive to soft gluon
emissions. These emissions are extremely common during parton showering, and since they
occur in the non-perturbative regime of QCD, very hard to accurately predict.

Figure 5.4 illustrates the result of an infrared-unsafe algorithm. A W boson decays to a
quark-antiquark pair, which should result in two hard jets. Diagrams (b) and (c) each lead
to IR divergences, which would cancel if the algorithm is infrared-safe. But for an infrared-
unsafe algorithm, diagram (c) leads to a different number of jets from diagram (b), so the
divergences do not cancel [44].

1The exception to this is the SISCone algorithm [47], a cone-based algorithm which is both IR and
collinear safe.
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Figure 5.3: Illustration comparing collinear-safe (left) and collinear-unsafe (right) jet clus-
tering algorithms. The emission of a near-collinear gluon changes the number of jets in the
event, and results in diverges in theoretical calculations. The x-axis represents rapidity, and
y-axis represents transverse momentum [44].

Figure 5.4: Illustration of infrared unsafety. In an event with a W boson decaying to
two hard partons, the emission of a soft gluon can change the result of an infrared-unsafe
algorithm [44].

5.2.2 Sequential recombination algorithms

Sequential recombination algorithms are the most commonly used jet algorithms in ATLAS
today. Instead of clustering in η−φ space, they cluster in transverse momentum space. The
resulting jets have irregular boundaries, which adapt to soft radiation. Sequential recom-
bination algorithms are generally slower to run, but have become more popular since the
invention of the FastJet algorithm [48]. The sequential recombination algorithms discussed
here are IRC safe.

All sequential recombination algorithms start by defining the distance measures:
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dij = min
(
k2p
T i, k

2p
Tj

) ∆ij

R2
(5.1)

diB = k2p
T i (5.2)

where the indices i and j are used for two objects under consideration, dij is the distance
between those two objects, kT is the transverse momentum, ∆2

ij ≡ (ηi−ηj)2 +(φi−φj)2 is the
distance-squared in η−φ space, and p and R are two parameters that control the behavior of
the algorithm. The object-beam distance, diB is also used by the algorithms, and is defined
for each object individually rather than for pairs of objects. The choice of R2 roughly controls
the area of the resulting jets. It is often referred to as a radius parameter, but the jets that
result from these algorithms have irregular shapes, so this term is used loosely. The choice
of p determines the class of sequential recombination algorithms, each of which has different
properties. The steps are then all the same for all sequential recombination algorithms:

1. Calculate dij over all pairs of objects, and diB for each object individually

2. If the minimum of the set {dij, diB} is one of the dij’s:

Sum the four vectors of objects i and j

Add the resultant four-vector to the list of objects, and remove the four vectors for
objects i and j

Go to Step 1

3. Else if the minimum of the set {dij, diB} is one of the diB’s:

Call the object i a jet

Remove the object i from the list of objects

Go to Step 1

An inclusive clustering algorithm stops when all objects have been clustered into a jet, while
an exclusive algorithm stops when a pre-defined number of jets have been clustered [49].

The Cambridge-Aachen (C/A) algorithm has p = 0, and so does not directly use the
transverse momentum of the jets. Instead the distance measures are purely in terms of
pseudorapidity and azimuthal angle, so objects are clustered based on how close together
they are in this radial distance measure. The boundaries of resulting jets are sensitive to
random fluctuations of soft objects, such as those from pileup and the underlying event.

The kT algorithm has p = 1, and so starts by clustering objects which are both spatially
close together and have low momentum. Like with the C/A algorithm, the resulting jets are
sensitive to random fluctuations in soft objects from pileup and the underlying event.

In the anti-kT algorithm, the objects which are closest together and hardest are clustered
together first. The resulting jet shapes are insensitive to the details of the soft radiation.
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As a result, the impact of pileup and the underlying event on jet momentum resolution is
smallest for the anti-kT algorithm [50].

A comparison of the different jet clustering algorithms can be seen in figure 5.5. The
same parton-level simulated event data was input into four different jet clustering algorithms.
Random soft particles were also added to the parton-level event data. The resulting jets are
plotted in y − φ space, with colors labelling the different jets, and the height of each bar
indicating the transverse momentum in that region. For the kT and C/A algorithms, the
jet boundaries are highly irregular, and depend strongly on the details of the random soft
particles [50].

ATLAS uses the ant-kT algorithm for its jet reconstruction because of its lack of sensitivity
to pileup and underlying event, as well as its regular jet boundaries. The standard choice of
radius parameter used by ATLAS is R = 0.4, and a radius parameter of R = 1.0 is used for
large-R jets, as discussed in the next section. This analysis uses both small-R and large-R
jets, which requires running the jet clustering algorithm twice for each event, starting from
the topo-clusters each time.

5.3 Jet mass

As the center-of-mass energy of collisions increases, it becomes increasingly important to
study the internal structure of jets, in addition to the kinematic properties of jets within
events. The decay products of hadronically-decaying heavy objects, such as W or Higgs
bosons, become harder to resolve into separate jets as the momentum of the original object
increases. Recently, a large number of jet substructure observables have been developed, and
an entire subfield has emerged dedicated to the study of the internal properties of jets.

For a two-pronged decay, for example W → qq̄, the angular separation between the decay
products is well approximated by:

∆R ≈ 2m

pT
(5.3)

where pT is the transverse momentum of the W , and m is the W mass. For W bosons
with pT � m, jets with radius parameter R = 0.4 will no longer resolve the decay products
into separate jets, but instead will contain the all decay products of the W into a single
jet. Figure 5.6 illustrates the boosting effect for the simulated decay Z ′ → tt̄, where the Z ′

represents a new heavy resonance. Since mZ′ � mt, the top quarks are highly boosted, so
their decay products cannot be resolved by jets with R = 0.4. On the other hand, jets with
R = 1.0 will capture all decay products with high efficiency, so the substructure of R = 1.0
jets can potentially be used to reconstruct these boosted tops.

When dealing with boosted objects, larger radius parameters are often used, in order to
increase the probability of capturing the full decay products of a boosted object. Jets with
large radius parameters, typically R = 1.0 or R = 1.2 are referred to as fat jets.
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Figure 5.5: Results of running four different jet clustering algorithm on the same set of
parton-level simulated event data. SISCone (lower-left) is a cone-based algorithm, while the
other three are sequential recombination algorithms defined by different values of p [50].

The earliest-developed, and most straightforward jet substructure observable is mass.
The mass of a jet is calculated from the four-vectors of its constituent objects:

m2 =
(∑

Ei

)2

−
(∑

~pi

)2

(5.4)

For a jet that contains the collimated decay products of an individual boosted resonance,
the mass of the jet corresponds to the mass of the resonance, mjet ≈ mresonance.

For a QCD jet, i.e. one that is a result of a high-pT gluon or light quark, one might
expect the mass to also be very low or close to zero. But in fact perturbative QCD processes
lead to a nonzero expected mass for light quark and gluon jets. Calculations of perturbative
QCD jet mass are beyond the scope of this thesis, but the resulting mass is proportional
to the jet radius parameter, R, and the transverse momentum pT of the jet. Jets arising
from light quarks will have different masses than jets arising from gluons. After taking
relative production cross-sections for quark and gluon jets into account at different energy
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Figure 5.6: Radial separation between top decay products vs. top-quark pT for top quarks
produced from a theoretical heavy resonance, Z ′ [51].

scales, the resulting relationship between jet pT and mass at next-to-leading order (NLO) is
well-approximated by [52]:

m ≈ 0.2pTR (5.5)

Additional contributions to jet mass come from initial state radiation (ISR), pileup (PU),
the underlying event (UE), and multi-parton interaction (MPI). A variety of so-called groom-
ing techniques are used to remove the dependence on this unassociated radiation, so that the
groomed jet mass depends only on the mass of the boosted object. Trimming is a groom-
ing method applied to fat jets after they have been clustered, typically with the anti-kT
algorithm. Trimming is applied separately to each fat jet, and consists of the following
steps:

1. Recluster the constituents with a smaller radius parameter, Rsub, resulting in one or
more subjets

2. Reject any subjet with pT < fcutp
jet
T

3. Sum the four-vectors of the subjets that are not rejected to form the final trimmed jet

In the first step, a radius parameter and clustering algorithm must be chosen. The
subjet radius parameter must be smaller than the original radius parameter. Often, the kT
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algorithm is used for subjet clustering, in order to preserve as much of the FSR as possible,
because rejecting FSR results in reduced jet mass resolution [53]. The values of Rsub and fcut
can be chosen to reduce pileup sensitivity and maximize jet mass resolution for the signal of
interest. The trimming procedure is illustrated in figure 5.7.

Figure 5.7: Illustration of the trimming procedure, one of several grooming methods used to
remove the contribution of unassociated radiation to fat jet mass [54].

The effect of different grooming techniques, including trimming, on jet mass resolution
can be seen in figure 5.8. For dijet events, high-mass jets are highly suppressed by groom-
ing, which leads to a better signal-to-background ratio for signals of hadronically decaying
boosted objects with QCD dijet backgrounds. For tt̄ events, the top-mass peak is some-
what visible before grooming, although much wider than after grooming. The W -mass peak,
which is originally completely hidden due to unassociated radiation effects, can be recovered
with any of the grooming methods.

5.4 Reconstruction in ATLAS

The goal of jet measurements in ATLAS is to capture and reconstruct both the energy and
momentum of jets leaving the collision point. Calorimeter jets use clusters of calorimeter
cell hits as inputs to the clustering algorithms described in 5.2.

5.4.1 Topological cell clusters

Topological cell clusters, or topo-clusters, are three-dimensional clusters of calorimeter cell
energy measurements. By clustering groups of calorimeter cells into topo-clusters, the num-
ber of inputs to the jet reconstruction algorithm is reduced. Topo-clustering also reduces
calorimeter noise by rejecting cell signals not associated with other nearby significant cell
signals [56]. Topo-clusters serve as the main input to the jet clustering algorithms when
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Figure 5.8: Jet mass distributions from simulated LHC proton-proton collisions events before
and after grooming, for various grooming techniques. HERWIG is used to simulate

√
s =

7 TeV QCD dijet events (left) and Standard Model tt̄ events (right) with parton-level pT
between 500 and 600 GeV [55].

reconstructing calorimeter jets in ATLAS . The two sources of calorimeter cell noise are
electronic noise and pileup.

