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Abstract: To alter and adjust the shape of the plasma membrane, cells harness various mechanisms
of curvature generation. Many of these curvature generation mechanisms rely on the interactions
between peripheral membrane proteins, integral membrane proteins, and lipids in the bilayer
membrane. Mathematical and computational modeling of membrane curvature generation has
provided great insights into the physics underlying these processes. However, one of the challenges
in modeling these processes is identifying the suitable constitutive relationships that describe the
membrane free energy including protein distribution and curvature generation capability. Here, we
review some of the commonly used continuum elastic membrane models that have been developed
for this purpose and discuss their applications. Finally, we address some fundamental challenges that
future theoretical methods need to overcome to push the boundaries of current model applications.

Keywords: plasma membrane; spontaneous curvature; Helfrich energy; area difference elastic model;
protein crowding; deviatoric curvature; hydrophobic mismatch

1. Introduction

The ability of cellular membranes to bend and adapt their configurations is critical for a
variety of cellular functions including membrane trafficking processes [1,2], fission [3,4], fusion [5,6],
differentiation [7], cell motility [8,9], and signal transduction [10–12]. Defects or disruptions in these
processes can lead to drawbacks in development and disease [13,14]. For example, changes in the
level of cytosolic phospholipase A2 (cPLA2α) enzyme affect the formation of transport vesicles from
the Golgi to the plasma membrane [15]. This malfunction can cause diseases such as asthma [16],
arthritis [17], cerebral ischemia [18], heart disease [19], and cancers [20]. Another example is remodeling
tubular membranes in centronuclear myopathies (CNM) patients due to mutations in myotubularin
(MTM1), amphiphysin2 (BIN1), or dynamin2 (DNM2) proteins [21]. Many of these protein families are
associated with lipid homeostasis and membrane curvature generation.

The degree of the membrane deformability depends on lipid packing, which can affect membrane
tension and the flow and diffusion of lipids in the plane of the membrane [22–24]. To dynamically
reshape the membrane, cells rely on a variety of molecular mechanisms, ranging from forces exerted by
the cytoskeleton [25–27] to the spontaneous curvature induced by the membrane–protein interactions
[22,28–30]. Each mechanism generates unique surface stresses on the membrane and these surface
stresses can be mapped onto the shape to understand the mechanical aspects of the membrane
deformation [31–34]. The interplay between cellular membrane and membrane proteins is one of the
major sources of the curvature production in cells. Membrane–protein interactions result not only
from proteins that are integral to the membrane, but also from proteins that can bind to the membrane
surface locally in response to signaling events such as scaffolding molecules or GTPases [28,29,35–38].
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Many different mechanisms have been proposed for how proteins can generate curvature of the
membrane. For the purposes of theoretical modeling and capturing the key physical principles, the
broadly accepted mechanisms can be grouped into two main categories: (i) the hydrophobic insertion
mechanism; and (ii) coat proteins with hydrophilic domains [29,39,40]. In the hydrophobic insertion
mechanism, partially embedded amphipathic helices of the protein domains change the relative area
of the two membrane leaflets. This area mismatch produces stresses, which result in membrane
bending [41,42]. In contrast, when proteins are thought to coat the membrane, there is no insertion
into the lipid bilayer and proteins simply oligomerize along the membrane surface [43,44]. In this case,
it has been suggested that the steric pressure generated due to protein crowding and scaffolding drive
the membrane deformation [45–47].

There are various methods to visualize membrane curvatures in situ or in reconstituted systems
such as X-ray crystallography [48,49], nuclear magnetic resonance spectroscopy (NMR) [50,51],
fluorescence microscopy [52,53], and electron microscopy (EM) [54,55]. Use of these techniques
provides an opportunity for scientists to decipher vast amounts of information about the molecular
machinery underlying the membrane shape transformations at high resolution. However, taking
high resolution images is expensive and biological systems are very dynamic, making it challenging
to experimentally quantify the role of a specific component, e.g., membrane–protein interactions, in
biological phenomena [56–58]. The use of theoretical and computational approaches have become
popular as complementary techniques to explore the mechanochemical aspects of membrane curvature
generating mechanisms [59–65]. In Figure 1, some results from theoretical simulations of membrane
deformation in endocytosis [66,67], tubular structures [68,69], nuclear envelopes [70], caveolae [71,72],
filopodial protrusion [73,74], and fission [75,76] are represented.

