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Abstract

Cognitive theories for reasoning are about understanding how
humans come to conclusions from a set of premises. Starting
from hypothetical thoughts, we are interested which are the
implications behind basic everyday language and how do we
reason with them. A widely studied topic is whether cogni-
tive theories can account for typical reasoning tasks and be
confirmed by own empirical experiments. This paper takes a
different view and we do not propose a theory, but instead take
findings from the literature and show how these, formalized as
cognitive principles within a logical framework, can establish
a quantitative notion of reasoning, which we call plausibility.
For this purpose, we employ techniques from non-monotonic
reasoning and computer science, namely, a solving paradigm
called answer set programming (ASP). Finally, we can fruit-
fully use plausibility reasoning in ASP to test the effects of an
existing experiment and explain different majority responses.
Keywords: Answer Set Programming, Human Reasoning,
Model Quantification, Individual Reasoning, Deduction, Ab-
duction, Suppression Task, Non-monotonic Reasoning

Introduction
Usually, the adequacy of cognitive reasoning theories is as-
sessed with respect to typical reasoning tasks, e.g., (Byrne,
1989; Wason, 1968) and own experiments. The aim is to un-
derstand how, from a hypothetical thought, humans reason
and make conclusions. For example, given conditionals such
as “if A, then B” together with a set of given premises, we
can ask what humans conclude from this information. The
adequacy of a cognitive theory is assessed by how well it can
account the human data. Over the decades, many theories
have been proposed (Johnson-Laird, 1983; Rips, 1994; Polk
& Newell, 1995; Chater & Oaksford, 1999; Stenning & van
Lambalgen, 2008; Hölldobler & Kencana Ramli, 2009). Here,
we briefly discuss two dominant theories. The Probability
Heuristics Model (PHM) is a cognitive theory where the en-
vironment is described by prior probabilities and updates are
done according to Bayes’ theorem (Chater & Oaksford, 1999).
PHM does not suggest how probabilities are computed, i.e.
no implemented algorithm exists (López-Astorga, Ragni, &
Johnson-Laird, 2021). The (Mental) Model Theory (Johnson-
Laird, 1983) assumes that humans reason by constructing and
manipulating mental models, which illustrate the possibilities
of how the world is perceived by the reasoner (Khemlani &
Johnson-Laird, 2013). The model theory with naive probabili-
ties (Johnson-Laird, Legrenzi, Girotto, Legrenzi, & Caverni,

1Authors are stated in alphabetical order.

1999) provides a simple algorithm without using Bayes’s the-
orem, for computing subjective probabilities and was further
extended (Khemlani, Lotstein, & Johnson-Laird, 2015; Khem-
lani & Johnson-Laird, 2016). These two theories seem to have
conflicting viewpoints (Oaksford & Chater, 2020; Knauff &
Gazzo Castañeda, 2021; Oaksford, 2021; Over, 2021) and
so far, there is no agreement on whether an integration is
possible (López-Astorga et al., 2021; Over, 2021).

So far, a widely accepted framework for cognitive reasoning
does not exist. Even though there might be some agreement on
the metrics for a good theory, e.g., generalizability (Thomson,
Lebiere, Anderson, & Staszewski, 2015), simplicity, and pre-
dictive accuracy (Taatgen & Anderson, 2010), theories are not
always formalized by their inventors and thus not applicable to
tasks straightaway. When effort is done to make them testable
and accessible to others, e.g., (Khemlani & Johnson-Laird,
2012), the theory might be ambiguously understood and not
adequately modeled, e.g., (Baratgin et al., 2015). Quite an ex-
ample of Newell’s observation—even though scientists make
excellent research, they never seem in the experimental litera-
ture to put the results of all the experiments together, which
obstructs progress (Newell, 1973). Among others, Newell
suggested developing complete processing models, and a com-
puter system that can perform all mental tasks. On the archi-
tectural level, a standard model of the mind was proposed, that
depicts the best consensus given the community’s understand-
ing of the mind (Laird, Lebiere, & Rosenbloom, 2017).

