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Metabolome searcher: a high throughput tool for
metabolite identification and metabolic pathway
mapping directly from mass spectrometry and
using genome restriction
A Ranjitha Dhanasekaran1,4, Jon L Pearson1,5, Balasubramanian Ganesan1,2 and Bart C Weimer3*
Abstract

Background: Mass spectrometric analysis of microbial metabolism provides a long list of possible compounds.
Restricting the identification of the possible compounds to those produced by the specific organism would
benefit the identification process. Currently, identification of mass spectrometry (MS) data is commonly done
using empirically derived compound databases. Unfortunately, most databases contain relatively few compounds,
leaving long lists of unidentified molecules. Incorporating genome-encoded metabolism enables MS output
identification that may not be included in databases. Using an organism’s genome as a database restricts
metabolite identification to only those compounds that the organism can produce.

Results: To address the challenge of metabolomic analysis from MS data, a web-based application to directly
search genome-constructed metabolic databases was developed. The user query returns a genome-restricted list
of possible compound identifications along with the putative metabolic pathways based on the name, formula,
SMILES structure, and the compound mass as defined by the user. Multiple queries can be done simultaneously
by submitting a text file created by the user or obtained from the MS analysis software. The user can also provide
parameters specific to the experiment’s MS analysis conditions, such as mass deviation, adducts, and detection
mode during the query so as to provide additional levels of evidence to produce the tentative identification. The
query results are provided as an HTML page and downloadable text file of possible compounds that are restricted
to a specific genome. Hyperlinks provided in the HTML file connect the user to the curated metabolic databases
housed in ProCyc, a Pathway Tools platform, as well as the KEGG Pathway database for visualization and metabolic
pathway analysis.

Conclusions: Metabolome Searcher, a web-based tool, facilitates putative compound identification of MS
output based on genome-restricted metabolic capability. This enables researchers to rapidly extend the possible
identifications of large data sets for metabolites that are not in compound databases. Putative compound names
with their associated metabolic pathways from metabolomics data sets are returned to the user for additional
biological interpretation and visualization. This novel approach enables compound identification by restricting the
possible masses to those encoded in the genome.
* Correspondence: bcweimer@ucdavis.edu
3University of California, Davis, School of Veterinary Medicine, 1089 Veterinary
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Background
Bacterial metabolism impacts almost every aspect of our
life. Microbial metabolism was exploited by early human
civilization to create fermented foods and beverages
[1,2]. The oldest known metabolically derived products
from microbes include bread, cured meats, cheese, and
beer [2-4]. Currently, metabolic engineering for the pro-
duction of pharmaceuticals and bioactive compounds is
giving way to discovery of novel metabolic pathways for
production of alternative fuels [5-7]. Burgeoning needs
to produce novel antibiotics for disease treatment and
health supplements, such as amino-sugars and vitamins,
also represent the metabolic end products that are gen-
ome encoded of an organism [8-11].
The virulence of bacterial pathogens is closely linked

to their metabolism during infection, which is leading to
metabolomic disease biomarkers that is pushing the
boundaries of robust methods to quickly identify high
throughput metabolomic data [12,13]. Cumulatively, the
unusual metabolic networks of organisms in ecological
niches are renewing interests in metabolites that high-
light the lack of high throughput analysis tools for rapid
compound identification when the compound is not in-
cluded in a database. Unfortunately, rapid identification
of multiple metabolites simultaneously is also lacking.
However, if one considers an organism’s genome to be a
database of possible metabolic pathways and metabolite
production, it enables customization of MS output
analysis based on a specific organism. Approaching the
genome as a metabolite database is being done using
metabolic reconstruction methods in KEGG and Pathway
Tools.
The metabolism of an organism changes during growth,