The algorithm is based on the signal-to-noise ratio in each cell, ζcell = Ecell/σcell. There
are three tunable parameters used in the algorithm, labeled S, N , and P , where S > N ≥ P .
For purposes of the algorithm, a cell is considered to be a neighbor of another cell if the two
cells are adjacent in the same layer, or if they are in adjacent layers and have any overlap [56].

The algorithm is defined as follows:

1. Label any cell with ζcell > S a seed cell.

2. Collect all neighboring cells to a seed cell into a proto-cluster.

3. If any cell in the proto-cluster has ζcell > N , collect its neighbors into the proto-cluster.

4. Repeat the previous step until the set of neighbors collected has ζcell < N .

5. Reject any cells with ζcell < P .

At any time in the algorithm, if any cell with ζcell > N belongs two proto-clusters, then
the two proto-clusters are merged [56]. Once the algorithm terminates, the final set of
topo-clusters are used as the inputs to the desired jet clustering algorithm.

A result of this algorithm is that isolated cells with ζcell < N are rejected, which reduces
that amount of noise entering the jet clustering algorithm. These cells are less likely to
contain signal than cells with ζcell < N that neighbor cells with higher signal-to-noise ratio.
This clustering algorithm does not guarantee that all the energy of a given particle in the jet
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will be captured by a single topo-cluster, nor does it guarantee that a single topo-cluster only
contains energy from a single particle. So topo-clusters are not measurements of individual
particles in the jet.

The three parameters S, N , and P are tuned on test-beam data with known energy to
maximize the measured energy while minimizing the energy resolution[57]. Results of the
test beam energy measurements with 180 GeV and 20 GeV pions can be seen in 5.9. Based

Figure 5.9: Average energy and energy resolution measured for 180 GeV and 20 GeV pions
with different values of the topo-clustering parameters S, N , and P . The x-axis of each plot
represents choices for all three parameters, and the y-axis indicates either the average energy
deposited in each cluster < Eclusters > or the energy resolution RMS/ < Eclusters > [57].

on these measurements, the default parameter values chosen for ATLAS topo-clustering are
S = 4, N = 2, P = 0. The topo-cluster four momenta are used as the input objects to the
jet clustering algorithms. Other properties of the topo-clusters, known as cluster moments,
are used in calibration of the topo-clusters.
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5.4.2 Topo-cluster calibration

Calibration of topo-clusters is performed before inputting them into the jet clustering algo-
rithms. Calibration is needed in order to correct for the calorimeters’ differing response to
electromagnetic and hadronic showers, to correct for signal loss arising from the clustering
algorithm, and to account for signal loss due to inactive material. The calibration strategy
known as Local Cell Weighting (LCW) is used to correct for all three of these. Calibration
is done using Monte Carlo simulations of neutral and charged pions in a simulated detector.
Pions with energies up to 2 TeV and over a range of η values are used.

The ATLAS calorimeters are non-compensating calorimeters, which means they have a
lower response for hadronic showers than for electromagnetic showers, for the same energy
deposited. As a result, separate calibrations are needed for hadronic and electromagnetic
showers. A classification algorithm is used to determine the probability that each topo-cluster
arose from an electromagnetic shower. This probability is called PEM . The calibration weight
for cell i in cluster j is then:

wi = PEM
j wEMi +

(
1− PEM

j

)
whadi (5.6)

where PEM
j is the predicted probability that cluster j arose from an electromagnetic shower,

wEMi is the calibration weight for cell i assuming the electromagnetic response, and whadi is
the calibration weight for cell i assuming the hadronic response [56].

Cluster classification probabilities are determined using the topo-cluster depth and signal
density, as hadronic showers tend to deposit energy deeper in the calorimeter and have lower
energy density [56]. Figure 5.10 shows the EM classification probability as a function of
these two topo-cluster moments. The cell signal density is measured as energy density of the
cell normalized to the total energy of the cluster to which it belongs.

The hadronic calibration weight is then determined as:

whadi =
Edep
i

EEM
i

(5.7)

where Edep
i is the true energy deposited in the cell, and EEM

i is the energy measured in the
cell.

During the topo-clustering process, cells with signal fractions belows the necessary thresh-
olds can be rejected, resulting in a certain amount of signal energy being lost. Lost cells with
true signal energy deposited are attributed to nearby clusters. The relevant search area for
a cluster depends on the cluster η, and ranges from 14 deg to 60 deg [56]. Lost cells can be
attributed to more than one cluster, with a weight proportional to the energy deposited in
each cluster. An out-of-cluster correction weight is then calculated as

woocj =
Eooc
j + Edep

j

Edep
j

(5.8)
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Figure 5.10: Cluster EM probability as a function of normalized cell signal density and depth.
Cell that are farther away from their cluster’s center, and with lower energy density are more
likely to arise from hadronic showers. The red line indicates the 50% boundary: cells falling
on that line have a 50% probability of arising from electromagnetic showers, while clusters
below that line have a higher probability [56].

where Eooc
j is the total energy deposited in lost cells associated to the cluster, including a

fraction of the energy from lost cells shared by multiple clusters. This correction is deter-
mined separately for electromagnetic and hadronic showers, using neutral and charged pions
respectively[56]

Dead material is also accounted for using simulated pions in a simulated detector. Fig-
ure 5.11 shows an illustration of the lost cell and dead material calibration procedure.

5.4.3 Jet calibration

For large-R jets, the LCW calibration method is applied to topological clusters as described
in 5.4.2 before inputting the topo-clusters into the jet clustering algorithm. After jet cluster-
ing, further calibration is required on the resulting jets in order to ensure that the measured
energy matches the true energy deposited in the detector. This is known as the jet energy
scale, or JES, calibration. Several different energy scales are defined in order to describe
topo-clusters or jets at different stages in the calibration process. Those scales are defined
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Figure 5.11: Illustration of the procedure used to account for signal lost to lost cells and
dead material [56].

as follows:

• EM scale: energy as measured directly by the calorimeters

• LCW scale: energy after applying the LCW method

• EM+JES scale: energy after applying jet-level calibration, if LCW was not used

• LCW+JES scale: energy after applying LCW and jet-level calibrations

JES Calibration

For the JES calibration of large-R jets, the energy correction procedure described in [58] is
applied. Unlike in [58], however, the Monte Carlo used for calibration does include pileup.
The reason for this is that large-R jets do not receive a pileup-specific calibration before the
JES calibration, unlike standard jets [51]. The calibration is done by measuring the JES
response in bins of true jet energy (Etruth) and η. The response is:

R = Emeas/Etruth (5.9)
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For each (Etruth, η) bin, the average response 〈R〉 and average measured energy 〈Emeas〉 are
measured. A one-dimensional calibration function Fk (Emeas) is then obtained by fitting to
the distribution of 〈Emeas〉 vs. 〈R〉 in each η bin k [58]. Once the calibration functions
Fk(Emeas) are determined from Monte Carlo, they are applied to jets measured in data. The
calibrated energy for a jet measured with η in bin k is:

Ecalib =
Emeas

Fk (Emeas)
(5.10)

[58]

JMS Calibration

For large-R jets, the jet mass scale (JMS) must be calibrated in addition to the jet energy
scale. A similar procedure to that described in 5.4.3 is applied to the JMS calibration, using
the jet mass response in place of the jet energy response. The jet mass response is defined
analogously to the jet energy response:

Rmass = mmeas/mtrue (5.11)

The jet mass response before and after calibration can be seen in figure 5.12.

Figure 5.12: Jet mass response as a function of η before and after JMS calibration, for
anti-kT jets with R = 1.0 at the LCW scale, without grooming [51].
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5.4.4 b-tagging

The identification of jets containing b hadrons, referred to as b-jets, is very important for
many different ATLAS physics analyses. B-tagging is the process of identifying these jets
and distinguishing them from jets that do not contain b hadrons. Jets containing c hadrons
can also be distinguished using similar methods. Jets that don’t contain either b hadrons
or c hadrons are known as light-flavor jets. B-tagging and c-tagging are collectively known
as flavor tagging. B-tagging is used in this analysis to suppress the dominant QCD multijet
contribution to the background, in order to increase the signal to background ratio.

The main property of b hadrons that allows b-jets to be distinguished from light flavor
jets is their relatively long lifetime, on the order of picoseconds. Because of their long
lifetime, b hadrons can travel a measurable distance away from the primary interaction
point before decaying. For example, a 50 GeV b hadron will travel an average of 3 mm
before decaying [59]. Additionally, b-jets are more likely to contain muons, a fact which can
be exploited by b-tagging algorithms to discriminate between b-jets and light flavor jets [59].

In this analysis, three different b-tagging algorithms are combined into a multivariate
algorithm referred to as MV2. Each of the three base algorithms uses the relatively large
separation distance of b hadron decay vertices away from the primary vertex.

Impact parameter algorithm

In the impact parameter algorithms, IP2D and IP3D, individual tracks belonging to a jet
are traced back towards the interaction point, and their distance of closest approach to the
interaction point, known as the impact parameter, is calculated. Both the transverse impact
parameter, d0, and the longitudinal impact parameter, z0 sin θ are calculated. Their signif-
icances, d0/σd0 and z0 sin θ/σz0 sin θ are also calculated. The IP significances are considered
positive if the point of closest approach is on the same side of the primary vertex as the
direction of the jet, and negative otherwise. IP2D uses only transverse IP significance, and
IP3D uses both transverse and longitudinal IP significance. Histograms of the IP signifi-
cances are calculated using a simulated tt̄ sample for b-jets and light flavor jets separately.
These histograms serve as the probability density functions (PDFs) from which a likelihood
ratio discriminant is constructed by summing over the likelihood ratios for all tracks in a
jet [60].