An additional challenge for cognitive reasoning is to identify
the relevant problems that a model should account for (Ragni,
2020). Therefore, Ragni (2020) suggested establishing gen-
erally accepted benchmarks, similar to the PRECORE Chal-
lenge (Ragni, Riesterer, & Khemlani, 2019) for human rea-
soning tasks. The evaluation of this challenge was done with
the benchmarking tool Cognitive COmputation for Behav-
ioral Reasoning Analysis (CCOBRA) framework (Riesterer &
Shadownox, 2021).

In other disciplines such as mathematics and computer
science, annual problem challenges, such as the famous DI-
MACS challenges (Johnson, McGeoch, Grigoriadis, Monma,
& Tarjan, 1990), SAT (Balyo et al., 2021), and ASP com-
petitions (Gebser, Maratea, & Ricca, 2020), provided a
community-building tool and contributed to tremendous
progress in actual problem solving. On the side, these ef-
forts result in common (intermediary) languages. At the same

2838
In J. Culbertson, A. Perfors, H. Rabagliati & V. Ramenzoni (Eds.), Proceedings of the 44th Annual Conference of the Cognitive Science
Society. ©2022 The Author(s). This work is licensed under a Creative Commons Attribution 4.0 International License (CC BY).



time, the outcome of the challenges defines the empirical upper
bounds of the state-of-the-art model’s performance and deter-
mines the performance of new theories (Riesterer, Brand, &
Ragni, 2020). Here, we do not propose a cognitive theory but
formalize widely accepted findings as task-independent cogni-
tive principles within one framework. These principles require
that assumptions have to be general enough to be understood
in various contexts. At the same time, they call for an unam-
biguous formalization that can immediately be instantiated
to a specific context. As logical reasoning is [. . .] considered
one of the most fundamental cognitive activities (Woleński,
2016), a logical formalization of higher-level cognitive as-
sumptions might be suitable, even though not classical logic:
The formalization and reasoning with default assumptions,
which are facts that are true in the majority of contexts but
not always, require non-monotonic logic (Reiter, 1978, 1980).
A widely used modeling and problem solving paradigm in
AI and computer science that implements non-monotonic rea-
soning is answer set programming (ASP) (Heule & Schaub,
2015; Gebser, Kaminski, Kaufmann, & Schaub, 2012). The
solutions of the program answer sets or stable models, can
then be understood as possible models for that program.

We use the well-established ASP paradigm to model hu-
man reasoning principles, and employ ASP for quantitative
reasoning by defining a notion of plausibility that relates the
number of models under assumptions of interest to the total
number of models. Thereby, we obtain a framework that al-
lows for implementing cognitive principles. In our work, we
anti-disciplinary combine findings from cognitive science, the
non-monotonic logic community in computer science, and a
method of model quantification. However, it is important to
emphasize that ASP is not a theory of cognitive reasoning.

Contributions. Our main contributions are as follows:

1. We show that existing cognitive principles can be well repre-
sented as rules in ASP following a natural semantics. Each
program is a set of these rules and yields possible models.

2. We instantiate these general principles to a well-known task
from empirical experiments into simple programs that do
plausibility reasoning with ASP.

3. We illustrate, how we can turn potentially multiple models
of an ASP program into a quantitative approach to reasoning
(plausibility) to test the effects of existing experiments and
explain different majority responses.