survival, and persistence via complex gene expression
changes. In many cases, metabolism begins with the trans-
port of chemically diverse molecules for integration into
biologically functional blocks. An organism’s metabolic
capability can be envisaged as a highly interconnected net-
work of enzymatic reactions that provide energy, interme-
diates for macromolecular biosynthesis, cellular signaling,
regulation of stress, and control of oxidation/reduction to
ensure growth or survival [14]. Highly tuned regulatory
mechanisms to modulate the metabolic network via gene
expression and enzyme attenuation are needed to quickly
adapt to local environmental changes. Evolution of genetic
control and gene acquisition are critical to ensure the or-
ganism’s survival in the near- and long-term [15]. Adapta-
tion and genetic evolution results in new metabolic nodes
in the interconnected network that modifies the inter-
mediate and end product metabolism [14,16]. Of recent
interests, metabolic engineering is largely dependent on
understanding the metabolic network to regulate pro-
duction of specific low molecular weight end products
that often accumulate.
Low molecular weight metabolites, usually <1,000 Da
(small molecules; Table 1), including sugars, lipids, fatty
acids, amino acids, nucleotides, vitamins, and co-factors
are usually the targets of metabolomics, which have bio-
activity and lead to biomarker profiles (www.metacyc.org;
[17]). An organism’s metabolic demands are met by catab-
olism of complex macromolecules to the constituent small
molecules (e.g. polysaccharides to sugars) or digestion of
the molecules themselves (e.g. vitamins and amino acids)
to end products. The products of catabolism are reas-
sembled through anabolic pathways into macromolecules
of the organism to derive energy, oxidation/reduction
regulation, pH control, and to maintain membrane poten-
tial that fuels transport functions. During growth catabolic
and anabolic processes are regulated both genetically and
biochemically to maintain a balance between growth and
survival [18,19]. All of these activities are encoded in the
genome, which provides an inherent genetic database of
the possible metabolic compounds that an organism can
produce during changing growth conditions.
Metabolomics aspires to identify all the metabolites

produced by an organism [20,21]. However, large data
sets, limited identification databases, and limited MS pa-
rameters to differentiate small molecules are stumbling
blocks for metabolomic analysis, which in turn limits the
subsequent bioinformatic analysis and construction of
biologically informative models [16,21]. Currently, NMR
is of limited use for high throughput small molecule
identification due to the lack of sensitivity and limited
throughput, but is useful to elucidate the structures of
unique metabolites [22,23]. However, NMR is very useful
to track the metabolic fate of a small molecule with iso-
tope labels, which provides information for a handful of
metabolites once the entire compound list is narrowed
to a specific set of metabolic intermediates [18]. Other
post-separation detection techniques like photometric,
electrochemical, and fluorescent detection are actively
used to identify specific metabolites at a substantially re-
duced analytical scale, but the need to identify the set of
compounds produced is overwhelmingly changing the
goals of metabolite analysis [24-26]. Conversely, MS
analysis, in addition to metabolic tracking estimates the
masses of hundreds to thousands of small molecules
within minutes and provides information on their rela-
tive levels in the sample [27-29], making it very useful
for high throughput metabolome analysis. However, it
lacks specific information as to the identity of the small
molecules, which highlights the need to have curated da-
tabases for compound identification [21].
One approach to overcome the need to identify

important molecules uses principal component analysis
(PCA) to find changes with a specific treatment. From
MS data acquisition this produces a reduced list of small
molecules that are tagged as biomarkers [30,31]. Often

http://www.metacyc.org


Table 1 Metabolite distribution by molecular mass across
metabolic encyclopaedias

Molecular weight
range (Da)

Number of
compounds in
Metacyc

Number of
compounds
in KEGG

50-99 254 267

100-199 1,731 2,402

200-299 1,050 2,614

300-399 842 2,575

400-499 461 1,150

500-599 311 719

600-699 169 337

700-799 199 201

800-899 198 232

900-999 133 160

>1,000 119 224

Total 5,467 10,881
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the diagnostic peak is an unknown compound that is
difficult to identify. Subsequently, more complex chem-
ical analysis is used to determine the elemental compos-
ition of these biomarkers, which requires additional
time, expertise, and often multiple instrumentation cap-
abilities [32,33]. Biomarker identities are subsequently
validated by standard compound injection to produce a
compound library [22]. While this statistics-driven ana-
lytical approach favors method development for MS it
ignores the underlying biochemistry and the importance
of relatively minor changes of small molecules that can
sometimes lead to misinterpretation of the biological im-
pact with new small molecule production. This is espe-
cially prevalent for key metabolite classes like hormones,
vitamins, and enzyme co-factors where small changes
regulate large scale proteomic and metabolic fluctuations
[23]. One way to overcome this limitation is to use tools
that include all possible putative compounds generated
directly from matched compound identities prior to stat-
istical analysis. Subsequently, a significant list of putative
compounds can be used for metabolic mapping to facili-
tate biological identity by linking compound identities to
metabolic pathways and routes. Feist et al. [24] review
the reconstruction approach with specific attention to
metabolite identification.
Unfortunately, metabolite identification from hundreds