Figure 5.13 shows the distribution of transverse and longitudinal impact parameter sig-
nificances for both heavy quark (b and c) and light quark jets from a simulated tt̄ sample.
Large positive IP significances are much more likely to occur for b-jets than for light jets.
Large negative IP significances are more likely to be from noise, and so do not provide good
signal discrimination.

Secondary vertex algorithm

The secondary vertex algorithm (SVX) also makes use of the long b hadron lifetime and mean
flight path. Rather than calculating impact parameters for individual tracks, multiple tracks
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Figure 5.13: Transverse and longitudinal impact parameter significance distributions for a
sample of simulated tt̄ events [60].

are traced back to find where they intersect other tracks, in order to reconstruct secondary
vertices [61]. Some filtering is done to reject long-lived particles and other background
processes. Candidate tracks are required to be a certain significant distance from the primary
vertex, and the tracks have to pass a goodness-of-fit requirement. Figure 5.14 shows the
secondary vertex reconstruction rate versus jet pT and jet η for b-jets, c-jets, and light flavor
jets in a simulated sample of tt̄ events. B-jets are much more likely than light flavor jets
to contain a reconstructed secondary vertex that passes all of the selection criteria outlined
in [60].

Multi-vertex algorithm

The third algorithm used to identify b-jets from their mean flight distance from the primary
vertex is the multi-vertex reconstruction algorithm, also known as JetFitter. Rather than
reconstruct a single secondary vertex, JetFitter attempts to reconstruct the entire b hadron
decay chain [62]. Unlike the SVX algorithm, JetFitter finds multiple vertices that are re-
quired to lie in a straight line, along the proposed flight path of the b hadron. The difference
between the SVX and JetFitter algorithm is illustrated in figure 5.15 The efficiency to re-
construct a b hadron decay vertex as a function of jet pT and |η| for b-jets, c-jets, and light
flavor jets can be seen in 5.16
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Figure 5.14: Secondary vertex reconstruction rate versus pT and η for b-jets, c-jets, and light
flavor jets from a simulated sample of tt̄events [60].

Figure 5.15: Illustration of the difference between the secondary vertex (a) and multi-vertex
(b) algorithms [62].

Multivariate algorithm

To get the maximum b-tagging performance, all three of the above mentioned algorithms
are combined into a multi-variate algorithm known as MV2. The algorithm is a boosted
decision tree (BDT) which combines the inputs from all three base algorithms mentioned
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Figure 5.16: JetFitter vertex reconstruction rate versus pT and η for b-jets, c-jets, and light
flavor jets from a simulated sample of tt̄ events [63].

above. The BDT is trained on a training sample for which b-jets are labeled as signal, and
a mixture of light jets and c-jets are labeled as background [63]. Different versions of the
BDT can be obtained by varying the fraction of c-jets and light quark jets in the background
training sample. In this analysis, a mixture of 80% light quark jets and 20% c-jets are used
in training the BDT, resulting in a discriminant known as MV2c20 [63]. In addition to the
inputs from the three base algorithms, MV2 also includes the pT and η of the jet. There are
a total of 24 features input to the BDT, summarized in table 5.1. The output of the MV2c20
BDT for b-jets, c-jets, and light flavor jets from a simulated sample of tt̄ events can be seen
in figure 5.17.

The BDT reduces the selection criteria from 24 variables to a single one-dimensional
discriminant. The performance of the algorithm in terms of b-tagging efficiency and light
flavor jet rejection depends on the choice of threshold value for this discriminant. Figure 5.18
shows the b-tagging efficiency versus c-jet and light-jet rejection for the range of MV2 output
cut values. As already mentioned, MV2c20 is trained with 20% c-jets in the background
sample. Comparing this to MV2c00, in which only light jets are included in the background
training sample, there is clearly improved light-jet rejection by including the c-jets in the
background training sample.

In this analysis, the threshold value is chosen such that the b-jet efficiency is 70%, result-
ing in a c-jet rejection of 8.1, τ rejection of 26, and light flavor rejection of 440 [63]. Small-R
jets are used in this analysis because the b-tagging algorithm is only calibrated for jets with
R = 0.4.
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Table 5.1: Description of each of the 24 inputs for the MV2 BDT [63].
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Figure 5.17: MV2c20 BDT output for b-jets, c-jets, and light flavor jets from a simulated
sample of tt̄ events [63].
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Figure 5.18: B-tagging efficiency versus light-jet (a) and c-jet (b) rejection for a range of
MV2 output cut values. The red curves are for MV2c20, in which 20% c-jets are included in
the background training sample. The blue curves are for Mv2c00, which only includes light
jets in the background training sample. The improved c-jet rejection and worsened light-jet
rejection can seen by comparing the two [63].
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Chapter 6

Analysis Overview

6.1 The RPV UDD signature

This analysis is a search for pair-produced gluinos decaying to a large number of standard
model quarks via R-parity-violating decays, as described in 3.3.4. In the direct decay model,
each gluino decays directly to three standard-model quarks via an effective vertex with
an off-shell squark propagator. In the cascade decay model, each gluino first decays to a
neutralino and two quarks, and the neutralino then decays similarly to three quarks vai the
RPV effective vertex. Both types of signal events would result in a large number of high-pT
jets in the detector, because they have a large number of quarks in the final state, and each
quark must be boosted due to the large mass of the gluinos. Figure 6.1 shows the diagrams
for the two signal models under consideration.

6.2 Previous searches and limits

A similar search was performed using 20.3 fb−1 of 8 TeV ATLAS data from Run 1, and
limits were set on the gluino and neutralino masses [64]. Two different strategies were em-
ployed in this analysis. The first strategy looked for an excess of events with high small-R
jet multiplicities. Signal regions required ≥ 6 or ≥ 7 jets, and different b-jet multiplicity re-
quirements were applied to create signal regions sensitive to different heavy-flavor branching
fractions. In the jet-counting analysis, backgrounds were estimated by extrapolating event
yields from lower jet multiplicity regions, using a scaling factor derived from multijet Monte
Carlo. This strategy was mainly aimed at the direct-decay model.

The second strategy used the sum of large-R jet masses as discriminating variable, and
was mainly aimed at the cascade-decay model. This strategy derived jet mass templates
from signal-depleted control regions, and used those templates to generate the estimated
background mass distribution in the signal regions.

For the cascade decay model, the observed limit on the gluino mass ranged from 800 GeV
to 1 TeV , depending on the neutralino mass. Figure 6.2 shows the 95% CL lower bounds in
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Figure 6.1: Diagrams for the two decay processes that are the subject of this search. The
direct decay (left) and cascade decay (right) both involve effective RPV vertices containing
off-shell squark propagators.

the (mg̃,mχ̃) plane from the search for the cascade-decay signal. For the direct decay model,
different limits were placed on the gluino mass for different assumptions about the flavor
composition of the final states. In the case of light-quark only decays, gluino masses above
917 GeV were excluded [64]. Figure 6.3 shows the 95% CL upper bounds on the cross-section
for the direct decay model over a range of gluino masses, for various assumptions about the
flavor composition of the final states.

In Run 1, CMS also performed a search for RPV decays of gluinos with high jet-
multiplicity final states [65]. The analysis assumed that λ′′tbs is the largest of the UDD
coupling constants, motivated by minimal flavor-violating (MFV) SUSY [66]. Based on this
assumption, the analysis specifically looked at the direct-decay model, in which the gluinos
each decay to exactly one top, one bottom, and one strange quark, via an off-shell stop.
The analysis looked at events with zero or one-lepton final states high jet multiplicity, us-
ing b-jet multiplicity as a discriminating variable[65]. For the fully-hadronic channel, the
dominant background was QCD multijets, and for the single-lepton channel, the dominant
background was from tt̄. In both cases, backgrounds were estimated from Monte Carlo with
corrections derived from control-region data. The single-lepton channel ended up setting the
strongest limit on the gluino mass, excluding pp→ g̃g̃ → tbs for gluinos with mass less than
1.03 TeV [65].

The increased luminosity and center-of-mass energy of collisions in Run 2 creates an op-
portunity to extend the reach of the search for RPV SUSY in multijet final states. Figure 11.2
shows the expected limit for gluino masses under the cascade decay scenario increasing to
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Figure 6.2: Observed and expected limits in the (mg̃,mχ̃) plane for the cascade-decay model
in ATLAS Run 1 with

√
s = 8 TeV [64].

up to 1.9 TeV , and up to 1.2 TeV under the direct-decay scenario.

6.3 Search strategy and discriminating variables

The search strategy is similar to the total-jet-mass analysis from ATLAS Run 1 [64]. Signal
regions include events with a large number of high-mass large-R jets, and backgrounds
are estimated using jet mass templates derived from control region data. The primary
discriminating variable is MΣ

J , defined as:

MΣ
J =

4∑
j=1

mj
jet (6.1)

where mjet is large-R jet mass, and the sum is over the first four highest-pT jets in the event.
Large-R jets are reconstructed with R = 1.0 and are required to have pT > 200 GeV and
|η| < 2.0. In the case where an event has fewer than 4 large-R jets passing the kinematic
thresholds, the sum over all large-R jets in the event is used. This observable is sensitive
to the signal because there are large numbers of quarks in the final state, and each quark is
likely to have high pT due to the large gluino mass. Background events, which mainly come
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Figure 6.3: Observed and expected limits on mg̃), along with theoretical cross-section for the
direct-decay model in ATLAS Run 1 with

√
s = 8 TeV [64]. Different limits are set for four

different branching fraction scenarios. In sub-figure (a), only light-quark decays are allowed.
In sub-figure (b), each gluino decay results in a top quark in the final state. In sub-figure
(c), each gluino decay results in a bottom quark in the final state. In sub-figure (d), each
gluino decay results in both a top and a bottom quark in the final state [64].

from QCD multijet production, tend to have much lower jet mass on average, as explained
in 5.3. Unlike with the boosted scenarios described in 5.3, the jet mass for signal events does
not come from capturing the decay products of a single boosted heavy object in an individual
jet. Instead, the high jet mass in signal events results from the high probability that two
or more decay products, possibly from different parent particles, can accidentally overlap
inside the same large-R jet. MΣ

J provides good separation between signal and background
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because it takes into account both the energy and angular structure of an event, unlike a
purely energy-dependent observable like HT [67, 68]. The second discriminating variable is
|∆η12|, the pseudorapidity difference between the first two leading jets in an event.