Preliminaries
Answer Set Programming (ASP). ASP is a popular declar-
ative modeling and problem solving framework in computer
science and artificial intelligence with roots in non-monotonic
logic (Brewka, Eiter, & Truszczyński, 2011; Gebser, Kauf-
mann, & Schaub, 2012). In ASP, one states problems using
propositional atoms, meaning, that an atom a can either be
true or false. A program consists of rules, that state conclu-
sions about atoms. Solutions to the program are called answer

sets (or stable models). A rule of the form a← b,not c, intu-
itively, states that we can conclude a if b is true unless we have
evidence that c is true. By default, in ASP, we assume that
an atom a is false unless we can conclude it. This “in dubio
pro reo”-like approach is known as closed-world assumption
(CWA) (Reiter, 1980, 1978). Take the following example.
Example 1 (False by Default). Consider the following con-
ditional sentence. “If it is weekend (w), then she will go to
the beach (b)”. However, we know that “She will not go to
the beach (b), if it is cloudy (c).” We can rephrase this as
follows: “If it is weekend (w), then she will go to the beach
(b) unless it is cloudy (c).” This can be modeled as program
P1 = {b← w,not c.}. ⊥

What are the (intended) models of the programs? Here
we are interested in the answer sets (or stable models) of the
programs, but we will not provide their formal definitions
and rather explain the intuition by the next examples. The
interested reader is referred to an extended version (Dietz,
Fichte, & Hamiti, 2022) or introductory literature (Gebser,
Kaminski, et al., 2012).
Example 2 (Answer Set). The only answer set of P1 is /0, since
we neither have evidence for cloudy, nor weekend, nor beach.
If we know that “it is weekend”, we take program P2 = {b←
w,not c. w.}. In P2, we have evidence for weekend by w, but
no evidence for cloudy. From this knowledge, we can conclude
beach from the rule in P1. The only answer set of P2 is {w,b}.
In contrast, P2 = {b← w,not c. w. c.} has only the answer
set {w,c}. We cannot conclude b, as we have evidence for c
and the rule b← w,not c contains c as an exception to draw
the conclusion. ⊥

In ASP, we can also make explicit choices to set an atom to
true or not, which we illustrate in the following example.
Example 3 (Choices). Take program P1 from Example 1. If
we know that it could either be weekend or not weekend, we
add a choice rule to our program. A choice rule states that
any combination of atoms inside the set are true, including
none.2 We obtain P3 = {b← w,not c. {w}.}. Then, P3 has
two answer sets {w,b} and {}. ⊥

Next, we illustrate how adding rules can effect conclusions.
Example 4. Consider program
P4 = {b← w,not c.︸ ︷︷ ︸

r1

{w}.︸︷︷︸
r2

{s;c}.︸ ︷︷ ︸
r3

c← not s︸ ︷︷ ︸
r4

} where r1

corresponds to the conditional in Ex. 1, r2 to the choice
in Ex. 3, and s means “it is sunny”. Choice r3 states
that either s or c are true, both are true, or none
is true. We have six answer sets, namely, AS(P4) =
{{s},{c},{c,s},{b,s,w},{c,s,w},{c,w}}. The set X =
{b,w} is not an answer set of P4, since we conclude cloudy
(c) from rule r4 if we have no evidence for sunny (s). ⊥

Below, we also use variables in the programs, which pro-
vides us with a more expressive and compact way of repre-
sentation. We omit formal details for space reasons, but again

2Sometimes we also write n{a1;a2; . . . ;ak}m, meaning that we
chose at least n atoms and at most m atoms in the choice.
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give an example. By {p(X).r(X)← p(X)} for X ∈ {a,b},
where a and b are constants, we mean {p(a). p(b).r(a)←
p(a).r(b)← p(b)}. We assume that there is always at least
one constant in P and AS(P) is the set of all answer sets of P.

Quantitative Reasoning in ASP. Traditionally, when mod-
eling in logic, one considers simple decision questions, i.e.,
yes-no questions (Copi, Cohen, & Rodych, 2019). In terms of
ASP this would simply mean asking whether a given program
has an answer set, i.e., AS(P) 6= /0. Beyond, we find questions
such as credulous and skeptical reasoning. Where credulous
or skeptical reasoning asks whether an atom a is contained
in at least one and all answer sets, respectively. We are also
interested in computing the plausibility for a set Q of rules
relating to the number of answer sets under the assumption of
the total number of answer sets.