(A) Endocytosis

(B) Tubular structures

F
(E) Filopodial protrusion

(C) Nuclear envelopes

(D) Membrane-caveolae
 interactions

(F) Fission

Nucleus

Golgi
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Figure 1. Membrane curvature generation in cells and associated modeling results: (A) Membrane
budding in endocytosis. Reprinted with permission from references [66,67]. Copyright 2017 PNAS and
Copyright 2018 PCCP; (B) Formation and stabilization of tubular membrane structures in the Golgi.
Reprinted with permission from references [68,69]. Copyright 2013 PloS one and Copyright 2017 ACS
Nano; (C) Change in the topology of nuclear envelopes. Reprinted with permission from reference [70].
Copyright 2016 PNAS; (D) Membrane invagination in caveolae. Reprinted with permission from
references [71,72]. Copyright 2013 Soft matter and Copyright 2011 J. Phys. Chem. B.; (E) Actin force
driven filopodia protrusion. Reprinted with permission from references [73,74]. Copyright 2015 PNAS
and Copyright 2016 PLoS Comput Biol.; and (F) Mitochondrial fission. Reprinted with permission
from references [75,76]. Copyright 2017 Front Physiol and Copyright 2007 J. Phys. Chem. B.
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In this review article, we mainly focus on the continuum models that incorporate the effects of
membrane–protein interactions into the cell membrane curvature. In Section 2, we briefly introduce the
basic components of biological membranes. Next, in Section 3, we outline different type of proteins and
their importance in cellular processes by adjusting the membrane curvature. In Section 4, we present
two different computational approaches for modeling membrane–protein interaction—molecular
dynamics versus continuum models. In Section 5, we provide an overview of some of the popular
continuum models for describing the constitutive relationships of the plasma membranes in contact
with proteins. Finally, we conclude this review with a discussion on the challenges and possible future
directions of the theoretical methods in Section 6.

2. Composition of Biological Membranes

Biological membranes (BMs) form the outer boundary of living cells and compartments inside
the cell. The main component of all biological membranes is a lipid bilayer, with a thickness of about
5–10 nm (see Figure 2) [77–79]. Proteins are the second major component of cell membranes in which
the weight ratio of the lipids to membrane proteins can vary from 20% to 70%, depending on the cell
type [78,80,81]. Proteins in cell membranes are classified into two categories: integral and peripheral
proteins [82,83] (see Figure 2). The third major component of BMs is carbohydrate molecules, which
are found on the extracellular sides of cell membranes [84,85]. We briefly survey the two different
classes of membrane proteins (integral and peripheral proteins), their functions, and their structures in
cell membranes in what follows.

2.1. Integral Proteins

Integral proteins are embedded permanently in the membrane by hydrophobic and electrostatic
interactions [86,87]. Therefore, removing integral proteins from lipid bilayer is only possible by the
use of detergents or nonpolar solvents that break down the strong membrane–protein interactions.
The most common type of integral proteins are transmembrane proteins, which span across the lipid
bilayer such that one end contacts the cell interior and the other end touches the exterior. Many of the
integral membrane proteins function as ion channels or transporters. In addition, cell surface receptors,
linkers, and enzymatic proteins are all classes of integral membrane proteins [88].

2.2. Peripheral Proteins

Peripheral proteins more or less temporarily bind to the surface of the membrane with weak
interactions [86,89]. This means that unlike integral proteins, peripheral proteins can be separated
from the lipid bilayer by either altering the pH or the salt concentration of the cell culture medium [78].
The primary role of peripheral proteins is to provide a point of attachment for other components to the
cell membrane. For instance, both membrane cytoskeleton and components of the extracellular matrix
are linked to the cell membrane through peripheral proteins. This helps the cell maintain its shape
while the membrane remains flexible to bend as needed for various cellular functions [90]. Besides
the structural supports, peripheral proteins are involved in many other functions including cell–cell
communication, energy transduction, and molecule transfer across the membrane [90].
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Figure 2. Schematic depiction of a cellular membrane highlighting its composition. There are two layers
of amphipathic lipid molecules that self-assemble to form the bilayer. In each layer, the hydrophilic
head groups form the outer surface and the hydrophobic tails face toward each other in the interior
region. The distribution and organization of lipids and different proteins can vary from cell to cell.
The cell membrane is composed of many different molecules including peripheral proteins, integral
proteins, and carbohydrate molecules.

3. Membrane Curvature Generation due to Proteins

3.1. Conical and Inverted Conical-Shaped Proteins

The shape of transmembrane proteins can be approximated as conical or inverted conical
shapes [91–93]. These proteins are thought to insert into the membrane, distort the packing of
the lipids, and thus impose local negative or positive curvature to the underlying membrane [94].
Cellular membranes can bend either towards or away from the cytoplasm. The membrane curvature is
considered positive if the membrane curves toward the cytoplasm, and the curvature is negative if the
membrane curves away from the cytoplasm [22,23]. The attached conical or inverted conical-shaped
proteins induce membrane bending due to insertion causing a wedge effect, which can possibly be
associated and amplified by oligomerization, protein crowding, or hydrophobic mismatch [95]. In
addition to the direct effects of conical or inverted conical-shaped proteins, the membrane-mediated
repulsive interactions between two embedded proteins result in a change in the membrane curvature
[96,97]. Two classical examples of conical transmembrane proteins are potassium ion channels and
Nicotinic acetylcholine receptors, which can generate long-range membrane deformations [98].