to thousands of masses by searching a large compound
database is a slow process that is ill defined relative to
the specific search criteria that provides confident
compounds assignments. GC-MS analysis often identi-
fies compounds by comparison of MS spectra with
large, well-established compound libraries (www.nist.gov).
Such compound libraries for LC-MS analysis are available
for only a small set of masses and are tightly linked to the
LC conditions. Large compound databases such as Pub-
chem (http://pubchem.ncbi.nlm.nih.gov) and Chemspider
(http://www.chemspider.com) allow searches of single
masses and other query types, but they do not allow quer-
ies from large lists of masses or connect putative com-
pounds to metabolic pathways. However, as the query list
expands, as it does in metabolome data sets, data analysis
using single queries becomes unrealistic for a timely and
accurate analysis.
Multiple software suites are available for compound

identification of mass spectrometry-based metabolite
data that use mass spectral deconvolution and matching
to reference databases. Some examples of full-fledged in-
dependent platforms are MetSign [25], MZmine 2 [26],
MAVEN [27], and XCMS2 [28], whereas MS Excel tem-
plates such as IDEOM [29], R packages like AStream
[30] and MAIT [31], and web-applications like METLIN
[32], XCMS Online [33], and MZedDB [34] are also
available as web services. These tools offer either stat-
istical or structural analyses of small molecule MS
data and extract information from metabolic databases
to create a list of compounds for their own localized
database. For example, MetSign’s compound database is
formed from the cumulative compound collection of
KEGG, HMDB, and LIPIDMAPS databases, MZmine 2′s
collection is from KEGG [35], HMP, and Pubchem com-
pound, MAVEN uses KEGG, whereas MAIT, IDEOM and
ASTREAM use unspecified databases. However, down-
stream of compound identification, they ignore the under-
lying biology and do not offer a mechanism to map the
data back to the metabolic pathways. Further, they lack
the flexibility of implementing user-defined parameters for
database searches, as for example, electrospray ionization
(ESI) parameters that are predefined in METLIN and
MZedDB [34].
Querying large compound databases that contain

millions of non-biological molecules can impede a re-
searcher’s ability to overlay a metabolic context onto
metabolomic data [36]. Biologists are producing data
at rates that outstrip the ability of analysts to examine
the data set to uncover the biological importance. To
keep pace with metabolome analysis, high throughput
bioinformatic tools that bring compound identity and
pathway relevance together to the biologist are crucial.
This can be accomplished with: a) automated searches
of metabolic databases to retrieve putative compound
identification, b) large scale queries be performed
seamlessly with MS output, c) provide users the flexi-
bility of using multiple query types, and d) map query
results to metabolic pathways, hence allowing data to
be analyzed in a biological context.
The availability of over 1,000 annotated microbial

genome sequences enables bioinformatic reconstruc-
tion (biocyc.org) of an organism’s metabolic capability

http://www.nist.gov
http://pubchem.ncbi.nlm.nih.gov
http://www.chemspider.com
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via the genome, which provides a broad network of
metabolism that can be used to predict small molecule
production [27,28]. Consequently, recent efforts have
focused on uncovering the metabolic networks in
many different biological systems [19,37]. Genome recon-
structions of the metabolic pathways coupled to analytical
methods, such as liquid chromatography (LC), gas chro-
matography (GC) and capillary electrophoresis with nu-
clear magnetic resonance spectroscopy (NMR) and mass
spectrometry (MS) produces a new method to leverage
genomic sequence to provide putative compound identifi-
cation quickly [27,38].
In this study, a user-friendly web-based application

called Metabolome Searcher to retrieve a list of small
molecules identifications based on chemical formula,
SMILES structure, and the monoisotopic mass was
created using an organism’s genome as a putative com-
pound database. While single queries can be directly
entered multiple queries with one or more query types
can also be done using a text file containing the query
list. One or more reference databases can be selected
from the list against which the queries are performed.
The output connects small molecules in a sample to
metabolic databases via embedded links to specific meta-
bolic pathways. The Metabolome Searcher’s output al-
lows researchers using metabolome data from different
technologies to group the compound identifications into
metabolic information so as to uncover the relevant bio-
logical function with multiple chemical criteria.