Definition 1 (Plausibility). Let P be a program and Q be a
set atoms, called questions. Then, plausibility of P under Q is
defined P[P,Q] := |AS(P∪PQ)|

max(1,|AS(P)|) where PQ consists of integrity
rules that ask whether atoms in Q can be made true, i.e.,
PQ := {← not a | a ∈ Q}.

Later, when representing questions in ASP programs, we
assume that Q is given by rules of the form “question(a).”
for every a ∈ Q. When computing |AS(P∪Q)|, we replace
each question(a) as above by “← not a.”. By using ASP,
we describe the system and the outcome using rules within
ASP. Answer sets represent the outcomes of our system. The
question for plausibility still relates to inference and is done in
terms of counting answer sets. Using modern implementations
that solve answer set programs, we can obtain the plausibility
by listing all answer sets and computing the relation. The
problem is of high computational complexity and has only
recently received more attention with the rise of more efficient
solving techniques in the propositional setting that avoid enu-
meration (Lagniez & Marquis, 2017; Sharma, Roy, Soos, &
Meel, 2019; Fichte, Hecher, & Hamiti, 2021; Fichte, Hecher,
Thier, & Woltran, 2021; Fichte, Hecher, & Roland, 2021) or in
the ASP setting (Kabir et al., 2022; Fichte, Gaggl, & Rusovac,
2022; Nadeem, Fichte, & Hecher, 2022).

Example 5. Consider P4 from Ex. 4. For skeptical reasoning
for s or c in P4, the outcome is no. Whereas for credulous rea-
soning, the outcome is yes. When considering the plausibility
of P4 under s being true, meaning PQ = {← not s}, we can
see that |AS(P4∪PQ)|= |{{s},{c,s},{b,s,w},{c,s,w}}|= 4
and |AS(P4)|= 6, which yields P[P4,Q] = 4/6. ⊥

Below, we illustrate counting and Bayesian views as well
as differences to our notion. We follow a popular example by
McElreath (2020b, 2020a). Recall that Bayes-Price theorem
is used to compute the probability of an event, based on prior
knowledge of conditions that might be related to the event.
While it might seem quite plain, one can just list potential
combinations and count possible ways instead.

Example 6. Assume that we have a bag of four marbles,
which could be blue (b) or white (w). We are not aware of how

many of each is in the bag. From the four marbles, the cases
(i) wwww; (ii) bwww; (iii) bbww; (iv) bbbw; and (v) bbbb
are possible. To obtain more detailed information about the
content, we can take one marble remember its color and put
it back. Assume that after repeating times, we observe bwb.
To estimate Bayesian plausibility, we can count how many
ways are to produce each of the Cases (i-v) assuming the seen
data. In more detail, 0 ways for wwww, 3 ways for bwww, 8
ways for bbww, 9 ways for bbbw, and 0 ways for bbbb. In
total 20 possible ways. Plausibility talks about an observation
in relation to all possible ways. Here, 0/20 = 0 for wwww,
3/20 = 0.15 for bwww, 8/20 = 0.40 for bbww, 9/20 = 0.45 for
bbbw, and 0/20 = 0 for bbbb. Our framework allows to express
this in our notion of plausibility. Therefore, we can model
the 5 cases that can be produced and their resulting ways of
producing the data. Then, ask for the number of solutions that
can be produced in total and the one under the assumption
say Case (ii) bwww. We provide a detailed ASP program in
an extended version (Dietz et al., 2022). While our framework
allows to express such questions we are more general and by
plausibility in ASP, we express the relation of count under
assumption and total count of possible answer sets. ⊥

The existing probabilistic approaches to human reasoning
differ from our proposal as those probabilities are either under-
stood as subjective and are not derived from the quantification
over models, e.g. (Chater & Oaksford, 1999) or attach the prob-
abilities to different types of inferences, e.g. (Kleiter, 2018).
We also use a slightly different approach than Johnson-Laird
(1999) by considering the relationship on counting the values
in the truth table that evaluate to true, but according to the
answer set semantics.