For events with high jet multiplicity, the signal has smaller |∆η12| than the background.
Distributions of the two discriminating variables are shown in figure 6.4 for data as well as
background and signal Monte Carlo. The different event generators all show similar MΣ

J

distributions for QCD multijets, and a clear difference can be seen between the signal and
background distributions. For signal events, the location of the MΣ

J peak depends on the
gluino mass, moving to higher values for larger masses. The shape of the |∆η12| distribution
does not depend as strongly on the gluino mass, but there is still a clear difference between
the signal and background distributions. In the analysis, a requirement of small |∆η12| < 1.4
can therefore be used to further suppress the background.

Figure 6.4: Distributions of the two main discriminating observables, (a) the scalar sum of
the four leading large-R jets, MΣ

J and (b) the difference in pseudorapidity between the two
leading jets, |∆η12|. Selected events have ≥ 4 large-R jets. Distributions are shown for both
data and simulated signal and background samples. The red and green signal distributions
are for the cascade decay mode, and the violet distribution is the direct decay mode, for the
superpartner masses indicated [69].

A data-driven method is used to predict the background yield in the signal regions, as well
as the uncertainties on those predictions. The method assumes that for background events,
the probably distribution for the mass of an individual jet depends mainly on the pT , η, and
flavor of that jet, and does not depend strongly on other details of the event kinematics. Using
this assumption, templates for jet mass can be built from jets in a background-dominated
region and used to predict the mass distribution for jets in signal regions. Templates are
binned in pT and η, and are derived separately for b-matched and non-b-matched jets. Each
template is the histogram of jet mass within a bin. The histogram is used as the jet mass
probability distribution, conditioned on pT , η, and flavor. Randomized jet masses, known as
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dressed masses, are generated from these templates for each jet in the signal region sample.
Summing the dressed masses for each of the up to four leading jets in an event gives the
dressed MΣ

J for that event. The dressed MΣ
J distribution for each signal region is used to

estimate the expected background contribution to that region. This method depends on
the assumption that the jet mass in background events depends only on pT , η, and flavor.
Independent regions are defined for measuring the extent to which this assumption is violated
in data, and this will serve as a systematic uncertainty on the background estimation. These
regions will be called uncertainty determination regions (UDRs). Background-dominated
validation regions will also be defined to test that the dressed MΣ

J distributions are within
the uncertainties derived from the UDRs.

The method is similar to that used in the Run-1 version of the analysis [64], with a few
important differences. In the Run-1 analysis, the templates were smoothed with a kernel
density estimate before sampling the dressed masses. In this version of the analysis, the
templates remain binned. This allows for an estimate of the statistical uncertainty from the
control sample size. By Poisson fluctuating each template bin before sampling, the statistical
uncertainty is propagated to the dressed MΣ

J distributions. Secondly, in the Run-1 version of
the analysis, two separate sets of templates were generated: one set for the leading two jets
in each event, and a separate set for the third leading jet. In this analysis, the templates are
instead divided into b-matched and non-b-matched jets. The discrepancy in template shape
between b-matched and non-b-matched jets was seen to be larger than that between the
third leading jet and first two leading jets. Finally, the Run-1 version of the analysis used
Monte-Carlo non-closure as one contribution to the background systematic uncertainty. In
this analysis, a data-driven method is used instead. This is due to the fact that the sample
size of available simulated data was not large enough to make an accurate estimate of the
non-closure. More details of the template-based background estimation method and how
uncertainties are derived from data will be given in 9.1.

Once the data-driven background estimation and uncertainties have been obtained, a
comparison can be done between the observed and expected yields in the signal regions. If
no significant excess is observed, limits can be set on gluino and neutralino masses under the
cascade and direct decay model assumptions. Limits are set by first calculating a 95% CL
upper bound on the signal production cross-section, and then identifying the mass points for
which the theoretical cross-section lies outside this bound. The details of the limit-setting
procedure are described in 11.2.
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Chapter 7

Monte Carlo Models of Signal and
Background

7.1 Signal modeling

Simulated gluino pair-production events are generated for use in the analysis. Separate
samples are generated for the direct decay and cascade decay models described in 3.3.4.
For the direct decay model, events are generated for gluino mass ranging from 900 GeV to
1.8 TeV . For the cascade model, the gluino mass is varied from 750 GeV up to 2.1 TeV , with
the neutralino mass ranging from 450 GeV to 1.9 TeV . For all signal points, the neutralino
mass is lower than the gluino mass, as is required by the decay modes of interest. Signal

events are simulated for a discrete set of mass points. Figure 7.1 indicates the
(
mg̃,mχ̃0

1

)
points for which signal evens were generated. This grid of signal points is chosen to cover the
range of masses that the analysis is expected to be sensitive to. The grid points are spaced
closer together in the high-mg̃ region, near where the expected limits (11.2) lie.

7.1.1 Event generation

Matrix elements for gluino pair production are generated with MadGraph aMC@NLO
v2.3.3, which is a convenient framework for calculating arbitrary matrix elements at up to
next-to-leading order (NLO) [70]. MadGraph allows the user to specify the theory being
used and values for the free parameters, then it constructs and calculates the necessary
Feynman diagrams. In this analysis, matrix elements are calculated at leading order (LO).
In the pair-production matrix elements, up two two additional partons are allowed to be
produced along with the gluino pair.

To model the parts of the collision environment described in section 5.1, such as the
underlying event, parton shower, and fragmentation, Pythia 8.186 is used [71]. Interfacing
MadGraph and Pythia is made possible by a standardized file format known as Les
Houches Event Format (LHEF) [72].



CHAPTER 7. MONTE CARLO MODELS OF SIGNAL AND BACKGROUND 82

Figure 7.1: The grid of gluino and neutralino masses for which simulated cascade decay
events were generated. The triangles indicate the mass points for which simulated events
were generated.

As discussed in section 5.1, there are non-perturbative processes that occur in proton-
proton collisions, which cannot be directly calculated from first principles. This processes
can be parameterized and approximated in a program like Pythia, requiring many free
parameters with values that must be constrained using data. The process of inferring these
parameters so that the calculations match the data is known as tuning. For this analysis the
A14 set of tuned parameter values [73, 74] and the NNPDF2.3LO set [75] of PDFs are used
to model the underlying event in Pythia. EvtGen v1.2.0 [76] is used for modelling b- and
c-hadron decays.

7.1.2 Cross-section

In order to estimate the expected signal yield and uncertainty, the nominal production cross
section and its uncertainty must be known. Gluino pair-production cross-sections have been
calculated at a range of center-of-mass energies, and the results are summarized in [77]. The
gluino pair-production cross-section and its uncertainty over a range of gluino masses can
be seen in 7.2. The uncertainty band comes from calculating the cross section with different
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PDF sets and with different factorization and renormalization scales [77].

Figure 7.2: Gluino pair-production cross-section and uncertainty for
√

13 TeV proton-proton
collisions at the LHC, calculated at NLO+NLL [77].

7.1.3 Fast simulation with Atlfast-II

Simulation of the detector response to physics events requires large amounts of computational
resources. In order to reduce the cost of generating large samples of simulated events, a faster
version of the detector response simulation, called Atlfast-II has been developed [78]. Fast
simulation with Atlfast-II (AFII) can greatly reduce the time required to generate these
simulated events, but makes several simplifications that can lead to less precise results.

A comparison between the full detector simulation (FullSim) and AFII was performed
to find out if using AFII would reduce the sensitivity of the search or otherwise affect the
analysis. Very good agreement between FullSim and AFII-simulated events is observed across
a range of kinematic observables relevant to this analysis. As a result, AFII simulation is
used for generating signal events for all of the grid points used in the limit-setting. Full
simulation events are also generated for a few representative signal points.

For the FullSim/AFII comparison, full simulation events for the decay modes described
in chapter 6 are not available, but a very similar signal is used. In this case, pair-produced
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gluinos each decay to a neutralino + tt̄, and the neutralinos each decay through a λ′′ vertex
to three light quarks. This process is illustrated in 7.3. The benchmark model used in this
study has mg̃ = 1250 GeV and mχ̃ = 450 GeV . Events used in this study are required
to have HT > 1 TeV and lead jet pT > 200 GeV . Large-R jets are fully calibrated using
FullSim calibration and required to have pT of at least 100 GeV and |η| less than 2.8. Jet
mass response is defined as mreco/mtruth, where mreco is the reconstructed jet mass and mtruth

is the mass of jets clustered from truth particles.
Figure 7.4 shows the large-R jet mass response vs. truth mass and vs. truth pT for

large-R jets with pT > 100 GeV and |η| < 2.8. The points and error bars show the best-fit
mean and width for a Gaussian fit to the core of the distribution in each bin. Figure 7.5
shows the distribution of large-R jet kinematic observables m, η, φ, and pT for both FullSim
and AFII, along with the ratio of each bin in the bottom panel of each plot. Figure 7.6 shows
the large-R jet multiplicity histogram for reconstructed jets using both AFII and FullSim,
and the distributions of MΣ

J for events with at least 5 large-R jets. In all cases, very good
agreement is observed between FullSim and AFII distributions.

Figure 7.3: The process used for the AFII/FullSim comparison study. The signal is very sim-
ilar to the cascade decay model used in the search, but the gluinos decay to a neutralino+tt̄
rather than a neutralino and two light quarks.
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Figure 7.4: Jet mass response vs true jet mass (left) and truth jet pT for simulated signal
events using both the full detector simulation (full sim) and Atlfast-II (fast sim). Points and
error bars show the best-fit mean and width for a Gaussian fit to the core of the distribution
in each bin. The model used for this study is similar to the cascade decay model described
in 6, except each gluino decays to a neutralino + tt̄ rather than a neutralino and two light
quarks. The gluino mass is 1250 GeV and neutralino mass is 450 GeV . Jets are required to
have pT greater than 100 GeV and |η| < 2.8.