Methods
The ProCyc webserver
We currently house a metabolic database webserver
called ProCyc (www.usu.edu/westcent/procyc), which
is an implementation of the Pathway Tools webserver
(SRI Bioinformatics, Menlo Park, CA) with our own
manually and automatically curated metabolic databases
of interest. ProCyc houses over 47 metabolic database re-
constructions of different classes of bacteria including pro-
biotics, lactic acid bacteria, pathogens, and environmental
bacteria that were reconstructed locally. The MetaCyc
database and Human metabolism database are part of
the basic installation of Pathway Tools software. Some
of the reconstructed databases and the tier I/II databases
of the basic software were used to exemplify the
Metabolome Searcher implementation. This particular
platform was chosen for its flexibility to immediately
incorporate user-discovered pathways into the right
metabolic databases.

Metabolic reference database creation
A Metabolic Reference Database (MRDB) of an organ-
ism is a flat file (tab-delimited, plain text file) that
initially contains only the compound name, molecular
formula, molecular weight, SMILES structure, and the
respective pathways for all compounds extracted from
Pathway Tools Pathway/Genome Database (PGDB) of
that organism. The script to create the MRDB commu-
nicated with Pathway Tools [17] via the PerlCyc module
(v1.1; www.arabidopsis.org/biocyc/perlcyc). The same ap-
proach was used to create an additional non-redundant
database using Metacyc [17] and KEGG [35] (Table 2).
The reference monoisotopic masses of individual elements
were obtained from a publicly available compilation
(Scientific Instrument Services, Inc., Ringoes, NJ;
www.sisweb.com). Using the monoisotopic masses of
individual elements, the monoisotopic masses of all
compounds in the MRDB in their charged and neutral
states were calculated based on their formulae. The
MRDB was then modified to include the calculated
monoisotopic masses, which is queried for compound
identification and pathway mapping via the Metabo-
lome Searcher’s web interface.

Query input
The Metabolome Searcher allows the user to enter a sin-
gle query by typing the name, formula, molecular/mono-
isotopic mass or SMILES structure, or multiple queries
by uploading a query list within a file (Figure 1). This file
contains masses and intensities of compounds as a tab-
delimited text file. For mass searches, whether from a
single entry or a file, the user selects the type (molecular
weight or monoisotopic mass). Most MS systems con-
tain software that enables data export to a text or an
Excel file [25]. We used the QTof system (QTof Premier,
Waters, MA) with MarkerLynx software for marker
identification and analysis to test this approach. A
MarkerLynx-derived text file was used without modifica-
tion for the Metabolome Searcher query by submitting
the file under the “MarkerLynx file” input on the inter-
face (Figure 1). Alternately, analysis of output from other
MS systems can be done using the “text file” option
(Figure 1). While using the text file option, query values
of any type, whether masses or specific compound
names or a mixture of query types, were listed in the
first column of the query file. Any headers, empty lines,
and non-query values in the first column were removed
prior to submission of data as a text file for matching.
For both the file options, other information like statis-
tics, marker quality, peak areas, peak heights, and con-
centrations across experiments and replicates were still
retained in the file.

Compound identification for MS analysis
For compound identification from monoisotopic masses,
the user specifies the acceptable deviation from the
theoretical masses (ppm or Da, under “Mass deviation”;
Figure 1), the ionization mode (positive or negative,

http://www.usu.edu/westcent/procyc
http://www.arabidopsis.org/biocyc/perlcyc
http://www.sisweb.com


Table 2 Organism-specific and general metabolic reference
databases available for the Metabolome Searcher