Cognitive Principles in ASP
We employ accepted findings from the literature and formalize
them as rules, called cognitive principles, within one frame-
work and explain their effects. As a baseline, we consider the
principles presented in the literature (Dietz & Kakas, 2020,
2021). These principles are task-independent and can be any
assumption that humans seem to make regardless of whether
they are valid in classical logic. ASP will be the framework in
which we formalize them. Before we proceed with the rules
and their representation in ASP, let us clarify that we do not
present a new cognitive theory.

Presuppositions Grice’s (1975) conversational implicatures
are about additional interpretations of the sentences we hear,
not necessarily related to the content. For instance, we usually
communicate according to the cooperation principle. Thus,
when the experimenter (or someone we trust) states “a is
true or a is false”, we assume that this is true. In ASP, a
fact prem(a) is represented as either prem(a) or nprem(a),
respectively (FACT principle).3 Yet, both cannot be true at the

3Throughout the paper, the negation of a statement a(X) is repre-
sented with an auxiliary statement na(X), i.e., having the same name
as the statement, preceded by an ’n’.
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same time (CONSISTENCY principle).
Grice’s maxim of relevance implies that everything that is

said, seems to be relevant, suggesting that humans might gener-
ate hypotheses from the context (HYPOTHESIS principle). We
account for this principle by establishing context-dependent
hypotheses for each statement a that we are made aware of by
adding hyp(a).

{prem(X);nprem(X)}1← hyp(X). (HYPOTHESIS)

The 1 denotes that at most one statement can be true ensuring
the CONSISTENCY principle.

Types of Conditionals Conditions in conditionals can be of
different types, such as necessary or sufficient (Byrne, Espino,
& Santamarı́a, 1999; Byrne, 2005). Consider the two condi-
tional sentences If she meets with a friend, then she will go to
the play and If she has enough money, then she will go to the
play. We assume that she meets with a friend is a sufficient
condition whereas she has enough money is not sufficient but
a necessary condition for she will go to the play. Assume that
she meets a friend. Together with the above HYPOTHESIS prin-
ciple and given the second conditional, humans might generate
the hypothesis that she does not have enough money which
functions as a disabling condition (Cummins, Lubart, Alk-
snis, & Rist, 1991) to the modus ponens conclusion that she
will go to a play. The follwing rule states that concl follows if
condition is asserted to be true (modus ponens):

concl← prem(X),sufficient(X). (SUFFICIENT)

The following rule states that nconcl follows if condition is
false (denial of the consequent).

nconcl← nprem(X),necessary(X). (NECESSARY)

Let us observe that she does not meet a friend. If this condi-
tion is also necessary, according to the NECESSARY principle
we might conclude that she will not go to the play. Consider
now additionally that if she has free tickets, she will go to the
play. The hypothesis that she has free tickets functions as an
alternative cause (Cummins et al., 1991) to the condition she
meets a friend, for the conclusion she will go to the play. The
following rule captures this idea:

nconcl← nprem(X1), . . . ,nprem(Xn) (ALL SUFFICIENT)

where nprem(X1), . . . ,nprem(Xn) is the conjunction of all Xi,
1≤ i≤ n, for which there exists a rule of the following form:
concl← prem(Xi),sufficient(Xi). This rule states that nconcl
follows when all its sufficient conditions are false.

Maxim of Inference to the best explanation Even though
not valid in classical logic, humans have the ability to reason
from observations to explanations, called abduction (Peirce,
1903). As reported by Kelley (1973); Sloman (1994), con-
trastive (or alternative) explanations might increase or decrease
their plausibility, depending on the context.