3.2. BIN-Amphiphysin-Rvs Domain Proteins

BIN-Amphiphysin-Rvs (BAR) domain proteins are banana-shaped proteins that can both sense
and influence membrane curvature [99,100]. BAR domain proteins are made of three coiled core
helices attached to multiple positively charged residues [28,101]. Endophilin, Arfaptin, Amphiphysin,
Syndapins, Nadrin, and Oligophrenin are all membrane of the large family of BAR domain proteins
[102]. BAR domains are categorized in three groups based on the structure [101]: a classical BAR
domain (including N-terminal amphipathic helix BAR (N-BAR) domain family proteins),

extended Fes-CIP4 homology BAR (F-BAR), and IRSp53-MIM homology domain (IMD)/Inverse
BAR domain (I-BAR). BAR proteins are known to induce membrane curvature by two mechanisms:
scaffolding (imposing their intrinsic shapes on the membrane substrate) [28] and insertion of
amphipathic helices at the interface of the lipid bilayer, locally creating a wedge effect [103]. In terms of
functionality, BAR domain proteins are involved in numerous cellular processes including endocytosis,
exocytosis, apoptosis, and cell–cell fusion [101]. For example, in the formation of a filopodial protrusion,
the driving force of the actin polymerization enhances by membrane bending due to BAR domain
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scaffolding [104]. Indeed, the effect of BAR domain proteins scaffolding on the filopodia formation can
play a central role in cancer invasion and the formation of an invadopodia [105,106].

3.3. Coat Proteins

To regulate some cellular trafficking phenomena, multiple proteins need to bind to the membrane
and form a coat complex such as clathrin, coat protein complex I (COPI), and COPII [107]. These
protein assemblies can act as a scaffold to impose their spherical curvature to the underlying membrane
[28]. However, other components of the coat can contribute to the membrane bending through helix
insertion into the bilayer or adaptor-protein crowding [28]. Clathrin-mediated endocytosis (CME),
coated COPI transport vesicles between the endoplasmic reticulum (ER) and the Golgi, and endosomal
sorting complexes required for transport (ESCRT) protein assemblies at the neck of endocytic buds are
all examples of membrane remodeling due to the activity of the coat proteins [108–110].

4. Theoretical Models of Biological Membranes

4.1. Mechanical Viewpoint

Theoretical approaches are complementary techniques that have been developed in the last
few decades to understand how cells regulate their function through geometry, mechanics, and
signaling [11,58,111–113]. In general, theoretical approaches can be classified into discrete and
continuum models. In discrete models, the equations of the atoms’ motion in interaction with each
other are solved by Molecular Dynamics (MD) or Coarse-Grained (CG) simulation techniques [114,115].
Tracing all atoms in a system makes this model suitable for exploring the nature of biological processes
at the molecular level that are typically very difficult to detect experimentally such as the biochemistry
underlying the lipid–lipid or lipid–protein interactions. However, the high computational cost of MD
or CG simulations limit the applications of discrete models to phenomena at nanoscopic length and
time scales [111,116,117].

On the other hand, the continuum approach treats the membrane as a continuous surface with
average properties [111]. Indeed, the small length scale of the membrane constituents (∼3–6 nm)
compared to the length scales of the biological phenomena (∼100 nm-µm), allows us to define the
complex membrane as a single continuum surface [111]. The most popular and widely used model in
continuum framework is the Helfrich model, which was proposed in 1973 [118]. In this model, the
membrane is considered as a thin elastic shell that can bend such that at all times the lipids remain
aligned and normal to the membrane surface. In addition, this model presumes that the curvature
of the membrane is much larger than the thickness of the bilayer [118]. Under these assumptions,
Helfrich proposed an energy function for the system that depends only on the mean and Gaussian
curvatures of the membrane as [118]

WBending =
∫

ω

(
2κH2 + κGK

)
dA, (1)

where W is total strain energy of the membrane due to bending, H is the membrane mean curvature,
K is the membrane Gaussian curvature, and κ and κG are membrane properties which are called
the bending and Gaussian moduli, respectively. The integration in Equation (1) is over the entire
membrane surface area ω and dA is a differential area element. We describe the geometrical concepts
of curvature of manifolds in Box A.
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4.2. Simulation Techniques

From a mechanical perspective, cell membrane deformation can be characterized by balance
laws for mass and momentum. Simplifying these mass and momentum conservation equations in a
continuum framework results in a set of partial differential equations (PDEs) [119]. To solve the PDEs,
we first need to define the constitutive relationship for the membrane deformation, for example, the
Helfrich bending energy (Equation (1)). Other forms of suggested constitutive equations including the
effects of proteins are presented in Section 5.