7.2 Background modeling

Background estimation for this analysis is done with a fully data-driven method that does
not rely on Monte Carlo to make predictions. However, simulated background events are
generated and studied in order to test and validate the data-driven background estimation
method. This process is detailed in 9.4.

The Pythia8 multijet background sample is generated using Pythia8 8.186 [71]. Like
with the signal samples described in 7.1.1, the A14 underlying-event tune [71, 73] and the
NNPDF2.3LO PDF sets are used [75]. Multijet samples are also generated with Sherpa
and Herwig++. The tt̄ events are generated with Powheg-Box v2 [79] with the CT10 PDF
set [80].

The differential multijet cross section falls drastically with increasing pT , so multijet
events are not generated with a probability distribution proportional to the differential cross
section. If they were, the result would be enormous numbers of events with only low-pT
jets, and very few events with high-pT , resulting in very large statistical uncertainties for
the high-pT jet events. Instead, multijet events are generated in slices, where each slice has
a minimum requirement on the leading-jet pT . Approximately equal numbers of events can
then be generated for each slice, and re-weighted according to the relative cross-section of
each slice. Using this method, the statistical uncertainty is more constant across a wide
range of jet pT . The lowest-pT slice that passes the event selection for this analysis has a
lead-jet range of 160 GeV − 400 GeV . For this slice, just under 16 million simulated events
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Figure 7.5: Kinematic distributions of large-R jets for simulated events using both the full
detector simulation (full sim) and Atlfast-II (fast sim). The model used for this study is
similar to the cascade decay model described in 6, except each gluino decays to a neutralino
+ tt̄ rather than a neutralino and two light quarks. The gluino mass is 1250 GeV and
neutralino mass is 450 GeV . Jets are required to have pT greater than 100 GeV and |η| < 2.8.

are generated, which corresponds to an effective luminosity of 1.9 fb−1.
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Figure 7.6: Jet multiplicity and distribution (left) and MΣ
J for events with at least 5 large-R

jets (right) for simulated events using both the full detector simulation (full sim) and Atlfast-
II (fast sim). The model used for this study is similar to the cascade decay model described
in 6, except each gluino decays to a neutralino + tt̄ rather than a neutralino and two light
quarks. The gluino mass is 1250 GeV and neutralino mass is 450 GeV . Jets are required to
have pT greater than 100 GeV and |η| < 2.8.
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Chapter 8

Data Sample, Event Selection, and
Jet Definitions

8.1 Data sample

This analysis uses the entirety of the 2015 and 2016 ATLAS datasets, comprising
36.1 fb−1 (±2.1%) of integrated luminosity, with

√
s = 13 TeV . A good runs list (GRL) is

used to select only those data-taking periods in which alld detectors are fully functional [81].

8.2 Trigger

Events are required to pass an HT -based trigger, where HT is the scalar sum of the pT of all
jets in an event. The jets used for the calculation of HT in the trigger are level-one jets with
pT > 100 GeV . To pass the trigger, an event must have HT > 1 TeV . Figure 8.1 shows
the trigger efficiency versus large-R jet pT threshold for events with ≥ 4 and ≥ 5 large-R
jets. For events with five or more large-R jets, the trigger efficiency is 100% when the jet pT
threshold is 200 GeV or above. For events with four or more jets, an additional requirement
on the leading jet pT is needed to ensure full trigger efficiency at this jet-pT threshold. For
the ≥ 4-jet regions, the leading jet will be required to have a pT of at least 440 GeV .

8.3 Event selection

Events considered by this analysis must meet the following pre-selection criteria:

• In the list of good luminosity blocks in the GRL as described in 8.1.

• No errors in the LAr or tile calorimeters or the inner detector when the events were
measured
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Figure 8.1: Trigger efficiency versus large-R jet pT threshold for events with ≥ 4 and ≥ 5
large-R jets. For events with ≥ 4 large-R jets, and additional requirement of leading-jet
pT > 400 GeV ensures 100% trigger efficiency.

• Pass the HT trigger as described in 8.2.

• At least one primary vertex from at least two tracks with pT > 400 MeV each

• At least one large-R jet (see 8.4) with pT > 440 GeV

8.4 Jet definitions, b-tagging, and b-matching

In this analysis, two different types of jets are defined. Large-R jets are reconstructed using
the anti-kT algorithm with R = 1.0 and are trimmed by re-clustering the constituents of
each jet with Rsub−jet = 0.2 and rejecting any sub-jet with psub−jetT /pjetT < 0.05. The trimmed
large-R jets are required to have pT > 200 GeV .

Small-R jets are reconstructed using the anti-kT algorithm with R = 0.4. To be consid-
ered for b-tagging, a small-R jet must have pT of at least 50 GeV and |η| less than 2.5. The
fixed-efficiency 70% working point is used for b-tagging.
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Only large-R jets are used for the analysis, but the b-tagging algorithm is only calibrated
for small-R jets. So a matching procedure is used to identify large-R jets that can be
associated with a b-tagged small-R jet. Large-R jets found to be within ∆R = 1.0 of a
b-tagged small-R jet in the same event are referred to as b-matched jets. Jet mass templates
are derived separately for b-matched and non-b-matched jets.

For details of how jets are reconstructed, trimmed, and calibrated, as well as the definition
of different jet parameters, see chapter 5. The algorithm used to identify b-jets is described
in chapter 5.4.4 as well as [82, 83].

The control, validation, and signal regions defined in section 8.5 can be segmented into
b-tag and b-veto regions. Events with at least one b-tagged small-R jet are considered b-tag
events, while those without are labelled as b-veto. When b-tagging is not part of the selection
requirements for a region, it is called a b-inclusive region.

8.5 Control, signal, validation, and uncertainty

determination regions

Events are divided into control, signal, validation, and uncertainty determination regions.
Figure 8.2 illustrates how the different regions are used in the analysis. Jet mass templates
are constructed from control region (CR) events and used predict the mass distribution
in the uncertainty determination region (UDR), validation region (VR), and signal region
(SR), as discussed in section 9.1. The discrepancy between predicted and observed jet masses
in the UDR is taken as the systematic uncertainty of the background estimation method.
Observed and predicted masses in the validation regions can be compared to check that any
discrepancy falls within this uncertainty, as a way of validating the method. Finally the
observed yields in the signal region can be compared to the predicted background yield in
the signal region.

Table 8.1 gives the cuts used to define each of these regions. Control region events are
required to have exactly three large-R jets each with pT > 200 GeV . If a control region
event has at least one b-matched large-R jet, the additional requirement of |∆η12| > 1.4 is
applied, in order to suppress potential signal contamination.

There are a total of five partially-overlapping signal regions, all of which require |∆η12| <
1.4. Regions are defined by the minimum number of large-R jets required (Njet), by whether
or not a b-tagged jet is required to be present in the event, and by a minimum requirement on
MΣ

J . There are two signal regions which require four or more large-R jets with pT > 200 GeV ,
and three signal regions which require five or more. Four-jet signal regions require the pT of
the leading large-R jet to be greater than 400 GeV . The b-tag signal regions each require at
least one b-tagged small-R jet per event, and are the most sensitive to the RPV gluino direct
and cascade decay models. Signal regions without the b-tag requirement are also defined,
referred to as inclusive signal regions. These inclusive regions are less sensitive to the RPV
gluino decay signal, but can be sensitive to other potential BSM signals.
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Figure 8.2: Workflow illustrating how the different regions are used in the analysis.

The minimum value of MΣ
J for each signal region is optimized based on signal sensitivity

separately for each signal region. For the 5-jet b-tag signal region, the optimal MΣ
J cut

is 0.8 TeV for the cascade decay model, and 0.6 TeV for the direct decay model. The
signal regions corresponding to these two MΣ

J cuts will be referred to as 5jSRb1 and 5jSRb2,
respectively.

The difference between the signal and validation regions is a reversal of the |∆η12| re-
quirement, and removal of the MΣ

J requirement. Requiring large |∆η|12 reduces the signal
contribution to these high-multiplicity regions. There is no MΣ

J requirement for the valida-
tion region, so that the performance of the template method over the full range of MΣ

J can
be evaluated.

There are two uncertainty determination regions (UDRs), which are used to derive the
data-driven background systematic uncertainty. The high-pT UDR, referred to as as UDR1,
consists of events with exactly two large-R jets, with at least one having pT > 400 GeV .
The low-pT UDR, referred to as UDR2, consists of events with exactly four large-R jets, all
of which have pT < 400 GeV . The UDRs are independent of the control, validation, and
signal regions.
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Njet (pT > 200 GeV ) b-tag b-match pT,1 |∆η12| MΣ
J

CR
3jCRb = 3 - Yes - - -
3jCR = 3 - No - - -

UDR
UDR1 = 2 - - > 400 GeV - -
UDR2 = 4 - - < 400 GeV - -

VR

4jVRb ≥ 4 Yes - > 400 GeV > 1.4 -
5jVRb ≥ 5 Yes - - > 1.4 -
4jVR ≥ 4 - - > 400 GeV > 1.4 -
5jVR ≥ 5 - - - > 1.4 -

SR

4jSRb ≥ 4 Yes - > 400 GeV < 1.4 > 1.0 TeV

5jSRb
≥ 5 Yes - - < 1.4 > 0.8 TeV
≥ 5 Yes - - < 1.4 > 0.6 TeV

4jSR ≥ 4 - - > 400 GeV < 1.4 > 1.0 TeV
5jSR ≥ 5 - - - < 1.4 > 0.8 TeV

Table 8.1: Summary of the requirements defining the control, uncertainty determination,
validation, and signal regions. Requirements are placed on the large-R jet multiplicity (Njet),
the presence or absence of a b-tagged small-R jet (b-tag), the pT of the leading jet (pT,1), the
pseudorapidity difference between the two leading jets (|∆η12|), and the scalar sum of the
first four leading jets in the event (MΣ

J ) [69].