In ASP, abduction can be implemented as cautious (or skep-
tical) abduction (Kakas, Kowalski, & Toni, 1993). Given
a program P and an observation O, is E an explanation
for O? This question can be answered in a two-step pro-
cedure: (i) Generate models of P, in which O holds: ←
O. (EXPLAIN principle) (ii) Select models in which E holds:
question(E).(CAUTIOUS principle)
We additionally require explanations to be minimal (MINIMAL
principle): Given P, E is a minimal explanation of O if and
only if there is no other explanation E ′ for O such that E ′ ⊂E .
In the sequel, O is either concl or nconcl and E is either prem
or nprem. Given that if prem then concl, the derivation from
concl to prem corresponds to the (classical logically) invalid
affirmation of the consequent, whereas the derivation from
nconcl to nprem corresponds to the valid modus tollens.

Individual Reasoners Humans differ in their reason-
ing, c.f., (Khemlani & Johnson-Laird, 2016). We represent
these differences as choice rules, surrounded by {. . .}, which
can contain one or more variables. For instance, models in
which hyp(a) is true, false, or unknown, can be generated
through the choice rule “{hyp(a)}” (INDIVIDUALS principle).

Application to Human Reasoning
We discuss the application of cognitive principles within
ASP by means of a typical reasoning task. The suppression
task (Byrne, 1989) consists of two parts, where participants
were divided into three groups and were asked whether they
could derive conclusions given variations of a set of premises.
First, we present the formalization in ASP guided by cogni-
tive principles. In Part I, reasoning is done deductively, and,
in Part II, it is done abductively. In contrast to other logic
programming approaches (Stenning & van Lambalgen, 2008;
Dietz, Hölldobler, & Ragni, 2012), we apply quantitative rea-
soning to the computed models which allows us to account for
the majority’s differences in the experimental results.

Part I: Search for conclusions Group I was given the fol-
lowing two premises: If she has an essay to finish, then she
will study late in the library. She has an essay to finish. (essay)
The participants were asked what of the following answer pos-
sibilities follows assuming that the above premises were true:
She will study late in the library, She will not study late in the
library. or She may or may not study late in the library. 96% of
the participants in this group concluded that She will study late
in the library (library). Group II of participants additionally
received the following premise: If she has a textbook to finish,
then she will study late in the library, which yields to the same
result: 96%4 of the participants in this group concluded that
She will study late in the library. Group III of participants
instead additionally received the following premise: If the
library is open then she will study late in the library. In this

4We refer to the percentages from Byrne (1989). Table 2 also
shows the percentages from Dieussaert (2000).
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Case All Groups Group I Group II Group III

All cases Pbasic {necessary(e)} necessary(e)

essay question(concl) prem(e) prem(e),{hyp(t)} {hyp(o);prem(e)}
not essay question(nconcl), nprem(e) {hyp(t)} {hyp(o)}
library {concl},← not concl,question(prem(e)) hyp(e) {hyp(e);hyp(t)}1 hyp(o),hyp(e)
not library {nconcl},← concl,question(nprem(e)) hyp(e) hyp(e),hyp(t) {hyp(o);hyp(e)}1

Table 1: Summary of the rules applied by case and group. The second row shows the rules by group that applied to all cases.

case, only 38% concluded that She will study late in the li-
brary. Even though the conclusion was logically valid in all
three groups (modus ponens), a suppression effect in Group
III could be observed (Byrne, 1989). This effect very well
demonstrates the non-monotonic nature of human reasoning.

If instead, She does not have an essay to finish was given
as a fact, only 4% of Group II concluded She will not study
late in the library, whereas for Group I and Group III, it was
46% and 63%, respectively. Here, the conclusion was not
valid (affirmation of the consequent), and the suppression
effect could be observed in Group II. This case nicely shows
that the suppression effect occurs independent on whether the
conclusion is valid.

Motivated by the cognitive principles, the following rules,
denoted by Pbasic, are part of all cases and groups:

← concl,nconcl. (CONSISTENCY)
concl← prem(X),sufficient(X). (SUFFICIENT)
nconcl← nprem(X),necessary(X). (NECESSARY)
{prem(X);nprem(X)}1← hyp(X). (HYPOTHESIS)
nconcl← nprem(e), . . . ,nprem(t) (ALL SUFFICIENT)
sufficient(e). (SUFFICIENT)
sufficient(t). (SUFFICIENT)
necessary(o). (NECESSARY)

concl and nconcl here refer to She will study late in the library
and She will not study late in the library, respectively. The
last three rules state that e (She has an essay to finish) and t
(She has a textbook to read) are sufficient for concl, whereas
o (The library is open) is necessary for concl. Table 1 shows
all the programs for all the cases and groups.