Besides the need for a constitutive equation, the derived PDEs from cell mechanics are usually
higher order and highly nonlinear differential equations. Therefore, in most cases, analytical solutions
are not possible and the equations are often solved numerically. Over the last few decades, various
computational approaches have been developed to solve the set of governing PDEs including the
boundary value problem for axisymmetric coordinates [32,66,73,120,121], different finite element
methods [122–124], Monte Carlo methods [125–127], finite difference methods [128,129], and the
phase field representation of the surface [130–132]. Each of these methods has its own advantages
and disadvantages and, depending on the complexity of the problem, one or more of them can
be implemented.

A major challenge in modeling membrane–protein interactions is identifying a constitutive
relationship that captures the different levels of complexities associated with membrane–protein
interactions. In what follows, we discuss some of the popular models used for such purposes along
with their applications. We then discuss where new constitutive relationships are needed and how
these can be experimentally parameterized.

5. Continuum Elastic Energy Models of Membrane–Protein Interactions

5.1. Spontaneous Curvature Model

In the spontaneous curvature (SC) model, it has been suggested that the interaction between
proteins and surrounding lipids changes the local membrane properties, particularly the preferred or
spontaneous curvature of the membrane [29,133–135]. In this case, the induced spontaneous curvature
is a parameter that reflects a possible asymmetry between the two leaflets of the bilayer. This can be
the result of any membrane bending mechanisms such as phase separation of membrane proteins into
distinct domains, amphipathic helix or conically-shaped transmembrane protein insertion, protein
scaffolding, or protein crowding (Figure 3A). In reality, a combination of all these mechanisms can
occur simultaneously; as a result the local value of spontaneous curvature can then be interpreted as a
single measure of the curvature-generating capability of the membrane–protein interaction [28,29]. In a
continuum framework, the most common model for induced spontaneous curvature is the modified
version of Helfrich energy (Equation (1)), given in [73,134,136,137].

Box A. Curvatures of surfaces.

Let us consider the membrane as a two dimensional surface in a three-dimensional Euclidean
space (Figure A1). At each point on the surface, there are two curvatures, κ1 and κ2, which
characterize the shape of the surface [138,139]. These two curvatures are called principal curvatures
and by the definition their values are the reciprocal of the radius of the osculating circle at the
point (P) (κ1 = 1/R1 and κ2 = 1/R2 in Figure A1) [138,139]. The values of these curvatures can
be positive or negative. The curvature is positive if the curve turns in the same direction as the
normal vector to the surface (n), otherwise, it is negative [138,139]. The average the product of two
principal curvatures give the mean (H) and the Gaussian (K) curvatures, respectively, as [138,139]
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H =
κ1 + κ2

2
and K = κ1κ2. (A.1)

n

P

κ 1
=

1/
R

1

κ
2
=

1/R
2

Figure A1. Principal curvatures of a surface.

For a rotationally symmetric surface, as shown in Figure A2, we can define the position of
each point on the surface as a function of arc length (s) such as

r(s) = r(s)er(θ) + z(s)k, (A.2)

where r(s) is the radius from axis of revolution, z(s) is the elevation from a base plane, and
(er, eθ, k) forms the coordinate basis. Since r2(s) + z2(s) = 1, we can define the angle ψ such that
(Figure A2)

as = cos(ψ)er + sin(ψ)k and n = − sin(ψ)er + cos(ψ)k, (A.3)

where as and n are the unit tangent and normal vectors to the surface, as shown in Figure A2. We
now can define the two principal curvatures as

κ1 = ψ′ and κ2 =
sin(ψ)

r
, (A.4)

where (·)′ = d(·)/ds is the partial derivative with respect to the arc length. With the two principal
curvatures, the curvature deviator (D) in anisotropic condition is given by

D =
1
2
(

sin(ψ)
r
− ψ′). (A.5)
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Figure A2. Axisymmetric coordinates with z as the axis of rotation.

WSC =
∫

ω

(
2κ(H − C)2 + κGK

)
dA, (2)

where C is the spontaneous curvature and its effective strength depends on the membrane composition,
temperature, the membrane thickness, the protein density, and the membrane area coverage by
proteins [118,140].

Modeling the net effect of membrane–protein interaction as an induced spontaneous curvature
(Equation (2)) has provided great insight into various aspects of membrane deformation, from caveolae
and endosomal sorting complexes to cylindrical shapes of membrane ER [141–143]. By using the SC
model, recent studies have shown for example how a line tension at a lipid phase boundary could drive
scission in yeast endocytosis [32,144,145], or how a snap-through transition from open U-shaped buds
to closed buds in CME is regulated by the membrane tension [66,73]. Furthermore, the experimentally
observed change in the membrane tension (spontaneous tension) in response to protein adsorption
[146–148], can be explained in the context of the SC model [120,136,140]. The SC model has also been
used to elucidate the role of varying membrane tension due to protein-induced spontaneous curvature
[120,136,140]. While the SC model has been very effective in capturing large-scale deformations
of the membrane, it does not take into account the protein density or the curvature induced by
individual moieties.