Organism ProCyc
database

Metabolic reference
database

Escherichia coli K12 EcoCyc E. coli K12

Escherichia coli O157:H7 Ecoo157Cyc E. coli O157:H7

Homosapiens HumanCyc Homo sapiens

KEGG Compounds KEGG Compounds

Lactococcus lactis ssp. lactis
IL1403

LlactisCyc1 L. lactis ssp. lactis
IL1403

Lactococcus lactis ssp.
cremoris SK11

LaccremoCyc1 L. lactis ssp. cremoris
SK11

Lactobacillus acidophilus NCFM LbacidCyc1 Lb. acidophilus NCFM

Lactobacillus johnsonii NCC 533 LbjohnCyc1 Lb. johnsonii NCC 533

Lactobacillus plantarum WCFS1 LbplanCyc1 Lb. plantarum WCFS1

Listeria monocytogenes EGDe LmonoCyc1 Listeria
monocytogenesEGDe

Mycobacterium bovis
AF2122/97

MbovisCyc1 M. bovis AF2122/97

MetaCyc MetaCyc MetaCyc

Staphylococcus aureus Mu50 SaureusCyc1 S. aureus ssp. aureus
Mu50

Saccharomyces cerevisiae S288C YeastCyc2 S. cerevisiae S288C

Salmonella enterica ssp. enterica
serovar Typhimurium LT2

Styp99287Cyc3 Salmonella
typhimurium LT2

1PGDBs reconstructed, curated and hosted in ProCyc.
2Obtained from the Yeast genome database.
3Downloaded from the Pathway Tools registry of PGDBs.
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under “Electrospray mode”; Figure 1), the maximum
number of charges (0-5; under the “Number of proton
charge states”; Figure 1), and adducts (mass or formula;
optional; under “Adduct or Deduct molecule” and “Max-
imum number of adducts/deducts”; Figure 1). The devi-
ation value allows the software to obtain matches for
queried masses within an acceptable range to narrow or
expand the putative identification list. Acceptable mass
deviation values may be experimentally determined or
obtained from the literature based on a particular instru-
ment and operating conditions [37].
Typically during MS analysis the molecules are de-

tected by prior ionization with or by removal of protons
(positive and negative mode, respectively) [23]. The MS
settings are optimized to mainly produce singly charged
ions. However, a molecule may still carry multiple
charges depending on the MS settings [38]. The user
can verify the charge state of compounds contained in
the input list to recalibrate the MS settings by selecting
different charge states during multiple search sessions.
Positively charged ionic species, such as sodium (Na+)

and potassium (K+), or negative species, such as chloride
(Cl−) and formate (HCOO−), are also used during
ionization due to their abundance in a sample. The
addition of ionic species or adducts during ionization
shifts the observed monoisotopic mass from that of the
intact molecule plus/minus a proton [38]. These adducts
can be specified either as individual elements or as par-
tial functional groups in the “Adduct or Deduct mol-
ecule” textbox (Figure 1). Similar to adducts, if the user
wishes to specify fragments lost during ionization or
fragmentation the “Deduct” option can be selected. The
user can also provide more than one adduct or deduct
in the textbox simultaneously and specify the number of
maximum possible adducts or fragments (“Maximum
number of adducts/deducts” option).
Database selection
MRDBs that contain metabolites from different PGDBs
or the KEGG database along with calculated monoisoto-
pic masses are used for the queries. MRDBs are included
for user selection from the ones listed on the interface
(Table 2) wherein the user can select single or multiple
MRDBs for searching (Figure 1). If the user intends to
query known metabolic pathways in an organism, the
organism-specific MRDBs are provided for more specific
and narrow options of possible compounds due to the
known annotated pathways. However, if the intent is to
discover new pathways unknown in a particular system,
but identified in other organisms, or if an organism
without a pre-constructed MRDB is being studied, the
user can select a genotypically related organism’s MRDB
or the MetaCyc MRDB for matching. A user-generated
PGDB can also be incorporated as an MRDB using the
scripts defined above prior to the user defined query.
The MRDBs were created in a flat file format to reduce
complexity in processing and data handling such that
newer MRDBs for other organisms can always be cre-
ated in a consistent format and readily incorporated as
per the user’s need. Pathway Tools was selected as the
main metabolic database platform to create MRDBs and
link back to PGDBs due to its interactive features and
user-level flexibility for metabolic database development
and curation of whole genome PGDBs [17], while quer-
ies of an MRDB for the KEGG database [39] are also
supported.
Database searching
Once a text query has been submitted, the Metabolome
Searcher determines whether a text input is the name of
a compound, its chemical formula or its SMILES struc-
ture independent of any specifications. After the query
is classified into the specific type, information of the cor-
responding type in the MRDB is used for matching
(i.e. names-to-names, formulae-to-formulae, and masses-
to-masses) (Figure 2). All matches obtained within the pa-
rameters specified for searches are provided in the output
files for viewing and analysis.