Consider the first three rows in Table 1. For different groups
of participants different underlying principles are assumed:
By the FACT principle for case essay and not essay we assume
prem(e) and nprem(e), respectively. Similar to the answer
possibilities that were given to the participants, in ASP we ask
the program whether an answer follows by question(concl)
or question(nconcl). The different groups are made aware of
different contexts, which is represented by the HYPOTHESIS
principle: The program for Group II can build the hypothesis
hyp(t), whereas Group III can build the hypothesis hyp(o).
To account for different participants (INDIVIDUALS princi-
ple), choice rules (rules surrounded by {. . .}) are used: Con-
sider {necessary(e)} in Group I for all cases: It allows the

generation of models in which necessary(e) is true, false,
or unknown. Choice rules enable us to deal with condi-
tions that might result in conflicting conclusions. Consider
{hyp(o),prem(e)} (in case essay, Group III). Assume hyp(o):
Because necessary(o) ∈ Pbasic, by the NECESSARY principle
nconcl follows. If we assume prem(e), as sufficient(e)∈ Pbasic,
by the SUFFICIENT principle, concl follows.

Part II: Search for Explanations The second part of the
experiment was similar, except that the given facts were dif-
ferent. In the first case, participants were asked what follows,
given the fact that She will study late in the library (library).
For Group I and III, 71% and 54% derived the non-valid (affir-
mation of the consequent) conclusion that She has an essay
to finish, whereas the suppression effect occurred for Group
II, with only 13%. In the second case, they were asked what
follows, given the fact that She will not study late in the library
(not library). Here, 92% and 96% of participants in Group I
and II derived the (logically valid) modus tollens conclusion
She does not have an essay to finish, whereas the suppression
effect occurred for Group III, with only 33%.

Following the EXPLAIN principle, participants might have
understood the given fact as an observation and searched for
explanations.← not concl generates all models in which concl
holds and question(prem(e)) selects the models in which
prem(e) holds; similar for nconcl. These models are explana-
tions for the given observation.

To account for different participants, we specify choice
rules: {concl} allowing to generate models in which concl is
either false, true, or unknown. The cases in which concl is
simply assumed to hold, represents participants who possibly
did not search for explanations or generated other explanations
based on their background knowledge. Similar for nconcl.

Consider the special cases of choice rules for the generation
of explanations in row 5 and 6 in Table 1: For Group II,
case library, {hyp(e);hyp(t)}1 excludes the cases where both
hyp(e) and hyp(t) are true. As both e and t are sufficient
conditions for library, it is enough to assume either prem(e)
or prem(t) to hold as an explanation for library. For Group III,
case not library, {hyp(e);hyp(o)}1 excludes the cases where
both hyp(e) and hyp(o) are true. As both e and o are necessary
conditions for library, it is enough to assume either nprem(e)
or nprem(o) to hold as explanation for not library.

Note that for both groups this rule is not relevant for the
other cases. In Group II, both nprem(e) and nprem(t) need to
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hold to be an explanation for not library whereas in Group III,
both prem(e) and prem(o) need to hold to be an explanation
for library. These choice rules motivated by the MINIMAL
principle are case-specific. Computing minimal explanations
is expensive in general (Eiter & Gottlob, 1993).