5.2. Bilayer Couple Model

To go beyond an idealized single manifold description of a membrane, the bilayer couple (BC)
model was proposed by Sheetz and Singer in 1974 [149]. The basic assumptions in this model are that
each lipid molecule has a fixed area and there is no lipid exchange between the two leaflets of the
bilayer. Thus, any asymmetrical protein insertions into the inner and outer surfaces of the membrane
can cause an area mismatch between the two leaflets. This mismatch creates in-plane compression
in one leaflet and extension in the other leaflet, resulting in the membrane deformation to release
the induced stress (Figure 3B) [29,150]. For a thin lipid bilayer with thickness (d), the area difference
between the leaflets (∆A) can be expressed in terms of the mean curvature (H) as

∆A = 2d
∫

ω
HdA. (3)
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Here, instead of having a spontaneous curvature term in energy, a “hard” constraint on the area
difference between the leaflets (Equation (3)) regulates the membrane curvature. This difference in
the mechanism of curvature generation of SC and BC models distinguishes their predictions for the
same membrane deformation [150]. For example, in the case of membrane budding transition due to
thermal expansion, the SC model predicts that the membrane budding is discontinuous, while the BC
model predicts intermediate pear-shaped structures of the vesicle and that the transition of shapes is
continuous [150].

5.3. Area Difference Elasticity Model

In 1980, the area difference elasticity (ADE) model was developed by Svetina et al. [151,152] to
combine both SC and BC models including the missing macroscopic details of membrane bending
phenomena. To better explain the physics underlying this model, we consider a flat membrane that
bends downward due to different protein concentrations on two sides of the membrane (Figure 3C).
This bending, based on the single sheet descriptions of the membrane in the SC model, gives rise to the
spontaneous curvature term in the energy equation (Equation (2)). However, if we treat each leaflet
as an independent elastic plate—as suggested in the BC model—we can then see that, besides the
curvature, the area of each monolayer will also change. For example, in Figure 3C, the outer monolayer
is stretched and the inner one is compressed. The energy associated with the membrane bending and
this relative change in the monolayers areas is given by [150,153,154]

WADE =
∫

ω

(
2κ(H − C)2 + κGK

)
dA︸ ︷︷ ︸

Bending energy

+
κr

2Ad2 (∆A− ∆A0)
2︸ ︷︷ ︸

Elastic stretching energy

, (4)

where κr is called the nonlocal membrane bending modulus and A is the total surface area of the
neutral plane. ∆A0 and ∆A are the relaxed initial and bent area differences between the membrane
leaflets. respectively (∆A0 = A0,out− A0,in and ∆A = Aout− Ain, in which Aout is the area of the outer
layer and Ain is the area of the inner layer). In Equation (4), κ and κr are both in order of Kad2, where
Ka is the area stretching modulus of the bilayer [150,154,155]. This means that. in any membrane
deformation, both terms, the bending and the elastic stretching energies, are comparable and must
be considered simultaneously. Using the ADE model, researchers for the first time could numerically
simulate the shape transformations of the human red blood cell from stomatocyte to discocyte and
to echinocyte [155–158]. In addition, by using the ADE model, the experimentally observed vesicle
shapes were mapped onto a theoretical phase diagram, enabling theoreticians to predict the range of
parameters in which the vesicles may become unstable [150,153]. These predictions have been very
useful for detecting unstable shapes, which is challenging to do experimentally.

5.4. Deviatoric Curvature Model

In the SC model, the induced spontaneous curvature was assumed to be isotropic, meaning it
has the same value in all directions (see Box A). However, not all proteins are rotationally symmetric
and some can have intrinsically anisotropic curvatures such as banana-shaped BAR domain proteins
(Figure 3D) [99,159,160]. These proteins can produce different curvatures in different directions, which
is required for the formation of nonspherical structures such as membrane tubular protrusions [161,162].
To take into account the anisotropic contribution of protein coats or inclusions in the continuum
approach, Kralj-Iglic et al. proposed a deviatoric elasticity (DE) model [163]. In this model, each
complex protein structure is simplified as a one-dimensional curve that lies on the membrane. The
orientation and the position of the proteins in the plane of the membrane are important factors since
an additional term is needed to adjust the actual local curvature of the membrane to the intrinsic
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curvatures of the proteins [163,164]. The membrane free energy that was suggested by the DE model
is given as [163,165]

WDE =
∫

ω

(
2κ(H − C)2 + κGK︸ ︷︷ ︸

Bending energy

+ 2κ(D− D0)
2
)

︸ ︷︷ ︸
Deviatoric mismatch

dA, (5)

where D is the membrane curvature deviator and D0 is the spontaneous membrane curvature deviator.
Since the DE model was proposed, there have been many modeling efforts to explain how the
accumulation of BAR proteins in membrane necks stabilize membrane tubular protrusions without
the support of the cytoskeleton [166–169]. Derivation of the Euler–Lagrange governing equations by a
variational approach [170] provides a platform to systematically explore the impact of the induced
stresses by anisotropic curvatures on the morphology of tubular structures [32].