93

Chapter 9

Background estimation method

9.1 Jet mass templates

9.1.1 Template creation

Jet mass templates are derived from a signal-depleted control region consisting of events with
exactly three large-R jets. For each pT , |η|, and b-match bin, the distribution of individual
jet masses in that bin is taken as the template. The templates combine to form the binned
conditional probability distribution: p(m|pT , |η|, b−match).

Separate templates are created for b-matched and non-b-matched jets. For the b-matched
templates, only events with |∆η1,2| > 1.4 are included in the templates. Templates derived
from b-matched jets are used to dress b-matched jets in the kinematic sample, and templates
derived from non-b-matched jets are used to dress non-b-matched jets in the kinematic
sample. Each template is a one-dimensional histogram of log (m/pT ), with 50 bins. Jets
with log (m/pT ) < −7 are excluded from the templates. Example templates are shown in
figure 9.1 for two representative pT -|η| bins. A clear difference can be seen between the
templates derived from b-matched and non-b-matched jets. Jets that are b-matched have a
higher value of m/pT than non-b-matched jets, for the same pT -|η| bin. This feature can be
seen in both data and simulation. Additionally, agreement between data and simulation is
observed in the general template shapes.

Templates are binned in pT and |η|. The pT bins are approximately logarithmic, while
the |η| bin boundaries are at 0.0, 0.5, 1.0, and 1.5. The template binning and number of jets
contributing to each bin are shown in figure 9.2.

9.1.2 Template validation

Dressed mass response plots are created by plotting the average dressed and average kine-
matic jet mass in each pT bin. The dressed mass response for the control region is shown
in figure 9.3. Good agreement between average dressed and kinematic masses is observed
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Figure 9.1: Two representative template distributions used in the analysis, showing a com-
parison between data in black and simulation in red. The solid markers show the templates
derived from b-matched jets, while the empty markers show the templates derived from non-
b-matched jets. In (a), template jets are required to have 600 GeV < pT < 644 GeV and
0.5 < |η| < 1.0. In (b), templates jets are required to have 733 GeV < pT < 811 GeV and
1.5 < |η| < 2.0 [69].

Figure 9.2: Number of jets contributing to each template bin for the non-b-matched (left)
and b-matched (right) templates.

in this region, because the dressing procedure is applied to the same jets from which the
templates are derived.

Dressed mass response plots in other regions are used to evaluate how well the mass
templates generalize to events with different jet multiplicities. In the absence of signal
events, a disagreement between the average dressed and kinematic masses would indicate
that an individual jet mass is dependent on the number of jets in that jet’s event, violating
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the assumptions of the template method. A data-driven method is used to estimate the
extent to which this assumption is violated, and the size of the effect this can have on the
background estimation uncertainty. This method is described in 9.1.4.

Figure 9.3: Average dressed and kinematic jet masses for each pT bin in the control region

9.1.3 Background estimation using jet mass templates

For each jet in the kinematic region, a dressed mass is generated by sampling from the
template corresponding to its pT , |η| and b-match bin. To generate a dressed mass, the
empirical cumulative distribution function (ECDF) is calculated for the template. A uniform
random number, y, in the range [0, 1) is then generated. The inverse of the ECDF, Φ−1(y),
gives a randomized log (m/pT ) bin. A second uniform random number, x, is sampled from
the range [x1,x2), where x1, x2 are the edges of the selected bin. The dressed mass is then
computed as mdressed = pT e

x. To obtain a dressed MΣ
J for an event, one dressed mass is

generated for each jet, and the dressed masses are summed. For events with more than four
jets, only the first four leading jets are included in the sum.

To obtain the nominal dressed MΣ
J distribution, ntoys histograms of MΣ

J are created,
where each histogram is generated by dressing all events in the sample once. For each MΣ

J

bin, the average bin content over all histograms is taken as the nominal value, and the
standard deviation of bin contents is taken as one contribution to the statistical uncertainty.
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The MΣ
J histograms are binned as follows. There are ten equal-width bins covering the range

0 TeV ≤ MΣ
J < 0.5 TeV . The next three bins cover the ranges 0.5 TeV ≤ MΣ

J < 0.6 TeV ,
0.6 TeV ≤MΣ

J < 0.8 TeV , and 0.8 TeV ≤MΣ
J < 1.0 TeV . The final bin is MΣ

J ≥ 1.0 TeV .
The dressed MΣ

J distributions are scaled such that the dressed yield in the range 0.2 TeV <
MΣ

J < 0.4 TeV is equal to the kinematic yield in the same range. Separate scale factors are
derived for each of the validation and signal regions.

To determine the nominal predicted background yield, one thousand toys are generated,
where a toy consists of a dressed MΣ

J value for each event in the kinematic sample. For
each toy, the number of events with dressed MΣ

J greater than the signal region MΣ
J cut

are counted, giving a distribution of one thousand dressed background yields. The central
value of this distribution is multiplied by the scale factor to obtain the nominal background
prediction. The standard deviation of this distribution is multiplied by the scale factor to
obtain the statistical uncertainty on the background prediction.

Systematically-shifted background yield predictions are determined by repeating the
above procedure for the systematically-shifted dressed MΣ

J values. The systematic uncertain-
ties are taken as the difference between the nominal and systematically-shifted background
yield predictions. Scale factors are only derived from the nominal MΣ

J distributions and ap-
plied to both the nominal and systematically-shifted predictions. The two systematic uncer-
tainties are symmetrized by taking the maximum of the
downward-shifted and upward-shifted uncertainties.

9.1.4 Systematic uncertainty

The template method relies on the assumption that the probability density function (PDF)
for a jet in a background event to have mass m depends only on the jets pT , η, and b-match
status of the individual jet. It also assumes that the mass PDF of a jet is independent
of the masses of other jets in the event. Because these assumptions are known to be only
approximately true, the method will have some inherent bias, which should be accounted for
as a systematic uncertainty. To understand this uncertainty, signal-depleted regions called
UDRs are defined, which are independent from signal and validation regions. The predicted
jet mass in these regions can be compared to the measured jet mass to determine the level
of systematic uncertainty inherent to the method.

As can be seen in figure 9.4, the dressing procedure tends to under-predict jet masses in
UDR1 and over-predict jet masses in UDR2. The degree of discrepancy depends strongly on
pT and the choice of UDR . Separate uncorrelated systematic uncertainties are derived for
jets with pT < 400 GeV and those with pT > 400 GeV . Since the discrepancy is larger in
UDR1 than UDR2 for jets with pT < 400 GeV , UDR1 is used to derive the uncertainty for
those jets. For jets with pT < 400 GeV , uncertainties are correlated across pT and |η| bins,
and likewise for jets with pT > 400 GeV .

Systematic uncertainties are binned in pT and |η|. The lowest pT bin is for jets with
pT < 400 GeV . The second bin is for jets with 400 GeV ≤ pT < 544 GeV , and the highest
bin is for jets with pT ≥ 544 GeV . For jets with pT > 400 GeV , uncertainties are derived
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Figure 9.4: Jet mass response plots showing the discrepancy between average dressed and
kinematic jet masses in the two uncertainty determination regions, binned by pT and |η|.
Since the discrepancy is always larger in UDR1, only UDR1 is used to derive uncertain-
ties [69].

only from UDR1. For jets with pT < 400 GeV , uncertainties are derived from both UDR1
and UDR2, and the maximum uncertainty is used.

For each pT bin in the UDR dressed mass response, a fractional error is calculated as
ei = (< mkin > − < mdressed >) / < mdressed >. For the lowest and highest pT systematic
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bins, the root-mean-square of fractional errors is taken as the systematic error. For the
intermediate systematic bin, the maximum fractional error is taken.

Two separate, uncorrelated systematic uncertainties are derived. The first uncertainty
accounts for the discrepancy between dressed and kinematic masses for jets with pT ≥
400 GeV . The second accounts for the discrepancy for jets with pT < 400 GeV . To propagate
the low-pT systematic, two shifted MΣ

J values are calculated for each dressed MΣ
J . The

first shifted value is obtained by increasing the dressed mass of every low-pT jet by its
corresponding fractional uncertainty. This yields ntoys histograms of shiftedMΣ

J . The average
value of each bin content over all toys is taken to obtain the systematically-shifted MΣ

J

distribution. The second shifted distribution is obtained by decreasing the dressed mass of
every low-pT jet by its corresponding fractional uncertainty, and averaging over all the toys
to obtain a downwards-shifted distribution of MΣ

J . The same procedure is used to propagate
the high-pT systematic, but the high-pT jets are shifted instead of the low-pT jets.

9.2 Effect of signal contamination on background

estimation

The presence of signal events in the kinematic sample can affect both the nominal background
prediction as well as the systematic uncertainty. This effect can be quantified using a signal
injection test. The background prediction is first calculated from a data sample only, and
then calculated from a data sample injected with simulated signal events.

One example of this effect can be seen in figure 9.5. For this example, only the first
14.8 fb−1 of data are used. The injected signal simulates the cascade decay mode of gluinos
with mass mg̃ = 1.8 TeV and neutralinos with mass mχ̃ = 50 GeV . For this particular
choice of masses and decay mode, signal contamination increases the background prediction
by approximately 10%, from 18.3 events to 20.2 events. The systematic uncertainty is
increased from 8.9 events to 13.3 events due to the signal contamination.