Figure 1 Metabolome searcher user interface screenshot.
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Output generation
After entering a single query or uploading a query file
and specifying the MRDBs along with other MS analysis
parameters, the user submits the query. The queries are
matched against the MRDBs and the output files are cre-
ated. Query parameters are printed at the top of all the
output files to ensure that the parameters submitted by
the user were used for searching the database (Figure 3A).
Three different output files are provided as the result

of the analysis, one HTML and two text files. The two
text files are embedded as links at the top of the HTML
page (Figure 3A) that the user can download. One text
file (“compounds file”) lists only the matched com-
pounds without any metabolic pathway information,
while the other (“pathways file”) repeats each com-
pound’s data by all the pathways that it belongs to as a
metabolite.
All scripts were written in Perl (v5.8.6; www.perl.org).

The scripts and the metabolic reference databases for
Metabolome Searcher are hosted in an Apple XGrid
computational cluster (Panther OS 10.3.9) at the
Western Dairy Center at Utah State University as well
as University of California, Davis. Web pages for data
input and output were created using Perl CGI.

http://www.perl.org


Figure 2 Diagram of the work flow and search operations that underly metabolome searcher to return compounds and pathways.
(A) Metabolome searcher workflow. (B) flowchart of the search operations to find matching compounds.

Dhanasekaran et al. BMC Bioinformatics  (2015) 16:62 Page 7 of 13



Figure 3 Screenshot of metabolome searcher’s output. (A) The top portion of the HTML results page and (B) the body of the HTML file
demonstrate that sections containing queries, matches, compound and pathway links, and other data and information are provided with in
the output.
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MS data validation
Chemical standards preparation
All compounds used were purchased from Sigma-
Aldrich (St. Louis, MO). A chemically defined medium
described previously by Ganesan et al. [18] was prepared
as a complex mixture for testing Metabolome Searcher’s
performance. The major components of this medium
are 20 amino acids, sodium chloride, citrate, phosphate,
3-(N-morpholino) propane sulfonic acid (MOPS), vita-
min solution (containing 15 different compounds), and
glucose. Individual standard solutions of selected amino
acids, glucose, citrate, and MOPS were also used for molecule
identification.

Mass spectrometry
Separation and analysis of standard compound mixtures
were done at the mass spectrometry facility in the CIB.
The samples were separated by liquid chromatography
(2795 LC system; Waters) prior to introduction by elec-
trospray into the mass spectrometer (QTof Premier;
Waters) as described by Mortishire-Smith et al. [40].
Briefly, the separation was done for 10 min using a lin-
ear gradient of water:acetonitrile from 0-95% using a
Symmetry C18 column (Waters). After introduction into
the MS by electrospray, the molecules were detected
using both positive and negative electrospray conditions,
with calibrated settings recommended by the manufacturer.
The QTof instrument was operated in W mode throughout
MS analysis. For both positive and negative electrospray
analysis, the conditions were: desolvation temperature of
250°C, source temperature of 120°C, cone voltage of 40 V,
and collision energy of 4 eV. Data acquisition was per-
formed for a mass range of 50–1,000 Da. After acquisition
the data were centroided [40] using 1 ng/μl leucine-
enkephalin infused at 10 μl/min as a reference, with an m/z
of 556.2771 in positive mode and m/z of 554.25 in negative
mode. In order to subtract background from the LC col-
umn and sample matrix, HPLC-grade water (Thermo
Fisher Scientific Inc., Waltham, MA) was injected into the
MS as a negative control. All samples were analyzed in
technical duplicates.
Peak detection, intensity extraction, and normalization

were performed using MarkerLynx software (Waters) to
obtain monoisotopic masses and molecule retention
times. In this study, only the monoisotopic masses of the
markers were used for database searches. The Metabo-
lome Searcher does not support any data analysis of the
concentrations or relative measures of compound levels
obtained from MarkerLynx.