From Counting Models to Plausibility Table 2 shows the
number of generated models according to the given programs
in Table 1 including the plausibility for library, not library,
essay, and not essay, respectively. The plausibility is com-
puted via ASP as described in the preliminaries. For each
group (column 2) the number of all models for the program
(column 4) and the number of all models that satisfied the
question (column 3) are depicted. Columns 5 to 7 show the
computed plausibility of quantitative ASP, the experimental
results in the literature (Byrne, 1989) and (Dieussaert et al.,
2000), respectively. ASP does not only model well the sup-
pression effect in all four cases but also accommodates for
the difference between high percentages (Group I and II for
the cases essay and not library) and significant percentages
(Group I and III for case not essay and library). Interestingly,
whenever a suppression effect occurs in a group, ASP also gen-
erates more models compared to the other groups. This seems
to agree with the assumption that inferences which leads to
multiple models should be more difficult than the ones on a
single model (López-Astorga et al., 2021).

Discussion and Outlook
To the best of our knowledge, no approach for human reason-
ing has considered quantitative model counting. Additionally,
we provide an online accessible formalization of the task such
that the results can be replicated.

We believe that a good model needs to account for the
assumptions of various theories, for individual reasoners, and
can rigorously be applied to benchmarks. An approach, which
is guided by general cognitive principles, can account for
individuals, is rigorously applicable as shown in other domains,
and, as motivated by established theories, likely accounts for
a variety of tasks.

The computed plausibility in this paper is solely based on
the number of models, ignoring the quality of the respective
models. However, some models might be easier to be consid-
ered by humans than other models (Knauff, Rauh, Schlieder,
& Strube, 1998; Ragni, Fangmeier, Webber, & Knauff, 2006),
meaning that they are not equiprobable. An additional prefer-
ence relation, either on the rule level or on the model level, can
easily be implemented in ASP (Brewka, Delgrande, Romero,
& Schaub, 2015), could account for these differences or
weighted counting (Sang, Beame, & Kautz, 2005).

Conclusion and Future Work
In this work, we showed how model human reasoning princi-
ples can be formalized within answer set programming (ASP),

3The programs, models and the results can be found online:
https://github.com/eadietz/bst2asp

models
Cases Group Question total ASP B. D.+

I 2 2 100 96 88
II 4 4 100 96 93

es
sa

y

III 3 7 43 38 60

 concluded She will study late in the library

I 1 2 50 46 49
II 1 4 25 4 22

no
te

ss
ay

III 5 8 63 63 49

 concluded She will not study late in the library

I 2 5 40 71 53
II 1 7 14 13 16

lib
ra

ry

III 2 4 50 54 55

 concluded She has an essay to finish

I 1 1 100 92 69
II 1 1 100 96 69

no
tl

ib
ra

ry

III 1 2 50 33 44

 concluded She does not have an essay to finish

Table 2: The results in ASP compared to the experimental
results in (Byrne, 1989; Dieussaert et al., 2000), abbr. by B
and D+, resp. The first two columns refer to cases and groups.
Columns 3 and 4 refer to the number of models that satisfy
the question and all models of the program. The highlighted
rows show in which group the suppression effect occurred.3

which is a popular modeling problem, and reasoning frame-
work in artificial intelligence (AI). By counting answer sets,
we establish a notion of quantitative reasoning in terms of plau-
sibility and account for different majority responses in cog-
nitive reasoning. While the constructed models were guided
by cognitive principles, we clearly do not believe that human
reasoning works similarly as ASP computation. Instead, ASP
helps to represent principles.

Putting our results into the light of Newell’s considerations
on progress within the cognitive community (Newell, 1973),
our work might be seen as yet another framework for men-
tal modeling. However, we use well-established techniques
from AI for representing cognitive principles and making
small steps to converge. Thereby, we incorporate existing
approaches and open ASP to the cognitive theory community.

In addition, we aim to investigate whether preferences over
answer sets or weighted counting could allow for more detailed
modeling of cognitive principles. Furthermore, inspired by
our idea of employing existing techniques from AI, and as
already mentioned in the introduction, the cognitive science
community could discuss and design an event establishing
benchmarks for human reasoning tasks as suggested in (Ragni,
2020) explaining different majority responses using one or
many existing frameworks.
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