The effect of signal contamination on the background prediction has to be measured
separately for each pair of mg̃, mχ̃ values. For each gluino and neutralino mass point,
the background prediction is generated using only simulated signal events in the kinematic
sample. That is, the templates are still derived from data, but the dressing is only performed
on simulated signal. The signal events don’t need to be included in the templates because the
template control region choice reduces any signal contribution in that region to a negligible
amount. The prediction from the signal-only kinematic sample is then compared to the
data-only prediction. Figure 9.6 shows the ratio of background prediction from signal-only
events over the background prediction from data alone. During hypothesis testing, these
ratios will be used to subtract off the signal contamination contribution to the background
prediction at each signal point separately. The signal region used for this test is the 5-jet,
b-tag region with MΣ

J > 0.8 TeV (5jSRb1).
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Figure 9.5: Signal injection test. The background prediction is first run only on a data sample
(a), and then on a data sample injected with simulated signal events (b). The increase in
background prediction and systematic uncertainty can be seen.

9.3 Effect of tt̄ on background estimation uncertainty

Monte Carlo was used to determine if the presence of tt̄ events in the uncertainty determi-
nation regions would affect the result of the data-driven background estimation. Figure 9.7
shows the jet mass response in UDR1 for Pythia8 multijet-only Monte Carlo events and
for multi-jet plus tt̄. Figure 9.7 shows the same comparison for UDR2. In both cases, the
presence of tt̄ events has a negligible impact on the resulting uncertainty values.

9.4 Background estimation method applied to

multijet Monte Carlo

The background estimation method was applied to simulated background events from Pythia8
multijets and tt̄. Other multijet Monte Carlo generators were found to disagree significantly
with data in the CR and UDRs, and so are not presented here. The predicted and observed
MΣ

J distributions were compared for the various signal regions, and agreement within uncer-
tainties is observed. The number of simulated events available resulted in larger statistical
uncertainty than is present in data. The equivalent luminosity available for this study was
1.9 fb−1.

Figure 9.9 shows the predicted and observed MΣ
J distributions for Pythia8 multijets and

tt̄ in the ≥ 4-jet b-inclusive region with |∆η1,2| < 1.4. Figure 9.10 shows the same comparison
for events with at least one b-tagged jet. In both cases, there is agreement between the two
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Figure 9.6: The effect of signal contamination on the nominal background prediction. At each
neutralino and gluino mass point, simulated signal events are used in the kinematic sample
to generate a background prediction. These predictions are compared to the prediction from
data only. In both cases, the templates are drawn only from data.

distributions within systematic uncertainties. Figures 9.11 and 9.12 show similar comparisons
for the ≥ 5-jet regions. In this case the number of simulated events is very small, and so the
statistical uncertainty begins to dominate over the systematic uncertainty. Regardless, the
observed MΣ

J distributions agree with the dressed distributions, within the uncertainties.
This should not be seen as a true test of the background estimation method. If significant

differences between the predicted and observed MΣ
J distributions had been found, it would

not necessarily indicate a flaw in the method. As discussed in 6, Monte Carlo generators are
not expected to perform well in these kinematic regions, hence the need for a data-driven
background estimation method in the first place.
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Figure 9.7: Jet mass response in UDR1 for Pythia8 multijet and tt̄ (left column) and Pythia8
multijet only (right column). The top two plots show the response for non-b-matched jets
only, and the bottom two plots show the response for b-matched jets only.
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Figure 9.8: Jet mass response in UDR2 for Pythia8 multijet and tt̄ (left column) and Pythia8
multijet only (right column). The top two plots show the response for non-b-matched jets
only, and the bottom two plots show the response for b-matched jets only.
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Figure 9.9: Predicted and observed MΣ
J distributions for Pythia8 multijet and tt̄ Monte Carlo

events in the 4jSR region. The red histogram shows the predicted distribution including
statistical uncertainty. The green and blue histograms show the systematic uncertainty.
The left plot includes only the high-pT systematic uncertainty, and the right plot shows only
the low-pT systematic uncertainty.
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Figure 9.10: Predicted and observed MΣ
J distributions for Pythia8 multijet and tt̄ Monte

Carlo events in the 4jSRb region. The red histogram shows the predicted distribution includ-
ing statistical uncertainty. The green and blue histograms show the systematic uncertainty.
The left plot includes only the high-pT systematic uncertainty, and the right plot shows only
the low-pT systematic uncertainty.
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Figure 9.11: Predicted and observed MΣ
J distributions for Pythia8 multijet and tt̄ Monte

Carlo events in the 5jSR region. The red histogram shows the predicted distribution including
statistical uncertainty. The green and blue histograms show the systematic uncertainty. The
left plot includes only the high-pT systematic uncertainty, and the right plot shows only the
low-pT systematic uncertainty.
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Figure 9.12: Predicted and observed MΣ
J distributions for Pythia8 multijet and tt̄ Monte

Carlo events in the 5jSRb region. The red histogram shows the predicted distribution includ-
ing statistical uncertainty. The green and blue histograms show the systematic uncertainty.
The left plot includes only the high-pT systematic uncertainty, and the right plot shows only
the low-pT systematic uncertainty.
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Chapter 10

Signal systematics

There are several factors that contribute to the systematic uncertainty on the signal yields,
which must be accounted for when checking for significant excesses in the signal region or
when setting limits on signal production. The dominant sources of systematic error are the
large-R jet mass scale (JMS), the small-R b-tagging uncertainty, the Monte Carlo statistical
uncertainty, and the modelling uncertainty, which includes uncertainty on parton distribu-
tion functions (PDFs), QCD scale uncertainty, and initial state radiation (ISR) modelling
uncertainty. The size of the contribution from each source of uncertainty depends on the
signal point being evaluated. To evaluate the size of a systematic uncertainty from a given
source, a nuisance parameter is varied up and down, and the variation in the signal yield
as compared to the nominal value is taken as the size of the uncertainy. When a system-
atic contains multiple components, those components are treated as uncorrelated, and their
contributions are combined in quadrature.

For example, to evaluate the contribution to the signal efficiency uncertainty from PDF,
QCD scale, αs and ISR modelling uncertainties, truth-level signal simulation samples are
created where different parameters are varied in the generation. For PDF uncertainties,
the internal event weights in the PDF set are varied up and down during the generation.
For the QCD scale and αs uncertainties, the value of these parameters are varied up and
down during the generation. For ISR uncertainties, the value of the matching scale, qcut is
varied up and down during the generation. Figures ?? show the nominal and systematically-
shifted distributions of four observables that contribute to the signal region definition for
four representative signal points. The nuisance parameters varied in these plots are the
event internal weights of the PDF set, the QCD scale, and αS. The PDF and QCD scale
contributions to the uncertainty are highest at low gluino mass, reaching a maximum of 25%
atmg̃ = 1.0 TeV , the lowest gluino mass studied. For higher masses, these uncertainties drop
to only a few percent. For reconstruction-level uncertainties such as b-tagging efficiency, the
nominal signal samples are used, and the detector simulation is run with different nuisance
parameters separately shifted up or down.

For the large-R JMS, there are four components, called the baseline, modeling, statistical,
and tracking components. These components are derived from the Rtrk method [51]. The
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Figure 10.1: Nominal and systematically-shifted Njet distributions for four signal points,
showing the shifted distributions for internal generator event weights, QCD scale, and αs.

JMS uncertainty is largest for mg̃ = 1.0 TeV , at ≈ 24%, and drops to ≈ 8% for signal points
with mg̃ = 1.8 TeV . It is generally dominated by the tracking uncertainty, followed by the
baseline uncertainty. The b-tagging uncertainty is evaluated by varying a set of 25 nuisance
parameters. The result is an uncertainty on the signal efficiency of between 15% and 25%.
This uncertainty is only applied to the b-tag signal regions. The luminosity uncertainty is
3.2%, and other uncertainties such as small-R jet energy scale (JES), small-R jet energy
resolution (JER), and pileup are found to be negligible. Table10.1 gives a summary of the
sources of systematic uncertainty, the number of nuisance parameters for each source, and
the approximate range of uncertainty size for each source. Because the size of the uncertainty
depends strongly on the particular signal point, these are only approximate ranges, except
in the case of luminosity, where the uncertainty is the same regardless of signal point. The
JMS uncertainty is highest for the lowest-mass signal points, and decreases with gluino mass.
The b-tagging efficiency uncertainty is only relevant for signal regions that include a b-tag
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Figure 10.2: Nominal and systematically-shifted Nb−jet distributions for four signal points,
showing the shifted distributions for internal generator event weights, QCD scale, and αs.

requirement.
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Figure 10.3: Nominal and systematically-shifted |∆η1,2| distributions for four signal points,
showing the shifted distributions for internal generator event weights, QCD scale, and αs.
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Figure 10.4: Nominal and systematically-shifted MΣ
J distributions for four signal points,

showing the shifted distributions for internal generator event weights, QCD scale, and αs.
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source number of nuisance parameters size of uncertainty

b-tagging efficiency 25 15%− 25%

Large-R JMS 4 baseline: 4%− 10%
modeling: 3%− 6%
statistical: 5%− 8%
tracking: 9%− 17%

PDF, QCD Scale, and αs 3 5%− 25%

luminosity 1 3.2%

Table 10.1: Summary of contributions to systematic uncertainties on the signal yield from
various sources, including the number of nuisance parameters and approximate range of
uncertainty size for each.
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Chapter 11

Results

11.1 Predicted and observed yields

Figure 11.1 shows the predicted and observed MΣ
J distributions in the four-jet and five-jet

regions, along with the total estimated uncertainty. The red solid line indicates the esti-
mated yield in each MΣ

J bin, and the red shaded area shows the total uncertainty, including
statistical and systematic uncertainties. The gray dashed lines are the ±1σ bands from the
statistical uncertainty only. There is good agreement between predicted and observed event
yields across a range of ±1σ values, within the total uncertainty. The exception is in the
five-jet signal region, where a slight excess of events is observed. After statistical analysis,
discussed in 11.2, the excess is found to not be significant. The MΣ

J distributions for two
different cascade decay signal mass points are also shown on the plots, to visualize the effect
that the existence of signal events would hve on the distributions.