5.5. Protein Aggregation Model

Aggregation of cytosolic proteins on the membrane surface or phase separation of bilayer proteins
into specific domains have been observed in many biological processes [171–174]. This aggregation of
proteins not only creates a concentration field on the membrane surface but also results in additional
contributions to the membrane energy due to compositional heterogeneity and the entropic interactions
of bulk proteins with the lipid bilayer (Figure 3E) [175–177]. While the exact form of the free
energy is still a matter of debate and has not been verified experimentally, a simple model based on
thermodynamic arguments is given as [175,176,178]

WAggregation =
∫

ω

(
2κ(H − C)2 + κGK︸ ︷︷ ︸

Bending energy

+
T
a2 (φ ln φ + (1− φ) ln(1− φ))︸ ︷︷ ︸

Entropic energy

+
J

2a2 φ(1− φ)︸ ︷︷ ︸
Energy due to protein

aggregation

+
J
4
(∇φ)2

)
︸ ︷︷ ︸

Energy penalty due
to compositional

heterogeneity

dA, (6)

where T is the environment temperature, a is the surface area occupied by one protein, φ is the relative
density of the proteins, and J is the aggregation potential (J > 0 represents attractive interactions and
J < 0 represents repulsive interactions). In Equation (6), the first term is the conventional Helfrich
bending energy with induced spontaneous curvature [118]. The second term represents the entropic
contribution due to the thermal motion of proteins in the membrane [175,179]. The third term gives
the aggregation energy, and the last term describes the energetic penalty for the spatial membrane
composition gradient [175,178,179]. This model was used to conduct theoretical analyses of dynamic
phase transitions of coupled membrane–proteins–cytoskeleton systems in membrane protrusions such
as microvilli and filopodia [175,180–182]. This model also reveals an interesting fact that, in addition
to the induced deviatoric spontaneous curvature of the BAR domain proteins, the associated energy
with their aggregation at membrane necks facilitates the stability of tubular structures [169,183].

The aggregation energy in Equation (6) is a representative of the direct protein–protein interactions
in protein assemblies. However, there are indirect membrane-mediated interactions of proteins
which result from the local changes in the membrane curvature, membrane structure, or membrane
fluctuations [96,159,184,185]. For example, in the case of loose BAR domain assemblies, it is
experimentally observed that the induced local membrane curvature due to protein binding generates
a strong attractive interaction between two side-to-side crescent-shaped proteins without any direct
protein–protein interactions [96,186]. This attraction is a key factor for the aggregation and cooperative
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action of BAR domain proteins during the formation of membrane tubular structures. Furthermore,
coarse-grained simulations of membrane remodeling have shown that curvature-inducing proteins
or particles can aggregate and bend the membrane even in the absence of direct attractive/repulsive
interactions [111,187]. A major open question in the field is the relationship between protein density,
size, and spontaneous curvature. Although current models use a linear proportionality [120,176,188],
this choice of functions is critical in determining the energy.

5.6. Protein Crowding

The essence of the crowding mechanism is that the lateral collisions between the membrane-bound
proteins on one side of the membrane generate a steric pressure that causes the membrane to bend
away from the proteins (Figure 3F) [46,189,190]. As the density, the size, or the mobility of the bound
proteins increases, the induced steric pressure becomes larger, which results in a more significant
membrane bending [46,47]. Modeling the free energy associated with protein crowding is more
difficult because it profoundly depends on the specific composition of the underlying membrane
as well as the lateral confinement of the membrane-bound proteins [191,192]. However, in a recent
paper, a simple 2D hard-sphere gas model based on the Carnahan–Starling approximation has been
proposed to describe the free energy of the crowding mechanism [46,193]. To better visualize this, let
us consider a membrane that is crowded with different protein concentration on each side as shown
in Figure 3. If we model each protein as a hard-sphere gas particle that exerts a certain pressure on
the membrane surface, the work that is done by this pressure to bend the membrane according to the
standard thermodynamics is given by [194]