Results and discussion
Metabolomic assessment provides a list of compounds
that facilitates the estimation of metabolic flux through
both single pathways and networks [41,42]. Metabolome



Figure 4 Comparison of results from chemical vs metabolic databases with the monoisotopic mass of isocitrate (192.027 ±
0.001 Da) as the query. Hits to an encyclopedia of genes (MetaCyc), E. coli (EcoCyc), Listeria monocytogenes (LmonoCyc), Lactococcus
lactis IL1403 (LlactisCyc), and Lactobacillus johnsonii (LbjohnCyc) databases were used to demonstrate multiple genome-restrictions using
Metabolome Searcher.
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analysis enables determination of abiotic conditions and
genetic regulation of metabolic networks. To achieve
these purposes a tool that rapidly determines the com-
pound identity, pathways, and metabolic networks was
needed [43,44]. The tool accepts queries from common
data types and facilitates data integration from inde-
pendent sources into a unified compound identification
and pathway-mapping scheme. To our knowledge such
a tool is not available. The Metabolome Searcher ad-
dresses these purposes by receiving input from the user,
querying the user-selected metabolic reference database
(s), and displaying the generated output for further
biological interpretation (Figure 3).
Of the Metabolome Searcher’s outputs, the compounds

file is useful when the user plans to conduct compound
classification, data clustering, principal component ana-
lysis, analysis of variance, or graphical visualization. The
pathways file allows the users to sort the data by pathways
and facilitates interpretation of metabolic flux and path-
way connections to determine if a compound is an inter-
mediate or an end product. The main feature of the
HTML output is that it lists and links compounds to all
metabolic pathways in which the metabolite is involved
(Figure 3). These links help the user understand the role
of that particular metabolite in the organism’s metabolic
network. The user can click on any one of these links that
will navigate them to the PGDBs curated and hosted at
ProCyc. The user need not repeat queries on the Metabo-
lome Searcher as the HTML file contains the links to the
pathways associated with the returned putative compound
IDs. To facilitate obtaining the standard chemicals for
verification of retention times, CAS IDs of compounds
(where available) are also included in a separate column in
the output file.

Verification
For names, formulae, and SMILES structures, any partial
matches will also be detected and listed. For example, a
query of the word string “glucose” against the MetaCyc
database will identify D-glucose and an additional 52 hits
(data not shown) that also include alpha-methyl-glucose,
NDP-Glucoses, and all other molecules that contain the



Table 3 Summary of hits to selected compounds from a
chemically defined growth medium determined from a
query of monoisotopic masses using the Metabolome
Searcher

Compound Detected by
mass match

Number of
additional
hits*

Number of non-isomeric
additional hits*

Tyrosine Yes 29 25

Pyridoxamine Yes 0 0

Lysine Yes 4 1

Thymidine Yes 0 0

Pyridoxal Yes 8 5

Glycine Yes 1 0

Dihydrouracil Yes 4 0

Arginine Yes 2 1

Threonine Yes 7 0

Alanine Yes 5 0

Serine Yes 1 0

Asparagine Yes 5 0

Histidine Yes 3 1

Tryptophan Yes 2 1

Aspartate Yes 2 0

Glutamate Yes 6 0

Guanosine Yes 0 0

*Additional hits include all individual compounds that match the query using
the provided query settings; non-isomeric hits only include compounds that
do not share the same empirical formula.
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substring “glucose” in the name. String matching offers
the user the ability to obtain partial matches and allows
additional control over the query specificity and flexibility
for unknown pathways. In most cases, if the specific
MetaCyc compound names are used, the results will be
restricted to one hit. Searching of word strings was imple-
mented in order that even if other data sources such as
GC-MS and LC-MS/MS were provided after identification
using other software suites, or even data from standard
GC or HPLC analyses based on extractions and retention
times under certain conditions was provided, the data can
be mapped to metabolites and pathways.
Compound identification from LC-MS or NMR spec-