In the four-jet signal regions, no excess of events was observed. In the five-jet signal
regions, an excess of events were observed, but these excesses were not found to be statisti-
cally significant. Predicted and observed yields in all signal regions are shown in table 11.1,
including the number of events in the corresponding normalization region, NNR, and the
statistical and systematic uncertainties on the background yield predictions in those regions.
Table 11.1 also shows the number of events in the normalization region, NNR, corresponding
to each signal region. The central value of the prediction for each signal region is shown,
as well as the statistical uncertainty, and the systematic uncertainties from the low-pT and
high-pT uncertainty determination regions.

11.2 Statistical Interpretation

The data are interpreted in a frequentist framework by defining a likelihood-ratio test statis-
tic, and calculating a p-value under the null hypothesis that no signal is present. If the
hypothesis cannot be rejected, then there is no evidence for the signal process, and limits
can be set on the signal production cross section. The limit-setting procedure uses the CLs
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Figure 11.1: Distribution of MΣ
J in the four-jet inclusive (4jSR), four-jet b-tag (4jSRb),

five-jet inclusive (5jSR), and five-jet b-tag (5jSRb) regions. The solid red lines show the
predicted MΣ

J distributions, along with the total uncertainty shaded in red. The black dots
show the observed MΣ

J distributions. The corresponding MΣ
J cuts are indicated with the

solid black vertical line and arrow for each region. Two separate signal regions are defined
for the 5jSRb region, one with an MΣ

J cut of 0.6 TeV , and one with a cut of 0.8 TeV . The
green and blue dashed lines show the predicted MΣ

J contribution from cascade-decay signal
events from two different mass points.

method [84, 85]. The likelihood function for an observed yield k and expected yield λ is:

L(µ) = P (k|λ)
∏
l

G(0|θl, 1) (11.1)
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Region NNR ≥MΣ
J [TeV ] Expected ( ± (stat.) ± (high-pT ) ± (low-pT )) Observed

4jSRb 64081 1.0 23.6 ± 4.6 ± 6.1 ± 1.7 15
4jSR 224862 1.0 82.0 ± 7.6 ± 15.8 ± 4.4 82
5jSRb1 2177 0.8 7.0 ± 2.4 ± 1.9 ± 0.7 10
5jSRb2 2177 0.6 44.0 ± 7.5 ± 11.2 ± 7.2 61
5jSR 6592 0.8 18.0 ± 3.7 ± 4.6 ± 1.5 31

Table 11.1: Predicted and observed yields in all signal regions used in the analysis. The
number of events in the corresponding normalization regions, NNR is shown. For each signal
region, the minimum value of MΣ

J used to define that region is also shown. Additionally, the
statistical uncertainty on the background yield, as well as the two systematic uncertainties,
derived from the high-pT and low-pT UDRs are shown [69].

where µ is a signal-strength parameter, P (k|λ) is the Poisson distribution with mean λ, and
G(0|θl, 1) is a log-normal constraint term for systematic l. Uncertainties are incorporated
into the likelihood function as nuisance parameters, by parameterizing the expected yield
as:

λ = µ
∏
i

(1 + θiσi)S0 +B0

∏
j

(1 + σb,jσb,j)− µ∆b(1 + θb,statσb,stat) (11.2)

where θi is the nuisance parameter for signal systematic i with size σi, and θb,j is the nuisance
parameter for background systematic j with size σb,j. Recall that each nuisance parameter
is constrained by a log-normal constraint in the likelihood function. S0 is the nominal signal
yield, and B0 is the predicted background yield. As described in 9.2, the presence of signal
contamination in the control region can increase the expected background prediction. To
correct for this, the signal contamination contribution to the background prediction must
be subtracted off from the total expected yield λ. This contribution is proportional to the
signal strength, and is subject to statistical, but not systematic uncertainties. So the term
used to correct for signal contamination is −µ∆b(1 + θb,statσb,stat).

The test statistic qµ is a ratio of two different likelihood function fits:

qµ = −2 ln
L(µ, θ̂)

L(µ̂,
ˆ̂
θ)

(11.3)

where θ̂ are the best-fit values of the parameters when the likelihood function is fit to data

with the signal-strength parameter µ kept fixed to the value of the null hypothesis, and
ˆ̂
θ

are the best-fit values of the parameters when µ is allowed to vary in the fit, along with the
other parameters.

To test for evidence of the signal process, a hypothesis test is conducted with the null
hypothesis that µ = 0, meaning that the signal process does not exist. The frequentist
interpretation of a p-value is the probability of observing an excess at least as large as what
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was seen in the data, assuming that the signal process does not exist. A p-value of 3× 10−7

or less is required to reject the null hypothesis. The p-value threshold is equivalent to the
false-positive rate, so the probability of incorrectly rejecting the null hypothesis due to a
statistical fluctuation will be 3× 10−7 for this test. A separate p-value is calculated for each
of the signal regions. The p-values for each of the signal regions can be seen in table 11.2.
None of the p-values are below the threshold, so no evidence of the signal process was found.

Signal Region MΣ
J requirement Expected limit [fb] Observed limit [fb] p0-value

4jSRb > 1.0 TeV 0.53+0.20
−0.12 0.37 0.5

4jSR > 1.0 TeV 1.12+0.50
−0.32 1.50 0.24

5jSRb1 > 0.8 TeV 0.24+0.10
−0.06 0.34 0.26

5jSRb2 > 0.6 TeV 0.86+0.40
−0.20 1.32 0.20

5jSR > 0.8 TeV 0.44+0.18
−0.10 0.84 0.062

Table 11.2: Observed and expected limits on gluino pair-production cross section for each
of the signal regions, along with the p-value for any excess observed in each region [69].

Using the observed yields, upper bounds can be set on the cross-section of the two signal
models, as well as model-independent upper bounds. The same test statistic can be used in
the limit-setting procedure as was used in the discovery test. In this case, the signal strength
parameter µ will be fixed to 1 in the numerator of the likelihood-ratio. This corresponds
to a null hypothesis of a signal process existing with cross-section equal to the theoretical
prediction. For a given signal point, if the p-value falls below 0.05, the signal plus background
hypothesis will be rejected, and that point will be considered excluded. Since signal yields
are only determined at discrete mass points, the limits are smoothly interpolated between
points.

The resulting limits for the cascade decay scenario are shown in figure 11.2. The observed
limit and its theoretical uncertainty are shown in red, and the expected limit is shown in
black with 1 sigma band shown in yellow. Mass points to the left of the solid red curve
are excluded. For comparison, the limits set by the Run-1 analysis are shown in gray. The
result is a significant increase in the excluded mass space for this model. However, due to
the slight excess in the signal region, the observed limit is less than expected [69]. The lower
bound on gluino mass varies from 1 TeV to 1.875 TeV depending on the value of mχ̃0

1
.

For the direct decay scenario, a similar limit-setting method was used, with p-values
calculated over a range of gluino masses and also over a range of µ values. For a given
gluino mass and value of µ, if the p-value is less than 0.05, the gluinos with that mass and
production cross-section are considered excluded. This allows for lower bounds to be placed
on the gluino cross-section over a range of gluino mass values.

The resulting limits for the direct-decay model are shown in figure 11.3. The theoretical
g̃g̃ production cross-section as a function of mg̃ is shown as a red dashed line, with gray band
indicating the uncertainty. The expected limit is shown as a black dashed line with green
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Figure 11.2: Predicted and observed limits for the cascade decay model over a range of mg̃

and mχ̃0
1

values. Both predicted and observed limits are shown with 1σ uncertainty bands.
Mass points to the left of the red solid curve are excluded. The gray dashed curve shows the
limits from the Run-1 analysis. Due to slight excess in the signal region, the observed limit
is less than expected [69].

and yellow bands indicating the one- and two-sigma uncertainty extent, and the observed
limit is a solid black line. The limits are upper bounds on the production cross-section for
each mass point. Because of the small excess of events observed in the signal region, the
upper bound on the production cross section is higher than the theoretical production cross
section in the entire gluino mass range that was tested, from 900 GeV to 1.8 TeV . So no
new limits can be set on the mass of the gluino decaying through this channel.
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Figure 11.3: Predicted and observed cross-section limits for the direct decay model over a
range of mg̃ values. The black solid curve indicates the upper bound on the signal production
cross section for each gluino mass point. Also shown are the estimated gluino pair production
cross-sections at each mass point [69]. Since the theoretical cross-section is smaller than the
upper bound for every mass point studied, this signal cannot be excluded for any mass point.
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Chapter 12

Conclusion

A search was performed for supersymmetric particles called gluinos decaying through R-
parity-violating vertices to high sum-of-jet-mass final states. The search was based on
36.1 fb−1 of

√
s = 13 TeV e proton-proton collision data taken by the ATLAS detector

at the LHC in 2015 and 2016. There were two signal decay processes under consideration,
one in which the gluinos each decay to three Standard Model quarks, and one in which the
gluino decays to a neutralino and two quarks, and the neutralino decays to three quarks.
Either of those processes would result to an excess in the number of events with a large sum
of leading jet masses over the Standard Model background.

A data-driven jet mass template method was used to estimate the contribution from
the Standard Model backgrounds. New features of this analysis are using a data-driven
estimate of background statistical uncertainty derived from the jet mass templates, and
using b-tagging to boost the expected signal-to-noise ratio. No significant excess above the
background prediction was found in any of the signal regions. Based on the observed yields,
limits were placed on the production of gluinos decaying through either the direct decay or
cascade decay scenarios.

For the direct decay mode, 95% CL upper bounds on the gluino production cross section
range from 0.8 fb for a gluino with mass of 900 GeV , to 0.011 fb for a gluino with mass
1.8 TeV . These upper bounds are above the theoretical cross-section for gluinos in this mass
range, so the search failed to exclude gluinos decaying via this process. For the cascade
decay mode, a range of gluino and neutralino mass points could be excluded based on the
cross-section upper bounds. Depending on the neutralino mass, gluinos with masses between
1 TeV and 1.8 TeV can be excluded, with the maximum gluino mass excluded for neutralino
mass around 1 TeV . This search has provided the strongest limits yet for the R-parity-
violating UDD decays of gluinos, and significantly extends the reach from the Run-1 analysis.
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