WCrowding =
∫

pindAin +
∫

poutdAout, (7)

where pin and pout are the induced steric pressure by the crowding proteins on the inner and the outer
side of the membrane, respectively. This induced pressure (denoted by p here ) for a 2D hard-sphere
gas protein can be expressed as [192,195,196]

p =
kBT

a
pR(φ), (8)

where kB is the Boltzmann constant and pR(φ) is the reduced gas pressure depending on the relative
density of the protein as [196]

pR(φ) = φ(1 + 2φ
1− 7

16 φ

(1− φ)2 ). (9)
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(A) Spontaneous curvature model

s

(B) Bilayer couple model

(C) Area difference elastic model

900

(D) Deviatoric curvature model

(E) Protein aggregation model

φ

a

(F) Crowding pressure
p

C

s

C

s

Expansion

Compression

C

s

Expansion

Compression

Figure 3. Cartoon models of the mechanisms of membrane curvature generation due to protein (shown
in red) interactions in different continuum elastic models. (A) Local protein interactions with membrane
produce a spontaneous curvature field. s is the arc length parameterization along the membrane and
C is the induced spontaneous curvature. (B) The asymmetric insertion of conical proteins on one
side of the membrane results in the expansion of the upper leaflet and compression of the lower
leaflet. (C) Asymmetric insertion of proteins into the lipid bilayer induces both local spontaneous
curvature and surface stresses due to membrane leaflets expansion/compression. (D) Rotationally
non-symmetric proteins generate anisotropic curvature. (E) Aggregated proteins on the membrane
surface create a spontaneous curvature field and also have entropic interactions with the membrane.
Here, φ represents the relative density of the accumulated proteins. (F) The induced pressure (p) by
crowding proteins drives membrane bending. a is the surface area occupied by one protein.

Equation (9) is known as a 2D version of the Carnahan–Starling equation. Protein crowding is a
recently discovered curvature generating mechanism that has challenged some conventional paradigms
about the role of molecular machinery in a robust cell shape change [45–47,197–199]. Stachowiak et al.
reported that confining a sufficiently high concentration of his-tagged green fluorescent proteins (GFP)
to a local region can deform the membrane into buds or tubules in the absence of any protein insertion
into the lipid bilayer [46,197]. Later, Snead et al. showed that crowding among membrane-bound
proteins can also drive membrane fission [45]. This paper predicts that the large disordered domains
of BAR proteins induce crowding pressure that promotes membrane fission instead of stabilizing the
membrane [200].

5.7. Hydrophobic Mismatch

Transmembrane proteins embedded in the cell membrane have hydrophobic regions that are
in contact with hydrophobic regions (lipid acyl chain) of the lipid bilayer. The difference between
the thicknesses of hydrophobic regions of a transmembrane protein (dp) and the lipid bilayer (dl)
is called the hydrophobic mismatch. Energetically, it is favorable that both hydrophobic regions
have approximately the same thickness to prevent the exposure of the hydrophobic surfaces to the
hydrophilic environment. However, it is impossible to avoid a mismatch because there are various
proteins with different lengths in a single membrane [201,202] and a single protein can be surrounded
by lipid bilayers with different thicknesses [203,204].

Several theoretical approaches have been developed to incorporate the energy cost and the
thermodynamic effects of membrane–protein interactions in term of hydrophobic mismatch [205–208].
The mattress model is one of the most well-known models that was proposed by Mouritsen and Bloom
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in 1984 [208]. In this model, both protein and lipid bilayer (called a mattress) are characterized by one
dimensional springs with constant Ap and Al , respectively [208] (Figure 4). There are three sources of
energy in this model. First, elastic energy (WMattress-Elastic) due to the vertical deformation of the two
springs relative to their individual equilibrium lengths (d0

p and d0
l ) given by [208]

WMattress-Elastic = nl Al(dl − d0
l )

2 + np Ap(dp − d0
p)

2, (10)

where nl and np are the number of molecules in the lipid bilayer and protein domains, respectively.
The second source of energy is due to the indirect lipid–protein interactions induced by the hydrophobic
mismatch (WMattress-hydrophobic). Based on the standard regular solution theory, this hydrophobic energy
is given by [209]

WMattress-hydrophobic =
nlnp

nl + np
Blp|dp − dl |, (11)

where Blp represents the strength of the hydrophobic interactions. The last source of energy is due
to the direct protein–lipid interactions which has been modeled by an attractive adhesive interaction
(WMattress-adhesive) as [208]

WMattress-adhesive =
nlnp

nl + np
Clpmin(dp, dl), (12)

where Clp < 0 shows the strength of the adhesive interactions between molecules. Therefore, the total
energy associated with the mattress model is written as

WMattress = nl Al(dl − d0
l )

2 + np Ap(dp − d0
p)

2 +
nlnp

nl + np
Blp|dp − dl |+

nlnp

nl + np
Clpmin(dp, dl). (13)

There are different adaptation mechanisms that either the protein or the bilayer can utilize to
avoid the energy cost of the hydrophobic mismatch [203,210]. For example, for positive (dl < dp) or
negative (dl > dp) mismatch, the lipid bilayer can be stretched or compressed, respectively, to adjust
the length of hydrophobic regions [211,212]. Another possibility is when the hydrophobic part of a
transmembrane protein is too thick or too short as compared to the hydrophobic bilayer thickness.
In this case, protein aggregation on the membrane or protein surface localization can efficiently
minimize the exposed hydrophobic area [213,214]. In addition, for proteins that have helices that are
too long compared to the thickness of the membrane, helix tilt is one possible mechanism to reduce the
protein effective hydrophobic length [203,215,216]. Effectively, the hydrophobic mismatch of integral
membrane proteins is a clustering mechanism. However, this mechanism can generate membrane
curvature depending on other membrane–protein interactions.