trometry data has proven to be a challenge to biologists
because the compound databases are limited, especially
with respect to the compounds that a specific organism
can produce. Based on the user selection of MRDB(s) in
Metabolome Searcher, the number of hits is refined and
is metabolically relevant to the organism under study,
which provides a basis for biological conclusions to be
drawn. As an example of the convenience provided by
Metabolome Searcher by implementing genome restric-
tion, we initially queried the MetaCyc MRDB with the
monoisotopic mass of isocitrate as the search query and
used the results for further narrowing the hits by query-
ing organism-specific MRDBs. These genome-restricted
results were compared to those hits obtained by query-
ing the monoisotopic mass of isocitrate using Chemspi-
der (Figure 4). The ChemSpider query returned 118
possible compound identifications that included non-
biological compounds and required extensive analysis
outside the query system to derive possible identifica-
tions whereas querying the MetaCyc MRDB provided
hits that included 10 compounds with similar monoiso-
topic masses to that of isocitrate. Each genome (i.e. or-
ganism) further reduced the hits to 2–5 compounds
that reflected the genetic differences in metabolism, all
of which were related to citrate. Combining genome
restriction with the MS compound list refined the pos-
sible identification list to a low number of compounds
that was reasonable for empirical confirmation.
The interface and search function were verified by

accessing the database search function using known
exact masses and a data set generated from a known
mixture of compounds (i.e. a chemically defined bacter-
ial growth medium) from LC-MS output. The resulting
markers exported into a MarkerLynx format text file
was used to query the compound identification using
Metabolome Searcher. All the main ingredients of the
growth medium represented in the MetaCyc MRDB
were detected during the search (Table 3). MOPS, a
buffering salt, was used as a negative control for
the chemical challenge, which was done by excluding it
from the MetaCyc MRDB. Interestingly, after excluding
MOPS, some of the query masses also matched multiple
metabolites, many of which were isomeric forms of
the metabolites being tested. This allowed further
restriction of identification to narrower ranges of mass
deviation to obtain better accuracy. However, in nearly
90% of compounds identified the number of hits was
limited to <5 metabolites, thus aiding the directed
development of protocols for further compound iden-
tification. This approach enabled detection of common
starting substrates for metabolism and verified that if the
compound was in the database, Metabolome Searcher
found it.

Uses of metabolome searcher
An example demonstration of the Metabolome Searcher
for microbial metabolomics was by collecting metabolo-
mics profiles for both sterile chemically defined media
and spent media collected after inoculation with the bac-
terium Lactococcus lactis IL1403 for 16 h. Metabolomics
profiles were collected by LC-MS analysis in both
positive and negative electrospray modes for the same
samples and the masses obtained from MarkerLynx
were queried against the L. lactis IL1403 MRDB
(Table 2). After overlaying the compound identifications
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we quickly inferred changes in compound classes, such
as amino acids (Figure 5), by sorting the compounds file,
or pathways file that changed during growth of L. lactis
IL1403 (Figure 5). This example demonstrated that
Metabolome Searcher performed the intended search and
enabled the biological meaning to rapidly assign the iden-
tified compounds using constructed databases from meta-
bolic reconstruction maps.

Conclusions
The Metabolome Searcher provides an automated tool
to identify metabolites from MS analyses from metabolic
reconstruction of specific genomes. This approach cou-
ples long lists of masses to specific genomic-based me-
tabolites for identification and subsequent visualization
via metabolic pathways. The tool is flexible so that query
Figure 5 Pathway assembly of metabolome searcher output with hea
pathways file (tryptophan biosynthesis and asparagine biosynthesis I
“asparagine biosynthesis I” inside the HTML file that brings up the pathway
black the median value, and red the highest value within that data set. The
24 hours later, which demonstrates the change in metabolites, from the M
types can use many types of data that include names,
molecular formulae, or SMILES structures, and mono-
isotopic masses that are entered singly or in bulk as a
text file. The matches to queries are then presented as
results along with other input parameters that the user
included in the query and the pathways in which the
matched metabolites are involved. The versatility of
accepted query types and the provision of pathways
mapped to queries are unique to the Metabolome
Searcher. The Metabolome Searcher’s utility and flexibility
facilitates rapid advances from metabolomics to biological
comprehension.

Availability of supporting data
Metabolome Searcher can be accessed at http://procyc.
westcent.usu.edu/cgi-bin/MetaboSearcher.cgi.
t maps of LC/MS data from the compounds file and the
). This output is obtained by clicking on the pathway link for
page at ProCyc. The heat maps are color-coded with green being 0,
heatmap number of 1 was at the initial time and number 2 was

S list and visualized with the pathway and concentration.

http://procyc.westcent.usu.edu/cgi-bin/MetaboSearcher.cgi
http://procyc.westcent.usu.edu/cgi-bin/MetaboSearcher.cgi
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