In addition to the models described above, there are additional considerations to the energy
that have been suggested by numerous studies such as higher order bending terms [139,217,218],
lipid volume constraints [219], the impact of protein shape on membrane deformation [220], and the
electrostatic energy between a membrane and proteins [221–224].

6. Future Perspective and Challenges

Although the models discussed above have provided insight into the molecular machinery of
cell shape regulation, all of them have been developed based on simplifying assumptions that need
to be revisited in the pursuit of closing the gap between experiment and theory. To achieve this goal,
multidisciplinary efforts among physicists, mathematicians, engineers, and biologists are required to
match different pieces of this cell biology puzzle.

Here, we highlight some current challenges that we believe must be considered in the next
generation of continuum models.
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Figure 4. Mattress model representation of the hydrophobic mismatch phenomena [208]. Both protein
and lipid bilayer are modeled as one-dimensional springs with constants Ap and Al , respectively. d0

l
and d0

p are the initial lengths, and dl and dp are the final lengths of the lipid bilayer and the protein
after deformation, respectively. The gray area corresponds to the hydrophilic region with the strength
of Blp, and the yellow region indicates the adhesive region with adhesive interactions strength of Clp.

• Membrane deformation is a dynamic process; surrounding fluid flow, thermal fluctuation, and
diffusion of proteins actively regulate the shape of the membrane at each instance [11,188,225–229].
Currently, the models for membranes at mechanical equilibrium are well-developed but the
models for dynamic processes have not been as well-developed and the community must invest
some effort in this aspect.

• In vivo, multiple mechanisms coupling membrane deformation and cytoskeletal remodeling are
commonplace (Figure 5A). Therefore, the models should be extended to include the dynamic
effects and the rearrangement of the actin cytoskeleton layer underneath of the membrane.

• Membrane deformation and protein absorption/rearrangement are often considered as two
separate processes with little to no impact on each other. However, recent studies show that
proteins can sense the membrane curvature (Figure 5B). Therefore, there is a feedback loop
between the protein distribution and the membrane configuration. While some models have
considered this feedback loop [176,230–233], we still need more quantitative agreements between
theory and experiment.

• Cell shape can control signal transduction at the plasma membrane, while intracellular signaling
changes the membrane tension [234] (Figure 5C). This coupling between the cell shape and the
signaling network inside the cell should be further understood in terms of both quantitative
experimental and theoretical biology.

• As discussed above, membrane deformation is a multiscale phenomena that results from the
reorientation of lipids to large-scale change in the membrane curvature. This suggests the
extension of available models toward multiscale models that could represent each biological
process over multiple length scales [117,235].
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Figure 5. Perspective for the future of theoretical models for membrane curvature generating
mechanisms. (A) Various mechanisms are involved in trafficking including amphipathic helix insertion
into the bilayer, protein scaffolding, cargo-receptor crowding, forces from actin polymerization, and
lipid phase separation [236,237]. (B) The coupling between membrane shape, membrane curvature, and
membrane proteins distribution. The convex proteins (indicated with red cones) aggregate and flow
toward the hill where the membrane curvature is negative (assuming the normal vector to the surface
is outward). On the other hand, the concave proteins (represented by blue cones) accumulate and move
toward the valley where the membrane curvature is large and positive [176]. (C) The coupling between
the formation of a filopodial protrusion and the intracellular signaling inside the cell [238]. The ligand
attachment to the G-protein-coupled receptor (GPCR) activates isotype β of the phospholipase C
(PLCβ) which is a class of membrane-associated enzymes. PLCβ stimulates the phosphatidylinositol
4,5–bisphosphate (PIP2) which is a phospholipid component of the cell membrane and regulates the
membrane tension. The hydrolysis of PIP2 produces the messenger molecule inositol trisphosphate
(IP3). Binding IP3 molecules to the ER releases the calcium (Ca2+) that stored in the ER to the cytoplasm.
The Ca2+ is a key intracellular molecule that controls the actin polymerization at the leading edge of
the membrane protrusion.

Despite these challenges, with increasingly quantitative measurement techniques available
experimentally, ease of access to high throughput computing systems, and interdisciplinary training of
the next generation of scientist leaders, the future of theoretical modeling of biological membranes and
cellular membrane processes is brighter than ever.
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